
UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Laércio Pioli Júnior

A Differentiated Proposal of Three Dimension I/O Performance

Characterization Model Focusing on Storage Environments

Juiz de Fora

2020

Laércio Pioli Júnior

A Differentiated Proposal of Three Dimension I/O Performance

Characterization Model Focusing on Storage Environments

Dissertação apresentada ao Programa de Pós-
Graduação em Ciência da Computação, do
Instituto de Ciências Exatas da Universidade
Federal de Juiz de Fora como requisito parcial
para obtenção do título de Mestre em Ciência
da Computação.

Orientador: Mario Antônio Ribeiro Dantas

Coorientador: Victor Ströele de Andrade Menezes

Juiz de Fora

2020

Ficha catalográfica elaborada através do Modelo Latex do CDC da UFJF

com os dados fornecidos pelo(a) autor(a)

Pioli Júnior, Laércio.
A Differentiated Proposal of Three Dimension I/O Performance Charac-

terization Model Focusing on Storage Environments / Laércio Pioli Júnior.
– 2020.

175 f. : il.

Orientador: Mario Antônio Ribeiro Dantas
Coorientador: Victor Ströele de Andrade Menezes
Dissertação (Mestrado Acadêmico) – Universidade Federal de Juiz de

Fora, Instituto de Ciências Exatas. Programa de Pós-Graduação em Ciência
da Computação, 2020.

1. I/O Characterization. 2. I/O Performance. 3. Storage Environments.
4. High Performance Environments. 5. Storage System. I. Dantas, Mario
Antônio Ribeiro, orient. II. Menezes, Victor Ströele de Andrade, coorient.
III. Titulo.

Dedicado à minha mãe e ao meu pai.

AGRADECIMENTOS

I would like to thank in my native language.

Primeiramente, gostaria de agradecer à minha família que sempre incentivou e

apoiou meus estudos durante todo meu processo de aprendizado. Gostaria de agradecer

especificamente minha mãe (Maria Eliane Ribeiro Campos Pioli) e meu pai (Laércio Pioli)

por tudo que me tornei, pela base familiar e ensinamentos que pude obter em toda minha

vida. Este trabalho é fruto de toda educação e apoio que me deram, obrigado por me

ajudar a ser quem sou e por todo amor proporcionado.

Gostaria de agradecer também à todos of professores do DCC e do PGCC que, de

alguma forma, contribuíram na minha formação tanto da graduação quanto do mestrado.

Em especial, gostaria de agradecer ao meu amigo e orientador, Mario Antonio Ribeiro

Dantas, não somente pela orientação nessa caminhada de pesquisa, mas também por

todo ensimanento extra-acadêmico que contribuiu para que minha expansão interna como

pesquisador pudesse acontecer. Não obstante, gostaria também de agradecer por todas as

oportunidades de pesquisa que me foram ofertadas e principalmente, por toda a motivação

e confiaça que me foi creditado ao longo das varias reuniões realizadas. Finalmente,

gostaria de agradecer pela amizade que tornou o processo de aprendizado mais produtivo.

Gostaria de agradecer também meu co-orientador Victor Ströele por todo ensinamento

e amizade desde a graduação e também por toda a confiança de que seria capaz de

efetuar nossas pesquisas na melhor qualidade possível. Agradeço também ao professor

Jean-Francois Mehaut da universidade de Grenoble, França, por permitir que nossos

experimentos pudessem ser executados em um ambiente computacional de alto nível e

qualidade, o Grid’5000. Finalizando, gostaria de agradecer também o antigo aluno de

doutorado do prof. Mario Dantas e atual Dr. pela UFSC, Eduardo Camilo Inacio, por

sempre colaborar com nossas pesquisas e processo de experimentação.

Agradeço também a UFJF e todos seus funcionarios pelo suporte nesse processo.

Finalmente, agradeço ao Governo Federal Brasileiro pelo suporte e infraestrutura

fornecida.

“Ein Buch muß die Axt sein für das gefrorene Meer in uns.”

(Franz Kafka)

RESUMO

O gargalo de E/S continua sendo um problema central em ambientes de alto desempenho.

Os ambientes de computação em nuvem, computação de alto desempenho (HPC) e big data

compartilham muitas dificuldades para fornecer dados em uma taxa de tempo desejável

solicitada por aplicações de alto desempenho. Isso aumenta a possibilidade de criar

gargalos em todo o processo de alimentação de aplicativos pelos dispositivos de hardware

inferiores localizados na camada do sistema de armazenamento. Nos últimos anos, muitos

pesquisadores propuseram soluções para melhorar a arquitetura de E/S considerando

diferentes abordagens. Alguns deles aproveitam os dispositivos de hardware, enquanto

outros se concentram em uma abordagem sofisticada de software. No entanto, devido à

complexidade de lidar com ambientes de alto desempenho, criar soluções para melhorar

o desempenho de E/S em software e hardware é um desafio e oferece aos pesquisadores

muitas oportunidades. A classificação dessas melhorias em diferentes dimensões permite

que os pesquisadores entendam como essas melhorias foram construídas ao longo dos anos e

como elas progridem. Além disso, também permite que futuros esforços sejam direcionados

para tópicos de pesquisa que se desenvolveram em menor proporção, equilibrando o

processo geral de desenvolvimento. Esta pesquisa apresenta um modelo de caracterização

tridimensional para classificar trabalhos de pesquisa sobre melhorias de desempenho de

E/S para instalações de computação de armazenamento em larga escala. Esse modelo de

classificação também pode ser usado como uma estrutura de diretrizes para resumir as

pesquisas, fornecendo uma visão geral do cenário real. Também usamos o modelo proposto

para realizar um mapeamento sistemático da literatura que abrangeu dez anos de pesquisa

sobre melhorias no desempenho de E/S em ambientes de armazenamento. Este estudo

classificou centenas de pesquisas distintas, identificando quais eram os dispositivos de

hardware, software e sistemas de armazenamento que receberam mais atenção ao longo dos

anos, quais foram os elementos de proposta mais pesquisados e onde esses elementos foram

avaliados. Para justificar a importância desse modelo e o desenvolvimento de soluções

que visam melhorias no desempenho de E/S, avaliamos um subconjunto dessas melhorias

usando um ambiente de experimentação real e completo, o Grid5000. Análises em cenários

diferentes usando um benchmark de E/S sintética demonstra como os parâmetros de vazão

e latência se comportam ao executar diferentes operações de E/S usando tecnologias e

abordagens distintas de armazenamento.

Palavras-chave: Caracterização de E/S, Desempenho de E/S, Ambiente de Armazena-

mento, Ambientes de Alto Desempenho, Sistema de Armazenamento.

ABSTRACT

The I/O bottleneck remains a central issue in high-performance environments. Cloud

computing, high-performance computing (HPC) and big data environments share many un-

derneath difficulties to deliver data at a desirable time rate requested by high-performance

applications. This increases the possibility of creating bottlenecks throughout the appli-

cation feeding process by bottom hardware devices located in the storage system layer.

In the last years, many researchers have been proposed solutions to improve the I/O

architecture considering different approaches. Some of them take advantage of hardware

devices while others focus on a sophisticated software approach. However, due to the

complexity of dealing with high-performance environments, creating solutions to improve

I/O performance in both software and hardware is challenging and gives researchers many

opportunities. Classifying these improvements in different dimensions allows researchers

to understand how these improvements have been built over the years and how it pro-

gresses. In addition, it also allows future efforts to be directed to research topics that

have developed at a lower rate, balancing the general development process. This research

present a three-dimension characterization model for classifying research works on I/O

performance improvements for large scale storage computing facilities. This classification

model can also be used as a guideline framework to summarize researches providing an

overview of the actual scenario. We also used the proposed model to perform a systematic

literature mapping that covered ten years of research on I/O performance improvements

in storage environments. This study classified hundreds of distinct researches identifying

which were the hardware, software, and storage systems that received more attention over

the years, which were the most researches proposals elements and where these elements

were evaluated. In order to justify the importance of this model and the development

of solutions that targets I/O performance improvements, we evaluated a subset of these

improvements using a a real and complete experimentation environment, the Grid5000.

Analysis over different scenarios using a synthetic I/O benchmark demonstrates how the

throughput and latency parameters behaves when performing different I/O operations

using distinct storage technologies and approaches.

Key-words: I/O Characterization, I/O Performance, Storage Environments, High Per-

formance Environments, Storage System.

LIST OF FIGURES

Figure 1 – CPU performance (green, 80%) vs Storage bandwidth (purple, 11%)

improvement per year. (LATHAM; BAUTISTA-GOMEZ; BALAJI, 2017) 22

Figure 2 – Memory and Storage Technologies . 23

Figure 3 – Areal Density Trends. Hard Disk Drive (HDD) and Tape, Demos and

Products - Roadmap (TEAM et al., 2015). 26

Figure 4 – Magnetic Tape Slice (MURDOCCA; HEURING, 1999) 29

Figure 5 – HDD Components . 30

Figure 6 – HDD Areal Density Roadmap (ASTC. . . , 2016) 31

Figure 7 – Magnetic Recording-based HDD Technologies 32

Figure 8 – Perpendicular Magnetic Recording (PMR) Tracks Design 33

Figure 9 – Shingled Magnetic Recording (SMR) Tracks Design 34

Figure 10 – Interlaced Magnetic Recording (IMR) Tracks Design 35

Figure 11 – Hybrid PMR-SMR Drive . 36

Figure 12 – Areal Density Comparison Between PMR, SMR and IMR (GRANZ et

al., 2019) . 37

Figure 13 – Optical Storage (OPTICAL. . . , 2000) 39

Figure 14 – NAND Flash vs. NOR Flash. (INOUE; WONG, 2004) 40

Figure 15 – Architecture modern SSD (KOO et al., 2017) 42

Figure 16 – Flash-memory package design (HSIEH; LIN; YANG, 2013) 42

Figure 17 – Overall architecture of flash memory system (CHUNG et al., 2009) . . 44

Figure 18 – HPC and Big Data Computing Architecture (THE. . . , 2018) 46

Figure 19 – IDC White Paper, Creating and Storing Data by Core/Edge/Endpoint

(REINSEL; GANTZ; RYDNING, 2018) 48

Figure 20 – Partial landscape of disk-based and in-memory data management sys-

tems (ZHANG et al., 2015a) . 49

Figure 21 – The process of application execution (ZHA; SHEN, 2018) 50

Figure 22 – High-Performance Computing (HPC) Storage Architecture 52

Figure 23 – Typical HPC storage stack. (HE; DAI; BAO, 2019) 53

Figure 24 – Overview of Storage Hierarchy in HPC Systems. (LIANG; CHEN; AN,

2019) . 53

Figure 25 – Storage hierarchy of a Warehouse-Scale Computers (WSC) (BARROSO;

CLIDARAS; HÖLZLE, 2013) . 55

Figure 26 – Data Process Extraction . 67

Figure 27 – Proportion of Loaded Papers in Parsifal by Source 70

Figure 28 – Accepted and Rejected Papers by Source 70

Figure 29 – Accepted Papers by Year . 71

Figure 30 – Accepted Papers by Source . 72

Figure 31 – Publishing Distribution . 72

Figure 32 – Networks Distribution . 73

Figure 33 – Largest Connected Component Network 74

Figure 34 – Accepted Papers According to the Selection Criteria 76

Figure 35 – Research that Considers Energy Savings 78

Figure 36 – Considered Devices . 79

Figure 37 – Hardware Domain Used Devices . 80

Figure 38 – Software Domain Used Devices . 81

Figure 39 – Software and Hardware to Storage Systems Used Devices 82

Figure 40 – Used Devices in Architectures . 83

Figure 41 – Benchmarks Occurrences . 84

Figure 42 – Benchmarks and Traces . 86

Figure 43 – Hardware Solutions to Improve Hardware I/O. 87

Figure 44 – Improved I/O Performance Software by Hardware Devices. 88

Figure 45 – Proposed Hardware and Used Environment. 90

Figure 46 – Specific Improved Object over S2S-IO Improvements 91

Figure 47 – Specific Implemented Object over S2S-IO Improvements 93

Figure 48 – Improved Storage Devices by Software Solutions 94

Figure 49 – Implemented Objects in S2H-IO Improvements 96

Figure 50 – Used Devices in Researchers Experimentation over S2H-IO Improvements 97

Figure 51 – Implemented Place for S2SS-IO Improvements 99

Figure 52 – S2SS-IO Used Environments. 100

Figure 53 – S2SS-IO Small Environments Used . 106

Figure 54 – Architectural Context. 109

Figure 55 – Used Environments. 111

Figure 56 – Small Environments Used for Architecture I/O Improvements 112

Figure 57 – Characterization of I/O Performance Improvements. 118

Figure 58 – Throughput Analysis Storing Data and Metadata on HDD. 128

Figure 59 – Throughput Analysis Storing Data on HDD and Metadata on SSD. . . 129

Figure 60 – Throughput Analysis Storing Data and Metadata on SSD. 130

Figure 61 – Throughput Analysis Using CFQ Scheduler. 133

Figure 62 – Throughput Analysis Using Deadline Scheduler. 135

Figure 63 – Throughput Analysis Using Noop Scheduler. 136

Figure 64 – Latency Analysis Using CFQ Scheduler. 140

Figure 65 – Latency Analysis Using Deadline Scheduler. 141

Figure 66 – Latency Analysis Using Noop Scheduler. 141

Figure 67 – Latency Analysis Storing Data And Metadata on HDD. 144

Figure 68 – Latency Analysis Storing Data on HDD and Metadata on SSD. 145

Figure 69 – Latency Analysis Storing Data and Metadata on SSD. 146

LIST OF TABLES

Table 1 – Memory/Storage Device Technologies Characteristics (BOUKHOBZA et

al., 2017), (MEENA et al., 2014) . 24

Table 2 – CD, Digital Versatile Disc (DVD) and BD Characteristics (COSTA, 2007) 38

Table 3 – NAND vs NOR Comparison . 41

Table 4 – Selected Sources . 64

Table 5 – Used Search String on the Research . 65

Table 6 – Articles found per source . 67

Table 7 – Most Published Authors . 72

Table 8 – Authors Betweenness . 75

Table 9 – Microsoft Research Cambridge (MSR) Traces 86

Table 10 – Software I/O Improvements. 120

Table 11 – Hardware I/O Improvements. 120

Table 12 – Factors Considered in this Experiment 124

Table 13 – Average in MiB/s of Throughput Presented in Figure 58 (Throughput

Analysis Storing Data and Metadata on HDD). 128

Table 14 – Average in MiB/s of Throughput Presented in Figure 59 (Throughput

Analysis Storing Data on HDD and Metadata on SSD). 129

Table 15 – Average in MiB/s of Throughput Presented in Figure 60 (Throughput

Analysis Storing Data and Metadata on SSD). 131

Table 16 – Throughput Storage Overview Discussion - Grouped Results by Number

of Tasks 32/Seq . 132

Table 17 – Throughput Storage Overview Discussion - Grouped Results by Number

of Tasks 32/Ran . 132

Table 18 – Throughput Storage Overview Discussion - Grouped Results by Number

of Tasks 64/Seq . 132

Table 19 – Throughput Storage Overview Discussion - Grouped Results by Number

of Tasks 64/Ran . 132

Table 20 – Average in MiB/s of Throughput Presented in Figure 61 (Throughput

Analysis Using CFQ Scheduler). 134

Table 21 – Average in MiB/s of Throughput presented in Figure 62 (Throughput

Analysis Using Deadline Scheduler). 135

Table 22 – Average in MiB/s of Throughput presented in Figure 63 (Throughput

Analysis Using Noop Scheduler). 136

Table 23 – Throughput Scheduler Overview Discussion - Grouped Results by Num-

ber of Tasks 32/Seq . 137

Table 24 – Throughput Scheduler Overview Discussion - Grouped Results by Num-

ber of Tasks 32/Ran . 137

Table 25 – Throughput Scheduler Overview Discussion - Grouped Results by Num-

ber of Tasks 64/Seq . 138

Table 26 – Throughput Scheduler Overview Discussion - Grouped Results by Num-

ber of Tasks 64/Ran . 138

Table 27 – Average of Latency Presented in Figure 64 (Latency Analysis Using CFQ

Scheduler). 139

Table 28 – Average of Latency Presented in Figure 65 9Latency Analysis Using

Deadline Scheduler). 140

Table 29 – Average of latency presented in Figure 66 (Latency Analysis Using Noop

Scheduler) . 142

Table 30 – Latency Scheduler Overview Discussion - Grouped Results by Number

of Tasks 32/Seq . 142

Table 31 – Latency Scheduler Overview Discussion - Grouped Results by Number

of Tasks 32/Ran . 142

Table 32 – Latency Scheduler Overview Discussion - Grouped Results by Number

of Tasks 64/Seq . 143

Table 33 – Latency Scheduler Overview Discussion - Grouped Results by Number

of Tasks 64/Ran . 143

Table 34 – Average of Latency Presented in Figure 67 (Latency Analysis Storing

Data And Metadata on HDD). 145

Table 35 – Average of Latency Presented in Figure 68 (Latency Analysis Storing

Data on HDD and Metadata on SSD). 146

Table 36 – Average of Latency Presented in Figure 69 (Latency Analysis Storing

Data and Metadata on SSD). 147

Table 37 – Latency Storage Overview Discussion - Grouped Results by Number of

Tasks 32/Seq . 148

Table 38 – Latency Storage Overview Discussion - Grouped Results by Number of

Tasks 32/Ran . 148

Table 39 – Latency Storage Overview Discussion - Grouped Results by Number of

Tasks 64/Seq . 148

Table 40 – Latency Storage Overview Discussion - Grouped Results by Number of

Tasks 64/Ran . 148

ACRONYMS

ADC Areal Density Capability

ANL Argonne National Laboratory

ASTC Advanced Storage Technology Consortium

BDC Big Data Computing

BGAS Blue Gene Active Storage

BPMR Bit-Patterned Magnetic Recording

BD Blu-ray Disc

CARS Contention-Aware Resource Scheduling

CCFC Cost-aware Client-side File Caching

CD Compact Disc

CFQ Completely Fair Queuing

CMR Conventional Magnetic Recording

CN Compute Node

CPU Central Processing Unit

DDC Decoupled DMA Cache

DISC Data Intensive Scalable Computing

DOE Department of Energy

DVD Digital Versatile Disc

DM Drive Managed Drives

DRAM Dynamic Random-Access Memory

DSA Direct Storage Access

EB Exabytes

EBSE Evidence-based Software Engineering

ECC Error Correction Code

EEPROM Electrically Erasable Programmable Read Only Memory

FIO Flexible I/O

FLOPS FLoating-point Operations Per Second

FTL Flash Translation Layer

GPU Graphics Processing Unit

HA Host Aware Drives

HDFS Hadoop Distributed File System

HAMR Heat Assisted Magnetic Recording

HDD Hard Disk Drive

HDMR Heated-Dot Magnetic Recording

HIL Host Interface Logic

HM Host Managed Drives

HPC High-Performance Computing

HPDA High Performance Data Analytics

HPE High-Performance Environments

IC Integrated Circuit

IMR Interlaced Magnetic Recording

IO Input/Output

ION IO Node

IOPS Input/Output per Second

IOR Interleaved Or Random

IORE Interleaved Or Random Extended

LBA Logical Block Addressing

LLNL Lawrence Livermore National Laboratory

LMR Longitudinal Magnetic Recording

LTO Linear Tape Open

MAMR Microwave-Assisted Magnetic Recording

MLC Multi-level cell

MOS Metal Oxide Semiconductor

MSMR Multi-Sensor Magnetic Recording

MSR Microsoft Research Cambridge

NERSC National Energy Research Scientific Computing Center

NICS National Institute for Computational Sciences

NUDT National University of Defense Technology

NVM Non-Volatile Memory

NVRAM Non-Volatile Random-Access Memory

ODS Optical Data Storage

OLCF Oak Ridge Leadership Computing Facility

OLTP Online Transaction Processing

ONFS On-line and Near-line File System

ORNL Oak Ridge National Laboratory

OS Operational System

OST Object Storage Target

PBA Physical Block Address

PCM Phase Change Memory

PE Process Element

PFS Parallel File System

PLC Penta-level cell

PMR Perpendicular Magnetic Recording

POSIX Programmable Operating System

QLC Quad-level cell

RAID Redundant Array of Inexpensive Drives

RAM Random Access Memory

RPM revolutions per minute

SCM Storage Class Memory

SLC Single-level cell

SLM Systematic Literature Mapping

SLR Systematic Literature Review

SMR Shingled Magnetic Recording

SN Storage Nodes

SPC Storage Performance Council

SRAM Static Random-Access Memory

SS Storage System

SSD Solid-State Drive

TDMR Two Dimensional Magnetic Recording

TPC Transaction Processing Performance Council

VM Virtual Machine

VMMS Virtual Main Memory Storage

WSC Warehouse-Scale Computers

CONTENTS

1 INTRODUCTION . 17

1.1 PROBLEM DEFINITION . 18

1.2 OBJECTIVES . 19

1.3 CONTRIBUTIONS . 19

1.4 METHODOLOGY . 20

1.5 OUTLINE . 21

2 FUNDAMENTALS . 22

2.1 PRIMARY STORAGE . 24

2.2 SECONDARY STORAGE . 25

2.2.1 Magnetic Tape . 27

2.2.2 Magnetic Disk . 29

2.2.3 Optical Data Storage . 38

2.2.4 Solid State Storage . 39

2.3 HIGH-PERFORMANCE STORAGE ENVIRONMENTS 45

2.3.1 Big Data . 47

2.3.2 High-Performance Computing (HPC) 49

2.3.3 HPC Storage System . 52

2.3.4 Data-Intensive Scalable Computing . 53

2.3.5 Data-Intensive Scalable Computing (DISC) Storage System 55

2.3.6 Cloud computing . 56

2.4 FINAL CHAPTER CONSIDERATIONS 56

3 SYSTEMATIC MAPPING . 57

3.1 MAPPING PLANNING . 58

3.1.1 PICOC . 59

3.1.2 Research Questions . 60

3.1.3 Mapping Questions . 60

3.1.4 Inclusion/Exclusion Criteria . 63

3.1.5 Sources . 64

3.2 STRING SEARCH . 64

3.3 MAPPING CONDUCTION . 66

3.4 I/O CHARACTERIZATION FRAMEWORK 68

3.4.1 3WPIT . 68

3.5 SYSTEMATIC MAPPING REPORT 69

3.5.1 Mapping Report . 70

3.6 THREATS TO VALIDITY . 113

3.7 REPLICATION ANALYSIS . 114

3.8 FINAL CHAPTER CONSIDERATIONS 114

4 RELATED WORK . 115

4.1 FINAL CHAPTER CONSIDERATIONS 116

5 PROPOSED MODEL . 117

5.1 DEFINITION . 117

5.1.1 AXIOMS . 117

5.1.2 GRAPHICAL REPRESENTATION . 118

5.1.3 Software Solution to Improve I/O Performance on Hardware (S2H-IO) . 120

5.1.4 Software Solution to Improve I/O Performance on Software (S2S-IO) . . 120

5.1.5 Software Solution to Improve I/O Performance on Storage Systems

(S2SS-IO) . 121

5.1.6 Hardware Solution to Improve I/O Performance on Hardware (H2H-IO) 121

5.1.7 Hardware Solution to Improve I/O Performance on Software (H2S-IO) . 122

5.1.8 Hardware Solution to Improve I/O Performance on Storage Systems

(H2SS-IO) . 122

5.2 FINAL CHAPTER CONSIDERATIONS 123

6 EXPERIMENTAL RESULTS 124

6.1 EXPERIMENTAL ENVIRONMENT 124

6.2 EXPERIMENT FACTORS DEFINITION 124

6.3 IORE BENCHMARK . 125

6.4 EXPERIMENTAL RESULTS . 126

6.5 THROUGHPUT ANALYSIS . 127

6.5.1 Storage Overview . 127

6.5.2 Scheduler Overview . 133

6.6 LATENCY ANALYSIS . 138

6.6.1 Scheduler Overview . 139

6.6.2 Storage Overview . 143

6.7 FINAL CHAPTER CONSIDERATIONS 148

7 CONCLUSIONS AND FUTURE WORK 149

7.1 FUTURE WORK . 149

REFERENCES . 150

17

1 INTRODUCTION

Nowadays, scientific and high-performance applications demand high computational

performance. These high-performance applications generally depend on some technologies

employed in the lower layers of the system, as well as on software techniques designed

specifically for complex solutions. The use of mechanical storage devices, such as hard

disk drives (HDDs) as a storage source for high-performance applications, has limitations

when targeting maximum performance. It takes a long time to perform the tasks normally

employed in the process of reading and writing information to disk. Conventional HDDs

need to position the mechanical arm over the data being operated, which causes sluggish

execution of the desired operation (TANENBAUM, 1995). Disk head movement from

simultaneous requests made by processes or applications makes I/O performance relatively

low (ZHANG; DAVIS; JIANG, 2012). Applications that perform billions of write and read

operations on their storage devices may perform poorly due to this inherent device issue.

This problem gets worse when data is stored in non-sequential sectors of the stored device,

increasing the amount of reading head movement and thereby reducing performance.

The complexity and quantity of data have increased at a high rate, contributing to

the worsening of the problem. A large amount of generated, computed and stored data

decreases the longevity and the I/O general performance of computer systems. The main

technological challenges encountered are related to the need to capture, analyze, model, and

visualize this scientific information (HEY; TANSLEY; TOLLE, 2009). High-performance

I/O is also essential for big data analysis (NAKASHIMA et al., 2017). These new scenarios,

consider structured databases, images, sound, and several other types of data. Examples

that can illustrate these environments are shown in (GOMES et al., 2018), (AGOSTINHO

et al., 2018). As a result, NoSQL and NewSQL software technologies (e.g. MongoDB,

BigTable, Redis, Cassandra, HBase, Neo4j, CouchDB) were conceived to tackle problems

related to this data diversity. However, sometimes, tools designed to this perspective are

not capable to cover all issues from those environments.

Data-intensive applications access multiple parts of large files through parallel

access over HPC back-end storage systems distributed across clusters. I/O operations or

file management calls (e.g. open, close, read, write, stat) impose some restrictions over the

performance of the entire application. Depending on the characteristics of the workload,

some I/O operations can affect the application performance by different proportions.

A subset of these I/O operations (e.g. open and close) are more presumed to impact

applications when executing over small files. It happens because the spend time to open

and close the file is higher than the time to read and write a small quantity of data. On

the other hand, other I/O operations (e.g. read and write) are more likely to impact

applications that manage large size data. Considering that data-intensive applications

manage large dataset files and perform a big quantity of I/O operations, we concentrate

18

our research on the operations that are characterized by these reading and writing data

access.

1.1 PROBLEM DEFINITION

The low I/O performance continues to affect high-performance environments and

this issue is addressed in this investigation. Despite the great effort of the academic

community to overcome this problem, sometimes concentrating efforts throughout a unique

given solution, we identify that there is not only a single way to improve I/O performance

in Storage System (SS).

The solutions seem to depend on each other for the performance of the entire

storage system to be satisfactory Researchers propose solutions to improve I/O architecture

through different perspectives. Some of them take advantage of hardware while others

focus on software approaches. One of the most used approaches in storage systems to

support the I/O layer is utilizing a range variety of memories and devices (e.g. flashboards,

Solid-State Drives (SSDs), 3D XPoint, NVDIMM, Phase Change Memory (PCM), etc) as

quick and auxiliary storage for HDDs.

Solutions considering heterogeneous storage systems were proposed over the years

(ZHANG et al., 2019), (ZHOU et al., 2016b), (ZHOU et al., 2016a), (XIE et al., 2015) and

(JU et al., 2016). Different storage devices are also used to achieve better I/O. PCM (CHOI;

BAHN, 2018), (LIU; WANG; YU, 2018) and (LIU et al., 2016), SSD-M.2 (NAKASHIMA

et al., 2017) are some instances. Many authors are proposing Flash Translation Layer

(FTL) solutions targeting improvements on software layer (MATIVENGA et al., 2019),

(PAN et al., 2019), (XIE; CHEN; ROTH, 2017) and (WANG et al., 2016).

Software solutions to improve I/O performance on storage systems are also employed.

Some solutions are focused on improving I/O considering better database performance.

(KIM; YEOM; SON, 2019), (WU; HUANG; CHANG, 2019), (SOULÉ; GEDIK, 2016) and

(KARIM et al., 2015) while other focuses on File systems (ZHANG et al., 2019), (FAN;

WANG; YE, 2018), (XIAO et al., 2018), (KIM; YEOM, 2017), (JIN; ZHU; HUANG,

2017), (LIU et al., 2017c), (HE; WANG; SUN, 2015) and (OU et al., 2015). Proposing

other and efficient I/O schedulers (YAN et al., 2019), (YANG et al., 2019), (MAO; WU;

DUAN, 2017), (PARK et al., 2018) and (JO; RO, 2016), or improving existential Linux

I/O schedulers (e.g. Completely Fair Queuing (CFQ) (AXBOE, 2010), Noop (AXBOE,)

and deadline) is an approach to increase the overall I/O performance (GUO; HU; MAO,

2015), (YEH; YANG; SUN, 2015) and (JI et al., 2016).

As presented above, there is no one way to increase I/O performance in storage

environments. The improvements can be applied within different layers and each improve-

ment belongs to a class that relates different proprieties. The challenge in this context is to

19

create a model capable of characterizing the researcher’s proposals to better understanding

and development of this research field.

1.2 OBJECTIVES

Addressing the issue that affects many High-Performance Environments (HPE), the

main objective of this research work is to devise a model that presents perspectives of how

the I/O performance improvements are addressed to overcome low I/O performance in SS.

It can be used to lead to a better understanding of the impact of different storage approaches

that consider distinct storage devices. Classifying researchers’ improvements in dimensions

that divide software components from hardware components, allows us to understand how

these improvements have been built over the years and how it progresses. The usage of this

characterization model allows us to direct future efforts towards subjects that really need

attention. Therefore, reducing bottlenecks that hinder the entire development structure.

The overall overview of the actual efforts could be divided into a macro view of three

elements. The two first elements are "software" and "hardware" and the combination of

these previous elements creates a new element, a "storage system".

As an extension of the primary objective, two additional contributions are presented.

The first one was a systematic literature mapping that classifies hundreds of distinct

researches publications that were proposed to improve I/O performance on devices, systems,

and environments using the presented model. There, we covered ten years of research

on I/O improvements, presenting which were the devices, software, and storage systems

that received more attention over the years, which were the most researcher’s proposals

elements, and where these elements were evaluated. The second task was to select a

subset of these proposed I/O improvements concerning the I/O layer and evaluate them

using a real testbed, the Grid5000. Analysis over different scenarios using a synthetic I/O

benchmark demonstrates how the throughput and the latency parameters behave when

performing different I/O operations using distinct storage technologies and approaches.

1.3 CONTRIBUTIONS

The contributions of this work are the following:

• A characterization model as a feature for classifying research works on I/O perfor-

mance of storage environments.

• A systematic mapping survey that classifies hundreds of distinct researches publi-

cations that were proposed to improve I/O performance on devices, systems, and

environments.

20

• The assessment of employ different storage devices to analyze throughput and latency

ratio.

• An extensive number of experiments analysis evaluated in the Grid’5000 over different

scenarios aiming to show that I/O performance might vary according to the employed

parameters

1.4 METHODOLOGY

The used methodology in this research was defined considering the following phases:

(i) a secondary literature study considering approaches in how storage systems were dealing

and receiving I/O performance improvements. (ii) a characterization model proposal that

considers I/O performance improvements considering the storage systems environments.

(iii) validation of the proposed model through a classification study that incorporates

hundreds of documents. (iv) construction of an experimental study that considers different

approaches to data storage in order to evaluate latency and throughput.

The secondary study of the literature was conducted through a search for mappings

and systematic reviews of the literature on improvements in I/O performance. The purpose

of this study was to identify how the proposals were being carried out and in what context

they were.

The proposal for a characterization model was developed to allow improvements in

I/O performance in storage systems to be better understood. With a better understanding

of these improvements, we argue that it will be possible to identify how these improvements

have been built over the years. Identifying your progression allows you to target the next

challenges to issues that require more attention. Therefore, bottlenecks that hinder the

entire development structure can be reduced by bringing storage development closer to

processing development.

The proposed model validation incorporates the elaboration of a systematic mapping

of the literature that evaluates hundreds of documents that aim to improve I/O performance.

We understand that by classifying these hundreds of documents we are covering a large

part of the improvements and showing that the model becomes useful and promising to

the scientific community.

The experimental study carried out incorporates a process that relates some

elements presented in the model with some researcher’s improvements to improve the

I/O performance. Through this experimental process, we found that the usage of storage

media in different storage approaches interferes with the performance of the overall storage

system. Software layer approaches also influence performance and was considered in the

latency and throughput evaluation process. The experimentation was performed in a real

complex Grid system, the Grid’5000 located in France.

21

1.5 OUTLINE

The main concepts behind this work are the subject of Chapter 2. We discuss some

related works in Chapter 4. The proposal is presented in Chapter 5. A tertiary literature

study that presents results when using this model is presented in Chapter 3. Moreover,

Chapter 6 shows the experimental results as well as discussions over different perspectives.

Finally, Chapter 7 concludes this research, summarizing this work and outlining future

works.

22

2 FUNDAMENTALS

The I/O bottleneck remains a central issue in HPE. The existing gap between power

processing and storage latency increases this issue. The processing evolution was predicted

by Moore’s Law in the 1960s and it remains true until nowadays in century XXI. Its law

states that the number of transistors on an integrated circuit would double every eighteen

months. On the other hand, computing systems are composed not only by processing but

also by memory and storage hierarchy that support this processing. Figure 1 presents

the development of both storage and processing systems. Elements arranged in purple

Figure 1 – CPU performance (green, 80%) vs Storage bandwidth (purple, 11%) improve-
ment per year. (LATHAM; BAUTISTA-GOMEZ; BALAJI, 2017)

are related to the average internal drive access rate and the elements arranged in green

relate to the processing development. We noticed that gap between these technologies

widens over time. The slope of the line becomes much more upward for processing than for

storage. Although the storage capacity increases considerably, its performance evolves at a

low rate. The fact is that the storage technologies evolve at a slower speed than processing

technologies and it generates the main I/O performance problem. This I/O bottleneck

problem affects the application performance that has the necessity to move Exabytes (EB)

of computed or generated data between Compute Node (CN) and Storage Nodes (SN).

Typically, these demanding applications are executed in clustered architectures. This fact

makes the I/O performance a hot area of study and researchers are proposing solutions to

improve the I/O architecture by different approaches.

24

computing and transferring data. Primary storage is usually optimized for Input/Output

per Second (IOPS) and latency whereas secondary storage systems are optimized for

throughput (SRINIVASAN et al., 2012).

Table 1 presents a big variety of storage technologies and some of their performance

characteristics. There, we can analyze some I/O operations time (e.g. read and write) as

much as energy performance (e.g. leakage Power and Dynamic Energy).

Table 1 – Memory/Storage Device Technologies Characteristics (BOUKHOBZA et al.,
2017), (MEENA et al., 2014)

Technology PCM STT-RAM DRAM SRAM NAND Flash MRAM FRAM RRAM HDD
Volatility No No Yes Yes No No No No No
(Yes/No)

Read 20-60 2-35 ∼10 ∼0.2-2 15000-35000 3-20 20-80 ∼10 3x106 − 5x106

(ns)
Write 20-150 3-50 ∼10 ∼0.2-2 200000-500000 3-20 50-75 ∼50 3x106 − 5x106

(ns)
Write 108 − 109 1012 − 1015 >1015 1016 104 − 105 >1012 1014 − 1015 108 − 1011 >1015

Endurance
Cell Area 4-12 6-50 60-100 120-200 4-6 ∼25 6-40 4-10 N/A

(F2)
Leakage Low Low Medium High Low - Low Low (Mechanical
Power parts)

Dynamic Medium/ Low/ Medium Low Low - Low/ Low/ (Mechanical
Energy (R/W) High High High High parts)

2.1 PRIMARY STORAGE

The storage class where PEs can access directly the data is called "Primary storage".

The closer PE storage place to keep data are the register built into the processor, the

cache memory, and the Random Access Memory (RAM) commonly called "memory".

RAM is one of the most used computer memory devices that computer systems

use to share the momentary content processed by a PE. As the name suggests, in this

kind of memory data can be read and assessed in any other differently from Tapes which

permits only sequentially data access. It is an important computer hardware characteristic

because permits applications to access and share data quickly. It is composed mainly of

Metal Oxide Semiconductor (MOS) cells that is a metal oxide silicon transistor which,

together with silicon metal, are the base elements to form an Integrated Circuit (IC).

MOS also known as MOS transistor, MOSFET, MOS FET or MOS-FET, due to its

material components, amplifies or switches electronic signals through an applied voltage

controlling the flow of current. These electrical characteristics presented on it permitted

less energy consumption than previous magnetic core memory which pleased everyone

interested in that. The most used type of RAM is Static Random-Access Memory (SRAM)

and Dynamic Random-Access Memory (DRAM).

As the name suggests, DRAM is a RAM memory where the access is performed

25

randomly and dynamically. Materially, each cell that composes this kind of memory has a

capacitor compared to the RAM. Therefore, each cell has a transistor and a capacitor,

and these elements, through energy maintenance, are used to represent a bit into a cell.

Consequently, due to intrinsic material characteristics of capacitors over time, it is slowly

discharged by the Joule Law through the dissipation process. To prevent this effect, this

variation of memory needs an auxiliary refreshment mechanism that ensures that the

energy of each cell will not be dissipated and consequently the data that is represented

by a set of bits, will not be lost. This refreshment mechanism is normally an IC element

integrated into the RAM and it acts reading the cells and rewriting the exact content at

the same place. For this reason, this kind of memory is a volatile device which means that

this content is kept only if its energy is also kept. Due to his reason and other elements

such as low latency and high endurance this memory is the main device used in computer

systems as main memory.

SRAM is also a RAM memory with different particularities compared to the DRAM.

Its "S" in its name extends from "Static" because it does not need a refreshing system as

DRAM. It uses a bi-table latching circuitry, also known as (flip-flop), and is composed of

six transistors destined to maintain data in addition to two transistors for control access.

Its hardware architecture is mainly built in CMOS technology and the high quantity of

transistors turns it more expensive than DRAM that has only one transistor and one

capacitor. This kind of technology used to store data is usually coupled directly into IC

and does not need to be coupled using a bus which increases latency. Therefore, it is

faster than DRAM and its greatest application is for CPU cache and small embedded

systems when time access is more important than size. However, SRAM keeps being a

volatile memory and, despite presenting some data remanence level, it needs the power

to maintain data. Nonetheless, SRAM has a complex internal structure, consumes more

power, and is more expensive than DRAM.

2.2 SECONDARY STORAGE

Big data and data analytic brought the necessity to save data on a scale never

seen before. The quantity of generated data is so big that it is estimated by IDC, that

the amount of data in 2025 will surpass 175 zettabytes (REINSEL; GANTZ; RYDNING,

2018). The advances of big data and their scientific applications have increased this

proportion making magnetic tapes and hard disks the most important cold data storage.

Different from hot-storage, which contains data that always or almost always are available

for assessment, cold-storage is characterized by filing data that is not often requested for

processing. Nowadays, the most common cold storage system is composed of magnetic

tapes and hard disks. Both of them are constituted of magnetic technology, saving the

data after turning the energy off. The magnetic tape and disk store data using the same

26

physical principle. They magnetize the surface area which means the presence or absence

of information.

Improving area densities of magnetic technologies is not an easy task to be developed,

however, it has been investigated by industrial companies and research academy over the

years. The more is the density of a magnetic surface, the more bits are introduced into its

region and consequently allow more data to be saved into its magnetic space. Figure 3

presents the trends in areal density effort, measured in Gbits/in2, to increase magnetic

storage densities. It considers the two most used magnetic devices, HDD, and tape storage

media.

Figure 3 – Areal Density Trends. HDD and Tape, Demos and Products - Roadmap
(TEAM et al., 2015).

Although today’s magnetic tapes are capable of storing more data on a Linear Tape

Open (LTO) cartridge than HDDs, it received more areal density recording improvements

in a fixed period but it is decreasing its rate. The year 1999 seemed to be the cornerstone

for magnetic HDDs. In the interval from 1991 to 1998, HDDs demos showed improvements

of 39% per year on average, and HDD products reached 55% per year. In 1999, HDD demos

reached a peak of almost 200% per year. It is the highest rate presented in Figure 3. In an

interval of 4 years, from 1998 to 2002, HDDs products had their area density improvements

on average of 108% per year. This factor can be understood with the consolidation of

27

HDDs media as a secondary storage source. After that period, from 2003 to 2009, HDD

products received increments of 39% per year. Finally, in the last period from 2008 to

2015 and from 2009 to 2015, both HDD products and HDD demos reached 16% per year.

Those small improvement numbers in areal density could indicate that HDDs are slowing

down and becoming saturated.

On the other hand, magnetic tapes products seem to be constant and present a

continuous improvement rate between the years 1994 to 2015, presenting an average of

33.9% in that period. Projections indicate that this rate will remain almost the same with

a rate of 33.3 % between the next years of 2015 until 2025. The two most cold storage

used technologies have a very different characteristic when talking about the performance

of I/O operations. As we know, HDDs are composed of a number of platters that have

cylinders, tracks, clusters, and sectors. These components are assessed by a read/write

head when seeking data on the device. It makes those operations faster than the linear

method used by magnetic tape to perform the same operations. The average data access

time in tapes are around fifty to sixty seconds depending on the model that you are using

(DROWNING. . . , 2018). The same operation performed within an HDD is about five to

ten milliseconds. Considering the maximum range mentioned above, it means that the

data time access to perform the I/O operation within a tape could be six thousand higher

than the access time to perform the same operation on the HDDs.

2.2.1 Magnetic Tape

Indeed, IBM company was a great precursor in the usage of magnetic tape, or tape

for short, as storage media. Magnetic tapes have been improved broadly over the years.

The tape era has begun in 1951, specifically in March by the Bureau of the Census. It has

used for the first time magnetic tapes to record data on a computer through UNIVAC

system. It was the first one to handle both alphabetic and numerical data which changed

the computation field (JR et al., 1951). It encouraged IBM, in 1952, to use tape as storage

for the commercial computer. In 1968 IBM introduced the self-threading drive called IBM

2420. After that, was implemented and created the first robotic tape library, the IBM

3850. Moreover, in 1984 IBM also introduced thin-film head technology through IBM 3480.

Furthermore, in 1989 and 1993, they introduced the helical scan digital data Storage and

a digital linear tape respectively. In the year 2000 was introduced the LTO and in 2009

IBM introduces the Linear Tape File System. Finally, in 2017, IBM released the latest

generation of LTO, the LTO-8.

Differently from social common sense, tapes remain, until nowadays, been used as

the most storage media device by companies to store cold data and long term storage. It

has also seemed like a high resistance and durability media device that allows us to recover

data from natural disasters. Among the many advantages over HDDs and SSDs, companies

28

choose them because they can offer more reliability if compared to other storage media.

Power consumption is also an important feature provided by tapes due to the behavior of

the robotic libraries after all the data has been recorded. When some tape cartridge is not

in usage, they keep stored into robotic libraries which retain these cartridges without need

to waste energy. Moreover, tapes are a good form of mass storage and have a lower error

rate. The nature of the device itself provides a high-security power. The device must be

mounted on a physical drive to be accessed. Among these previous good advantages, the

low cost is the most important of them. It is the main reason why companies use tape

storage. Companies have savings of six times economically to store the same amount of

data compared to hard disk (DROWNING. . . , 2018).

Whereas a hard disk device can reach storage amounts in dozens of terabytes (TB)

scale, a roll of tape can reach hundreds of TB. In 2017, IBM and Sony have presented

a magnetic tape technology that could reach 330 (TB) in a unique tape cartridge. It

measured 1098 in length(meters) and its density was 201 billion bits per sq inch. A huge

stored amount of data contrasts with the assessment time on retrieving data. It is worth

noticing that, the latency is very high and I/O operations take much time to be performed.

As the tape technology is a sequential storage technology, which means that the data

are sequentially accessed, the time to access data is bigger compared with semiconductor

memories and magnetic disks. Due to the need to go through the whole tape until the part

that contains the desired information, tapes present the worst I/O performance. It kept

being implemented by enterprises mainly for cold storage or non frequently data access.

Normally, this information is kept just to ensure historical data logging avoiding data loss.

The process to save the information on magnetic tape looks similar to the process

of doing it on the magnetic disk. Physically speaking, both use magnetism principles to

save data. In Tapes, the head is coated by a magnetic layer that is passed over the tape

magnetizing it in write operation or detecting data when in the reading operation. Disks

use a similar process, though it is performed with many read-write reads and it is explored

in the next section. They do it by switching the two states of a polarity which could be

true or false. True means that this tape area refers to number one and false means that

area refers to the absence of the number one, in other words, number zero. This is the basic

idea in using magnetism to store data, although, due to the variety and evolution of these

technologies and devices, this process may vary in some way. Nonetheless, this process is

implemented along the entire track and this is the way how is registered the presence of

information into magnetic tapes and disks. Figure 4 presents a slice of magnetic tape with

some elements.

In this schematic process, the smallest unit is a bit which is grouped into frames.

Frames are grouped forming a record that is the smallest amount of data. It means that

if some application or process needs to read or write data, it is infeasible for it read a

29

Figure 4 – Magnetic Tape Slice (MURDOCCA; HEURING, 1999)

specific frame. Instead, it will read a record that contains the necessary data. In this way,

records are written into tapes. Between records, there are inter-record gaps, which are

empty spaces. These spaces occur because in the writing and reading process, there is a

necessary time to put the reel motor into motion on the right velocity and as long as that

speed is not reached, the tape continues to pass over the read and write head. It generates

a lack of information into the tape which creates these gaps. Eventually, this time is not

synchronized and a gap is embedded into a record. This problem is referred to as jitter

and may occur in tapes. Sets of records generate a file into a tape and as they are accessed

sequentially, random access becomes infeasible. A file mark can also be introduced at the

beginning of each record working as a flag that indicates where a record begins.

2.2.2 Magnetic Disk

Unlike tapes, where data can be easily removed as an independent dataset (tape

cartridge) and moved independently of the mechanical read-write head, in magnetic disks,

it is coupled into the platter, inside the HDD, where data is written. The quantity of

read-write heads is also a different characteristic compared to tapes. A unique HDD can

have a set of N x 2 heads, where N is the number of magnetic platters located within a

HDD. It happens because each surface may receive one independent head. Therefore, some

HDDs can be multi-platter with more than one platter. Figure 5 presents a conventional

HDD organization with some important elements presented into it.

An HDD has a spindle that connects all platters when multi-platter, in their

zero-radius point and allows them to be stacked on top of each other. This element rotates

in a specified direction, synchronously, and allows all disks to rotate at the desired speed.

Its rotation speed can vary from 3600 to 10000 revolutions per minute (RPM). Between

them is located each read-write head which is connected to an arm that moves inreaching

and outreaching a then different fraction of the surfaces. Each platter has two faces, the

31

considering the disk rotation, passes through the arm head. In Figure 5 is possible to

verify that, if the highlighted sector is required by some application, it is necessary to

wait for almost a half-disk rotation for the sector pass through the read-write head. This

process is known as rotational latency. Finally, after positioning the sector under the

head, there is a necessary time to read the entire sector content. This process is known as

transfer time. These elements make the read-write time increase considerably, especially

in I/O intensive applications.

As our world becomes more data-driven, digital data become overloaded and

complex. In HDD industry, new technologies solutions are being proposed to satisfy this

high demand of more Areal Density Capability (ADC). However, a concerning fact about

HDDs industry was how to increase ADC while decreasing storage device size. In Figure 6,

is presented the Advanced Storage Technology Consortium (ASTC) technology roadmap

with suggestions and predictions based on the evolution of the areal density recording of

HDD technologies. PMR technology seems to be reached its limit in areal density which

Figure 6 – HDD Areal Density Roadmap (ASTC. . . , 2016)

has the potential to store about 1Tb/in2 and has been supported by new technologies such

as Two Dimensional Magnetic Recording (TDMR) and SMR. However, PMR increased by

TDMR and SMR seems to survive until 2021 where it is expected to reach 2Tb/in2 or

more. Meanwhile, Heat Assisted Magnetic Recording (HAMR) arises as an interesting

37

In MAMR recording technology, a thin film medium is introduced to extend the

recording density. It can achieve interesting results and through a perpendicular switching

field. MAMR allows recording at a field which is located below the medium coercivity. Its

technology also turns possible to produce an ac field through a spin momentum transfer

(ZHU; ZHU; TANG, 2007). It makes use of a spin torque oscillator that generates a

microwave field which is used to assist writing into the device without losing reliability.

It is expected that MAMR deliver up to 4Tb/in2 which is four times the ADC of PMR

actual technology. The successor of HAMR is already under development.

HDMR is the technology that is expected to deliver up to 100 TB of storage in the

future but it is difficult to be available for the commercial audience until 2025. As the

name implies, it also uses a laser to heat the medium before writing the data.

Granz et al. (GRANZ et al., 2019) presented an interesting analysis comparing

CMR, SMR, and IMR combining Multi-Sensor Magnetic Recording (MSMR) with one,

two, and three readers. MSMR is a read-back architecture that uses more than one reader

to read the same written track. In this experiment, they used the HAMR head technology

also using the areal density metric ASTC. The ADC is measured in Tbit/in2 and an

average of ten heads produced results presented in Figure 12. A conventional HDD with

one head reader using the traditional recording technology HAMR CMR achieved 1.34

Tbit/in2 whereas the best result using HIMR with MSMR and three heads achieved 1.91

Tbit/in2. Their total evaluation can be visualized in Figure 12.

Figure 12 – Areal Density Comparison Between PMR, SMR and IMR (GRANZ et al.,
2019)

38

2.2.3 Optical Data Storage

Storage devices such as Compact Disc (CD), DVD, and Blu-ray Disc (BD) are

quite similar and use the same principle to store and retrieve information. The device’s

structure is similar, all of them have approximately 12 centimeters in diameter, and data is

read through an optical laser. Although these visible similarities, they have different and

important properties such as the number of bits, wavelength, line distance, among others.

One of the factors that enable optical devices to store different amounts of information is

related to the wavelength size emitted by the laser beam. To record data into a digital disc,

puncturing its surface is necessary. The shorter the wavelength, the smaller the marks

created and projected on the device. This factor allows the distance between marks to

be reduced, allowing more marks to be applied to devices, thus resulting in greater data

storage quantity on disks.

Table 2 summarizes some characteristics of these three media devices.

Table 2 – CD, DVD and BD Characteristics (COSTA, 2007)

Mídia Depth Vertical Distance Wavelength Pit Length Capacity
(µm) (µm) (µm) (µm) GB

CD 0,13 1,6 780 1,0 0.7
DVD 0,11 0,74 650 0,32 4.7
BD 0,07 0,32 405 0,14 25

CDs use an infrared laser and its wavelength is equal to 780 nm. DVDs use a red

laser and have a wavelength equal to 650 nm. Differently from the previous devices, BDs

use a violet laser and have a wavelength equal to 405 nm. The distance between the line

marks in CDs is 1.6 µm. In DVDs such marks is 0.74 µma and finally BD is 0.32 µm. The

depth of the holes on the surface of the disc are also different CDs is about 0.13 µm, while

on DVD it’s a little bit smaller around 0.11 µm. Deeper, in BD it reaches 0.07 µm. The

vertical distance between lines also changes and can be up to five times between CDs and

BDs. The CDs have vertical distance is 1.6 µm. On DVDs that number drops more than a

half to 0.74 µm. BD has the vertical distance five times shorter than the vertical distance

of CDs being 0.32 µm. This is an interesting measuring because the smaller is its distance

and the vertical distance the more information the surface would be able to record. Some

of these attributes can be verified in Figure 13.

Data reading in optical media is performed by reflecting the incident light through

an interferometer. Due to the smooth surface of the media, the incident light is reflected

being interpreted by the digit 1, however, when there is a hole as shown by the figure

Figure 13, the light is not reflected being interpreted by the bit 0. Figure 13 presents the

three different media devices surfaces with marks and the distance between them. The

images were expanded by 20,000 times allowing the authors to measure the depth of the

40

Figure 14 – NAND Flash vs. NOR Flash. (INOUE; WONG, 2004)

preventing energy from being dissipated from the floating gate. Indeed, the bit cost is

the most important characteristic of semiconductor memories, thus turning NAND flash

memory more consolidated in the market. However, other factors are important depending

on which is the focus. NAND flash memories impose certain resistance due to their

cell array design to read out the first data byte. This becomes a decisive attribute for

operations where the start of an activity is critical.

Write operation time, also known as programming, together with erasing time,

are also possible operations to be executed in both NAND and NOR-type memories.

However, its time to be executed into NAND type is much lower than in NOR-type

because it uses Fowler-Nordheim tunneling to execute them, thus allowing memory cells

to be programmed simultaneously. It is also a factor that reduces power consumption into

NAND type because it does not increase considerably as much as the number of memory

cells increases. In NOR type, the programming operation is allowed to be performed only

by a byte which is also a factor of time and power increasing. The number of cycles a block

or chip can be erased and programmed, also known as endurance, is tremendously different.

It is estimated that NAND type provides nearly 1,000,000 cycles while NOR-type provides

about 100,000 cycles. Table 3 summarizes some important characteristics from them.

41

Table 3 – NAND vs NOR Comparison

NAND NOR
Cost Low High

Initialization Time High Low
Cell Size Low High

Power Usage Low High
Erasing/Programming Low High

Time
Endurance High Low

Because of some characteristics presented in Table 3 but led by cost rate, NAND

type memory is widely adopted as solid-state mass storage instead of NOR type. To

produce it in large scale NAND flash-based SSDs is widely used as secondary storage for

computing systems due to many advantages compared with conventional HDDs. Fast

access speed, small size, shock resistance, and low consumption are examples that justify

their usage and attention by researchers. However, with these advantages, new challenges

and concepts which did not exist in the old magnetic disk technology came up. To better

understand this technology, we present some factors about these components placed into a

flash device that may influence the performance when performing applications.

We begin presenting the main elements of a modern SSD in Figure 15. It is

composed of elements decomposed basically into three blocks. The first one is the most

important, the SSD Controller. There, it is possible to verify a range of elements, each

one responsible for certain hardware and software management. The Embedded cores

are processors introduced into SSD controllers specifically designated to manage channel

parallelism and internal bandwidth. These cores manage many operations including I/O

request scheduling, wear-leveling, garbage collection, and other data management through

FTL. SSDs also provides a DRAM faster memory which is faster than NAND flash memory.

It acts as a buffer to reduce latency among the communication of those elements storing

temporary controller data structures basically. It is connected through a DRAM controller

which helps with a specifics hardware interface.

Error Correction Code (ECC) accelerators are also provided by SSD devices. It

acts by providing several hardware accelerators to reduce error correction code processing

or data encryption. The Host I/O interface makes the interconnection between the SSD

component and the computer system. It receives I/O operations from the host CPU and

distributes among the other elements presented into the SSD controller. The connection

between SSD Controller and NAND flash memory chips is performed through flash interface

channels that send specific commands to execute I/O operations in individual channels in

parallel. It is worth noticing that Figure 15 presents basic elements from a modern NVMe

SSDs (KOO et al., 2017).

43

intermediate software layer called FTL. It has many functionalities that help and improve

the management of data in flash devices and are discussed below.

Merging these two approaches is one way to solve the update problem consciously.

To understand how these operations can be carried out jointly, let’s suppose some scenarios.

Figure 16 presents one flash ship with two die elements. Each of them has two planes and

each with 4095 blocks being composed of sixty-four pages. In the beginning, all pages

are empty and the system is able to perform program operation (i.e. write operation) on

the pages. After performing it, some pages are now used and it contains data that in the

future will be retrieved.

It is worth noticing that much data are sent to be written on the pages, the FTL

layer coordinates the quantity of free, used, and stale page status of all blocks and tries to

manage through the wear leveling the data on the blocks. In some states after performing

many program operations and stamping some than with stale status, after writing the

updated data to an empty page, an "update" should be necessary to set the stale pages

free again. But as we know, the stale pages cannot be turned free again without the entire

block first being erased. First, it is recommended to copy the used pages somewhere else

and after that erase the entire block. It should be very good managed by the FTL because

if there are not free pages where the used pages could be copied, a problem related to no

space on the device will raise even owning stale pages.

Suppose, in Figure 16, that plane zero has sixty-three used blocks and one is half

empty. Make the assumption that there is only its plane into the flash chip. At a certain

moment, the quantity of used pages on a first block is greater than the number of free

pages on the half empty block and its first block has an uncertain quantity of stale pages.

This scenario makes the first block to be erased necessary to turn these stale pages free

again to free up more space. However, it is very likely that this operation will never free

up again because there are no free pages on the half block to copy the user data from the

first block to then erase it. This situation should be prevented by algorithms managed by

FTL because intensive I/O operations make it frequently and depend on such memory

devices to manage data.

Flash Translation Layer - FTL

The FTL is an important layer that can be implemented in different ways in storage

systems. One of these perspectives could be in the form of software where the FTL layer

can be introduced into the SSD controller. Another way to introduce it is by implementing

it as a hardware layer into the storage systems. FTL has the purpose of intermediate,

rearing, and adjusting, software systems and hardware devices toward the best fit among

them and have been introduced by many researchers in different ways. Figure 17 presents

the overall architecture of flash memory systems with the FTL layer applied between the

file system and the flash memory chip. However, FTL algorithms not only have a great

45

first approach, block-level FTL schemes map the logical block to a physical block fixing a

page offset within a block.

Hybrid FTL - (HFTL) HFTL differs from the previous version in some ways.

One of them considers the division of the blocks level function in NAND flash chips. The

FTL software firmware arranges the blocks in data and log blocks assigning different

functions to each block. Block-level mapping is responsible for managing the blocks and

represents the storage space. These blocks are named data blocks. On other hand, the

blocks reserved for logging newly updated data that are managed by page-level mapping

are designed as log blocks.

Although the overall number of blocks used as log blocks is quite small, the FTL

algorithm manages the relation between the new and old data into pages of these blocks.

As mentioned in subsection 2.2.4, each block contain a number of pages and if this block

was designated by the FTL algorithm as a log block, these pages will receive only newly

updated data. As the new data are being updated into log blocks pages, the quantity of

free pages becomes small and scarce and the FTL algorithm has the function of deal with

that fact.

The question is solved through an operation performed by the FTL called merge

operation, which aims to create new free pages in log blocks. The valid pages presented

in log and data blocks are merged into new data blocks, releasing free log blocks. It is

described by (LEE et al., 2016) three interesting types of the merge operations called

switch merge, partial merge, and full merge.

2.3 HIGH-PERFORMANCE STORAGE ENVIRONMENTS

Storage systems can be interpreted as being two different elements. It can relate to

a software management system that organizes and control how data are stored, accessed,

manipulated, and retrieved. Parallel File Systems (PFSs) (e.g. Lustre(BRAAM; SCHWAN,

2002), PVFS(ROSS; THAKUR et al., 2000), Ceph(WEIL et al., 2006)) and key-value

(Redis, Riak, Dynamo, Voldemort, BerkleyDB), document-based (MongoDB, ChuchDB),

wide-column (Cassandra, HBase, BigTable, Hypertable) and graph-based (Neo4j) databases

are some examples of software that manages data into storage systems. However, storage

systems can also relate to a storage environment usually composed of much storage media

(e.g. magnetic disks, tapes, solid-state drives, etc). In a large-scale environment, this

storage connects media devices through high-speed network connectors (e.g. Infiniband,

Myrinet, Omni Path), but also in small environments its devices are connected through an

Ethernet network. This environment might also provide reliability over the data employing

data redundancy and distributing data over different disk media.

This feature is provided by a Redundant Array of Inexpensive Drives (RAID) and

46

can also be introduced by a hardware or software implementation. When implemented

from a software perspective, the operational system (OS) makes the RAID management

through the disk controller. In such a case the necessity to employ a RAID controller is

discarded and because of that is costlier than the other approach. On the other hand, the

hardware implementation uses proprietaries disks layouts, that are unique and usually

not compatible with each other. Because of that, hardware implementation requires a

dedicated controller for this task turning its implementation expensive. As explained

before, in this research we are considering the storage system as being a combination of

software and hardware that works asynchronously.

Many factors such as the big disparity between processing and storage followed by

the large quantity of produced datasets by large-scale applications support some author’s

idea that new storage models become necessary. It is worth noticing that some proposed

studies advocates new storage forms considering similarities by the way HPC and Big

Data applications manage their storage system (THE. . . , 2018). Figure 18 presents some

similarities and differences considering HPC and big data environments.

Figure 18 – HPC and Big Data Computing Architecture (THE. . . , 2018)

On the left, we verify a basic HPC stack composed of software and hardware

elements. Usually, an HPC stack is computing-oriented and deal with interaction among

parts of an entire system. By being computing-oriented, usually, this class of environment

operates large sets of data in parallel using a big quantity of CN at the same time to target

a desirable result. HPC application are usually iterative and closely coupled (THE. . . ,

47

2018). The entire system tends to be busy running only one application or instance of that

application. CNs are connected throughout a high speed interconnects (e.g. Infiniband,

Myrinet, Omni Path) in which data sets are shared using message passing. Therefore,

connecting several CNs throughout quickly interconnects fabrics, the parts of the systems

can be visualized as a big and unique supercomputer.

On the other hand, Big data stacks present different characteristics and were

designed to deal with other classes of applications and problems. Usually, this environment-

class is data-intensive and uses a big quantity of data sets to generate and discover insights

over the computed data. In this class, data are divided over many parts of a whole

and distributed over multiple instances of the same application. Differently from HPC

architectures, here is interesting to having several CNs with medium performance rather

than having highly powerful nodes as required in HPC environments.

2.3.1 Big Data

The ever-increasing data production and consumption have changed how enterprises

and academy are dealing with information. Engineering (e.g. molecular nanotechnology,

and earthquake), business (e.g. computational finance and information retrieval), natural

sciences (e.g. bioinformatics and astrophysics) are some of the many data study fields

which contribute to this increasing scenario. However, these research studies do not

only require a high power processing but also generate a massive volume of data. Data

acquisition, storage, analysis, and visualization have an important role in this data deluge

found nowadays. For instance, in the astrophysics field, data acquisition is very well-known.

Data that came from the exploration of galaxies which tries to capture as much as possible

propagated wave signal over the space to find patterns and discover how the galaxies are

evolving are captured from huge telescopes endlessly. The analyses of these large volumes

of data is another important step in this scenario which consumes much power processing

from resources to generate understandable information through the visualization process

for post-human analysis.

IDC predicts that, by 2025, more than 175 zettabytes (ZB) would be the total

amount of generated, captured, replicated, and consumed data on a global scale (REINSEL;

GANTZ; RYDNING, 2018). These data arise from three primary locations through a

mapped ecosystem which are: the core, edge, and endpoints. The core is composed

of elements presented in large data centers such as private and public cloud and it is

responsible for the largest part of this data projection. Edge is the middle layer which is

composed of elements such as branch offices and cell towers. In the border, it is possible

to notice the endpoint where the data flow to the core. This layer is composed of some

elements such as mobile, vehicles, and assets.

Figure 19 presents a historical and data projection over the next years until 2025

48

according to these three fore mentioned elements from a creating and storing perspective.

A mentioned point is that the elements that have created and stored the data do not

need to be the same and have different comportment through time. From a data storage

perspective (dotted lines in Figure 19), it is possible to notice that the amount of data

being stored in endpoints are decreasing quickly and, by the graphics, it has already

crossed the quantity of stored data by the core element. The stored data in the core is

growing at an accelerated rate and is expected to be the most used way to store data in

the future. The edge data store seems to be increasing at a low rate compared to the core

and by the projection, in 2025 it will be something about seven times smaller than the

amount of data stored in the cores. By creating data perspective (solid lines, in Figure 19)

the endpoints elements are also declining, the core and edge are increasing their data

creation ratio and the difference between them and endpoints are truly significant.

Figure 19 – IDC White Paper, Creating and Storing Data by Core/Edge/Endpoint (REIN-
SEL; GANTZ; RYDNING, 2018)

Big Data is a paradigm, usually referred to as 5Vs, (e.g. volume, velocity, variety,

value, and validity) that employs data sets management. Usually, the quantity of created

data is so big that conventional software and techniques can not deal with this data without

employing some bottleneck process. This refers to the volume term aforementioned. The

velocity in which the data change is also concerned. It grows quickly in seconds fraction

imposing even more processing efforts. The variety refers to the diversity of these data.

Nowadays, data is captured over a broad range of sources (web data, business generation,

mobile data, and so on) Data can be also structured or unstructured and, nowadays, the

big quantity of existed data is unstructured imposing more effort to organize them before

processing and analyzing. Value is concerned about adding value over the processed data

to enterprises. Enterprises usually generate much data and obtain interesting business

value and insights over these data are also concerned. This is usually referred to as data

analytics that targets to make better decisions and improve performance. Validity relates

to the validation of the data, in other words, the quality of the data.

To help in those processes, usually big data employs specific methodologies. As

49

a result, NoSQL and New SQL software environments (e.g. MongoDB, BigTable, Re-

dis, Cassandra, HBase, Neo4j, and CouchDB) were conceived to tackle some problems.

Methodologies and frameworks designed for this processing such as a map and reduce

also tries to improve the big data processing field. Collecting, organizing, and analyzing

are interesting big data process phases in which big data applications and computing are

submitted. When we noticed these terms description in authors’ papers we classify its

domain as being a big data domain.

Figure 20 – Partial landscape of disk-based and in-memory data management systems
(ZHANG et al., 2015a)

Figure 20 presents a landscape that relates devices and storage management systems.

We noticed that many of these systems are designed and projected to use a different class

of storage media. Although these are not all the systems that represent such medias

devices, we can verify a broadly and distributed variety of management systems

2.3.2 High-Performance Computing (HPC)

HPC is associated with the class of compute-intensive workloads, applications, and

performance-critical tasks that use a highly powerful, multilevel, hierarchically organized

computing resource designed to address problems that require exhausting processing.

These workloads usually refer to simulations and modeling problems commonly found in

the scientific and industrial fields that are infeasible to be processed on a unique hardware

capability.

50

Usually, HPC applications are executed in parallel using small parts of a whole

system in different and distributed hardware through a synchronized process way. These

applications commonly need to perform a huge quantity of computing operations to process

the expected or simulated result. Usually, they are built considering different low-level

parallel paradigms and programming models such as OpenMP (CHANDRA et al., 2001),

MPI (SNIR et al., 1998) and PGAS. Generally, HPC storage system environment can be

summarized into different sets of nodes.

CN, IO Node (ION), and SS which is composed of SN, are elements that the most

high-performance computing environment presents in their architectures. This kind of

environment usually employs a buffering layer(e.g. Burst Buffers (BBs) (ALI et al., 2009)),

Parallel File Systems (PFSs) (e.g. Lustre(BRAAM; SCHWAN, 2002), PVFS(ROSS;

THAKUR et al., 2000), Ceph(WEIL et al., 2006)) and finally a layer responsible to

aggregate the storage devices (e.g. RAID Controller). When we noticed these terms

described in the author papers we classify the paper domain as being an HPC domain.

Commonly called HPC applications, those applications are usually executed in

parallel using small parts of a whole system in different and distributed hardware through

a synchronized process way. Usually, they are built considering different low-level parallel

paradigms and programming models such as OpenMP (CHANDRA et al., 2001), MPI

(SNIR et al., 1998) and PGAS. However, to attach this feature, these applications should

be projected using parallelism where the programmer specifies and finds the software lines

code that can be improved by such a paradigm. In the running application process, it

will be probably divided into sub-tasks which will be distributed among different nodes

and executed by many compute units at the same time. Figure 21 presents the simplified

schema for an application executed into an HPC infrastructure.

Figure 21 – The process of application execution (ZHA; SHEN, 2018)

Towards maintaining processing closer to auxiliary memory, each CN has a dedicated

fast storage device used to reduce the latency when performing computational operations.

The fast read and write device acts as an auxiliary memory space for the applications’

51

data management and it is usually applied as a cache or a burst buffer layer. CN become

composed of many sub-tasks which were divided by a computational task and distributed

for all of them. Each sub-task can be assigned to a process and the more the number

of processes on each compute node, the short the complete time of overall application

due to the higher parallelism (ZHA; SHEN, 2018). However, CN are directly connected

to specifics ION and then, through a high I/O network, they can send the data to be

stored into the SS which is managed by a PFS. HPC applications have been developed

using mainly two storage levels: the main memory and a globally-visible PFS (LATHAM;

BAUTISTA-GOMEZ; BALAJI, 2017).

HPC applications are executed mainly into CN which is exclusively nodes ded-

icated for processing. It becomes composed of many sub-tasks that were divided by a

computational task that were distributed for those dedicated machines. However, the

processed data are managed by PFS (e.g. Lustre (BRAAM; SCHWAN, 2002), PVFS

(ROSS; THAKUR et al., 2000), OrangeFS, Ceph (WEIL et al., 2006) that manages the

flow of processed data from CN to SN.

They are composed basically of three elements. The first element is the clients that

are executed into CN and are responsible to provide the interface to the PFS. They also

claim frequently many data blocks for PFS and their requisition are striped across various

data servers through parallelization increasing than the performance request on SN. The

second element is the metadata servers that are devoted to performing management tasks

such as file naming, data location, file locking among others. They have an important

role in data management architecture. When some data is required, it is very difficult to

access it without requiring them for these metadata servers. They have the right local

for accessing each data into data servers. Moreover, they check the requester and give

them proper access authorization. Thus, metadata servers are normally replicated and

distributed for reducing bottlenecks. The third element is data servers which are executed

into SN. Once such data access is given by metadata servers, data servers perform I/O

operations (e.g. read, writes, etc) on locally stored data.

To get the best out of it, these applications need a special environment to be

executed. HPC computing environment relates a specific and architecture hardware

environment projected to execute those costly workloads. They were created targeting

increasing the power processing computing by sharing resources and parts of individual

hardware systems forming a unique and synchronized powerful system. It is synchronized

over a class of nodes designated mainly for computing operations called CN. These nodes

are usually multi-cores which increase the power processing and permit applications to

use parts of the system in exclusive mode.

To maintain the data synchronous over the computation, the nodes communi-

cate with each other by effected message parsing process and it requires a high-speed

53

application or resource, the PFS can be a single I/O request, serve the application request

leveraging the aggregated throughput of the high-speed network interfaces and media

devices to improve the data transfer rate. HPC storage stack that compose the SS is

presented in Figure 23.

Figure 23 – Typical HPC storage
stack. (HE; DAI; BAO,
2019)

Figure 24 – Overview of Storage Hierarchy in
HPC Systems. (LIANG; CHEN; AN,
2019)

The first layer is the HPC application layer which is attached to the I/O software

stack. It includes high-level I/O libraries (e.g. HDF5(FOLK et al., 2011), NetCDF(LI et al.,

2003), ADIOS(LOFSTEAD et al., 2008)), I/O Middleware (e.g. MPI I/O ROMIO(ROMIO. . . ,

2020)), Buffering Layer (e.g. Burst Buffers(ALI et al., 2009)), PFS (e.g. Lustre(BRAAM;

SCHWAN, 2002), PVFS(ROSS; THAKUR et al., 2000), Ceph(WEIL et al., 2006)) and

finally a layer responsible to aggregate the storage devices (e.g. RAID Controller). These

layers are composed of many parameters and have different configurations that affect

directly the application’s performance. Figure 24 presents the storage hierarchy commonly

found in HPC environments where is possible to notice some media devices. Into the CN

it worth noticing that there are two memory devices named RAM and NVM. This NVM

device was already mentioned in Figure 21 as an SSD device. Of course, this NVM media

device does not necessarily have to be an SSD but this device is widely used due to its

price and high-throughput compared to the other NVM devices.

2.3.4 Data-Intensive Scalable Computing

Data-Intensive Scalable Computing (DISC) systems appeared due to the necessity

to deal with a huge and massive amount of data. In most cases, these data need to

be processed and organized through a system that could acquire, update, share, and

archive datasets in an organized way. Although DISC systems came to fill requirements

with an emphasis on data solution, it performs sophisticated computations over these

captured data. The increased growth of the internet infrastructure led by companies

such as Google, Yahoo, Facebook, and Amazon is an inspiration factor to DISC systems

54

creation. These leader companies create new methods and technologies to solve and deal

with their particular problems. These factors converge in a high-level system with goals

such as scalability, fault-tolerance, availability, and cost-performance. Although these

applications come from diverse scientific domains, they concern the role of data in their

computation.

Bryan et al. (BRYANT, 2011) pointed out four key principles related to DISC

systems, although some of them are directly related due to the hardware nature.

• Intrinsic data. The system has the duty to collect and maintain data instead of

associate it with the users. As happens on most systems, it should update information

processing them through background tasks. It also should implement reliability

systems such as replication and error correction to ensure availability and integrity.

• High-level programming models Those systems usually employ programming models

to process data consistently and independently. They are built considering paral-

lelization and distributing concepts that do not are attached to specific hardware or

machine.

• Interactive access The requirement for computing and storage should be independent

and allow a variety o set up. Users also should be able to execute these programs

interactively using abundant provided resources. The system should be able to

return an input query quickly allowing computations in the background without

losing systems performance.

• Scalable mechanisms ensuring reliability and availability. Indeed, DISC system work

and consider data as the main element presented into it. Thus, these systems should

provide reliability and availability mechanisms over-processed data to ensure data

access when failures occur.

DISC systems also take advantage of PFS in their distributed nodes. Although

the storage system is not disjoint from processing, it is usually managed by a PFS that

manage the data providing high access ratio. In such a case, the storage device is attached

directly to each individual server. It is also improved by external systems that ensure

availability and reliability through replication over data. Concerning data processing,

some big data frameworks such as Apache Spark and Hadoop are examples of tools to deal

with DISC applications. These applications rely on powerful data processing operators

such as Map, Reduce, Filters, etc (VALDURIEZ et al., 2018). In general, requirements

such as data analysis and visualizations were not achieved by DISC systems because these

environments were not designed for scientific applications.

55

2.3.5 DISC Storage System

Data-intensive computing facilities are projected to provide better performance

and data management without losing cost-performance. The hardware infrastructure for

DISC systems, although it varies depending on the objective adopted by the company or

research institute, they presented common hardware aspects being labeled as WSC.

Figure 25 – Storage hierarchy of a WSC (BARROSO; CLIDARAS; HÖLZLE, 2013)

Figure 25 presents the storage hierarchy of WSC environment. It is mainly composed

of servers grouped into racks creating a cluster. The layer above presents the structure of a

server composed of a number of processor sockets particularly composed of microprocessors,

each with its cache hierarchy and a local RAM memory distributed among the processing

units. It is also attached to its magnetic devices and/or flash-based devices such as HDDs

and SSDs. The connection between these servers is layered. Servers are connected within

rack-level through 1-gigabit-per-second (Gbps) Ethernet switch, later, racks are connected

to another cluster-level switch through 1 or 10 Gbps Ethernet switch Therefore, all servers

are connected, each containing its memory hierarchy, its processing core, and its storage

devices locally forming a clustered environment. The hardware present in this type of

environment is not based only on performance, but on a price-performance ratio.

56

2.3.6 Cloud computing

Cloud computing can be classified into a model of services where computing is

commoditized and delivered based on a service-level agreement between server providers

and consumers. Usually, it employs a parallel and distributed system resource that allows

users to access and configure many computing resources (e.g. servers, storage, processing,

applications, networks, etc). This model allows users to access and use the required

resources without worrying about where and how this resource was implemented. Thus,

users or anyone that agree with the use terms and pay for this resource usage (e.g. business

enterprises, government, etc) can access remotely the resource and applications.

Contracting a cloud resource reduces enterprises’ costs compared with the in-

place implementation providing easily and quickly resources to upgrade. Thus, providers

such as Amazon, Google, IBM, Microsoft established data centers designated only for

hosting cloud computing applications and resources ensuring high availability for data

and applications access. The access to this resource is usually performed through a

virtualization platform or hypervisor technologies such as Virtual Machines (VMs). This

resource ensures corresponding access to the underlying hardware required isolating it

from other hardware and applications. When we noticed these terms described in the

author’s papers we classify its domain as being a cloud domain.

2.4 FINAL CHAPTER CONSIDERATIONS

In this chapter, we presented the fundamentals necessary to the understanding of

the subject that were discussing. We highlighted the existing gap between power processing

and storage latency that increases the I/O bottleneck problem. Further, we presented some

information about the storage hierarchy. We discussed some technologies that compose

this hierarchy through a primary and secondary storage subdivision. Although the primary

storage was mentioned superficially presenting some characteristics focusing on RAM,

when discussing secondary storage, we provided a deep understanding of how the storage

process occurs into a storage media. The media that composed the secondary storage

were the magnetic tapes and discs with the addition of the optical discs and flash devices.

Information about how the data is written into the chemical surface was also presented

and discussed. Furthermore, we discussed high-performance storage environments and

their characteristics. HPC, DISC Big data, Cloud Computing environments with the

highlighting of the storage used in all of them was discussed and used as a field for further

discussion.

57

3 SYSTEMATIC MAPPING

In this chapter, we present a tertiary study of the literature presenting how

this model can help researchers and academy with interesting insights about the area

development.

Systematic Literature Reviews (SLRs) and Mappings (SLMs) are secondary studies

that address a research topic targeting answer related research field questions. It uses

individual studies, or primary studies, as input information and aggregate results over

the targeted research area for further researchers usage. To reach the desired level of

understanding, SLRs try to identify, evaluate, and interpret all primary researches that are

inserted on a delimited field scope, area, or phenomenon of interest. It is mainly used in

medicine and health care disciplines and was adopted by other areas including psychology,

economics, medicine, etc (KITCHENHAM; BUDGEN; BRERETON, 2011).

There are many advantages to performing secondary SLR and SLM studies. This

type of research allows finding any possible gaps of specific topic research and direct

further efforts. It is important because research gaps delay the development of a specific

research field or technology reducing then the overall development ratio. Reducing these

gaps might increase the research field’s potential to achieve better results. It also brings

the state of the art of the research field bringing and summarizing existing evidence related

to the topic. Further, we also are able to verify which are the limitations presented in the

research field, directing solutions to solve these limitations.

Evidence-based software engineering (EBSE) (KITCHENHAM; BUDGEN; BR-

ERETON, 2011) targets to aggregate evidence on a specific research topic using secondary

studies (e.g. SLRs and SLMs) as a methodology to aggregate empirical evidence. A sys-

tematic review is categorized as research methods aimed to identify, analyze, and interpret

evidence related to a specific research question (WOHLIN et al., 2012). Mapping reviews

use an equivalent methodology to identify and aggregate empirical results, differently,

it does not discuss the relative merits of the presented research though. Kitchenhan et

al. present an interesting research discussion about the importance of mapping stud-

ies in the software engineering field (BRERETON; KITCHENHAM, 2007). To present

complete and satisfactory results, the research phases must be carried out scientifically

and methodologically (WOHLIN et al., 2012). Kitchenham (KITCHENHAM, 2004) has

adopted changes in these areas by formulating a systematic mapping approach for software

engineering research issues. The proposed systematic mapping process consists of three

phases: planning, conduction, and reporting of results (KITCHENHAM, 2004). This

process methodology permits the audit of a study and improves its reliability. Therefore,

this mapping was organized based on the main activities proposed by Kitchenham.

58

3.1 MAPPING PLANNING

There are at least five activities involved in the phase of planning (KEELE et al.,

2007). However, we present here three main topics of this phase, namely: identification of

the need for mapping, the specification of the research questions, and the development

of a mapping protocol. Identifying the need for performing a systematic mapping is

the first activity that the planning stage requests. Researchers are constantly updating

their view of a subject to monitor its development. However, for new researchers and

non-experts, understanding the overall development might be confused. Summarizing all

this information without introducing bias is a common researcher requirement because

it allows analyzing the phenomena getting general results that primary results do not

present.

The research question specification is also an important activity of this planning

phase. Every research seeks a solution to solve some issue, improve performance, or

generate specific values. In general, the development of research might be justified by the

necessity to deal with the subject. Specifying the research question is the most important

part of any systematic mapping (KEELE et al., 2007). It is used as a guide that shapes the

entire SLR research. Thus, research questions are the elements that identify the primary

studies for further analysis.

The development of a mapping protocol in which the study will be supported

can be understood as the act of putting the protocol into practice, specifies the used

methods, and respecting the pre-established definitions. Among the criteria presented by

Kitchenham (KITCHENHAM, 2004), for the development of the mapping protocol, we

highlight some items that define the research process we considered in this mapping.

• Background.

• Research Questions Definition.

• Search Strategy for Primary Studies.

• Inclusion/Exclusion Selection Criteria Screening.

• Classifying the Papers.

• Data Extraction Strategy.

• Data synthesis.

The need for this research is based on the fact that, to date, to the best of our knowledge,

no systematic mapping has been found addressing the presented topic. We can better

define the objective of the present work as "Classify and identify, systematically, the

59

evidence, methods and approaches proposed by researchers that have been used to improve

the I/O performance of storage environments."

3.1.1 PICOC

Research questions should bounder the research scope. Petticrew and Roberts

(PETTICREW; ROBERTS,) suggested considering an extended medical guideline, PICOC

(Population, Intervention, Comparison, Outcome, Context), to construct the research

questions. The elements that compose this guideline are explored below: Population refers

to the group of elements that we are investigating and it is from the interest of the study.

Intervention refers to the element that addresses the study. Make the question "which

element is under the study?" will provide the intervention element. Comparison seeks

to compare the intervention previously specified. Outcome refers to the obtained results

including a practice point of view of them. Context delimits the context in which the

intervention is delivered. To find and discover this information, this PICOC guideline

will also be used to construct the search string. Below is presented our elements defined

through the PICOC guideline.

Population (P): Storage Device and Storage System.

Intervention (I): I/O performance Improvements.

Comparison (C): -

Result (O): Strategy, Method, Approach, and Solutions.

Context (C): - HPC, Big Data, Cloud and Storage Systems.

In this research, we are interested in investigating the improvements that storage

devices and systems received over the years. However, these devices and environments can

be improved by many perspectives due to their development potential. We are particularly

interested in investigating "I/O performance improvements". This is the element that

addresses the study. In this research we are not considering other interventions to compare,

thus, the comparison is null. Further, we are interested in getting all the methods,

strategies, approaches, and solutions that the authors proposed. It also includes which

devices were used, where they were implemented. It is possible to use and propose better

I/O improvements in many research contexts. We are looking for an understanding in

which context the intervention is being delivered. Included considered environments

are (HPC, big data, cloud computing, and storage systems) We also are interested to

understand and visualize in which environment these solutions were experimented with

and evaluated.

60

3.1.2 Research Questions

Following the previous PICOC guidelines, we explore the bounded questions.

Through the research questions, it is possible to identify the primary studies that will

compose this research, data extraction, and analysis. According to Budgen and Brereton

(BUDGEN; BRERETON, 2006), research questions should contain aspects that make

them clear and narrow. To characterize this research, we presented a set of mapping

questions that should delimit the scope studied.

3.1.3 Mapping Questions

MQ1: How many studies have been published over the years? The first question

addresses the general evolution over the years of a specific research field. This question

can be used to map the improvements realized by the researchers. We also verify how was

its development, whether researchers are increasing or decreasing over the years. This

question can be used to encourage new researchers on new topics of researches.

MQ2: Which publishing vehicles are the main targets for research production in the

area? From the publication channels, it is possible to extract which researches are being

carried out most frequently, thus enabling researchers to see more broadly the development

of the area studied by the population and the academic community.

MQ3: Who are the most active authors in the area? We are interested in presenting

the authors who contribute the most to the research area, thus offering a bibliographical

analysis for new researchers who want to contribute to the presented area. This might

help and encourage new researchers to interact with the researcher’s study.

MQ4: Which are the author’s relationship and how these authors interact with each

other? MQ4 allows us to understand how authors are interacting with each other. How

they network collaboration works and how they are located in their collaboration network.

MQ5: Which storage object are receiving more improvements targeting better I/O

performance? Throughout this research question, we are able to see, in general, which

class of improvements is being targeted by researchers. We can further analyze and verify

which storage area has more necessity to be improved. This research question allows us to

direct future I/O performance improvements to fill future development gaps.

MQ6: Are the authors considering energy consumption in their proposals? This

question allows us to analyze and verify if authors are considering any power consumption

61

method in their research when trying to improve I/O performance. We also provide a

distribution according to each proposed characterization model. We want to analyze how

power saving has been proposed by researchers. We can further analyze which class of

improvements are considering energy savings at most, which of them needs to be boosted,

and how that progress occurs according to the methodology method.

MQ7: Which devices were considered when proposing I/O improvements in storage

environments? This research question allows us to have an overall overview of the most

used devices in the authors’ approaches that targets I/O performance improvements.

Through this question, we can direct future efforts to improve I/O performance to specific

storage devices.

MQ8: How those considered devices are distributed according to each classification

model? This question allows us to visualize which devices are being used to improve I/O

performance according to each perspective.

MQ9: How authors improvements are evaluated and which tool they used in their

experimentation? This question allows us to visualize how authors evaluate their proposed

method, which mechanism they are using, and how these mechanisms related to the specific

research field were studied here.

MQ10: How hardware devices are being proposed by researchers targeting better

I/O performance? (H2H-IO) MQ10 allows us to check which hardware devices are being

proposed by authors to improve I/O performance. We can also verify in which class of

hardware this other proposed hardware is improving.

MQ11: Which Software Class Hardware are Improving and which are this proposed

hardware?(H2S) This question allows us to check which software is being boosted when an

author proposes hardware to improve its performance. We also verify in which class the

software beholds.

MQ12: Which kind of environment-class is receiving researchers attention when

the hardware is proposed as a solution to improve I/O performance on a storage system?

Which devices they are using at most? (H2SS) This question allows us to understand how

the experimentation is being performed according to the environment that it is performed.

It allows us to visualize how bigger is the storage environments where hardware is proposed

to improve its I/O performance.

62

MQ13: Which software class is being improved by researchers when a software

solution is proposed and where are those software improvements being implemented? (S2S-

IO) This question allows us to visualize which class of software is being improved by

researchers when the proposed solution by the author is a software object that targets

I/O improvements. It also allows us to visualize where those proposed objects are being

implemented. We verify that although some solutions improve software I/O performance,

there are cases when the object is implemented in other software objects instead of the

same improved software.

MQ14: Which Hardware class are receiving more software I/O improvements, where

are those software solutions being implemented, and which device class researchers are

using to perform the experiments? (S2H-IO). Through this research question, we show

which device is receiving most authors attention when the I/O improvement is target and

where they are being implemented and which class these implemented elements belong. It

also allows us to understand how authors solutions are being evaluated, which environment

they are using to evaluate their solution and which software is used to perform its evaluation.

MQ15: How researchers are evaluating their software solution that targets I/O

improvements on storage systems, where are those software solutions being implemented,

and what is the size of the user environments on the experimentation? (S2SS-IO) This

question shows us where the solutions to improve I/O performance on storage systems are

evaluated. As verified by previous analyzes, we also present where the author’s solutions

to improve I/O performance on storage systems were implemented. We are able to verify

whether the evaluated environment is bigger, small, or software simulated. It also allows

us to identify which large-scale environment was most used by researchers to evaluate their

solution. Through this question, we verify that general storage systems and cloud storage

systems environments keep getting researchers manageability. Although some solution

targets storage systems, we verify that some authors evaluate their solutions in simulation

software. At this point, we verify which were these software and which were this usability

frequency. Finally, we also verify what are the size of small environments used by authors

to evaluate their software solution. We notice that, although the proposed object has the

potential to improve large-scale systems, some authors evaluate their solution in small

environments.

MQ16: How are architectures proposed by researchers being built? In which context

they are proposed? Where are those solutions being implemented? How is the size of

the environments that evaluate architectures? This question shows us where the new

63

architectures solutions are evaluated. We are able to verify the class of these architectures

and their size. We also identify which large-scale environment was most used by researchers

to evaluate their architecture solution. We verify what are the size of small, large-scale,

and software-simulated environments are used by authors to evaluate their architecture

solution. As happened in the storage system class, here, we verify that some authors also

evaluate their solution in simulation software.

3.1.4 Inclusion/Exclusion Criteria

Inclusion and exclusion criteria target selecting research studies that fit the pro-

posed research questions. To obtain an adjustment and a better performance in the

evaluation of the studies found, the inclusion and exclusion criteria that were used to

obtain the primary studies are presented below. After identifying the primary studies, the

studies were subjected to the inclusion and exclusion criteria listed below:

Inclusion Criteria:

IC1: Articles dealing with solutions regarding I/O performance improvement on storage

environments AND

IC2: Articles published in English AND

IC3: Articles that necessarily have a title and abstract AND

IC4: Articles published at peer-review events, such as workshop OR conference OR maga-

zine.

IC5: Articles published from 2009 to 2019

IC6: Articles that consider some storage devices.

IC7: Articles that concerns storage devices.

Exclusion Criteria:

EC1: Articles that do not treat solutions regarding I/O performance improvement on

storage environments OR

EC2: Articles that were not published in English OR

EC3: Articles that have no title OR abstract OR

EC4: Non-peer-reviewed papers OR

EC5: Articles published before 2009 and after 2019.

EC6: Articles that do not concern about storage devices.

EC7: Articles that that do not concern about storage devices.

64

3.1.5 Sources

The database selection process followed some criteria as described below:

• Ability to perform a search with logical characters.

• Ability to search both the body of the document and metadata such as title, keywords,

and summary.

• Repositories that are within easy reach.

• Repositories containing Computer Science and Engineering content.

Six repositories were chosen that meet the above criteria.

Table 4 – Selected Sources

Sources URL
ACM Digital Library https://dl.acm.org/

EI Compendex www.engineeringvillage.com
IEEExplore ieeexplore.ieee.org

ScienceDirect www.sciencedirect.com
Scopus www.scopus.com

Springer www.springer.com/

3.2 STRING SEARCH

The query string construction followed the PICOC guideline presented in item

2.1.1. However, for selecting the used terms, we presented a used methodology when

choosing the string elements. Trying to find the papers that propose I/O improvements

for storage devices and systems, the first element of the string is directly related to the

Population presented on PICOC. The second line is a specification of possible devices that

could be used to receive I/O improvements. It is worth noticing that, these device terms

were carefully chosen. The search string was generated by joining the elements through

AND/OR logic connectors. As presented below, some similar synonyms and terms have

been added, thus aiming at greater effectiveness in returning primary searches.

Storage environments are composed mainly of devices Hard Disk Drives (HDDs),

Solid-State Drives (SSDs), and Tapes. Trying to cover these storage media, the first

element in the second line of the string "flash" was chosen to consider the possibility to

find flash devices and flash storage systems. During manually papers searching, we verified

that storage environments that employs SSDs, or flash chips are constantly referred to as

flash storage systems or even flash storage (WANG; DONG; MING, 2015), (HUANG et

al., 2017), (PETERSEN; BENT, 2017), (YANG et al., 2017a), (ZHAO et al., 2018) and

(MAO et al., 2018) for instance.

65

On the other hand, improvements on devices also present the flash storage, or

flash-based storage term were found (YOU et al., 2019a), (PARK et al., 2018), (KWON;

KANG; EOM, 2017) and (JI et al., 2017) for instance. The closer to processing the device

is, the more quickly it will be assessed. Normally, these subsets of quickly access devices

receive the name cache and memory. It is also characterized to be volatile, losing all its

content when power is turned off. For this reason, for covering all memory types (e.g.

SRAM, DRAM, Non-Volatile Memory (NVM), etc), we chose the memory term to be

inserted on the specification line of the string. We advocate that this term is capable to

cover quiet types of memory technologies.

The Disk term refers also to a magnetic disk, floppy disk, and optical disk. This

term was chosen because with just one term we referred to at least three device types.

The last term magnetic also relates to magnetic disk and magnetic tape. The third line

refers to the intervention element. I/O latency and I/O throughput are synonyms that

were considered because some researchers express I/O performance correlating it with

throughput and latency.

The fourth line refers to the outcomes that delimit the context in with I/O

performance, in other words, the intervention, is delivered. All elements presented in the

fourth line are non-specific terms such as (algorithms, specific tools, specific frameworks, or

techniques). These terms are able to relate even software solutions and hardware solutions.

In section 3.4 we provide more information explaining why it is important that these terms

have to be generic instead of specific.

Finally, we provide the terms that refer to the context where we are looking to

answer. HPC, Big Data, Cloud, and Storage Systems are usually a huge environment with

high-performance computing and storage. For this reason, we selected these terms that

justify our interest in huge storage.

The final search string was described as presented in Table 5

Table 5 – Used Search String on the Research

String Search
("storage device"OR"storage system")

AND("flash"OR"memory"OR"disk"OR"magnetic")
AND("I/O performance"OR"I/O latency"OR"I/O throughput")

AND("strateg*"OR"solution"OR"method"OR"approach"OR"scheme")
AND("HPC"OR"big data"OR"cloud"OR"storage system")

We evaluated the search string using specific papers that control the results. This

process ensures that the search string is returning the papers that compose the basis of

the study without ranging out of the scope. The desired papers appeared in the results

generating evidence about the search string correctness.

66

3.3 MAPPING CONDUCTION

The most important step of search identification can be simplified by executing

the database search string (WOHLIN et al., 2012). However, there are at least five steps

related to this phase, and they are presented below: (KEELE et al., 2007):

• The research identification

• Selection of primary studies

• Study quality assessment

• Data extraction and monitoring

• Data synthesis

A factor that differs SLR from other research methods is the rigor of applying and

conducting the search process. The purpose of this execution is to ensure that the return of

primary studies is following the terms previously described in PICOC. To cover the entire

primary search, the search string must be executed from the databases described above.

Consequently, duplicate articles may return because they can be indexed by different

libraries. These papers must be identified and deleted.

To assist in this process, we used parsif.al 1, an open-source tool that assists in

the management and execution of the research conduction process. Through this, it was

possible to detect and remove duplicate articles automatically. Besides the removal of

duplicate articles, the tool helped in the classification of the articles, allowing them to

be selected or not for the next steps to map. To classify these articles, we inserted all

the insertion and exclusion criteria in the Parsifal tool and, according to the article, we

classified the researches.

Figure 26 shows that the process was conducted throughout seven steps. After

constructing the string search, we executed them into the libraries shown in section 3.1.5.

Stage one (S1) represents the quantity of returned primary studies. The total

amount of returned researches represented on the S1 stage was 2613. Table 6 presents the

total of returned papers according to each source library. We notice that IEEEXplorer

and Springer were the libraries that returned the greatest number of articles. Together,

they were responsible for covering 65.98 % of the total returned papers.

After executing the string on the libraries, we selected for further steps only the

articles that were presented in peer-reviewed channels. Stage S2 represents this step.

Non-peer-reviewed channels (e.g. Books Chapters, Book Reviews, Editorials, Mini review,
1 https://parsif.al/

68

noticing that, when inserting the values into the tool, we verified that 7 additional papers

that were not counted when we executed the query string had arisen. These non-additional

papers were duplicated papers or papers that had some string special character such as

"&" for instance. These additional papers were all removed on the duplicates stage S5

together with all the duplicated papers.

In stage S5, we present the amount of total duplicated papers that resulted in 294

papers. All these 294 papers were removed.

In stage S6, we began reading all titles and abstracts of the overall quantity of

papers. Here we applied the IC/EC specified in section 2.1.5. In this stage, we also

characterized each paper according to the characterization model that we will discuss in

section 3.4. Through the EC1, EC3 and EC7 were removed 630 papers.

Finally, in stage S7, the articles that we could not classify by reading just titles and

abstracts we had to take more reading to decide whether they covered or not our scope.

To verify, we read for each paper the introduction, proposal, and conclusion finalizing the

overall data process extraction. We finalized the data extraction process with a total of

517 accepted papers.

3.4 I/O CHARACTERIZATION FRAMEWORK

Classifying the articles following a methodology helps us to reduce the possibility of

researcher bias. For this reason, it is recommended to create a protocol to select individual

studies and classify them independently. We used our characterization model presented

by Figure 57 to classify all the selected papers (PIOLI; MENEZES; DANTAS, 2019).

However, we present and discuss how this step was performed. In the data extraction

process presented before, while reading the titles and abstracts in step six, we found the

elements that satisfy this framework. When researchers propose solutions to improve I/O

performance in storage environments, we verified that the proposed solutions belong to

a specific domain. Each edge presented on the Figure 57 represent one characterization

proposal.

3.4.1 3WPIT

After classifying all accepted papers, we created a second framework phase for

further data extraction and classification. Considering our research question presented in

subsection 2.1.2 and 2.1.3 we applied the 3WPIT classification.

• What - was Proposed

• Where - it was Implemented

• Which - Technology was used.

69

For researcher verification and audit, all files that were part of this research can

be found in GitHub 2. There, researchers can find the "articles.xls" file that contains all

classified papers and the reason why the rejected papers were not included. In this file, in

the "comments" column, it is possible to verify the extracted data related to each paper.

All brackets represent extracted data from the read paper that is directly related to the

3WPIT characterization. Although each classification has its proper classification elements

due to the different research question, the basic elements and the meaning of its content is

presented below:

[Proposed element]-[Improved/Implemented element]-[Used technology]

[Article theme]-[Power Concerning]-[Evaluation method (benchmarking)]

Depending on the domain of the paper that is receiving the improvement, the

second bracket of the first line will follow the rule presented below.

• S2S-IO - [(Improved Class)[Implemented place]]

• S2H-IO - [(Improved Device)[Implemented place][Used device]]

• S2SS-IO- [(Domain)[Implemented place][Evaluated Environment]

• H2H-IO - [[Improved Place]]

• H2S-IO - [Improved Object Class(Improved Object)]

• H2SS-IO- [Improved Class[Implemented place][Evaluated Environment]]

We recommend researchers to use this classification when publishing their paper.

Although we classified the paper for this research, we strongly believe that this data can

be provided more accurately by the author of the research. Therefore, we recommend that

as the researchers find this article, they can make the necessary correction if there is a

quirk in the object classification process.

3.5 SYSTEMATIC MAPPING REPORT

In total, 2613 articles were returned whose distribution can be verified in Table

6. Of those 2613 articles found, 327 were excluded because they met the EC4 exclusion

criteria. After that, we applied EC6 and exclude 588 papers which gave us a total amount

of 1698 papers. Figure 27 represents the actual scenarios of stage S4 presenting the number

of loaded articles according to its source extraction.
2 https://github.com/laerciopioli/Systematic-Literature-Data.git

70

Figure 27 – Proportion of Loaded Papers in Parsifal by Source

IEEEXplorer and Springer had the highest proportion of loaded papers in the

Parsifal system. Together, they imported more than half of all papers to be analyzed. From

those 27,3% evaluated papers which correspond to 466 documents of springer library, 109

were accepted. 175 researches were represented by Scopus library with 10,3% papers. From

those, 29 papers were accepted. Science Direct had 242 evaluated papers corresponding to

14,2% with an acceptance of 45 articles. IEEEXplorer had the highest representation with

627 papers that corresponds to 36,8%. From those, 256 were accepted. The total evaluated

papers from EI Compendex were 64 documents corresponding to 3,8%. From this total, 24

were accepted. Finally, ACM Digital Library represented 7,7% which corresponds to 131

files from the evaluated papers which a total of 65 accepted papers. The total of selected

papers distributed over the libraries can be visualized in Figure 28.

Figure 28 – Accepted and Rejected Papers by Source

3.5.1 Mapping Report

The 517 papers were analyzed and classified to answer the mapping questions (MQ).

Figure 29 addresses the MQ1(How many studies have been published over the years?)

71

question, plotting the number of papers published in each year. We noticed that there

was an interesting increment most of the time.

Figure 29 – Accepted Papers by Year

One fact that can justify this increment in I/O performance publications is the

emerging and popularization of flash memories and SSDs. Although flash memories

emerged in the 1980s, it had not the storage usage as HDDs until the 2000s. There

are many ways to improve SSDs performance. To begin these possible improvements

understanding, knowing their basic structure might help.

SSDs are non-mechanical storage devices, composed mainly of flash memories. Into

this storage device, there are many hardware and software components designated to

correct and improve its performance. Its basic storage structure is composed of NAND

flash packages, each of them composed of flash dies. Each die contains blocks and each of

them contains a set of pages. This hardware structure imposes some limitations such as

I/O request scheduling, wear-leveling, garbage collection among others when performing

I/O operations (e.g. read, writes, etc).

To overcome these issues and improve the flash structure, a SSD usually employs a

software layer called FTL which runs several firmware algorithms. As shown on the other

questions, we verified that most of these I/O improvements are directly related to SSD

devices. We interpret this result as the subject has grown in relevance to the academic

community over the last years.

MQ2 (Which publishing vehicles are the main targets for research production in

the area?) is addressed by the Figure 30. We notice that the IEEEXplorer indexed a

huge quantity of papers in the field studied here when performing the search string. It

corresponds to a total of 48,5% of the accepted papers. IEEEXplorer is followed by springer

with 20,6% of the accepted papers. Together, these two libraries correspond to almost

70% of the total accepted papers here presented. ACM, Science@Direct, Scopus, and EI

Compendex complete this analysis respectively.

MQ3: Who are the most active authors in the area? This research question identifies

74

Although some points run out of the trend, we observed that as more authors belong to a

group, smaller is the occurrence of these groups. This reinforces our argument that the

majority of authors who published the papers in this network comprise a small research

group, thus, forming then small groups. The bigger quantity of researchers is enrolled in

groups with less than five researchers.

However, there is a huge component that is composed of 477 and 1667 edges. These

numbers correspond to 28.34% of the total nodes and 36.95% of the total edges. Targeting

understanding how this network works and how authors are exposed to it, Figure 33

presents this component. In this network, the degree of each author is expressed by the size

of the node. The degree and its connection indicate the author’s relation when publishing

articles with other researchers.

Figure 33 – Largest Connected Component Network

75

Of the nine authors that published more articles in Table 7, eight of them are

found in this connected component. The author Qin. Xiao was identified as belonging to

another component instead of the bigger one. The color scale varying from black to red

symbolizes their betweenness centrality level. The more red is the node, the higher is its

betweenness value and the more black is the node, the smaller is its value.

We also identified what are the betweenness of these authors. Table 8 presents

the betweenness value for all authors presented on Table 7. Y. Wang was the author

that published the higher quantity of paper that concerned with this research, and he

also has presented the higher betweenness centrality value in this network. We verify

this fact by looking for the column "overall position" presented in Table 8. This column

compares the betweenness centrality value from this author with all other authors and

its place is presented in this column. Although J. Kim had published 10 articles, he

presented the forty-eighth position of the greatest betweenness. Though X. Zhang had

published two papers less than J. Kim, his betweenness was forty positions better than

J. Kim. C. Wu took the same position both in the number of published researchers and

his betweenness value. These authors seem to place an interesting place in this area of

study and had contributed to many studies and improvements. Qin Xiao presented the

lowest betweenness shown in Table 8. This happened because when we analyzed the

other connected components of the network, we confirmed that it did not take a place

in the largest connected component. This is a factor that reduces the possibility of node

connections and, in this case, implied in the smaller betweenness value among the authors

presented in Table 8.

It is also possible to verify in Figure 33 that the authors H. Kim, J. Kim, and J. Lee

seem to work together in some moment. We verify that they composed a co-authorship

group at the bottom of the network. We also verify that J. Lee acted as an intermediate

for another researcher group that is placed from his left.

Table 8 – Authors Betweenness

Author Betweenness Overall Position
X. Liu 0.009500 6
Y. Kim 0.006593 11

Qin. Xiao 0.000431 146
J. Lee 0.006222 14

H. Kim 0.006731 9
C. Wu 0.010750 4

X. Zhang 0.007108 8
J. Kim 0.002380 48

Y. Wang 0.018570 1

The next mapping questions here presented were planned to give a narrow perspec-

tive of how researchers are proposing solutions to improve I/O performance considering

77

better performance of storage devices. For instance, news or hybrids FTL algorithms for

SSDs are solutions that belong to this specific group. 39,8% of the software solutions targets

storage systems. We considered storage systems here any improved device that is composed

of software and hardware and has many functions. For instance, when researchers propose

a specific software for a huge burst buffer management or even software for an experimental

small testbed. The idea behind this class is to present a subgroup that is composed of

many sub-blocks of both hardware and software. Different from software improvements

on software, software improvements on storage systems require the concerning of a chip,

board, or even a high-performance environment.

Hardware improvements represent a small portion of the proposal’s solutions. H2H-

IO, H2S-IO, and H2SS-IO combined represent 5,7% of the overall improvements. Indeed,

proposing hardware solutions requires a specific and propitious laboratory environment to

evaluate these proposals. For instance, adding an SRAM into a specific board requires

a different knowledge class due to the necessity of dealing with electrical and palpable

hardware materials. Due to this reason, these proposals represent a small rate of the total

proposals’ evaluation.

Hardware improvements are rarer because the test phase of implementing or in-

troducing new board chips requires the necessity to have these boards which usually are

inappropriate and expensive for personal research. Different from software proposals, hard-

ware might impact in cost to prepare the specific environment for testing and evaluations.

We noticed that suggestions considering hardware improvements need to be improved. We

can use this result to direct future I/O performance improvements to fill future hardware

development gaps.

Although MQ6 (Are the authors considering energy consumption in their proposals?)

is not directly related to I/O improvements, we think it is important to provide information

about how the energy is being used and spend in storage environments and systems. MQ6

answer is addressed in Figure 35 that provide us information about the power concerning.

Figure 35a shows whether the authors are considering power saving in their solutions while

Figure 35b distributes this power concerning throughout the classification model.

We noticed from the total evaluated and accepted papers that 97,3% of them

considered directly or indirectly energy saving in their research. It is interesting information

because considering sustainable assessments is becoming indispensable in computing

systems. We also noticed in Figure 35b the power concerning distribution by each

improved area. As expected S2S-IO improved 3.0% of the analyzed papers. It makes

sense because when researchers propose I/O improvements, usually they are interested

in analyzing I/O throughput and latency. The access performance in such cases seems

to be more recurrent than power consumption. When the proposed solution is directed

85

I/O that are written dominant and both are running at two large financial institution

(COUNCIL, 2020). For instance, in Financial1 trace, there are 4.06 million write requests

with an average write size of 4639.2 B and 1.27 million read requests with an average read

size of 4125.2 B.

On the other hand, Financial2 is read dominant presenting 560 thousand write

requests with an average write size of 5369.0 B and 3.14 million reads requests with an

average read size of 4635.7 B. SPC also presents other very used traces workloads in

researchers’ experimentation. WebSearch1, WebSearch2 and WebSearch3 are search engine

I/O traces that were collected from a popular search engine (COUNCIL, 2020).

TPC also received much attention from researchers when choosing their evaluation

benchmark tool. There are many TPC traces available for experimentation, each one with

its workload characteristic.

We verified that TPC-C was the trace that received most researchers’ attention. It

also is an online transaction processing (OLTP) benchmark that is composed of multiple

transaction types, complex databases, and overall execution structure. It is composed

of a mix of five concurrent transactions of different types and complexity (COUNCIL,

1990b). It is a decision support benchmark that consists of a suite of business-oriented

ad-hoc queries and concurrent data modifications that are broad industry-wide relevant

(COUNCIL, 1990d).

TPC-E is also an OLTP benchmark that is composed by a mix of twelve concurrent

transactions of different types and complexity where the databases comprise third-three

tables with a wide range of columns, cardinally and scaling properties (COUNCIL, 1990c).

Different from the previous ones, TPC-B is not an OLTP benchmark. Rather,

it can be compared with a database stress test tool that is characterized by significant

disk I/O requests, system and application execution time, and transaction integrity. It

is mainly used to measure throughput in terms of how many transactions per second a

system can perform (COUNCIL, 1990a).

In Figure 42 we expose which were the traces that researchers consider at most

when using a benchmark tool in their experiments.

Many researchers also consider the MSR (ASSOCIATION et al., 2010) data

repository to evaluate their proposals. MSR is composed of Severus traces with different

access patterns. It was formed focusing on solving practical world problems with traces

that represent these usual applications. There are thirty-five different traces available for

MSR traces which represents 1-week block I/O traces of enterprise servers at MSR. Table

9 presents some used traces with brief data descriptions traces are presented below with a

description.

Flexible I/O (FIO) benchmark (AXBOE et al., 2016), IOzone (NORCOTT, 2003)

89

indeed a device that was employed in many storage systems, desktops, and data centers due

to its many advantages. Low energy consumption, high throughput I/O and device size are

some of the many advantages of employing solid-state devices in computing systems. This

device corresponds to 62.5% of the total evaluated solutions proposals. DRAM, Storage

Class Memory (SCM), and Non-Volatile Random-Access Memory (NVRAM) were also

used to boost application performance. These are devices that present a better latency

rate compared to the SSDs. However, these memory devices have a high price due to

their better and quick technology. Figure 44b presents us which class of applications and

which applications had their I/O performance increased. In such a case, we found that

file systems, databases, frameworks, and general applications were improved by media

devices. It is important noticing that the database specifications "NF" means "not found".

This significance is propagated for all other applications or improvement class that we do

not find the answer when reading the contents presented on the data process extractions

phases presented on Figure 26.

MQ12 (Which kind of environment-class is receiving researchers attention when

the hardware is proposed as a solution to improve I/O performance on a storage system?

Which devices they are using at most?) allows us to understand how the experimentation

is being executed when a hardware solution is proposed to increase I/O performance.

Figure 45 addresses MQ12.

Through this question, we noticed that when the hardware is proposed to increase

I/O performance, usually, researchers evaluate their experiments using small environments.

It represents 77.8% of the total evaluated environments and can be verified in Figure 45a

Environments such as a personal computer were verified three times and a small server was

verified twice. We also verified that boards were used twice. In these cases, as addressed

by Figure 45c, authors mentioned where their solution was implemented.

The first board was an Exynos 5420 Arndale octa board equipped with 2 GB

Memory and 4 GB storage (XU et al., 2016) and the second board was an embedded

development board constructed with NVRAM. Its usage was divided into 64 MB of SRAM

and 64 MB of NAND Flash memory which was partitioned and implanted in the VFAT

and NVFAT file system (DOH et al., 2009). The 64 MB of flash memory was partitioned

with 32 MB used for the VFAT and NVFAT file system.

On the other hand, some experiments were carried out in simulated software. For

instance, (LIU; WANG; YU, 2018) used a PCM simulation framework that simulates

different caching schemes and was used to employ a PCM as a cache for a hybrid storage

device. (JU et al., 2016) proposed an analytical model to indicate how to design a hybrid

page cache targeting good throughput in terms of I/O per sec (IOPS) and fast cache

reactivity. Their results indicate that introducing a PCM device into a page cache system

92

from "Experimental Database" that was built on top of a 16 GB Mtron MSD-SATA3025

SSD (LI et al., 2009).

Another interesting result is that improvements that target better performance on

virtualization platforms such as KVM and XEN received the same quantity of improvements.

Kernel Virtual Machine (KVM) (KIVITY et al., 2007) and XEN (BARHAM et al., 2003)

are virtualization platforms with different characteristics.

In the KVM hypervisor, the host operational system (OS) should be necessarily

Linux because it is a module of the Linux kernel. Because of that, KVM reuses many

Linux kernel functions and utilities, turning it into a robust hypervisor application. In

Linux, QEMU, which is a tool, that provides virtualization for applications. However, the

guest OS can vary over Linux, BSD, Solaris, Windows distributions. On the other hand,

XEN hypervisor supports Linux, Windows, Solaris, and BSD and was firstly part of a

project hosted at the University of Cambridge.

File systems improvements focused on Parallel Virtual File System 2 (PVFS2) also

known as OrangeFS, Hadoop Distributed File System (HDFS), and fourth extended file

system (EXT4) with six, five, and four occurrences respectively. The other file systems

received fewer improvements than those mentioned above. As expected, Linux was the

operational system that received 100% of all operational systems improvements. Indeed,

Linux receives many contributions for all components placed into the operational systems

and is widely used in academic research.

Although these improvements are aimed at improving software I/O performance,

in some cases they are implemented in other components and software. Figure 47 presents

where these improvements were implemented according to its class. As expected, all

improvements on the Linux operating system were implemented on the same Linux

operational system. As mentioned before, Linux operational systems take an important

role in computing research, and usually, it receives many researchers improvements. Because

of that, the Linux operating system is robust and searched for the experimentation process,

justifying improvements to better I/O.

Most virtualization had their improvements on the specific improved tool. However,

some improvements were not on the evaluated tool. Instead, in some cases, researchers

implemented solutions on Linux operational system. For instance, (CHIANG; UPPAL;

HUANG, 2015), proposed a data prefetching method called VIO-prefetching to improve

virtual I/O performance. They reached this result reaching a 43% rate improvement

while running applications on a XEN virtualization system. To reach this result they

have implemented a prototype VIO-prefetching in Linux operating system using XEN

virtualization system. Oikawa S. (OIKAWA, 2014) proposed a storage virtualization

method called Virtual Main Memory Storage (VMMS) that virtualizes NVM storage

media into memories. They reached improvements from 2.13x to 5.97x for reading and

95

with new FTL proposals (PAN et al., 2019), (WANG et al., 2016), (MATIVENGA et al.,

2019), (XIE; CHEN; ROTH, 2017), (BOUKHOBZA et al., 2015) and (ZHANG; CHENG;

LI, 2019). Its implementation could be in the form of software where the FTL layer can be

introduced inside the SSD controller or it can be implemented as a hardware layer into the

storage systems. FTL has the purpose to intermediate, repairing and adjusting, software

systems and hardware devices to best fit among hardware and software functionalities.

FTL layer is usually applied between the file system and the flash memory chip when

introduced into a storage system. However, it is typically implemented inside the flash

device on the controller. However, FTL algorithms not only have a great effect on storage

performance and lifetime but also determine hardware cost and data integrity (LEE et al.,

2016).

We also noticed that scheduling also has been considered among researchers. To

provide better usage and access to the data, the I/O schedulers take care of the disk access

requests. Usually, an existing software stack had been developed considering HDD blocks

and tracks data distributions. For this reason, it is possible to get better SSD device

performance by proposing and leveraging solutions that were first created considering

HDDs. Therefore, researchers are to redesign new scheduler approaches considering the

availability of flash memories (JI et al., 2019), (PARK et al., 2018), (YANG et al., 2019),

(LI et al., 2014), (GUO; HU; MAO, 2015) and (SUN; QIN; XIE, 2014).

Figure 48 presents which storage devices were improved by software solutions while

Figure 49 presents where these solutions were implemented. The inner border shows which

was the improved software while the outer border shows a general classification of the

improved element.

We verify that the implementations were classified into three classes (e.g. general

hardware, simulator, and applications) The "NF" class was not intended to be created.

However, the class identification was not clear or some time was omitted. Thus, we classify

it as a NF that means "not found" and can also represent "not informed"

Inside the "Applications" class, where we condensed all implemented software, we

noticed that many authors, specifically 19 studies, implemented their solutions inside the

Linux operational systems. Linux was the software that received most implementations.

We noticed a range of software that received modifications and implementations. For

instance, Jinhua et. al (CUI et al., 2016) implemented their scheme in the host interface

logic (HIL). The author argues that there the SSD specific characteristics and the data

programming timestamp recorded in the FTL contributes to better scheduling decision

for I/O requests. Also in applications, we do not identify which file system was used by

Zhiwen et. al (JIANG et al., 2015). Thus, the general term "file system" was introduced.

After, in general, hardware class that is the class that relates implementations on

hardware devices, SSD device took the second place with 11 implementations. Some of

98

simulator code (Disksim-MV) where "MV" stands for "modified version".

MQ15 (MQ15: How researchers are evaluating their software solution that targets

I/O improvements on storage systems, where are those software solutions being implemented,

and what is the size of the user environments on the experimentation? (S2SS-IO)) presents

us with a good deal of information about storage systems. First, we verify where these

solutions were implemented. Secondly, it presents where the solutions to improve I/O

performance on storage systems are evaluated. After, we analyze which storage environment

is being used in the evaluation process. Through this question, we verify whether the

evaluated environment is bigger, small, or software simulated.

Knowing the place where the proposals are implemented allows us to evaluate

which devices are being modified to achieve better I / O performance results. This allows

us to distribute our efforts in a targeted manner, thus solving the elements that most need

attention.

Figure 51 presents where authors’ solutions were implemented. Although there are

a considered number of unidentified places, 15.71%, Figure 51 shows interesting results.

As presented in Figure 49, this figure also distributes the authors’ implementations places

according to its general class. We noticed that improvements in the storage systems

domain for applications increased from 28.57% in S2H-IO to 49.05% in S2SS-IO. Most

of these increment in the storage system is related to the big quantity of implemented

solutions in Linux operational system.

Storage systems are storage dedicated environments composed of many storage

devices, in the down layer that performs many I/O operations to deliver data to applications

and file systems. Usually, they are composed mainly of HDDs due to its low cost per

Gigabyte (GB). However, this low-performance storage device imposes an I/O bottleneck

on the overall systems due to its mechanical characteristics.

HPC, DISC, and OLTP applications usually are data-driven and demand for high-

performance storage systems and I/O. Introducing SSDs to acts in the I/O caching layer

is the most common approach to improving the storage system performance because it

maximizes the cache hit ratio. It improves the response time when requests are supplied

by the cache delivering data quickly with low latency. Because of that we noticed that

many authors solutions to improve I/O performance using SSD devices were implemented

on Linux (WANG et al., 2018), (AHMADIAN; SALKHORDEH; ASADI, 2019), (YANG;

YANG, 2013) and (KLONATOS et al., 2011). These solutions are usually compiled jointly

to the kernel before the evaluation process.

In S2S-IO analysis we inspect whether the evaluation process was executed using a

real or simulated storage device. The same idea is preserved here. We investigate whether

the environment used to perform the experimentation was a small, large-scale, or software

101

Huang, Y. et al. (HUANG et al., 2013) proposed a method that is designed to

cache the sub-requests with high I/O cost on the client end called cost-aware client-side file

caching (CCFC). They argue that client-side caching is an interesting tool for addressing

the performance issue of file systems when data nodes have highly unbalanced response

time evaluating their proposal on 2 clusters where one of them consisted of 64 compute

nodes and the other 20 file servers.

Below we discuss some environments and projects that were used in the experi-

mentation process. We also present the basic characteristics of these used in large-scale

environments.

Shankar, D. et al. (SHANKAR; LU; PANDA, 2017) proposed a high-performance

key-value store with online erasure coding for big data workloads. They used three high-

performance compute clusters for evaluations The first cluster was the Intel Westmere

Cluster (RI-QDR) that is made up of 144 compute nodes, but they used 17 on the

experiment. The second cluster was the SDSC Comet (SDSC-Comet) having 1,984 nodes

but in the experiment was used 15 nodes. Finally, they used 20 nodes from Intel Broadwell

Cluster (RI2-EDR) cluster.

Tianhe-1 was accomplished in 2009 where each node has two Xeon processors.

The theoretical peak performance of TH-1 was 1.206 TFlops and it was composed of 6250

nodes connected by DDR Infiniband.

Tianhe-1A (TH-1A), an upgrade of the Tianhe-1 was introduced in August 2010.

Tianhe-1A (TH-1A) is a supercomputer, that was developed by the National University

of Defense Technology (NUDT) and located at the National Super Computer Center

in Guangzhou. The theoretical peak performance of TH-1A is 4.7 petaFLOPS and it

is composed of 7168 compute nodes and 1024 service nodes. It is also composed of a

proprietary interconnect network and the compute nodes have two general processors

(Intel Xeon X5670) and one stream processor (NVIDIA M2050 GPUs) totalizing 23,552

microprocessors. They are distributed over 140 racks where 112 are designed for computing,

8 racks for service, 6 for communication, and 14 for I/O management. The total aggregate

memory is 262 TB and the disk capacity is 2 PB (YANG et al., 2011).

Tianhe-2 , also known as Milky Way-2, appeared in 2012 and is located at National

Super Computer Center in Guangzhou and it is also developed by the National University

of Defense Technology (NUDT). It is composed by Intel Xeon E5-2692v2 12C 2.2GHz with

4,981,760 cores available. Its aggregate memory is 2,277,376 GB and uses TH-Express-2

interconnect network. Its peak performance reached 61,444.5 TFlop/s consuming 18,482.00

kW of energy.

Tianhe-3 Today, under development, the Tianhe-3 prototype is located in Tianjin,

China. It has adopted the ARM-based many-core architecture roadmap using a home built

102

phytium and matrix processors. Its processor seems to be the Phytium FT-2000+(FTP)

and MT-2000+(MTP) where FTP contains 64 ARMv8 core and MTP 128 ARMv8 cores

Each FTP core can run up to 2.4 GH and each MTP core can run up to 2.0 GHz (YOU

et al., 2019b).

Some projects that used Tianhe are: Yu, J. et al. proposed a memory cache system

called LeCache. It acts as a locality-enhanced user-level POSIX-compliant distributed

memory cache and intercepts user-level POSIX I/O calls redirecting to distributed cache

(YU et al., 2017). After, in (YU et al., 2019) they proposed a workload-aware temporary

cache system (WatCache) to manage the storage tier in HPC I/O hierarchy. Liu, X.

et al. (LIU et al., 2017b) proposed a hierarchical hybrid storage system called on-line

and near-line file system (ONFS) They build a three-level storage system in a unified

namespace using DRAM and SSDs in compute nodes and HDDs in storage servers. All

these experiments were executed in Tianhe systems.

Cori Cray the system is placed at the National Energy Research Scientific Com-

puting Center (NERSC). It is a Cray XC40 that has a peak performance of about 30

petaFLOPS. Today, July-2020, it is the world’s sixteenth most powerful supercomputer in

the world. Cori has partitioned in Cori-Haswell and Cori-KNL over 6 rows of cabinets.

Each cabinet has 3 chassis; each chassis has 16 compute blades, each compute blade has

4 nodes (CORI. . . , 2020). Cori-Haswell is composed of 2388 nodes where each node has

two sockets Intel Xeon Processor E5-2698 v3 and the total aggregate memory is 298.5

TB. Each socket is populated with a 2.3 GHz 16-core Haswell processor. The "Haswell"

processor nodes are distributed over 14 cabinets and the total peak performance that it

can reach is 2.81 PFlops. Cori-"Knights Landing" (KNL) is composed of 9668 nodes where

each node has a single-socket Intel Xeon Phi Processor 7250 "Knights Landing" processor

with 68 cores per node @ 1.4 GHz. The total aggregate memory is 1.09 PB. The "KNL"

processor nodes are distributed over 54 cabinets and the total peak performance that it

can reach is 29.5 PFlops.

Some projects that used Cori are: Tang, H. et al. (TANG et al., 2018), proposed

object-centric data abstractions and storage mechanisms mapping it in different levels of the

storage hierarchy. The idea behind this was to take advantage of Proactive Data Containers

(PDC) which is a storage hierarchy. Zang, T. et al. (WANG et al., 2018) proposes a

data management service called UniviStor that provides performance optimizations and

data structures tailored for distributed and hierarchical data placement. Liang, W. et al.

(LIANG et al., 2019) presented a contention-aware resource scheduling (CARS) strategy

for Burst buffers. It acts as a resource manager and coordinate concurrent data-intensive

jobs. All these proposals have been experimented with in Cori Cray XC40.

Kraken Cray is a series of XT systems that was introduced in April 2008. Kraken

XT3(April-2008), Kraken XT4(July-2008), Kraken XT5(Feb-2009), Kraken XT5(Dez-2009)

103

and Kraken XT5(Jan-2011). Kraken XT5 (KRAKEN. . . , 2020) is a supercomputer at the

National Institute for Computational Sciences (NICS) composed by 9,408 compute nodes.

Each node has two 2.6 GHz six-core AMD Opteron processors (Istanbul) with 12 cores

and 16 GB of RAM. It is composed of 112,896 compute cores and the aggregate memory

reaches 147 TB. The overall disk space is 3.3PB The peak performance that Kraken can

reach is 1.174 petaFLOPS.

The project that used Kraken also used a Cray and Grid5000. Dorier, M. et. al

(DORIER et al., 2012) proposed a tool that leverages dedicated I/O cores multicore SMP

node called Damaris It allows performing asynchronous data processing using shared

memory. They evaluate Damaris on three different platforms including the Kraken Cray

XT5 supercomputer using Lustre, the Grid5000 using PVFS, and in BluePrint with GPFS.

Titan was a Cray Xk7 supercomputer at the Oak Ridge National Laboratory

(TITAN. . . , 2020). It was operated by the Oak Ridge Leadership Computing Facility

(OLCF) at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory

(ORNL). Titan was composed of 18,688 compute nodes that can reach 27 petaFLOPS

of peak performance. It was composed of a 16-core AMD Opteron central processing

units (CPUs) with a 2 GB memory/core. Each node had 16 cores, 32 GB of memory, and

NVIDIA Kepler graphics processing units (GPUs). Titan was decommissioned on August

2, 2019.

Some projects that used Titan are: Liu, Q. et al. (LIU et al., 2017a) proposed

StoreRush to resolve a contentious issue over the storage devices. StoreRush runs at the

application level without requiring modification to the file and storage system. It improves

write performance using a two-level messaging system to harvest idle storage via re-routing

I/O requests to a less congested storage location Liu evaluated their experiment in Titan

and also in the Hopper supercomputer.

Hopper was a Cray XE6 system at the National Energy Research Scientific Com-

puting Center (NERSC) (HOPPER. . . , 2020). Created in September 2010, it was the first

system to reach the petaFLOPS barrier. Today, Hopper evolved to Cori supercomputer

fore mentioned. Hopper was decommissioned in December 2015. Composed by 153,408

processor-core 2.1-GHz AMD Magny-Cours Opteron processor, it reached a peak per-

formance of 1.05 petaFLOPS. The total of 6,384 nodes totalizing 153,216 cores and an

aggregate memory of 216,832 GB. All the NERSC systems and is system history can be

verified at (NERSC. . . , 2020).

Some projects that used Hopper are: Liu, J. et al. (LIU et al., 2014) They developed

a model-driven mechanism for selecting the data layouts that benefit the performance of

different read patterns. Their model was based on the striping parameters on the Lustre

file system and the block-level striping on RAID-based disks within an Object Storage

Target (OST) of Lustre. Son, S. et al. (SON et al., 2017) proposed a probing tool that

104

stripes across a selected subset of I/O nodes and enables application-level dynamic file

striping to mitigate I/O variability. It allows achieving the highest I/O bandwidth available

in the system. They evaluated their experiments on Hopper variants supercomputers.

IBM Bluegene/L, P and Q the family was initially built in the 1999s to

advancing biomolecular simulations, computer design software, and large-scale systems

(CHIU, 2013). Lawrence Livermore National Laboratory (LLNL) emphasized applications

related to national security and Argonne National Laboratory (ANL) was providing

massively parallel machines in general for the community. These IBM partners in relation

helped IBM development-boosting hardware and software contributing to the Blue Gene

family’s success.

The first of the family was IBM Blue Gene*/L supercomputer (GARA et al., 2005)

installed at LLNL with 596 teraFLOPS of peak performance and 104 racks totalizing

106,496 nodes. IBM Blue Gene*/L supercomputer won the TOP500 (MEUER et al., 2001)

seven times between 2004 and 2007. In 2007 the IBM Blue Gene*/L evolved to IBM

Blue Gene*/P (ALMASI et al., 2008) It was installed at Forschungszentrum Juelich in

Germany and was composed of 72 racks with 73,728 nodes delivering 1 petaFLOPS of peak

performance and becoming the first system to deliver 1 petaFLOPS in Europe. Finally,

the last version of the IBM Blue Gene* family is the IBM Blue Gene*/Q The largest

installation is the Sequoia and is located at LLNL reaching 20 petaFLOPS and being

composed of 96 racks with 98,304 nodes. All of them were composed of Torus network

being IBM Blue Gene*/L and IBM Blue Gene*/P with 3D dimension and IBM Blue

Gene*/Q with 5D dimension. The provided bandwidth was 2.1 GB/s, 5.1 GB/s, and 40

GB/s for IBM Blue Gene*/L, IBM Blue Gene*/P, and IBM Blue Gene*/Q respectively.

Mira supercomputer, an IBM Blue Gene/Q supercomputer placed at Argonne

National Laboratory that can reach operating speeds of 20 Peta-FLoating-point Operations

Per Second (FLOPS) range. By the last TOP500 list of the most powerful supercomputers

of the world evaluated in November 2019, Blue Gene/Q was placed at the 12 positions. It

is composed of 49.152 CN each with 16 hyper-threaded PowerPC A2 cores (1600 MHz).

The RAM presented in each CN is 16 GB of DDR3 and the network topology is used to

connect the nodes in the 5D torus which gives a bandwidth of 2 Gbps per link (TESSIER

et al., 2016). The CN are distributed and split in banners called Pset and it is composed

of 128 CN. At the end of these banners, there are two bridge nodes that are regular CN

connected to one ION through a network that gives 2GBps per link. The network which

connects the ION to the Infiniband switch has the maximal bandwidth of 4 Gbps per link.

Some projects that used IBM Bluegene are: Schürmann, F. et al. (SCHÜRMANN

et al., 2014) used SLC Flash memory through block device and direct storage access

(DSA) principles integrating with IBM BlueGene/Q supercomputer at scale Blue Gene

Active Storage (BGAS). The block device layer provides compatibility with common IO

105

layers systems (POSIX, MPIO, HDF5). The DSA strategy enabled a low-overhead, byte-

addressable, asynchronous, kernel by-pass access method. Eilemann et. al (EILEMANN

et al., 2016) exploited a way to integrated NVM devices into supercomputers to address

data-intensive processing issue. They used a scalable key-value (KV) I/O methods instead

of traditional file I/O calls commonly used in HPC systems to enable higher performance.

Ambareesh et. al (AMBAREESH; FATHIMA, 2016) proposed a storage middleware

(HyCache+) to reduce the bi-section bandwidth of the parallel computing systems. It

was based on Programmable Operating System (POSIX) and used a 2-layer scheduling

approach.

Grid’5000 It is a French large-scale environment for experiment-driven research

with a focus on parallel and distributed computing including Cloud Computing, High-

Performance Computing, and Big Data. Many technologies compose the experiment

environment through different layers. Among many other technologies, we highlighted

some of them. In the computation layer, it provides CPU processors and GPUs. In the

storage layer, it provides storage devices such as SSD, HDD, NVM. Finally, at the network

layer, it provides Ethernet, Infiniband, and Omni-Path network interconnecting. Grid’5000

environment is composed of the connection between 8 different sites located in France. It

provides many options and configurations of parallelism paradigm, solving huge problems

of science.

Some projects that used Grid’5000 are: Saif, A. et. al used (SAIF; NUSSBAUM;

SONG, 2018) proposed a mechanism, the IOscope tracer, for uncovering I/O patterns of

storage systems workloads that perform filtering-based profiling over fine-grained criteria

inside the Linux kernel. He used Grid’5000 in this experiment.

We also verify in Figure 53 the case when the proposal was evaluated within a

small environment. We verify that some solutions need just some disks in their evaluations.

Wang, J. et al. (WANG; CHENG, 2015) used 10 disks being 8 Disks SAS 2.5, 1 SSD Intel

32G and 1 SSD Intel 160G. Xiao, L. et al. (XIAO; YU-AN; ZHIZHUO, 2011) constructed

an S-RAID 5 that includes 5 Seagate 500G Disks. Skourtis, D. et al. (SKOURTIS; KATO;

BRANDT, 2012) used 4 disks in RAID 0 configuration. Park, J. K. et al. (PARK; SEO;

KIM, 2019) used two devices being 1 a 32 GB HDD and 1 4 GB SSD.

We also verify authors experimenting on different boards. Lee, S. et al. (LEE et

al., 2011) used a Samsung Apollon board, Zhang, J. et al. (ZHANG et al., 2015b) used

a GPU-SSD board, Wang, Y. et al. (WANG et al., 2014) used a Xilinx Zynq on-chip

programmable SoC architecture (CROCKETT et al., 2014). We classified as a small

environment the case when the experimentation is able to be executed into university

labs, personal computers (PCs), laptops, servers units, or a small number of used nodes.

To classify these environments we called small environments those that used less than

40 nodes to have experimented. Therefore, it is possible to verify in Figure 53 authors

107

in which context these solutions are being proposed, where these solutions are being

implemented, and how big is the user environment for experimentation. We are also

able to verify the class of these architectures and their size if it is being evaluated into a

large-scale, small, or software simulated environment. It also allows us to identify which

are these large-scale environments or which small environment researchers use to evaluate

their architecture proposals or which are these simulated software used.

Before starting, we will clarify what the term "architecture" means since this term

does not appear on the proposed characterization model Figure 57. There, we noticed

the presence of three circles (e.g. Software, Hardware, and Storage System). When an

author proposes a solution to improve I/O performance, that solution must be contained

in one of these two primary circles, either a hardware solution or a software solution.

Later, as this solution was proposed to improve some specific element, the direction of the

arrow that leaves these primary circles directs which class of the object that this solution

aims to improve. Therefore, the circle that receives the direction of the arrow is the class

of the object that is being improved. There, we found that it is possible to make I/O

improvements from several perspectives.

First level improvements are improvements that only include the lower-level elements

(e.g. software and hardware) These improvements can be hardware to hardware (H2H-IO),

hardware to software (H2S-IO), software to software (S2S-IO), and software to hardware

(S2H-IO). However, we note that the storage system can be classified as a second-level

system because it consists of software that manages its functioning and the hardware

that makes it up. Thus, we note that researchers commonly propose solutions to improve

storage systems. Therefore, these improvements can either be a software improvement

to improve the storage systems I/O performance (S2SS-IO) or they can be a hardware

improvement to improve the storage systems I/O performance (H2SS-IO). Given this,

we created a name, that is, the name architecture, to symbolize that both S2SS-IO and

H2SS-IO were proposed by the author.

Usually, the creation of architectural designs for storage systems is composed of

both software and hardware and because of that instead of classifying the proposals as

S2SS-IO and H2SS-IO, we simply classify them as an architectural proposal. We also note

that commonly, when authors propose new designs for storage systems, they propose both

new hardware designs and management software that must manage that hardware. We

classify all of these new storage systems proposals as storage architecture proposals.

Hybrid storage systems proposals, that is, those that are composed of storage

devices of different technologies, are examples that portray these architectural proposals

well. To understand in which domain the architectures are being proposed, we divide them

considering 4 domains (e.g. HPC, Big Data, Cloud and Storage Systems) In addition to

the motivation given by the author when describing his work, we considered the following

108

rules related to each domain to classify the papers.

Figure 54 addresses MQ16 (How are the architectures proposed by researchers being

built? In which context they are proposed? Where are those solutions being implemented?

How is the size of the environments that evaluate architecture proposals?).

After reading and classify the architecture papers considering the terms expressed

above, Figure 54a presents the domain of the author’s researches. We noticed that the

storage system was the domain that most papers were classified. We observed that half of

these classified papers were relating and proposing hybrid, in terms of device diversity,

storage systems. Below we discuss the main idea of these researches identifying the used

devices and methodologies.

From the proposed architectures many of them were hybrid storage systems con-

sidering the usage of HDDs together to SSDs due to the poor random write HDDs

performance (AL-WESABI; ABDULLAH; SUMARI, 2017), (WAN et al., 2012), (XIAO

et al., 2012), (WANG; GUO; MENG, 2015), (STRUNK, 2012), (FENG et al., 2014), (XU;

CHENG; CHEN, 2017), (YANG et al., 2013), (HUI et al., 2012), (LEE; JUNG; SONG,

2009), (CHANG; YU; CHUNG, 2018) (AL-WESABI; SUMARI; ABDULLAH, 2019). An

Architecture that deals with the removal of the semantic gap through the management of

cache behavior and flash memory. They also applied data deduplication to improve the

usage efficiency of cache device (CHEN; CHEN; LU, 2015).

A software-defined fusion method for PCM and NAND flash memories was also

proposed (LI et al., 2016). The mixing of flash memories (e.g. MLC and SLC), byte-

accessible NVRAM and conventional volatile RAM as buffer caches was also considered

(PARK; BAHN; KOH, 2009).

A heterogeneous storage system for backing file data in clusters considering HDDs,

SSDs, and Network RAM was also proposed (MARKS; NEWHALL, 2017). A configurable

cache architecture comprehensive workload characterization to find an optimal cache

configuration for I/O intensive applications that use HDD, SSD and cache were also

proposed (SALKHORDEH; EBRAHIMI; ASADI, 2018). The other architectures proposed

were non-hybrid architectures including an only PCM-only storage system architecture

(HAN et al., 2018), flash-only (LEE; KIM; MITHAL, 2014) among other solutions.

The papers domain that was classified as HPC domain also presented hybrid

approaches. Petersen, T.K. and Bent, J. (PETERSEN; BENT, 2017) presented hybrid-

flash arrays for HPC storage systems being an alternative to burst buffers. Wadhwa, B. et

al. (WADHWA; BYNA; BUTT, 2018) proposed an object abstraction to explore storage

mechanisms to enhance I/O performance. They explore how an object-based interface

can facilitate the next generation of scalable computing systems. They implemented a

SSD-based burst buffers that offer persistent edge storage. Through varying I/O interfaces,

110

Yang, Z. et al. (YANG et al., 2017b) provide a hybrid framework of NVMe-based storage

system (H-NVMe) that is composed of two VM I/O stack deployment modes "Parallel

Queue Mode" and "Direct Access Mode". However, other architectures and methodologies

were also found. Yin, J. et al. (YIN et al., 2017) proposed a storage scheme for object-

based cloud storage systems. Ravandi, B. et al. (RAVANDI; PAPAPANAGIOTOU, 2018)

proposed a framework called block software-defined storage (BSDS) that separates the

data layer from control to automate the orchestration, deployment, and management of a

storage system.

From these classified researches, the experimental environment was also collected

and the general results are presented in Figure 54b. We noticed that 52.2 % of the

experimentation was performed in Real-Small Evaluated Environment (RSEE).

Small environments are most accessible in laboratories around the world where these

environments do not require much investment from the research department. However, we

also noticed that much experimentation that corresponds to 34.8% of the total evaluated

occurred in Software Simulated Evaluated Environment (SSEE). Some experiments

are easily performed using simulated environments and their execution time can be reduced

due to some tools available in the configured simulation. Finally, we noticed that a small

part of the researchers, more precisely 11.6%, executed their experimentation in Large-

scale Evaluated Environments (LSEE).

In the HPC domain, in some simulations and experiments, the use of large-scale

environments is essential for the reliability of the results. In some cases, we do not find

information on the author’s research giving information about the user environment.

Therefore, we classify 1.4% of the environments as a Not Found (NF). In Figure 55 we

verify which were these used environments.

Figure 55 addresses the questions regarding the environment used by researchers

when evaluating the new architectures. We noticed in Figure 55a that some large-scale

environments that were used in S2SS-IO improvements were also used in architecture

proposals (e.g. Jaguar (PRABHAKAR et al., 2011b), Cori xc40 (WADHWA; BYNA;

BUTT, 2018), Titan (WANG et al., 2014), Sunfire (HE; SUN; FENG, 2014), (SONG;

SUN; CHEN, 2011) and Grid5000(RAYNAUD; HAQUE; AÏT-KACI, 2014)).

Figure 55b presents the software used to simulate the environments. We verify that

Disksim was also the simulated software that researchers had used at most in architecture

proposals representing 27.3% of the total evaluations. Indeed, Disksim supports a quite

of disk parameters and representations being the first option from researchers due to its

efficiency and accuracy. The built simulators also represented a big portion representing

13.6% of the total evaluations.

Interestingly, we also noticed evaluations on the XEN hypervisor. Li, D. et al. (LI

et al., 2016) proposed an architecture (SCM-vWrite) designed around SCM, to ease the

113

3.6 THREATS TO VALIDITY

As in any empirical experiment in software engineering, the analysis carried out

and proposed in this manuscript suffers threats to validity. Some of these factors previously

identified in the scope of the research are discussed and considered at this stage. As to

issues that threaten the development of the study, they should be used throughout the

project, to help achieve the most accurate result possible. Cook and Campbell (COOK;

CAMPBELL, 1979) extent how to use the threats previously validated by Campbell

in (CAMPBELL; STANLEY, 1963) for four types of occurrences, namely: "completion,

internal, construction and external". In this section, we investigate and discuss the main

risks that this work presents.

It is important to understand that the basis of this research aims to identify studies

that in some way have contributed to I/O performance improvement. I/O bottleneck

storage systems are a well-known issue that affects computing systems that perform multiple

IOPS and high-performance physical systems. The measurement proposed metrics found

in this study that most impact computing systems refer to latency and throughput.

Therefore, identifying scientific works that somehow contribute to the reduction of existing

bottlenecks of these factors shapes and delimits the scope of this work. However, although

the characterization model is applied to an I/O performance improvements domain, it

is understandable that this model can be adapted for measurement and identification of

other metrics evaluation.

Although the systematic analysis in the definition of articles was conducted with

firmly established inclusion and exclusion rules (see Section 2.1.4), their characterization

is subject to interpretation bias. Different ways of expressing a proposed content and

different research themes sometimes turns difficult for readers to understand the real

improvement object class that was proposed by the author. The use of a simple, but

informative, acronym allows the reader to quickly assimilate what the research authors

proposed and what it aims to improve. It could be understood as a text index, to which,

through an acronym, an idea of what objects proposed and improved would be passed on.

The quantity of analyzed papers is also a factor that deserves attention. It could

lead us to characterize researches differently from the real author’s purpose. However,

this fact does not invalidate the need for the characterizing model presented here, instead,

it decreases the accuracy of the data and results presented. As mentioned in the data

extraction process, as the reading aloud the article to be classified, it was immediately

classified. A fact that aggravates this situation is related to the meaning of the word

storage system. As mentioned earlier, a storage system can be either a data management

software (e.g. file system, database, RAID system) or a physical data storage system

composed of storage media (e.g. HDD, SSD, NVM, etc.). Because of that, the non-reading

of the work in its entirety would open the possibility for a characterization that did not

114

represent the researcher’s real proposal. This is yet another reason why this model could

be used by researchers before submitting a publication.

3.7 REPLICATION ANALYSIS

To enable the audit and encourage the usage of the classification presented above,

a package with the analyzed data and its results was prepared and made available online

on GitHub 5 platform.

3.8 FINAL CHAPTER CONSIDERATIONS

In this chapter, we presented a systematic literature mapping to identify researches

that proposes I/O improvements in software, hardware, and storage systems. These

researches were selected following a systematic literature mapping method. To increase

its quality, this paper uses a framework that classifies all accepted researches according

to its proposal object. During this process, 1705 articles were analyzed and a set of 517

articles were selected for further analysis. The time range covered in this work was from

the last ten years of researchers’ proposals to increase I/O performance. The results show

a growing increment of the number of papers to solve this I/O performance issue and it

may be a trend for the next years due to the increasing technological needs. Throughout

16 mapping questions. it was possible to identify the most common improved objects (e.g.

software, hardware, and storage systems), which class these objects belong and in which

size of environment they were evaluated.

5 https://github.com/laerciopioli/ Systematic-Literature-Data.git

115

4 RELATED WORK

This chapter presents a brief review of the significant works of I/O performance. In

the past, some authors have proposed results in I/O optimization approaches considering

the I/O stack as a whole. Our initial search, referring to the contributions to the parallel

I/O stack and workloads characteristics in huge infrastructures.

Saif et al. (SAIF; NUSSBAUM; SONG, 2018) presented an I/O tracer, called

IOscope, for uncovering I/O patterns of storage management systems’ workloads. Helping

to achieve a better troubleshooting process, their solution contributes to having an

in-depth understanding of I/O performance throughout, filtering-based profiling over

fine-grained criteria inside the Linux kernel. They evaluated their proposal using two

different databases, a document-based MongoDB and a wide-column Cassandra storage

database. They achieved interesting results showing that the clustered MongoDB suffers

from a noisy I / O pattern, regardless of the storage device used (HDDs or SSDs).

Daley et al. (DALEY et al., 2017) presented a performance characterization of

scientific workflows considering the optimal usage of burst buffers. The authors analyzed

the performance characteristics of burst buffers applying two scientific workflows and

I/O benchmarks targeting the optimal usage of the burst buffer also identifying the

peak I/O performance of the burst buffer. The used I/O benchmark was the IOR

(INTERLEAVED. . . , 2016) and MDTest (MDTEST. . . ,). These I/O benchmarks are

widely used in HPC and storage environments and are both MPI applications. IOR is used

by many researchers to measure the peak performance of storage systems and MDTest

the performance of storage system metadata operations. The two workloads used to

increment their analyses were Community Access MODIS Pipeline (CAMP) and SWarp.

The first one processes data obtained from MODIS (NASA. . . ,) satellite while the second

uses raw images of the night sky data. Their work includes a methodology to analyze

the performance of burst buffers. They analyze also considered bandwidth-sensitive and

meta data-sensitive I/O workloads. Finally, they presented challenges referred to data

management when introducing a burst buffer in scientific workflows.

Boito et al. (BOITO et al., 2018) shown interesting research in a five-year window

on the parallel I/O for HPC environments presenting applications characterization and

performance modeling. The authors focus on the parallel I/O and present the state-

of-the-art in I/O optimization approaches as much as in many subjects that the I/O

stack is composed. Some main presented components involved in the area, the common

problems found in transmitting data through the nodes, and the techniques typically

applied to achieve high performance are illustrated. Most proposals presented by the

author consider solutions implemented on the software layer (e.g. caching/prefetching, I/O

scheduling, Collective I/O, Requests aggregation, among others). However, the presented

116

survey does not consider the importance of the wide variety of hardware technologies

used by the storage nodes to save the data. In some cases, they just mentioned the

two more common devices used to store data (e.g. HDD and SSD). Therefore, in this

paper, although our proposed characterization model is broadly presented, it considers the

hardware technologies used by HPC environments in storage auctions.

Calzarossa et al. (CALZAROSSA; MASSARI; TESSERA, 2016) presented a

survey considering a characterization model considering the importance of the workload

characterization and exploiting its importance in popular applications domains. Their

focus is directed to workload from the web and with workloads associated with online

social networks, video services, mobile apps, and cloud computing infrastructure. They

also present and analyze a modeling technique applied for this characterization. Their

proposed characterization model does not consider the three basic elements (e.g. software,

hardware, and storage systems) like our presented model. They present studies in a cloud

computing infrastructure, but their concern to the characteristics of cloud workloads.

Finally, Traeger et al. (TRAEGER et al., 2008) described and presented a survey

considering a nine-year study examining a range of file system and storage benchmarks.

They surveyed a range of 106 file-system and storage-related research papers in this study.

They also described the positives and negatives qualities of both and presented a way to

choose the appropriate benchmark for performance evaluation. As in the previous related

works, the authors did not consider hardware characteristics and how it can influence the

performance in an evaluation process of a storage system.

4.1 FINAL CHAPTER CONSIDERATIONS

In this chapter, we present researches that propose solutions regarding the de-

velopment and improvement of I / O performance. Each of them presented a different

perspective and solutions to deal with this issue. We have also shown that the most

proposed solutions consider a specific studying regarding the workflow but all of them do

not present solutions considering hardware in their solutions as we treated here.

117

5 PROPOSED MODEL

A characterization model for classifying research works on I/O performance im-

provement is presented in this chapter. Nowadays, the gap of development between CPU

and storage technologies is too big, thus making the storage layer the bottleneck of the

overall systems. Because of that, researchers are proposing different approaches targeting

improvements in the storage layer. Some authors combine different hardware technologies

to fill this issue, others develop a solution on the software layer trying to improve the

algorithms and systems to better fit the applications and increase IOPS. Some authors are

proposing new architectures and storage systems combining hardware devices and software

applications through different approaches. Considering these observed characteristics, our

model is composed of three main elements (i.e. software, hardware, and storage systems)

that represent these scenarios.

When researchers propose solutions to improve I/O performance in storage environ-

ments, we verified that the proposed solutions belong to a specific domain. In this model,

each circle means an element domain that is related to the author’s proposal object. The

software circle symbolizes an improvement made by a researcher where the object that

is being proposed as a solution is any programmable solution (e.g. algorithm, method,

frameworks, etc). The hardware circle symbolizes an improvement made by a researcher

where the object that is being proposed as a solution is any physical component or some-

thing palpable (e.g. device, chip, accessory, etc). The third element, storage systems, only

receive improvements from the previous two elements. In this model, we defined that a

storage system should necessarily be composed of hardware and software elements. The

first two elements on the down layer can relate to each other in both directions and both

of them can suggest a solution as an object to improve the I/O performance on an entire

storage systems platform.

5.1 DEFINITION

In this section, we present the necessary elements for the definition of the proposed

model. First, is presented a set of axioms that were considered when creating and

developing this model. Second, a graphical image that relates to this model is presented.

Third, each component presented on the graphic representation individually is explored.

5.1.1 AXIOMS

1. The model is composed of two types of elements (e.g. circles and arrows).

a) A circle represents a class.

b) An arrow represents the relationship between different or equal classes.

119

possible to improve hardware devices such as a storage device, a network drive, or

any board or internal or external device with a software object, for instance, firmware

can be mentioned.

• Hardware circle symbolizes improvements made by a researcher where the object

that is being proposed as a solution is any physical component or anything palpable.

It includes devices, chips, electronic accessories, memories, storage cartridges, etc. It

also could be used to improve other hardware objects or software. Usually, a new

class of memories is used to improve another hardware I/O performance component.

It is also possible to increase software I/O performance by providing hardware

components. For instance, proposing the usage of storage devices such as SSDs,

PCMs, or nvSRAM to decrease PFS latency or the use of Omni-Path or Infiniband

interconnect network device into HPC clusters to increase the throughput of PFS.

• The third element, storage systems, only receive improvements from the previous

two elements. It is worth noticing that, in this model, we defined that a storage

system should necessarily be composed of hardware and software elements. Thus,

we defined a storage system being an element that is derived from the other two

elements. Because of that, it makes no sense storage systems being proposed as a

solution to improve I/O performance on other objects. The first two elements on the

down layer can relate to each other in both directions and both of them can suggest

a solution as an object to improve the I/O performance on an entire storage systems

platform.

Tables 10 and 11 present previous works targeting I/O improvements on software,

hardware and storage systems. Each arrow shown in Figure 57 is related to a column shown

in such tables. Emerging technologies makes studying storage technologies challenging

due to low-level concepts. Throughput issues are commonly found in applications when

using the I/O layer to perform I/O operations such as read and write. The used hardware

might play a crucial role in the execution of these operations.

In a previous related work (PIOLI; MENEZES; DANTAS, 2019), we presented a

description of other research works that were not presented in these tables but also target

improvement of I/O performance on storage devices and systems. It is important noticing

that, there is no additional intention in the presentation of the works exposed in Tables 10

and 11 besides showing that they have purposes in improving a similar class of objects.

These papers are part of a systematic mapping that is presented in the next chapter

and targets I/O improvement as much as in storage devices, software, and storage systems

in the last 10 years. These solutions were divided into groups and are directly related to

each arrow presented in Figure 57.

120

Table 10 – Software I/O Improvements.

S2H-IO S2S-IO S2SS-IO
(YANG; PEI; YANG, 2019) (WU; HUANG; CHANG, 2018) (ZHOU; CHEN; WANG, 2018)

(JI et al., 2017) (YANG; LIU; CHENG, 2017) (DU et al., 2015)
(RAMASAMY; KARANTHARAJ, 2015) (HUO et al., 2015) (OH et al., 2012)

Table 11 – Hardware I/O Improvements.

H2H-IO H2S-IO H2SS-IO
(KIM et al., 2015) (NAKASHIMA; KON; YAMAGUCHI, 2018) (KANNAN et al., 2011)
(LEE et al., 2017) (MOON et al., 2015) (BU et al., 2012)
(LEE et al., 2014) (BHATTACHARJEE et al., 2011) (DAE-SIK; SEUNG-KOOK, 2009)

5.1.3 Software Solution to Improve I/O Performance on Hardware (S2H-IO)

The first column "S2H-IO" presented in Table 10 is an acronym for "Software solution

to improve I/O performance on Hardware". These papers propose a software object to

improve I/O performance on a device. Because of that, they could be characterized as

a software solution to improve I/O performance on a hardware device. The arrow that

represents this subject in Figure 57 leaves the red circle software and arrives in the green

circle hardware.

Some papers that can be used to illustrate this class are presented in Table 10.

Yang et al. (YANG; PEI; YANG, 2019) proposed a solution called WARCIP to tackle the

write amplification problem which is an inherent physical property of flash memory devices.

Chang et al. (JI et al., 2017) present a novel I/O scheduling scheme, called MAP+, for

embedded flash storage devices. Ramasamy et al. (RAMASAMY; KARANTHARAJ,

2015) proposed an algorithm called random first flash enlargement to attack and improve

the write operation of flash-memory-based SSDs.

5.1.4 Software Solution to Improve I/O Performance on Software (S2S-IO)

The second column "S2S-IO" presented in Table 10 is an acronym for "Software

solution to improve I/O performance on Software". These papers consider some software

object as a solution to perform its improvement. It is important noticing that, although the

improvements are from software to software, they take into account the storage technologies

that they are using. The arrow that represents this subject in Figure 57 leaves the red

circle software and arrives in the same red circle software.

Some papers that can be used to illustrate this class are presented in Table 10.

Wu et al. (WU; HUANG; CHANG, 2018) proposed a data placement method that

provides databases with high I/O performance by considering an integrated mechanism

and migration rule to move high-priority data between HDDs and SSDs. Yang et al.

(YANG; LIU; CHENG, 2017) proposed an approach aiming at solving duplication in

VM disks. Content look-aside buffer (CLB) was provided and implemented on the KVM

121

hypervisor. The approach provides a redundancy-free virtual disk I/O and caching. Huo et

al. (HUO et al., 2015) proposed a cooperative caching management algorithm to improve

the performance of file systems using SSD and DRAM. The method called ACSH looks

for metadata I/O file systems reducing the write traffic on SSD.

5.1.5 Software Solution to Improve I/O Performance on Storage Systems

(S2SS-IO)

The third column presented in Table 10 is concerned about I/O improvements

targeting storage systems. It is worth noticing that, in this characterization, we consider

storage systems as a group of technologies and software which work together and asyn-

chronously. As well as groups "S2H-IO" and "S2S-IO" this group considers some software

object as a solution to perform its improvement, but unlike them, the object which is

receiving the improvement is composed of software and hardware respectively, in other

words, storage systems. The "S2SS-IO" acronym which means "Software solution to improve

I/O performance on Storage Systems" relates improvements targeting I/O performance

into a storage system through a software solution. In Figure 57 these improvements are

presented as the arrow that leaves the red circle software and arrives in the blue circle

storage systems.

Some papers that can be used to illustrate this class are presented in Table 10.

Zhou et al. (ZHOU; CHEN; WANG, 2018) proposed an algorithm that can make better

use of heterogeneous devices for storage systems and is based on consistent hashing. Du

et al. (DU et al., 2015) proposed a balanced partial stripe (BPS) write scheme to improve

the write performance of RAID-6 systems. Oh et al. (OH et al., 2012) proposed a schema

that organizes the cache space into reads and writes, and manages these spaces according

to the workload characteristics for improving the performance of hybrid storage solutions.

5.1.6 Hardware Solution to Improve I/O Performance on Hardware (H2H-

IO)

The first column of Table 11 "H2H-IO" which means "Hardware solution to improve

I/O performance on Hardware" is concerned about hardware improvements. Different from

the previous one, the papers here propose a hardware object to improve I/O performance

on another hardware device. Many contributions are daily proposed to increase hardware

performance by introducing new technologies into devices. The arrow that represents this

improvement subject in Figure 57 leaves the green circle hardware and arrives in the same

green circle hardware through an auto relation.

Some papers that can be used to illustrate this class are presented in Table 11.

Kim et al. (KIM et al., 2015) proposed the insertion of the frequency-boosting interface

chip (F-Chip) into the NAND multi-chip package (MCP) including a 16-die stacked 128Gb

122

NAND flash. Kim et al. (LEE et al., 2017) proposed the design of which uses an on-chip

access control memory (ACM) introducing any type of on-chip non-volatile memory into

the micro-controller of an SSD. Lee et al. (LEE et al., 2014) proposed a stacked DRAM

with a micro bump interface. They built a High-Bandwidth Memory (HBM) introducing

four DRAM memories into a chip-on-wafer.

5.1.7 Hardware Solution to Improve I/O Performance on Software (H2S-IO)

The second column of Table 11 - "H2S-IO" which means "Hardware solution to

improve I/O performance on Software" consider some hardware object as a solution

to improve I/O performance of some software. In this case, different hardware and

technologies are used as a solution to improve applications’ I/O performance. In Figure 57

it is presented as the arrow that leaves the green circle hardware and arrives in the red

circle software. It is worth noticing that, this approach is less frequent but still important

in presenting it.

Some papers that can be used to illustrate this class are presented in Table 11.

Nakashima et al. (NAKASHIMA; KON; YAMAGUCHI, 2018) improve I/O performance

of a large scale DNA application using SSD device as a cache. Moon et al. (MOON et al.,

2015) optimize the Hadoop MapReduce framework with high-performance storage devices.

Bhattacharjee et al. (BHATTACHARJEE et al., 2011) used SSD buffer pool to enhance

recovery and restart in a database engine.

5.1.8 Hardware Solution to Improve I/O Performance on Storage Systems

(H2SS-IO)

Finally, the third column presented in Table 11 is concerned about I/O improve-

ments targeting storage systems. The acronym "H2SS-IO" means "Hardware solution

to improve I/O performance on Storage Systems" and considers a hardware object as a

solution to improve the I/O performance of a storage system. In Figure 57 the arrow that

leaves the green circle hardware and arrives in the blue circle storage systems represent

these improvements.

Some papers that can be used to illustrate this class and are presented in Table 11.

Kannan et al. (KANNAN et al., 2011) proposed using a nonvolatile random access memory

(NVRAM) to enhance the memory capacities of computing and staging nodes. Each node

has an additional Active NVRAM component. Bu et al. (BU et al., 2012) introduce a

Hybrid SSD approach that combines DRAM, phase changed memory (PCM), and flash

memory into a hierarchical storage system. Dae-sik et al. (DAE-SIK; SEUNG-KOOK,

2009) designed and analyzed a high-end class DRAM-based SSD storage using DDR-1

memory and PCI-e interface.

123

5.2 FINAL CHAPTER CONSIDERATIONS

In this chapter, we presented our characterization model for classifying research

works on I/O performance improvement. We highlighted its importance presenting the

existing gap of development between CPU and storage technologies with increases I/O

bottleneck and applications performance. The model targets to classify researchers’

proposals targeting improvements on the storage layer. The discussion about the model

targeted the author’s combination throughout different approaches to fill the I/O bottleneck

presented on these storage systems. Some authors presented hardware solutions employed

on the underneath storage layer, others develop a solution on the software layer trying to

improve the algorithms and systems to better fit the applications and increase IOPS. Our

model is basically composed of three main elements (i.e. software, hardware, and storage

systems) that represent these scenarios.

124

6 EXPERIMENTAL RESULTS

Our experimentation process analyzes the throughput and latency rate when

performing I/O operations (e.g. read and write) in a huge experimental environment. It

considers 10 different parameters and produces results from 36 different scenarios that we

expose in this document. In this empirical process, we are generating results that symbolize

research works that target improvements in the I/O performance in the storage layer.

This validating process intends to encourage the overall researchers to keep proposing

solutions to fill this huge bottleneck that we have in those environments nowadays. The

next sections present all the necessary information used in this process. Section 6.1 displays

the environment and presents the hardware we used to perform it. Moreover, section

6.2 presents the factors we use on the experimentation process and relate some of these

factors to the elements presented in Figure 57. In section 6.3, we show the benchmark

and the parameters used to generate the results. Finally, sections 6.5 and 6.6 present

throughput and latency results and discuss it finalizing the experimental evaluation overall.

The instructions that relate how the information was disposed of in these two sections is

presented in 6.4.

6.1 EXPERIMENTAL ENVIRONMENT

Experiments were carried out in the "dahu" cluster, from the Grid’5000 (GRID5000,

2020) testbed. Each of the 32 nodes is equipped with 2 CPUs (16 cores/CPU), 192 GiB

RAM, 240 GB SSD, 480 GB SSD, and a 4 TB HDD. A CentOS 7 (kernel 3.10.0) operating

system image was deployed on each node, with an ext4 file system. In these experiments, 16

nodes were used as compute nodes (CNs), generating I/O requests using the IOR-Extended

(IORE) performance evaluation tool (INACIO; DANTAS, 2018) over MPICH 3.0.4, and 8

nodes as storage nodes (SNs), in which an OrangeFS 2.9.7 PFS was deployed.

6.2 EXPERIMENT FACTORS DEFINITION

In this section, Table 12 presents the factors we used to perform the experiments.

We also relate some of these factors with the elements presented in Figure 57.

Table 12 – Factors Considered in this Experiment

Factor Values
Storage Approach HDD, HDD+SSD, SSD
Linux Scheduler CFQ, noop, deadline
Number of Tasks 32, 64
Access Pattern sequential, random

125

• We considered three hardware approaches to store data and metadata because we

believe that the way you organize those technologies might influence the performance

of your application. Firstly, we considered storing both data and metadata on HDD

devices (HDD-only). After, we considered storing data on HDD and metadata on

SSD (HDD+SSD). Finally, we stored both data and metadata on an SSD device

(SSD-only). The approaches above presented relate the hardware storage devices

used in the experiment with the green circle hardware in Figure 57.

• Many contributions are performed by researchers to improve schedulers because I/O

schedulers play an essential role in those environments. We considered three Linux

schedulers on this experimental phase: Complete Fairness Queuing (CFQ) (AXBOE,

2004), Deadline and Noop. Schedulers are algorithms that distribute works such as

threads, processes, data flows, etc. to computational resources. They are, normally,

a programmable method with some main idea to distribute these works. This factor

relates schedulers to the red circle software presented in Figure 57.

• The number of tasks participating in the test was considered in this experimentation.

DISC and HPC applications have a huge variability of workloads and characteristics,

and we choose 32 and 64 as the number of tasks because they could influence the

performance results of scientific applications.

• Finally, another two factors were considered on the experimental effort, relating

to data access pattern. The data access pattern is among the most important

characteristics of disk drive workloads because it is related to the disk service process

(RISKA; RIEDEL, 2006). The workload access patterns used in this experimentation

could be "random" or "sequential" for each scenario.

In summary, we conducted experiments with a total of 36 different scenarios where

3 came from different approaches to store data and metadata, 3 came from different I/O

schedulers used for servicing requests, 2 came from the used the number of tasks, and 2

came from the data access pattern used by the benchmark. To improve the results, each

experiment was performed 5 times and at the end, the average of them was calculated as

the final result.

6.3 IORE BENCHMARK

IORE benchmark is a unified and flexible tool for performance evaluation of modern

high-performance parallel I/O software stacks and storage systems (INACIO; DANTAS,

2018). It is based on the famous I/O benchmark IOR (INTERLEAVED. . . , 2016). It

supports a whole experimental variety of workloads and focuses on meeting I/O research

works requirements on complex and reproducible experimental workflows. It is guided by

126

an experiment-driven execution concept. Each experiment is composed of one or more

runs, which, in turn, consists of a set of configuration parameters. These parameters

define the characteristics of the I/O workload to be generated on the experimentation.

Offset-based workloads such as request and block size are provided by IORE. In the end, a

performance statistics file is exported. The tool exports the collected performance metrics

to files after experiment completion.

In each experiment we configured the scheduler we used on data servers (CFQ,

Deadline, and Noop), the way we were storing data and metadata on the storage devices

(data and metadata on HDD, data on HDD and metadata on SSD, data, and metadata

on SSD) and the characteristics of the workload we had set into the IORE configuration

file ("num_tasks" and "access_pattern"). Inside the IORE configuration file, we set up

to output 4 scenarios, named as a number in a column "run_id", in which we commuted

changing the parameters "num_tasks" and "access_pattern". The parameters possibilities

were 32 and 64 for the num_tasks and "random" and "sequential" to the "access_pattern".

The data size we use for this experiment were 32 MiB with a request size of 2 MiB for

each I/O operation process.

6.4 EXPERIMENTAL RESULTS

Results from our experimental effort are presented in the next sections. Although

these results could be analyzed by different approaches, they are discussed from two

perspectives, which are storage and scheduler perspectives. The first group is concerned

to present results from a storage perspective relating to the hardware approach defined

on the classification model presented in Figure 57. Hence, researchers could increase the

I/O layer considering other devices and technologies. The second group presents results

considering the schedulers presented on Linux operational system. In such a way, these

results could lead researchers to keep increasing the schedulers placed on systems and

consequently increasing the I/O layer through a software proposed object.

Before starting, it is important to discuss how the data and information were

presented in these graphics. In each figure presented, 24 outcomes for the read and write

operations are shown. In each bar plot, the y-axis refers to the average, throughput in

section 6.5 and latency in the section 6.6, in MiB/s, and the x-axis refers to scenarios

combining different numbers of tasks and access patterns. Further, hatched bars denote

read operations and non-hatched bars denote write operations. Finally, different colors

were used to contrast results observed with distinct I/O schedulers.

The results were also summarized by two types of tables which allows the readers to

analyze the data from different perspectives. Firstly, the tables presented after each figure

represents the throughput and latency average for all scenarios presented by each previous

figure. At the end of each section, the images previously presented were condensed and

127

grouped through four additional tables. Through these final tables, we can compare all

the elements side by side respecting each scenario.

6.5 THROUGHPUT ANALYSIS

This section presents the results considering the throughput parameter. Here we

provide information from a storage and scheduler perspective relating to the hardware

and software approaches defined on the classification model presented in Figure 57.

6.5.1 Storage Overview

In this topic we are interested in understanding how each storage approach behaves

when switching the schedulers presented on Linux.

Figure 58 presents the average throughput for the I/O requests when storing both

data and metadata on the HDD device switching then the I/O schedulers. It is possible

to verify that, in all cases, the throughput value for the read operation is bigger than the

write operation no matter which scheduler we use. Some possible factors could lead us

to understand these results. Actually, reads can be faster than writes, mainly, because,

they are made on a date already read into memory, rather than doing it from disk. I/O

operations in HDDs are very costly due to the inherent mechanical components inside

the device. The mechanical arm placed into HDDs takes a considerable range of time

positioning the arm head to the desirable disk sector when seeking data. It is worth noticing

that, random operation increases this seeking gap time. Factors related to the operating

system and the way it handles your hardware could also straightly imply. Another factor

we could suggest is the way the file system performs operations. Usually, to read a file the

file system needs to traverse the directory tree until the data and then read the file loading

it into memory. To write a file, the same operation through the tree should be performed

and after finding the path, write the data to the desired local, but, differently from the

read operation, the file system should update the metadata related to the written file.

Table 13 presents the average of throughput value for all the scenarios presented in

Figure 58. We present this average because we believe that DISC and HPC applications

can treat and use heterogeneous kinds of data with different access patterns and a number

of tasks on the same application. It is worth noticing that, in Table 13 when storing both

data and metadata on the HDD device the scheduler that presents the highest average

throughput value considering read operation is the Noop and when performing the write

operation is the CFQ scheduler.

These values lead us to see that schedulers might perform and present different

results depending on how is the application workload characteristic. The difference between

CFQ and Noop scheduler throughput for a read operation is very notorious and depending

131

Perhaps, the most expressive results are related to the write operation. The

throughput of the write operation was closer in Figure 58 and Figure 59 but the usage of

only flash devices improved the write results considerably. The throughput in MiB/s when

using only SSDs devices was higher compared to the previous ones. These results were

expected due to the characteristics directly related to the additional mechanic component

presented in HDDs. The average HDD latency is around 13ms depending on the model

and the rotational speed. Although the schedulers have different methodologies to perform

their operation, the results were similar for all previous cases. SSDs are composed of

NAND flash memories and the time to traverse the directory tree with this technology

until the right place is much smaller than when using HDDs. It is worth noticing that, an

application that performs a large quantity of write operation, the usage of flash devices

might increase its I/O performance considerably. The throughput rate when reading did

not suffer significant variations and these results can be verified in Table 15.

Table 15 – Average in MiB/s of Throughput Presented in Figure 60 (Throughput Analysis
Storing Data and Metadata on SSD).

Scheduler Read Write
CFQ 153.95 52.38

Deadline 145.45 49.3
Noop 140.43 52.45

Using this storage configuration, the schedulers seem to present a smaller throughput

when reading. It makes sense because these tables were calculated using the arithmetic

mean from all scenarios. However, the throughput when writing was increased significantly

compared to the other two approaches presented earlier. The throughput value in MiB/s

was increased more than twice for this operation in all configuration cases. These results

could lead us to argue that if an application targets higher throughput and is write-based,

perhaps consider this last storage approach would be interesting. On other hand, if the

application is read-based and throughput is the target, a hybrid storage configuration

can be chosen, thus saving costs instead of choosing a homogeneous flash-based storage

environment.

Storage Overview Discussion

We summarized Figure 58, Figure 59 and Figure 60 conjointly, comparing how

each Linux scheduler behaved in each storage approach in Tables 16, 17, 18 and 19. For

instance, the values presented in Figure 58 shown the throughput using the HDD-only

approach to store data and metadata. These values were distributed among the four Tables

16, 17, 18 and 19 throughout the column HDD. These expressive results were distributed

respecting each task number and access pattern blocks. It allowed us to compare the

Linux scheduler’s throughput performance considering each storage approach side by side.

The numbers within each table mean: (1) the highest throughput, (2) the intermediate

132

throughput, and (3) the lowest throughput. It allows us to verify in which storage scenario

the scheduler had its better throughput performance. As the write values are closer to

each other, we concentrate on analyzing read operation.

HDD HDD+SSD SSD
CFQ 3 1 2

Deadline 1 2 3
Noop 2 1 3

Table 16 – Throughput Storage
Overview Discussion -
Grouped Results by Number
of Tasks 32/Seq

HDD HDD+SSD SSD
CFQ 3 2 1

Deadline 3 1 2
Noop 3 2 1

Table 17 – Throughput Storage
Overview Discussion -
Grouped Results by Number
of Tasks 32/Ran

Tables 16 and 17 present values considering the number of tasks equal to 32.

Table 16 relates values for sequential access pattern while Table 17 relates for random

access pattern. It shows that the hybrid approach presented the highest throughput value

compared to the HDD-only and only-SSD approaches for the selected schedulers. The

hybrid approach, in 32/Seq configuration, presented a high throughput twice represented

by a number (1) and one middle value represented by a number(2). On the other hand,

we verify in Table 17 that the SSD-only approach presented the highest value rate with

the two highest values and one middle value. When changed the access pattern from

sequential to random, the usage of the SSD-only approach increased significantly. We also

noticed that when using the HDD-only approach in 32/Ran, all schedulers presented the

worst throughput compared to the other storage methods. This is an interesting result

because we confirm a common sense that HDDs do not present good performance when

faced with random accesses.

HDD HDD/SSD SSD
CFQ 3 1 2

Deadline 3 2 1
Noop 2 1 3

Table 18 – Throughput Storage
Overview Discussion -
Grouped Results by Number
of Tasks 64/Seq

HDD HDD/SSD SSD
CFQ 3 1 2

Deadline 3 1 2
Noop 3 1 2

Table 19 – Throughput Storage
Overview Discussion -
Grouped Results by Number
of Tasks 64/Ran

Tables 18 and 19 present values considering number of tasks equal to 64. Table 18

relates to a sequential access pattern and indicates that the schedulers also presented good

throughput values using the hybrid storage approach. We also noticed that the HDD-only

approach presented the worst performance for almost all schedulers. The usage of the

SSD-only approach presented mixed values having the deadline presenting the highest

throughput while noop presented the worst throughput. Table 19 relates to random

134

In Table 20, verifying write values, the SSD-only approach also presented highest

throughput. For reading, the hybrid approach presented the highest throughput. It is worth

noticing that these values are not equal to the presented in Table 15. It happens because

for calculating these arithmetic mean, we took different execution files into considerations

once we executed experiments with 36 scenarios and selected the files that composed the

same evaluation subset. For instance, to generate Figure 61 analysis, we used three final

execution files changing the storage approach and considering only the CFQ scheduler.

In Figure 58 the focus wasn’t this presented here. There, we fixed HDD as the storage

location for the data and metadata and switched to the same three Linux schedulers CFQ,

Deadline, and Noop

Table 20 – Average in MiB/s of Throughput Presented in Figure 61 (Throughput Analysis
Using CFQ Scheduler).

Storage approach Read Write
Data and Metadata on HDD 139 18,1

Data on HDD and Metadata on SSD 156,55 18,25
Data and Metadata on SSD 153,95 49,93

Analyzing Table 20 we verify that using the CFQ scheduler there is not only one

best way to get the highest throughput. It happens because there are two best options

for I/O operations which depend on the ways used to store data and metadata. Using

the hybrid approach gives the best throughput for reading operation whereas using the

SSD-only approach gives the highest throughput for the write operation.

Figure 62 presents throughput using Deadline scheduler. In configuration block

32/Seq, the SSD-only approach presented the smallest throughput for reading operation.

For configuration 32/Ran, the throughput for the same operation performed steadily. The

hybrid storage approach presented the highest throughput in configuration 32/Ran when

the HDD-only approach presented the highest throughput in 32/Seq. For access pattern

sequential and task number 64, the bigger throughput for both read and write operation

was using only flash devices. We verify that configuration 64/Seq and 32/Seq presented

asymmetrical results considering the proportions. The HDD-only had the highest value

in the 32/Seq configuration whereas in 64/Seq it had the smallest one. For random

configurations, in other words, 32/Ran and 64/Ran have the same rule for the storage

approaches having then the hybrid with the highest throughput. Analyzing the write

operation, we verify that the values were very closer for approaches that are composed

of HDDs. However, the unique approach that does not use HDD presented the highest

throughput for all configurations. Comparing Figure 61 with Figure 62, we notice that

the deadline scheduler improved the throughput considerably for approaches that uses

HDD considering 32/Seq configuration.

Comparing values from Table 20 and Table 21, the throughput were very closer for

137

write operations. One possible feature that could lead to this result could be justified

because these two first approaches use a magnetic disk to perform the operations, and we

have a known knowledge that magnetic disks impose some delay when trying to position

the reading head of the mechanical arms inside the device. Spending time positioning the

head in the disk probably decreases the throughput rate on the storage devices. Another

fact that increase this idea and is presented by all schedulers analysis is that the difference

between the read operation and the write operation when storing both data and metadata

on SSD is smaller than the other two options. It could justify by the fact that SSD

is composed of flash NAND instead of magnetic plates and the time to perform write

operations in flash memory is higher than when you perform it in magnetic disks.

Scheduler Overview Discussion We also summarized Figure 61, Figure 62 and

Figure 63 collectively, comparing how each storage approach behaved with each scheduler.

As previously analyzed for schedulers, we also clustered in Tables 23, 24, 25 and 26 the

expressive results according to the task number and access pattern, presenting how each

storage approach behaved. We also concentrate on analyzing read operations in these

tables. It allows us to verify how each scheduler behaved analyzing each one side by side

according to the chosen storage method.

CFQ Deadline Noop
HDD 3 2 1

HDD+SSD 3 2 1
SSD 1 2 3

Table 23 – Throughput Scheduler
Overview Discussion -
Grouped Results by Number
of Tasks 32/Seq

CFQ Deadline Noop
HDD 1 2 3

HDD+SSD 3 2 1
SSD 2 3 1

Table 24 – Throughput Scheduler
Overview Discussion -
Grouped Results by Number
of Tasks 32/Ran

Tables 23 and 24 present values considering number of tasks equal to 32. Table 23

relates values for sequential access pattern. It shows that the noop scheduler presented

good performance with the usage of HDD devices for both HDD-only and hybrid approach.

On the other hand, the CFQ scheduler does not seem to present a good throughput value

for these storage configurations, it presented the best storage configuration for the SSD-only

storage approach though. Deadline scheduler placed between the two other schedulers

independently of the storage approach for all cases. Table 24 presented values considering

random access pattern. In this case, the noop scheduler also presented good throughput

results, but this time for storage configurations that uses SSD devices. Different from

Table 23 where CFQ presented the highest throughput when using SSD-only approach, in

Table 24, it presented the highest throughput for the HDD-only storage approach. With

this access pattern, the deadline also was placed in performance between the two other

approaches. Summarizing, we verified that the noop scheduler seems to perform good

138

values for both sequential and random access patterns.

CFQ Deadline Noop
HDD 2 3 1

HDD+SSD 2 3 1
SSD 2 1 3

Table 25 – Throughput Scheduler
Overview Discussion -
Grouped Results by Number
of Tasks 64/Seq

CFQ Deadline Noop
HDD 3 2 1

HDD+SSD 1 2 3
SSD 1 3 2

Table 26 – Throughput Scheduler
Overview Discussion -
Grouped Results by Number
of Tasks 64/Ran

Table 25 and 26 present values considering number of tasks equal to 64. Table 25

relates values for sequential access pattern. It shows that the noop scheduler also presented

good performance with the usage of HDD devices for both HDD-only and hybrid approach.

Actually, the results for the noop scheduler for 64/Seq configuration were equal for 32/Seq

configuration. Thus, we notice that noop performs well for sequential access patterns

combined with HDD devices. On the other hand, the CFQ scheduler placed between

the two other schedulers independently of the storage approach in all cases. Finally, the

deadline seems to perform badly in approaches that have HDDs in their composition.

Table 26 presented values considering random access pattern. In this case, differently from

Table 25, noop does not present the highest throughput results when using SSD devices.

However, when using HDDs, it continued presenting good throughput results. We also

verify in Table 26 that CFQ presented two good results, both when using SSD devices.

With this access pattern, the deadline also was placed in performance between the two

other approaches. Summarizing, we verified that the CFQ scheduler seems to perform

well for random access patterns.

6.6 LATENCY ANALYSIS

This subsection presents the latency results obtained through the experimentation

process. In all of them, we are looking for understanding how latency behaves when the

benchmark performs I/O read and write operations. We also analyzed here the values

considering storage and a scheduler overview.

In the first three figures, all bars with hatches present the latency value for the

read operation that is related to one specific scheduler, and all bars without hatches,

located after the hatched bar, present the latency value of the write operation for the same

scheduler. In the last three figures, all bars with hatches present the latency value for the

reading operation that is related to the way the data were stored, and all bars without

hatches, located after the hatched bar, present the latency value of the write operation.

The latency value for the write operation always comes after the related latency for the

read operation.

139

6.6.1 Scheduler Overview

In Figure 64, Figure 65 and Figure 66 we present the average latency time for

read and write operations switching the three presented schedulers in section 6.2 (CFQ,

deadline and noop).

Figure 64 presents the latency time for the read/write operations storing data and

metadata in different ways using the CFQ scheduler. It’s possible to verify that in all cases

the latency value for the write operation is greater than the read operation no matter

which storage approach we use. Indeed, it is known that the time to read, in a normal

circumstance, is smaller than the time to write. It might be related to some facts. For

instance, how the hardware is handled or the characteristics of a specific operating system,

or even the way the file system operates could be cited. Normally, to read some files, the

file system should find the file through the directory tree and read the respective file. To

write a file, however, the same operation through the tree should be performed, but, after

reading, differently from the read operation, the file system has more additional functions

such as updating in someplace the metadata information related to the written file. This

updating place could be any place such as a standard place, a new path through the tree

directory, a new device, or even a geographically distant location.

Using CFQ scheduler, it is also possible to notice, in Figure 64, that when setting

the number of tasks equal to 32, the approaches presented to storage the data were very

similar when relating the latency time for the read operation. However, when setting the

number of tasks equal to 64, the worst approach was storing both data and metadata on

HDDs while the best was using the hybrid approach (HDD+SSD). Analyzing the write

operation, the results presented a huge difference when storing data and metadata using

an SSD in all cases. More than three times less to perform write operations was achieved

when using only SSD if compared with the hybrid approach with the access pattern equal

to sequential and number of tasks equal to 64.

Table 27 presents the average of latency value for all the scenarios presented in

Figure 64 when using the deadline scheduler. It is possible to see that using the hybrid

approach (HDD+SSD) was the configuration storage that gave us the lowest read latency

time. For the write operation, the best configuration storage was storing both data on the

SSD device with almost three times less than the lowest configuration which uses HDD.

Table 27 – Average of Latency Presented in Figure 64 (Latency Analysis Using CFQ
Scheduler).

Storage approach Read Write
Data and Meta on HDD 0,3643 2,0151

Data on HDD and Meta on SSD 0,2560 2,0871
Data and Meta on SSD 0,2815 0,6827

142

Table 29 presents the average of latency value for all the scenarios presented in

Figure 66 when using the noop scheduler. As presented in Table 27 and Table 28, Table

29 also presented the hybrid approach (HDD + SSD) as the best results with a smaller

latency time to read operation and the approach which stores both data and metadata on

SSD as the best approach to decrease the latency time for write operation.

Table 29 – Average of latency presented in Figure 66 (Latency Analysis Using Noop
Scheduler)

Storage approach Read Write
Data and Meta on HDD 0,3638 2,2576

Data on HDD and Meta on SSD 0,2493 1,8570
Data and Meta on SSD 0,3088 0,6839

It seems that regardless of the scheduler we are using, the way data storage is done

greatly influences how latency will behave. We observed that in all the cases presented

above when using the number of tasks equal to 64, the approach that stores data and

metadata in a mechanical device such as HDD, presented the worst latency result. In

general, the deadline scheduler seems to perform steadily with a low difference between

the latency of each set of parameters if compared with the other two schedulers.

Scheduler Overview Discussion We also summarized Figure 64, Figure 65 and

Figure 66 collectively, comparing how each storage approach behaved with each scheduler.

We clustered in Tables 30, 31, 32 and 33 the expressive results according to the task

number and access pattern, presenting how each storage approach behaved. Different from

the throughput analysis, here we concentrate on analyzing write operation. It allows us to

verify how each scheduler behaved analyzing each one side by side according to the chosen

storage method.

CFQ Deadline Noop
HDD 1 3 2

HDD+SSD 2 3 1
SSD 2 3 1

Table 30 – Latency Scheduler Overview
Discussion - Grouped Results
by Number of Tasks 32/Seq

CFQ Deadline Noop
HDD 2 1 3

HDD+SSD 2 1 3
SSD 2 3 1

Table 31 – Latency Scheduler Overview
Discussion - Grouped Results
by Number of Tasks 32/Ran

Tables 30 and 31 present values considering number of tasks equal to 32. Table

30 relates values for sequential access pattern. It shows that noop scheduler presented

good performance when SSDs devices were introduced on the storage layer. On the other

hand, the deadline scheduler does not seem to present good latency values. CFQ scheduler

presented an intermediate position between the other two schedulers presenting good

results for HDD-only storage approach.

143

Table 31 presented values considering random access pattern. In this case, the

deadline scheduler presented good latency results. Differently from Table 31 where deadline

presented the worst latency values for all storage scheme, in Table 31, it presented the

highest latency for the storage approaches that uses HDD in their storage layer. With

this access pattern, CFQ also presented an intermediate position between the other two

schedulers. Noop seems to perform poorly when these parameters are confronted with

HDD devices.

CFQ Deadline Noop
HDD 1 2 3

HDD+SSD 3 2 1
SSD 1 3 2

Table 32 – Latency Scheduler Overview
Discussion - Grouped Results
by Number of Tasks 64/Seq

CFQ Deadline Noop
HDD 3 1 2

HDD+SSD 3 1 2
SSD 2 3 1

Table 33 – Latency Scheduler Overview
Discussion - Grouped Results
by Number of Tasks 64/Ran

Tables 32 and 33 present values considering the number of tasks equal to 64. Table

32 relates values for sequential access pattern. It shows mixed results. Noop scheduler

presented all the different performances according to the storage approach. Its better

result was using the hybrid approach and its worst was using HDD-only approach. The

deadline scheduler presented the worst result for latency. Finally, CFQ presented good

latency when using homogeneous storage devices in its storage system layer.

Table 33 presented values considering random access pattern. In this case, differently

from Table 32, deadline presented two of the three possible good latency performance.

Both these results were when using HDD devices. We also verify in Table 33 that CFQ

scheduler does not present good results. It presented two of the three worst results. Noop

seems to present intermediate performance when using HDD devices in its storage layer.

On the other hand, it was the scheduler that presented the best latency performance when

employing SSD-only storage scheme.

The results presented in both tables seem to follow a pattern. In the tables that

employ a sequential access pattern, the deadline scheduler did not present good latency

performance. On the other hand, when the access pattern was random, the deadline

presented good results when using HDD devices in its scheme. This fact happened

regardless of the size of the task.

6.6.2 Storage Overview

In the next Figure 67, Figure 68 and Figure 69 we present the average latency time

for read and write operations switching the three storage approaches presented in section

6.1 (HDD-only, HDD+SSD and SSD-only)

147

argue that the use of an SSD device to store both data and metadata has increased the

latency time to read operations when the number of tasks is 32 and the access pattern is

sequential. However, when the number of tasks is equal to 32, the use of an SSD to store

only metadata, presented in Figure 68, presented five better results from six if compared

to the Figure 67.

Despite no significant improvement in latency when performing a read operation,

perhaps the most expressive results are related to the write operation. All values were less

than one in all scenarios. It is possible to verify that the latency for the write operation

in this storage configuration was significantly decreased if compared to the two previous

storage approaches. Although the storage solution provided an important performance

improvement when using the number of tasks equal to 32, perhaps the improvement

presented for the number of tasks equal to 64 were more expressive compared to the

previous results.

It is possible to notice in Table 36, that when performing the read operation, the

latency ratio was higher for all schedulers if compared to Table 35. It enforces our analysis

that this storage approach didn’t present significant improvement as the previous results

when performing read operations. However, if compared to Table 34, it presented a smaller

and better overall latency time. Analyzing the write value presented in Table 36 we verify

that the results for all schedulers were better than for the previous storage approaches. In

this case, the scheduler which presented the better read and writes latency time was the

CFQ scheduler.

Table 36 – Average of Latency Presented in Figure 69 (Latency Analysis Storing Data and
Metadata on SSD).

Scheduler Read Write
CFQ 0.2815 0.6827

Deadline 0.2841 0.7274
Noop 0.3087 0.6839

These results could lead us to think that if the device that you are storing the

data is an SSD device, it’s very likely that the latency time will be decreased and thereby

improve the performance of write operations.

Storage Overview Discussion

We also summarized Figure 67, Figure 68 and Figure 69 conjointly, comparing how

each Linux scheduler behaved when changing the storage approach. Tables 37, 38, 40 and

40 present these results considering each scenario.

Before starting, we can see that the writing latency was very small for all envi-

ronments that consider SSDs in the storage layer. In all these cases, the latency was

the smallest of all when using non-mechanical storage devices to support writing. These

148

HDD HDD+SSD SSD
CFQ 2 3 1

Deadline 3 2 1
Noop 3 2 1

Table 37 – Latency Storage Overview
Discussion - Grouped Results
by Number of Tasks 32/Seq

HDD HDD+SSD SSD
CFQ 3 2 1

Deadline 3 2 1
Noop 3 2 1

Table 38 – Latency Storage Overview
Discussion - Grouped Results
by Number of Tasks 32/Ran

results were already expected and justify the big usability and quickly growth of the media

device in HPE. As presented in Table. 36, the write latency when employing SSDs in

the storage layer were at least three times lower on average than the other approaches.

Although the values here presented are quite similar, we noticed that the latency behaved

the same for both 32 and 64 task numbers in sequential access patterns.

HDD HDD/SSD SSD
CFQ 2 3 1

Deadline 3 2 1
Noop 3 2 1

Table 39 – Latency Storage Overview
Discussion - Grouped Results
by Number of Tasks 64/Seq

HDD HDD/SSD SSD
CFQ 3 2 1

Deadline 2 3 1
Noop 3 2 1

Table 40 – Latency Storage Overview
Discussion - Grouped Results
by Number of Tasks 64/Ran

6.7 FINAL CHAPTER CONSIDERATIONS

In this chapter, we presented an experimentation analysis in with we investigated

how the throughput and latency behaved when performing I/O operations (e.g. read and

write) within a high-performance experimental environment. The analysis considered 10

different parameters and produced results over 36 different scenarios. In this empirical

process, we generated results that symbolized research works that targeted improvements

in the I/O performance in the storage layer. We also presented information about the user

environment and presented the hardware we used to perform our evaluation Moreover, we

presented and explained the factors we used in the experimentation process and related

these factors to the elements presented in our characterization model. Furthermore, we

presented the throughput and latency results and also presented a discussion section

highlighting the most expressive results we obtained.

149

7 CONCLUSIONS AND FUTURE WORK

Low I/O performance continues to affect high-performance environments. In the

last years, many researchers have been proposed solutions to improve the I/O architecture

considering different approaches. Some of them take advantage of hardware devices while

others focus on a sophisticated software approach. Classifying these improvements in

different dimensions allows researchers to understand how these improvements have been

built over the years and how it progresses.

In addition, it also allows future efforts to be directed to research topics that have

developed at a lower rate, promoting the general development process. This research

presented a three-dimension characterization model for classifying research works on I/O

performance improvements for large scale storage computing facilities.

We used the proposed model to perform a secondary study that covered ten years

of research on I/O performance improvements. This model can also be used as a guideline

framework to summarize researches providing an overview of the actual scenario. It

classified hundreds of distinct researches identifying which were the devices, software, and

storage systems that received more attention over the years.

We also evaluated a subset of researchers’ I/O improvements using a real and

complete experimentation environment, the Grid5000 to justify the importance of this

model. Analysis of different storage and schedulers perspectives demonstrates how the

throughput and latency parameters behaved when performing different I/O operations.

7.1 FUTURE WORK

For future work, we intend to explore this model and consider its utilization to

classify not only researches related to the storage environments but also improvements

that are related to other research topics such as processing and network. We are also

planning to perform experiments in a large cloud environment considering different storage

technologies and software approaches to also validate it using cloud concepts. Finally, we

also aim to present guidelines to use this model in the software engineering field. This plan

aims to adapt and translate the information presented here within the software engineering

field.

150

REFERENCES

AGOSTINHO, Bruno Machado; ROTTA, Giovanni; PLENTZ, Patricia Della Mea; DAN-
TAS, Mario A. R. Smart comm: A smart home middleware supporting information
exchange. IECON 2018 - 44th Annual Conf. of the IEEE Industrial Electronics
Society, Washington, DC, USA, October 21-23, 2018, p. 4678–4684, 2018.

AHMADIAN, Saba; SALKHORDEH, Reza; ASADI, Hossein. Lbica: A load balancer
for i/o cache architectures. In: IEEE. 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 2019. p. 1196–1201.

AL-WESABI, Ola A; ABDULLAH, Nibras; SUMARI, Putra. On the design of video on
demand server-based hybrid storage system. In: SPRINGER. International Conference
of Reliable Information and Communication Technology. 2017. p. 306–315.

AL-WESABI, Ola Ahmed; SUMARI, Putra; ABDULLAH, Nibras. Data stream man-
agement system for video on demand hybrid storage server. International Journal of
Intelligent Systems Technologies and Applications, Inderscience Publishers (IEL),
v. 18, n. 5, p. 470–493, 2019.

ALI, Nawab; CARNS, Philip; ISKRA, Kamil; KIMPE, Dries; LANG, Samuel; LATHAM,
Robert; ROSS, Robert; WARD, Lee; SADAYAPPAN, Ponnuswamy. Scalable i/o forwarding
framework for high-performance computing systems. In: IEEE. 2009 IEEE Int. Conf.
on Cluster Computing and Workshops. 2009. p. 1–10.

ALMASI, Gheorghe; ASAAD, Sameh; BELLOFATTO, Ralph E; BICKFORD, H Randall;
BLUMRICH, Matthias A; BREZZO, Bernard; BRIGHT, Arthur A; BRUNHEROTO,
Jose R; CASTANOS, Jose G; CHEN, Dong et al. Overview of the ibm blue gene/p project.
IBM Journal of Research and Development, IBM CORP 1 NEW ORCHARD
ROAD, ARMONK, NY 10504 USA, v. 52, n. 1-2, p. 199–220, 2008.

AMBAREESH, S; FATHIMA, Jesna. A cached middleware to improve i/o performance
using posix interface. Procedia Computer Science, Elsevier, v. 85, p. 125–132, 2016.

ASSOCIATION, Storage Networking Industry et al. Msr cambridge traces. http://iotta.
snia. org/traces/388, 2010.

ASTC Technology Roadmap, Accessed on May 06, 2020. 2016. Available from Internet:
<<"http://idema.org/?page_id=5868">>.

AXBOE, J. Noop scheduler, 2010. [s.d.].

AXBOE, Jens. Linux block io—present and future. In: Ottawa Linux Symp. 2004. p.
51–61.

AXBOE, Jens. Completely Fair Queueing (CFQ) Scheduler. 2010.

AXBOE, Jens et al. Flexible i/o tester. Online] https://github. com/axboe/fio, 2016.

BARHAM, Paul; DRAGOVIC, Boris; FRASER, Keir; HAND, Steven; HARRIS, Tim;
HO, Alex; NEUGEBAUER, Rolf; PRATT, Ian; WARFIELD, Andrew. Xen and the art
of virtualization. ACM SIGOPS operating systems review, ACM New York, NY,
USA, v. 37, n. 5, p. 164–177, 2003.

151

BARROSO, Luiz André; CLIDARAS, Jimmy; HÖLZLE, Urs. The datacenter as a com-
puter: An introduction to the design of warehouse-scale machines. Synthesis lectures
on computer architecture, Morgan & Claypool Publishers, v. 8, n. 3, p. 1–154, 2013.

BHATTACHARJEE, Bishwaranjan; ROSS, Kenneth A; LANG, Christian; MIHAILA,
George A; BANIKAZEMI, Mohammad. Enhancing recovery using an ssd buffer pool exten-
sion. In: ACM. Proceedings of the Seventh Int. Workshop on Data Management
on New Hardware. 2011. p. 10–16.

BOITO, Francieli Zanon; INACIO, Eduardo C; BEZ, Jean Luca; NAVAUX, Philippe OA;
DANTAS, Mario AR; DENNEULIN, Yves. A checkpoint of research on parallel i/o for
high-performance computing. ACM Computing Surveys, ACM New York, NY, USA,
v. 51, n. 2, p. 1–35, 2018.

BOUKHOBZA, Jalil; OLIVIER, Pierre; RUBINI, Stéphane; LEMARCHAND, Laurent;
HADJADJ-AOUL, Yassine; LAGA, Arezki. Macach: An adaptive cache-aware hybrid
ftl mapping scheme using feedback control for efficient page-mapped space management.
Journal of Systems Architecture, Elsevier, v. 61, n. 3-4, p. 157–171, 2015.

BOUKHOBZA, Jalil; RUBINI, Stéphane; CHEN, Renhai; SHAO, Zili. Emerging nvm:
A survey on architectural integration and research challenges. ACM Transactions on
Design Automation of Electronic Systems (TODAES), ACM New York, NY, USA,
v. 23, n. 2, p. 1–32, 2017.

BRAAM, Peter J; SCHWAN, Philip. Lustre: The intergalactic file system. In: Ottawa
Linux Symp. 2002. p. 50.

BRERETON, OP; KITCHENHAM, BA. The scope of epic case studies. EPIC technical
Report, 2007.

BREWER, Eric; YING, Lawrence; GREENFIELD, Lawrence; CYPHER, Robert; T’SO,
Theodore. Disks for data centers. 2016.

BRYANT, Randal E. Data-intensive scalable computing for scientific applications. Com-
puting in Science & Engineering, IEEE Computer Society, v. 13, n. 6, p. 25–33,
2011.

BU, Kai; WANG, Meng; NIE, Hongshan; HUANG, Wei; LI, Bo. The optimization of the
hierarchical storage system based on the hybrid ssd technology. In: IEEE. Int. Conf. on
Intel. Syst. Design and Eng. App. 2012. p. 1323–1326.

BUCY, John S; GANGER, Gregory R et al. The DiskSim simulation environment
version 3.0 reference manual. : School of Computer Science, Carnegie Mellon Univer-
sity, 2003.

BUDGEN, David; BRERETON, Pearl. Performing systematic literature reviews in soft-
ware engineering. In: ACM. Proceedings of the 28th international conference on
Software engineering. 2006. p. 1051–1052.

CALZAROSSA, Maria Carla; MASSARI, Luisa; TESSERA, Daniele. Workload charac-
terization: A survey revisited. ACM Computing Surveys (CSUR), ACM New York,
NY, USA, v. 48, n. 3, p. 1–43, 2016.

152

CAMPBELL, Donald T; STANLEY, Julian C. Experimental and quasi-experimental
designs for research. Handbook of research on teaching, Rand McNally Chicago, IL,
p. 171–246, 1963.

CAULFIELD, Adrian M; MOLLOV, Todor I; EISNER, Louis Alex; DE, Arup; COBURN,
Joel; SWANSON, Steven. Providing safe, user space access to fast, solid state disks. ACM
SIGPLAN Notices, ACM New York, NY, USA, v. 47, n. 4, p. 387–400, 2012.

CHANDRA, Rohit; DAGUM, Leo; KOHR, David; MENON, Ramesh; MAYDAN, Dror;
MCDONALD, Jeff. Parallel programming in OpenMP. : Morgan kaufmann, 2001.

CHANG, Hsung-Pin; YU, Yu-Cheng; CHUNG, Pei-Yao. Design and implementation of a
shared multi-tiered storage system. In: IEEE. 2018 3rd International Conference on
Computer and Communication Systems (ICCCS). 2018. p. 94–98.

CHEN, Hsin-Ya; LEE, Pei-Yu; CHANG, Hsung-Pin. A multi-tiered storage structure for
cloud computing. In: IEEE. 2016 International Computer Symposium (ICS). 2016.
p. 636–639.

CHEN, Xian; CHEN, Wenzhi; LU, Zhongyong. Fusion-cache: A refactored content-aware
host-side ssd cache. In: SPRINGER. International Conference on Algorithms and
Architectures for Parallel Processing. 2015. p. 297–314.

CHIANG, Ron C; UPPAL, Ahsen J; HUANG, H Howie. An adaptive io prefetching
approach for virtualized data centers. IEEE Transactions on Services Computing,
IEEE, v. 10, n. 3, p. 328–340, 2015.

CHIU, George. The ibm blue gene project. IBM Journal of Research and Develop-
ment, IBM Corp. Riverton, NJ, USA, v. 57, n. 1, p. 1–6, 2013.

CHOI, Hyunkyoung; BAHN, Hyokyung. Accelerating storage system performances with
nvram cache by considering storage access characteristics. In: IEEE. 2018 5th Interna-
tional Conference on Information Science and Control Engineering (ICISCE).
2018. p. 107–111.

CHUNG, Tae-Sun; PARK, Dong-Joo; PARK, Sangwon; LEE, Dong-Ho; LEE, Sang-Won;
SONG, Ha-Joo. A survey of flash translation layer. Journal of Systems Architecture,
Elsevier, v. 55, n. 5-6, p. 332–343, 2009.

COOK, Thomas D; CAMPBELL, Donald Thomas. Quasi-experimentation: Design
and analysis for field settings. : Rand McNally Chicago, 1979.

CORI, accessed Jun-29-2020. 2020. Available from Internet: <<"https://www.nersc.gov/
systems/cori/">>.

COSTA, Ivan Ferreira da. Pense e responda! qual o comprimento e a profundidade de bits
em cd, dvd e bd? Caderno Brasileiro de Ensino de Física, v. 24, n. 3, p. 333–337,
2007.

COUNCIL, Storage Performance. Storage Performance Council. 2007.

COUNCIL, Storage Performance. OLTP Application I/O and Search Engine I/O,
UMass Trace Repository. 2020. Available from Internet: <<http://traces.cs.umass.
edu/index.php/Storage/Storage>>.

153

COUNCIL, Transaction Processing Performance. TPC benchmark B standard speci-
fication. 1990. Available from Internet: <<http://www.tpc.org/tpcb/default.asp>>.

COUNCIL, Transaction Processing Performance. TPC benchmark C standard specifi-
cation. 1990. Available from Internet: <<http://www.tpc.org/tpc_documents_current_
versions/pdf/tpc-c_v5.11.0.pdf>>.

COUNCIL, Transaction Processing Performance. TPC benchmark E standard speci-
fication. 1990. Available from Internet: <<http://www.tpc.org/tpce/default.asp>>.

COUNCIL, Transaction Processing Performance. TPC benchmark H standard specifi-
cation. 1990. Available from Internet: <<http://www.tpc.org/tpc_documents_current_
versions/pdf/tpc-h_v2.18.0.pdf>>.

CROCKETT, Louise H; ELLIOT, Ross A; ENDERWITZ, Martin A; STEWART,
Robert W. The Zynq Book: Embedded Processing with the Arm Cortex-A9 on
the Xilinx Zynq-7000 All Programmable Soc. : Strathclyde Academic Media, 2014.

CUI, Jinhua; WU, Weiguo; ZHANG, Xingjun; HUANG, Jianhang; WANG, Yinfeng.
Exploiting latency variation for access conflict reduction of nand flash memory. In: IEEE.
2016 32nd Symposium on Mass Storage Systems and Technologies (MSST).
2016. p. 1–7.

DAE-SIK, Ko; SEUNG-KOOK, Chung. A design of ddr-1 solid state drive using pci-e
interface. In: IEEE. 2009 15th Asia-Pacific Conf. on Communications. 2009. p.
889–891.

DALEY, Christopher S; GHOSHAL, Devarshi; LOCKWOOD, Glenn K; DOSANJH, Sudip;
RAMAKRISHNAN, Lavanya; WRIGHT, Nicholas J. Performance characterization of
scientific workflows for the optimal use of burst buffers. Future Generation Computer
Systems, Elsevier, 2017.

DOH, In Hwan; LEE, Hyo J; MOON, Young Je; KIM, Eunsam; CHOI, Jongmoo; LEE,
Donghee; NOH, Sam H. Impact of nvram write cache for file system metadata on i/o
performance in embedded systems. In: Proceedings of the 2009 ACM symposium
on Applied Computing. 2009. p. 1658–1663.

DORIER, Matthieu; ANTONIU, Gabriel; CAPPELLO, Franck; SNIR, Marc; ORF, Leigh.
Damaris: How to efficiently leverage multicore parallelism to achieve scalable, jitter-free
i/o. In: IEEE. 2012 IEEE International Conference on Cluster Computing. 2012.
p. 155–163.

DROWNING in data. IEEE Spectrum magazine, IEEE, p. 32–37, September 2018.

DU, Congjin; WU, Chentao; LI, Jie; GUO, Minyi; HE, Xubin. Bps: A balanced partial
stripe write scheme to improve the write performance of raid-6. In: IEEE. IEEE Int.
Conf. on Cluster Computing. 2015. p. 204–213.

EILEMANN, Stefan; DELALONDRE, Fabien; BERNARD, Jon; PLANAS, Judit;
SCHUERMANN, Felix; BIDDISCOMBE, John; BEKAS, Costas; CURIONI, Alessandro;
METZLER, Bernard; KALTSTEIN, Peter et al. Key/value-enabled flash memory for
complex scientific workflows with on-line analysis and visualization. In: IEEE. 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 2016.
p. 608–617.

154

ENES, Jonatan; CACHEIRO, Javier López; EXPÓSITO, Roberto R; TOURINO, Juan.
Big data-oriented paas architecture with disk-as-a-resource capability and container-based
virtualization. Journal of Grid Computing, Springer, v. 16, n. 4, p. 587–605, 2018.

FAN, Ya; WANG, Yong; YE, Miao. An improved small file storage strategy in ceph
file system. In: IEEE. 2018 14th International Conference on Computational
Intelligence and Security (CIS). 2018. p. 488–491.

FENG, Zhijie; FENG, Zhiyong; WANG, Xin; RAO, Guozheng; WEI, Yazhou; LI,
Zhiyuan. Hdstore: An ssd/hdd hybrid distributed storage scheme for large-scale data. In:
SPRINGER. International Conference on Web-Age Information Management.
2014. p. 209–220.

FOLK, Mike; HEBER, Gerd; KOZIOL, Quincey; POURMAL, Elena; ROBINSON, Dana.
An overview of the hdf5 technology suite and its applications. In: Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases. 2011. p. 36–47.

GANGER, Gregory R; WORTHINGTON, Bruce L; PATT, Yale N; BUCY, J. The disksim
simulation environment. University of Michigan, EECS, Technical Report CSE-
TR-358-98, 1998.

GARA, Alan; BLUMRICH, Matthias A; CHEN, Dong; CHIU, GL-T; COTEUS, Paul;
GIAMPAPA, Mark E; HARING, Ruud A; HEIDELBERGER, Philip; HOENICKE, Dirk;
KOPCSAY, Gerard V et al. Overview of the blue gene/l system architecture. IBM
Journal of research and development, IBM, v. 49, n. 2.3, p. 195–212, 2005.

GOMES, Eliza; UMILIO, Franco; DANTAS, Mario A. R.; PLENTZ, Patricia Della Mea.
An ambient assisted living research approach targeting real-time challenges. IECON 2018
- 44th Annual Conf. of the IEEE Industrial Electronics Society, Washington,
DC, USA, October 21-23, 2018, p. 3079–3083, 2018.

GRANZ, Steven; CONOVER, Michael; GUZMAN, Javier; CROSS, William; HARLLEE,
Pete; RAUSCH, Tim. Perpendicular interlaced magnetic recording. IEEE Transactions
on Magnetics, IEEE, v. 55, n. 12, p. 1–5, 2019.

GRANZ, Steven D; NGO, Tue; RAUSCH, Tim; BROCKIE, Richard; WOOD, Roger;
BERTERO, Gerardo; GAGE, Edward C. Definition of an areal density metric for magnetic
recording systems. IEEE Transactions on Magnetics, IEEE, v. 53, n. 2, p. 1–4, 2016.

GRID5000. 2020. Available from Internet: <<https://www.grid5000.fr>>.

GUO, Jiayang; HU, Yimin; MAO, Bo. Enhancing i/o scheduler performance by exploiting
internal parallelism of ssds. In: SPRINGER. International Conference on Algorithms
and Architectures for Parallel Processing. 2015. p. 118–130.

HAN, Wen-bing; CHEN, Xiao-gang; LI, Shun-Fen; LI, Ge-zi; SONG, Zhi-tang; LI, Da-Gang;
CHEN, Shi-Yan. A novel non-volatile memory storage system for i/o-intensive applications.
Frontiers of Information Technology & Electronic Engineering, Springer, v. 19,
n. 10, p. 1291–1302, 2018.

HE, Shuibing; SUN, Xian-He; FENG, Bo. S4d-cache: Smart selective ssd cache for parallel
i/o systems. In: IEEE. 2014 IEEE 34th International Conference on Distributed
Computing Systems. 2014. p. 514–523.

155

HE, Shuibing; WANG, Yang; SUN, Xian-He. Boosting parallel file system performance
via heterogeneity-aware selective data layout. IEEE Transactions on Parallel and
Distributed Systems, IEEE, v. 27, n. 9, p. 2492–2505, 2015.

HE, Weiping; DU, David HC. Smart: An approach to shingled magnetic recording
translation. In: 15th {USENIX} Conference on File and Storage Technologies
({FAST} 17). 2017. p. 121–134.

HE, Youbiao; DAI, Dong; BAO, Forrest Sheng. Modeling hpc storage performance using
long short-term memory networks. In: IEEE. 2019 IEEE 21st International Con-
ference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference
on Data Science and Systems (HPCC/SmartCity/DSS). 2019. p. 1107–1114.

HEY, Tony; TANSLEY, Stewart; TOLLE, Kristin. The fourth paradigm. Microsoft
Research, v. 722, 2009.

HOPPER, accessed Jun-29-2020. 2020. Available from Internet: <<"https:
//www.nersc.gov/news-publications/nersc-news/nersc-center-news/2010/
nersc-s-hopper-breaks-petaflops-barrier-ranks-5th-in-the-world/">>.

HOSOMI, M; YAMAGISHI, H; YAMAMOTO, T; BESSHO, K; HIGO, Y; YAMANE,
K; YAMADA, H; SHOJI, M; HACHINO, H; FUKUMOTO, C et al. A novel nonvolatile
memory with spin torque transfer magnetization switching: Spin-ram. In: IEEE. IEEE
InternationalElectron Devices Meeting, 2005. IEDM Technical Digest. 2005. p.
459–462.

HSIEH, Jen-Wei; LIN, Han-Yi; YANG, Dong-Lin. Multi-channel architecture-based ftl for
reliable and high-performance ssd. IEEE Transactions on Computers, IEEE, v. 63,
n. 12, p. 3079–3091, 2013.

HU, Yang; JIANG, Hong; FENG, Dan; TIAN, Lei; LUO, Hao; ZHANG, Shuping. Perfor-
mance impact and interplay of ssd parallelism through advanced commands, allocation
strategy and data granularity. In: Proceedings of the international conference on
Supercomputing. 2011. p. 96–107.

HUANG, Min; XU, Ben; LIU, Zhaoqing; XU, Yishen; WU, Di. Implicit programming: a
fast programming strategy for nand flash memory storage systems adopting redundancy
methods. IEEE Embedded Systems Letters, IEEE, v. 9, n. 2, p. 37–40, 2017.

HUANG, Yaning; JIN, Hai; SHI, Xuanhua; WU, Song; CHEN, Yong. Cost-aware client-side
file caching for data-intensive applications. In: IEEE. 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science. 2013. v. 2, p. 248–251.

HUI, Jiao; GE, Xiongzi; HUANG, Xiaoxia; LIU, Yi; RAN, Qiangjun. E-hash: An energy-
efficient hybrid storage system composed of one ssd and multiple hdds. In: SPRINGER.
International Conference in Swarm Intelligence. 2012. p. 527–534.

HUO, Zhisheng; XIAO, Limin; ZHONG, Qiaoling; LI, Shupan; LI, Ang; RUAN, Li; WANG,
Shouxin; FU, Lihong. A metadata cooperative caching architecture based on ssd and dram
for file systems. In: SPRINGER. Int. Conf. on Algorithms and Architectures for
Parallel Processing. 2015. p. 31–51.

156

HWANG, Euiseok; PARK, Jongseung; RAUSCHMAYER, Richard; WILSON, Bruce.
Interlaced magnetic recording. IEEE Transactions on Magnetics, IEEE, v. 53, n. 4,
p. 1–7, 2016.

INACIO, Eduardo C; DANTAS, Mario AR. Iore: A flexible and distributed i/o performance
evaluation tool for hyperscale storage systems. In: IEEE. IEEE Symp. on Comp. and
Comm. 2018. p. 01026–01031.

INOUE, Atsushi; WONG, Doug. Nand flash applications design guide. Toshiba America
Electronic Components Inc, 2004.

INTERLEAVED Or Random (IOR). 2016. Available from Internet: <<https://github.
com/LLNL/ior>>.

JI, Cheng; CHANG, Li-Pin; WU, Chao; SHI, Liang; XUE, Chun Jason. An i/o scheduling
strategy for embedded flash storage devices with mapping cache. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, IEEE, v. 37, n. 4,
p. 756–769, 2017.

JI, Cheng; WANG, Lun; LI, Qiao; GAO, Congming; SHI, Liang; YANG, Chia-Lin; XUE,
Chun Jason. Fair down to the device: A gc-aware fair scheduler for ssd. In: IEEE. 2019
IEEE Non-Volatile Memory Systems and Applications Symposium (NVMSA).
2019. p. 1–6.

JI, Cheng; WU, Chao; CHANG, Li-Pin; SHI, Liang; XUE, Chun Jason. I/o scheduling
with mapping cache awareness for flash based storage systems. In: Proceedings of the
13th International Conference on Embedded Software. 2016. p. 1–10.

JIANG, Zhiwen; ZHANG, Yong; WANG, Jin; XING, Chunxiao. A cost-aware buffer
management policy for flash-based storage devices. In: SPRINGER. International Con-
ference on Database Systems for Advanced Applications. 2015. p. 175–190.

JIN, Weitong; ZHU, Yanmin; HUANG, Linpeng. Accelerating traditional file systems on
non-volatile main memory. In: IEEE. 2017 IEEE 23rd International Conference on
Parallel and Distributed Systems (ICPADS). 2017. p. 453–460.

JO, Heeseung; KWON, Youngjin; KIM, Hwanju; SEO, Euiseong; LEE, Joonwon; MAENG,
Seungryoul. Ssd-hdd-hybrid virtual disk in consolidated environments. In: SPRINGER.
European Conference on Parallel Processing. 2009. p. 375–384.

JO, Myung Hyun; RO, Won Woo. Dynamic load balancing of dispatch scheduling for solid
state disks. IEEE Transactions on Computers, IEEE, v. 66, n. 6, p. 1034–1047, 2016.

JOO, Yongsoo; RYU, Junhee; PARK, Sangsoo; SHIN, Kang G. Improving application
launch performance on solid state drives. Journal of Computer Science and Tech-
nology, Springer, v. 27, n. 4, p. 727–743, 2012.

JR, J Presper Eckert; WEINER, James R; WELSH, H Frazer; MITCHELL, Herbert F.
The univac system. In: Papers and discussions presented at the Dec. 10-12, 1951,
joint AIEE-IRE computer conference: Review of electronic digital computers.
1951. p. 6–16.

157

JU, Gaoying; LI, Yongkun; XU, Yinlong; CHEN, Jiqiang; LUI, John CS. Stochastic mod-
eling of hybrid cache systems. In: IEEE. 2016 IEEE 24th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS). 2016. p. 69–78.

JUNG, Myoungsoo; III, Ellis H Wilson; CHOI, Wonil; SHALF, John; AKTULGA,
Hasan Metin; YANG, Chao; SAULE, Erik; CATALYUREK, Umit V; KANDEMIR,
Mahmut. Exploring the future of out-of-core computing with compute-local non-volatile
memory. Scientific Programming, IOS Press, v. 22, n. 2, p. 125–139, 2014.

KANNAN, Sudarsun; GAVRILOVSKA, Ada; SCHWAN, Karsten; MILOJICIC, Dejan;
TALWAR, Vanish. Using active nvram for i/o staging. In: ACM. Int. Work. on Petascale
Data Analytics: challenges and opportunities. 2011. p. 15–22.

KARIM, Mohd Bazli Ab; YUAN, Luke Jing; MING-TAT, Wong; ONG, Hong. Improving
performance of database appliances on distributed object storage. In: IEEE. 2015 Inter-
national Conference on Cloud Computing Research and Innovation (ICCCRI).
2015. p. 45–52.

KEELE, Staffs et al. Guidelines for performing systematic literature reviews in
software engineering. 2007.

KIM, Hwajung; YEOM, Heonyoung. Improving small file i/o performance for massive
digital archives. In: IEEE. 2017 IEEE 13th International Conference on e-Science
(e-Science). 2017. p. 256–265.

KIM, Hwajung; YEOM, Heon Young; SON, Yongseok. An i/o isolation scheme for key-
value store on multiple solid-state drives. In: IEEE. 2019 IEEE 4th International
Workshops on Foundations and Applications of Self* Systems (FAS* W). 2019.
p. 170–175.

KIM, Hyun-Jin; LIM, Jeong-Don; LEE, Jang-Woo; NA, Dae-Hoon; SHIN, Joon-Ho; KIM,
Chae-Hoon; YU, Seung-Woo; SHIN, Ji-Yeon; LEE, Seon-Kyoo; RAJAGOPAL, Devraj et
al. 7.6 1gb/s 2tb nand flash multi-chip package with frequency-boosting interface chip. In:
IEEE. IEEE Int. Solid-State Circuits Conf. 2015. p. 1–3.

KIM, Youngjae; TAURAS, Brendan; GUPTA, Aayush; URGAONKAR, Bhuvan. Flashsim:
A simulator for nand flash-based solid-state drives. In: IEEE. 2009 First International
Conference on Advances in System Simulation. 2009. p. 125–131.

KITCHENHAM, Barbara. Procedures for performing systematic reviews. Keele, UK,
Keele University, v. 33, n. 2004, p. 1–26, 2004.

KITCHENHAM, Barbara A; BUDGEN, David; BRERETON, O Pearl. Using mapping
studies as the basis for further research–a participant-observer case study. Information
and Software Technology, Elsevier, v. 53, n. 6, p. 638–651, 2011.

KIVITY, A; KAMAY, Yaniv; LAOR, Dor; LUBLIN, U; LIGUORI, A. kvm: the linux
virtual machine monitor In: Proceedings of the Linux Symposium, 225–230. :
Canada, 2007.

158

KLONATOS, Yannis; MAKATOS, Thanos; MARAZAKIS, Manolis; FLOURIS, Michail D;
BILAS, Angelos. Azor: Using two-level block selection to improve ssd-based i/o caches. In:
IEEE. 2011 IEEE Sixth International Conference on Networking, Architecture,
and Storage. 2011. p. 309–318.

KOO, Gunjae; MATAM, Kiran Kumar; NARRA, HV; LI, Jing; TSENG, Hung-Wei;
SWANSON, Steven; ANNAVARAM, Murali et al. Summarizer: trading communication
with computing near storage. In: ACM. Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. 2017. p. 219–231.

KRAKEN, accessed Jun-29-2020. 2020. Available from Internet: <<"https://www.nics.
tennessee.edu/kraken/specifications">>.

KRISH, KR; ANWAR, Ali; BUTT, Ali R. hats: A heterogeneity-aware tiered storage for
hadoop. In: IEEE. 2014 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. 2014. p. 502–511.

KRYDER, Mark H; GAGE, Edward C; MCDANIEL, Terry W; CHALLENER, William A;
ROTTMAYER, Robert E; JU, Ganping; HSIA, Yiao-Tee; ERDEN, M Fatih. Heat assisted
magnetic recording. Proceedings of the IEEE, IEEE, v. 96, n. 11, p. 1810–1835, 2008.

KWON, Kirock; KANG, Dong Hyun; EOM, Young Ik. An advanced slc-buffering for
tlc nand flash-based storage. IEEE Transactions on Consumer Electronics, IEEE,
v. 63, n. 4, p. 459–466, 2017.

LATHAM, Rob; BAUTISTA-GOMEZ, Leonardo; BALAJI, Pavan. Portable topology-
aware mpi-i/o. In: IEEE. 2017 IEEE 23rd International Conference on Parallel
and Distributed Systems (ICPADS). 2017. p. 710–719.

LEE, Dong Uk; KIM, Kyung Whan; KIM, Kwan Weon; LEE, Kang Seol; BYEON,
Sang Jin; KIM, Jae Hwan; CHO, Jin Hee; LEE, Jaejin; CHUN, Jun Hyun. A 1.2 v 8 gb
8-channel 128 gb/s high-bandwidth memory (hbm) stacked dram with effective i/o test
circuits. IEEE Journal of Solid-State Circuits, IEEE, v. 50, n. 1, p. 191–203, 2014.

LEE, Junghee; GANESH, Kalidas; LEE, Hyuk-Jun; KIM, Youngjae. Fessd: A fast
encrypted ssd employing on-chip access-control memory. IEEE Computer Architecture
Letters, IEEE, v. 16, n. 2, p. 115–118, 2017.

LEE, S; HYUN, S; KOH, K; BAHN, H. Efficient i/o processing scheme for flash memory
storage systems. Electronics letters, IET, v. 47, n. 7, p. 436–437, 2011.

LEE, Sungjin; KIM, Jihong; MITHAL, Arvind. Refactored design of i/o architecture
for flash storage. IEEE Computer Architecture Letters, IEEE, v. 14, n. 1, p. 70–74,
2014.

LEE, Sungjin; SHIN, Dongkun; KIM, Youngjin; KIM, Jihong. Exploiting sequential and
temporal localities to improve performance of nand flash-based ssds. ACM Transactions
on Storage (TOS), ACM, v. 12, n. 3, p. 15, 2016.

LEE, Yangsup; JUNG, Sanghyuk; SONG, Yong Ho. Fra: A flash-aware redundancy
array of flash storage devices. In: Proceedings of the 7th IEEE/ACM international
conference on Hardware/software codesign and system synthesis. 2009. p. 163–
172.

159

LI, Dingding; LIAO, Xiaofei; JIN, Hai; TANG, Yong; ZHAO, Gansen. Writeback throttling
in a virtualized system with scm. Frontiers of Computer Science, Springer, v. 10, n. 1,
p. 82–95, 2016.

LI, Hong-yan; XIONG, Nai-xue; HUANG, Ping; GUI, Chao. Pass: a simple, efficient
parallelism-aware solid state drive i/o scheduler. Journal of Zhejiang University
SCIENCE C, Springer, v. 15, n. 5, p. 321–336, 2014.

LI, Jianwei; LIAO, Wei-keng; CHOUDHARY, Alok; ROSS, Robert; THAKUR, Rajeev;
GROPP, William; LATHAM, Robert; SIEGEL, Andrew; GALLAGHER, Brad; ZINGALE,
Michael. Parallel netcdf: A high-performance scientific i/o interface. In: IEEE. SC’03:
Proceedings of the 2003 ACM/IEEE conference on Supercomputing. 2003. p.
39–39.

LI, Yu; ON, Sai Tung; XU, Jianliang; CHOI, Byron; HU, Haibo. Digestjoin: Exploiting fast
random reads for flash-based joins. In: IEEE. 2009 Tenth International Conference
on Mobile Data Management: Systems, Services and Middleware. 2009. p. 152–
161.

LI, Zheng; WANG, Fang; LIU, Jingning; FENG, Dan; HUA, Yu; TONG, Wei; ZHANG,
Shuangwu. A user-visible solid-state storage system with software-defined fusion methods
for pcm and nand flash. Journal of Systems Architecture, Elsevier, v. 71, p. 44–61,
2016.

LIANG, Weihao; CHEN, Yong; AN, Hong. Interference-aware i/o scheduling for data-
intensive applications on hierarchical hpc storage systems. In: IEEE. 2019 IEEE 21st
International Conference on High Performance Computing and Communica-
tions; IEEE 17th International Conference on Smart City; IEEE 5th Inter-
national Conference on Data Science and Systems (HPCC/SmartCity/DSS).
2019. p. 654–661.

LIANG, Weihao; CHEN, Yong; LIU, Jialin; AN, Hong. Cars: A contention-aware scheduler
for efficient resource management of hpc storage systems. Parallel Computing, Elsevier,
v. 87, p. 25–34, 2019.

LIAO, Jianwei; LIU, Xiaoyan; CHEN, Yingshen. Dynamical re-striping data on stor-
age servers in parallel file systems. In: IEEE. 2013 IEEE 37th Annual Computer
Software and Applications Conference. 2013. p. 65–73.

LIU, Duo; ZHONG, Kan; WANG, Tianzheng; WANG, Yi; SHAO, Zili; SHA, Edwin Hsing-
Mean; XUE, Jingling. Durable address translation in pcm-based flash storage systems.
IEEE Transactions on Parallel and Distributed Systems, IEEE, v. 28, n. 2, p.
475–490, 2016.

LIU, Jialin; BYNA, Surendra; DONG, Bin; WU, Kesheng; CHEN, Yong. Model-driven
data layout selection for improving read performance. In: IEEE. IEEE Int. Par. &
Distrib. Proc. Symp. Workshops. 2014. p. 1708–1716.

LIU, Qing; PODHORSZKI, Norbert; CHOI, Jong; LOGAN, Jeremy; WOLF, Matt;
KLASKY, Scott; KURC, Tahsin; HE, Xubin. Storerush: An application-level approach
to harvesting idle storage in a best effort environment. Procedia Computer Science,
Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). Oak Ridge . . . , v. 108,
n. C, 2017.

160

LIU, Xin; LU, Yu-tong; YU, Jie; WANG, Peng-fei; WU, Jie-ting; LU, Ying. Onfs: a hierar-
chical hybrid file system based on memory, ssd, and hdd for high performance computers.
Frontiers of Information Technology & Electronic Engineering, Springer, v. 18,
n. 12, p. 1940–1971, 2017.

LIU, Yan; HUANG, Xin; HUANG, Yizi; GENG, Shaofeng; PENG, Xin; LI, Renfa. A
variable-sized stripe level data layout strategy for hdd/ssd hybrid parallel file systems.
Concurrency and Computation: Practice and Experience, Wiley Online Library,
v. 29, n. 20, p. e4039, 2017.

LIU, Zhuo; WANG, Bin; YU, Weikuan. Halo: a fast and durable disk write cache using
phase change memory. Cluster Computing, Springer, v. 21, n. 2, p. 1275–1287, 2018.

LOFSTEAD, Jay F; KLASKY, Scott; SCHWAN, Karsten; PODHORSZKI, Norbert; JIN,
Chen. Flexible io and integration for scientific codes through the adaptable io system
(adios). In: Proceedings of the 6th international workshop on Challenges of
large applications in distributed environments. 2008. p. 15–24.

MAO, Bo; WU, Suzhen; DUAN, Lide. Improving the ssd performance by exploiting
request characteristics and internal parallelism. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, IEEE, v. 37, n. 2, p. 472–484,
2017.

MAO, Bo; WU, Suzhen; JIANG, Hong; YANG, Yaodong; XI, Zaifa. Edc: Improving
the performance and space efficiency of flash-based storage systems with elastic data
compression. IEEE Transactions on Parallel and Distributed Systems, IEEE,
v. 29, n. 6, p. 1261–1274, 2018.

MARKS, Benjamin; NEWHALL, Tia. Transparent heterogeneous backing store for file
systems. In: IEEE. 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 2017. p. 30–41.

MATIVENGA, Ronnie; PAIK, Joon-Young; KIM, Youngjae; LEE, Junghee; CHUNG,
Tae-Sun. Rftl: improving performance of selective caching-based page-level ftl through
replication. Cluster Computing, Springer, v. 22, n. 1, p. 25–41, 2019.

MDTEST, last access 06-2020. [s.d.]. Available from Internet: <<https://github.com/
MDTEST-LANL/mdtest>>.

MEENA, Jagan Singh; SZE, Simon Min; CHAND, Umesh; TSENG, Tseung-Yuen.
Overview of emerging nonvolatile memory technologies. Nanoscale research letters,
Springer, v. 9, n. 1, p. 526, 2014.

MEUER, Hans; STROHMAIER, Erich; DONGARRA, Jack; SIMON, Horst. Top500
supercomputer sites. 2001.

MICROCHIP - Introduction to SMR (Shingled Magnetic Recording) Drives, Accessed
on May 03, 2020. 2019. Available from Internet: <<"https://ask.adaptec.com/app/
answers/detail/a_id/17472/~/introduction-to-smr-%28shingled-magnetic-recording%
29-drives">>.

161

MIDORIKAWA, Hiroko; TAN, Hideyuki. Evaluation of flash-based out-of-core stencil
computation algorithms for ssd-equipped clusters. In: IEEE. 2016 IEEE 22nd Inter-
national Conference on Parallel and Distributed Systems (ICPADS). 2016. p.
1031–1040.

MOON, Sangwhan; LEE, Jaehwan; SUN, Xiling; KEE, Yang-suk. Optimizing the hadoop
mapreduce framework with high-performance storage devices. The Journal of Super-
computing, Springer, v. 71, n. 9, p. 3525–3548, 2015.

MURDOCCA, MJ; HEURING, VP. Principles of computer architecture: Class test edition.
USA: New Jersy, p. 266–279, 1999.

NAKASHIMA, Kenji; KON, Joichiro; YAMAGUCHI, Saneyasu. I/o performance improve-
ment of secure big data analyses with application support on ssd cache. In: ACM. Int.
Conf. on Ubiq. Inf. Management and Comm. 2018. p. 90.

NAKASHIMA, Kenji; KON, Joichiro; YAMAGUCHI, Saneyasu; LEE, Gil Jae; FORTES,
José. 1a study on big data i/o performance with modern storage systems. In: IEEE. 2017
IEEE International Conference on Big Data (Big Data). 2017. p. 4798–4799.

NASA MODIS, last access 06-2020. [s.d.]. Available from Internet: <<http://modis.gsfc.
nasa.gov/>>.

NERSC Systems, accessed in Jun-2020. 2020. Available from Internet: <<"https://www.
nersc.gov/about/nersc-history/history-of-systems/">>.

NI, Yunzhu; LI, Zhishu. Minimizing the response time of a striped disk array. In: IEEE.
2010 Second International Conference on Intelligent Human-Machine Systems
and Cybernetics. 2010. v. 2, p. 200–204.

NICOLAE, Bogdan; RITEAU, Pierre; KEAHEY, Kate. Transparent throughput elasticity
for iaas cloud storage using guest-side block-level caching. In: IEEE. 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing. 2014. p. 186–195.

NIJIM, Mais; SAHA, Soumya; NIJIM, Yousef. Central and distributed gpu based parallel
disk systems for data intensive applications. Procedia Computer Science, Elsevier,
v. 34, p. 338–343, 2014.

NORCOTT, WilliamD. Iozone filesystem benchmark. http://www. iozone. org/, 2003.

OH, Yongseok; CHOI, Jongmoo; LEE, Donghee; NOH, Sam H. Caching less for better
performance: balancing cache size and update cost of flash memory cache in hybrid storage
systems. In: FAST. 2012. v. 12.

OIKAWA, Shuichi. Virtualizing storage as memory for high performance storage access.
In: IEEE. 2014 IEEE International Symposium on Parallel and Distributed
Processing with Applications. 2014. p. 18–25.

OPTICAL Storage - Photos courtesy of Philips Research. 2000. Available from Internet:
<<http://www.extra.research.philips.com/pressmedia/pictures/passw2.html>>.

OU, Yang; WU, Xiaoquan; XIAO, Nong; LIU, Fang; CHEN, Wei. Nis: a new index scheme
for flash file system. In: IEEE. 2015 Third International Conference on Advanced
Cloud and Big Data. 2015. p. 44–51.

162

OU, Yang; XIAO, Nong; LIU, Fang; CHEN, Zhiguang; CHEN, Wei; WU, Lizhou. Gemini: a
novel hardware and software implementation of high-performance pcie ssd. International
Journal of Parallel Programming, Springer, v. 45, n. 4, p. 923–945, 2017.

PAN, Yubiao; LI, Yongkun; ZHANG, Huizhen; XU, Yinlong. Lifetime-aware ftl to improve
the lifetime and performance of solid-state drives. Future Generation Computer
Systems, Elsevier, v. 93, p. 58–67, 2019.

PARK, Daekyu; KANG, Dong Hyun; AHN, Seung Min; EOM, Young Ik. The minimal-
effort write i/o scheduler for flash-based storage devices. In: IEEE. 2018 IEEE Interna-
tional Conference on Consumer Electronics (ICCE). 2018. p. 1–3.

PARK, Junseok; BAHN, Hyokyung; KOH, Kern. Buffer cache management for combined
mlc and slc flash memories using both volatile and nonvolatile rams. In: IEEE. 2009
15th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications. 2009. p. 228–235.

PARK, Jiwoong; MIN, Cheolgi; YEOM, Heon Young; SON, Yongseok. z-read: Towards
efficient and transparent zero-copy read. In: IEEE. 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD). 2019. p. 367–371.

PARK, Jung Kyu; SEO, Yunjung; KIM, Jaeho. A flash-based ssd cache management
scheme for high performance home cloud storage. IEEE Transactions on Consumer
Electronics, IEEE, v. 65, n. 3, p. 418–425, 2019.

PETERSEN, Torben Kling; BENT, John. Hybrid flash arrays for hpc storage systems:
An alternative to burst buffers. In: IEEE. 2017 IEEE High Performance Extreme
Computing Conference (HPEC). 2017. p. 1–7.

PETTICREW, M; ROBERTS, H. Systematic reviews in the social sciences: a practical
guide. 2006. Malden USA: Blackwell Publishing CrossRef Google Scholar, [s.d.].

PIOLI, Laércio; MENEZES, Victor Ströele de Andrade; DANTAS, Mario Antonio Ribeiro.
Research characterization on i/o improvements of storage environments. In: SPRINGER.
Int. Conf. on P2P, Parallel, Grid, Cloud and Internet Computing. 2019. p.
287–298.

PRABHAKAR, Ramya; SRIKANTAIAH, Shekhar; GARG, Rajat; KANDEMIR, Mahmut.
Adaptive qos decomposition and control for storage cache management in multi-server
environments. In: IEEE. 2011 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing. 2011. p. 402–413.

PRABHAKAR, Ramya; VAZHKUDAI, Sudharshan S; KIM, Youngjae; BUTT, Ali R; LI,
Min; KANDEMIR, Mahmut. Provisioning a multi-tiered data staging area for extreme-
scale machines. In: IEEE. 2011 31st International Conference on Distributed
Computing Systems. 2011. p. 1–12.

RAMASAMY, Arul Selvan; KARANTHARAJ, Porkumaran. Rffe: A buffer cache man-
agement algorithm for flash-memory-based ssd to improve write performance. Canadian
Journal of Electrical and Computer Engineering, IEEE, v. 38, n. 3, p. 219–231,
2015.

163

RAVANDI, Babak; PAPAPANAGIOTOU, Ioannis. A self-organized resource provisioning
for cloud block storage. Future Generation Computer Systems, Elsevier, v. 89, p.
765–776, 2018.

RAYNAUD, Tanguy; HAQUE, Rafiqul; AÏT-KACI, Hassan. Cedcom: A high-performance
architecture for big data applications. In: IEEE. 2014 IEEE/ACS 11th International
Conference on Computer Systems and Applications (AICCSA). 2014. p. 621–
632.

REINSEL, David; GANTZ, John; RYDNING, John. Data age 2025: the digitization
of the world from edge to core. Seagate, https://www. seagate. com/files/www-
content/our-story/trends/files/idc-seagate-dataage-whitepaper. pdf, 2018.

RISKA, Alma; RIEDEL, Erik. Disk drive level workload characterization. In: USENIX
Annual Technical Conf., General Track. 2006. v. 2006, p. 97–102.

ROMIO: A High-Performance, Portable MPI-IO Implementation. 2020. Available from
Internet: <<http://www.mcs.anl.gov/research/projects/romio/index-archived.html>>.

ROSENFELD, Paul; COOPER-BALIS, Elliott; JACOB, Bruce. Dramsim2: A cycle
accurate memory system simulator. IEEE computer architecture letters, IEEE, v. 10,
n. 1, p. 16–19, 2011.

ROSS, Robert B; THAKUR, Rajeev et al. Pvfs: A parallel file system for linux clusters.
In: Proceedings of the 4th annual Linux showcase and Conf. 2000. p. 391–430.

RUAN, Xiaojun; CHEN, Haiquan. Improving shuffle i/o performance for big data processing
using hybrid storage. In: IEEE. 2017 International Conference on Computing,
Networking and Communications (ICNC). 2017. p. 476–480.

SAIF, Abdulqawi; NUSSBAUM, Lucas; SONG, Ye-Qiong. Ioscope: A flexible i/o tracer
for workloads’ i/o pattern characterization. In: SPRINGER. International Conference
on High Performance Computing. 2018. p. 103–116.

SALKHORDEH, Reza; EBRAHIMI, Shahriar; ASADI, Hossein. Reca: An efficient re-
configurable cache architecture for storage systems with online workload characterization.
IEEE Transactions on Parallel and Distributed Systems, IEEE, v. 29, n. 7, p.
1605–1620, 2018.

SCHÜRMANN, Felix; DELALONDRE, Fabien; KUMBHAR, Pramod S; BIDDISCOMBE,
John; GILA, Miguel; TACCHELLA, Davide; CURIONI, Alessandro; METZLER, Bernard;
MORJAN, Peter; FENKES, Joachim et al. Rebasing i/o for scientific computing: Leverag-
ing storage class memory in an ibm bluegene/q supercomputer. In: SPRINGER. Interna-
tional Supercomputing Conference. 2014. p. 331–347.

SEAGATE SMR- Increase Drive Capacity, Accessed on May 03, 2020. 2020.
Available from Internet: <<"hhttps://www.seagate.com/br/pt/tech-insights/
breaking-areal-density-barriers-with-seagate-smr-master-ti/">>.

SHAN, Hongzhang; ANTYPAS, Katie; SHALF, John. Characterizing and predicting the
i/o performance of hpc applications using a parameterized synthetic benchmark. In: IEEE.
SC’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing.
2008. p. 1–12.

164

SHANKAR, Dipti; LU, Xiaoyi; PANDA, Dhabaleswar K. High-performance and resilient
key-value store with online erasure coding for big data workloads. In: IEEE. 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS).
2017. p. 527–537.

SHANKAR, Dipti; LU, Xiaoyi; PANDA, Dhabaleswar K DK. Boldio: A hybrid and
resilient burst-buffer over lustre for accelerating big data i/o. In: IEEE. 2016 IEEE
International Conference on Big Data (Big Data). 2016. p. 404–409.

SINGH, Karishma; RASTOGI, Divya; SINGH, Dayashankar et al. Optimized two head
disk scheduling algorithm (othdsa). In: IEEE. 2015 Fifth International Conference
on Advanced Computing & Communication Technologies. 2015. p. 234–240.

SKOURTIS, Dimitris; KATO, Shinpei; BRANDT, Scott. Qbox: guaranteeing i/o per-
formance on black box storage systems. In: Proceedings of the 21st international
symposium on High-Performance Parallel and Distributed Computing. 2012. p.
73–84.

SNIR, Marc; GROPP, William; OTTO, Steve; HUSS-LEDERMAN, Steven; DONGARRA,
Jack; WALKER, David. MPI–the Complete Reference: the MPI core. : MIT press,
1998.

SON, Seung Woo; SEHRISH, Saba; LIAO, Wei-keng; OLDFIELD, Ron; CHOUDHARY,
Alok. Reducing i/o variability using dynamic i/o path characterization in petascale storage
systems. The Journal of Supercomputing, Springer, v. 73, n. 5, p. 2069–2097, 2017.

SONG, Huaiming; SUN, Xian-He; CHEN, Yong. A hybrid shared-nothing/shared-data
storage scheme for large-scale data processing. In: IEEE. 2011 IEEE Ninth Interna-
tional Symposium on Parallel and Distributed Processing with Applications.
2011. p. 161–166.

SOULÉ, Robert; GEDIK, Buğra. Railwaydb: adaptive storage of interaction graphs. The
VLDB Journal, Springer, v. 25, n. 2, p. 151–169, 2016.

SRINIVASAN, Kiran; BISSON, Timothy; GOODSON, Garth R; VORUGANTI, Kaladhar.
idedup: latency-aware, inline data deduplication for primary storage. In: Fast. 2012. v. 12,
p. 1–14.

STRUKOV, Dmitri B; SNIDER, Gregory S; STEWART, Duncan R; WILLIAMS, R Stanley.
The missing memristor found. nature, Nature Publishing Group, v. 453, n. 7191, p. 80–83,
2008.

STRUNK, John D. Hybrid aggregates: Combining ssds and hdds in a single storage pool.
ACM SIGOPS Operating Systems Review, ACM New York, NY, USA, v. 46, n. 3,
p. 50–56, 2012.

SUN, Hui; QIN, Xiao; XIE, Chang-sheng. Exploring optimal combination of a file system
and an i/o scheduler for underlying solid state disks. Journal of Zhejiang University
SCIENCE C, Springer, v. 15, n. 8, p. 607–621, 2014.

TANENBAUM, Andrew S. Distributed operating systems. : Pearson Education India,
1995.

165

TANG, Houjun; BYNA, Suren; TESSIER, François; WANG, Teng; DONG, Bin; MU,
Jingqing; KOZIOL, Quincey; SOUMAGNE, Jerome; VISHWANATH, Venkatram; LIU,
Jialin et al. Toward scalable and asynchronous object-centric data management for hpc.
In: IEEE. 2018 18th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). 2018. p. 113–122.

TANG, Kun; HUANG, Ping; HE, Xubin; LU, Tao; VAZHKUDAI, Sudharshan S; TIWARI,
Devesh. Toward managing hpc burst buffers effectively: Draining strategy to regulate
bursty i/o behavior. In: IEEE. 2017 IEEE 25th International Symposium on Mod-
eling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). 2017. p. 87–98.

TEAM, L.; ALSTRIN, A.; GOKER, T.; LANTZ, M.; MCALLISTER, J.; SPRATT, G.;
ENTERPRISE, H. P. "2.0 technology roadmap 2.0 participants". n. December, p. 1–21,
2015.

TESSIER, François; MALAKAR, Preeti; VISHWANATH, Venkatram; JEANNOT, Em-
manuel; ISAILA, Florin. Topology-aware data aggregation for intensive i/o on large-scale
supercomputers. In: IEEE PRESS. Proceedings of the First Workshop on Opti-
mization of Communication in HPC. 2016. p. 73–81.

THE technology stacks of HPC and Big Data Computing. 2018. Available from Internet:
<<http://www.bdva.eu/node/1150>>.

TITAN, accessed Jun-29-2020. 2020. Available from Internet: <<"https://www.olcf.ornl.
gov/olcf-resources/compute-systems/titan/">>.

TRAEGER, Avishay; ZADOK, Erez; JOUKOV, Nikolai; WRIGHT, Charles P. A nine
year study of file system and storage benchmarking. ACM Transactions on Storage
(TOS), ACM New York, NY, USA, v. 4, n. 2, p. 1–56, 2008.

VALDURIEZ, Patrick; MATTOSO, Marta; AKBARINIA, Reza; BORGES, Heraldo; CA-
MATA, José; COUTINHO, Alvaro; GASPAR, Daniel; LEMUS, Noel; LIU, Ji; LUSTOSA,
Hermano et al. Scientific data analysis using data-intensive scalable computing: The scidisc
project. In: . 2018.

WADHWA, Bharti; BYNA, Suren; BUTT, Ali R. Toward transparent data management
in multi-layer storage hierarchy of hpc systems. In: IEEE. 2018 IEEE International
Conference on Cloud Engineering (IC2E). 2018. p. 211–217.

WAN, Jiguang; ZHAO, Nannan; ZHU, Yifeng; WANG, Jibin; MAO, Yu; CHEN, Peng;
XIE, Changsheng. High performance and high capacity hybrid shingled-recording disk
system. In: IEEE. 2012 IEEE International Conference on Cluster Computing.
2012. p. 173–181.

WANG, Chao; VAZHKUDAI, Sudharshan S; MA, Xiaosong; MENG, Fei; KIM, Youngjae;
ENGELMANN, Christian. Nvmalloc: Exposing an aggregate ssd store as a memory
partition in extreme-scale machines. In: IEEE. 2012 IEEE 26th International Parallel
and Distributed Processing Symposium. 2012. p. 957–968.

WANG, Haitao; LI, Zhanhuai; ZHANG, Xiao; ZHAO, Xiaonan; ZHAO, Xingsheng; LI,
Weijun; JIANG, Song. Oc-cache: An open-channel ssd based cache for multi-tenant

166

systems. In: IEEE. 2018 IEEE 37th International Performance Computing and
Communications Conference (IPCCC). 2018. p. 1–6.

WANG, Jianzong; CHENG, Lianglun. qsds: A qos-aware i/o scheduling framework towards
software defined storage. In: IEEE. 2015 ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS). 2015. p. 195–196.

WANG, Jiangtao; GUO, Zhiliang; MENG, Xiaofeng. Sass: A high-performance key-value
store design for massive hybrid storage. In: SPRINGER. International Conference on
Database Systems for Advanced Applications. 2015. p. 145–159.

WANG, Teng; BYNA, Suren; DONG, Bin; TANG, Houjun. Univistor: Integrated hierarchi-
cal and distributed storage for hpc. In: IEEE. 2018 IEEE International Conference
on Cluster Computing (CLUSTER). 2018. p. 134–144.

WANG, Teng; ORAL, Sarp; WANG, Yandong; SETTLEMYER, Brad; ATCHLEY,
Scott; YU, Weikuan. Burstmem: A high-performance burst buffer system for scientific
applications. In: IEEE. 2014 IEEE International Conference on Big Data (Big
Data). 2014. p. 71–79.

WANG, Yi; DONG, Lisha; MING, Zhong. Optimizing emerging storage primitives with
virtualization for flash memory storage systems. In: IEEE. 2015 IEEE 17th Inter-
national Conference on High Performance Computing and Communications,
2015 IEEE 7th International Symposium on Cyberspace Safety and Security,
and 2015 IEEE 12th International Conference on Embedded Software and
Systems. 2015. p. 672–677.

WANG, Yi; HUANG, Min; SHAO, Zili; CHAN, Henry CB; BATHEN, Luis Angel D;
DUTT, Nikil D. A reliability-aware address mapping strategy for nand flash memory storage
systems. IEEE Transactions on computer-aided design of integrated circuits and
systems, IEEE, v. 33, n. 11, p. 1623–1631, 2014.

WANG, Yi; QIN, Zhiwei; CHEN, Renhai; SHAO, Zili; WANG, Qixin; LI, Shuai; YANG,
Laurence T. A real-time flash translation layer for nand flash memory storage systems.
IEEE Transactions on Multi-Scale Computing Systems, IEEE, v. 2, n. 1, p. 17–29,
2016.

WEIL, Sage A; BRANDT, Scott A; MILLER, Ethan L; LONG, Darrell DE; MALTZAHN,
Carlos. Ceph: A scalable, high-performance distributed file system. In: USENIX AS-
SOCIATION. Proceedings of the 7th Symp. on Operating systems design and
implementation. 2006. p. 307–320.

WICKBERG, Tim; CAROTHERS, Christopher. The ramdisk storage accelerator: a
method of accelerating i/o performance on hpc systems using ramdisks. In: Proceedings
of the 2nd International Workshop on Runtime and Operating Systems for
Supercomputers. 2012. p. 1–8.

WOHLIN, Claes; RUNESON, Per; HÖST, Martin; OHLSSON, Magnus C; REGNELL,
Björn; WESSLÉN, Anders. Experimentation in software engineering. : Springer
Science & Business Media, 2012.

167

WONG, H-S Philip; RAOUX, Simone; KIM, SangBum; LIANG, Jiale; REIFENBERG,
John P; RAJENDRAN, Bipin; ASHEGHI, Mehdi; GOODSON, Kenneth E. Phase change
memory. Proceedings of the IEEE, IEEE, v. 98, n. 12, p. 2201–2227, 2010.

WU, Chin-Hsien; HUANG, Cheng-Wei; CHANG, Chen-Yu. A priority-based data place-
ment method for databases using solid-state drives. In: ACM. Conf. on Research in
Adaptive and Convergent Syst. 2018. p. 175–182.

WU, Chin-Hsien; HUANG, Cheng-Wei; CHANG, Chen-Yu. A data management method
for databases using hybrid storage systems. ACM SIGAPP Applied Computing
Review, ACM New York, NY, USA, v. 19, n. 1, p. 34–47, 2019.

WU, Fenggang; LI, Bingzhe; CAO, Zhichao; ZHANG, Baoquan; YANG, Ming-Hong;
WEN, Hao; DU, David HC. Zonealloy: Elastic data and space management for hybrid
{SMR} drives. In: 11th {USENIX} Workshop on Hot Topics in Storage and File
Systems (HotStorage 19). 2019.

XIAO, Chunhua; ZHANG, Lei; LIU, Weichen; CHENG, Linfeng; LI, Pengda; PAN, Yanyue;
BERGMANN, Neil. Nv-ecryptfs: Accelerating enterprise-level cryptographic file system
with non-volatile memory. IEEE Transactions on Computers, IEEE, v. 68, n. 9, p.
1338–1352, 2018.

XIAO, Li; YU-AN, Tan; ZHIZHUO, Sun. Semi-raid: A reliable energy-aware raid data
layout for sequential data access. In: IEEE. 2011 IEEE 27th Symposium on Mass
Storage Systems and Technologies (MSST). 2011. p. 1–11.

XIAO, Weijun; LEI, Xiaoqiang; LI, Ruixuan; PARK, Nohhyun; LILJA, David J. Pass: a
hybrid storage system for performance-synchronization tradeoffs using ssds. In: IEEE. 2012
IEEE 10th international symposium on parallel and distributed processing
with applications. 2012. p. 403–410.

XIE, Wei; CHEN, Yong; ROTH, Philip C. Asa-ftl: An adaptive separation aware flash
translation layer for solid state drives. Parallel Computing, Elsevier, v. 61, p. 3–17,
2017.

XIE, Wei; ZHOU, Jiang; REYES, Mark; NOBLE, Jason; CHEN, Yong. Two-mode data
distribution scheme for heterogeneous storage in data centers. In: IEEE. IEEE Int. Conf.
on Big Data. 2015. p. 327–332.

XU, Qi; CHENG, Yaodong; CHEN, Gang. Design and evaluation of a hybrid storage
system in hep environment. JPhCS, v. 898, n. 6, p. 062034, 2017.

XU, Yuan-Chao; WAN, Hu; QIU, Ke-Ni; LI, Tao; ZHANG, Wei-Gong. Reducing synchro-
nization cost for single-level store in mobile systems. Journal of Computer Science
and Technology, Springer, v. 31, n. 4, p. 836–848, 2016.

YAN, Guohua; CHEN, Renhai; GUAN, Qiming; FENG, Zhiyong. Dls: A delay-life-
aware i/o scheduler to improve the load balancing of ssd-based raid-5 arrays. In:
IEEE. 2019 IEEE 21st International Conference on High Performance Com-
puting and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). 2019. p. 2445–2450.

168

YANG, Chun; LIU, Xianhua; CHENG, Xu. Content look-aside buffer for redundancy-free
virtual disk i/o and caching. In: ACM. ACM SIGPLAN Notices. 2017. v. 52, n. 7, p.
214–227.

YANG, Jing; PEI, Shuyi; YANG, Qing. Warcip: write amplification reduction by clustering
i/o pages. In: ACM. ACM Int. Conf. on Systems and Storage. 2019. p. 155–166.

YANG, Jing; YANG, Qing. A new metadata update method for fast recovery of ssd
cache. In: IEEE. 2013 IEEE Eighth International Conference on Networking,
Architecture and Storage. 2013. p. 60–67.

YANG, Puyuan; JIN, Peiquan; WAN, Shouhong; YUE, Lihua. Hb-storage: Optimizing
ssds with a hdd write buffer. In: SPRINGER. International Conference on Web-Age
Information Management. 2013. p. 28–39.

YANG, Tianming; HUANG, Ping; ZHANG, Weiying; WU, Haitao; LIN, Longxin. Cars:
A multi-layer conflict-aware request scheduler for nvme ssds. In: IEEE. 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 2019. p. 1293–
1296.

YANG, Xue-Jun; LIAO, Xiang-Ke; LU, Kai; HU, Qing-Feng; SONG, Jun-Qiang; SU,
Jin-Shu. The tianhe-1a supercomputer: its hardware and software. Journal of computer
science and technology, Springer, v. 26, n. 3, p. 344–351, 2011.

YANG, Zhengyu; HOSEINZADEH, Morteza; ANDREWS, Allen; MAYERS, Clay; EVANS,
David Thomas; BOLT, Rory Thomas; BHIMANI, Janki; MI, Ningfang; SWANSON, Steven.
Autotiering: automatic data placement manager in multi-tier all-flash datacenter. In: IEEE.
2017 IEEE 36th International Performance Computing and Communications
Conference (IPCCC). 2017. p. 1–8.

YANG, Zhengyu; HOSEINZADEH, Morteza; WONG, Ping; ARTOUX, John; MAYERS,
Clay; EVANS, David Thomas; BOLT, Rory Thomas; BHIMANI, Janki; MI, Ningfang;
SWANSON, Steven. H-nvme: a hybrid framework of nvme-based storage system in cloud
computing environment. In: IEEE. 2017 IEEE 36th International Performance
Computing and Communications Conference (IPCCC). 2017. p. 1–8.

YEH, Tsozen; YANG, Shuwen; SUN, Yifeng. Improving the program performance through
prioritized memory management and disk operation. Concurrency and Computation:
Practice and Experience, Wiley Online Library, v. 27, n. 13, p. 3345–3361, 2015.

YIN, Jianwei; TANG, Yan; DENG, Shuiguang; LI, Ying; LO, Wei; DONG, Kexiong;
ZOMAYA, Albert Y; PU, Calton. Asser: an efficient, reliable, and cost-effective storage
scheme for object-based cloud storage systems. IEEE Transactions on Computers,
IEEE, v. 66, n. 8, p. 1326–1340, 2017.

YOU, Taehee; HAN, Sangwoo; PARK, Young Min; LEE, Hyuk-Jun; CHUNG, Eui-Young.
Multi-token based power management for nand flash storage devices. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, IEEE, 2019.

YOU, Xin; YANG, Hailong; LUAN, Zhongzhi; LIU, Yi; QIAN, Depei. Performance
evaluation and analysis of linear algebra kernels in the prototype tianhe-3 cluster. In:
SPRINGER. Asian Conference on Supercomputing Frontiers. 2019. p. 86–105.

169

YOUN, Young-Sun; YOON, Su-Kyung; KIM, Shin-Dug. Cloud computing burst system
(ccbs): for exa-scale computing system. The Journal of Supercomputing, Springer,
v. 73, n. 9, p. 4020–4041, 2017.

YU, Jie; LIU, Guangming; DONG, Wenrui; LI, Xiaoyong. Using locality-enhanced dis-
tributed memory cache to accelerate applications on high performance computers. In:
IEEE. 2017 ieee 3rd international conference on big data security on cloud (big-
datasecurity), ieee international conference on high performance and smart
computing (hpsc), and ieee international conference on intelligent data and
security (ids). 2017. p. 160–166.

YU, Jie; LIU, Guangming; DONG, Wenrui; LI, Xiaoyong. Watcache: a workload-aware
temporary cache on the compute side of hpc systems. The Journal of Supercomputing,
Springer, v. 75, n. 2, p. 554–586, 2019.

ZHA, Benbo; SHEN, Hong. Memory hierarchy aware i/o scheduling under contention for
hybrid storage based hpc. In: IEEE. 2018 9th International Symposium on Parallel
Architectures, Algorithms and Programming (PAAP). 2018. p. 69–73.

ZHANG, Hao; CHEN, Gang; OOI, Beng Chin; TAN, Kian-Lee; ZHANG, Meihui. In-
memory big data management and processing: A survey. IEEE Transactions on Knowl-
edge and Data Engineering, IEEE, v. 27, n. 7, p. 1920–1948, 2015.

ZHANG, Jie; DONOFRIO, David; SHALF, John; KANDEMIR, Mahmut T; JUNG,
Myoungsoo. Nvmmu: A non-volatile memory management unit for heterogeneous gpu-ssd
architectures. In: IEEE. 2015 International Conference on Parallel Architecture
and Compilation (PACT). 2015. p. 13–24.

ZHANG, Jingchao; MENG, Fankuo; QIAO, Liyan; ZHU, Kaihui. Design and implementa-
tion of optical fiber ssd exploiting fpga accelerated nvme. IEEE Access, IEEE, v. 7, p.
152944–152952, 2019.

ZHANG, Tong; CHENG, Ze; LI, Jing. Reinforcement learning-driven address mapping
and caching for flash-based remote sensing image processing. Journal of Systems Ar-
chitecture, Elsevier, v. 98, p. 374–387, 2019.

ZHANG, Xuechen; DAVIS, Kei; JIANG, Song. itransformer: Using ssd to improve disk
scheduling for high-performance i/o. In: IEEE. Parallel & Distributed Processing
Symposium (IPDPS), 2012 IEEE 26th International. 2012. p. 715–726.

ZHANG, Xiao; WANG, Yanqiu; WANG, Qing; ZHAO, Xiaonan. A new approach to
double i/o performance for ceph distributed file system in cloud computing. In: IEEE.
2019 2nd International Conference on Data Intelligence and Security (ICDIS).
2019. p. 68–75.

ZHANG, Zheng; FENG, Dan; TAN, Zhipeng; YANG, Laurence T; ZHENG, Jiayang. A
light-weight log-based hybrid storage system. Journal of Parallel and Distributed
Computing, Elsevier, v. 118, p. 307–315, 2018.

ZHAO, Nannan; ANWARE, Ali; CHENG, Yue; SALMAN, Mohammed; LI, Daping;
WAN, Jiguang; XIE, Changsheng; HE, Xubin; WANG, Feiyi; BUTT, Ali. Chameleon: An
adaptive wear balancer for flash clusters. In: IEEE. 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 2018. p. 1163–1172.

170

ZHOU, Jiang; CHEN, Yong; WANG, Weiping. Atributed consistent hashing for heteroge-
neous storage systems. In: PACT. 2018. p. 23–1.

ZHOU, Jiang; XIE, Wei; GU, Qiang; CHEN, Yong. Hierarchical consistent hashing for het-
erogeneous object-based storage. In: IEEE. 2016 IEEE Trustcom/BigDataSE/ISPA.
2016. p. 1597–1604.

ZHOU, Jiang; XIE, Wei; NOBLE, Jason; ECHO, Kace; CHEN, Yong. Suora: A scalable
and uniform data distribution algorithm for heterogeneous storage systems. In: IEEE.
IEEE Int. Conf. on Net., Arch. and Storage. 2016. p. 1–10.

ZHU, Jian-Gang; ZHU, Xiaochun; TANG, Yuhui. Microwave assisted magnetic recording.
IEEE Transactions on Magnetics, IEEE, v. 44, n. 1, p. 125–131, 2007.

171

APPENDIX A - PUBLICATIONS

172

Title - Research Characterization on I/O Improvements of Storage Environments

Abstract: Nowadays, it has being verified some interesting improvements in I/O archi-

tectures. This is an essential point to complex and data intensive scalable applications. In

the scientific and industrial fields, the storage component is a key element, because usually

those applications employ a huge amount of data. Therefore, the performance of these

applications commonly depends on some factors related to time spent in execution of the

I/O operations. In this paper we present a characterization research on I/O improvements

related to the storage targeting HPC and DISC applications. We also evaluated some of

these improvements in order to justify their concerns with the I/O layer. Our experiments

were processed in the Grid5000, an interesting testbed distributed environment, suitable

for better understanding challenges related to HPC and DISC applications. Results on

synthetic I/O benchmarks, demonstrate how to improve the performance of the latency

parameter for I/O operations.

Conference: 3PGCIC-2019

Qualis: B1

Status: Published

Author: - Corresponding author

Title - An Effort to Characterize I/O Enhancements of Storage Environments

Abstract: Improvements in I/O architectures are becoming increasingly needed nowadays.

This is an essential point to complex applications such as High-performance computing

(HPC) and data-intensive scalable computing (DISC). In the scientific and industrial fields,

the storage component is a key element, because usually those applications employ a huge

amount of data. Therefore, the performance of these applications commonly depends on

some factors related to time spent in execution of the I/O operations. In this scenario,

researchers are proposing several approaches to deal and solve such issue. Many of than

are concerned in mixing hardware devices whereas others are based on the improvement

of software located in an up layer. All these improvements have the same goal which is

increase the IOPS ratio of overall system. A characterization model for classifying research

works on I/O performance improvements for storage environments are presented in this

paper. We also evaluated some of these improvements in order to justify their concerns

with the I/O layer. Our experiments were performed in the Grid’5000. Results over 36

different scenarios demonstrate how to improve the performance of the latency parameter

for I/O operations. Journal: IJGUC

Qualis: A2

Status: Accepted

Author: - Corresponding author

Title - Characterization Research on I/O Improvements Targeting DISC and HPC

173

Applications.

Abstract: Improvements in I/O architectures are becoming increasingly required nowa-

days. This is an essential point to complex and data intensive scalable applications.

Data-Intensive Scalable Computing (DISC) and High-Performance Computing (HPC)

applications frequently need to transfer data between storage resources. In the scientific

and industrial fields, the storage component is a key element, because usually those appli-

cations employ a huge amount of data. Therefore, the performance of these applications

commonly depends on some factors related to time spent in execution of the I/O operations.

However, researchers, through their works, are proposing different approaches targeting

improvements on the storage layer, thus, reducing the gap between processing and storage.

Some solutions combine different hardware technologies to achieve high performance, while

others develop solutions on the software layer. This paper aims to present a characteriza-

tion model for classifying research works on I/O performance improvements for large scale

computing facilities. Analysis over 36 different scenarios using a synthetic I/O benchmark

demonstrates how the latency parameter behaves when performing different I/O operations

using distinct storage technologies and approaches.

Conference: IECON-2020

Qualis: B1

Status: Accepted

Author: - Corresponding author

Title - An Approach to Support the Design and the Dependability Analysis of

High Performance I/O Intensive Distributed Systems

Abstract: Frequent service down times and poor system performance can affect aspects

such as the availability, quality of experience and generate millions of dollars in lost

revenue. High Performance Computing (HPC) environments are often required to comply

with extra-functional performance and dependability requirements. The CHESS Toolset

provides support for the design and the evaluation of dependability and performance

system attributes. In this paper we propose an approach to support the design and the

analysis of dependability attributes of HPC environments using CHESS. The approach

was employed in the Grid’5000, a highly distributed and I/O intensive HPC environment.

The approach was successfully applied and provided key information for demonstrating

dependability, deriving new project decisions, agreeing on new design choices and resource

allocation strategies.

Conference-Year: 3PGCIC-2020

Qualis: B1

Status: Accepted

Author: - co-author

174

Title - An Implementation Science Effort in a Heterogeneous Edge Computing

Platform to Support a Case Study of a Virtual Scenario Application

Abstract: IoT devices are pillars for the Industry 4.0 software applications. However,

compositions of these edge nodes are interesting open challenges in several dimensions, as

the integration of diverse hardware and software packages. As an example, different type

of industrial cameras and a supercomputer node to support 3D reconstructions is not a

trivial approach, especially considering aspects of the IoT software engineering. In this

paper, we present a research, which could be classified as an implementation science effort,

focusing on a heterogeneous edge computing platform, utilized to support a case study of

a real electrical engineering application. This application is characterized by a 3D virtual

reconstruction paradigm for the hydro-power project. Our results indicate interesting

aspects related to implementation science and challenges found in the composition and

operationalization of this heterogeneous edge platform.

Journal: 3PGCIC-2020

Qualis: B1

Status: Accepted

Author: - Co-author

Title - A Survey of I/O Improvements on Storage Device and Systems: A System-

atic Mapping of the Literature.

Abstract: The I/O bottleneck remains a central issue in high-performance storage environ-

ments. Cloud computing, high-performance computing (HPC) and big data environments

share many difficulties in the storage layer to deliver data to applications. In the last years,

many researchers have been proposed solutions to improve the I/O architecture through

different approaches. Classifying these improvements in a three-dimension perspective

brings many benefits. This study presents a systematic literature mapping that classifies

I/O performance improvements considering the storage environment layer. The results

show which were the devices, software, and storage systems that received attention over

the years.

Journal: ACM CSUR-2020

Qualis: A1

Status: Submitted

Author: - Corresponding author

Title - A Three Dimension I/O Performance Characterization Model for Storage

Environments

Abstract: Improvements in I/O architectures are becoming increasingly required nowa-

days. Data-Intensive Scalable Computing (DISC) and High-Performance Computing

(HPC) applications transfer a huge quantity of data between the overall environment

175

using and requiring even higher performance from processing and storage environments.

Processing technologies have been developed over the past years quickly than storage

devices, thus collaborating for the arising of a well-known I/O bottleneck issue in storage

environments. The performance of storage environments as well as the interconnection

network is essential to ensure high throughput and satisfy application requests. Given

this, researchers are proposing different approaches to reduce the ever-increasing gap

between processing and storage combining different solutions on the storage layer. Some

solutions combine different hardware technologies, while other develop software solutions

to achieve such performance. Many of these software solutions are intended to improve

the relationship between applications and hardware technologies targeting I/O rate per

second (IOPS) increasing. This paper aims to present a three-dimension characterization

model for classifying research works on I/O performance improvements for large scale

computing facilities. In order to justify some I/O improvements concerning the I/O

layer, we evaluated a subset of these improvements using a real testbed, the Grid5000.

Analysis over 36 different scenarios using a synthetic I/O benchmark demonstrates how

the throughput parameter behaves when performing different I/O operations using distinct

storage technologies and approaches.

Conference: Information Systems - 2020

Qualis: A2

Status: Submitted

Author: - Corresponding author

