
UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Hugo Aparecido de Lima França Chaves

Filter Learning from Deep Descriptors of Fully

Convolutional Siamese Network for Tracking in

Videos

Juiz de Fora

2019

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Hugo Aparecido de Lima França Chaves

Filter Learning from Deep Descriptors of Fully

Convolutional Siamese Network for Tracking in

Videos

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação,
do Instituto de Ciências Exatas da
Universidade Federal de Juiz de Fora como
requisito parcial para obtenção do t́ıtulo de
Mestre em Ciência da Computação.

Orientador: Marcelo Bernardes Vieira

Coorientador: Augusto Santiago Cerqueira

Juiz de Fora

2019

Ficha catalográfica elaborada através do programa de geração
automática da Biblioteca Universitária da UFJF,

com os dados fornecidos pelo(a) autor(a)

de Lima França Chaves, Hugo Aparecido.
 Filter learning from deep descriptors of fully convolutional
siamese network for tracking in videos / Hugo Aparecido de Lima
França Chaves. -- 2019.
 84 f. : il.

 Orientador: Marcelo Bernardes Vieira
 Coorientador: Augusto Santiago Cerqueira
 Dissertação (mestrado acadêmico) - Universidade Federal de
Juiz de Fora, Instituto de Ciências Exatas. Programa de Pós
Graduação em Ciência da Computação, 2019.

 1. Tracking. 2. Siamese Network. 3. Deep Descriptors. I.
Bernardes Vieira, Marcelo , orient. II. Santiago Cerqueira, Augusto,
coorient. III. Título.

Hugo Aparecido de Lima França Chaves

Filter Learning from Deep Descriptors of Fully Convolutional

Siamese Network for Tracking in Videos

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação,
do Instituto de Ciências Exatas da
Universidade Federal de Juiz de Fora como
requisito parcial para obtenção do t́ıtulo de
Mestre em Ciência da Computação.

Aprovada em 3 de Junho de 2019.

BANCA EXAMINADORA

Prof. D.Sc. Marcelo Bernardes Vieira - Orientador
Universidade Federal de Juiz de Fora

Prof. D.Sc. Augusto Santiago Cerqueira - Coorientador
Universidade Federal de Juiz de Fora

Prof. D.Sc. Saulo Moraes Villela
Universiade Federal de Juiz de Fora

Prof. Ph.D. Hélio Pedrini
Universidade Estadual de Campinas

Dedico este trabalho aos meus

pais, Euzimar e Mary Jamel e à

minha irmã, Juliana.

ACKNOWLEDGMENTS

Eu gostaria de agradecer meus pais, Euzimar e Mary Jamel, pelo esforço e empenho

que depositaram a favor da minha formação; À Juliana pelo carinho que tem comigo; À

Priscila pelo carinho e apoio ao longo do mestrado; Ao professor Marcelo por ter orientado

este trabalho e minha formação ao longo do mestrado e ter me acolhido no PGCC; Ao

professor Augusto por também ter orientado este trabalho e ter contribúıdo com minha

formação desde a graduação; Ao Kevyn pelo aux́ılio na execução deste trabalho; Ao André

e ao Hermerson pela parceria ao longo do mestrado; Aos demais professores do PGCC que

contribúıram com minha formação e a todas pessoas que contribuiram de alguma forma

também para a minha conclusão.

”A dúvida não é uma condição

agradável, mas a certeza é

absurda.” Voltaire

RESUMO

Nos últimos anos, os avanços em Aprendizado Profundo revolucionaram diversas sub-

áreas da Visão Computacional, incluindo o Rastreamento de Objetos Visuais. Um tipo es-

pecial de rede neural profunda, a Rede Neural Siamesa, chamou a atenção da comunidade

especializada em rastreamento. Ela possui baixo custo computacional e alta eficácia para

comparar a similaridade entre objetos. Atualmente, a comunidade cient́ıfica atingiu re-

sultados notáveis ao aplicar tais redes ao problema de Rastreamento de Objetos Visuais.

No entanto, observou-se que limitações dessa rede neural impactam negativamente no ras-

treamento. Superou-se o problema ao se obter um novo descritor para referência do objeto

combinando descritores passados fornecidos pelo rastreador. Em particular, foi proposto

a combinação de sinal de descritores em blocos de memórias de longo e de curto prazo,

os quais representam a primeira e a mais recente aparência do objeto, respectivamente.

Um descritor final é gerado a partir desses blocos de memória, o qual o rastreador usa

como referência. Este trabalho enfatizou-se na obtenção de um método para calcular um

banco de filtros otimizado através do uso de um algoritmo genético. O banco de filtros

é utilizado então para gerar a sáıda da memória de curto prazo. De acordo com experi-

mentos realizados na base de dados OTB, esta proposta apresenta ganhos em comparação

com a proposta original da SiamFC. Considerando a métrica área abaixo da curva, há

ganhos de 7.4% e 3.0% para os gráficos de precisão e sucesso, respectivamente, tornando

este trabalho comparável a métodos do estato da arte.

Palavras-chave: Rastreamento. Redes Siamesas. Descritores Profundos.

ABSTRACT

In recent years, the advancement of Deep Learning has revolutionized many areas in

Computer Vision, including Visual Object Tracking. A particular type of deep neural

network, the Siamese Neural Network, brought the attention of Visual Object Tracking

community. This neural network has a relatively low computational cost, and high effi-

cacy framework used to compare the similarity between objects. Nowadays, the scientific

community achieved remarkable success applying such frameworks in the tracking prob-

lem. However, the limitations this neural network impact negatively in its performance.

We overcome this problem by obtaining a new descriptor for the reference object combin-

ing past descriptors outputted from the tracker. Specifically, we propose a combination

of the signal of descriptors in long and short term memory blocks, which represent the

first and the recent appearance of the object, respectively. A final descriptor is composed

of such memory blocks, and the tracker uses it as a reference. In particular, this work

emphasized in the obtention of a method to compute an optimized filter bank through

the usage of a genetic algorithm. The filter bank is then used to compute the short term

memory output. According to experiments performed in the widely used OTB dataset,

our proposal improves the baseline performance. The improvements for the area under

the curve metrics are 7.4% and 3.0%, for precision and success plots, respectively, being

comparable to the state-of-the-art methods.

Keywords: Tracking. Siamese Network. Deep Descriptors.

LIST OF FIGURES

1.1 Example of VOT in a video. 21

2.1 Selection operator in a population of individuals. The fitness of each candidate

is show on theirs side. The selected individuals (inside black rectangles)

tends to be those with the highest fitness. 26

2.2 Crossover operator overview. The chromosomes of two the parents are com-

bined into the offspring chromosomes, who inherit characteristics from both

parents. 26

2.3 Mutation operation overview. Notice that some genes are randomly changed

(black crosses). 27

2.4 Example of an NN. Weighted inputs are added to constants (bias) and then,

evaluated by an activation function Φ. 28

2.5 Neuron Representation . 29

2.6 Fully-connected Layer Representation - Bias and activation function omitted

for better visualization. 29

2.7 How the convolutional filters work (a) An input feature map convolved with

a filter. The convolution of both results in an output feature map. (b)

Feature map obtained by the evaluation of the four filters over the previous

feature map (c) Illustration of how the feature map is obtained. Simplified

visualization of Equation 2.8 and 2.10. Bias is omitted for better visualization. 31

2.8 An example of a max pooling operation being performed in a layer of the

feature map shown in Figure 2.7. Notice that the pooling neighborhood is

2×2 windows, in blue, and the stride s is also 2, what results in a feature

map of size 2×2. The result of the operation is observed at the bottom of

the figure, where whiter values represent higher values in the feature map. 32

2.9 Overview of the evaluation of a mono-channel image by hypothetical filter

followed by the max pooling operation. Notice at the top-right corner, in

the red circle, that the filter highlights borders in the image. Filters and

images are not in scale. 33

2.10 Overview of generic FCNN’s topology composed of 3 layers. Notice that this

network does not present fully-connected layers. This topology allows eval-

uation of images of different sizes. 33

2.11 Evaluation process of an FCNN (a) Evaluation of an image of atomic size. It

outputs feature map is reduced to a single feature vector. In this case, the

output resembles the evaluation of an ordinary CNN. (b) Evaluation of an

image greater than atomic image. In this case, there is a feature map whose

size is given by the equation 2.11. 34

2.12 Points encoding the respective images in a 3-dimensional space. Notice that

very similar images are placed close from each other, and different ones are

localized far apart. 36

2.13 Siamese Neural Network overview. 37

2.14 SiamFC overview. Notice the proportionality of respective input images and

the feature maps. 38

4.1 Example of object mapping of an ideal SNN into a three-dimensional vector. . 48

4.2 Example of object mapping of an ideal SNN into a three-dimensional feature

vector. 49

4.3 Encoding of an image. The single descriptor of K dimensions relies on a single

instance of the object and it is all the information that the trackers based

on SNNs discussed in Section 3.4 have to perform tracking. 50

4.4 Signal of descriptors obtained through an SNN designed for tracking purpose.

A signal of descriptors provides a much richer information about the RoI. . 50

4.5 Proposal overview . 51

4.6 Complemented SiamFC based on memory blocks that are combined to generate

a Combined Descriptor. Notice that different memory blocks resemble the

appearance of the object in different temporal perspectives, these memories

generate the Combined Descriptor used to localize the position of the object. 52

4.7 Long Term Memory signal representation. In this figure, it is shown only two

dimensions of a single feature vector of a features map and its representation

over time n. 54

4.8 Short Term Memory signal representation. In this figure, it is shown only two

dimensions of a single feature vector of a feature map and its representation

over time n . 55

4.9 Combined Descriptor signal representation. This is the resultant combination

of the Long Term Memory from Figure 4.7 and the Short Term Memory

from Figure 4.8. The conservative factor α = 0.5. In this figure, it is

shown only two dimensions of a single feature vector of a features map and

its representation over time n. 56

5.1 Representation of LE and IoU. 62

5.2 Analysis of the number of descriptor that composes the Long Term Memory.

The respective AUCs are shown in the legend between brackets. 63

5.3 Analysis of the filter order of the filter bank used by Short Term Memory. The

respective AUCs are shown in the legend between brackets. 64

5.4 Impact of the noise standard deviation in the computation of the trained filters

compared to the baseline. The respective AUCs are shown in the legend

between brackets. 64

5.5 Impact of the conservative factor in the computation of the filter compared to

the baseline. The respective AUCs are shown in the legend between brackets. 65

5.6 Performance of the filter bank trained with videos tracked with high F-Measure

values. The respective AUCs are shown in the legend between brackets. . . 67

5.7 Precision and success plots for Moving Average and the Gaussian Filters com-

pared to the SiamFC. The respective AUCs are shown in the legend between

brackets. 68

5.8 Precision and success plots for the proposed method an the baseline. The

respective AUCs are shown in the legend between brackets. 68

5.9 Precision and success curves for the performance of the proposed method

(green), compared to state-of-the-art methods. The respective AUCs are

shown in the legend between brackets. 71

5.10 Tracking performance comparison between: GT (in blue), SiamFC (in red)

and the proposed method (in green). All the sequences are from the OTB

dataset: (a) ''lemming1''(b) ''skiing''(c) ''singer1''. 73

5.11 Filter bank analysis (a) Shape of all the 256 filters of the bank. (b) Filters

corresponding to dimensions k = 0, 50, 100 of the bank shown individually

for time and frequency analysis. 75

LIST OF TABLES

5.1 Videos in the VOT2015 dataset that meet the criteria for scenario 1, 2 and 3. 66

5.2 Summary of the precision plots performance according to AUC and the statis-

tical information of mean and standard deviation. It is highlighted in bold

the best performance for each metric. 69

5.3 Summary of the success plots performance according to AUC and the statistical

information of mean and standard deviation. It is highlighted in bold the

best performance for each category for each of the thresholds. 69

5.4 F-measure for different thresholds. It is highlighted in bold the best perfor-

mance for each threshold. 70

5.5 LE precision for different thresholds. The first row corresponds to thresholds

values. The second row indicates the method, the proposed method (PM)

or the baseline (BL). From the third row, each line corresponds to the

performance of one category of the OTB dataset. It is highlighted in bold

the best performance for each category for each of the thresholds. 70

5.6 IoU success for different thresholds. First row corresponds to thresholds val-

ues. Second row indicates the method, the proposed method (PM) or the

baseline (BL). From the third row, each line corresponds to the perfor-

mance of one category of the OTB dataset. It is highlighted in bold the

best performance for each category for each of the thresholds. 71

LIST OF SYMBOLS

h Generic system or filter.

x[n] Input signal in time n.

y[n] Output signal in time n.

q Multiplicative constant of a system.

LD Delay operator.

g[n] Generic signal in time n.

wx Weight of the xth element of a neural network.

ax xth input of a neuron.

z Output of a neural network.

b Bias of a neural network.

Φ(.) Activation Function .

max(.) Maximum between two values.

akll Input Feature map at layer l composed by kl filters.

w
kl′
l,kl kthl′ filter at layer l of the kthl channel.

z
kl′
l′ Output Feature map at layer l′ composed by kl′ filters.

b
kl′
l Bias for the kl′th filter in layer l.

sl Stride in layer l.

γ Atomic size of a Fully-Convolutional Neural Network.

L Translation operator.

I Input image.

s Stride.

d Size of a feature map.

z Encoded vector z ∈ RK .

f Encoding function, f : R2 → RK .

l Similarity function l : RK → R.

S Similarity.

z[n] Encoded signal of descriptors from bounding box outputted in time n.

BBn nth bounding Box in a video outputted by the tracker.

g[n] Encoded signal of descriptors from ground-truth in time n.

GTn nth region of interest in a video indicated by the ground-truth.

zcomb[n] Combined Descriptor signal.

O(.) Generic operation between feature vectors.

zlong Long Term Memory signal.

E(.) Expected value operator.

Q First Q frames of a videos.

hLTI [n] Vector of LTI filters at coeficient n.

hLTIk [n] kth component of a Vector of LTI filters at coeficient n.

qk kth coeficient of a system or filter.

zshort[n] Short Term Memory signal.

zext[n] Signal of extended video

M(.) Generic memory combination.

α Conservative factor.

pg Probability of gene mutation.

pm Probability of selecting an individual for mutation.

pc Probability of crossover.

P Population size.

Mi Maximum number of generations.

F F-Measure.

p Precision.

r Recall.

Γ F-Measure threshold.

σ[n] White noise vector at time n.

t tth frame of a video.

T Total number of frames of a video.

LIST OF ACRONYMS

ALIEN Appearance Learning In Evidential Nuisance

AUC Area under the curve

BB Bounding Box

C-COT Continuous Convolution Operator Tracker

CFN Correlation Filter Network

CNN Convolutional Neural Network

CV Computer Vision

DCFNet Discriminant Correlation Filters Network

DL Deep Learning

DLT Deep Learning Tracker

DNN Deep Neural Network

DSiam Dynamic Siamese network

DSP Digital Signal Processing

ECO Efficient Convolution Operators

FCNN Fully Convolutional Neural Network

FFT Fast Fourier Transform

FPS Frames Per Second

GA Genetic Algorithm

GOTURN Generic Object Tracking Using Regression Networks

GT Ground-truth

IoU Intersection-over-Union

KCF Kernelized Correlation Filter

LE Location Error

LSTM Long Short-Term Memory

LTI Linear Time-Invariant

MDNet Multi-Domain Network

ML Machine Learning

NCC Normalized Cross Correlation

NN Neural Network

OS Overlap Score

OTB Online Tracking benchmark

RNN Recurrent Neural Network

RoI Region of Interest

SIFT Scale Invariant Feature Transform

SINT Siamese INstance search Tracker

SNN Siamese Neural Network

TLD Tracking-Learning-Detection

VOT Visual Object Tracking

CONTENTS

1 INTRODUCTION . 19

1.1 MOTIVATION . 20

1.2 PROBLEM DEFINITION . 20

1.3 OBJECTIVES . 21

1.4 CONTRIBUTIONS . 21

1.5 OUTLINE . 22

2 FUNDAMENTALS . 23

2.1 SIGNALS AND SYSTEMS . 23

2.1.1 Linearity . 23

2.1.2 Time-Invariance . 24

2.2 GENETIC ALGORITHM . 24

2.3 NEURAL NETWORKS . 27

2.3.1 Convolutional Neural Networks . 30

2.3.2 Fully Convolutional Neural Networks . 33

2.3.3 Similarity Comparison . 35

2.3.4 Siamese Neural Networks . 36

2.3.5 The SiamFC Network . 38

3 LITERATURE REVIEW. 40

3.1 THE CLASSICAL APPROACHES TO TRACKING . 40

3.2 DEEP LEARNING . 41

3.3 DEEP LEARNING FOR TRACKING . 42

3.4 TRACKING WITH A SIAMESE NEURAL NETWORK 44

3.5 DEEP DESCRIPTORS AND FILTER LEARNING . 46

4 PROPOSED METHOD . 48

4.1 THE IDEAL SNN . 48

4.2 THE REAL SNN . 49

4.3 SIGNAL OF DESCRIPTORS . 50

4.4 THE COMPLEMENTED SIAMFC . 51

4.4.1 Computing the Long Term Memory . 53

4.4.2 Computing the Short Term Memory . 54

4.4.2.1 Video Extension . 55

4.4.3 Memory Combination . 56

4.5 FILTER BANK ESTIMATION . 57

4.5.1 Filter Learning . 58

4.5.1.1 White Noise Addition . 58

4.5.1.2 GA Parameters . 58

5 EXPERIMENTAL RESULTS . 60

5.1 EXPERIMENTAL SETUP . 60

5.1.1 Datasets. 60

5.1.1.1 Evaluation protocol . 61

5.2 PARAMETER SETTING . 62

5.2.1 Long Term Memory Evaluation . 63

5.2.2 Short Term Memory Evaluation . 63

5.2.3 White Noise Evaluation . 64

5.2.4 Conservative Factor Evaluation . 65

5.2.5 Selection of Videos for Training . 65

5.3 METHOD EVALUATION . 67

5.3.1 Comparison to Standard Filters . 67

5.3.2 Baseline Comparison . 68

5.3.3 Comparison with the State-of-the-Art . 71

5.4 VISUAL PERFORMANCE . 72

5.5 LEARNED FILTER ANALYSIS . 74

6 CONCLUSION . 76

6.1 FUTURE WORK . 76

REFERENCES . 78

19

1 INTRODUCTION

Visual Object Tracking (VOT) is one of the fundamental problems in Computer Vision

(CV). It consists of providing an object’s trajectory along with a video given its initial

coordinates. VOT is a key component in many applications such as surveillance system,

robotics, autonomous driving, intelligent traffic control, augmented reality, sports video

analysis (DANELLJAN et al., 2016; WANG; YEUNG, 2013). The traditional approaches

for this problem rely on mathematical models designed to detect and extract features of

a target. These features compose an appearance model used to discriminate the target

against the background (XIANG, 2011). The features are manually designed, or hand-

crafted, beforehand by human experts for particular issues as occlusions, illumination

changes, and many others. The progress accomplished in recent years in Machine Learning

(ML) area - specially Deep Learning (DL) - has empowered impressive advancement to

CV area. Since the astonishing performance of Krizhevsky et al. (2012) in ILSVRC 2012,

CV community has made a notorious effort to obtain feature descriptors based on data

instead of those designed by experts (NANNI et al., 2017). Such descriptors are obtained

through Deep Neural Network (DNN) and are known as Deep Descriptors.

A specific type of Convolutional Neural Network (CNN) employed in feature design

task is called Siamese Neural Network (SNN). It is dedicated for template comparison

and has been used for a wide range of applications, including signature verification, audio

analysis, face recognition, and VOT (BROMLEY et al., 1994; TAIGMAN et al., 2014;

MANOCHA et al., 2018). The capability to generate descriptors for similarity comparison

between a reference and a candidate image has inspired works based on this topology for

VOT (VALMADRE et al., 2017).

This work tackles the VOT problem in a multidisciplinary approach that comprises

concepts of Digital Signal Processing (DSP), Genetic Algorithm (GA) and Neural Net-

works (NNs), where we improve the performance of a specific type of SNN dedicated

for tracking proposed by Bertinetto et al. (2016). Our premise is that combining the

descriptor outputted by the SNN along the video could result in significant performance

improvement for tracking. Moreover, it will be shown that filtering the descriptors pro-

vided by the network over time combined with reliable Bounding Box (BB) obtained from

20

the video is a feasible way to achieve a combination that outperforms the isolated SNN

dedicated for tracking.

1.1 MOTIVATION

This proposal was motivated by the prior expertise of our research group in this area

(MAIA et al., 2016; MAIA H.A.; OLIVEIRA, 2016) and advancement of DL techniques

and its applications to CV, particularly for VOT. The usage of such ML tool has provided

VOT systems the capability of extracting semantic information from data (ZAGORUYKO;

KOMODAKIS, 2015) that justify why DL systems outperforms classical approaches for

VOT and its variations (KALAL et al., 2012; PERNICI; BIMBO, 2014).

Notably, the recent proposal of deep SNNs in the literature has presented improve-

ments in VOT performance. An SNN maps similar objects into similarity feature vectors,

which make it easy to compare an object to a given image. However, observing the be-

havior of a particular SNN, the SiamFC, it is possible to notice a mapping limitation of

its output: a minimal variation at the network’s input results in a considerable different

descriptor at the output. One solution for this problem is presented by Bertinetto et

al. (2016), who suggests a simple way to overcome this issue taking information from 36

descriptors close to the target instead of a single descriptor. Additionally, Valmadre et al.

(2017) suggested that moving average filtering of the descriptors outputted by the SNN

can lead to favorable results in object mapping for VOT purposes. As DL frameworks

face some obstacles to its training process, for instance: the scarcity of labeled data and

high computational cost, we decided to overcome the SNN limitation complementing the

object mapping through a temporal combination of descriptors.

1.2 PROBLEM DEFINITION

The tracking problem can be defined as follows: taking the BB from the first frame, an

algorithm should output the corresponding object’s BB on all the following frames of a

video as depicted in Figure 1.1.

A VOT algorithm has to overcome several challenges, such as illumination changes,

partial occlusion, abrupt motion, pose variation, background clutter, and several other

peculiarities. For this work, we assume that occlusion does not last in the long term, and

21

Figure 1.1: Example of VOT in a video.

then a temporal relationship between frames can be maintained, disregarding occlusion

detection strategies.

1.3 OBJECTIVES

The primary objective of this work is to show that for a tracking dedicated SNN, the

combination of descriptors extracted from the outputted BB in each frame can outperform

traditional usage of the SNN. Moreover, we demonstrate that filtering the descriptors

contributes to improving the system’s performance, where the filters’ kernels are learned

in a supervised way.

A secondary objective is to show the feasibility of employing a GA in few videos to

obtain a filter bank used for tracking.

1.4 CONTRIBUTIONS

The significant contributions of this work result from the hypothesis that guided this

research, it is: the combination of deep descriptors extracted from the output of a tracking

dedicated SNN can be used to improve the system’s performance.

22

The first contribution is the confirmation of the hypothesis previously stated. We

compared the baseline performance to our proposal, which complements the SiamFC using

a particular combination of descriptors.

Additionally, another highlight is the combination itself. The proposed method com-

prises a combination of descriptors obtained through Linear Time-Invariant (LTI) filter

bank, computed via GA, (Short Term Memory) and reliable ones obtained by the tracker

(Long Term Memory). Finally, the present proposal has low complexity at runtime when

compared to DNNs. Therefore, it requires low marginal computation resources, which

would make it useful for real-time applications.

1.5 OUTLINE

Chapter 2 provides the reader with a fundamental understanding of the general require-

ments of this work. In Chapter 3, we briefly present the classical approaches for VOT and

filter optimization, the introduction of DL in the literature, and its application for VOT.

In Chapter 4, we present the proposal of this work to complement the SiamFC through

a combination of descriptors. Chapter 5 shows the experiments performed to verify the

suitability of the proposed method and its impact in tracking performance according to

a benchmark. Finally, in Chapter 6, we present the final remarks of this work, its contri-

bution, and suggestions for future work.

23

2 FUNDAMENTALS

This chapter presents some basic concepts to help the reader to better understand this

text. As this is a multidisciplinary work, it is introduced some key components of Signals

and Systems (Section 2.1), Genetic Algorithms (Section 2.2) and Neural Networks (Section

2.3).

2.1 SIGNALS AND SYSTEMS

A signal is a function of one or more independent variables which has information about

the behavior or nature of a phenomenon (OPPENHEIM et al., 1996). Few examples of

a signal are: a sound, which represents the air pressure variation over time; an image,

which shows different brightness levels for points in a two-dimensional space or even the

price of a given stock over time in a financial market.

A system is what transforms a particular signal into another one or any desired re-

sponse (OPPENHEIM et al., 1996). An environment that modifies a person’s voice, like a

cave that generates an echo, is an example of a system. Another example is a camera that

transforms the light from an environment into photography; A mathematical operational

as a moving average over a stock price can also be understood as a system.

Therefore, the interaction between a signal and a system can be mathematically ex-

pressed in Equation (2.1):

x[n]
h−→ y[n], (2.1)

where x[n] represents the input signal over its independent variable n, h represents the

system, that operates over the input, and the output y[n] is the result of the interaction

between the x[n] and h. We emphasize our analysis to systems that present the property

of linearity and time-invariance.

2.1.1 LINEARITY

According to Oppenheim et al. (1996), for a system whose response to the inputs x1[n] and

x2[n] are the outputs y1[n] and y2[n], respectivaly, the superposition property is verified if

24

it has the additivity and the homogeneity properties, that are described as:

1. Additivity: The response to x1[n] + x2[n] is y1[n] + y2[n].

2. Homogeneity: The response to q · x1[n] is q · y1[n].

If a system allows the superposition, then it is a linear system.

2.1.2 TIME-INVARIANCE

A system is classified as time-invariant if it remains unchanged over time. This property

can be verified using a delay operator, which is defined as follows:

Let LD be a delay operator for a given signal g[n]. Thus, the delayed signal is repre-

sented as shown by:

LDg[n] = g[n−D] (2.2)

Then, a system is time-invariant if the delay operator LD is applied over the output

y[n] (Eq. 2.3a) of the system h generates the same result than if it was applied to the

input signal (Eq. 2.3b), i.e., the system is time-invariant if Equation (2.3c) holds.

x[n]
h−→ y[n] ∴ LDy[n] → y′[n] (2.3a)

LDx[n]
h−→ y′′[n] (2.3b)

y′[n] = y′′[n] (2.3c)

Our interest in LTI systems is that they are the building blocks of a CNN that will be

shown in the next section. Additionally, the contribution of this work heavily depends on

the LTI filters, as it is detailed in Chapter 4.

2.2 GENETIC ALGORITHM

GA is an optimization and search technique introduced by Holland (1975) inspired in the

principles of natural selection proposed by Charles Darwin (HAUPT; HAUPT, 2004). It

comprises generating a population of individuals (temporary solutions) that are evaluated

25

by genetic operators to find an optimized solution for a given problem. A GA usually

comprises the following steps:

1. Fitness function definition: It is necessary to define a mathematical function used to

verify the suitability of a solution for a given problem. The best solutions have the

greatest fitness. In this work, the fitness will be given by a function that indicates

how suitable a filter is to a given problem.

2. Variables definition: In this step, we define the parameters that need to be opti-

mized. In our case, the parameters are the coefficients of an LTI filter.

3. Encoding definition: A GA does not operate directly over the parameters that

will be optimized. Instead, the parameters are encoded in chromosomes that can

be submitted to genetic operators. For example, a filter that has M coefficients

composed by rational number can be represented by M ' genes. These genes can

be binary, integers, or any other representation that is suitable to be submitted

to genetic operators. For the case of integer encoding, the one used in this work,

M = M '.

4. Initial population generation: GA belongs to the class of population-based meta-

heuristic methods. It used a set of candidate solutions, the population, to find the

optimized solution for the problem. The first generation of the population is usually

initialized with random individuals, that eventually evolve to more suitable solutions

to the problem.

5. Genetic operators: They are the core of the GA and what helps the system to

provide better solutions over the new generation. The key idea of the genetic opera-

tors comprises selecting the best solutions, mating its characteristics, and randomly

changing parameters.

(a) Selection: This process tends to choose the individuals with the highest fitness

in a population P . This step is probabilistic; thus, there is no guarantee that all

the best individuals in the process pass to the next generation. This random-

ness is useful to eliminate local minima (DEY et al., 2010) in the optimization

process, as can be noticed in Figure 2.1.

26

Figure 2.1: Selection operator in a population of individuals. The fitness of each candidate
is show on theirs side. The selected individuals (inside black rectangles) tends to be those
with the highest fitness.

(b) Crossover : This is the step that combine characteristics of two individuals.

If this combination improves the individual fitness, it tends to pass to the

next generation, otherwise it is more likely to be eliminated by the Selection

operator. The Crossover operator is shown in Figure 2.2. Notice that the

offspring have a mixed chromosome inherited from its parents.

Figure 2.2: Crossover operator overview. The chromosomes of two the parents are com-
bined into the offspring chromosomes, who inherit characteristics from both parents.

(c) Mutation: It has the objective to insert characteristics that are rarely or even

absent from a population. This is done randomly selecting and changing the

vale of one (or few) gene(s) in a chromosome, as shown in Figure 2.3. Muta-

tion cannot be overused as this random information can damage the evolved

chromosomes present in the population.

6. Convergence Check: Once the genetic operators are performed, it is necessary to

check the suitability of the found solutions. If none of the solutions satisfy the

stopping criteria, the genetic operators are performed again. Otherwise, the GA is

27

Figure 2.3: Mutation operation overview. Notice that some genes are randomly changed
(black crosses).

halted, and the individual with the best fitness is selected as the solution.

These previous steps are enough to implement a GA for a wide range of problems,

including the one proposed in Chapter 4.

2.3 NEURAL NETWORKS

Decision-making processes where there is no well-defined rule make the computational

modeling a very tough task. In this case, an artificial intelligence tool that can learn

and generalize from examples is a handy instrument to solve problems (RAFIQ et al.,

2001). Then, the usage of NNs is a traditional alternative for the solution of numerous

problems. A NN consists of a parallel combination of simple processing units which store

experimental knowledge and make it available for later use through a training process

(HAYKIN, 1994). Notice in Figure 2.4 an example of a topology of a standard NN. If

a given input is passed to a NN, an evaluation will be performed through a numerical

process, and the network will provide one or more outputs. We present a brief analysis of

how a NN performs computation, and we start from its most elementary structure, the

neuron.

The basic unity of an NN is a neuron, which is depicted in Figure 2.5. It is composed

of inputs, weights, a bias, and an activation function. A neuron is always connected to

inputs, and each of these inputs is weighted by a particular value wx. The neuron adds up

all the weighted inputs plus a constant, or bias, as shown in Equation (2.4). After that,

28

Output

Input Layer 1 Layer 2 Layer 3

Figure 2.4: Example of an NN. Weighted inputs are added to constants (bias) and then,
evaluated by an activation function Φ.

the result of the sum is evaluated by an activation function, as shown in Equation (2.5).

z =

(
W∑
x=1

wxax

)
+ b, (2.4)

where ax is the xth input of the neuron and wx is the xth weight of the respective neuron,

b is the bias.

g = φ (z) , (2.5)

where g is the output of the value z evaluated by an activation function.

If a NN is required to process intricate patterns, then it must have more than one

layer (HAYKIN, 1994) whereas these layers are usually composed of neurons arranged in

parallel as seen in Figure 2.4. Multilayers NNs must have a non-linear activation function

φ; otherwise, one could find an equivalent single-layer NN that would have the same

input-output relation (HAYKIN, 1994). Therefore, many activation functions have been

proposed in the literature, but in this work, it is presented only two of them, which are:

29

Output

In
pu

ts

Bias

Figure 2.5: Neuron Representation

Sigmoid (Eq. 2.6) and the ReLU (Eq. 2.7) functions.

φ(z) =
1

1 + e−z
(2.6)

φ(z) = max(0, z) (2.7)

The ReLU function has been widely used for CNNs. On the other hand, the sigmoid

function is a classical function for fully-connected NN and also has been used in the last

layers of some CNNs.

layer l layer l'

Figure 2.6: Fully-connected Layer Representation - Bias and activation function omitted
for better visualization.

Finally, it is important to highlight a special topology of a layer in NNs, the fully

30

connected layer, which can be seen in Figure 2.6. If all the neurons of a given layer l′

are connected to all the neurons of the previous layer l, then we refer the layer l′ to be a

fully-connected layer.

2.3.1 CONVOLUTIONAL NEURAL NETWORKS

A naive approach to extract information from an image using NNs would be using a

standard topology composed only by fully-connected layers. However, the evaluation of a

regular size image would require a high computational cost; it also would need an exces-

sive amount of data to be trained, and this architecture would not be shifting invariant

(CUN et al., 1994). Therefore, an alternative type of NN should be used for image anal-

ysis as a CNN. The CNN plays an important role in many sub-areas of CV as object

detection, human action recognition, and VOT, and good examples of these applications

are presented in the work of Redmon et al. (2016); Bertinetto et al. (2016); Carreira and

Zisserman (2017). Instead of connecting all the neurons of the previous layer to all the

neurons of the current layer, the weights in a layer of a CNN are grouped locally. These

locally connected weights are called filters, and they are conceived to detect local features

(Fig. 2.7). A CNN performs the operation in Equation (2.8) to obtain the feature maps

based on the previous layer as depicted in Figure 2.7.

Convolutional layer: The basic structure of a CNN is the kernel or filter. This

structure needs to be convolved to the feature map of the previous layer to provide an

output, as shown in Figure 2.7. The filters of a CNN are specialized in extracting specific

characteristics from an input feature map. In a deep CNN, the filters in the first layer

extract low-level features from the signal, and these filters resemble traditionally hand-

crafted filters, as Gabor filter and edge detectors. Deep layers filters are specialized to

extract high-level information related to the type of application the CNN was trained for,

as described by Nanni et al. (2017); LeCun et al. (2015); Pouyanfar et al. (2018). One

should notice that these filters are LTI, that follow the properties discussed in Subsections

2.1.1 and 2.1.2 are learned according to a given dataset distribution. Therefore, the shape

of the filters depends on the data provided during training time.

Notice in Figure 2.7 how K(l′) convolutional filters of order Ml × Nl operate over an

input feature map at layer l which has Kl channels of dimension Ul × Vl that results in

31

(a) (b)

(c)

Figure 2.7: How the convolutional filters work (a) An input feature map convolved with a
filter. The convolution of both results in an output feature map. (b) Feature map obtained
by the evaluation of the four filters over the previous feature map (c) Illustration of how
the feature map is obtained. Simplified visualization of Equation 2.8 and 2.10. Bias is
omitted for better visualization.

an output feature map in layer l′ of Kl′ channels. This operation can be mathematically

described in Equation (2.8), which is the general formula for a generic layer in a CNN.

z
kl′
l′ [xl, yl] =

(∑
kl,ml,nl

wkll,kl′ [ml, nl] · akll [xl · sl +ml, yl · sl + nl]

)
+ b

kl′
l , (2.8)

where the domain D of z
kl′
l′ (xl, yl) is given as follows:

D = {xl, yl ∈ N | 0 ≤ xl ≤ Ul −Ml and 0 ≤ yl ≤ Vl −Nl}, (2.9)

Notice in Equation 2.8 that wkll,kl′ represents the kl′
th filter at layer l and kl represents

one of the Kl channels of the filter; akll represents the feature map at layer l which is

composed by Kl channels; b
kl′
l is the bias for kl′

th filter in layer l; z
kl′
l′ is the feature map,

before the evaluation of an activation function at the next layer l′ that has kl′ channels;

finally sl represents a sub-sampling parameter called stride at layer l. The result of

Equation 2.8 is then evaluated by an activation function φ(·), that provides an output

32

feature map is given by:

a
kl′
l′ [xl, yl] = φ

(
z
kl′
l′ [xl, yl]

)
, (2.10)

where a
k(l′)
(l′) is the feature map in the layer l′, that has kl′ channels.

5 9 3 2
0 3 9 7
7 3 7 1
5 8 7 4

5 9 3 2
0 3 9 7
7 3 7 1
5 8 7 4

5 9 3 2
0 3 9 7
7 3 7 1
5 8 7 4

5 9 3 2
0 3 9 7
7 3 7 1
5 8 7 4

9

8 7

9

Figure 2.8: An example of a max pooling operation being performed in a layer of the
feature map shown in Figure 2.7. Notice that the pooling neighborhood is 2×2 windows,
in blue, and the stride s is also 2, what results in a feature map of size 2×2. The result
of the operation is observed at the bottom of the figure, where whiter values represent
higher values in the feature map.

Pooling layer: Essentially, pooling is a process that summarizes the presence of a fea-

ture in a channel k, of a neighborhood N×N , for a given a feature map a (KRIZHEVSKY

et al., 2012). It turns out that the precise position of each feature is not relevant for iden-

tifying patterns by the convolutional filters. Alternatively, even worse, it can also become

harmful for feature identification by the network because of the spatial variability of the

features in an input image (LECUN et al., 1998). Then, one way to overcome this issue

is performing sub-sampling over the feature map while keeping the information provided

by the layer. It is where the pooling operation can be helpful.

Pooling layer generates another map that indicates the presence of a feature in a region

in N ×N according to an operation, as maximum presence (max pooling) or the average

presence (average pooling) of a feature in an N ×N region. However, the displacement of

the sampling region N ×N over the feature map does not have to be unitary, but it can

skip s unities on each dimension as shown in Figure 2.8. This displacement is the stride

and this is what promotes the sub-sampling in a feature map. Then, sub-sampling is

associated with pooling preserves the presence of the features in the feature map. Notice

33

that a pooling layer does not have weights, and because of that, it is not unusual to refer

to a pooling layer as part of the previous convolutional layer. An example of pooling over

a channel of a feature map is shown in Figure 2.9.

PoolingN x N

Convolutional Layer Pooling Layer
Figure 2.9: Overview of the evaluation of a mono-channel image by hypothetical filter
followed by the max pooling operation. Notice at the top-right corner, in the red circle,
that the filter highlights borders in the image. Filters and images are not in scale.

2.3.2 FULLY CONVOLUTIONAL NEURAL NETWORKS

Image of
arbitrary size

C
on

v.
 la

ye
r 1

C
on

v.
 la

ye
r 2

C
on

v.
 la

ye
r 3

Feature
map

Figure 2.10: Overview of generic FCNN’s topology composed of 3 layers. Notice that
this network does not present fully-connected layers. This topology allows evaluation of
images of different sizes.

A Fully Convolutional Neural Network (FCNN) does not present fully-connected layers

34

in its topology, as shown in Figure 2.10. Networks with this topology have some interesting

characteristics as discussed as following.

Input image First layer output Second layer output

Last layer
output

Feature
map

(a)

(b)

Figure 2.11: Evaluation process of an FCNN (a) Evaluation of an image of atomic size.
It outputs feature map is reduced to a single feature vector. In this case, the output
resembles the evaluation of an ordinary CNN. (b) Evaluation of an image greater than
atomic image. In this case, there is a feature map whose size is given by the equation
2.11.

1. Variable input size: An FCNN can handle images of different sizes with no need for

resizing the input. However, the network does not provide a single output value,

but rather an output map of values a, or feature map, whose size is proportional

to the input image size. There is no theoretical upper limit for the network’s input

size, but it is not possible to evaluate an image whose size is below a lower limit.

We are going to refer to this lower limit size as atomic size and an image patch that

has this size as atomic patch. In the case of the atomic patch, the feature map is

composed of a single feature vector, as shown in Figure 2.11 (a). For images greater

than the atomic patch, each point on the feature map is associated with a region of

the input image with atomic size, as can be observed in Figure 2.11 (b). The size

35

of the feature map is given in Equation (2.11), where for the sake of the simplicity,

it is analyzed only one of the two dimensions of the feature map.

d =
N − γ
s

+ 1, (2.11)

where, the dimension size d, such that d ∈ N∗, of the feature map is proportional

to the dimension x of the input image, whose size is N and the stride s over the

input image. The input image must have at least the atomic size γ. Notice that

the term N−γ
s

must be a natural number; otherwise, it would violate the translation

invariance, which is the property that will be discussed as follows.

2. Translation invariance: This property guarantees that an FCNN outputs the same

descriptor on the feature map for a given atomic patch wherever it is located in the

input image. Bertinetto et al. (2016) define this property as follows:

a(LsτI) = Lτa(I), (2.12)

where a(·) represents the output of the last feature map of a FCNN, s is the stride

and L represents the translation operator of a displacement τ and I is the input

image.

3. Computational performance: The topology of an FCNN allows parameters sharing

during the evaluation process of an image, and the output map is obtained in a single

evaluation. This process is equivalent to evaluate each atomic patch to compose a

feature map a (LONG et al., 2015). However, an FCNN is significantly faster to

compose a feature map than a naive evaluation of each single atomic patches by an

ordinary CNN.

2.3.3 SIMILARITY COMPARISON

One way to compute the similarity between two images, I1 and I2, is to map them into

feature vectors z1 and z2, respectively, that represent these images in a given feature

space as shown in Figure 2.12. Then, it is possible to apply a metric to measure the

similarity between these encoding vectors. It is formalized as follows:

36

An encoding function f : R2 → RK is a transformation that maps an input image

I ∈ R2 → RC into a feature vector z ∈ RK that is defined by:

z = f(I). (2.13)

The similarity S between two images, I1 and I2, encoded by the vectors z1 and z2,

respectively, is obtained through a generic similarity function l : RK → R represented by:

S = l(z1, z2), (2.14)

where low values of S means high similarity and high values of S means high dissimilarity.

The similarity function l can be any similarity metric. One of the most straightforward

similarity metrics is the Euclidean distance. For example, assuming the Euclidean distance

as the similarity metric between two images, notice in the example of Figure 2.12 that

similar images are placed close together in the given features space while dissimilar images

are localized far apart from each other.

2.3.4 SIAMESE NEURAL NETWORKS

A Siamese Neural Network (BALDI; CHAUVIN, 1993; BROMLEY et al., 1994) is a type

of NN dedicated to comparing the similarity between inputs, whereas it can generate a

 x1

x2

x3

 x1

x2

x3

Figure 2.12: Points encoding the respective images in a 3-dimensional space. Notice that
very similar images are placed close from each other, and different ones are localized far
apart.

37

similarity ranking between given inputs (KOCH et al., 2015). It embeds an encoding

function (Eq. 2.13) and it usually includes a similarity metric function (Eq. 2.14) to

evaluate the resemblance between two inputs. The topology of a SNN typically consists

of two parts:

1. Twin Networks: These are sub-networks with identical topology, which usually share

the same weights. Each one evaluates one of the two inputs that generate the

respective feature vectors. The twin networks play the role of the encoding function

in Equation (2.13). If these NN are identical with each other, a valuable property

mentioned by Koch et al. (2015) must be stated: two similar inputs cannot be

mapped into a very different location in feature space. However, notice that the

previous statement does not hold in the case of twin networks which do not share

the same weights, whereas the case of the SNN presented in the work of Vo and

Hays (2016). For this case, since the input images are encoded by two different

encoding function (Eq. 2.13), two very similar images can be mapped far from each

other into the feature space.
D
ee
p
D
es
cr
ip
to
rs

Exemplar image

Instance image

D
ec
is
io
n
N
et
w
or
k

Twin Networks

S
im
ila
ri
ty
 E
st
im
at
io
n

Image Pair Siamese Neural Network

Figure 2.13: Siamese Neural Network overview.

38

2. Decision Network: It is the sub-network on top of the twin networks. It takes

the descriptors generated by the twin networks and computes its similarity. The

decision network plays the role of the similarity function (Eq. 2.14). The decision

network can be implemented in different ways according to the chosen architecture.

The work of Zagoruyko and Komodakis (2015) uses fully connected layers, pooling,

and the ReLU activation function as the Decision Networks to output the similarity

between patterns. On the other hand, Bertinetto et al. (2016) implemented a simple

cross-correlation layer as the decision sub-network to estimate similarity.

A SNN can be used to estimate similarity among different forms of signals as images,

sound, biological (MANOCHA et al., 2018; PATANE; KWIATKOWSKA, 2018). How-

ever, this work focus on image similarity. Thus, from now on, we restrict our analysis

for images. We show the basic structure of a generic SNN for image similarity in Figure

2.13. The twin networks evaluate the inputs and generate the deep descriptor as the out-

put. Then, the decision network evaluates the deep descriptors and outputs the similarity

between them.

2.3.5 THE SIAMFC NETWORK

Reference
Image

Query Image

Score
Map

C
or

re
la

tio
na

l L
ay

er

Convolutional Layers
(Twin Network)

Descriptor

Descriptor

Object
Localization

Encoding: Reference Image - Descriptors

Figure 2.14: SiamFC overview. Notice the proportionality of respective input images and
the feature maps.

The SiamFC is a fully-convolutional SNN elaborated for VOT proposed by Bertinetto

39

et al. (2016), whose twin networks are inspired by the AlexNet architecture. The overview

of SiamFC topology is shown in Figure 2.14. The twin sub-networks in SiamFC have two

mirrored branches and they are composed of 5 convolutional layers and 2 pooling layers.

These last ones are located just after the first and the second convolutional layer. An

encoding function is then performed by these layers to generate descriptors from images.

Additionally, the decision network is composed of a single layer network that applies the

cross-correlation between the exemplar and instance feature maps. This layer performs

an operation similar to the cross-correlation widely used in DSP Theory, where Orfanidis

(1995) describes a more detailed explanation about it. However, as there are K features

maps, all the maps are added up. Therefore, the result of the correlation is used to create

a score map that indicates the likelihood of the object in the reference image is found in

a given region of the candidate image. Each atomic patch, of size 87× 87 pixels, outputs

a deep descriptor of K = 256 dimensions. There is a stride of 8 pixels for both input

images. Then, the feature maps dimensions are given in Equation 2.11. Originally, this

network uses a reference image whose size is 127 × 127 pixels, and a candidate image of

size 255 × 255 pixels. Then, recalling Equation (2.11), the outputs are feature maps of

dimension 6× 6× 256 and 22× 22× 256. The correlation of the final feature maps of the

input images results in a 17× 17 score-map.

In summary, the SiamFC stands out in the literature not only because of its perfor-

mance and the fact it requires a relatively low computational cost, but because it also

presents the handy fully-convolutional property. Therefore, these are the reasons that

justify the usage of this architecture in our work.

40

3 LITERATURE REVIEW

This chapter presents a brief review of the significant works in VOT literature and helps

the reader to follow a historical context to understand how frameworks for VOT have

evolved. We discuss the advantages and drawbacks of the current approaches for VOT,

and it helps the reader understand the choice of an SNN as the framework for our tracking

method in comparison to alternative approaches.

3.1 THE CLASSICAL APPROACHES TO TRACKING

The first proposals for VOT were simple template-based methods that relied on Normalized

Cross Correlation (NCC) to match a given pattern from incoming frames (TAO et al.,

2016). The VOT approaches naturally evolved to more sophisticated models, which were

more appropriate to deal with adverse situations as noise, illumination change, articulated

object, occlusion, and others. In the first half of this decade, those trackers that were well

established in CV community used very sophisticated frameworks to overcome a variate

of situations (as the ones mentioned previously) that could lead to tracker failure.

A traditional example of the classical tracker was the Tracking-Learning-Detection

(TLD) framework, proposed by Kalal et al. (2012). This tracker was able to learn dif-

ferent appearances of the object and the background through a semi-supervised learning

procedure. This process was performed online, and it updated an object detector that

indicates the Region of Interest (RoI).

The Kernelized Correlation Filter (KCF) tracker was another successful example. It

introduced the usage of correlation filters for tracking proposed by (HENRIQUES et al.,

2014). This method consists mainly in finding a transformation over feature maps that

would minimize the error between the predicted output and the Ground-truth (GT), on

an online process. This method and achieved noticeable performance in the literature,

although it would require a high computational cost (it needed a continuous online com-

putation for weight update).

Another remarkable tracker was the Appearance Learning In Evidential Nuisance

(ALIEN) (PERNICI; BIMBO, 2014). It relied on the Scale Invariant Feature Trans-

form (SIFT) to extract and obtain the feature representation of an object to discriminate

41

it from the background. It also used an algorithm intended to avoid false information

when the RoI was occluded. ALIEN presented a very competitive performance among

classical approaches.

Although these trackers could have reasonable performance, they heavily relied on

an online process, with few, or even no, a priori information about the object intended

to be tracked. Also, these methods could not extract semantic information from the

objects (HELD et al., 2016; NING et al., 2017). In contrast, recent approaches for VOT

were able to extract more discriminative information about the object due to the usage

of DNN. When compared to the historical trend, some approaches presented in the

last few years rely on simplistic tracking algorithms. These frameworks achieved state-

of-the-art performance, as the SiamFC and Generic Object Tracking Using Regression

Networks (GOTURN). These top-performance methods shared one point in common:

they are based on DL (LI et al., 2018).

3.2 DEEP LEARNING

DL revolutionized ML area in the last years. This revolution came from the successful

usage of deep methods in a huge variety of applications as speech recognition, natural lan-

guage processing, genomics, drug discovery, biomedicine, information retrieval, CV, and

many others (POUYANFAR et al., 2018; LECUN et al., 2015). Some authors explained

the reason for the widespread adoption of DL by the scientific community. LeCun et al.

(2015) highlighted that a key advantage of DL methods is that they are capable of learning

useful discriminative features from data distribution in an automatic way with no need

to be designed by experts. Nanni et al. (2017) attributed the successful performance of

DL because deep models can take into account the semantic relationship between a given

data distribution. Then, DL models can provide a more discriminative capability for deep

descriptors when compared to handcrafted models. All in all, DL enabled fast advances

in many areas of science.

The breakthrough for the adoption of deep models by CV community dates from 2012.

In that year, the AlexNet Neural Network (KRIZHEVSKY et al., 2012) was introduced.

It was the first deep architecture that presented a very significant improvement over

traditional methods in image classification. After that, other deep architectures were

proposed, as VGG (SIMONYAN; ZISSERMAN, 2014) and Inception (SZEGEDY et al.,

42

2015) which successfully improved performance in the supervised image classification area.

According to Pouyanfar et al. (2018), the problem was regarded as ''solved'' for this area.

The success in image classification inspired the development of solutions based on DL in

many other CV applications as semantic segmentation, object localization, video analytics.

They all achieved a new stage of advancement due to DNN (POUYANFAR et al., 2018).

Therefore, following the same trend, VOT was widely benefited by DL as well.

3.3 DEEP LEARNING FOR TRACKING

Numerous DL trackers were proposed in the literature since the middle of this decade.

Many of these deep trackers have one common point: they apply feature extraction using

a DNN.

The findings of Wang et al. (2015) can reason a justification for the strong predom-

inance of DL methods in tracking. In their work, they performed a useful analysis of

the typical components of a tracker. Then, they placed experiments to find what part

impacted the most in a VOT system. They figured out that feature extraction (the

conversion of the raw image into an informative representation) was the most critical

part of a VOT framework. Furthermore, it was reasonable to expect that deep track-

ers could present an improved performance when compared to traditional approaches.

It was because the deep representation of features had already outperformed traditional

feature descriptors in many applications (ZAGORUYKO; KOMODAKIS, 2015; NING et

al., 2017; NANNI et al., 2017).

Thus, the natural consequence of the superior performance of DL for feature extraction

was the Deep Learning Tracker (DLT) method proposed by Wang and Yeung (2013).

This tracker was the first in the literature to apply a deep neural network to tackle the

VOT problem (HUANG, 2017). By the time of the proposal, the authors also realized

that deep features would bring a significant improvement of a tracker. Then, in this

novel approach, the DLT did not use feature extraction based on traditional methods,

but instead, a DNN was implemented to provide a feature representation of the object

intended to be tracked. On top of the deep descriptors, it uses a particle filter to obtain

the final output. Although this framework was not an end-to-end deep learning approach,

it was the accurate indication that DL could successfully be applied to VOT.

Many other proposals followed the DLT. GOTURN was a very successful end-to-end

43

framework for VOT that was proposed by Held et al. (2016). It consisted of a deep

neural network that outputs a BB for each frame based on the input of two images. Dur-

ing training time, it learns a generic relationship between motion and object appearance

that is used at running time. A significant advantage of this tracker was that it did

not have an online model to update, what contributed for achieving satisfactory tracking

performance at more than 100 Frames Per Second (FPS) by the time the work was pro-

posed.Similarly, Ning et al. (2017) presented an end-to-end approach that also extracted

motion information in a tracker. They proposed an architecture that combined Recurrent

Neural Network (RNN) on top of an object detection CNN. This network presented an

excellent performance under severe occlusion as it explores the historical motion of the

object through the video. Although these two previous methods emphasize temporal in-

formation, they did not present a superior performance when compared to state-of-the-art

methods. According to Huang (2017), trackers which would explore time component more

appropriately is an open-end topic in VOT community.

Recently, several methods were also based on correlation filters for tracking inspired

by the KCF framework. Danelljan et al. (2016) proposed the Continuous Convolution

Operator Tracker (C-COT). In this proposal, it was used continuous correlation filters in

multi-resolution feature maps of a DNN. This continuous representation of the feature

map was important because different convolutional layers presented the different spatial

resolution. Although the last layer of CNNs would present features that contains struc-

tural and spatial information of the tracked object, it also would present a lower resolution.

In contrast, the first layer presented a high resolution that could be complementary to

the last one. As the requirement of a correlation filter is the same resolution for all the

feature maps, the major contribution of this work was the proposed transformation of fea-

ture maps to a continuous spatial domain through an interpolation process. After that, all

the maps could be re-sampled by the same resolution, meeting the criteria for correlation

filters usage.

Danelljan et al. (2017) improved the previous proposal introducing the Efficient Con-

volution Operators (ECO). They reduced the number of filters for the convolutional layers

of the C-COT approach. It was done by introducing a linear combination of the convo-

lution filters in C-COT, which was necessary for decreasing the number of parameters

to be learned. It turned out that this combination not only reduced the computational

44

burden of parameters but also increased tracking performance according to the authors.

Another contribution of their work was a model update strategy that groups new samples

to compose the object model. This proposal led to a decrease of redundancy and increased

the variability of the object model.

Another DL tracker is the Correlation Filter Network (CFN). It works with numerous

tracking modules based on correlation filters, where each of them covers a specific type

of object change, like blurring, structural change, occlusion an others. These modules

are validated by a pre-trained NN, the attention network. The modules with the highest

score are used to judge the object appearance. Then, the one with the highest score is

used to the output the position and scale of the RoI. Once the position is estimated, the

remaining tracking modules are updated according to the new information (CHOI et al.,

2017).

Finally, a high-performance tracker that uses a multiple front analysis is Multi-Domain

Network (MDNet). It relies on a multiple branches layer, where each of these branches

performs a binary classification to identify the RoI. On top of it, an online updated layer

is used to combine the object representation of such branches, and then, the object can

be localized (NAM; HAN, 2016). Although it presents a noticeable performance, this

proposal is very slow for online tracking.

3.4 TRACKING WITH A SIAMESE NEURAL NETWORK

The usage of SNNs in CV applications dates from the nineties in fingerprint compari-

son (BALDI; CHAUVIN, 1993) and in signature verification (CUN et al., 1994). How-

ever, it was only recently that SNN was highlighted in the literature. It was because

it outperformed traditional methods used in image comparison, as the traditional SIFT

descriptor (ZAGORUYKO; KOMODAKIS, 2015). Then, the natural consequence of this

high-performance framework in image comparison was the usage of SNNs for VOT prob-

lems. Although it is a very recent approach, it already presented a noticeable performance

in the latest public evaluations (KRISTAN et al., 2018, 2017). These approaches usually

presented a relatively simple framework associated with rapid evaluation and high perfor-

mance.

The Siamese INstance search Tracker (SINT) was the first tracker that relied on a

SNN, and it was proposed by Tao et al. (2016). SINT had a simple framework dedicated

45

to comparing a reference image patch, the RoI in the first frame, to a candidate image

in each frame of the video. In every frame, SINT compares several BBs close to the

region where the object was detected in the previous frame. Then, the most similar BB is

chosen to be the region where the object is located in the current frame. This tracker had

no occlusion detection, no object model updating scheme, no object motion modeling,

no geometric metric, no association of trackers and it still reached the state-of-the-art

performance by the time the work was published. Notice that even this framework was

very simplistic, it outperformed well-established methods as TLD, which has occlusion

module detection and object model updating.

After the breakthrough of the first tracking dedicated SNN, several other works were

proposed in the literature, aiming real-time tracking. An example was the Discriminant

Correlation Filters Network (DCFNet) framework, proposed by Wang et al. (2017), that

merged the correlation filters approach to an SNN. The result was an efficient, lightweight

system that was able to run up to 65 FPS, according to the authors.

Another successful contribution was given by Bertinetto et al. (2016), who proposed

a fully convolutional SNN. The proposed network was known as SiamFC and it is still

a state-of-the-art tracker (KRISTAN et al., 2018). Similarly to SINT, it only uses a pre-

trained SNN to localize the object during run time. No model update was included. The

most significant innovation about this tracker is that it was based on an FCNN, which

provided computational advantages over the SINT method. Also, the fully convolutional

property of this network made the object localization invariant to the region in an instance

image. The SiamFC indicates the confidence of the object to be found in a particular

region of the image based on a score-map. Due to its simplicity, performance, and the

strong evidence that SNNs are a promising approach for VOT, the SiamFC is used as

a baseline to many works to demonstrate new concepts about SNN for trackers. Such

concepts includes online weight adaptiveness, correlational filters, rotation invariance,

and others (GUO et al., 2017; ROUT et al., 2018; VALMADRE et al., 2017). Therefore,

we adopt the SiamFC as the baseline of this work as well. However, for now, we are going

to proceed with the presentation of methods that were derived from SiamFC.

Guo et al. (2017) also used a SNN for template matching. Although they had the

SiamFC as the baseline of their proposal, they criticized it because of the lack of adaptive-

ness during tracking time. Then, they proposed the Dynamic Siamese network (DSiam)

46

architecture, whereas they applied an online transformation on the weights of the original

static SNN based on information of previous frames, adding temporal variation to the

network. It also learns a background suppression transformation for the candidate image

in order to minimize irrelevant background variation.

Rout et al. (2018) presented an improvement for SiamFC providing a rotation-invariant

framework. They assume that the rotation of the object from one frame to another was

smooth, similarly to the SiamFC assumption for displacement. Then, several images were

presented with different rotation angles, and it would compare the similarity between these

images, improving its performance in the presence of ration when compared to SiamFC.

3.5 DEEP DESCRIPTORS AND FILTER LEARNING

According to recent works for VOT (VALMADRE et al., 2017; TAO et al., 2016; WANG;

YEUNG, 2013; BERTINETTO et al., 2016; DANELLJAN et al., 2016, 2017), it was

possible to observe that the representation of objects based on deep descriptors was a

common point to those DL methods. In this context, one established approach using deep

descriptors was filtering these descriptors using a correlation filter, as discussed in Section

3.3. However, the major drawback of this approach was the intensive computational cost.

Additionally, we highlight that these approaches concerned mainly in extracting spatial

relation in a feature map of deep descriptors. In contrast, temporal component analysis

and filtering is an open-end branch that can be explored (HUANG, 2017).

Recently, Valmadre et al. (2017) used a framework very similar to the one proposed

by Bertinetto et al. (2016). They adapted the SiamFC to be used with a correlation

filter and provided the system an adaptive method to a temporal weight variation of the

feature maps. Instead of having a single feature representation of the target object, based

only on the first frame, a new template is computed for each frame. Then, a moving

average combines the current template with the previous ones. Although the authors did

not explore in depth the temporal combination of templates, this method demonstrates

good evidence that temporal filtering the feature representation of the object helps the

system performance. Due to this indication, it is reasonable to dedicate more efforts in

our work to explore this approach more in-depth, aiming to find a more general weighting

of the descriptors. As the moving average can be seen as a particular case of a linear

and time-invariant filter, it is possible to look for a more generalized approach to obtain

47

filters which are more suitable for tracking purposes instead of such simple form discussed

above. Thus, one of the motivations of our work is to explore methods to weight the

previous descriptor obtained during tracking, as LTI filters, which should, preferably, be

designed based on observation the available tracking data.

Then, we explore approaches in the literature that help us to find such filters, or

weighting forms, that combine previous templates to give useful information for this work.

Additionally, we have to be aware of crucial frames that provide relevant descriptors to

the object intended to be tracked, to emphasize the influence of such frames.

However, looking to the DSP literature, we can find some methods to provide similar

approaches to our application. Cemes and Ait-Boudaoud (1993) showed a comparison

between GA and other methods aimed to find a LTI filter, which showed the suitability of

GA compared to other methods. They also suggested a fitness equation that allows us to

verify how suitable a given filter is for our application. In a similar approach, Dey et al.

(2010) showed the advantage of LTI filter design using GA. Although they warned that

the convergence speed and the computational cost is considered a drawback of GA, its

capability of easy implementation of parallel processing and strong potential to overcome

local minima makes GA a suggestive choice to find a filter. Then, using a GA would give

a better response to the tracking problem than a moving average suggested by Valmadre

et al. (2017). Ahmad and Antoniou (2006) provided details about the encoding scheme

for the genotype, that is useful for the converge of the algorithm which will be used in this

work. Altogether, the GA is a reasonable choice to obtain filters that would outperform

the usage of the moving average and the traditional implementation of the SiamFC.

48

4 PROPOSED METHOD

In this chapter, we present the concept of ideal and real SNNs and how it is possible

to obtain a signal of descriptors from SNN dedicated to VOT. Following, we propose

to complement an SNN to mitigate its limitation, adopting the SiamFC proposed by

Bertinetto et al. (2016) as the baseline for our work, although the model can be generalized

to other tracking methods based on SNNs. We also present a specific way to complement

the SiamFC using the concept of memory blocks of descriptors and how to compute the

parameters of each memory block.

4.1 THE IDEAL SNN

An ideal SNN can map different instances of the same object into the same vector in

a given feature space. Additionally, different objects cannot be mapped by the same

descriptor. Figure 4.1 shows an example of encoding of an object by a SNN.

 x1

x2

x3

Figure 4.1: Example of object mapping of an ideal SNN into a three-dimensional vector.

In theory, a tracker based on an ideal SNN does not drift from the RoI to a background

object, as the single instance of an object is enough to track it in a video with no tracker

49

failure. However, we do not observe the concept of ideal SNN real systems, and Section

4.2 discuss its limitations.

4.2 THE REAL SNN

A real SNN cannot map different instances of objects into different feature vectors. There-

fore, an SNN only ensures that similar images are mapped in the same neighborhood in

feature space, as discussed in Subsection 2.3.4. This characteristic makes it possible to

mismatch two instances of different objects, and Figure 4.2 shows an example of object

mapping from a real SNN. Notice that some instances of different objects can be closer

than instances of the same ones.

x3

x2

 x1

x2

 x1

Figure 4.2: Example of object mapping of an ideal SNN into a three-dimensional feature
vector.

Although in many real situations a single instance of the object is enough to discrim-

inate the RoI, the mapping limitation of a real SNN no rarely results in tracker failure.

Therefore, we propose to extenuate this weakness based on a signal of descriptors pre-

sented in the next section.

50

4.3 SIGNAL OF DESCRIPTORS

Trackers based on SNNs, as SINT and SiamFC, are based only in the descriptor generated

in the first frame of a video. This descriptor is the only information that these trackers

have to follow the object in a video, as depicted in Figure 4.3.

SNN
Descriptor of
K dimensions

Figure 4.3: Encoding of an image. The single descriptor of K dimensions relies on a
single instance of the object and it is all the information that the trackers based on SNNs
discussed in Section 3.4 have to perform tracking.

One way to overcome the mapping limitation is by using more than one instance of the

same object to compose an improved reference. First, it is necessary to obtain a temporal

signal of descriptors instead of using a single descriptor of the RoI. The encoded BBs

generate the signal of descriptors outputted by the tracker along with the video, as shown

in Figure 4.4:

SNN

Signal of descriptors

Figure 4.4: Signal of descriptors obtained through an SNN designed for tracking purpose.
A signal of descriptors provides a much richer information about the RoI.

Then, a signal of descriptors z[n] that encodes the BBs given by the tracker, composed

by different K-dimensional feature vectors for each frame n is given by:

z[n] = f(BBn), (4.1)

where BBn is the nth BB which the RoI is believed to be contained in the video and f

is the encoding function discussed in Section 2.3.3 whose parameters dependent on the

SNN.

51

Similarly, the signal of descriptors g[n] that encodes the labeled GT is given by:

g[n] = f(GTn), (4.2)

where GTn is the nth RoI in a video indicated by the GT.

4.4 THE COMPLEMENTED SIAMFC

Given a signal of descriptors z[n], it is possible to propose an operation O to generate a

Combined Descriptor that better maps the object in the feature space for the frame n. O

can be composed by taking into account all the n BBs outputted by the tracker as shown

in the following equation:

zcomb[n] = O(z[0], z[1], ..., z[n− 1]), (4.3)

where, zcomb[n] is the Combined Descriptor signal.

Thus, the goal is to find a combination of BBs’ descriptors which improves the per-

formance of the system, as shown in Figure 4.5. Notice that for the case of an FCNN, as

the SiamFC, z[n] and zcomb[n] represent signals of feature maps.

Figure 4.5: Proposal overview

Notice that the O could be any computation method. For instance, one can train a

NN designed to obtain the template in a frame n based in all known object instances

present in previous frames. Another approach would be to manually attribute different

weights to each of the last descriptors to generate a resultant descriptor to the current

frame.

52

Combination Object
Localization

Si
am

FC Signal of
Descriptors

Combined
Descriptor

Filtered Memory
(Short Term Memory)

Generic Memory 1

Generic Memory N

Anchor Memory
(Long Term Memory)

Complemented SiamFC

Figure 4.6: Complemented SiamFC based on memory blocks that are combined to gener-
ate a Combined Descriptor. Notice that different memory blocks resemble the appearance
of the object in different temporal perspectives, these memories generate the Combined
Descriptor used to localize the position of the object.

In particular, this proposal restricts to complementing the SiamFC using signals pro-

vided by memory blocks. We define as memory block the combination of descriptors from

a limited part of the signal of descriptors. Each of these memories captures different

mapping descriptors from the RoI over time, and Figure 4.6 represents this idea. It is

possible to use many memory blocks in parallel as Long Term Memory, that take into the

account information about the earliest descriptors of the RoI; Short Term Memories, that

combines the descriptors related to the latest appearance of the object; and N number

of memories that would capture information about the object in any part of the videos.

Notice that memories blocks are also combined through a generic combination to obtain

the Combined Descriptor.

In this work, we restrict the Combined descriptor to be composed only of the Long

Term Memory and the Short Term Memory. The choice for the usage of these blocks

relies on some pieces of evidence presented in the literature, described as follows:

1. Long Term Memory : Tao et al. (2016) highlights that the only reliable data in

VOT is from the first frame. It suggests that a reference about the RoI at the first

frames should be kept during the entire process of tracking, avoiding the prevalence

of inconsistent information over the reliable one. This information would prevent

tracker failure due to drifting, as mentioned by Guo et al. (2017).

53

2. Short Term Memory : Guo et al. (2017) also indicates that a tracker based on the

knowledge of a single template BB restricts tracking capability. Additionally, Val-

madre et al. (2017) suggest that a template updating based on the new appearance

of the object would enhance tracking performance. Therefore, using descriptors

of the RoI in the latest frames provides adaptiveness about recent changes of the

object.

Supported by the evidence, in the next sections we propose how to compute the Long

Term Memory and the Short Term Memory. Additionally, it is presented how to combine

the information from both memories into a Combined Descriptor.

4.4.1 COMPUTING THE LONG TERM MEMORY

The Long Term Memory block comprises a set of descriptors that resembles the earliest

appearance of the object in the video.

The goal is finding an object representation based on reliable descriptors from several

frames (using only a single frame leads to a noise representation due to the encoding of a

real SNN). For this purpose, we state two assumptions:

1. The tracker provides fair outputs (BBs) for the first frames of the video.

2. The object appearance is roughly the same in these initial frames.

Therefore, considering these assumptions and recalling the property highlighted in Section

2.3.4, one possibility to obtain the Long Term Memory is computing the expected value

E. This operation is performed of the Q first descriptors of the BBs provided by the

tracker, as follows:

zlong[n] = E([z[0], z[1], ..., z[Q− 1]]). (4.4)

Notice that the Long Term Memory is a constant signal. Therefore, this memory block

does not compute any change in the object in a frame n ≥ Q. Figure 4.7 shows a partial

view of a hypothetical Long Term Memory signal.

54

x1

x2

n

Figure 4.7: Long Term Memory signal representation. In this figure, it is shown only two
dimensions of a single feature vector of a features map and its representation over time n.

4.4.2 COMPUTING THE SHORT TERM MEMORY

In contrast to the previous memory block, the Short Term Memory depends on the latest

descriptors of the BBs obtained by the tracker.

This memory block is based on a filtering process. At first, there is no restriction

to the type of the filter used by the Short Term Memory i.e., it could be any filters as

adaptive, non-linear, LTI, or others. However, in this work, we restrict to the usage of

LTI filters (the reason for this choice is due to evidence that this type of filter presents

promising performance as it will be shown in Section 5.3.1).

As the descriptor is based on a K-dimensional feature vector, it is necessary to provide

a bank of K LTI filters, as follows:

hLTI [n] = [hLTI1 , hLTI2 , ..., hLTIK]T , (4.5)

where hLTI [n] is a LTI filter bank and each k filter is given by:

hLTIk [n] =

qn|qn ∈ R, if 0 ≤ n < M,

0, otherwise,

(4.6)

whose properties were discussed in Section 2.1. Then, the Short Term Memory zshort[n]

55

is expressed by:

zshort[n] = z[n] ∗ hLTI [n]. (4.7)

In contrast to zlong[n], zshort[n] changes according to the latest appearance of the

tracked object, as shown in Figure 4.8.

x1

x2

n

Figure 4.8: Short Term Memory signal representation. In this figure, it is shown only two
dimensions of a single feature vector of a feature map and its representation over time n

4.4.2.1 Video Extension

The videos are extended for negative values of n according to Equation 4.8. This is done

to filling the negative positions of the signal for the first M − 2 frames when Equation 4.7

is computed. The extension is given as follows:

zext[n] =

z[n], if n ≥ 0;

z[0], otherwise,

(4.8)

where zext[n] is the signal that come from extended video. The extension provides a

smooth transition from the usage of information from only a single frame (when n = 0)

to the usage of all the last M − 1 frames available in the video.

56

4.4.3 MEMORY COMBINATION

The memory blocks discussed in the previous subsections have complementary information

about the RoI. Then, it is necessary to define a memory combination M of these blocks

to generate a new descriptor, the Combined Descriptor zcomb[n], as defined:

zcomb[n] = M(zlong[n], zshort[n]). (4.9)

Both memories have the same number of elements in the respective feature map and

the same dimension K. Therefore, it was chosen a simple weighted sum to combine them,

as indicated:

zcomb[n] = αzlong[n] + (1− α)zshort[n], (4.10)

where α is the conservative factor that sets the tradeoff between the reliability of the Long

Term Memory and the adaptiveness of the Short Term Memory, where α ∈ R | 0 ≤ α ≤ 1.

An example of combined descriptor obtained from Equation 4.10 is shown in Figure 4.9.

x1

x2

n

Figure 4.9: Combined Descriptor signal representation. This is the resultant combination
of the Long Term Memory from Figure 4.7 and the Short Term Memory from Figure 4.8.
The conservative factor α = 0.5. In this figure, it is shown only two dimensions of a single
feature vector of a features map and its representation over time n.

Additionally, notice that Equation 4.10 can be reduced to the original proposal of the

SiamFC if α = 1 and Q = 1. Alternatively, the complemented SNN is reduced to the

moving average approach suggested by Valmadre et al. (2017) if α = 0 and hLTI [n] have

57

all the coefficient with the same value.

4.5 FILTER BANK ESTIMATION

In Subsections 4.4.2 and 4.4.3, it was discussed the usage of a generic LTI filter bank

hLTI [n]. Now, it is shown how such filter bank is obtained through an optimization

process.

Relying on the signal of descriptors g[n] and z[n] of v videos, one can find an optimized

filter bank hLTI [n]. Such filter bank is used to generate the Short Term Memory signal

zshort[n]. Therefore, when zshort[n] and zlong[n] are combined into zcomb[n], the resultant

descriptor must be as similar as possible to g[n]. This can be achieved minimizing the

quadratic error between these signal as shown by:

hLTI [n] = arg min
hLTI

(∑
n,v

||g(v)[n]− zcomb(v) [n]||2
)
, (4.11)

noticing that zcomb(v)[n] is arranged from from Equations (4.7) and (4.10).

We assume that the signal of descriptors from a few videos has some components that

are universally present in tracking performed by an SNN. Therefore, the goal is to use

Equation (4.11) to estimate a filter bank that keeps frequency components of accurate

trackings and attenuate the incorrect ones.

However, obtaining a useful filter bank is a challenging task. First, notice that BBn

varies according to z[n− 1]. Therefore, if the tracker deviates from the trajectory labeled

as the correct, z[n] might be different from the one if it had followed the correct path. A

second aspect is that the linear weighting given by the filter bank may not be efficient to

recover the object descriptor from the background when the tracker fails.

The previous issues can be avoided using the SNN property discussed in Section 2.3.4.

It states that similar images are encoded in the same region of feature space. Thus,

restricting the training videos to those whose tracking trajectories were similar enough to

the GT, it is possible to obtain a system whose input can be assumed to be independent

of the previous outputs. As a result, one can also assume that a linear combination of

descriptor can give a more general descriptor of the RoI.

58

4.5.1 FILTER LEARNING

To compute the filter bank using Equation (4.11), we have resorted to metaheuristics. In

particular, we have chosen a GA to find each of the K filters of hLTI [n] of desired filter

bank.

In a first approach, one would propose a naive objective function given in Equation

(4.12) to find each of the K filters hkLTI [n] of hLTI [n]:

arg min
hkLTI

(∑
n,v

||gk(v)[n]− zkcomb (v)[n]||2
)
. (4.12)

However, since the BBn can be critically similar to GTn, impulsive like filters are also

the solution of Equation 4.12, but they do not suit for our problem. One way to avoid the

convergence for this type of undesirable solution is by adding white noise to the signal of

descriptors z[n].

4.5.1.1 White Noise Addition

In order to avoid the improper convergence in the optimization step, it is added white

noise to the signal of descriptors z[n], as indicated by:

z′short(v) [n] = (z[n] + σ[n]) ∗ hLTI [n], (4.13)

where σ[n] is the white noise vector, and z′short(v) [n] is the Corrupted Short Term Memory

signal filtered by a filter bank hLTI [n]. Thus, for the filter bank computation, Equation

(4.13) replaces Equation (4.7). Finally, the Corrupted Combined Descriptor z′comb[n] is

given by:

z′comb[n] = αzlong[n] + (1− α)z′short(v) [n]. (4.14)

4.5.1.2 GA Parameters

The GA is performed in each of the K filters of hLTI [n] individually. As presented in

Section 2.2, the algorithm requires: an encoding scheme for each individual; a fitness

function Θ; a population P of individuals; and the genetic operators (Selection, Crossover

and Mutation).

59

Each filter candidate is mapped into a chromosome composed of M integers, where

each gene represents a filter coefficient. The fitness function Θ is the reciprical of Equation

(4.12) incremented by as small number δ (it is used to guarantee a finite value of fitness)

as shown as follows:

Θ(hLTIk) =
∑
v,n

(
||g(v)k [n]− z′comb(v)k [n]||2 + δ

)−1
. (4.15)

Once the filter encoding and the fitness function Θ are defined, the population of P

individuals can be generated and the genetic operators can be performed.

First, Selection attempts to discard individual of lowest values of fitness and pass those

who have the highest values according to the fitness function Θ in Equation (4.15).

Once the individuals are selected, the candidates mate among themselves through the

Crossover operator. It produces a new generation of individuals, the offspring, whose

characteristics are combined from their parents. Following, the offspring is submitted to

the Mutation operator. This operation randomly changes genes of the chromosome of

each individual and add genes that are not present in the population as a whole.

Finally, a convergence check condition is verified. If a stop condition is found, the

process is halted and the filter hkLTI is the one that is going to be used in our proposal.

Otherwise, the genetic operators are performed again until the stop condition is verified.

The whole process previously described is performed K times to find the complete

filter bank hLTI [n]. This is the one used in the complemented SiamFC.

60

5 EXPERIMENTAL RESULTS

This chapter evaluates the performance of the proposed method and the parameters that

influence its performance. We compare our proposal to state-of-the-tracker trackers. Ad-

ditionally, we present a qualitative analysis of the method.

5.1 EXPERIMENTAL SETUP

We start introducing the most important technical details used in our setup in order to

implement the proposed method and verify its performance.

To run the dataset for the proposal and compute the filter bank, we used two Intel

E5-4607 @ 2.20GHz processors with 24 cores and 32 GB Memory, running Ubuntu 16.04.4

LTS. The SiamFC and the proposed method were written in Python3.5. As additional

libraries, we used: TensorFlow 1.10.0, for the implementation of the SiamFC, Numpy

1.14.5, for numerical computation, OpenCV 3.4.3, data visualization and the evolutionary

computation framework DEAP 1.2.2, for the computation of the GA.

The external sources for the version of the SiamFC used in this work is available

at: https://github.com/www0wwwjs1/tensorflow-siamese-fc, the Online Tracking bench-

mark (OTB) dataset can be accessed at: http://cvlab.hanyang.ac.kr/tracker benchmark/

and the VOT2015 dataset at: http://www.votchallenge.net/vot2015/dataset.html. We

perform the hypothesis test using scikit-posthocs provided by Terpilowski (2019).

5.1.1 DATASETS

It was used two datasets in this work. The first one, the VOT2015, was used to design the

filters of our proposal. The second one, the OTB, was used to evaluate the performance

of the proposed method and compare it to state-of-the-art trackers.

The VOT2015 is a labeled dataset composed of 60 uncategorized videos. It presents

challenging videos that include: occlusion; background clutter; illumination change; object

deformation and rotation. There is no uniformity for frame rate and resolution, and the

dataset is composed only of short term videos, which are ideal for the filter bank design,

as it would demand less computational resources to find the optimized filters.

https://github.com/www0wwwjs1/tensorflow-siamese-fc
http://cvlab.hanyang.ac.kr/tracker_benchmark/
http://www.votchallenge.net/vot2015/dataset.html

61

The second dataset is OTB. It is composed of 50 categorized videos according to 11

attributes: Abrupt Motion; Background Clutter; Blur; Deformation; Illumination Varia-

tion; In-Plane Rotation; Low Resolution; Occlusion; Out-of-Plane Rotation; Out-of-View;

Scale Variation. One video can belong to more than one category. There is also no uni-

formity for frame rate and resolution, and there are short and long term videos. As OTB

is one of the most recognized datasets in the literature (BEI et al., 2018), we use it as the

evaluation benchmark for our work.

5.1.1.1 Evaluation protocol

The OTB dataset provides a specific evaluation protocol. For a given RoI in the first

frame, the tracker under evaluation should output the following BBs. Each of these has

to corresponds to the RoIs in the following frames. The error between the GT and the

tracker’s output is computed over the video. Two metrics evaluate tracker performance:

Location Error (LE) and Intersection-over-Union (IoU). Figure 5.1 shows a graphic ex-

ample of both metrics, and they are explained as follows:

1. LE: This metric takes into account the distance between the BB outputted by the

tracker and the GT. Its computation is given by the Euclidean distance given by:

LE = ||BBc −GTc||, (5.1)

where BBc and GTc is the center of the BB and the center of the GT, respectively.

The closest the BBs of the analyzed frame are to the GT, the lower the LE will be.

2. IoU: This metric takes into account the overlap between the BB and the GT. It is

defined as follows:

IoU =
BB ∩GT
BB ∪GT

, (5.2)

where ∩ and ∪ represent the intersection and the union, respectively, of the BB and

GT region. The better the overlap between the GT and the outputted BB for a

given frame, the closer it is to 1.

In order to analyze the performance for a given tracker in a set of videos based on the

two metrics presented above, one can estimate two different types of curves:

62

Location Error Intersection over Union
(overlap)

Figure 5.1: Representation of LE and IoU.

1. Precision plot: This curve shows the proportion of frames successfully tracked for a

given LE threshold. Then, it is a graph of precision vs. location error threshold.

2. Success plot: This curve shows the proportion of frames that achieved a minimum

value of IoU for a given threshold. Then, it is a graph of success rate vs. overlap

threshold.

A good way to generalize the evaluation of these curves is to compute the Area under

the curve (AUC). The greater the area, the better is the performance for this metric.

The AUC is widely used to compare the performance of different trackers. However,

for a complete evaluation, the analysis of the plots is also recommended.

5.2 PARAMETER SETTING

This section presents values for the parameters used in this proposal. We also present

those which achieve the best performance in our evaluation. Additionally, we discuss the

impact of the main parameters in the global performance of this work.

The GA specification for the optimization of the filter bank of order M is: the proba-

bility of gene mutation is defined to be pg = 1
M

; the probability of selecting an individual

for mutation is pm = 90%; the mate operation is the two-point crossover, which proba-

bility is pc = 95%; the population size P is 5M ; the convergence criteria is set to be the

maximum number of iterations Mi allowed for convergence, where Mi = 600 and finally

we adopted the integer encoding for the filter coefficients;.

Ideally, the number of descriptors Q of the Long Term Memory ; the order M of the

filter bank that is used by the Short Term Memory ; the Conservative Factor α and

the white noise standard deviation σ would be better determined through grid search.

However, due to the high computational cost of the learning step, we empirically analyzed

63

the impact of each parameter. Thus, we fixed the parameters which presented the best

performance to the method, and we changed each one at the time to verify its impact

on the proposal. Therefore, the parameters were fixed, unless otherwise specified, as:

Q = 30, M = 31, α = 0.65, σ = 0.9. Additionally, the default training videos from

VOT2015 were: ''bag'', ''racing'', ''ball1'', ''octopus'', ''bolt2'', ''pedestrian2'', ''road''.

5.2.1 LONG TERM MEMORY EVALUATION

Figure 5.2: Analysis of the number of descriptor that composes the Long Term Memory.
The respective AUCs are shown in the legend between brackets.

The number of descriptors Q that compose the Long Term Memory was analyzed.

According to Figure 5.2, the most appropriate size for this memory according to the AUC

of the precision and the success plots was Q = 30. However, for most values of Q, the

proposed method has higher AUCs than the SiamFC.

5.2.2 SHORT TERM MEMORY EVALUATION

The second parameter analyzed was the order M of the filter bank. This parameter defines

the number of descriptors used by the Short Term Memory to output its evaluation.

Notice in Figure 5.3 that all the values of M outperforms the proposal the SiamFC.

However, in these scenarios, M = 31 is undoubtedly the most appropriate value for our

proposal.

64

Figure 5.3: Analysis of the filter order of the filter bank used by Short Term Memory.
The respective AUCs are shown in the legend between brackets.

5.2.3 WHITE NOISE EVALUATION

Figure 5.4: Impact of the noise standard deviation in the computation of the trained
filters compared to the baseline. The respective AUCs are shown in the legend between
brackets.

In contrast to size of the Long Term Memory and the Short Term Memory, the stan-

dard deviation σ of the white noise added to z[n] is a sensitive parameter. In Figure 5.4,

observe that adding no noise, σ = 0, or even adding noise with low standard deviation,

as σ = 0.1, results in poor performance of the proposed method. These parameters value

have inferior performance when compared to the baseline. Increasing the value of σ, the

65

performance also increases, up to the value σ = 0.9. Beyond these value, the system’s

performance decreases, as the noise severely corrupts the signal.

5.2.4 CONSERVATIVE FACTOR EVALUATION

Figure 5.5: Impact of the conservative factor in the computation of the filter compared
to the baseline. The respective AUCs are shown in the legend between brackets.

An even more sensitive parameter is the conservative factor α. Notice in Figure 5.5

that if the Combined Descriptor relies only in the Short Term Memory (α = 0) or in

the Long Term Memory (α = 1), our proposal cannot reach the baseline performance.

However, when α is set to 0.80 or 0.65, the proposed method can outperform the SiamFC,

where α = 0.65 presents the highest performance according tho the AUCs of precision

and success plots.

5.2.5 SELECTION OF VIDEOS FOR TRAINING

We chose three scenarios, where we selected the videos used for training the filter bank:

1) Videos whose tracker output BBn has high intersection to GTn.

2) Videos whose tracker output BBn has low intersection to GTn.

3) Videos whose tracker output BBn has high intersection to GTn and videos whose

BBn has low intersection to GTn.

66

The metric elected to indicate the intersection between GTn and BBn was the F-

Measure. It is the harmonic mean between the precision1 p and recall2 r of a video, as

expressed in the following expression:

F-Measure =
2 · p · r
p+ r

. (5.3)

The higher the F-Measure F , the fairer the tracker followed the RoI. Therefore, if

BBn intersects GTn with a IoU greater than a threshold Γ for most part of the trajectory,

the F-Measure F is close to 1.

Thus, in order to validate these scenarios, we selected videos in the VOT2015 dataset

that meet the following criteria: scenario 1, the tracker output BBn for the videos have a

F-measure F ≥ 0.80; scenario 2, BBn for the selected videos have F ≤ 0.25; scenario 3,

BBn of the selected video comprises F ≥ 0.80 and F ≤ 0.25. In all scenarios, we set the

IoU threshold Γ = 0.25. Table 5.1 shows the selected videos that meet these requirements.

Scenario Videos

1 ''bag'',''racing'',''ball1'', ''octopus'', ''bolt2 '',''pedestrian2'',''road''
2 ''bolt1'',''fish2'', ''handball1'', ''leaves'',''nature'',''rabbit'',''singer2''
3 ''bag'',''racing'',''ball1'', ''octopus'', ''bolt1'',''fish2'',''handball1''

Table 5.1: Videos in the VOT2015 dataset that meet the criteria for scenario 1, 2 and 3.

Figure 5.6 shows the performance when the filter bank is trained in the scenarios.

Scenario 1 presented the best result among the three. In scenario 2, the filters also showed

a satisfactory performance when evaluated, although it does not outperform scenario 1.

Scenario 3 showed a less expressive performance when compared to the previous ones.

The results might indicate that training the filters with BBn with high F-Measure to GTn

can be positive in the computation process. However, the relatively high performance of

the scenario 2 inquires if BBn not tightly close to the GTn can also contribute to the

computation of the filter bank. All in all, the impact of the tracking quality over the

videos is still one open-end question and requires a more detailed analysis.

1Number of BBs outputted by the tracker whose IoU to the GT is greater then a given threshold Γ
divided by the total amount of BB detected in a video.

2Number of BBs outputted by the tracker whose IoU to the GT is greater then a given threshold Γ
divided by the total number of BB that the GT presented as a valid.

67

Figure 5.6: Performance of the filter bank trained with videos tracked with high F-Measure
values. The respective AUCs are shown in the legend between brackets.

5.3 METHOD EVALUATION

After finding the most appropriate parameter values for the proposed method, we eval-

uate the performance of standard LTI filters, and we finally proceed to a more in-depth

comparison to the baseline.

5.3.1 COMPARISON TO STANDARD FILTERS

In this section, we analyze our proposal using two standard filters for the filter bank of

the Short Term Memory : the Moving Average and the Gaussian filters.

The first filter analyzed is the Moving Average mentioned by Valmadre et al. (2017).

We verified that it does not show significant improvements when compared to the original

framework of the SiamFC. We observed that for some particular videos, the moving aver-

age presented an improvement of performance compared to the original SiamFC proposal.

However, its overall performance on the OTB dataset, depicted in Figure 5.7, shows that

this approach does not present gains compared to the SiamFC. This result led us to in-

quire if the filter could be composed of different coefficients. Then, we figured out that

a Gaussian filter presents a better performance when compared to the standard Moving

Average, as also shown in Figure 5.7. The Gaussian shape filter is given as follows:

h[n] =
e−

(n−bM/2c+1))2

2σ2

√
2πσ2

, (5.4)

68

Figure 5.7: Precision and success plots for Moving Average and the Gaussian Filters
compared to the SiamFC. The respective AUCs are shown in the legend between brackets.

where σ defines the width of the Gaussian distribution shape, and M is the order of the

filter.

5.3.2 BASELINE COMPARISON

In this subsection, we deploy a comparison between the proposed method to the baseline,

the SiamFC.

Figure 5.8: Precision and success plots for the proposed method an the baseline. The
respective AUCs are shown in the legend between brackets.

The precision and success plots for both methods are shown in Figure 5.8. Our method

69

outperforms the baseline according to the AUC of the curves, setting it as a default

choice for a general application. Notice that the AUC improvement is about 7.4% and

3.0% for precision and success plots, respectively. Our proposal also has a substantial

gain of performance from moderate to high LE threshold tolerance and low values of IoU

threshold. The baseline has a slightly better performance for low LE threshold and high

IoU threshold. The mean of our proposal is also superior to the baseline for both curves.

These metrics and the standard deviation for the curves can be verified in Table 5.2 and

Table 5.3.

Method
Precision Plot

AUC Mean Std. Dev.

SiamFC 0.753 0.688 0.200
Proposed 0.809 0.721 0.227

Table 5.2: Summary of the precision plots performance according to AUC and the sta-
tistical information of mean and standard deviation. It is highlighted in bold the best
performance for each metric.

Method
Success Plot

AUC Mean Std. Dev.

SiamFC 0.560 0.559 0.293
Proposed 0.577 0.577 0.321

Table 5.3: Summary of the success plots performance according to AUC and the statistical
information of mean and standard deviation. It is highlighted in bold the best performance
for each category for each of the thresholds.

As the F-Measure comprises information about false positives and false negatives rate

of a tracker, we compared both methods according to this metric, as shown in Table

5.4. Notice that for a loose threshold (Γ = 0.25), the proposed method outperforms the

baseline, showing a better tracker adherence to the RoI, i.e., it fails less frequently. In

contrast, the original proposal of the SiamFC locates the RoI more precisely when it does

not fail, as it has a greater F-Measure for a higher Threshold (Γ = 0.75).

For an improved analysis, we also performed the post-hoc Nemenyi test to the curves of

SiamFC and our method. The precision rate of location has p-value = 4.95 ·10−4, meaning

that both curves are statistically different. However, the p-value for the success rate of

overlap is 0.406 meaning that the curves are statistically similar.

Finally, we analyzed the performance of our proposal in the 11 categories of the OTB

70

Method
Threshold

0.25 0.50 0.75

SiamFC 0.612 0.460 0.188
Proposed 0.642 0.462 0.133

Table 5.4: F-measure for different thresholds. It is highlighted in bold the best perfor-
mance for each threshold.

according to LE precision and the IoU success. Table 5.5 and Table 5.6 show the precision

and the success, respectively, for different thresholds.

Threshold 50 30 10

Method PM BL PM BL PM BL

C
at

eg
or

y

Abrupt Motion 0.877 0.830 0.837 0.795 0.469 0.580
Background Clutter 0.835 0.763 0.817 0.727 0.645 0.575

Blur 0.846 0.816 0.806 0.787 0.420 0.551
Deformation 0.847 0.784 0.831 0.763 0.556 0.568

Illumination Variation 0.855 0.769 0.829 0.741 0.534 0.571
In-Plane Rotation 0.836 0.772 0.804 0.739 0.570 0.592
Low Resolution 0.819 0.782 0.776 0.744 0.531 0.548

Occlusion 0.842 0.795 0.819 0.775 0.530 0.592
Out-of-Plane Rotation 0.848 0.792 0.824 0.763 0.590 0.608

Out-of-View 0.735 0.713 0.689 0.693 0.358 0.481
Scale Variation 0.883 0.834 0.863 0.804 0.670 0.682

Table 5.5: LE precision for different thresholds. The first row corresponds to thresholds
values. The second row indicates the method, the proposed method (PM) or the baseline
(BL). From the third row, each line corresponds to the performance of one category of the
OTB dataset. It is highlighted in bold the best performance for each category for each of
the thresholds.

The data in Table 5.5 reinforces that our method is more reliable to indicate the RoI

center than the baseline, presenting better adherence. In contrast, for an application

where precision is required, the baseline presents better performance. This observation is

valid for all the 11 categories analyzed.

Alternatively, Table 5.6 shows that our proposal outperforms the baseline for all cat-

egories of low values of threshold (about 0.25), and it is competitive for medium values

of threshold (0.50). In contrast, the baseline outperforms the proposal for high values of

thresholds (about 0.75). It shows that our method intersects to the RoI more frequently

than the baseline, showing again that the proposed method has a better adherence to the

71

Threshold 0.25 0.50 0.75

Method PM BL PM BL PM BL
C

at
eg

or
y

Abrupt Motion 0.857 0.817 0.692 0.686 0.260 0.307
Background Clutter 0.809 0.727 0.736 0.636 0.388 0.321

Blur 0.812 0.794 0.623 0.666 0.207 0.291
Deformation 0.834 0.764 0.684 0.648 0.239 0.258

Illumination Variation 0.814 0.739 0.668 0.649 0.291 0.341
In-Plane Rotation 0.804 0.751 0.697 0.675 0.302 0.336
Low Resolution 0.795 0.762 0.666 0.674 0.257 0.317

Occlusion 0.816 0.774 0.687 0.678 0.238 0.297
Out-of-Plane Rotation 0.819 0.765 0.699 0.672 0.290 0.318

Out-of-View 0.730 0.708 0.638 0.645 0.312 0.387
Scale Variation 0.856 0.813 0.716 0.721 0.308 0.368

Table 5.6: IoU success for different thresholds. First row corresponds to thresholds values.
Second row indicates the method, the proposed method (PM) or the baseline (BL). From
the third row, each line corresponds to the performance of one category of the OTB
dataset. It is highlighted in bold the best performance for each category for each of the
thresholds.

RoI. However, when the SiamFC successfully intersects the RoI, it does more precisely.

5.3.3 COMPARISON WITH THE STATE-OF-THE-ART

Figure 5.9: Precision and success curves for the performance of the proposed method
(green), compared to state-of-the-art methods. The respective AUCs are shown in the
legend between brackets.

The performance of several state-of-the-art trackers discussed in Chapter 3, whose data

72

performance on OTB dataset are available online, is shown in Figure 5.9. The proposed

method was able to improve the performance of the SiamFC, making it competitive to the

trackers: DCFNet and the CFN. Our proposal outperforms these trackers in one of the

curves according to the AUC. In contrast, notice that MDNET, CCOT, ECO, and SINT

have higher AUC than our tracker. Due to its simple and effective approach, however, our

method is lightweight with fairly comparable results. We remark that the lack of object

occlusion detection greatly impairs our precision and success rates.

5.4 VISUAL PERFORMANCE

We present a few sequences that let the reader interpret the results presented in Subsection

5.3.2. Figure 5.10a and Figure 5.10b show frames that the proposed method outperforms

the baseline. SiamFC confuses the background to the foreground and it is not able to

recover from failure anymore. Notice that although the proposed method does not always

show a precise location of the RoI in the images, it points out, even in a coarsely way, the

RoI (good adherence), while the SiamFC fails.

(a)

Alternatively, Figure 5.10c helps us to understand why the SiamFC show better per-

formance for high values of threshold in the success plots and low ones in the precision

73

(b)

(c)

Figure 5.10: Tracking performance comparison between: GT (in blue), SiamFC (in red)
and the proposed method (in green). All the sequences are from the OTB dataset: (a)
''lemming1''(b) ''skiing''(c) ''singer1''.

74

plots. Both SiamFC and the proposed method successfully indicate the RoI, however the

SiamFC does it better due to its fair precision.

5.5 LEARNED FILTER ANALYSIS

We also discuss the results of the trained filter bank from a qualitative view. Figure 5.11a

shows an overview of the filter bank. Notice that each filter has a strong DC component,

and most of the filters have the first coefficient as the greater one.

Figure 5.11b shows three filters from the bank to a more in-depth analysis. Notice

the strong DC component in all the three filters that can be verified by applying the

Fast Fourier Transform (FFT). Although we have discussed the limits of performance of

an SNN, one of its fundamental characteristics is keeping the descriptor insensitive for

different instances of the objects. Therefore, we expected beforehand that this strong DC

component would be present in the filter bank.

(a)

75

(b)

Figure 5.11: Filter bank analysis (a) Shape of all the 256 filters of the bank. (b) Filters
corresponding to dimensions k = 0, 50, 100 of the bank shown individually for time and
frequency analysis.

Another important aspect are the strongest coefficients of the filters. They are usually

the first ones. This characteristic shows that the last descriptors in the video are the most

relevant ones. It is an intuitive consideration, as the change in the appearance of RoI in

the latest frames looks to be more important than the previous appearance of the RoI.

A final consideration that only can be observed when analyzing each filter is that for

most of them, the low-frequency components tend to be higher than the high-frequency

ones. It can be understood as a fast change in RoI appearance is less important than a

consistent and smoother one.

76

6 CONCLUSION

In this work, an SNN was complemented to improve tracking based on the concept of

memory blocks. We proposed two of them: the Long Term Memory and the Short Term

Memory. The first block is composed of initial descriptors obtained by the SNN, while

latest descriptors compose the second block. The blocks provide an adaptive nature to

the tracker, yielding in an improved performance to long term tracking. Although we

have implemented this proposal in the SiamFC framework, it is possible to use it on any

SNN. We also showed how to compute the memory blocks output, and we focused on the

computation of a filter bank, based on GA, for the Short Term Memory.

Compared to the baseline, our proposal has better global performance, according to

AUC of the OTB dataset. Additionally, our method has greater adherence to the objects

tracked over time. The proposal also achieves comparable performance to the state-of-the-

art trackers, presenting a high performance at the same it requires a low computational

cost.

Although the proposed method enhances the SiamFC, it is not able to handle RoI

occlusion, which impairs tracking capability. Additionally, as the Short Term Memory

uses an LTI filter bank, this block may not capture nonlinear information of the RoI.

Finally, SiamFC also presents higher performance on low tolerance location of the object.

6.1 FUTURE WORK

Direction for future works suggests more sophisticated approaches for exploration of tem-

poral series, including Long Short-Term Memory (LSTM) NN, DNN, and Markov Chain.

Additionally, the use of more memory blocks and alternative ways to combine them seems

promising. Due to the high computational cost to compute the filters, one can explore

a systematic way to combine parameters in the optimization problem. Moreover, the

random search might present good results to find the best parameters to the method. It

would replace manual search, as done in this work, or grid search, as traditionally done

in ML literature (BERGSTRA; BENGIO, 2012).

Additionally, occlusion detection strategies can be used to avoid erroneous learning

of recent object appearance. Also, a better understanding of the videos selected for

77

tracking may show alternatives to improve general performance. Finally, another point

that deserves efforts is the exploration of other optimization algorithms to obtain the filter

bank.

REFERENCES

AHMAD, S. U.; ANTONIOU, A. Cascade-form multiplierless fir filter design using or-

thogonal genetic algorithm. In: IEEE. 2006 IEEE International Symposium on

Signal Processing and Information Technology, 2006. p. 932–937.

BALDI, P.; CHAUVIN, Y. Neural networks for fingerprint recognition. Neural Compu-

tation, v. 5, 05 1993.

BEI, S.; ZHEN, Z.; WUSHENG, L.; LIEBO, D.; QIN, L. Visual object tracking challenges

revisited: Vot vs. otb. PloS one, Public Library of Science, v. 13, n. 9, p. e0203188,

2018.

BERGSTRA, J.; BENGIO, Y. Random search for hyper-parameter optimization. Jour-

nal of Machine Learning Research, v. 13, n. Feb, p. 281–305, 2012.

BERTINETTO, L.; VALMADRE, J.; HENRIQUES, J. F.; VEDALDI, A.; TORR, P. H.

Fully-convolutional siamese networks for object tracking. In: SPRINGER. European

conference on computer vision, 2016. p. 850–865.

BROMLEY, J.; GUYON, I.; LECUN, Y.; SÄCKINGER, E.; SHAH, R. Signature verifica-

tion using a”siamese”time delay neural network. In: Advances in neural information

processing systems, 1994. p. 737–744.

CARREIRA, J.; ZISSERMAN, A. Quo Vadis, Action Recognition? A New Model and the

Kinetics Dataset. In: IEEE. IEEE Conference on Computer Vision and Pattern

Recognition, 2017. p. 4724–4733.

CEMES, R.; AIT-BOUDAOUD, D. Genetic approach to design of multiplierless fir filters.

Electronics Letters, IET, v. 29, n. 24, p. 2090–2091, 1993.

CHOI, J.; CHANG, H. J.; YUN, S.; FISCHER, T.; DEMIRIS, Y.; CHOI, J. Y. Attentional

correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017. p. 4807–4816.

CUN, Y. L.; MATAN, O.; BOSER, B.; DENKER, J. S.; HENDERSON, D.; HOWARD,

R. E.; HUBBARD, W.; JACKET, L.; BAIRD, H. S. Handwritten zip code recogni-

tion with multilayer networks. In: IEEE. [1990] Proceedings. 10th International

Conference on Pattern Recognition, 1994. v. 2, p. 35–40.

DANELLJAN, M.; BHAT, G.; KHAN, F. S.; FELSBERG, M. et al. Eco: Efficient con-

volution operators for tracking. In: CVPR, 2017. v. 1, n. 2, p. 3.

DANELLJAN, M.; ROBINSON, A.; KHAN, F. S.; FELSBERG, M. Beyond correlation

filters: Learning continuous convolution operators for visual tracking. In: SPRINGER.

European Conference on Computer Vision, 2016. p. 472–488.

DEY, A. K.; SAHA, S.; SAHA, A.; GHOSH, S. A method of genetic algorithm (ga) for

fir filter construction: design and development with newer approaches in neural network

platform. International Journal of Advanced Computer Science and Applica-

tions, Citeseer, v. 1, n. 6, p. 87–90, 2010.

GUO, Q.; FENG, W.; ZHOU, C.; HUANG, R.; WAN, L.; WANG, S. Learning dynamic

siamese network for visual object tracking. In: The IEEE International Conference

on Computer Vision (ICCV).(Oct 2017), 2017.

HAUPT, R. L.; HAUPT, S. E. Practical genetic algorithms. Wiley Online Library, 2004.

HAYKIN, S. Neural networks: a comprehensive foundation, 1994.

HELD, D.; THRUN, S.; SAVARESE, S. Learning to track at 100 fps with deep regression

networks. In: SPRINGER. European Conference on Computer Vision, 2016. p.

749–765.

HENRIQUES, J. F.; CASEIRO, R.; MARTINS, P.; BATISTA, J. High-speed tracking

with kernelized correlation filters. IEEE transactions on pattern analysis and ma-

chine intelligence, IEEE, v. 37, n. 3, p. 583–596, 2014.

HOLLAND, J. Adaptation in natural and artificial systems: an introductory analysis with

application to biology. Control and artificial intelligence, University of Michigan

Press, 1975.

HUANG, Z. An investigation of deep tracking methods. In: IEEE. Technologies and

Applications of Artificial Intelligence (TAAI), 2017 Conference on, 2017. p.

58–61.

KALAL, Z.; MIKOLAJCZYK, K.; MATAS, J. et al. Tracking-learning-detection. IEEE

transactions on pattern analysis and machine intelligence, v. 34, n. 7, p. 1409,

2012.

KOCH, G.; ZEMEL, R.; SALAKHUTDINOV, R. Siamese neural networks for one-shot

image recognition. In: ICML Deep Learning Workshop, 2015. v. 2.

KRISTAN, M.; LEONARDIS, A.; MATAS, J.; FELSBERG, M.; PFUGFELDER, R.;

ZAJC, L.; VOJIR, T. et al. The visual object tracking vot 2017 challenge results. v. 1,

n. 1, p. 1452 – 1459, 2017.

KRISTAN, M.; LEONARDIS, A.; MATAS, J.; FELSBERG, M.; PFUGFELDER, R.;

ZAJC, L.; VOJIR, T.; BHAT, G.; LUKEZIC, A.; ELDESOKEY, A. et al. The sixth

visual object tracking vot2018 challenge results. In: European Conference on Com-

puter Vision workshops, 2018. v. 3, n. 5, p. 8.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep

convolutional neural networks. In: Advances in neural information processing sys-

tems, 2012. p. 1097–1105.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. nature, Nature Publishing

Group, v. 521, n. 7553, p. 436, 2015.

LECUN, Y.; BOTTOU, L.; BENGIO, Y.; HAFFNER, P. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, IEEE, v. 86, n. 11, p. 2278–2324,

1998.

LI, P.; WANG, D.; WANG, L.; LU, H. Deep visual tracking: Review and experimental

comparison. Pattern Recognition, Elsevier, v. 76, p. 323–338, 2018.

LONG, J.; SHELHAMER, E.; DARRELL, T. Fully convolutional networks for semantic

segmentation. In: Proceedings of the IEEE conference on computer vision and

pattern recognition, 2015. p. 3431–3440.

MAIA, H. d. A. et al. A mediator for multiple trackers in long-term scenario. Universidade

Federal de Juiz de Fora (UFJF), 2016.

MAIA H.A.; OLIVEIRA, F. V. M. Independent selection and validation for tracking-

learning-detection. International Conference on Image Processing, p. 3469–3473, 2016.

MANOCHA, P.; BADLANI, R.; KUMAR, A.; SHAH, A.; ELIZALDE, B.; RAJ, B.

Content-based representations of audio using siamese neural networks. In: IEEE. 2018

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2018. p. 3136–3140.

NAM, H.; HAN, B. Learning multi-domain convolutional neural networks for visual track-

ing. In: Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016. p. 4293–4302.

NANNI, L.; GHIDONI, S.; BRAHNAM, S. Handcrafted vs. non-handcrafted features for

computer vision classification. Pattern Recognition, Elsevier, v. 71, p. 158–172, 2017.

NING, G.; ZHANG, Z.; HUANG, C.; REN, X.; WANG, H.; CAI, C.; HE, Z. Spatially

supervised recurrent convolutional neural networks for visual object tracking. In: IEEE.

Circuits and Systems (ISCAS), 2017 IEEE International Symposium on, 2017.

p. 1–4.

OPPENHEIM, A. V.; WILLSKY, A. S.; NAWAB, S. H. Signals &Amp; Systems

(2Nd Ed.), 1996. ISBN 0-13-814757-4.

ORFANIDIS, S. J. Introduction to Signal Processing, 1995. ISBN 0-13-209172-0.

PATANE, A.; KWIATKOWSKA, M. Calibrating the classifier: Siamese neural network

architecture for end-to-end arousal recognition from ecg. LOD 2018, 2018.

PERNICI, F.; BIMBO, A. D. Object tracking by oversampling local features. IEEE

transactions on pattern analysis and machine intelligence, IEEE, v. 36, n. 12, p.

2538–2551, 2014.

POUYANFAR, S.; SADIQ, S.; YAN, Y.; TIAN, H.; TAO, Y.; REYES, M. P.; SHYU,

M.-L.; CHEN, S.-C.; IYENGAR, S. A survey on deep learning: Algorithms, techniques,

and applications. ACM Computing Surveys (CSUR), ACM, v. 51, n. 5, p. 92, 2018.

RAFIQ, M.; BUGMANN, G.; EASTERBROOK, D. Neural network design for engineer-

ing applications. Computers & Structures, Elsevier, v. 79, n. 17, p. 1541–1552, 2001.

REDMON, J.; DIVVALA, S.; GIRSHICK, R.; FARHADI, A. You only look once: Unified,

real-time object detection. In: Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016. p. 779–788.

ROUT, L.; MISHRA, D.; GORTHI, R. K. S. S. et al. Rotation adaptive visual object

tracking with motion consistency. In: IEEE. 2018 IEEE Winter Conference on

Applications of Computer Vision (WACV), 2018. p. 1047–1055.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

SZEGEDY, C.; LIU, W.; JIA, Y.; SERMANET, P.; REED, S.; ANGUELOV, D.; ER-

HAN, D.; VANHOUCKE, V.; RABINOVICH, A. Going deeper with convolutions. In:

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 2015. p. 1–9.

TAIGMAN, Y.; YANG, M.; RANZATO, M.; WOLF, L. Deepface: Closing the gap to

human-level performance in face verification. In: Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2014. p. 1701–1708.

TAO, R.; GAVVES, E.; SMEULDERS, A. W. Siamese instance search for tracking. In:

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 2016. p. 1420–1429.

TERPILOWSKI, M. scikit-posthocs: Pairwise multiple comparison tests in python. The

Journal of Open Source Software, v. 4, n. 36, p. 1169, 2019.

VALMADRE, J.; BERTINETTO, L.; HENRIQUES, J.; VEDALDI, A.; TORR, P. H.

End-to-end representation learning for correlation filter based tracking. In: IEEE. Com-

puter Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on,

2017. p. 5000–5008.

VO, N. N.; HAYS, J. Localizing and orienting street views using overhead imagery. In:

SPRINGER. European Conference on Computer Vision, 2016. p. 494–509.

83

WANG, N.; SHI, J.; YEUNG, D.-Y.; JIA, J. Understanding and diagnosing visual tracking

systems. In: Proceedings of the IEEE International Conference on Computer

Vision, 2015. p. 3101–3109.

WANG, N.; YEUNG, D.-Y. Learning a deep compact image representation for visual

tracking. In: Advances in neural information processing systems, 2013. p. 809–

817.

WANG, Q.; GAO, J.; XING, J.; ZHANG, M.; HU, W. Dcfnet: Discriminant correlation

filters network for visual tracking. arXiv preprint arXiv:1704.04057, 2017.

XIANG, X. A brief review on visual tracking methods. In: IEEE. Intelligent Visual

Surveillance (IVS), 2011 Third Chinese Conference on, 2011. p. 41–44.

ZAGORUYKO, S.; KOMODAKIS, N. Learning to compare image patches via

convolutional neural networks. CoRR, abs/1504.03641, 2015. Dispońıvel em:

<http://arxiv.org/abs/1504.03641>.

	 Introduction
	Motivation
	Problem Definition
	Objectives
	Contributions
	Outline

	 Fundamentals
	Signals and Systems
	Linearity
	Time-Invariance

	Genetic Algorithm
	Neural Networks
	Convolutional Neural Networks
	Fully Convolutional Neural Networks
	Similarity Comparison
	Siamese Neural Networks
	The SiamFC Network

	 Literature Review
	The Classical Approaches to Tracking
	Deep Learning
	Deep Learning For Tracking
	Tracking With a Siamese Neural Network
	Deep descriptors and filter learning

	 Proposed Method
	The Ideal SNN
	The Real SNN
	Signal of Descriptors
	The Complemented SiamFC
	Computing the Long Term Memory
	Computing the Short Term Memory
	Memory Combination

	Filter Bank Estimation
	Filter Learning

	 Experimental Results
	Experimental Setup
	Datasets

	Parameter Setting
	Long Term Memory Evaluation
	Short Term Memory Evaluation
	White Noise Evaluation
	Conservative Factor Evaluation
	Selection of Videos for Training

	Method Evaluation
	Comparison to Standard Filters
	Baseline Comparison
	Comparison with the State-of-the-Art

	Visual Performance
	Learned Filter Analysis

	 Conclusion
	Future Work

	REFERENCES

