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RESUMO

Esta tese propõe três ensaios sobre acordos de cartel. Assumindo a racionalidade

limitada, o primeiro capítulo analisa a interação estratégica entre empresas a partir de

uma perspectiva de jogos evolucionários. Nesse sentido, introduz-se novos elementos para

capturar e discutir os mecanismos que garantem a estabilidade dos acordos colusivos.

No segundo capítulo, usando as motivações econômicas do crime, desenvolve-se um

modelo teórico para avaliar a estabilidade dos cartéis ilegais. Portanto, como o cartel age

ilegalmente, a punição também se dá nesse âmbito. Assim, apresentam-se novos insights

para as autoridades antitruste na detecção e inibição de cartéis enquanto organizações

criminosas. Por fim, o terceiro capítulo dialoga com os capítulos anteriores por meio

de uma avaliação empírica da formação de cartéis no mercado varejista de gasolina nas

seguintes cidades: Belo Horizonte, Brasília, Caxias do Sul e São Luís. Combinam-se

técnicas de aprendizagem de máquina com filtros baseados nos momentos estatísticos da

distribuição de preços de varejo da gasolina para classificar o comportamento do cartel.

Palavras-chave: Cartel. Antitruste. Racionalidade Limitada. Organização Criminosa.

Modelos de Simulação por Agente. Aprendizagem de Máquina.



ABSTRACT

In this thesis, we propose three essays on cartel agreements. Assuming bounded

rationality, the first chapter analyses the strategic interaction between firms from an

evolutionary game perspective. We introduce new elements to discuss the mechanisms

that sustain collusive agreements. In the second chapter, following the economic reasoning

of crime, we propose a game-theoretical model to evaluate the stability of illegal cartels.

Under this approach, punishment is also illegal. Thus, we offer new insights to antitrust

authorities in inhibiting cartels as criminal organizations. Finally, the third chapter

dialogues with the previous chapters through an empirical assessment of gasoline cartels in

Brazil. To reach our purposes, we combine machine learning techniques with screens based

on the statistical moments of the gasoline retail price distribution to correctly classify

cartel behavior.

Key-words: Cartel. Antitrust. Bounded Rationality. Criminal Organization. Agent-based

Models. Machine Learning.
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1 INTRODUCTION

In this thesis, we discuss cartel agreements from different perspectives. Cartel

prosecution is becoming a priority policy objective. Increasingly, prohibition against

cartels is now considered to be an indispensable part of competition law. Thus, antitrust

enforcers should be helped in their ability to detect and avoid cartels by various means and

instruments. Therefore, the objective of our study is to provide reasonable answers to the

following questions: (a) Does the introduction of altruistic punishment character increase

the stability of so-called legal cartels? (b) At what level the retaliation mechanisms adopted

by illegal cartels - which act like criminal organizations - are effective in increasing collusion

stability? (c) From an empirical point of view, how can we identify behavioral patterns of

cartel agreements based on price dynamics? With this in mind, we seek to understand

cartel stability using approaches that are still little explored in the Industrial Organization

literature. In this way, we open key avenues for improvement of the performance of

antitrust enforcers as well as to increase the impact of competition policies.

In order to answer question (a), the first essay evaluates the cartel in a repeated

Cournot game. Under the bounded rationality assumption, we aim at focusing on behavioral

patterns that sustain the so-called legal cartel agreements. We consider that firms can

adopt altruistic-punish behavior, i.e., they are willing to incur extra costs of retaliation

which would diminish the expected utility of their payoff to punish firms that deviate

from the agreement. This premise opens an avenue to study the cartel with an approach

that discusses social organizations and the evolution of cooperation in complex adaptive

systems. To evaluate the cartel stability in a dynamic game, we dissociate the punishment

strategy from the defection. Thus, we set a game with three strategies. Besides, to

capture possible geographic and regional aspects, we restrict competition between firms

in a local neighborhood. By introducing an Agent-based model with adaptive learning,

our approach enables us to address how often the altruistic punishment behavior can

sustain collusion. In short, having considered boundedly-rational firms in the analysis of

the deviation strategy and possible retaliation, we provide new insights through a setting

that considers a legal cartel.

In order to answer question (b), in the second essay, following the economic modeling

of crime developed by Gary Becker, we aim at offering an innovative approach to discuss

illegal cartels. This approach deviates from the first essay in the sense that the game is

not dynamic and punishment mechanisms are not standard. In other words, we analyze

a game in which the cartels act as criminal organizations and the retaliation is illegal.

Illegal methods of retaliation can be more harmful to defectors, as they do not have legal

remedies to fight back. Hence, this approach brings new insights into how the antitrust

authority can inhibit cartel agreements. In this sense, we expand the discussion of the

first essay by incorporating the Law & Economics framework. Exploring the economic
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reasoning of crime, we show that the conclusions regarding the size of stable cartels are

incomplete. As well, we offer a useful review of the key aspects of cartel policies, raising

methodological issues regarding cartel deterrence.

Concluding, in order to answer question (c), the third essay proposes machine

learning screens to evaluate gasoline cartels in Brazil. We selected cities already judged

and condemned by the regulator. In this way, we aim at providing empirical pieces of

evidence that reinforces the insights brought from the previous chapters as follows. In

the gasoline cartels, we have both the dynamic interaction and the illegality aspects,

previously addressed in our theoretical game framework. Besides, the regional and local

competition features are also relevant, as revealed by the mechanisms of price agreement

and retaliation. Finally, we present a general conclusion on the specific contribution of

each chapter, summarizing our results as well as establishing some policy prescriptions for

the antitrust authority.
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2 THE CARTEL AGREEMENT IN AN EVOLUTIONARY GAME PER-

SPECTIVE: ENFORCEMENT MECHANISM BY A PUNISHMENT

STRATEGY

ABSTRACT

In this manuscript, we aim at providing an alternative way of describing the use of the

combination of reward and punishment to sustain a cartel agreement through an evolu-

tionary game. In this sense, we evaluate heterogeneous firms’ collusive behavior under

the bounded rationality assumption. Differently from the traditional approach - based on

the Prisoners’ Dilemma - we dissociate the punishment from the defection strategy, and

punisher firms are willing to give up part of its payoff to punish those firms that betray

the cartel agreement. We design a stochastic learning rule through the Agent-based Model

(ABM) to capture possible spatial networks effects over agents’ strategic behavior. Our

findings suggest that: (i) when firms compete in a local neighborhood, the effectiveness of

punishment is lower than when compared to the competition in a well-mixed grid; (ii) in

most cases, the co-existence of cooperators and defectors is the dynamic balance of the

game.

keywords: Cartel agreement. bounded rationality. social dilemma.

JEL classification: C15 · C73 · D21 · L13
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2.1 INTRODUCTION

Due to the incipient contribution of the traditional economic literature to the

recognition of some behavioral and strategic patterns that encourage cartel settlements,

the general objective of this paper is to provide a new framework for understanding the

punishment and reward mechanisms that sustain firms’ collusive behavior. To achieve

our goal, we assume that firms are boundedly-rational (ELLISON, 2006; SILVEIRA;

VASCONCELOS, 2019).

In other words, to sustain the cartel, we consider that firms can adopt altruistic-

punish behavior, insofar as they are willing to incur extra costs of retaliation, which

would diminish the expected utility of their payoff, to punish firms that deviate from

the agreement. This premise opens an avenue to study the cartel with an approach that

discusses social organizations and the evolution of cooperation in complex adaptive systems

(CHAN et al., 2013; ROCHA, 2017). Therefore, one innovation of our approach is to

introduce new theoretical elements. As well, we propose methodological instruments that

are still little explored in the Theory of Industrial Organization in the analysis of the

market structure and in the description of how the use of reward and punishment can

induce and sustain cartel arrangements.

In Industrial Organization (hereafter, IO), cartels are the unlawful agreements

between firms to fix prices or quotas of production and division of markets. Typically,

coordinated action among firms to eliminate competition and raise product prices occurs

in oligopolistic markets where a small number of profit maximizer firms are producing

homogeneous goods (TIROLE, 1988). Besides, as in a monopoly, firms under cartel

agreements aim to maximize profits. Thus, it is incongruous to think that illegal actions

are legitimized by economic theory.

In this way, the illegality of the cartel is confused with that of the monopoly

simply because monopoly profits are as high as possible in the market without effective

competition. However, it would be more realistic to think that the cartel has an objective

function that not only absorbs the monopoly’s pricing behavior but also assimilates the

pros and cons of anti-competitive behavior. That is, the objective function of the cartelized

firms should include costs related to illegal activities, such as punishments in the event of

conviction by the antitrust authorities and the punishment of potential whistleblowers

(BELLEFLAMME; PEITZ, 2010).

Hence, starting from a motivation supported by the economic theory (profit maxi-

mization), firms adopts a collusive (and illegitimate) market behavior, whose characteristics

are similar to a particular situation of imperfect competition (monopoly), in which a single

firm owns the market for a particular product or service, and is, therefore, able to influence

the price of the good. In addition to such behavior, we usually observe a loss of consumer



16

welfare. Furthermore, considering very rare exceptions, such as the OPEC cartel, collusion

is typically considered to be unlawful (SPAGNOLO, 2004).

Thus, understanding the mechanisms of cooperation, in this case, is only intended

to provide elements for the formulation of policies that will increase the internal instability

of the cartel. Often, among individual profits maximizers, an infinite number of strategic

interactions are required to achieve cooperative behavior. The hypothesis that the individ-

ual is endowed with full rationality, motivated basically by the relation between the cost

and the benefit of following or not a set of social norms, aiming the maximization of its

economic reward is the basis of the classic Game Theory. It is widely applied in cartel

agreement analysis together with a representation of a social dilemma named as Prisoner’s

Dilemma (PD) (NEUMANN; MORGENSTERN, 2007).

Informally, a social dilemma represents a conflict between the individual and

collective interests. It illustrates situations in which individual benefits from selfishness

unless everyone chooses the selfish alternative, in which case the whole group loses.

Conflicts arise when too many group members choose to pursue individual profit and

immediate satisfaction rather than behave in the group’s best long-term interests. Social

dilemmas can take many forms and are studied across disciplines such as economics,

political science, psychology, physics, and biology. Formally, the PD1. is widely used

in Game Theory to describe such situations. The cardinal property of its equilibrium

outcome is individually rational - in the sense that no individual has a unilateral incentive

to change one’s strategic behavior - and collectively irrational - insofar as the coordination

of collective strategic behavior via cooperation could lead all individuals to a Pareto

superior situation (AXELROD, 1997; KOLLOCK, 1998).

For Bowles and Gintis (2011), since individual incentives and collective interests

are conflicting, whenever cooperation between individuals has a cost, there is a possibility

of observing an opportunistic (free rider) behavior at the expense of others’ efforts. This

makes it harder to get better social (collective) outcomes. A wide literature2 is devoted

to the study of ways in which cooperation could emerge in social dilemmas. In Axelrod

and Hamilton (1981), the basis of cooperation in social dilemmas is beyond a choice with

a short-run cost and a possible long-run benefit. It includes collaboration with others

to build and enforce norms of conduct (not necessarily legal), to impose an industrial

standard, to build a new organization that can act on behalf of its members, such as in
1 Besides the Prisoner’s Dilemma, the literature on social dilemmas has developed around

different metaphorical stories, such as Public Goods Game and Tragedy of the Commons
(EATON; ESWARAN, 2002; CAPRARO, 2013)

2 Friedman (1971) seminal article shows how sufficiently patient agents cooperate in an infinite
Prisoner Dilemma game.Bó (2005), Duffy and Ochs (2009) also provide evidence in this
direction. Bó and Fréchette (2011), Gallice and Monzon (2017) proposes mechanisms to
sustain cooperation in an environment of uncertainty through experimental studies in infinitely
repeated games.
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cartel agreements.

Assuming full rationality, the main literature about collusion deal with two different

approaches. The first one considers the explicit pricing behavior of firms in an infinitely

repeated game. Explicit price agreements are prohibited by law and firms adopt less

obvious methods to manage and coordinate their pricing strategies. This leads us to the

second approach, which is related to situations where coordination of prices takes place

in an implicit way, known as tacit collusion. Firms use a discount factor for expected

future profits to evaluate the reward of whether or not to adhere to the tacit agreement.

Therefore, the discount factor is a crucial rule in determining the stability of the cartel,

i.e., stable collusion is only possible if cartel members attach a sufficiently high value to

their future earnings3.

Following Bernheim and Madsen (2017), the analysis obtained through strategic

models of repeated interactions have brought valuable information, but also left an

important gap4 to be filled in. Thus, while substantial progress has been made in

formulating cartel theories that respond to a variety of empirically tested standards, some

questions remain open. Typically, cartels maintain agreement stability by subjecting

participants to punishment5, but there is room for a better explanation of two important

factual observations: first, deliberated deviations from the agreement occur; second, even

in the face of defection, deviant firms might not be punished - even if detected. Thus, the

traditional approach is also unsatisfactory in the way it draws the punishment to achieve

the collusive outcome.

As the existing literature about collusive agreements does not adequately map

such events, theories of imperfect information, such as Green and Porter (1984), were

formulated to provide explanations of the reasons why cartels tend to disintegrate, giving

rise to price wars and retaliation strategies by firms 6. This line of research attributes the
3 As exposed in Symeonidis (2002), Levenstein and Suslow (2006), Bruttel (2009), there are

several experiments on Bertrand as well as Cournot competition, considering various market
design variables concerning their influence on stability of collusive behavior. When analyzing
the impact of all those factors most of them implicitly presume that the critical discount
factor δ∗ comprises a measure for the stability of cooperative behavior in the market. In
theory, however, the critical discount factor should only matter for firms behavior in so far
as collusion is a sustainable outcome when their actual discount factor δ is larger than the
critical δ∗, but not when it is smaller. Thus, we can derive a minimum discount factor above
which collusion can be sustained in a subgame perfect equilibrium.

4 For empirical and theoretical papers on pricing and cartel, see Green and Porter (1984),
Rotemberg and Saloner (1986), Abreu, Pearce and Stacchetti (1986), Abreu (1988), Bernheim
and Whinston (1990), Athey and Bagwell (2001), Athey, Bagwell and Sanchirico (2004),
Athey and Bagwell (2008), Harrington and Skrzypacz (2011).

5 As demonstrated by Spagnolo (2004), the cartel organization can increase the internal
punishment, i.e., the cost of cheating to favor its internal stability.

6 This issue has been widely discussed in the literature, highlighting Green and Porter (1984),
Genesove and Mullin (1998), Genesove and Mullin (2001), Marshall et al. (2016).
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collapse of pricing exclusively to exogenous events, that is, that are beyond the control of

cartel members - and not to their intentional choices. This implies that cartel members

will never deliberately betray collusive agreements. Moreover, according to these theories,

if cheating occurs and is detected, the punishment would be an immediate consequence.

With this in mind, it is important to point that, as presented in Camerer (2011),

there is a reductionism of the economic agent being seen merely as a utility maximizer

once it does not take into account the behavioral, cognitive and emotional aspects inherent

to the decision-making process. In other words, in the economic relations of everyday

life, people act according to intrinsic motivations and behave according to the ethical

standards of society. This often goes against the purely economic and utilitarian interests

of the individuals, as explained by Lambsdorff (2007). Coricelli, Rusconi and Villeval

(2014) states that in many economic decisions, the so-called non-economic7 motivations,

such as altruistic behavior or ideological activism, can exert dominance over the economic

motivations. Thus, rationality assumptions have been widely debated.

Many contributions8 come from the Evolutionary Game Theory (EGT), which,

based on the premise of bounded rationality of agents, enriched the analysis of situations

represented by dilemmas - whether social or from other dimensions - as presented in

Friedman (1991), Hauert and Doebeli (2004). Besides that, the EGT framework takes into

account, aspects such as the existence of biases and heuristics9 that can affect the decision

making process; the dimension of reciprocity10 and the learning models in complex systems

with Agent-Based Simulation (ABS) models.

According to Smith and Price (1973), in EGT, convergence to the dominant long-

run equilibrium is expected. In this equilibrium, achieved after a period of dynamic

interaction, players must have adopted an evolutionary stable strategy (ESS), which is a

strategy in which players have no incentive to abandon unless some external force disturbs

the underlying conditions of the game. Then, if classical game theory can be defined

as the science that studies strategic behavior, with the theory of evolutionary games it

takes a step forward since we now have the science that studies the robustness of strategic

behavior.

With all this motivation in mind, we aim to reach the following specific objectives:
7 In the sense that it leads the agent to a non-optimal (maximum) result of its utility function.
8 On this matter, Ellison (2006) states that EGT models remedies some drawbacks of the

traditional game theory and, recently, has been largely applied in IO topics. Please see Young
(1993), Binmore, Samuelson and Young (2003), Cabrales and Serrano (2011), Weidenholzer
(2012).

9 Defined in Camerer (2011) as cognitive processes employed in partial rationality decision
making. The strategy ignores part of the information to make adaptive choices in real
environments.

10 Tremblay and Tremblay (2005), Spiegler (2011) address reciprocity in the sense that people
are willing to punish devious behavior by seeking a fair and reciprocal treatment (fairness).
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(a) to identify the nature of the stability of the cartel agreement; (b) to understand the

dynamic pattern of the strategic interaction among firms as it approaches the equilibrium;

(c) to estimate the frequency of the punish character which enforces the cartel agreement;

(d) to check if stability of the cartel depends on the initial condition of the game, and,

if so, how? The results suggest that in some specific cases, punishment is effective in

eliminating the cheaters of the cartel agreement. In many other cases, the co-existence of

cooperators and defectors is the balance of the game.

To reach our purpose, Section 2.2 introduces the model. Section 2.3 presents the

ABS algorithm to assess the effectiveness of punishment in sustaining the cartel. Section

2.4 concludes and discusses further research possibilities.

2.2 THE GAME MODEL

Suppose a linear n−firm Cournot model with constant and identical marginal costs

of productions. Let n, be the number of firms that produce a homogeneous good with

marginal cost mc. The inverse demand function is given by P (q) = a − q.

Considering the possibility of collusion and assuming the existence of a single

Nash equilibrium in pure strategy in the Cournot Game, the single optimal quantity

produced by the cartel is given by qM = arg max q(P (q) − mc). The factor q(P (q) − mc)

is monotonically increasing until qM and, then, it is monotonically decreasing.

The cartel payoff is denoted by πM
i = qM(P (qM) − mc). If qi = qM/n for all firm

i in the stage game, then each firm earns a cartel payoff πM = πM/n. When one firm

deviates, it earns πD
i > πM

i . When firms compete, they earn the oligopoly payoff πO
i . Thus,

πD
i > πM

i > πO
i . Typically, as in the repeated Prisoner’s Dilemma, the Nash equilibrium

reveals that the cartel is not stable, as firms mutually defect and therefore receive πO
i .

2.2.1 The prisoner’s dilemma revisited

The Prisoner’s Dilemma is the starting point for bringing the essential elements

for understanding the evolution of cooperative behavior in non-cooperative games. It

illustrates that cooperating individuals are prone to exploitation, and that dynamic

interaction should favor cheaters (or defectors). In this game, two players simultaneously

decide whether to cooperate (C) or defect (D). Cooperation results in a benefit b to the

recipient but incurs a cost k to the donor. The model assumes that b > k > 0. Within

our discussion of cartels, firms analyze the cost-benefit of colluding.

Costs can be divided in (i) expenses involved in maintaining the agreement, such

as monitoring and meetings, given by kM ; (ii) the opportunity cost that firms incur by

choosing not to deviate from the agreement and, therefore, to gain a larger share of the

market, given by kO. Mutual cooperation (C, C) thus pays a net benefit of πM
i = b − k,
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where k = kM + kO. Mutual defection (D, D) results in the oligopoly payoff for both

players, which from now on we normalize to zero πO
i = 0. With unilateral cooperation,

defection (D, C) yields the highest payoff, πD
i = b, at the expense of the cooperator (C, D)

bearing the cost πS
i = −k. It follows that it is best to defect regardless of the co-players

decision. Thus, from the payoff matrix (2.1), defection is a dominant strategy, even though

all individuals would be better off if they all cooperated. This outcome is a consequence

of πD
i > πM

i > πO
i > πS

i .





C D

C b − k; b − k −k; b

D b; −k 0; 0



 (2.1)

Despite this argument seems quite convincing and widely used in cartel analysis,

Axelrod and Hamilton (1981), Bowles and Gintis (2011) highlights that, in the evolutionary

game framework, it is possible to observe altruistic behavior (i.e., individuals bears costs to

the benefit of others) in many situations related to cooperation. Infield and experimental

studies it is often difficult to assess the expected payoffs for different behavioral patterns,

and even the proper ranking of the payoffs is challenging. This has led to a considerable

gap between theory and experimental evidence, and to an increasing questioning with

the Prisoner’s Dilemma as the only model to discuss cooperative behavior. Following

this thought, we will propose an alternative approach to evaluate the stability of cartel

agreements in the following subsection.

2.2.2 Enforcement mechanism by a punishment strategy

Thus, for a cartel to survive in the market, credible punishment should be in place

to penalize members that defect and, therefore, sustain the cartel agreement (GREEN;

PORTER, 1984; JASPERS, 2017). As exposed in Jr and Chen (2006), there are many

forms of credible punishments related to price-cutting and the threat of price wars. In

short, the traditional economic literature approach seeks explanations for cartel stability

through effective internal detection and punishment. This introduces the expectation

that the cases will demonstrate sophisticated systems of coordination, monitoring, and

enforcement. Retaliation in the form of price slicing and price wars will serve to increase

the costs of cheating, thus ultimately stabilizing cartels.

On the other hand, recent empirical studies, such as Levenstein and Suslow (2006),

Harrington and Chang (2009), Levenstein and Suslow (2011), states that: (a) cartels invest

more in ways to avoid cheating than to resort to ex-post punishments, which are costly; (b)

retaliatory response to the defectors increases the likelihood of a cartel’s natural demise.

In this sense, the deviating effects of internal punishments leave room for alternative

explanations of the long-term stability of cartels. Furthermore, from the perspective of a

social dilemma, the assumptions about the agent’s behavior, proposed by the standard
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economic literature, may not be sufficient to understand the determinants of cartel success.

With this in mind, we focus on studies related to the evolution of cooperative behavior in

social dilemmas to design an enforcement mechanism by a punishment character.

As shown in Fehr and Gachter (2000), Xu et al. (2011), punishment has a lead

role in promoting cooperation in social organizations within complex adaptive systems.

Following this framework, we introduce a third punishing (P ) character on our so-called

Cartel Agreement Game with boundedly-rational firms and study its effects.

Consider first the polar case in which the boundedly-rational firms are homogeneous.

Assume that when firms cooperate (C, C) they both earn the cartel profit and split the

cost k, earning πM
i − k/2. Unilateral cooperation (D, C) yields πD

i to the defector. Unlike

the PD, the cooperator (C, D) expected payoff is πM
i − k. Note that in this situation, the

cooperator acquires the benefit of the cartel, but incurs the entire cost k.

The punisher firm carries basically a cooperative (C) character, and are willing to

incur in a extra cost χ, in order to punish a defector firm (D) by an amount represented

by γ, with γ > χ > 0. By doing so, the loss incurred by firms that defect from the cartel

is larger than the cost paid by firms that act as punishers, i.e., the underlying concept of

bounded rationality is still preserved.

Besides, as we have added a punishment strategy, the two-player game is now 3x3

instead of 2x2. We represent the expected costs and benefits of such altruistic and punitive

behavior in the payoff matrix (2.2). Note that it subtly change the relationship between

cooperation and defection as well as the ranking of the payoffs as shown (2.1).















C D P

C πM
i − k

2
πM

i − k πM
i − k

2

D πD
i 0 πD

i − γ

P πM
i − k

2
πM

i − k − χ πM
i − k

2















. (2.2)

Observe that whenever a punisher and a cooperator meet, it represents the same

situation as if two cooperators were meeting. For simplicity, let us consider the situation

in which πD
i = πM

i > k > 0. By this assumption, we simplify the analysis, to give greater

emphasis on the cost to the benefit ratio when both firms are willing to join the cartel

agreement, ρ = (k/2πM
i − k), with ρ ∈ (0, 1). Thus, considering homogeneous firms, the
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payoff matrix11 presented in (2.2) is now given by the normalized payoff matrix (2.3)











C D P

C 1 1 − ρ 1

D 1 + ρ 0 1 + ρ − γ

P 1 1 − ρ − χ 1











. (2.3)

Now, we introduce an asymmetry between firms regarding their behavior towards

the cost by the benefit of cooperation, ρ. On this matter, we keep our analysis on the linear

n−firm Cournot model, but now we assume non-identical marginal costs of productions.

We now have a two-population game, where low-cost (Type A) firms are competing with

high-cost (Type B) firms.

Namely, Type A firms are more efficient in the sense that they have a lower cost

of production and lower cost of monitoring and organizing of the cartel agreement. This

makes it possible for them to require a lower ρ than Type B firms. The latter are less

efficient and have higher costs and, therefore, require a higher ρ to cooperate with the

cartel. So, we have a situation in which ρA < ρB, i.e., Type A firms are more willing to

cooperate than Type B firms.

In this regard, the punisher from population A incurs in an extra cost χA to punish

the defector from population B by an amount γB. This reasoning is analog for punisher

firms from the population B. To better capture this heterogeneity among players, we will

consider that Type A firms will evaluate the possibility of making the collusive agreement

with Type B firms and vice versa. In our model, there is no interaction between firms of the

same Type, i.e., own-population effects are not taken into account in the two-population

game.

In this sense, let us consider that the stage game as represented in (4.4) is repeatedly

played over time between two firms, each belonging to one of two very large different

populations of firms from Type A and Type B.











C D P

C 1; 1 1 − ρA; 1 + ρB 1; 1

D 1 + ρA; 1 − ρB 0; 0 1 + ρA − γA; 1 − ρB − χB

P 1; 1 1 − ρA − χA; 1 + ρB − γB 1; 1











. (2.4)

Now, we can evaluate the effectiveness of the punishment strategy related to: (a)

the stability of the cartel agreement as a function of ρ, χ and γ; (b) the dynamic pattern of

the strategic interaction among firms as it approaches the ESS; (c) the level of punishment

that enforces the cartel agreement: (d) the sensibility of the collusive behavior to the
11 In order to get the payoffs as a function of ρ, it is necessary to multiply all entries in matrix

(2.2) by 2
2πM

i
−k

:
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initial conditions of the game. Given the number of strategies, as well as the number of

parameters inserted in our analysis to capture effects arising from the interaction between

heterogeneous firms, these questions might be better answered and understood numerically

than analytically. Thus, following the vast literature that is dedicated to the analysis of

social dilemmas and complex systems through numerical simulations, as Axelrod (1997),

Hauert and Doebeli (2004), Nowak and Highfield (2011), Xu et al. (2011), Chan et al.

(2013), Rocha (2017), in the next section, we introduce our ABS Model.

2.3 AGENT-BASED SIMULATION MODEL

A stochastic component is implemented12 in the analysis of evolutionary equilibria

using the ABS method, which has been largely used in the understanding of the evolution

of cooperative behavior. For Eaton (2004), an oligopolistic market in which firms compete

in price or quantity can be understood as a form of social dilemma13. In this section, an

algorithm to complement the evolutionary game and to guide the dynamic interaction

among firms is presented. We consider the competition in which the two populations are

distributed in a well-mixed and in a spatial-structured network. A well-mixed arrangement

may be consistent with online e-commerce marketplaces, where the geographical position

of firms does not directly impact competitors’ strategic decisions. A game played in a

spatial network can be consistent with a physical and regional market competition, for

example: between supermarkets or gas stations in a specific neighborhood or region.

2.3.1 Well-mixed two-population game

To implement the computational simulation in the well-mixed two-population game,

the framework presented by Rocha (2017) is followed. In this sense, at a time t = 0,

we establish an initial proportion of firms’ A and B in each population, (fAc
, fBc

), that

play the (C) strategy. Evolutionary dynamics are introduced in sequence and, at each

Monte Carlo time Step (MCS), a Focal Agent i, which can update14 its strategy, is chosen

randomly. This occurs simultaneously in both populations. Focal Agent i, in turn, plays

against a random opponent from the rival population and starts the game presented in

matrix (4.4). Thus, Focal Agent i will obtain a payoff Vi. At the same time, an agent

j is randomly chosen as a Reference Agent, which randomly plays against an opponent

from the rival population and obtains a payoff Vj. Notice that focal and reference players
12 To implement the algorithm, we made use of the Java programming language.
13 Other works in this line can be seen in d’Aspremont and Jacquemin (1988), Goodwin and

Mestelman (2010), Potters and Suetens (2013)
14 Two mechanisms to update the population regarding the strategic interactions are largely

used in agent-based simulation methods: synchronous and asynchronous. Here, we use the
second, since it allows the overlapping generations interactions. See Hauert (2002), Chan et
al. (2013).
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belong to the same population. The Focal Agent i compares Vi and Vj to analyze the

possibility of updating his strategy in two stages as stated ahead: (i) If Vi ≥ Vj, focal

player keeps his strategy; (ii) If Vi < Vj, focal player might update his strategy to the one

adopted by reference player with a probability given by the variable w:

w =
Vj − Vi

max.payoff − min.payoff
(2.5)

The maximum and minimum payoffs are obtained from the game matrix. By doing

this procedure, we guarantee that w ∈ (0, 1). To establish a decision criterion whether

Focal Agent i updates his strategy or not, a random number generator is used and is

conveniently named rnd ∈ (0, 1). In this way, a stochastic component on the dynamics of

the game is implemented. Focal Agent i compares rnd with the probability w, so that:

(iii) If w ≥ rnd, Focal Agent i updates its strategy and imitates the Reference Agent j;

(iv) If w < rnd, Focal Agent i does not update its strategy.

At every MCS, randomly selected individuals from both populations have the

opportunity to, on average, change strategy at least once, comparing their payoffs with

the Reference Agent j. We say that, on average, individuals can update strategies once,

because within an MCS the same player may be invited to play many times, and other

players may not, since the process of players’ selection is random. Thus, when all players

in both populations, on average, have the opportunity to update their strategies, an MCS

is completed and a new MCS starts to repeat the dynamics of the game. This procedure

characterizes the ABS model.

2.3.2 Spatial-structured two-population game

When applying this procedure in regular lattices, the number of opponents with

which individuals interact depends on the spatial arrangement of the game and directly

impacts the value of w. It is important to notice that, in the well-mixed two-population

design all players are arranged in a N -dimensional vector and can compete with the

whole rival population, i.e., the probability of interaction between them is the same and

independent of their position in the vector. In a spatial-structured network, the concept

of local neighborhood emerges, and there only will be competition among players that

belong to certain positions in the N × N dimensional matrix.

Figure 1 presents an illustration of the two-dimensional game dynamics in a well-

mixed and spatial-structured format. In this last is possible to identify the neighborhood

of each focal and reference agent according to their position in the matrix. In this paper,

we consider the von-Neuman15 neighborhood. Suppose that the element
{

a33

}

, illustrated

on the right side of Figure 1, is the focal agent that is programmed to play the strategy C.
15 That consists of four cells arranged orthogonally around the central cell. For detail, see

Hauert and Doebeli (2004), Nowak and Highfield (2011). We chose this neighborhood for
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According to the von-Neuman neighborhood, the reference agent of
{

a33

}

, i.e., the one

which he will compare his payoff, to decide whether he updates his strategy or not, could

be randomly selected between the elements
{

a34, a32, a23, a43

}

. Suppose, for example, that
{

a34

}

, who is programmed to play D, is selected as the reference agent.

The elements of the rival population B, with which the focal agent
{

a33

}

competes

are
{

b33, b23, b43, b34, b32

}

. The reference agent
{

a34

}

competes with the individuals located

at
{

b34, b33, b35, b24, b44

}

. The same interaction happens simultaneously in the opposite

direction, that is, there is competition between players of population B with the population

A and vice verse. Attention should be paid in considering the strategic interactions of

those players located on the border of the spatial structure. The local neighbor with

which element
{

a11

}

randomly selects to compare his payoff is one of the elements
{

a51, a21, a15, a12

}

and the set of players from the rival population that
{

a11

}

compete are

located in the cells
{

b11, b12, b15, b21, b51

}

. In this matter, we can see the spatial structure

similar to a toroid16.

Figure 1 – Game dynamics in a well-mixed and spatial-structured populations.

Source:Elaborated by the authors.

The strategy update criterion is calculated by the average payoff of each player,

founded by the arithmetic mean of the payments (V ) obtained in each interaction with

the n players that compose the local neighborhood. The Focal Agent i and the Reference

Agent j now receive a payoff given by, respectively:

Vi =

∑n
i=1 vi

n
, Vj =

∑n
j=1 vj

n
(2.6)

As explained before, if Vj > Vi, the focal agent may imitate reference agents’

strategic behavior with probability w. Note that w is based on the averages received by

its better dialogue with the economic literature on collusion, specifically with the paper of
Selten (1973), entitled "A simple model of imperfect competition where four are few and six
are many".

16 In mathematics, a toroid is a surface of revolution with a hole in the middle, like a doughnut,
forming a solid body. The axis of revolution passes through the hole and so does not intersect
the surface.
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the focal and reference agents. The worse the focal players’ performance in relation to the

reference, the greater the probability that he imitates reference agents’ strategy.

2.3.3 Results

In this subsection, we present the results obtained with the ABS algorithm. First,

we show the effect of punishment for the well-mixed two-population game and evaluate its

effect on the level of cooperation with the cartel among firms. To capture some possible

peculiarity regarding the effect of spatial competition, in which firms interact only with

their local neighbors, we evaluate the role of punishment applied to the deviant firms of

the collusive agreement in a spatial-structured two-population competitive arrangement.

It is important to report that the simulations were carried out a substantial number of

times to capture the random effects and the graphs presented here refer to the average of

the typical behavior of the firms.

To generate the results, the simulations were performed considering the game

presented in (4.4). We firstly assume that (χA, γB) = (0.1; 0.5) and (χB, γA) = (0.01; 0.05).

In other words, in the numerical simulation performed, the punishment suffered by defectors

(γ−i) from the rival population is five times greater than the cost of punishment (χi). Then,

we tested different combinations for the values of ρi, keeping χi and γi constants, to infer

how the cost of cooperation with the cartel agreement impact firms strategic decision and

the dynamic balance of the game. The values of the parameters respect the restrictions

imposed in the elaboration of the payoff matrix.

Thus, the population dimension17 of each firm is set NA = NB = 8.100, and the

initial proportion of firms programmed to adopt each of the pure strategies available in

the game is given by (fCA
, fDA

, fPA
) = (0.1; 0.1; 0.8) and (fCB

, fDB
, fPB

) = (0.1; 0.8; 0.1).

These initial conditions are intended to reflect the greater willingness to collude of Type A

firms. In other words, they are more willing to punish firms from the rival population so

that the cartel remains stable. In turn, Type B firms, which have a higher cost for the

benefit of cooperation, is more likely to defect from the agreement and benefit from the

deviation.
17 Many population dimensions, both smaller and larger were also tested and did not change

the results presented here. The only variation was the speed of convergence to the steady
state. Besides, for instance, this number is under the amount of players that exist in a digital
economy environment (well-mixed) and with the amount of gas stations or supermarkets in
big urban centers (spatial-structured). Note that in spatial-structured competition, although
there are many players, the relevant market is determined by the local neighborhood, that is,
composed only by 5 firms. In this way, we ensure the robustness of the simulations without
compromising the theoretical structure of the oligopoly and the cartel agreements.



27

2.3.4 Well-mixed competition

In this arrangement, the probability of strategic interaction among firms do not

depend on their location in the grid. We set ρA = 0.01 and 0.01 < ρB . 0.27 and achieved

two distinct steady states. In the first, illustrated in figure 2, the steady state is formed by

the co-existence of firms that cooperate with the cartel agreement and firms that punish

those that defect. Thus, the punishment is effective in eliminating the deviant behavior of

the market.

On the other hand, figure 3 shows a steady state that is characterized with all Type

A firms cooperating and all Type B firms defecting from the collusion. This last result

shows the difference between the willingness to cooperate in each population. As Type

B firms require a higher ρ, once this value increases, the greater the benefit gained from

diverting from the agreement. For situations where: (a) we shorten the distance between

ρA and ρB, by assigning ρA > 0.01 and ρB ≤ 0.27 and; (b) we vary this interval, by setting

ρA ≥ 0.01 and ρB > 0.27, we observed that the steady state is reached with Type A firms

cooperating and Type B firms defecting at the expense of the rival population. In this

way, although the punishers can eliminate defectors, this balance is not unique. Thus,

since Type B firms require a ρB rate much larger than ρA, the observed net effect is that,

since Type A firms signal intent to participate in the agreement, Type B firms acquires a

greater payoff when defecting.

Note that the game dynamics in the initial MCS of figures 2 and 3 are quite similar.

Between 0 < MCS . 10 we observe the complete elimination of the defectors of the

cartel agreement in population of Type A firms, who update their strategy to C or P .

Simultaneously, we see that around MCS ≈ 20, in population of Type B firms, the relative

frequency of defectors becomes lower than that of cooperators and punishers. This suggests

that the punishment applied by Type A firms at this stage of the game had a positive

effect over Type B firms. The reverse movement is also true. The net effect is an increasing

in the relative frequency of punishing and cooperating firms in both populations.
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Figure 2 – The co-existence of C and P characters in both populations.
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Source: Elaborated by the authors.

What differentiates the steady states that will set the game balance can be observed

between 100 . MCS . 150. Note that in Figure 2, the frequency of punishers in

the population of Type A firm stabilizes above the frequency of cooperators, that is,

fPA
≈ 0.63. Due to this, firms of the rival population that are playing D, sensing the

effect of punishment, update their strategic behavior and start to cooperate with the cartel

agreement. Therefore, we have reached the result in which cartel defectors are completely

eliminated from the market.

On the other hand, in order to explain the result presented in 3 we observe that

around 100 . MCS . 150, the frequency of punishers in the population of Type A firm

becomes lower than the fraction of cooperators, i.e., fCA
> 0.5. Due to this, the frequency

of deserters of the rival population grows at the expense of Type A cooperating firms.

Then, given that there is an increasing number of defectors in the population of Type

B firms, the best answer for Type A firms is to play C, and not P once the punishment

leads to a payoff loss. The result highlights the fact that if fCA
> fPA

, the steady-state

will be given by the population of Type A firms playing C (AllC) against a population of

Type B firms that withdraw from the cartel agreement (AllD). Therefore, opportunistic

behavior, such as the free-rider, can also configure a balance that reinforces the weakness

of the stability of cartel agreements.
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Figure 3 – Type A and Type B Firms are All C and All D, respectively.
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Source: Elaborated by the authors.

Result 1 summarizes and presents the economic intuition of these results.

Result 1. In the Well-mixed competition, when (fCA
, fDA

, fPA
) = (0.1; 0.1; 0.8) and

(fCB
, fDB

, fPB
) = (0.1; 0.8; 0.1), the punishment is effective in eliminating the deviant

behavior of the market if, and only if, ρA = 0.01 and 0.01 < ρB . 0.27. Another

necessary condition for the punish character to be evolutionarily stable is that the frequency

of punishing firms must be permanently greater than the frequency of cooperators in

population A, that is, fPA
> fCA

. Otherwise, there is room for free-rider behavior and

the equilibrium of the game is given by the state All C vs All D since firms of population

B will have an incentive to deviate from the agreement in the absence of punitive firms

in population A. For any other values assigned to ρA and ρB, the balance of the game is

formed by Type A firms cooperating and Type B firms defecting at the expense of the

cooperative behavior from the rival population.
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Figure 4 – Steady state for the spatial competition with (ρA, ρB) = (0.01; 0.015).
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Source: Elaborated by the authors.

2.3.5 Spatial-structured competition

Now, we evaluate the steady states of the competition among firms restricted to

their local neighborhood. Thus, preserving the previous initial conditions, we now evaluate

how spatial interaction affects firms’ strategic behavior. When (ρA, ρB) = (0.01; 0.015), we

observe two different steady states, in the same way as before. The significant difference

here is that for spatial competition, punishment is much more sensitive to the variation of

the cost for the benefit of mutual cooperation. In addition, it will only be effective when

defectors are scattered, in the sense that they do not have a compact clustering, and when

the competitive neighborhood of these firms is composed mostly by those firms who apply
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the punishment.

In order to illustrate our argument, we compare the outcomes presented in Figures

4 and 5. Between 0 < MCS . 10, in both cases, we observe a decreasing in the

number of defector firms in population A and B. This decrease in population B is more

pronounced than in population A. In addition, simultaneously, there was a significant

increase in C and P strategies in the population of Type B firms. Note that, between

steps 10 . MCS . 1000 the relative frequency of defecting firms in both populations

remains quite low.

The frequency of defectors in the population of Type A firm shows a timid growth

between 10 . MCS . 1000, as shown in figure 4c and 5b. This is because strategy

D is a better response to neighboring (and adversary) firms that play C. However, the

growth of deserting firms is interrupted by the punishment they suffer by competing with

firms that are willing to give up part of their profit to sustain the collusive agreement.

Thus, simultaneously, the defectors observe that the cooperation between the other firms

generates greater profit and, from then on, they update their strategy for C or P, starting

to cooperate with the cartelization of the market. The net effect of this dynamic is that

the relative frequency of firms playing D in both populations is very close to zero.

The difference between the steady states shown in Figures 4 and 5 begins to be

drawn around the MCS & 10.000. At this point, we can compare Figures 4d and 5d.

Note that in 4d, in both populations there is a higher relative frequency of punishers. This

inhibits the formation of compact clusters of defecting firms.

On the other hand, as can be seen in figure 5d, the relative frequency of punishers

in the population of Type A firm decreases and the frequency of cooperators increases,

becoming greater than the frequency of punishers. This situation favors deserting firms

and the frequency of Type B firms defecting increases substantially. Note that there is

a very compact cluster of cooperators and defectors in the population of firms of Type

A and B, respectively. This happens because strategy C performs better than P when

competing against deserting firms.

Simultaneously, the frequency of Type B firms playing D increases at the expense

of the absence of punishment in the competitive neighborhood. Thus, as these clusters

become more solid, the outcome of the game is formed by Type A firms cooperating and

Type B firms defecting from the cartel agreement. We can summarize these outcomes in

Result 2.
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Figure 5 – Steady state for the spatial competition with (ρA, ρB) = (0.01; 0.015).
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Result 2. In an environment in which we define a relevant market with heterogeneous

firms and the competition is restricted to a local neighborhood, the stability of the collusive

agreement is much more sensitive to the parameters ρA and ρB. This outcome indicates

that punishment is less effective in such environments. In this sense, departing from

(fCA
, fDA

, fPA
) = (0.1; 0.1; 0.8) and (fCB

, fDB
, fPB

) = (0.1; 0.8; 0.1), punishment eliminates

the deviant behavior of the market if, and only if, ρA = 0.01 and 0.01 < ρB ≤ 0.015.

Another necessary condition for the punish character to be evolutionarily stable is that

fPA
> fCA

and the defecting firms from population B must be scattered in the grid.
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Otherwise, there is room for free-riders and firms that adopt this behavior form a compact

red cluster, as shown in Figure 5d. Therefore, the equilibrium of the game is given by

the state All C vs All D, since firms of population B will have an incentive to deviate

from the agreement in the absence of punitive firms in their local neighborhood. For any

other values assigned to ρA and ρB, the balance of the game is formed by Type A firms

cooperating and Type B firms defecting from the agreement at the expense of the collusive

behavior from the rival population.

2.4 CONCLUSION

The cartel agreement was studied from an evolutionary game perspective. By

doing so, we aimed to provide a better understating and evaluation of the stability of

firms’ collusive behavior. Supported by the bounded rationality assumption, we suggested

a different way of describing the use of the combination of reward and punishment to

induce and sustain a cartel agreement. Firstly, contrary to the traditional literature on

cartels, we dissociate the strategy of not cooperating from strategies related to betrayal

and punishment. Thus, we began our analysis on the stability of the cartel by introducing

the parameter ρ, which measures the cost to the benefit ratio when both firms are joining

the cartel agreement. In this way, we observed that the greater the value of ρ the greater

the incentive to deviate from the cartel settlement and there still a paradox since the

average profit of the industry is lower than it would be if only collusive firms existed in

the steady-state.

To better capture the heterogeneity among firms willing to cooperate with the

cartel agreement, we proposed a two-population game. Thus, we considered that firms had

different behavior towards the cost-benefit of cooperation. We labeled as Type A those

firms more efficient in the sense that they have lower costs of production, of monitoring

and of organizing the cartel agreement. This turned possible for them to require a lower

ρ than Type B firms, once the latter was assumed to be less efficient. In sequence, we

introduced an enforcement mechanism by a punishment strategy through an Agent-Based

Simulation model in our two-population game.

The punisher acts like an altruistic cooperator in the sense that it is willing to

incur an extra cost to punish the defectors from the competitive environment. This has

enabled us to provide more adequately answers about the nature of the stability of the

cartel arrangements and how often punishment is capable of sustaining collusion. On this

matter, we observed that to sustain cooperation among firms, if we set ρA = 0.01 and

0.01 < ρB . 0.27, the frequency of punishment in the well-mixed two-population game

has to be permanently greater than the fraction of cooperators in the population of Type

A firms. Otherwise, the equilibrium of the game is formed by the population of Type

A firms cooperating and the population of Type B firms defecting from the agreement.
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This same result is observed for spatial competition, but punishment is only effective in

eliminating the defecting firms in the range that ρA = 0.01 and 0.01 < ρB . 0.015.

For future research on this topic, given the weakness of the stability of the cartel

arrangements, it would be interesting to propose a game-theoretic model to evaluate the

interaction between the antitrust authority and the cartelized firms. In this sense, a wide

and unprecedented discussion on efficient mechanisms to inhibit cartel agreements can be

established based on the bounded rationality assumption together with the agent-based

simulation models.
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3 ILLEGAL CARTEL

ABSTRACT

This paper offers a theoretical model for the analysis of illegal cartels. Given the nature

of the cartel, retaliation is also illegal. To assess the stability of collusion as a criminal

organization, we propose a one-shot game based on Bertrand competition with product

differentiation. We confirm our conjectures on both the cartel’s internal and external

stability through numerical solutions. Depending on market parameters, the cartel remains

stable with up to six homogeneous firms. By introducing cost asymmetry that number

is significantly higher, and the collusion proves to be increasing in the share of high-cost

firms and decreasing in the share of low-cost firms in the market.

keywords: Illegal cartels. deviation and retaliation. cartel stability.

JEL classification: C72 · D21 · D43 · K21 · L13
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3.1 INTRODUCTION

The Theory of Industrial Organization and the analysis of Law & Economics

emphasizes that the degree of market concentration, the number of firms operating in the

same industry, as well as the asymmetry concerning efficiency and productive capacity,

play an important role in the cartel’s power to manipulate market prices (HOLMSTROM;

TIROLE, 1989; LEVENSTEIN; SUSLOW, 2011). Although there is a growing interest

in this subject − mainly guided by antitrust authorities to ensure greater effectiveness

in detecting and punishing cartel members − the empirical evidence that supports this

theoretical argument is still limited, based primarily on legal cartels (GRIFFIN, 1989).

Cartels are considered to be legal if they operated before the enactment of antitrust

laws in the jurisdictions in which they functioned, or extra-legal if they were not known

to have been punished by an antitrust authority. Other legal cartels were organized and

registered under antitrust exemptions, such as export cartels or ocean shipping conferences

(CONNOR, 2007; COMMISSION et al., 2007). The largely known legal cartel is the one

formed by OPEC, which is organized by sovereign states. Under traditional legal views, it

cannot be held to antitrust enforcement in other jurisdictions under the doctrine of state

immunity under public international law (FARAH; CIMA, 2013).

However, the purpose of this paper is to study illegal cartels. Narcotics and

gambling are traditional examples. Empirical evidence suggests that cartels acting illegally

manage to attain the same or even higher levels of overcharges as legal cartels. This may

imply that illegal cartel agreements become more sophisticated and cartel participants

manage to enforce them very effectively taking both the economic and legal environment

into account. This argument has been reinforced by hardcore cartels1 (BOLOTOVA;

CONNOR; MILLER, 2008). As well, the illegal aspect of firms’ market behavior turns

the intersection between Law & Economics and Industrial Organization approaches even

more relevant.

Therewith, we aim at proposing a discussion on the theoretical motivations that

guide firms’ engagement in illegal activities. In this regard, we embrace the cost to

benefit analysis as in the Theory of Collusion (BECKER, 1968). Typically, the benefits

of competing firms to collude is related to the monopoly profits, which increases in the

elasticity of firms’ marginal cost curves and decreases in the elasticity of firms’ collective

demand curve. When a firm violates the collusion whether pricing below or producing

more than is agreed, this opportunistic behavior is harmful and offensive to the collusion.

In that sense, there are costs as well as different strategies for eliminating violations. The

first costs stem from the effort to discover and apprehend the defector. That done, there is

a cost to the collusion in punishing these defectors. This approach has proved to be quite
1 For details, see Cartels (2003), Hüschelrath and Weigand (2013), Clemens and Rau (2019).
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useful in understanding how agreements involving unlawful activities, such as mafia-type

organizations, whether as criminal enterprises, or as illicit networks, or a special form of

organized crime such as illegal cartels, establish the set of rules and punishment strategies

to ensure stability (BLANCKENBURG; GEIST, 2011; SERGI, 2019).

In microeconomic theory, the legal cartels’ stability is associated with market

characteristics that would or would not favor collusive behavior. Another relevant issue

in the analysis is to measure how profitable the violation would be for the violator

(TREMBLAY; SCHROEDER; TREMBLAY, 2018). In the context of repeated games,

based on the sub-perfect Nash equilibrium (SPNE) concept, the discount factor must be

sufficiently close to 1 for a grim trigger strategy2 to support cartel stability. In other words,

in terms of the expected payoff, future benefits are equivalent to the current benefits

(FRIEDMAN, 1971). Otherwise, any deviation from the cartel output restriction is met

with permanent reversion to one-shot-game non-cooperative equilibrium values.

Still, there is a wide discussion about the optimal number of firms participating

in a cartel. Many approaches consider the existence of a competitive fringe (Bertrand

or Cournot), based on simple demand and cost functions to derive the size of the stable

cartel (SHAFFER, 1995). In some collusive markets with competitive fringe, it is still

possible to observe the spillover effect from the cartel activity, i.e., firms capture the

highest influence from the cartel without actually participating in it. This situation could

change the cartels’ stability (KAMIEN; MULLER; ZANG, 1992). A cartel is stable if

firms inside the cartel do not find it desirable to exit and firms outside the cartel do

not find it desirable to enter (D’ASPREMONT et al., 1983). Since the 80s the intuition

behind coalition structures discussed in Game Theory has been considered in the oligopoly

context. Typically, these models are based on comparative-static analysis and show that

the way competition takes place determines whether collusion is more or less attractive

(DONSIMONI; ECONOMIDES; POLEMARCHAKIS, 1986; THORON, 1998). Under

this motivation, many studies aim to prove the existence and discuss the size of stable

cartels with a range of different demand and cost functions through both analytical and

numerical approaches (ZU; ZHANG; WANG, 2012; PAPAHRISTODOULOU, 2019).

Given the above, our paper is innovative in its theoretical approach in examining

the stability of an illegal cartel. We propose a one-shot game with retaliation. Besides, mo-

tivated by the punishment strategies applied by criminal organizations, the way retaliation

takes place is also illegal. The intuition of this approach is as follows. Since collusion is

typically prohibited by law, illegal methods of retaliation can be more harmful to defectors,

as they do not have legal remedies to fight back. To achieve that goal, we asses a regional

market with a Bertrand fringe in both symmetric and asymmetric oligopoly. Due to

the algebra complexity, we made use of the numerical analysis as a robustness check to
2 See Feuerstein (2005) for a survey.
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complement the discussion of our findings (KONISHI; LIN, 1999; OLIEMAN; HENDRIX,

2006).

In summary, the main results of this paper are as follows: i) For the case of

homogeneous firms, we show that the cartel’s stability is guaranteed for an industry

with a maximum of six high-efficiency firms3 and an extremely low degree of product

differentiation; ii) Within an industry with heterogeneous firms, cartel’s stability is found

to be increasing (decreasing) in the number of high (low)-cost firms in the regional industry

as well as to be decreasing in cost asymmetries; iii) Conditional on the type of firm that

intends to deviate from the cartel agreement, our findings suggest the existence of different

settings for the stable cartel, making it possible to identify the necessary conditions for

the collusion to hold.

The remainder of this paper is organized as follows. In Section 3.2 we review the

existing literature. Section 3.3 introduces the model and derive both the external and

internal stability of the illegal cartel in many different settlements. Section 3.4 concludes.

3.2 LITERATURE REVIEW

Since our approach is about illegal cartels, this paper is in line with the strand of

Law & Economics literature on organized crime inspired by Becker (1968). In his seminal

work, Becker uses economic analysis to model illegal behavior. More precisely, he thought

of crime in rational terms, arguing that potential criminals would trade off the gains from

crime against the expected costs. Since then, the theoretical literature has outspread

the economic view of deterrence in many different ways. Ehrlich (1973) discusses the

engagement in illegal activities as a time-allocation problem. There is also a strand of

literature developed from the increment of the Becker model. Kaplow (1990), Bebchuk

and Kaplow (1992), Levitt (1997), Garoupa (1999) uses limited information. Polinsky

and Rubinfeld (1991) includes repeat offending. There is also a debate about enforcement

errors and the corruption of law enforcers, as in Png (1986), Bowles and Garoupa (1997),

Polinsky and Shavell (2001), Silva, Kahn and Zhu (2007).

Even closer to our approach, Gambetta and Reuter (1995), Blanckenburg and

Geist (2011) discuss the interest as well as the criminal strategies of the mafia as cartel

enforcers. This led directly to a theory of deterrence intending to predict patterns of

criminal behavior. Following this framework, Khadjavi (2018) explains crime and assess

punishment4 in a controlled environment with complete information. Assuming that

risk-neutral individual engages in crime, the author shows that if the expected benefit is
3 Whose production cost k → 0.
4 For a survey on the empirical study of criminal punishment see Levitt and Miles (2007).
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less than the expected fine5, deterrence incentives work to reduce the stealing of criminals

and, consequently, decreases the stability of the unlawful coalition.

On the Theory of Industrial Organization6, we mention studies derived from the

formation of coalitions in oligopolies that are modeled as non-cooperative games in which

firms’ strategies are to cooperate or to cheat the cartel agreement. The seminal contribution

uses comparative-static analysis and is given by Salant, Switzer and Reynolds (1983), who

evaluated how an exogenous change in industry structure motivated by collusion affects

the Nash equilibria in a Cournot model. A well-known result about legal cartels’ stability

shows that cooperation is not feasible in the one-shot game due to the incentive of firms

to deviate unilaterally from the agreement. On the other hand, this result can be reversed

in the repeated game - in which one subgame perfect Nash equilibrium (SPNE) supports

cooperation Tirole (1988).

In a repeated-game model of collusion, the stability is inversely related to the

discount factor. Studying a dynamic noncooperative model of collusion with demand

uncertainty, Green and Porter (1984) concludes that collusion essentially ends after some

rounds of interaction. As imperfect information makes it impossible for firms to know that

other firms are cooperating, the punishment works as a permanent reversion mechanism

to competitive pricing. Taking this into account, Levenstein and Suslow (2011) evaluates

the determinants of cartel duration and analytically demonstrates how an unanticipated

increase in the market interest rate may destabilize a cartel. Barsky and Kilian (2004)

empirically discuss the impact of fluctuations in the interest rate on the stability of the

OPEC cartel7.

Among the various developments on cartel stability, the theoretical contribution

is given by d’Aspremont et al. (1983) on external and internal stability stands out. On

this subject, Donsimoni, Economides and Polemarchakis (1986) shows that for specifics

values of the cost parameter, two stable cartels exist. Since then, there have been many

refinements to this approach. Here, we emphasize the concept of "coalition-proof", which

takes into account not only the diversion of a single but of several firms - which may come

to be grouped into sub-coalitions. This analysis proves to be somewhat more rigorous,

given the need to calculate the stability conditions of each of the possible deviation paths.

Deneckere and Davidson (1985) used a similar approach in a Bertrand model to assess
5 The expected fine is given by (probability of detection) × (punishment cost). See Silva, Kahn

and Zhu (2007) for details.
6 As well, the game-theoretical concepts presented here are of fundamental importance in a

wide variety of literature, such as international environmental agreements Ecchia and Mariotti
(1998), Diamantoudi and Sartzetakis (2006), Silva, Zhu et al. (2015), Ansink, Weikard and
Withagen (2019), Finus and McGinty (2019), local public goods provision and political
interaction Cross (1967), Greenberg and Weber (1993), Montero (2006), Sun, Trockel and
Yang (2008) and transnational terrorism Oliveira, Faria and Silva (2018).

7 Jr (1989) provides a detailed discussion of collusion with asymmetric discount factors.
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the endogenous formation of coalition structures. Results show that the incentives to

cooperate are more prone when strategic actions are complements rather than substitutes.

Moreover, Bernheim, Peleg and Whinston (1987) outlined a Bertrand game model to

demonstrate how the coalition-proof is useful in situations where firms can engage in

pre-communication but cannot establish biding contracts8. Inspired by these authors,

Thoron (1998) define the concept of the Coalition-Proof Nash Equilibrium (CPNE)9 to

prove that the set of stable cartels is unique. Contrasting the results on the uniqueness

of the set that characterizes the stable cartel, we can mention Zu, Zhang and Wang

(2012). Prokop (1999) represents the process of collusion through extensive form games in

which each firm decides to cooperate with the cartel or not. Applying subgame perfect

equilibrium it yields the same results regarding stable cartel sizes found by d’Aspremont

et al. (1983), Diamantoudi (2005).

Following Selten (1973), all these studies assume that the cartel behaves as a leader

to the competitive fringe. Another common feature is the existence of some enforcement

mechanism for collusion such that once a firm decides to join the cartel, there is no possible

cheating on the agreement. Withal, binding collusion is known to be an illegal agreement.

This fact led to the emergence of a strand in the literature related to tacit collusions

(FRIEDMAN, 1971; MARTIN, 1993; PROKOP, 1999). Focusing on firms’ incentives,

this approach aims to analyze the symmetric (SPNE) that maximizes industry profits.

Escrihuela-Villar (2009) demonstrates how the sequence of actions between the cartel and

the fringe affects the tacit collusion in a Cournot competition10.

Finally, our theoretical approach stands out from the existing literature in the

following aspects: (i) The cartel is illegal; (ii) The one-shot game has two stages, within

the first one firms are deciding whether to join the cartel or not. In the second period,

faced with the possibility of a firm betraying the agreement, there is retaliation by the

criminal organization;(iii) Due to costs asymmetries, firms in the cartel adopt different

prices - depending on their type (high or low-cost). The main motivation for this price

behavior is twofold: (a) it makes inspection more difficult for the regulatory agency -

which reduces the likelihood of the cartel being discovered and, consequently, decreases

the expected value of the fine; (b) it is a mechanism to reward the most efficient firms

that adhere to the agreement.
8 Routledge (2013) shows that in such situations any deviation must be self-enforcing.
9 Thoron (1998) defines a CPNE as a strategy profile that is robust to self-enforcing deviations.
10 See Bloch (1996), Currarini and Marini (2015) for a survey of the literature on stable

horizontal mergers in Cournot games. Lardon (2019) revisit both the Bertrand and Cournot
oligopolies and discusses the coalitional stability of the game in the presence of a cartel within
a competitive fringe. Dugar and Mitra (2016) evaluated the cartel stability in a Bertrand
competition with asymmetric marginal costs. Papahristodoulou (2019) proposed a model
in which the cartel is the Stackelberg leader and the followers are competing in a Cournot
Fringe. Results suggest that the number of firms in the cartel is lower than the one found by
d’Aspremont et al. (1983).
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3.3 MODEL

Consider an economy with r regions. In each region i, i = 1...r, there is an

oligopolistic industry consisting of ni ≥ 3 firms. Each regional industry sells differentiated

products. There are two periods. In each period, if firm j in region i, chooses a price pj,i

for its product, the quantity demanded of this firm’s product is:

qj,i(pj,i, p̄i) = bi − pj,i − δi(pj,i − p̄i), (3.1)

where bi represents the highest price that a consumer from a given region i is willing to

pay, i.e., the market reservation price (MRP). Parameter δi ∈ (0, 1] captures the degree of

product differentiation in each region. In other words, when it is equal to zero (one), the

goods are independent (homogeneous). We denote by p̄i = n−1 ∑n
k=1 pk,i the industry’s

average price. For simplicity, we first assume that firms are symmetric, i.e., the constant

per unit cost of supplying any product is k.

3.3.1 The antitrust authority

An antitrust agency is in charge of preventing price fixing (cartelization) among

firms in the entire economy. This regulator, however, has a fixed budget T , set by the

economy’s government. The larger the budget, the greater the number of inspections.

Let Di = {1, ..., di} and Hi = {di + 1, ..., hi} denote the sets of dishonest (law-breaking)

and honest (law-abiding) firms in region i, where di ≥ 0 and hi ≥ 0 are the numbers

of dishonest and honest firm in the region, respectively. Note that di + hi = ni. As we

consider deviations during the action game from firms that agree to join the cartel during

pregame communications, it is important that we define the set of active cartel members.

This is set M = {1, ..., mi}, where mi ≤ di.

Let σi denote the probability of conviction faced by each dishonest firm in region i.

We consider that the number of firms in each region may vary and is given by the vector

R(G) = {n1(g1), ..., ni(gi)}. As we consider that regions are asymmetric in relation to the

concentration of firms, the vector G captures the geographical aspects as well as the local

concentration of firms in the same region. Thus, the probability of conviction is a function

of R(G) and T : σi = σi(R, T ). We assume that σi increases with T and decreases with R.

Hence, as the regulator has a fixed budget, the greater the concentration of firms

of the same industry in a given geographic region: (a) the greater the willingness to price

collusion; (b) the lower the probability of a dishonest firm being caught; (c) the greater

the regulator’s efforts to prevent the cartel. If the dishonest firms in region i are convicted,

each firm must pay a fine F = f to the government.

Now, we offer an intuition about the role of the regulatory agency. First, assume

that the antitrust authority can only rely on inspections to detect collusion. Regarding
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evidence of collusion, we assume that collusion cannot occur without communication

among the firms and that communication generates hard evidence, such as memos and

reports of meetings (BELLEFLAMME; PEITZ, 2015). The profits firms can obtain in that

case are as follows. In the polar case where no firm engage in communications in region i,

each firm earn the oligopoly profit πO
i . If firms communicate, they earn the collusive profit

discounted by the expected value of the fine, given by πM
i − σif . If one firm deviates, it

increases its profit to πD
i − σif . Typically, the regulator consider that collusion can be

sustained if:
πM

i − σif

1 − λ
≥ πD

i − σif +
λπO

i

1 − λ
,

which yields to
λ

1 − λ
(πM

i − πO
i − σif) ≥ πD

i − πM
i ,

where λ ∈ (0, 1] is the discounted factor. In this way, the antitrust authority may bring

instability to cartel agreements as they increase the expected value of the loss from

punishment (left-hand side), by increasing σif . This would cause the collusion’s profit

to become less than the immediate gain from the deviation (right-hand side). Thus, the

above condition does not hold. In the following subsection, we assess the collusion from

the firms’ perspective.

3.3.2 The setting with 3 homogeneous firms

We start the analysis by examining a setting in which ni = 3. As firms are

symmetric, their costs are given by k ∈ [0, 1] with bi > max{0, k}. We first consider

the polar case in which all firms are honest. This provides us with a useful benchmark

for future comparisons. If the three firms are honest, in each period, firm j chooses

non-negative pj,i to maximize the oligopoly profit as follows:

πO
j,i =

1

3
(pj,i − k)[3bi + δiP−j,i − pj,i(3 + 2δi)], (3.2)

where P−j,i = Pi − pj,i and Pi =
∑3

k=1 pk,i, taking the other firm’s price choices as given.

The first order conditions (F.O.C.) is detailed in A and yield the following payoff in each

period:

πO
j,i = πO

i =
(bi − k)2(3 + 2δi)

4(3 + δi)2
j = 1, 2, 3. (3.3)

Consider now the other polar case, where all firms are dishonest and belong to

the cartel. Hence, M = D = {1, 2, 3}. In each period, the cartel chooses non-negative

{p1,i, p2,i, p3,i} to maximize the following expected payoff, taking σi and f as given:

3
∑

F =1

EπM
F,i =

3
∑

F =1

{

1

3
(pF,i − k)[3bi + δiP−F,i − pF,i(3 + 2δi)] − σif

}

. (3.4)
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The F.O.C is derived in A and imply that each firm earn the following expected payoff in

each period:

Eπj,i = EπM
i =

bi(bi − 2k)

4
− σif. (3.5)

3.3.3 Deviation and retaliation

We now consider two situations where the cartel contains two firms, say, firms 1

and 2. We first examine a situation where all firms agree to join the cartel prior to the

beginning of the game, but firm 3 deviates in the first period. The cartel observes the

deviation and retaliates in the second period. In the retaliation period, the cartel moves

first. Retaliation takes the form of stealing some (or all) of the defector’s product. Later,

we examine a situation where firm 3 decides not to join the cartel prior to the beginning

of the game. In this case, the cartel retaliates in each period.

Suppose that during pre-game communications, all firms agree to join the cartel.

During the action game, however, firm 3 deviates. Hence, D = {1, 2, 3} and M = {1, 2}.

Consider the first period. Firms 1 and 2 set the cartel price derived in A. By it turn, firm

3 takes this price into account and then chooses non-negative p3,i to maximize:

π3,i = (p3,i − k)q3,i =
1

3
(p3,i − k)[3bi + (bi + 2k)δi − p3,i(3 + 2δi)] (3.6)

Hence, firm 3’s expected payoff in the first period is

π3,i =
[(3 + δi)bi − 3k]2

12(3 + 2δi)
− σif. (3.7)

Each cartel member earns the following expected payoff in the firs period:

EπM
i =

[9 + δi(6 − δi)]b
2
i − 3(6 + 5δi)bik

12(3 + 2δi)
− σif (3.8)

In the second period, the cartel moves first and retaliates. The cartel steals a

quantity s from the defector and sets its prices knowing how the defector will react. We

assume that the cartel faces a cost c per unit of quantity stolen from the defector, with

c ∈ (0, bi). The defector observes {p1,i, p2,i, s} and chooses non-negative p3,i to maximize

π3,i =
1

3
(p3,i − k)[3bi + δiP−3,i − p3,i(3 + 2δi) − s]. (3.9)

The cartel anticipates how the defectors will react. It chooses non-negative {p1,i, p2,i, s} to

maximize

1

3







(p1,i − k)[3bi + δiP−1,i +
s

2
− p1,i(3 + 2δi)] + (p2,i − k)[3bi + δiP−2,i+

s

2
− p2,i(3 + 2δi)]







− cs

s.t. s ≤ 3bi + δiP−3,i − (3 + 2δi)k

(3.10)
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The constraint follows from firm 3’s quantities derived in equation (3.9) and the fact that

the quantity sold by firm 3 cannot be negative. Since the objective function (3.10) is linear

in s, we obtain

s = 3bi + δiP−3,i − (3 + 2δi)k if p1,i + p2,i ≥ 6c, (3.11)

s = 0 if p1,i + p2,i < 6c. (3.12)

Assume initially that the inequality in (3.11) holds. Then, the cartel chooses non-negative

{p1,i, p2,i} to maximize

1

2

{

(p1,i − k)[3bi + δip2,i − p1,i(2 + δi)] + (p2,i − k)[3bi + δip1, i + −p2,i(2 + δi)]

}

− c[3bi + δi(p1,i + p2,i) − (3 + 2δi)k].

(3.13)

From equation (3.13) we have that

s =
3(2 + δi)

2
bi − δ2

i c − (3 + δi)k, (3.14)

c ≤ 3

2(6 + δi)
bi +

k

(6 + δi)
. (3.15)

Inequality (3.15) is the necessary condition for the cartel to steal firm 3’s product. Fur-

thermore, each cartel member’s expected payoff is given by

EπM
i =

9b2
i − 4δ2

i c2

8
+

k − (3bi − 2δi)

2
k − σif. (3.16)

The expected payoff earned by firm 3 is

Eπ3,i = −σif. (3.17)

By definition, when the inequality in (3.15) holds, the cartel is stable11. However,

we offer a brief comparative statics showing how the cost of stealing c affects each cartel

member’s expected payoff as given in (3.16). It is straightforward to see that the lower

c the greater EπM
i . Figure 6a shows the stability when condition 3.15 holds and k → 0.

Figure 6b illustrates how the stability holds when k → 1. As s is linear in the objective

function (3.10), this relationship between the cost of stealing and the cartel stability does

not change even if there are N homogeneous firms in the market - as we evaluate in

Subsection 3.3.4.
11 As the payoff in (3.7) is always greater than (3.16), the external stability always holds.

In the same way, the payoff in (3.16) is always greater than the payoff in (3.17) - which
guarantees the internal stability.
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M = {1, 2, 3} is stable if condition (3.15) holds. Figure 17 illustrates through a numerical

example under which conditions the internal stability of the cartel is sustained. Note that

as bi increases, the larger the difference between φb2
i and θk. We can also observe that

when we set a value for bi, the value of k that determines the internal stability of the cartel

is increasing in δi. Thus, in Figure 17a, we observe that for δi = 0, the cartel is internally

stable if k ∈ [0, 0.5]. In its turn, for δi = 1, k ∈ [0, 0.429]. Figures 17b and 7c illustrates

how an increase in the value of bi contributes to the internal stability relative to k.

3.3.4 The setting with N homogeneous firms

With the contributions of the previous cases in mind, now consider the case with

N homogeneous firms, that is, ni = N . Payoffs derivations are available in A. As firms

are symmetric, their costs are given by k ∈ [0, 1] with bi > max{0, k}. For the case where

all firms are dishonest and belong to the cartel, we have M = D = {n1, ..., N}. In each

period, the cartel chooses non negative {pi} to maximize the expected payoff, taking σi

and f as given:
N

∑

F =1

EπM
F,i =

N
∑

F =1

{

1

N
(pF,i − k)[Nbi + δiP−F,i − pF,i(N + (N − 1)δi)] − σif

}

. (3.25)

Each firm earn the following expected payoff in each period:

Eπj,i = EπM
i =

bi(bi − 2k)

4
− σif. (3.26)

Note that the profit of the cartel does not depend on N . Consider now a situation where

the cartel contains N − 1 firms. Suppose that during the pre-game communications, all N

firms agree to join the cartel. During the action game, however, firm n−j,i deviates. Hence,

D = {n1,i, ...Ni,j} and M = {n1,i...N − 1j,i}. Firms in the cartel set:

p1,i = pN−1,i = pM
i =

bi

2
+ k (3.27)

By it turn, firm n−j,i takes (3.27) into account and then chooses non-negative p−j,i to

maximize:

π−j,i = (p−j,i − k)q−j,i =
1

N
(p−j,i − k)

{

Nbi + (N − 1)pM
i δi − p−j,i[N + (N − 1)δi]

}

. (3.28)

Hence, firm n−j,i’s expected payoff in the first period is

π−j,i =
1

16

{

[N(2 + δi) − δi]bi − 2Nk
}2

3[N(1 + δi) − δi]
− σif. (3.29)

Each N − 1 cartel members earns the following expected payoff in the first period:

πM
i =

1

8

bi

[

2 (1 + δi) (bi − 2 k) N2 − δi (biδi + 2 bi − 2 k) N + biδi
2
]

N [N (1 + δi) − δi]
− σif. (3.30)

Now, as before, we employ the concept of external and internal stability to characterize a

stable cartel.
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As before, let firm n−j,i be the defector. Thus, M = {1, .., N − 1} during the action game.

Assume that the following condition holds:

s = N [bi − (1 + δi)k] + P−j,iδi + δik if P−j,i ≥ 2Nc. (3.31)

In this case, firm n−j,i’s total payoff is as follows when it defects

υ−j,i =
1

16

{

[N(2 + δi) − δi]bi − 2Nk
}2

3[N(1 + δi) − δi]
− 2σif. (3.32)

If firm n−j,i does not defect and thus M = {1, .., N} during the action game, its total

payoff is

υj,i =
bi(bi − 2k)

2
− 2σif. (3.33)

Comparing (3.32) and (3.33) we obtain

υj,i > υ−j,i → ΠM
i =

bi(bi − 2k)

2
− 1

16

{

[2N(bi − k) + (N − 1)δibi

}2

3[N(1 + δi) − δi]
> 0. (3.34)

Note that the degree of complexity of internal stability (ΠM
i ) analysis in (3.34)

increases with N . Figure 9 presents numerical solutions in which the cartel remains

internally stable. In Figures 9a, we assume N = 4 and bi = 1.21. If δi → 0 the cartel is

stable for k ≤ 0.44. If δi → 1, the stable cartel with 4 firms occurs when k ≤ 0.32. To

preserve stable collusion with N = 4, when δi → 1 firms need to be more efficient (lower

k). Otherwise, the internal stability does not hold.

In Figure 9b we bring the intuition of how an increase in the demand parameter

(bi = 2.03) influences the stability of the cartel with N = 4. When δi → 0, the cartel is

stable for k ≤ 0.74. However, when δi → 1, k ≤ 0.54 is required for internal stability.

In short, as a positive increment in bi increases both the cartel payoff and the deviation

payoff, stability is guaranteed by a larger range of k values when δi → 0. This is because

only the deviation payoff in equation (3.34) is impacted by δi. Conversely, when both k

and δi tend to one, internal stability is not satisfied. Figure 9c illustrates the conditions

under which the cartel remains stable for N = 5 and bi = 1.21. When δi → 0 the cartel

is internally stable for k ≤ 0.348. Considering δi → 1, the stable cartel occurs for all

k ≤ 0.149.

In Figure 9d we offer an intuition regarding how an increase in the demand

parameter (bi = 2.03) influences the stability of the cartel with N = 5. Note that when

δi → 0, the cartel is stable with 5 firms if k ≤ 0.58. However, when δi → 1, k ≤ 0.25 is

required for internal stability. In summary, as a positive increment in bi increases both

the cartel payoff and the deviation payoff, stability is guaranteed by a larger range of k

values when δi → 0. As stated before, only the deviation payoff is impacted by δi.
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3.3.7 The setting with heterogeneous firms

Now, we consider an oligopolistic industry in a region i consisting of nj,i ≥ 3

for j = 1, 2 heterogeneous firms. Firms can be low-cost (n1) and high-cost (n2), and

n1,i + n2,i = Ni. In addition, we assume that there are two periods. In each period, if

firm j on region i chooses a price pj,i for its product, the quantity demanded of this firm’s

product is given by equation (3.1). Now, the amount qj,i is supplied by firm j, that can

be whether a low-cost or a high-cost firm. Both type of firms face linear cost functions,

with kj,i denoting their respective marginal costs, where bi > max{0, kj,i}. Considering

two type of firms, we allow for cost asymmetry (k1,i 6= k2,i). As in the previous model, the

antitrust agency is in charge of preventing price fixing (cartelization) among firms in the

entire economy. For convenience, we start analyzing the setting in which n1 + n2 = 3. We

assume that there are two high-cost firms (n2,i = 2) and only one low-cost firm (n1,i = 1).

We normalize the costs as follows: k1,i = 0 and k2,i = k, with k > 0. In this sense, we

assume p1,i < p2,i = p3,i. The polar case in which the three firms are honest is available in

A and A. In the following subsection we evaluate the case where heterogeneous firms are

dishonest.

3.3.8 Cartel prices for the heterogeneous firms

Consider now the other polar case, where all firms are dishonest and belong to the

cartel. All the derivations are available in A Hence, M = D = {1, 2, 3}. In each period,

the cartel chooses non negative price {p1,i, p2,i, p3,i} to maximize equation (3.7), which

yields the following payoffs for the low-cost and high-costs firms, respectively:

EπM
1,i =

1

4
b2

i +
1

6
δibik − σif, (3.35)

EπM
2,i =

1

12
(bi − k)[3(bi − k) − δik)] − σif. (3.36)

3.3.9 Deviation and retaliation in the cartel with heterogeneous firms

We now consider two situations where the cartel contains two firms, say, one

low-cost firm and one high-cost firm. We first examine a situation where all firms agree

to join the cartel prior to the beginning of the game, but one of the high-cost firms, say,

firm 3 deviates in the first period. The cartel observes the deviation and retaliates in the

second period. In the retaliation period, the cartel moves first. Retaliation takes the form

of stealing some (or all) of the defector’s product. Later, we examine a situation where

firm 3 decides not to join the cartel prior to the beginning of the game. In this case, the

cartel retaliates in each period. Detailed derivations are in A.

Suppose that during pre-game communications, all firms agree to join the cartel.

During the action game, however, firm 3 deviates. Hence, D = {1, 2, 3} and M = {1, 2}.
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Consider the first period. Firms 1 and 2 set their cartel prices. Then, firm 3 chooses

non-negative p3,i to maximize

π3,i =
1

3
(p3,i − k)[3bi + δiP−3,i − p3,i(3 + 2δi)]. (3.37)

Thus, firm 3’s expected payoff in the first period is

Eπ3,i =
[2(3 + δi)bi − 3(2 + δi)k]2

48(3 + 2δi)
− σif. (3.38)

Each cartel member earns the following expected payoff in the first period:

EπM
1,i =

[2(9 + 6δi − δ2
i )bi + 3δi(4 + 3δi)k]bi

24(3 + 2δi)
− σif,

EπM
2,i =

(bi − k)[2(9 + 6δi − δ2
i )bi − 3(6 + 6δi + δ2

i )k]

24(3 + 2δi)
− σif.

(3.39)

As in the previous (symmetric) case, the cartel moves first in the second period and

retaliates. The cartel steals a quantity s from the defector and sets its price knowing

how the defector will react. Again, We assume that the cartel faces a cost c ∈ (0, bi) per

unit of quantity stolen from the defector. The defector observes {p1,i, p2,i, s} and chooses

non-negative p3,i to maximize

π3,i =
1

3
(p3,i − k)[3bi + δiP−3,i − p3,i(3 + 2δi) − s]. (3.40)

The cartel anticipates how the defectors will react and choose non-negative {p1,i, p2,i, s} to

maximize

1

3







p1,i[3bi + δiP−1,i +
s

2
− p1,i(3 + 2δi)] + (p2,i − k)[3bi + δiP−2,i+

s

2
− p2,i(3 + 2δi)]







− cs

s.t. s ≤ 3bi + δiP−3,i − (3 + 2δi)k

(3.41)

The constraint follows from equation (3.40) and the fact that the quantity sold by firm 3

cannot be negative. Since the objective function (3.41) is linear in s, we obtain

s = 3bi + δiP−3,i − (3 + 2δi)k if p1,i + p2,i ≥ 6c, (3.42)

s = 0 if p1,i + p2,i < 6c. (3.43)

Assume initially that the inequality in (3.42) holds. Thus, p3,i = q3,i = 0 and the

cartel chooses non-negative {p1,i, p2,i} to maximize

1

2

{

p1,i[3bi + δip2,i − p1,i(2 + δi)] + (p2,i − k)[3bi + δip1, i − p2,i(2 + δi)]

}

− c[3bi + δi(p1,i + p2,i) − (3 + 2δi)k].

(3.44)
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statics holds even if there are N heterogeneous firms in the market - as we evaluate in

Subsection 3.3.10.

Suppose now that the inequality in (3.43) holds. Then, the cartel chooses non-

negative {p1,i, p2,i} to maximize

1

3







2
∑

F =1

(pF,i − kF,i)

[

3bi + δi(p3,i + p−F,i) − pF,i(3 + 2δi)

]







, (3.49)

where k1,i = 0, k2,i = k, p−F,i = pM
2,i if F = 1 and p−F,i = pM

1,i if F = 2. The expected

payoff earned by each cartel member is

EπM
1,i = 1

48

{

2[3(6+5δi)+δ2

i ]bi+δi(18+13δi)k

}{

2[3(6+5δi)+δ2

i ]bi+δi(6+5δi)k

}

4(3+2δi)2(3+δi)
− σif,

(3.50)

EπM
2,i = 1

48

{

2[3(6+5δi)+δ2

i ]bi−[6(6+7δi)+11δ2

i ]k

}{

2[3(6+5δi)+δ2

i ]bi−3[2(6+5δi)+δ2

i ]k

}

4(3+2δi)2(3+δi)
− σif,

(3.51)

Firm 3’s expected payoff is

Eπ3,i =
1

48

{

2[δ3
i + 9(6 + 8δi + 3δ2

i )]bi − [7δ3
i + 18(6 + 9δi + 4δ2

i )]k
}2

4(3 + 2δi)2(3 + δi)
− σif. (3.52)

The last case to consider is the one in which during the pre-game communications

firms 1 and 2 decide to form the cartel, while firm 3 decides to stay out. Hence, D = M =

{1, 2} and H = {3}. In this situation, the cartel moves first and retaliates against firm 3

in both periods. The game played in each period is identical to the game that the cartel

and firm 3 play in the retaliation period in the case examined just before this one. Hence,

if condition (3.42) holds, equation (3.47) is the expected payoff per period for each cartel

member. The payoff per period for firm 3 is π3,i = 0.

if condition (3.42) does not hold, equations (3.50) and (3.51) are the expected

payoff per period for the low and the high-cost firms in the cartel, respectively. The payoff

per period for firm 3 is

π3,i =
1

48

{

2[δ3
i + 9(6 + 8δi + 3δ2

i )]bi − [7δ3
i + 18(6 + 9δi + 4δ2

i )]k
}2

4(3 + 2δi)2(3 + δi)
. (3.53)

Employing the concept of internal and external stability to characterize a stable

cartel, we now show the conditions under which M = {1, 2, 3} is stable. By definition, this

set is externally stable. Hence, we only need to establish the conditions under which it

is also internally stable. Assume throughout that the payoff in period 2 is valued at the

same rate as the payoff in period 1; that is, the inter-temporal discount rate is zero.
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If M = {1, 2, 3} is formed during pregame communications, a unilateral deviation

during the action game takes us to the setting in which one firm deviates in the first period

and the other two firms, which remain in the cartel, retaliate in the second period. As

before, let firm 3 be the defector. Thus, M = {1, 2} during the action game. Assume that

condition (3.42) holds. Firm 3’s total payoff is as follows when it defects

V3,i =
[2(3 + δi)bi − 3(2 + δi)k]2

48(3 + 2δi)
− 2σif, (3.54)

If firm 3 does not defect and thus M = {1, 2, 3} during the action game, it earns

VM
i =

1

6
(bi − k)[3(bi − k) − δik)] − 2σif. (3.55)

Comparing (3.54) and (3.55), we obtain

VM
i − V3,i > 0 → 1

12
(b − k)[(9 + 6δi − δ2

i )bi − (9 + 9δi + δ2
i )k] > 0. (3.56)

We can simplify the necessary condition in equation (3.56) as follows: Φbi > Θk, where

Φ(δi) =
9 + δi(6 − δi)

12
, Θ(δi) =

9 + δi(9 + 2δi)

12
.

Result 3 below provides a summary of the findings on cartel stability considering

heterogeneous firms.

Result 3. Assuming that δi = 0, it is easy to see that VM
i − V3,i is positive because by

definition bi > k. Hence, firm 3 has no incentive to deviate from the cartel during the

action game. It follows that M = {1, 2, 3} is stable if condition (3.46) holds. Figure 18

illustrates through a numerical example under which conditions the internal stability of

the cartel is sustained in the heterogeneous case. Note that as bi increases, the larger

the difference between Φbi and Θk. Figure 18a is a useful benchmark as it illustrates the

condition where bi is slightly above the upper bound of k. When δi → 0, the cartel remains

stable even with k ≈ 1. From Figure 18b we observe that the cartel is internally stable if

k ∈ [0, 0.85). Figure 11c illustrates how an increase in the value of bi contributes to the

internal stability of the cartel relative to k when δi = 1. Note that there is no incentive

for firm 3 to deviate from the collusive agreement if bi ≈ 1.43 and the cartel is internally

stable for all k ∈ [0, 1]. Thus, comparing Figures 18 with Figure 17 we observe that the

cartel in the heterogeneous case requires a lower value bi to guarantee the internal stability.

3.3.10 The setting with N heterogeneous firms

Now consider the case with Ni heterogeneous firms in region i, that is, Nl,i+Nh,i+ =

Ni. Where Nl,i =
∑L

l=1 nl,i and Nh,i =
∑H

h=1 nh,i represents the number of low-cost and
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By it turn, the high-cost deviant firm nD
h,i takes (3.59) into account and then chooses

non-negative pD
h,i to maximize:

πD
h,i =

1

N
(pD

h,i − k)
{

Nbi + P M
−hδi − pD

h,i[N + (N − 1)δi]
}

. (3.60)

Where P M
−h = pM

l,i Nl,i + pM
h,i(Nh,i − 1). Hence, firm nD

h,i’s expected payoff in the first period

is

πD
h,i =

1

16

{

[(Nh,i − Nl,i − 1)bi + (2N + Nh,i − 3)k]δi − 2N(bi − k)
}2

N [N + (N − 1)δi]
− σif. (3.61)

We now must employ the concept of external and internal stability to characterize

a stable cartel. We start with the external stability analysis.

3.3.12 External stability for high-cost firms

In this case, the cartel is externally stable if it is not profitable for a high-cost

fringe firm to join the collusion. Thus, from equations (3.58) and (3.61) we derive the

following condition to guarantee the external stability (ΠD
h,i) for a high-cost firm:

ΠD
h,i ≥ 0, where ΠD

h,i = πD
h,i − πM

h,i. (3.62)

It is straightforward to see that when δi → 0, both equations (3.58) and (3.61)

becomes equal to (bi−k)2

4
− σif , and the cartel is weakly external stable, i.e., ΠD

h,i = 0. On

the other hand, when δi → 1 and assuming that Nh, i = Nl, i = N/2, the payoff in (3.58)

is equal to EπM
h,i = 1

8
(bi − k)(2bi − 3k) − σif . The expression (3.61) becomes equal to

πD
h,i = [(5N/2−3)k−bi−2N(bi−k)]2

16N(2N−1)
− σif. Canceling σif in both expressions, if bi ≥ 3k/2, then

EπM
h,i ≥ 0. By setting bi = 3k/2 we have:

πD
h,i =

(−Nbi − 3bi)
2

16N(2N − 1)
> 0, EπM

h,i = 0 and ΠD
h,i > 0.

Besides these polar cases, Figure 12 shows numerical solutions to another situations

in which the condition (3.62) holds. We consider a market made up of 1/2 high-cost firms

and 1/2 low-cost firms (Nh,i = Nl,i = 50). From Figures 12a to 12c we consider bi = 1.21

and derive the following patterns in relation to firm behavior. When δi → 0, external

stability is decreasing in both the number of low-cost firms and parameter k. On the other

hand, although we have omitted the illustrations, external stability is increasing in the

number of high-cost firms, but remains decreasing in the level of asymmetry k. From

Figure 12b, as δi → 1, we see that ΠD
h,i is not satisfied for all values of k ∈ (0.1).

Note that it is also increasing in Nh,i, but decreasing in k. In summary, when

k → 1, external stability is guaranteed for δi ≤ 0.281. When δi → 1, external stability
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In this case, firm nD
h,i’s total payoff is as follows when it defects

VD
h,i =

1

16

{

[(Nh,i − Nl,i − 1)bi + (2N + Nh,i − 3)k]δi − 2N(bi − k)
}2

N [N + (N − 1)δi]
− 2σif. (3.64)

If firm n−j,i does not defect and thus M = {1, .., N} during the action game, its total

payoff is

VM
h,i =

1

2

(bi − k)
{

[bi − (1 + δi)k]N + Nh,iδik
}

N
− 2σif. (3.65)

Comparing (3.64) and (3.65) the cartel is internally stable if VM
h,i ≥ VD

h,i:

1

2

(bi − k)
{

[bi − (1 + δi)k]N + Nh,iδik
}

N
≥

1

16

{

[(Nh,i − Nl,i − 1)bi + (2N + Nh,i − 3)k]δi − 2N(bi − k)
}2

N [N + (N − 1)δi]
.

(3.66)

Suppose initially that δi → 0. The internal stability of the cartel derived in (3.66)

can be reduced to:

bi ≥ k.

As we define bi > k, it is straightforward to show that the cartel is internally stable. To

assess internal stability when δi → 1, assume the following assumptions:

(i) bi ≥ 2k;

(ii) Nh,i ≥ Nl,i.

Considering the case where the equality holds in both (i) and (ii), we have

ΠM
h,i ≥ 0 → VM

h,i ≥ VD
h,i → 8Nh,i(4Nh,i − 1) ≥ (Nh,i − 5)2.

Which always hold when Nh,i ≥ 1. Note also that under these conditions internal stability

is increasing in the number of high-cost firms. We now evaluate through the illustration

in Figure 13 the internal stability of the cartel by assuming k < bi < 2k. For simplicity,

we assume that bi = 1.21 and Nl,i = Nh,i.

In Figure 13a, we see that for a low level of asymmetry between firms, internal

stability is decreasing in the number of low-cost firms that join the collusion. However, as

k → 1, the cartel’s internal stability is increasing in Nl,i. In turn, in Figure 13b, we see

that the internal stability is increasing as k → 1. As this degree of asymmetry increases,

and preserving Nl,i = Nh,i, the cartel remains stable for k ≤ 0.741. Figure 13c shows the

relationship between internal stability with both parameters k and δi. Note that when

K = 0, ΠM
h,i is increasing with δi. As k increases, ΠM

h,i decreases in both cost asymmetry

and product differentiation. In summary, we have:

(iii) If k → 1, ΠM
h,i ≥ 0 for δi ≤ 0.33;

(iv) If δi → 1, ΠM
h,i ≥ 0 for k ≤ 0.741.
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Result 4. Considering bi ≥ 2 and Nh,i ≥ Nl,i the cartel is always stable. By setting

bi < 2 and Nh,i = 1
2
N , if δi → 1 the stability holds for k ≤ 0.715. As k → 1, the cartel is

stable for δi ≤ 0.281. The collusion remains stable for a market made up with Nh,i = 2
3
N

high-cost firms.

3.3.14 Low-cost firm deviates

In this case, the low-cost deviant firm nD
l,i takes (3.57) into account and then chooses

non-negative pD
l,i to maximize:

πD
l,i =

1

N
pD

l,i

{

Nbi + P M
−l δi − pD

l,i[N + (N − 1)δi]
}

. (3.67)

Where P M
−l = pM

l,i (Nl,i − 1) + pM
h,iNh,i. Hence, firm nD

l,i’s expected payoff in the first period

is

πD
l,i =

1

16

{

[2N + (Nh,i − Nl,i + 1)δi]bi + Nh,iδik
}2

N [N + (N − 1)δi]
− σif. (3.68)

3.3.15 External stability for low-cost firms

In this case, the cartel is externally stable if it is not profitable for a low-cost fringe

firm to join the collusion. Thus, from equations (3.58) and (3.68) we derive the following

condition to guarantee the external stability (ΠD
l,i) for a low-cost firm:

ΠD
l,i ≥ 0, where ΠD

l,i = πD
l,i − πM

l,i . (3.69)

It is straightforward to see that when δi → 0, both equations (3.58) and (3.68)

becomes equal to (bi−k)2

4
− σif , and the cartel is weakly external stable, i.e., ΠD

h,i = 0. On

the other hand, when δi → 1 the analysis needs to be more careful. Therefore, in Figure

15 we show a numerical solution to evaluate the external stability.

Unlike the case where the high-cost firm deviates, external stability for the low-cost

firm occurs for the interval δi ∈ (0, 1) only when Nl,i = 1
10

N . For simplicity, we consider

in Figure 15 a market in which there are only 1 low-cost and 9 high-cost firms. Assuming

bi = 1.21 and δi → 1, we can see in Figures 15a and 15b that the external stability is

decreasing both in the cost asymmetry and in Nl,i, respectively. Figure 15c illustrates the

relationship between k and δi. Note that when k → 0, ΠD
l,i increases in δi. We emphasize

that, considering a market with 8 high-cost and 2 low-cost firms, ΠD
l,i does not hold for

any δi > 0 and bi ≥ 1.21.

3.3.16 Internal stability for low-cost firms

We now must employ the concepts of internal stability to characterize a stable

cartel. If M = {1, .., Ni} is formed during pre-game communications, a unilateral deviation
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stability increases with Nh,i and decreases with k. Moreover, we show that given the

low-cost firm’s incentive to deviate from the agreement, the cartel remains stable whenever

Nl,i = 1
10

N . Finally, when we assume an oligopoly with 3 firms, the size of the stable

cartel supports full cooperation whenever the parameter bi is large enough - which makes

the parameter k irrelevant for the stability.

Our approach also contributes to the challenges and pitfalls faced by antitrust au-

thorities. To achieve a balance between law and economics, antitrust authorities commonly

rely on fine setting methodologies, which albeit different, often involve lengthy assessment

procedures and fail to incorporate the tricks and threats of criminal organizations into their

theoretical motivations. Once we assume illegal cartel within illegal retaliation strategies,

our game-theoretical framework offer a useful review of the key aspects of cartel policies,

raising issues of methodological importance in setting optimal cartel fines, and proposing

solutions using the economic reasoning of crime. In doing so, we show how economics, law,

and antitrust practices find some signs of reconciliation to avoid cartel formation.

Concluding, there are some ways in which this study can be expanded. One way

could be to consider a dynamic game with sequentially-rational firms. Another approach

could assess how the information asymmetry regarding firms’ efficiency could interfere in

the optimal fine charged by the regulator. Finally, the aspect of the cartel as a criminal

organization could be assessed taking into account a leniency program.
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4 MACHINE LEARNING WITH STATISTICAL SCREENS FOR DE-

TECTING CARTELS: AN EVALUATION OF THE BRAZILIAN GASO-

LINE RETAIL MARKET

ABSTRACT

In this article, we combine machine learning techniques with screens based on the sta-

tistical moments of gasoline price distribution for cartel detection and prediction in the

Brazilian retail market. In addition to the traditional variance screen, we evaluate how the

standard deviation, coefficient of variation, skewness, and kurtosis can be useful features

in identifying anti-competitive behavior. To complement our analysis, we evaluate the

so-called confusion matrix and discuss trade-offs related to false-positive and false-negative

predictions. Our results show that in some cases, false-negative predictions critically

increase when the main objective is to minimize false-positive predictions. As well, we

offer a discussion regarding the pros and cons of our approach for antitrust authorities

aiming at detecting and avoiding gasoline cartels.

keywords: Cartel Screens. Price dynamics. Gasoline retail market. Machine Learning

JEL classification: C21 · C45 · C52 · K40 · L40 · L41
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4.1 INTRODUCTION

The discussion about cartel formation is relevant in several markets. Given the

persistence of anti-competitive behavior in the industry, the best way to investigate and

identify them are relevant issues for the antitrust authorities to enforce competition laws.

In an environment where the number of complaints and suspicions of cartels is increasing

and, given the restriction of resources available to initiate an investigation, the statistical

methods of screening are a useful tool. There is a wide variety of cartel screens that

offer to the antitrust agencies practical and efficient detection methods (HARRINGTON,

2008; BOLOTOVA; CONNOR; MILLER, 2008; PERDIGUERO, 2010; ECKERT, 2013;

DOANE et al., 2015). One of the key variables used to chart the behavior of gasoline

cartels is the retail sales price. It is relatively easy to measure and capable of transmitting

information about how the market works. There are several studies following this approach

(CONNOR, 2005; ABRANTES-METZ et al., 2006; CHOUINARD; PERLOFF, 2007;

NOEL, 2007; ABRANTES-METZ, 2012). The main framework focuses on econometric

screens. However, there is no universal consensus on this issue. As well, few studies have

evaluated the performance of statistical screens (HUBER; IMHOF, 2019).

Intending to contribute to this discussion, our paper combines machine learning

techniques with screens based on statistical moments to identify and predict cartel behavior

in the gasoline retail market. Taking the Brazilian market as a case study, we evaluate the

out of the sample performance of the proposed methods in a total of 1.920 observations

constructed from a weekly database of gasoline sales price in the following cities where

collusion was detected: Belo Horizonte1, Brasília, Caxias do Sul and São Luís. Essentially,

we intend to use the history of cases already judged and condemned by the Brazilian

competition authority (CADE)2 for cartel practice (PINHA; BRAGA et al., 2019). The

data comprise detected collusion and another of no apparent collusion, i.e., collusion may

have occured but it was not detected. To distinguish them properly, we defined a binary

cartel classification as a dependent variable. The classification criterion for the cartel

period is based on the judgments made by CADE, in which the case records contain the

exact period in which the explicit evidence that characterized the collusive agreement

in each city was collected. Similarly, the criterion adopted for the classification of the

non-cartel period was established following the time when the regulator made public the

administrative proceeding against gas stations, as well as the operations to disrupt the

gasoline cartels.
1 We also consider the municipalities of Betim and Contagem, which make up the metropolitan

region of Belo Horizonte and were also involved in the conviction of the cartel.
2 Administrative Council for Economic Defense. Many legal decisions made by CADE were

based on shreds of evidence such as wiretaps, hot documents, text messages, e-mails, etc.
Access the following links for details: (i) <https://tinyurl.com/yxz8tgnr> (available in
English); (ii) <https://tinyurl.com/y6eoamkp> (available only in Portuguese).
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More precisely, we extend the approach proposed by Huber and Imhof (2018),

Huber and Imhof (2019) to analyze cartel behavior in the gasoline retail market. In that

sense, we propose different machine learning algorithms combined with each of the four

statistical moments of the gasoline sales price distribution as a screen. As each screen

constructed from the distribution of gasoline prices in each city captures a different aspect

of price dynamics, the combination of several different screens opens an avenue for a better

understanding of the differences regarding price agreements in the gasoline market. Both

Ridge and Lasso regressions rely on logistic models Tibshirani (1996). Random Forest

consists of a large number of individual decision trees that operate as an ensemble (HO,

1995; BREIMAN, 2001). Neural Networks are a set of algorithms designed to recognize

patterns, and are useful tools for clustering and classifying data (HJORT, 1996; RIPLEY,

2007). Regarding the technical aspects, to implement the algorithms we use both cross-

validation and random splitting of the database between the training and test sample.

Typically, this is the standard strategy for determining the optimal penalty level both for

the Lasso and the Ridge regressors. To parsimoniously assess the trade-off between bias

and variance, we repeat these steps 100 times to estimate the accuracy of the classifiers.

We define the accuracy as the gap between actual cartels and correctly estimated cartels.

In this way, our dependent variable takes a value of 1 if the algorithm classifies the cartel

probability greater than or equal to 0.5 and 0 otherwise.

By evaluating the so-called confusion matrix we distinguish the performance of our

predictors between false-positive and false-negative predictions (AKOUEMO; POVINELLI,

2016). More specifically, a false-positive classification means that the model tags a price

dynamics as a cartel even though no cartel happens. In other words, for the antitrust

authority as a regulator and as a policymaker, this error characterizes the worst-case

scenario, as it can lead to undue convictions and fines, in addition to wasting resources

on unsubstantiated investigations. On the other hand, the false-negative outcome is

undesirable as well - once it shows that the algorithm was unable to tag price dynamics as

a cartel, even if the cartel happens. Thus, a model that produces many false-negatives

can be harmful to the competitive environment. Aware of this, a desirable classification

method for the antitrust authority is one capable of categorically balancing the trade-off

between false-positive and false-negative outcomes.

Our results provide significant evidence that machine learning techniques are

powerful tools for cartel detection in the gasoline retail market. Furthermore, they

demonstrate that in certain cases, both skewness and kurtosis are relevant variables to

minimize the classification error. On average, the algorithms correctly predict 87% of all

evaluated cartels out of the sample. Complementarily, on average, the misclassification rate

of the models is 13%. By evaluating the performance of each algorithm, Random Forest,

on average, presents the best indicators, incurring a 4% of misclassification rate. Besides,

we must emphasize that given the low relative rate of a false-positive and false-negative,
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the methods proposed in this article proved to be quite effective - even when tightening

the rule for classifying price dynamics as a cartel. In other words, the performance of the

algorithms remained reasonable even when establishing a threshold higher than the default

value of 0.5 to classify our variable of interest as a cartel. This analysis reveals to be

interesting for antitrust authorities to establish an optimal trade-off between false-positives

and false-negatives by tuning the probability threshold.

Regarding the gasoline market, our recommendations in terms of competition policy

are twofold. First, we suggest that the regulator may compute the statistical moments

considering the distribution of prices charged in the retail gasoline market. Typically, this

information is easily accessible. On the application of this screen in real cases, following

the recommendation of Huber and Imhof (2019), the classification rule should be adjusted

to a threshold between 0.5 and 0.7. Second, with the history of cases already judged and

condemned by the antitrust authority, it is possible to associate the price dynamics in a

certain period with the cartel behavior. In this way, we provide a sample training to our

algorithm to make out of sample predictions. Finally, the regulator can use this approach

as a useful tool in the investigation of suspicious markets and firms to assess whether the

market practices fit into cartel behavior.

To develop this discussion, the remainder of this paper is organized as follows.

Section 4.2 reviews the literature on implementing screens to detect cartels in the gasoline

retail market. Section 4.3 describes our data that includes four gasoline cartel cases in

the Brazilian fuel retail market and discusses the screens used as predictors for detecting

collusive market behavior. Section 4.4 presents the machine learning techniques and

Section 4.5 discusses the empirical results. Section 4.6 discusses several policy implications

regarding the machine learning algorithms combined with statistical moments screen.

Section 4.7 concludes.

4.2 LITERATURE REVIEW

There are two categories of cartel screens: Structural screens identify markets

that are likely to be subject to cartelization due to industry characteristics. Behavioral

screens detect cartels by detecting patterns in market outcomes that are treated as signs

of collusion (HARRINGTON, 2008; ABRANTES-METZ, 2012; CREDE, 2019). The

literature on behavioral cartel screens has grown significantly in the last decade. Most

notable are the contributions of Abrantes-Metz et al. (2006), Bolotova, Connor and Miller

(2008) who propose cartel screens that are based on the analysis of price variance in

an industry. Most behavioral screens so far have been specifically tailored to detect

bid-rigging conspiracies and they are now regularly used in auctions (PORTER, 2005).

The development of behavioral screens for cartels outside auctions began only recently.

Abrantes-Metz (2012) and Blair and Sokol (2015) provide an overview of the different
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applications of screens for detecting cartels, and Crede (2016) describes the intuition

behind several behavioral cartel screens. In particular, one class of behavioral screens that

is directly linked with our research has received much attention recently: variance-based

price screens that rely on the idea that the reduced price variance of firms across time or

within geographical clusters is an indicator of collusion.

As reported in Harrington (2005), Zitzewitz (2012), economists widely apply this

dynamic pricing methodology in an attempt to generate patterns of collusive behavior and,

from then on, to formulate and validate a specific hypothesis, to distinguish a competitive

pattern from the collusive one. The seminal contribution in this field of research came

from Maskin and Tirole (1988). The authors provide a game-theoretic foundation for the

classic kinked demand curve equilibrium and Edgeworth cycle. The analysis is based on a

model in which firms take turns choosing prices. By using the Markov perfect equilibrium

concept, they conclude that a firm’s move in any period depends only on the other firm’s

current price. Using a Markov-switching regression model to estimate both prevalence and

structural characteristics of the pricing patterns in retail gasoline markets, Noel (2007)

analyzes dynamic pricing in 19 Canadian cities over 574 weeks. The main findings show

that sticky-pricing (cycles) is more prevalent when there are few (many) small firms.

Wang (2009) studies oligopoly firms’ dynamic pricing strategies in the Australian gasoline

market before and after the introduction of a unique law that constrains firms to set prices

simultaneously and only once per day. The observed pricing behavior, both before and

after law implementation, is well captured by the Edgeworth price cycle equilibrium in the

Maskin and Tirole dynamic oligopoly model. Thus, the results highlight the importance

of price commitment in tacit collusion.

As shown in Lewis (2012), the role of price leadership in coordinating price increases

in cycling gasoline retail markets in the U.S3. The author concludes that the first price

increases tend to stem from retail chains that operate a large number of stations. Following

this approach, Clark and Houde (2013) used court documents from a gasoline cartel in

Canada to characterize the strategies played by heterogeneous firms to collude and highlight

the role of transfers based on adjustment delays during price changes. The cartel leaders

systematically allowed the most efficient firms to move last during price-increase episodes

to compensate. Atkinson, Eckert and West (2014) did work on another issue related to

the retail gasoline pricing in Canada where an event (a refinery fire) seemed to trigger

a dramatic change in gasoline price volatility. Using daily retail price data, the authors

demonstrated that volatility changes exhibited correspond to an increased frequency of the

price cycle, and replacement of the cycle with fixed retail margins. Furthermore, Clark and

Houde (2014) uses weekly station-level price data from before and after the cartel’s collapse
3 Lewis and Noel (2011) used a latent regime Markov switching regression framework to

show that the constant price movement inherent within the Edgeworth cycle eliminates price
frictions and allows firms to pass on cost fluctuations more easily.
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to compare pricing behavior in stations affected and unaffected by the investigation. The

results indicate that collusion is associated with asymmetric price adjustments and high

margins.

In contrast, following the arguments presented in Vasconcelos and Vasconcelos

(2008), we use price series rather than margin4 because there is an ambiguity5 in the

reasons behind the behavior that sustains the cartels. For example, if the profit margin

decreases, how can you be sure that this is not a period of punishment after some firm

has cheated a cartel agreement? So, the decrease in the profit margin should not be seen

merely as an indicator of competition, since firms may be punishing those who deviated.

To sum up, on one hand, the cartel can lead to an increase in the profit margin. On the

other hand, it may have a punishment phase with lower profits, but this will still be an

anti-competitive behavior. We can say that this aspect is a limitation in the methodology

of the antitrust authority if the data is restricted in a short period.

Other behavioral issues of economic agents may affect the price variance in the

market under analysis. Firms in collusion can practice parallel prices, that is, firms

adjust their prices identically and simultaneously, for some common factor6 of knowledge

between them. Such conduct would lead to a similar trajectory of prices among firms,

resulting in a low variance7. Related to the structural changes in the price series over time,

Athey, Bagwell and Sanchirico (2004), Jr and Chen (2006) argue that when firms have

a low discount rate on future earnings, collusion equilibrium is given with equal prices.

Besides that, when firms exercise some market power, they can also act asymmetrically

in the relation between product pricing and cost structure. In this way, the greater the

cartel’s interference in price formation, the lower the price-to-cost ratio. There is an

extensive literature8 dealing with the problem of asymmetry in collusive markets, with a

reasonable consensus on the non-linearity of the relationship between price variations and

cost adjustments in collusive markets. Another remarkable feature of collusive markets,

according to Perdiguero (2010), refers to coefficients of price variation, which may be

relatively different in noncompetitive markets.
4 Boroumand et al. (2016) propose a regime-switching model based on mean-reverting and

local volatility processes to comprise the market structure of the French fuel retail market. By
analyzing the volatility of prices and margins, the authors provided a better understanding of
the behavior of oligopolies. In this same market, Porcher and Porcher (2014) found evidence
of tacit collusion from the margin analysis, but they emphasize that the collusive behavior in
the gasoline market is still an open question.

5 Theoretically, the stability of the cartel depends on the ability of firms to detect and punish
the defectors. To implement the punishment mechanism, cartelized firms can reduce price
and, consequently, profit margin. However, this behavior of reduction of the retail price
is compatible with that expected in a market environment in which there is an effective
competition - without the collusion of the firms.

6 Such as identical mark-ups, price levels.
7 We highlight MacLeod (1985), Schmalensee (1987), Rotemberg and Saloner (1990).
8 Please see Clark and Houde (2014), Silva et al. (2014), Meyer and Cramon-Taubadel (2004).
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However, the vast majority of studies cited above use econometric techniques rather

than machine learning algorithms and to the best of our knowledge, there are very few

papers systematically investigating the performance of the screens based on statistical

and computational methods, especially in the gasoline market. In this sense, our research

dialogues with the incipient literature on implementing screens to detect bid-rigging cartels

(HUBER; IMHOF, 2019). Finally, our framework is also related to studies on screens in

markets not characterized by auctions, such as Abrantes-Metz et al. (2006), Jr and Chen

(2006), Bolotova, Connor and Miller (2008), Perdiguero (2010), Abrantes-Metz (2012),

Atkinson, Eckert and West (2014), Silva et al. (2014).

4.3 GASOLINE CARTELS IN BRAZIL

4.3.1 ANP sample description

We begin this section with a brief description of the Brazilian gasoline market

and the database provided by ANP9. The available database has continuous weekly price

data (Gasoline Station Level) since 1997. With this set of information, it is possible to

have a preliminary investigation signaling whether there is any cartel behavior or not in a

certain city. The ANP sampling procedures are described as follows. The price collection

service, as stated in Pedra et al. (2010), Freitas and Neto (2011), is developed through

the structuring and execution of the following steps: (1st) a weekly collection of sales

prices to the final consumer and the corresponding acquisition prices by the economic

agents selected to integrate the sample defined by the ANP; (2nd) quality control of the

information; (3rd) data entry into the system; (4th) creation of a database containing the

information specified through contracts; and (5th) forwarding the results to the ANP.

Field planning within each municipality is based on a geographical identification

of the resale points within the sample. The weekly collection routes are carried out

based on the registration data of resellers in the sample design. The main objective is

to optimize the geographical representation. Considering the number of gas stations, a

random sample selection is made and collected weekly. The selection procedures must

observe the geographic coverage of the municipality as well as guarantee the randomness.

Given this sampling plan, it is hard to follow the price dynamics for the same gas station.

On the other hand, we have enough information to estimate the city-level statistical

moment of the gasoline price distribution.

4.3.2 The cartel cases

Table 1 summarizes the number of cartel and non-cartel observations. The first

case we evaluate was set up in the metropolitan region of Belo Horizonte, including the
9 National Agency of Petroleum, Natural Gas and Bio-fuels: <http://www.anp.gov.br.>.
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neighboring municipalities of Betim and Contagem. As described in the administrative

procedure10 started in 2014, anonymous complaints date back to the early 2000s, but the

hard evidence was collected by the antitrust authority between March 2007 and April

2008. Therefore, we consider the period between January of 2004 and April 2008 as cartel

period. To assess the performance of the regulatory agency, we assume the period between

January 2014 and April 2019 as the non-cartel period.

Since November 2009, the Brazilian competition authority investigates, monitors

and collects information related to the fuel market in Brasilia. During that time, a

considerable amount of economic evidence of cartel formation involving distributors and

resellers was gathered11. In November 2015, CADE decided to enforce a preventive measure

in the administrative investigation regarding the gasoline cartel in Brasília. Thus, we

consider November 2009 until November 2015 as a cartel period. The non-cartel period

runs from December 2015 to April 2019.

In Caxias do Sul12, the antitrust agency confirmed the evidence that fuel distributors

had organized a cartel to fix and standardize prices practiced in fuel resale. The cartel

aimed to increase resale margins and eliminate competition, as well as imposing excessive

prices. As a result, the municipality’s resale margins were much higher than those in other

locations in the state. CADE concluded that there was a violation of the economic order

and that the gas stations and their managers adopted a uniform and concerted commercial

conduct. The cartel was endowed with a high degree of organization, which is why it

lasted, at least, between 2004 and 2007, causing immense losses to final consumers. The

conviction of the cartel was concluded in 2012. Thus, we consider the period between

January 2004 and July 2007 as the cartel period and the period between March 2013 and

April 2019 as the non-cartel period.

In São Luís13, intercepted conversations revealed that the owners of gas stations

combined prices and induced other stations that sold the cheaper product to increase

their values to strengthen the cartel. Such irregularities would have occurred between

January 2010 and October 2014. The investigation also has economic evidence resulting

from analyses carried out by the ANP on the São Luís fuel resale market. Frequently,

these analyses pointed to the existence of elements that would indicate the possibility of
10 All information collected is available at <http://en.cade.gov.br/>, in the session Procedure

Search. the record of the administrative process related to the Belo Horizonte case is as
follows: 08012.007515 / 2000-31.

11 Administrative Process No. 0800.024581/1994-77 and No. 08012.008859 / 2009-86, available
at <http://en.cade.gov.br/> and at <https://tinyurl.com/us8yffd>.

12 Administrative Process No. 08012.010215 / 2007-96, available at <http://en.cade.gov.br/>.
13 Administrative Process 08700.002821 / 2014-09 was opened in October 2014, after receipt

of transcripts of telephone interceptions duly authorized by the Judiciary of Maranhão,
as well as other evidence forwarded to CADE by the Public Ministry of that state that
conducted a criminal investigation concerning the same offense. The document is available at
<http://en.cade.gov.br/>.
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We also consider the variance σc,i of the weekly gasoline sales price within a given

city as a screen for detecting cartels. There are theoretical justifications for a variance

screen for collusion if it is costly to coordinate price changes or if the cartel must solve an

agency problem. There is also some empirical evidence of a decrease in the variance of

price during collusion (ABRANTES-METZ et al., 2006).

s2
c,i =

∑n
i=1(Pc,i − m̄c,i)

2

n − 1
. (4.2)

Skewness

Price manipulation may affect the symmetry of the distribution of the weekly

gasoline sales price. Thus, for a sample of size n, the the methods of moments estimator

of the skewness yields:

skewc,i =
m3c,i

s3
c,i

=
1
n

∑n
i=1(Pc,i − m̄c,i)

3

[

1
n−1

∑n
i=1(Pc,i − m̄c,i)2

]3/2
, (4.3)

where m3c,i is the sample third central moment of the weekly retail gasoline price within a

given city c.

Kurtosis

Finally, we also investigate whether the cartel affects the "tailedness" of the weekly

retail gasoline price distribution through coordination. Thus, we have the following

expression for the kurtosis:

kurtc,i =
m4c,i

s2
c,i

− 3 =
1
n

∑n
i=1(Pc,i − m̄c,i)

4

[

1
n

∑n
i=1(Pc,i − m̄c,i)2

]2 − 3, (4.4)

where m4c,i is the fourth sample moment of the sample variance.

4.3.4 Descriptive statistics

Comparing both periods, most screens show fluctuation in the coefficient of variation

and standard deviation of prices. The same is observed about variance, skewness, and

kurtosis − although in different proportions, in some cities the difference between statistical

moments is quite noticeable. Typically, during cartel periods, it is common to see less

variance in price distribution. Besides, we assess the expected pattern concerning the

other statistical moments on a case-by-case basis, as follows.

Belo Horizonte
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we randomize the splitting-testing procedure. In sequence, we divide the database into

two subsamples. The training sample estimates the model parameters and contains 75%

of the total of observations. The test sample is used for calculating the out of sample

predictions and consists of 25% of the observations. After splitting, the presence of a

cartel is estimated in the training sample as a function of a range of predictors, namely

the original statistical screens.

To assess the performance of out of sample prediction, we consider the following

measures: first, the so-called null accuracy, which measures the accuracy that could

be achieved by always predicting the most frequent outcome in the database. Second,

the so-called score, which measures the proportion of correct classification. Third, miss-

classification errors. Fourth, the precision, which measures how often the prediction of

cartels is correct. Fifth, the area under the curve (AUC), which measures the relationship

between the share of true positive predictions against the share of false-positive predictions

at various threshold settings. An area of 1 represents a perfect prediction; an area of 0.5

represents a worthless classifier. To compute the above-mentioned measures, we create

a variable that takes the value 1 for predicted cartel probabilities greater than or equal

to 0.5 and takes the value 0 otherwise. Then, we compare it to the actual incidence of

collusion in the test sample. We repeat random sample splitting into 75% training and

25% test data and all subsequent steps previously mentioned 100 times and take averages

of our performance measures over the 100 repetitions.

4.4.1 Random Forest

Random forests are an ensemble learning method largely used in classification tasks

that operate by constructing a multitude of decision trees at training time and outputting

the class that is the mode of the classes of the individual trees. Moreover, random decision

forests correct for decision trees’ habit of overfitting (BREIMAN, 2017). Decision trees

are a popular method for various machine learning tasks. Random forests are a way of

averaging multiple deep decision trees, trained on different parts of the same training set,

intending to reduce the variance. This comes at the expense of a small increase in the

bias and some loss of interpretability, but generally greatly boosts the performance in the

final model.

In our study, we define a vector of features, X, which is composed by the statistical

screens − as shown in Table 6 − that will help us to predict the behavior of our target

variable, y, that reveals whether a retail gasoline market is under collusion or not. By doing

so, the training algorithm for random forests applies the general technique of bootstrap

aggregating14, or bagging, to tree learners. Given a training set X = x1, ..., xn with
14 Bootstrap aggregating (also called bagging) is a machine learning ensemble meta-algorithm

designed to improve the stability and accuracy of machine learning algorithms used in
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responses Y = y1, ..., yn, bagging repeatedly (B times) selects a random sample with

replacement of the training set and fits trees to the following samples:

For b = 1, ..., B:

1. Sample, with replacement, n training examples from X, Y , call these Xb, Yb;

2. Train a classification tree fb on Xb, Yb.

After training, predictions for unseen samples x′ can be made by averaging the predictions

from all the individual regression trees on x′:

f̂ =
1

B

B
∑

b=1

fb(x
′), (4.5)

or by taking the majority vote in the case of classification trees. This bootstrapping

procedure leads to better model performance because it decreases the variance of the

model, without increasing the bias. This means that while the cartel predictions of a single

tree are highly sensitive to noise in its training set, the average of many trees is not, as long

as the trees are not correlated. Simply training many trees to correctly classify collusive

behavior on a single training set would give strongly correlated trees. Additionally, an

estimate of the uncertainty of the prediction can be made as to the standard deviation of

the predictions from all the individual regression trees on x′:

σ =

√

√

√

√

∑B
b=1(fb(x′) − f̂)2

B − 1
(4.6)

The number of trees, B, is a free parameter. Typically, a few hundred to several

thousand trees are used, depending on the size and nature of the training set. An optimal

number of trees B can be found using cross-validation, or by observing the out-of-bag

error: the mean prediction error on each training sample xi, using only the trees that

did not have xi in their bootstrap sample. The training and test error tends to level off

after some number of trees have been fit. The above procedure describes the original

bagging algorithm for trees. Random forests differ in only one way from this general

scheme. It uses a modified tree learning algorithm that selects, at each candidate split in

the learning process, a random subset of the features. This process is sometimes called

"feature bagging". The reason for doing this is the correlation of the trees in an ordinary

bootstrap sample. Thus, if one or a few features are very strong predictors for the cartel,

these features will be selected in many of the B trees, causing them to become correlated.

An analysis of how bagging and random subspace projection contribute to accuracy gains

under different conditions is given by Ho (1995). Typically, for a classification problem

with w features,
√

w features are used in each split. In practice, the best values for these

parameters will depend on the problem, and they should be treated as tuning parameters

(HASTIE; TIBSHIRANI; FRIEDMAN, 2009). Among the available features, the random

statistical classification. See Breiman (1996) for details.



82

forest algorithm selects the standard deviation, variance, and coefficient of variation as

predictors of cartel behavior in the cities of Belo Horizonte, Brasília and Caxias do Sul.

Only in São Luís, the selected features are the standard deviation and the coefficient of

variation.

4.4.2 Lasso regression

Lasso estimation was originally formulated for the least-squares models. The

so-called lasso regularization corresponds to a penalized logit regression. The penalty

parameter improves the prediction accuracy and interpretability of regression models by

altering the model fitting process to select only a subset of the provided features for use in

the final model rather than using all of them. Besides, it restricts the sum of absolute

coefficients on the regressors. Depending on the value of the penalty term, the estimator

sets the coefficients of less predictive variables to zero. By doing so, we can select the

most relevant features among a possibly large set of predictors. The estimation of the

lasso logit coefficients is given by the following optimization problem:

max
β0,β







n
∑

i=1



yi



β0 +
w

∑

k=1

βjxik



 − log
(

1 + eβ0+
∑w

k=1
βjxik

)



 − λ
w

∑

k=1

|βj|






, (4.7)

where β0, β corresponds to the intercept and slope coefficients on the predictors,

respectively. x is the vector of features, i indexes an observation in our database and n

is the number of observations. k indexes a predictor and w is the number of features.

The parameter λ > 0 is the penalty term. By cross-validation and randomly splitting

the training sample into subsamples, we choose the λ that minimizes the average over

the miss-classification error estimates. Most of the subsamples are used to estimate the

lasso coefficients under different possible values for λ. One of the subsamples represents

the validation database, which we use for predicting cartels based on the different sets of

coefficients related to the various penalties and for computing the miss-classification error.

After that, we estimate the coefficients of the lasso logit regression by using the training

sample. Finally, we predict the cartel probability in the test sample.

4.4.3 Ridge regression

Ridge is a variant of linear regression. It is particularly useful to mitigate the

problem of multicollinearity. In general, the method provides improved efficiency in

parameter estimation problems in exchange for a tolerable amount of bias. By the ordinary

least squares (OLS) we seek to minimize the sum of squared residuals in equation (4.8).

Thus, in order to derive a particular solution, we include a regularization term λ
∑L

k=1 β2
k

as follows:

β̂ridge = min
β0,β

n
∑

i=1

(yi −
L

∑

k=1

xikβk)2 + λ
L

∑

k=1

β2
k . (4.8)
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In other words, Ridge regression adds a squared magnitude on the coefficient β as a penalty

term to the loss function. Hence, if λ = 0, then we have the OLS estimator. On the other

hand, if λ → ∞, then it will lead to underfitting. In summary, increasing λ decreases

the variance and increases the bias of the model. In our study, we use cross-validation to

select the value of λ within each evaluated city that minimizes the validation error.

4.4.4 Neural network

Typically, a neural network is composed of an nl series of layers known as neurons.

The layer l of the neural network has Ml neurons in parallel. Each neuron in layer l applies

a nonlinear transformation on its Ml−1 inputs. We can formalize the model as follows:

y
(l)
k = h(l)





Ml−1
∑

i=1

ω
(l)
ik y

(l−1)
i + ω

(l)
0k



, k = 1, ..., nl, (4.9)

where a
(l)
k =

∑Ml−1

i=1 ω
(l)
ik y

(l−1)
i is the activation of the neuron k and the term ω

(l)
0k measures

the bias associated to an entry y
(l−1)
0 = 1. The term h(l) is the activation function of the

neurons in layer l. By definition, we have that y0
i = xi where i = 1, ...M0 represents the

inputs of the neural network. Regarding the target variable, we have that ynl
i = y0

i , in

which i = 1, ...Mnl represents the output of the neural network. Thus, the neural network

has Mnl = M0 outputs. In our study, the inputs of the neural network are the statistical

moments of the retail gasoline price. The output is our so-called target variable, i.e., the

cartel predictions.

4.5 Empirical results

We start our empirical analysis by presenting the results through the confusion

matrix for each machine learning techniques15. In predictive analytics, a confusion matrix

is a table with two rows and two columns that reports the number of false-positives,

false-negatives, true positives, and true negatives. In statistical hypothesis testing, a

false-positive (negative) corresponds to the Type I (II) error. Thus, each row of the matrix

represents the instances in a predicted class (cartel and non-cartel periods) while each

column represents the instances in an actual class. This allows a more detailed analysis

than mere proportion of correct classifications (score). A score is not a sufficient metric

for the real performance of a classifier. As it does not tell us the underlying distribution of

response values, it will yield misleading results if the data set is unbalanced (FAWCETT,

2006; SAMMUT; WEBB, 2011; POWERS, 2011). In other words, it does not inform

about the types of errors the classifier is making. For example, if there were 95 cartel

observations and only 5 non-cartel observations in the data, a particular classifier might
15 We repeat the classification procedure 100 times and the values are based on the average of

each of the metrics computed from the confusion matrix.
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53/(53 + 2) = 96.3%. Lasso and Ridge show reasonable precision rates, but relatively

smaller than the others.

As expected, through Figures 17a and 17b, the correct classification rate in non-

cartel periods increases in the probability threshold for the decision rule (false-positive

results decrease). In contrast, the correct classification rate in cartel periods deteriorates

much faster in the threshold (false-negative results increase). In other words, the antitrust

agency would be able to minimize the false-positive rates (1− specificity) by increasing

the decision rule threshold to a value closer to 0.7.

In this scenario, the performance of the Random Forest and Ridge Regression

predictors allows for minimal risk of false-positives outcomes. As well, for the Ridge

algorithm, we must observe that the 0.7 classification rule, leads to a false-negative rate

(1− sensitivity) closer to 1. In contrast, the Neural Network and the Random Forest

classifiers show approximately 15% of false-negative outcomes. In summary, the gain

of reducing the risk of false-positives, therefore, induces a disproportionate increase in

false-negatives.

Moreover, any further tightening of the decision rule would lead to an even more

severe increase of false-negatives. At a probability threshold of 0.8, Random Forest shows

the best performance. It, therefore, seems that for the gasoline cartel in Belo Horizonte,

the best-suited probability threshold lies between values of 0.5 and 0.7. One advantage of

combining screening methods and machine learning consists of quantifying the trade-off

regarding false-positives and false-negatives so that the regulators are capable to determine

the decision rule that optimally matches their needs.

We conclude the performance of our binary classifiers by assessing the area under

the curve (AUC) metrics. It provides useful information regarding how well the classifiers

are separating the cartel periods from the non-cartel periods. In general, the AUC rep-

resents the probability that a classifier will rank a randomly chosen positive observation

higher than a randomly chosen negative observation. Thus, the closer the AUC is to 1, the

better the classifier. As Table 11 reveals, the Random Forest predictor has the greater AUC.

Brasília

Differently from the previous case, Table 8 reveals that the Lasso Regression shows

the best score index (44 + 73)/122 = 95.9%. Besides, it presents a classification error

equals to (3 + 2)/122 = 4.1%. The Random Forest algorithm also shows a reasonable

performance. In terms of sensitivity and specificity, when considering a classification

threshold equals to 0.5, the Lasso Regression classifier shows the best prediction outcomes.

The true positive and true negative rates are given by 73/(2 + 73) = 97.3% and





88

In this case, the performance of the Random Forest minimizes the false-positive

rate. Ridge Regression predictors allow for minimal risk of false-positives outcomes. This

same condition is true for Lasso Regression when the threshold is greater than 0.8. Yet,

we must observe that a classification rule greater than 0.75, leads to a false-negative

rate (1− sensitivity) closer to 10% for the Random Forest. The Lasso predictors show

approximately 15% of false-negative outcomes. As before, the benefits of reducing the

risk of false-positives is unreasonable for the increase in false-negatives. Therefore, at a

probability threshold of 0.5, Lasso Regression shows the best performance.

When we increase the decision rule by considering a threshold greater than 0.75,

Random Forest proves to be the best algorithm for classifying the gasoline cartel in Brasília.

Judging by the AUC criterion, both predictors have a satisfactory classification rate, but

the Ridge predictor shows the best performance in this regard (AUC = 88.3%). On the

other hand, taking into account all the evaluation metrics, from Table 11, we can conclude

that LASSO regression, on average, performs subtly better than Random Forest.

Caxias do Sul

The confusion matrix in Table 9 shows that the Random Forest provides the

best score index (75 + 40)/121 = 95%. The classification error is given by equals to

(2 + 4)/121 = 5%. Considering a classification threshold equal or greater than 0.5, the

Random Forest shows the best prediction outcomes. For a probability decision rule equals

0.5, the true positive and true negative rates are given by 40/(4 + 40) = 90.9% and

75/(75 + 2) = 97.4%. The precision index of the Ridge Regression model is the largest

4/(0 + 4) = 100%.

Figure 19 illustrates how sensitivity and specificity react to an increase in the

probability threshold. By comparing the outcomes represented in Figures 19a and 19b, we

see that the false-negative rate (1− sensitivity) is closer to 100% for the Ridge algorithm.

The Random Forrest predictors show approximately 15% of false-negative outcomes for a

threshold probability equal or lower than 0.65.

When we narrow the decision rule, especially assuming values greater than 0.75 we

affect both the sensitivity and the specificity of the classification algorithms. Note that

for the antitrust authority, it is not interesting to adopt the Ridge model to identify the

cartel in Caxias do Sul. Note that for the antitrust authority, it is not interesting to adopt

the Ridge model to identify the cartel in Caxias do Sul. In other words, a high specificity

rate is not a sufficient condition to minimize classification errors.
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Concerning our case study, we recommend the use of our screens by adopting

some practices, as follows. First, in most of the cases, the coefficient of variation and the

standard deviation reveals to be the most powerful features. In this way, they help us to

infer about the negative relationship between the variance of the retail price of gasoline

and the cartel probability. Therefore, low price variance suggests a higher probability of

a cartel (ABRANTES-METZ et al., 2006). On the other hand, in some contexts, both

skewness (asymmetry) and kurtosis reveal to be relevant in the correct prediction of cartel

probability. Thus, we can see the relevance of all statistical moments.

Ultimately, we have a range of predictors that can act in a complementary and

substitute manner with each other, increasing the quality of the economic evidence on

the formation of a cartel. Finally, regarding the trade-offs in reducing false-positive vs.

false-negative outcomes, an appropriate strategy would be to increase the probability

threshold between 0.6 and 0.75. This practice might reduce incorrect predictions among

truly non-cartel periods (false-positives) at the expense of increasing the number of truly

cartel periods (false-negatives).

4.7 CONCLUSION

In this paper, we integrated many different machine learning techniques with

statistical screens based on the moments of the distribution of the gasoline retail price to

correctly identify and predict cartel market behavior. On this matter, we evaluated the

out of sample performance of four different models: Random Forest, Lasso, Ridge and

Neural Networks. By splitting the data into testing and training samples, we estimate the

models for four Brazilian cities already judged and condemned by cartel: Belo Horizonte,

Brasília, Caxias do Sul and São Luís.

Considering an average of the overall accuracy, the models correctly predicted

around 87% of the cartel periods. In a comparison between the four models, we highlight

the predictive efficiency of the models according to the following ranking: Random Forest,

Lasso Regression, Neural Network, and Ridge Regression. Considering all cities, the

Random Forrest algorithm, on average, showed a score of 95% correct classifications − for

both cartel and non-cartel periods.

Even when increasing the probability threshold, Random Forest was the most

stable model, preserving high levels of sensitivity and specificity. We also found evidence

that both asymmetry and kurtosis are features that increases the algorithms’ performance.

These features work in a complementary way or even replacing the variance and the

coefficient of variation in the cartel prediction. Thus, we empirically reinforce the intuition

that relying on strong assumptions regarding the structural relationship between a given

screen and the probability of cartel does not assure high predictive power.
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This, in some way, confirms the flexibility and the generalization of our approach

- which is based on the simple hypothesis that if the formation of a cartel in the retail

of gasoline affects the statistical moments of the price distribution, we can observe these

changes in pattern through time-saving machine learning techniques.

Finally, we offer possible recommendations to the regulator regarding best practices

for using our approach. In this way, we reinforce the benefits that the simplicity of the

model in terms of data and implementation can offer. In contrast, we emphasize the costs

and damage to the reputation of the antitrust authority, inherent in the trade-off between

reducing false-positives vs. false-negatives.

Among the possible extensions of this paper, we suggest the incorporation of spatial

elements and regional characteristics regarding the gasoline retail market in the analysis.

Promising research would be to establish an approximation between the Edgeworth price

cycle approach, passthrough of upstream cost shocks, response asymmetry and variance

screens as discussed in Eckert (2013), with machine learning algorithms. Another relevant

contribution would be to evaluate the performance of statistical screens in other countries’

gasoline market, whose price dynamics might differ from those found in Brazil.
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5 CONCLUSIONS

In this thesis, we studied the circumstances in which cartel agreements proved to be

stable. Our study may provide some practical competition policy prescriptions to guide the

antitrust authority regarding cartel deterrence. Considering a dynamic competition, the

first essay distinguishes the collusive behavior in regional and digital markets. Introducing

an altruistic punishment behavior in legal cartel agreements, we found some pieces of

evidence that collusion is more stable in a digital economy environment. In regional

markets, cartel stability is increasing in the number of high-efficiency firms. On the other

hand, while high-efficiency firms collude with one another, low-efficiency firms behave like

free-riders, taking advantage of the competitive fringe. The antitrust authority must be

attentive to these insights to optimize its performance to inhibit regional and digital cartel

agreements.

With this in mind, the second essay sheds light on the stability of so-called illegal

cartels. Thus, retaliation mechanisms are not standard. Given that cartels are criminal

organizations, our results showed a pattern of stability different from that obtained in

the first essay. The asymmetry between firms increases the stability of the collusion and,

the greater the number of high-cost firms, the more stable the cartel. Furthermore, the

insights provided by the different strands of game theory, as presented in the first and

second essays, respectively, are complementary.

According to our theoretical contributions, the antitrust authority must be aware

that the likelihood of cartel formation may be increasing in regions where there is a greater

asymmetry between firms. In other words, taking into account the cities evaluated in our

empirical study of the Brazilian gasoline market, the regulator should give greater focus to

regions where there is a higher proportion of low-efficiency firms, since the characteristics

of the market may favor the anti-competitive practice. Besides, we emphasize the need

for careful action by the antitrust authority to deter illegal cartels. On this matter, the

policymaker, being aware that the cartel behaves like a criminal organization, can act

jointly with other law enforcement agencies.

Finally, our empirical approach via machine learning algorithms can be thought of

as a data mining platform for the improvement of behavioral screens, which would reduce

the financial effort of detecting cartels relying exclusively on leniency programs. In this

regard, we offer an even more technical policy prescription on the deterrence of cartel

agreements. As well, the ability of machine learning algorithms to recognize behavioral

patterns of price dynamics are useful in other sectors of the economy.
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APPENDIX A – ALGEBRAIC DERIVATIONS

Algebraic Derivation for the Setting with 3 Homogeneous Firms

The Oligopoly Payoff with 3 Honest Firms

The F.O.C. derived from equation (3.2) yield the following expression after adding

and subtracting δipj,i:

pj,i(6 + 5δi) = 3bi + δiPi + (3 + 2δi)k, j = 1, 2, 3. (A.1)

Equation (A.1) reveals that p1,i = p2,i = p3,i. Let pj,i = pi, j = 1, 2, 3.. Now, note that

Pi = 3pi. Substituting this into (A.1) and solving the implied expression, we obtain:

pO
i =

3bi + (3 + 2δi)k

2(3 + δi)
. (A.2)

Combining equations (3.1) and (A.2), we have:

qO
i =

(bi − k)(3 + 2δi)

2(3 + δi)
j = 1, 2, 3. (A.3)

Combining equations (3.2), (A.2) and (A.3) yields the payoff in equation (3.3).

The Cartel Payoff with 3 Dishonest Firms

From equation (3.4), we have:

3
∑

F =1

EπM
F,i = (p1,i + p2,i + p3,i)bi +

δi

3
[p1,i(p2,i + p3,i) + p2,i(p1,i + p3,i) + p3,i(p1,i + p2,i)]

− (3 + 2δi)

3
(p2

1,i + p2
2,i + p2

3,i) −
{

3bik +
δi

3
[2(p1,i + p2,i + p3,i)k]

− (3 + 2δi)

3
(p1,i + p2,i + p3,i)k

}

− σif.

After opening the summation and maximizing (3.4) with respect to prices yields the

following conditions for firm 1:

∂π1,i

∂p1,i

= 0 → bi +
2δi

3
(p2,i + p3,i) − 2(3 + 2δi)

3
p1,i + k = 0.

Adding and subtracting 2δip1,i:

6p1,i(1 + δi) = 3bi + 2δiP1 + k.

Generalizing for j homogeneous firms, we have:

6pj,i(1 + δi) = 3bi + 2δiPi + k. (A.4)
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Equation (A.4) implies that p1,i = p2,i = p3,i. Let pj,i = pM
i , j = 1, 2, 3. As Pi = 3pM

i , we

obtain the following result:

pM
i =

bi

2
+ k. (A.5)

Combining equations (3.1) and (A.5) yields:

qj,i = qM
i =

bi

2
− k j = 1, 2, 3. (A.6)

Equations (A.5) and (A.6) imply that each firm earn the expected payoff given by equation

(3.5) in each period.

Deviation and Retaliation

The first order condition derived from equation (3.6) yields:

p3,i =
3 + δi

2(3 + 2δi)
bi +

3 + 4δi

2(3 + 2δi)
k. (A.7)

As the payoff (3.6) reveals,

q3,i =
1

3
[3bi + (bi + 2k)δi − p3,i(3 + 2δi)]. (A.8)

Combining equations (A.7) and (A.8) yields:

q3,i =
3 + δi

6
bi − k

2
. (A.9)

Hence, firm 3’s expected payoff in the first period is given by equation (3.7). Since the

quantity demanded from each cartel member equals

qM
i =

1

3
[3bi + (pM

i + p3,i)δi − pM
i (3 + 2δi)] =

1

3
[3bi + p3,iδi − pM

i (3 + δi)], (A.10)

combining equations (A.7) and (A.10) yields:

qM
i =

[9 + δi(6 − δi)]bi − 3(6 + 5δi)k

6(3 + 2δi)
. (A.11)

Given (A.11), each cartel member earns the expected payoff given by equation (3.8). In

the second period, the F.O.C derived from equation (3.9) yields:

p3,i =
3bi + δiP−3,i + (3 + 2δi)k − s

2(3 + 2δi)
. (A.12)

Given (A.12), the quantity sold by firm 3 in the retaliation period is

q3,i =
3bi + δiP−3,i − (3 + 2δi)k − s

6
. (A.13)

The constraint in equation (3.10) follows from (A.13). By assuming that the inequality in

(3.11) holds. Then, p3,i = q3,i = 0 and the F.O.C. derived from equation (3.13) yield:

p1,i = p2,i = pM
i =

3bi − 2δic

4
+

k

2
. (A.14)
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Given (A.14), we have:

q1,i = q2,i = qM
i =

3bi

2
+ δic − k. (A.15)

Thus, we can find equations (3.14). Combining the inequality in (3.11) with equation

(A.14) yields the necessary condition for the cartel to steam fir 3’s product as demonstrated

in equation and (3.15). When the inequality in (3.12) holds, the F.O.C derived from

equation (3.18) yields:

p1,i = p2,i = pM
i =

3(6 + 5δi) + δ2
i

4(3 + 2δi)(3 + δi)
bi +

6 + 5δi

4(3 + 2δi)
k. (A.16)

Given (A.16), we obtain:

q1,i = q2,i = qM
i =

[3(6 + 5δi) + δ2
i ]bi − 3[6 + δi(5 − δi)]k

4(3 + 2δi)
. (A.17)

Equations (A.16) and (A.17) provide the expected payoff earned by each cartel member

as in expression (3.19). Combining equations (A.12) and (A.16) yields:

p3,i =
[9(6 + 8δi + 3δ2

i ) + δ3
i ]bi + [54(1 + 2δi) + 13δ2

i (3 + δi)]k

4(3 + 2δi)2(3 + δi)
. (A.18)

Combining equations (A.13) and (A.16), we have:

q3,i =
[9(6 + 8δi + 3δ2

i ) + δ3
i ]bi − [9(6 + 8δi + 3δ2

i ) + 3δ3
i ]k

4(3 + 2δi)2(3 + δi)
. (A.19)

Given equations (A.18) and (A.19), we obtain firm 3’s expected payoff as in expression

(3.20).

N Homogeneous Firms

The F.O.C derived from equation (3.28) yields:

p−j,i =
N(2 + δi) − δi

4[N(1 + δi) − δi]
bi +

N(1 + 2δi) − 2δi

2[N(1 + δi) − δi]
k. (A.20)

As the payoff (3.28) reveals,

q−j,i =
Nbi + (N − 1)pM

i δi − p−j,i[N + (N − 1)δi]

N
. (A.21)

Combining equations (A.20) and (A.21) yields:

q−j,i =
N(2 + δi) − δi

4
bi − 1

2
Nk. (A.22)

Hence, we can calculate firm n−j,i’s expected payoff in the first period as in expression

(3.29). Since the quantity demand from each N − 1 cartel members equals:

qM
i =

Nbi +
[

(N − 2) pM
i + p−j,i

]

δi − pM
i [N + (N − 1) δi]

N
, (A.23)
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combining equations (A.21) and (A.23) yields:

qM
i =

1

4

2 (1 + δi) (bi − 2 k) N2 − δi (biδi + 2 bi − 2 k) N + biδi
2

N (N (1 + δi) − δi)
. (A.24)

Given (A.24), we can compute each N − 1 cartel member expected payoff in the first

period as in equation (3.30).

Algebraic Derivation for the Setting with Heterogeneous Firms

Oligopoly Price for the Low-cost Firm

As before, we start the analysis considering the polar case in which all the 3 firms

are honest. Taking the other firms’ price (p2,i, p3,i) choice as given and considering k1,i = 0,

the oligopoly profit maximization for the low-cost firm is given as follows:

πO
1,i =

1

3
p1,i[3bi + δiP−1,i − p1,i(3 + 2δi)].

The fist order condition yield:

∂πO
1,i

∂p1,i

= 0 → bi +
δi

3
(p2,i + p3,i) − 2(3 + 2δi)

3
p1,i = 0.

3bi + δiP−1,i = 2p1,i(3 + 2δi).

Adding and subtracting δip1,i:

3bi + δiPi = p1,i(6 + 5δi). (A.25)

Setting Pi = p1,i + 2p2,i, we have:

pO
1,i =

3bi + 2δip2,i

2(3 + 2δi)
. (A.26)

Oligopoly Price for the High-cost Firm

Taking the low-cost firm’s price p1,i choice as given and considering k2,i = k3,i = k,

the profit maximization for each high-cost firm is given as follows:

πO
2,i =

1

3
(p2,i − k)[3bi + δiP−2,i − p2,i(3 + 2δi)].

The fist order condition yield:

∂πO
2,i

∂p2,i

= 0 → bi +
δi

3
(p1,i + p3,i) − 2(3 + 2δi)

3
p2,i +

(3 + 2δi)

3
k = 0.

3bi + δiP−2,i + (3 + 2δi)k = 2p2,i(3 + 2δi).
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Adding and subtracting δip2,i:

3bi + δiPi + (3 + 2δi)k = p2,i(6 + 5δi). (A.27)

Setting Pi = p1,i + 2p2,i, we have:

pO
2,i =

3bi + δip1,i + (3 + 2δi)k

3(2 + δi)
. (A.28)

Equations (A.26) and (A.28) reveals that the price charged by the low-cost type

firm is strictly lower than the price charged by the high-cost type firm. Solving the implied

expression for both types of firms we have:

pO
1,i =

3(6 + 5δi)bi + 2(3 + 2δi)δik

6(3 + 2δi)(2 + δi) − 2δ2
i

; pO
2,i =

3(6 + 5δi)bi + 2(3 + 2δi)
2k

6(3 + 2δi)(2 + δi) − 2δ2
i

. (A.29)

To calculate the average price, p̄, we proceed as follows:

p̄ =
1

3
pO

1,i +
2

3
pO

2,i. (A.30)

In order to find q1.q2 we combine equations (3.1), (A.29) and (A.30). Thus,

pO
1,i − p̄ = −2

3

(3 + 2δi)k

(6 + 5δi)
. (A.31)

Doing the same procedure for p2:

pO
2,i − p̄ =

1

3

(3 + 2δi)k

(6 + 5δi

. (A.32)

Now we can write the demand function as follows:

qO
1,i(p1,i, p̄) =

[3(6 + 5δi)bi + 2δi(3 + 2δi)k](3 + 2δi)

6(6 + 5δi)(3 + δi)
, (A.33)

qO
2,i(p2,i, p̄) =

[3(6 + 5δi)bi − 2(9 + 9δi + δ2
i )k](3 + 2δi)

6[3(6 + 7δi) + 5δ2
i ]

. (A.34)

By combining prices and quantities, we compute the following profits:

πO
1,i =

1

12

[3(6 + 5δi)bi + 2δi(3 + 2δi)k]2(3 + 2δi)

(6 + 5δi)2(3 + δi)2
, (A.35)

πO
2,i =

1

12

[3(6 + 5δi)bi − 2(9 + 9δi + δ2
i )k]2(3 + 2δi)

[3(6 + 7δi) + 5δ2
i ]2

. (A.36)
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Cartel Prices for the Heterogeneous Firms

The F.O.C. derived from equation (3.7) yields:

pM
1,i =

3bi + 2δi(2p2,i − k)

2(3 + 2δi)
; pM

2,i =
3bi + (3 + δi)k + 2δip1,i

2(3 + δi)
.

Solving for pM
1,i and pM

2,i:

pM
1,i =

1

2
bi; pM

2,i =
1

2
(bi + k). (A.37)

Equation (A.37) imply that pM
2,i > pM

1,i. By comparing equations (A.29) and (A.37) and

holding δi, bi and k constants, it is true that pM
1,i > pO

1,i and pM
2,i > pO

2,i. As the regulator has

sufficient technology to distinguish low-cost and high-cost firms, rather than adopting pM
2,i

as the cartel price, firms will maximize their payoffs at their own prices. The motivation

behind adopting different prices is to make regulation more difficult. Therefore, combining

(3.1) and (A.37) the quantities produced by each type of firm is:

qM
1,i =

1

2
bi +

1

3
δik; qM

2,i =
1

2
bi − (3 + δi)

6
k. (A.38)

The payoffs for the low and high-cost are given by equations (3.35) and (3.36), respectively.

Deviation and Retaliation in the Cartel with Heterogeneous Firms

Firms 1 and 2 set the cartel prices derived in equation (A.37). By it turn, firm 3

takes (A.37) into account and then chooses non-negative p3,i to maximize (3.37). Where

P−3,i = bi + k
2
. The first order condition yields:

p3,i =
2(3 + δi)bi + (6 + 5δi)k

4(3 + 2δi)
. (A.39)

As the payoff (3.37) reveals,

q3,i =
3 + δi

6
bi − (2 + δi)

4
k. (A.40)

Thus, we can compute the Firm 3’s payoff as in equation (3.38). For the firms in the cartel

we derive the payoffs as follows. Since the quantity demanded from each cartel member

equals:

qM
1,i =

1

3
[3bi + δi(p

M
2,i + p3,i) − pM

1,i(3 + 2δi)],

qM
2,i =

1

3
[3bi + δi(p

M
1,i + p3,i) − pM

2,i(3 + 2δi)],
(A.41)

combining equations (A.37), (A.39) and (A.41) yields:

qM
1,i =

2(9 + 6δi − δ2
i )bi + 3δi(4 + 3δi)k

12(3 + 2δi)
, (A.42)
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qM
2,i =

2(9 + 6δi − δ2
i )bi − 3(6 + 6δi + δ2

i )k

12(3 + 2δi)
. (A.43)

Given (A.42) and (A.43), each cartel member earns the expected payoff given by equation

(3.39). As the cartel steals a quantity s from the defector, then the price and quantity of

firm 3 during retaliation is given by the F.O.C. in equation 3.40, and can be deduced as

follows:

p3,i =
3bi + δiP−3,i − s

2(3 + 2δi)
+

k

2
. (A.44)

Given (A.44) the quantity sold by firm 3 in the retaliation period is:

q3,i =
3bi + δiP−3,i − s − (3 + 2δi)k

6
. (A.45)

Besides, the constraint in (3.41) follows from (A.45) and from the fact that the quantity

sold by firm 3 cannot be negative. Maximizing equation (3.44), the F.O.C yields:

pM
1,i =

3bi − 2δic

4
; pM

2,i =
3bi − 2δic

4
+

k

2
. (A.46)

Given (A.46), we have:

qM
1,i = 3bi + δip

M
2,i − pM

1,i(2 + δi) =
3bi + 2δic

2
+

δi

2
k;

qM
2,i = 3bi + δip

M
1,i − pM

2,i(2 + δi) =
3bi + 2δic

2
− (2 + δi)

2
k.

(A.47)

Now, we can combine the inequality in (3.42) with the prices found in (A.46) to obtain

the inequality in (3.46). Equations (A.46) and (A.47) enable us to calculate each cartel

member’s expected payoff as in equation (3.47). If inequality (3.43) holds, the F.O.C

derived from expression (3.49) yields the following prices:

pM
1,i =

1

8

{

2[3(6 + 5δi) + δ2
i ]bi + δi(6 + 5δi)k

9 + 9δi + 2δ2
i

}

;

pM
2,i =

1

8

{

2[3(6 + 5δi) + δ2
i ]bi + [6(6 + 7δi) + 13δ2

i ]k

9 + 9δi + 2δ2
i

}

.

(A.48)

Combining (A.39) and (A.48), we have the following quantities:

qM
1,i =

1

24

{

2[3(6 + 5δi) + δ2
i ]bi + δi(18 + 13δi)k

3 + 2δi

}

;

qM
2,i =

1

24

{

2[3(6 + 5δi) + δ2
i ]bi − [6(6 + 7δi) + 11δ2

i ]k

3 + 2δi

}

.

(A.49)

Combining (A.48) and (A.49) we can find the expected payoff earned by each cartel

member as in expressions (3.50) and (3.51). In sequence, combining equations (A.44) and

(A.48) yields:

p3,i =
2[δ3

i + 9(6 + 8δi + 3δ2
i )]bi + [25δ3

i + 6(18 + 33δi + 20δ2
i )]k

8(3 + 2δi)2(3 + δi)
. (A.50)
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Combining equations (A.45) and (A.48) yields:

q3,i =
2[δ3

i + 9(6 + 8δi + 3δ2
i )]bi − [7δ3

i + 18(6 + 9δi + 4δ2
i )]k

24(9 + 9δi + 2δ2
i )

. (A.51)

Given equations (A.50) and (A.51), we can compute firm 3’s expected payoff as in expression

(3.52).

N Heterogeneous Firms

We start assuming the case in which a high-cost firm deviates from the cartel.

Maximizing (3.57) with respect to prices {pl,i, ph,i} yields to:

pl,i =
Nbi + Nh,iδi(2ph,i − k)

2[N + (N − Nl,i)δi]
; ph,i =

Nbi + [N + (N − Nh,i)δi]k + 2pl,iNl,iδi

2[N + (N − Nh,i)δi]
.

When a high-cost firm deviates, the F.O,C in equation (3.60) yields:

pD
h,i =

[2N + (Nl,i − Nh,i)δi + δi]bi + [2N(1 + δi) − (Nh,i + 1)δi]k

4[N + (N − 1)δi]
. (A.52)

As the payoff (3.60) reveals,

qD
h,i =

1

N

{

Nbi + P M
−hδi − pD

h,i[N + (N − 1)δi]
}

. (A.53)

Combining equations (A.52) and (A.53) yields:

qD
h,i =

[2N + (Nl,i − Nh,i)δi + δi]bi − [2N(1 + δi) + (Nh,i − 3)δi]k

4N
. (A.54)

Thus, we can find firm πD
h,i’s expected payoff in the first period as in equation (3.61). Now,

we consider the case in which a low-cost firm deviates from the collusion. The F.O.C

derived from equation (3.67) yields:

pD
l,i =

[2N + (Nh,i − Nl,i + 1)δi]bi + Nh,iδik

4[N + (N − 1)δi]
. (A.55)

As the payoff (3.67) reveals,

qD
l,i =

1

N

{

Nbi + P M
−l δi − pD

l,i[N + (N − 1)δi]
}

. (A.56)

Combining equations (A.55) and (A.56) yields

qD
l,i =

[2N + (Nh,i − Nl,i + 1)δi]bi + Nh,iδik

4N
. (A.57)

Thus, we can find firm πD
l,i’s expected payoff in the first period as in equation (3.68).
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