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RESUMO

A intrincada natureza do coração e da circulação sanguínea é intensamente estudada na
busca de respostas e insights capazes de amadurecer a compreensão dos fenômenos fisiológicos
e patofisiológicos do sistema cardiovascular. Modelos computacionais cardiovasculares são
ferramentas úteis para este fim e já são amplamente utilizados pela comunidade médico-científica,
sendo capazes de simular fenômenos importantes como as dinâmicas da circulação sistêmica e
fornecer informações valiosas, como parâmetros hemodinâmicos e biomarcadores, de habitual
uso clínico. Entretanto, a aplicação destes modelos em cenários clínicos não se dá facilmente, e
para que sejam usados de forma ubíqua para a tomada de decisão ainda há muito o que se apri-
morar. Um importante passo neste sentido se dá na busca por modelos mais precisos e confiáveis,
onde deve-se tomar em conta o entendimento da relação entre as incertezas nos parâmetros de
entrada de um modelo e a precisão de seus resultados. No presente trabalho, verificamos o efeito
da propagação de incertezas nos parâmetros de entradas de modelos de parâmetros condensados
e um modelo de elementos finitos multi-escala que simulam as dinâmicas da circulação sistêmica.
Para isto, realizamos a quantificação de incertezas direta e análise de sensibilidade baseadas na
expansão por caos polinomial e os resultados obtidos apontam para os parâmetros mais influentes
na predição de quantidades de interesse de relevância clínica. Desta forma, espera-se que os
conhecimentos adquiridos sobre os parâmetros que devem ser medidos com maior precisão,
bem como os menos influentes, que podem ser medidos a partir de valores de base populacional
ou da literatura, possam ajudar na calibragem e desenvolvimento de modelos mais precisos e
consistentes.

Palavras-chave: Quantificação de Incertezas. Análise de Sensibilidade. Modelagem Cardiovas-
cular. Modelos de Parâmetros Condensados. Caos Polinomial.





ABSTRACT

The intricate nature of the heart and blood circulation is intensively studied in the search
for answers and insights capable of maturing the understanding of the cardiovascular system’s
physiological and pathophysiological phenomena. Cardiovascular computational models are
useful tools for this purpose. They are already widely used by the medical-scientific community,
simulating important phenomena such as the dynamics of the systemic circulation and providing
valuable information, such as hemodynamic parameters and biomarkers, of common clinical
use. However, the clinical application of these models is not straightforward, and for them to be
used ubiquitously for decision-making, there is still much to be improved. An important step in
this direction is to search for more accurate and reliable models, where the understanding of the
relationship between the uncertainties in the input parameters of a model and the precision of its
results must be taken into account. In the present work, we verify the effect of the propagation
of uncertainties on the input parameters of lumped parameter models and a multi-scale finite
element model that simulates the systemic circulation dynamics. For this, we perform forward
uncertainty quantification and sensitivity analysis based on the polynomial chaos expansion. The
results obtained point to the most influential parameters in the prediction of quantities of interest
of clinical relevance. Thus, it is expected that the knowledge acquired on the parameters that
must be measured with greater precision and the least influential ones, which can be measured
from population-based values or the literature, can help in the calibration and development of
more accurate and consistent models.

Keywords: Uncertainty Quantification. Sensitivity Analysis. Cardiovascular Modelling. Lumped
Parameter Models. Polynomial Chaos.
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1 INTRODUCTION

Annually, more people die in the world from cardiovascular disease than from any other
disease. Cardiovascular diseases killed approximately 17.9 million people in 2016, representing
31% of all deaths in the world (1). In Brazil, approximately 45.7 million people over the age of 20
suffer from heart failure, myocardial infarction, atrial fibrillation, or hypertension, representing
around 32% of the entire adult population. The financial cost that these diseases entailed for
Brazil in 2015 results in approximately R$ 56.2 billion, which represents 5.5% of the total
national expenditure on health care (2).

It is known that many cardiovascular complications can be prevented as long as attention
is paid to risky behaviors such as the use of tobacco and alcohol, unhealthy diet or lack of
physical activities (1). Nevertheless, ethical and practical limitations constitute a major obstacle
to a better understanding of the complex mechanisms inherent to the cardiovascular system and
its pathologies. They make it difficult to obtain more detailed information in experimental and
clinical settings (3, 4).

However, a promising alternative to conventional empirical medicine is to take advantage
of advances in obtaining increasingly detailed diagnostic data and integrate them with physical
and mathematical principles to build robust computational models. The models are used to
simulate the specific reality of a patient and, consequently, can provide a platform that enables
the study of complex physiological phenomena such as the cardiac mechanics (5), cardiac
electrophysiology (6), or blood flow dynamics (7). Predictions arising from these models bring
up relevant questions and answers for the best understanding of the cardiovascular system in
healthy and pathological scenarios (8, 9).

In the literature, many studies already consider cardiovascular patient-specific modeling.
There are works considering: the patient-specific simulation of blood flow in the abdominal
aorta (10), pressure and flow in the arterial system in conditions of rest and light exercise (11),
effects of geometric changes arising from the process of surgical restoration of the ventricle (12),
response to cardiac resynchronization therapy (13), mechanisms of micro-reentries that generate
ectopic beats close to areas of infarction (14), and many others (8, 9).

Models of the cardiovascular physiology can provide fundamental information ranging
from the cellular level to muscle tissue level (15, 16, 17). In particular, information related to
cardiovascular hemodynamics is essential in clinical settings, since they can be used to obtain
essential physiological measures and biomarkers of high relevance for treatment and therapy
design (7, 18). These hemodynamic measures can be obtained using both simpler lumped
parameter (LP) models (19) and advanced multi-scale models that combine cardiovascular
hemodynamics, electrophysiology, and mechanics (20).

Through a representation analogous to electrical circuits, LP models are designed to
represent the cardiovascular dynamics. They can be as simple as a three-compartment (or
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3-compartment) windkessel model of the arterial system (19), and as complex as a model for
the global hemodynamics with over 153 parameters (21). Thanks to their capability of represen-
ting the cardiovascular dynamics under various physiological and pathological conditions, the
simulations of LP models find many clinical and patient-specific uses (22, 23, 24, 25). However,
some of these models, especially the most complex ones, are commonly developed for research
purposes only (18).

On the other hand, LP models are especially useful to obtain more realistic and detailed
representations of multi-scale simulations predictions (7, 5, 18). They can model the cardiovas-
cular hemodynamics to provide correct boundary conditions when coupled with more complex
and higher-dimensional models of local cardiovascular elements, such as the ventricles and the
atria or the coronary arteries (26, 27, 11). Many of the patient-specific works already mentioned
use LP models to this end (27, 11, 13, 10).

Nonetheless, in a clinical context, where patient-specific complexities are relevant, the
greatest challenge is to achieve a model that accurately describes the patient’s personal reality
with a reasonable level of complexity (28). One way to capture patient-specific information
to serve as model inputs is by calibrating model parameters aided by measured observations.
However, most of the time, clinical data are inevitably hampered with measurement uncertain-
ties and insufficient to provide all the necessary input parameters for a model. Physiological
properties vary considerably between subjects, leading to a tremendous source of variability in
the model parameters (29). Thus, a better understanding of the model behavior is necessary to
increase its robustness and accuracy. Great insights into the model functioning can be achieved
through uncertainty quantification (UQ) of model predictions. Forward UQ analysis can be used
to study how the measurement errors propagate from input parameters to the model predictions
and is usually evaluated by means of useful metrics such as statistical moments, percentiles,
and confidence intervals. Besides, the investigation of the model can be improved by a detailed
sensitivity analysis (SA), which is useful to find out which uncertain inputs are responsible for
more variations in the outputs.

Several works have considered the application of UQ and SA methods to study the effects
of uncertainties on the simulation of cardiovascular hemodynamics (28, 30, 31, 4, 32, 33). Most
of them analyze by using the so-called local methods (34, 35), which consist in verifying the
effects on the output caused by local variations around the baseline value of one input parameter
while keeping all other inputs fixed. Very few of them account for uncertainties on the whole
input domain and the interactions between inputs (3), which is done through global methods
(34, 35). Since they make no assumptions about linearity, additivity, or monotonicity, global
methods are considered gold standard practice for UQ and SA (36). There are several global
methods, but one of the most used methods is the generalized polynomial chaos (gPC). Proposed
as a generalization of the classical polynomial chaos (37) by (38), it stands out for its remarkable
precision and efficiency.
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1.1 OBJECTIVES

This work presents a proof of concept study on UQ and SA methods for the investigation
and simplification of mathematical models of cardiovascular circulation. We seek to verify how
uncertainties on parameters of mathematical models of the systemic circulation can impact model
predictions of essential biomarkers. We will focus on using forward UQ and SA methods to
determine which parameters are most influential, and therefore, more rewarding to be measured
with higher precision (input prioritization). Also, we investigate which parameters have a
negligible influence on the outputs of interest to be fixed to population-based or literature values
(input fixing).

We apply the gPC method to perform global UQ and SA on the simulation of a complete
cardiac cycle with a five-compartment (or 5-compartment) LP model of the systemic circulation.
We then study a reduced version of the model with only three compartments and perform the
same analyses in this model. Finally, we couple the resulting three-compartment model to a
left ventricular finite element (FE) model to achieve a multi-scale model. Then, we study the
effects of uncertainties on input parameters related to the left ventricle’s mechanical function
during a whole cardiac cycle. We hope to show that the information acquired with this study can
help grasp the models’ overall performance and provide useful insights into model calibration,
simplification, and enhancement.

1.2 RELATED WORKS

In the context of cardiovascular modeling, some recent studies seek to analyze and
quantify the uncertainties in the model input data so that the predictions become increasingly
accurate and robust, capable of capturing the biological variability of each individual.

In the study of (30), the sensitivity of parameters for an 11-compartment model developed
to understand the dynamics of cerebral blood flow velocity and finger blood pressure during a
postural change from sitting to standing was studied. They used local sensitivity analysis data
to predict 22 of 52 parameters for a single dataset accurately and design a reduced model that
retained the original model features. An automated framework for tuning of LP model parameters
based on local identifiability and inverse Bayesian parameter estimation was presented in the
work of (39). Another recent study by (32) applied inverse UQ methods to estimate parameters
and prediction intervals for a LP model considering experimental data for rats. In the work
of (33), local SA were used to study pulsatile and non-pulsatile models for the cardiovascular
dynamics during head-up tilt protocol (HUT), which is often used to diagnose pathologies in the
autonomic control system.

In this context of cardiovascular modeling, the number of works that apply global UQ
and SA is still small (3).The work of (28) analyzed the effects of uncertainties in arterial wall
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model parameters on the predictions of pressure and flow waves in an arterial network. They
used the gPC approach to estimate the sensitivity metrics for quantities such as the wave speed
and cross-sectional area. They also proposed the time series sensitivity indices to assess the
pressure and flow time series.The study of (31) analyzed the influence of parameters in the
calculation of measures such as the mean brachial flow and systolic radial artery pressure after
the arteriovenous fistula surgery in six different patients. Applying a variance-based SA through
a Monte Carlo approach, they identified influential parameters of an LP pulse wave propagation
model. Their findings showed that 16 parameters importantly influence the outputs of interest,
while 51 out of 73 parameters could be fixed within their measurement uncertainties.

There are also studies regarding uncertainties in multi-scale models of cardiovascular
dynamics. In (4) they considered the effects of mechanical and circulatory parameters on the
measuring of clinically-relevant circulatory and mechanical quantities, such as the EF and
the ventricular wall thickness, through the simulation of a strongly-coupled electromechanical
model. Applying local and global sampling-based methods, they have shown that significant
variations on parameters such as vessel compliances and the maximum active stress value can
lead to considerable variability in mechanical biomarkers, ranging from healthy to diseased
values. However, many studies of multi-scale models focus on the propagation of uncertainties
to measures related to the heart’s electromechanical behavior. Some of these works regard
parametric uncertainties on the simulation of ventricular electrophysiology to measure the action
potential of ventricular cell (40, 41). Other works consider the mechanical function of the heart
and analyze the effects of uncertainties in parameters for the fiber orientation, wall thickness,
and constitutive laws of ventricular tissue (15, 42, 43).

1.3 OUTLINE OF THE DISSERTATION

This text is organized into five chapters, where all the concepts, methods, results, and
concluding remarks are presented. In the second chapter UQ and SA methods are described
together with an overview of this field of study. The third chapter, introduces the fundamen-
tal concepts of the cardiovascular physiology necessary to subsequently discuss the methods
regarded to implement and numerically solve the models studied. The fourth chapter presents
the results obtained for all the experiments performed in this work. The UQ and SA results are
presented first for the 5-compartment model, then for the 3-compartment model, and lastly for
the coupled model. It closes with a discussion of the main findings of the experiments. The fifth
chapter presents the concluding remarks of this work and points to possible future actions.



25

2 UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS

The goal of this chapter is to present the concepts and methods for forward uncertainty
quantification (UQ) and sensitivity analysis (SA) applied in this work. We begin introducing the
idea of uncertainty in the context of mathematical models and proceed by providing an overview
of the existing UQ and SA techniques. Essential probability theory concepts are also presented.

2.1 MODELS AND UNCERTAINTY

In the field of cardiovascular physiology, as in many other areas of science, experimental
techniques are lengthy, costly, hard to reproduce, and, therefore, deficient when there is an
interest in understanding complex systems and their underlying dynamics. By combining the
physical/physiological laws and experimental data with advanced numerical techniques to solve
the equations describing a phenomenon, computer models make up a powerful tool capable of
predicting the studied system’s events and dynamics.

As a means to improve the simulations of these models, great efforts are made to control
the numerical errors of algorithms and to enhance the quality of data acquisition. Despite all
this endeavor to reach satisfactory model efficiency levels, predictions of models are always
subjected to uncertainty. As pointed out by Saltelli et al. (2008, p. 3): “Uncertainty is not an

accident of the scientific method, but its substance”. In this sense, a model is a tool that can
be validated by being capable of repeatedly providing convincing and reliable predictions of
the phenomena it represents. Therefore, input uncertainties must be considered ever since the
beginning of the modeling process.

When we consider cardiovascular modeling, significant advancement towards model
efficiency and data acquisition has been made up to this point. More recently, cardiovascular
models are more and more regarded for therapy planning and individualized diagnosis within
clinical contexts (3, 8, 9). Given the delicate nature of this application, special efforts must be
made to achieve model robustness and accuracy. One of the biggest challenges towards this task
is the adjustment of model parameters to patient-specific circumstances. This challenge is directly
related to the pervasive and ubiquitous nature of uncertainty within models. Firstly, because
clinical data are always hampered with uncertainty and secondly because some model parameters
cannot be obtained through data, instead, they are usually obtained through mathematical and
physiological considerations, which also introduce uncertainty. In addition to that, one must also
consider the inherent biological variability between individual subjects.

Therefore, it is of utmost importance to quantify the uncertainties in the model outputs
that originated from uncertainties in the inputs, which is UQ’s central role. Another method is
SA, which evaluates how sensitive the outputs are to uncertainties at the inputs. It is important
to remark that in this work, we limit to perform forward uncertainty quantification of the
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models discussed so far. Inverse uncertainty quantification, which aims to estimate the model’s
parameters and their distribution using experimental data, is not performed.

In the context of cardiovascular modeling, some recent studies analyze and quantify
the uncertainties from input data. The use of LP models to simulate phenomena related to
the systemic circulation, such as the dynamics of cerebral blood flow with postural changes
(30) or the dynamics of the HUT protocol (33), is subjected to uncertainties. The reason is the
limited number of measurable input parameters and the inherent biological variability between
subjects. Additionally, in clinical contexts, it is not common to perform repeated measurements,
which leads to inadequate information about the uncertainty of parameters that can be measured
(44), such as the arterial pressure and the cardiac cycle length. These facts are also true for
more complex, multi-scale simulations (15, 4, 43), where uncertainties in the ventricular wall
thickness, fiber orientation, or the ejection fraction can arise. These uncertainties usually come
from measurement variabilities, such as in noisy resonance images, equipment limitations, and
user intervention, or variability in mechanical and anatomical parameters.

2.2 AN OVERVIEW OF UQ AND SA TECHNIQUES

There are many UQ and SA methods available in the literature. They can be divided
into two major groups: the techniques that consider the whole input space in the process of
examining the effects of uncertainties on the outputs, which are called global methods; and the
methods that, in the other hand, explore the impact of an individual input on the output while
keeping all the others fixed, which are called local methods.

Local methods are a derivative-based approach, whose notion of sensitivity is given by
the derivative of an output with respect to an input parameter. This way, the inputs’ effects on
the outputs are examined by looking at the variation around a reference value of one input, while
all other inputs are kept fixed. With this approach, it is only possible to obtain information that is
local to the input where the derivatives are computed. Therefore, it is impossible to explore the
effects on the output caused by the whole input space and their interactions. This means that local
methods are misleading when dependencies of the output on the inputs such as non-additivity,
non-monotonicity, and non-linearity, exist (3, 34). In the context of cardiovascular modeling for
clinical applications, the inputs can be subjected to much uncertainty. The use of global methods
is essential and is considered the golden standard for UQ and SA since they explore the space of
all the uncertain inputs and make no assumptions about linearity, additivity, or monotonicity (36).

One of the most used global methods is the Monte Carlo (MC) method (35), in which
independent realizations (samples) of the inputs are sampled from their prescribed probability
density functions. The model is executed with each set of random inputs, and statistical infor-
mation can be directly calculated from the ensemble of solutions. The MC method is part of
the class of non-intrusive global methods, which are methods that do not require changes in
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the numerical code of the models. Despite being simple to execute, the MC method can be
computationally expensive, as typically, a large number of deterministic simulations are required
to obtain a good convergence in the calculation of the solution statistics. The mean value, for
example, typically converges with a rate of 1/

√
K, where K is the number of samples (35).

Other examples of non-intrusive global methods are: the Lagrangian interpolation method
(45), and the generalized polynomial chaos with the probabilistic collocation method (42, 46).
The probabilistic collation method is applied in this work. In intrusive approaches, differently,
new governing equations for the model are derived from a parameterization of the uncertainty
in the inputs. Examples of intrusive methods are the perturbation method (47), the moment
equation method (48), and the gPC with the stochastic Galerkin method (38).

2.2.1 Input prioritization and input fixing

To carry out the uncertainty and sensitivity analysis, we regard as an input anything that
can introduce variation to the model’s output, and the model is, of course, the deterministic tool
that can simulate and predict our desired phenomena. The procedure begins with estimating the
input parameters, which can be achieved by fitting the output to some observed data. Usually,
after determining appropriate parameter values, information about their uncertainty can be
characterized in terms of probability density functions of the parameters. This process is known
as inverse uncertainty quantification and is not considered in this work. When experimental
data is not available for performing an inverse uncertainty quantification, as in the present work,
reasonable assumptions about input parameters are assumed for the analyses. After completing
the propagation of uncertainties to the model outputs, useful measures can be quantified from the
uncertain outputs. Besides, this investigation can be further improved by employing a sensitivity
analysis that can assess how influential the input parameters are to the outputs’ uncertainty.

It would be desirable to achieve satisfactory simulation accuracy with the least amount
of effort possible in a clinical context since it can be expensive and cumbersome to collect proper
data from patients. If it is known that some inputs can be measured to their true value, a useful
setting for the UQ and SA is the input prioritization. In this setting, the true value of the inputs is
unknown and the objective is to identify which input, once discovered and fixed at its true value,
would reduce the output’s uncertainty the most.

Another challenge in the clinical application is to find an adequate level of complexity
for the model. Increasing a model’s complexity can lead to more accurate predictions. However,
at the same time, more inputs must be assessed, which can simultaneously lead to an increase
of uncertainty on the output. Therefore, it is essential to consider the amount of uncertainty
coming from the model complexity and the amount of uncertainty coming from the data to find
an optimal trade-off (31). In general, overly complicated models are infeasible within a clinical
scenario because of the high computational effort that is necessary to perform their simulations.
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In this case, the balance leans towards a less complicated model, and a useful procedure is the
input fixing. The objective is to ascertain which of the inputs can be fixed anywhere in their
range of variation (e. g. population-based values) without considerably affecting the accuracy of
an output of interest. This can be done by analyzing which inputs have a negligible contribution
to the output variability given their interactions with other inputs. Analyzing a model in this way
could provide insight on how and where to simplify (reduce) a model since entire sections of the
model could be lumped together if all parameters involved in that section are noninfluential for
simulating a specific scenario.

2.3 UNCERTAINTY QUANTIFICATION

To understand the gPC method, used in this work, and how it is applied for the uncertainty
quantification, we first introduce the basic notation.

Let the cardiovascular models considered here be represented by a function y = f (z),
where y is one deterministic output of interest for the vector of uncertain input parameters
z = [z1,z2, . . . ,zD], where D is the number parameters. We assume that the inputs are subject
to uncertainties due to measurement errors. As a consequence, the outputs are also affected by
these uncertainties. Thus, the functional representation of the model can be written as Y = f (Z),
where Y is the stochastic output and Z = [Z1,Z2, . . . ,ZD] is the stochastic input vector which is a
random multivariate variable. The uncertain parameters Zi are assumed independent, and its joint
probability density function is denoted by ρZ(z). The output Y is also a random variable with an
associated probability density function ρY , which depends on Z and is governed by the model f .

To describe the uncertainty in the output Y the following statistical moments are used: the
expected value µ , the standard deviation σ and the coefficient of variation CoV . The expected
value (also called the first moment or mean of Y ) is given by

µ[Y ] = E[Y ] =
∫

ΩY

yρY (y)dy. (2.1)

The standard deviation gives the expectation of how much the the output Y deviates from the
mean value, and is given by

σ [Y ] =
√
V[Y ], (2.2)

where V[Y ] is the variance or the second moment of Y , given by

V[Y ] =
∫

ΩY

(y−E[Y ])2
ρY (y)dy. (2.3)

Finally, the coefficient of variation is the ratio between the mean and standard deviation, given
by

CoV [Y ] =
σ [Y ]
µ[Y ]

. (2.4)

Next, the concept of percentiles is introduced. The x-th percentile of Y is the value of Y under
which x% of observations of Y are located. For instance, the 10-th percentile of Y , gives the
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value of Y for which 10% of the model evaluations will give an output lower than thae percentile.
The (β ·100)-th percentile of Y , denoted as y[β ], defines a value below which β ·100 percent of
the observations Y are located, that is:

β =
∫ Yβ

−∞

ρY (y)dy. (2.5)

observations are located. By combining two percentiless, a (β ·100)% prediction interval (PI) of
the outputs

Iβ = [y[β/2],y[1−β/2]], (2.6)

is defined such that Iβ is a range of values such that the probability of finding a value y outside
this range is (β ·50)% at each side. For instance, 90% prediction interval gives us the interval
within which 90% of the Y outcomes occur, which also means that 5% of the outcomes are above
and 5% are below this interval. For this case the PI that covers 90% of the evaluations of Y is the
range I0.1 = [y[0.05],y[0.95]].

2.4 SENSITIVITY ANALYSIS

Input prioritization and input fixing settings are performed using variance-based metrics
known as Sobol’ sensitivity indices (49). The first-order or main sensitivity index gives the
direct effect of the uncertain input Zi on the output by quantifying the portion that Zi contributes,
without interactions, to the total variance of V[Y ]. It is given by:

Si =
V [E [Y |Zi]]

V[Y ]
, (2.7)

where E [Y |Zi] represents the expected value of Y for a fixed value of Zi, with 1≤ i≤ D. The
main sensitivity index is useful for input prioritization since it gives the expected reduction in
the total variance that could be achieved if the unknown true value of Zi could be measured.

The total sensitivity index is the sum of all first and higher-order effects (interactions
between inputs) where the uncertain input Zi is involved. It is given by

ST,i = 1− V [E [Y |Z−i]]

V[Y ]
, (2.8)

where Z−i is the set of uncertain inputs except Zi. The total sensitivity index represents the
variance linked to the effect of all interactions of Zi as well as the direct effect of Zi. This index
is useful for input fixing, since if one input parameter has a negligible value for ST,i, then it could
be fixed within its range of variability.

2.4.1 Time series sensitivity analysis

When dealing with non-scalar outputs of interest, such as the left ventricle pressure and
volume time series, the sensitivity indices (2.7) and (2.8) are not ideal since they do not account
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for the different variance at different points in time. Since the variance is not constant over time,
the sensitivity indices at two time instants are locally scaled, and therefore are not comparable.

To compute main and total sensitivity indices for time series, we use the time-averaged
and variance-scaled sensitivity indices proposed by (28). For a given uncertain input Zi, the
time-averaged main sensitivity indices (TASi) are given by

TASi =

∫ t1
t0 V [E [Y |Zi]]t dt∫ t1

t0 V[Y ]tdt
=

∫ t1
t0 Si(t)V[Y ]tdt∫ t1

t0 V[Y ]tdt
, (2.9)

and the time-averaged total sensitivity indices (TAST,i) are given by

TAST,i =

∫ t1
t0 (1−V [E [Y |Z−i]]t)dt∫ t1

t0 V[Y ]tdt
=

∫ t1
t0 ST,i(t)V[Y ]tdt∫ t1

t0 V[Y ]tdt
, (2.10)

where V[Y ]t is the variance of Y evaluated on time t.

2.5 GENERALIZED POLYNOMIAL CHAOS

For UQ and SA analyses, the gPC method is used to build surrogate models that allow
the computation of the metrics described in Sections 2.3 and 2.4. In the gPC method, a model’s
stochastic response Y , which is typically a quantity of interest (QoI) derived from the solution
of the governing equations, is expanded into a series of orthogonal polynomials, which are
functions of the uncertain inputs Z.

2.5.1 gPC expansion

Given the aforementioned stochastic input vector Z = Z1,Z2, ...,ZD, the stochastic output
Y for a QoI may be expressed by an infinite polynomial chaos expression (42, 50):

Y =
∞

∑
j=0

b jΨ j ({Zn}∞
n=1) = fgPC(Z), (2.11)

where b j are the deterministic coefficients to be determined and Ψ j are the orthogonal polynomi-
als with respect to the random inputs Z1,Z2, ...,Zn.

The mean value of each Ψ j, for j = 1, . . . ,Np−1 is zero for multivariate polynomials
constructed from univariate polynomials using the Wiener-Askey scheme (3):

E[Ψe] =
∫

ΩZ
Ψe(z)ρZ(z)dZi = 0, (2.12)

while for Ψ0 the mean value is 1, since Ψ0 = 1. Also, the orthogonality of the multivariate
polynomials can be expressed in terms of their inner-product as:

Ψi ·Ψ j =
∫

ΩZ
Ψi(z)Ψ j(z)ρZ(z)dz = δi jHi, (2.13)
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where δi j is the Kronecker delta and Hi is a normalization factor associated to Ψi.

In practice, the expansion (2.11) is usually truncated by finite terms and the approxima-
tion of Y , known as the surrogate model Ŷ can be expressed as:

f (Z) = Y ≈ Ŷ =
Np−1

∑
j=0

c jΨ j (Z) = fgPC(Z), (2.14)

where c j are the expansion coefficients to be determined and Ψ j(Z) are orthogonal polynomials.
The polynomial expansion (2.14) of degree p for D stochastic inputs has Np terms, which is
computed as

Np =
(D+ p)!

D!p!
. (2.15)

The original polynomial chaos scheme (37) used Hermite polynomials as the basis functions
Φ j(Z) and Gaussian random variables. Considering ρz(z) as a weight function in the inner-
product of equation (2.13), the original scheme was further generalized (38) to handle other
random variables, which established a correspondence between the distribution of the random
variable and the type of orthogonal polynomials used as the basis functions (3, 35).

2.5.2 Determination of the expansion coefficients

By estimating the coefficients c j for the general expression in Equation (2.14) the
expansion can be specified for each QoI. The most commom non-intrusive approaches for the
determination of the coefficients are the pseudo-spectral projection and the point collocation
method (51). The point collocation method is applied in this work.

In the point collocation method (or probabilistic collocation method) (46) we start by
defining a stochastic residual dependent on the random inputs Z and the coefficients c j:

R({c j},Z) = Ŷ −Y, (2.16)

where Y is the model output and Ŷ is the surrogate model output. The set of coefficients c j are
obtained through a weighted residual formulation in the random space, given by∫

Z
R({c j},Z)wi(Z)ρZdZ = 0, i = 0,1, ...,Np−1, (2.17)

where wi(Z) are the weighting functions and ρZ is the joint probability density function of
the stochastic input vector Z. When the weighting functions chosen are the same as the basis
functions used in the series expansion (2.14), exponential convergence with respect to the
polynomial order of the weighting functions is achieved. This is a commom approach known as
the Galerkin method, which is an intrusive method and therefore, harder to implement, since it
requires modifications on the deterministic solver (42).

In the probabilistic collocation method the weighting functions are defined as

wi(Z) = δ (Z−Zi), i = 0,1, ...,Np−1. (2.18)
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Here Zi are a particular set of collocation points and δ is the Dirac delta function. By ap-
plying (2.18) in the weighted residual expression (2.17) and regarding the properties of the Dirac
delta function, the following set of equations is obtained:

R({c j},Zi) = 0, i = 0,1, ...,Np−1, (2.19)

which from (2.16) becomes equivalent to

fgPC(Zi) = f (Zi), i = 0,1, ...,Np−1. (2.20)

Introducing the expression of the surrogate model (2.14), the relation (2.20) becomes a system
of linear equations Mc = y, given by:

Ψ0
(
Z(1)

)
Ψ1
(
Z(1)

)
. . . ΨNp−1

(
Z(1)

)
Ψ0
(
Z(2)

)
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(
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(
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)
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(
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(
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)
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(
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)
...
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(
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)


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y

.

(2.21)
Here Ns ≥ Np is the number of collocation points. It is recommended that the number of samples
used should be greater than Np, which leads to an overdetermined system that is solved using
linear least squares methods in the ChaosPy library (3, 51).

2.5.3 UQ and SA metrics from the gPC

Once the expansion coefficients are computed from the system (2.21), the surrogate
model fgPC(Z) can be used to calculate the UQ and SA metrics given in Sections 2.3 and 2.4. The
orthogonal nature of the expansion functions used guarantees an easy expression for obtaining
the expected value and the variance (3). By applying the surrogate model on the Equations (2.1)
and (2.3), the expected value µ[Y ] and variance V[Y ] can be simply obtained. First, we show
that the expected value can be simply evaluated as the first expansion coefficient, that is:

E[Y ]≈ E[Ŷ ] = E[ fgPC(Z)] = E

[
Np−1

∑
j=0

c jΨ j (Z)

]

=
∫

ΩZ

Np−1

∑
j=0

c jΨ j (Z)ρZ(z)dz =
Np−1

∑
j=0

c j

∫
ΩZ

Ψ j (Z)ρZ(z)dz (2.22)

=
Np−1

∑
j=0

c jE[Ψ j] = c0E[Ψ0]+ c1E[Ψ1]+ . . .+ cNp−1E[ΨNp−1]

= c0,

where the zero-mean property (2.12) of the polynomials and the fact that E[Ψ0] = 1 have been
used. Following a similar procedure as performed for the expected value, the variance can be
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computed as

V[Y ] =
Np−1

∑
j=1

c2
jE[Ψ2

j(Z)]. (2.23)

The standard deviation σ [Y ] and the coefficient of variation CoV [Y ] are easily obtained from (2.22)
and (2.23). The computation of Sobol’ indices is performed by exploiting the properties of the
polynomials in the expansion, as in the method described in (50). The percentiles cannot be
directly computed from the gPC expansion. However, it is possible to apply the Monte Carlo
method with the surrogate model fgPC(Z) to estimate the percentiles instead of using the forward
model f (Z).

2.6 ACCURACY OF THE SURROGATE MODEL

The accuracy of the surrogate model produced by the gPC method depends on the
polynomial degree p and the number of samples Ns. As previously mentioned, normally
choosing the number of samples as Ns = mNp, where m > 1 yields better accuracy (3), and
requires the solution of a least squares problem. To check the accuracy of the surrogate model
Y ≈ fgPC(Z) we used the leave one out cross validation (LOO) approach (52).

The LOO cross validation approach takes one sample out of the Ns samples available and
then builds the surrogate model with Ns−1 samples. This is performed for i = 1, . . . ,Ns times,
leaving at each time one different sample out of the construction of the polynomial. Let Ŷi be the
model output computed by the i-th gPC approximation, whereas Yi is the forward model output
for the i-th sample left out. Thus, the predicted residual is given by

∆i = Yi− Ŷi, (2.24)

and the approximation error is the mean value of the squared predicted values

ErrLOO =
1
Ns

Ns

∑
i=1

(∆i)
2 . (2.25)

We calculate the determination coefficient to evaluate the accuracy of the gPC approximations
and assess its convergence using the following metric (52):

Q2[ fgPC(Z)] = 1− ErrLOO

V[Y ]
. (2.26)

The closer the value of Q2 is to 1, the more accurate is the surrogate model.

In general, with a larger the number of samples and the moderate polynomial degree, the
better is the accuracy of the surrogate model. However, increasing both results in a excessive
number of evaluations of the forward model (lumped parameter model or coupled model), which
might be prohibitive, specially for the coupled model which requires the solution of a nonlinear
partial differential equation.
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Thus, in order to achieve a reasonable accuracy for the surrogate model, we started
creating a low polynomial degree and using a small number of samples, until we found a
combination of p and Ns that yields a good accuracy for the gPC in terms of the LOO cross
validation.

2.7 THE ChaosPy TOOLBOX

Implementing the whole UQ and SA procedure from scratch can certainly be quite
burdensome and should not be considered, as there are several ready-made tools to be used. The
ChaosPy toolbox (51) implemented in Python is one of them, and the one used in this work.
It is designed to be modular, flexible and easy to use, by combining a lot of fundamental and
advanced building blocks. It offers a wide set of pre-defined competitive statistical methods
and is aimed for analysing uncertainty using Monte Carlo simulations or polynomial chaos
expansions.

With the ChaosPy toolbox one can generate random variables, construct polynomials,
make use of sampling schemes, numerical integration rules, and point collocation. Additionally,
it is possible to add user defined functionality to all the aforementioned features. Next, we
consider a simple theoretical example to show the capabilities of this toolbox for performing
uncertainty and sensitivity analysis.

2.7.1 An illustrative example

Consider the simple equation for the logistic growth model, given by

dP
dt

= rP
(

1− P
K

)
, (2.27)

where P represents the size of a given population, t is the time in years, r is the growth rate and
K is the population’s carrying capacity. This ordinary differential equation can easily be solved
in Python using, for example, the explicit Euler method:

Listing 2.1 – Python code for solving the logistic growth model.

1 def model(P_0 ,r,K,t):

2 P = np.empty(len(t))

3 P[0] = P_0 # initial condition

4 for n in xrange(len(t) - 1):

5 dt = t[n+1] - t[n]

6 P[n+1] = P[n] + dt*r*P[n]*(1.0 - P[n]/K)

7

8 # find the inflection point

9 dP = np.gradient(P)
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10 dP2 = np.gradient(dP)

11 inflect = np.argmax(dP2 < 0)

12

13 return P, t[inflect]

In the code above, the model returns the solution curve and the year of the inflection point, which
is the year when the population stops to grow exponentially. This definition of the model can
be regarded as the forward model f (Z), where the stochastic input vector Z is comprised of the
uncertain inputs for the growth rate r, and the carrying capacity K. Suppose that r follows a
Gaussian distribution and K has an uniform distribution, and assume that they are independent,
then their joint probability density function can be obtained with ChaosPy as:

Listing 2.2 – Python code for defining the joint distribution of the random inputs.

1 import chaospy as cp

2

3 # growth rate

4 Z0 = cp.Normal (1.0 ,2.0)

5 # carrying capacity

6 Z1 = cp.Uniform (150000 ,250000)

7 distribution = cp.J(Z0,Z1)

The arguments for the cp.Uniform method are the lower and upper thresholds of the distribution,
respectively, while for the cp.Normal the arguments are the mean and standard deviation of the
distribution, respectively. Now, if one needs to take 200 samples, and then evaluate the forward
model, the code is as simple as:

Listing 2.3 – Python code for sampling points and evaluating the forward model.

1 samples = distribution.sample (200)

2 evals = [model (200,Z[0],Z[1],t)[0] for Z in samples.T]

The left panel of Figure 1 shows the solution of the deterministic model for a population starting
with 200 individuals, and a growth rate of r = 1.6 and a carrying capacity of K = 200000. The
right panel shows the 200 evaluations of the stochastic model.

2.7.2 Example of UQ and SA

The sampling procedure just described is the way to perform the Monte Carlo method
using the the ChaosPy toolbox. The forward model can be evaluated for any QoI and the desired
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Figure 1 – The logistic growth model; (a) Deterministic solution; (b) Evaluations of
the stochastic forward model.

(a) (b)

Source: Elaborated by the author.

UQ and SA metrics for the particular QoI can be calculated. One QoI could be the logistic curve
itself, so one could take the evaluations of the forward model and compute its expected value
and standard deviation, as shown in Figure 2.

Figure 2 – Monte Carlo simulation of the logistic growth model; (a) Expected value
± standard deviation for 50 evaluations; (b) Expected value ± standard deviation for

200 evaluations.
(a) (b)

Source: Elaborated by the author.

Suppose now we want to analyse the effects of uncertainties in the growth rate and the
carrying capacity when evaluating the year when the inflection point occurs. To compute the
desired metrics for this QoI using the gPC approach, one should first obtain the joint probability
density function of the uncertain inputs, just as we did in Listing 2.2. Next, the stochastic input
points should be sampled as in the Monte Carlo simulation, choosing a number of samples equal
to or greater than the number of terms, given by Equation (2.15). With the uncertain inputs
sampled, the forward model can be evaluated for the desired QoI, and the surrogate model can
be obtained by fitting the polynomial to the samples using the probabilistic collocation method,
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as shown in Listing 2.4.

Listing 2.4 – Python code for creating the gPC expansion.

1 p = 3 # polynomial degree

2 Np = factorial (2 + p) / (factorial (2) * factorial(p))

3 m = 3 # multiplicative factor

4 Ns = m * Np # number of samples

5 samples = distribution.sample(Ns)

6 evals = [model (200,Z[0],Z[1],t)[1] for Z in samples.T]

7 poly_exp = cp.orth_ttr(p,distribution)

8 surr_model = cp.fit_regression(poly_exp ,samples ,evals)

We create a polynomial expansion of degree p = 3 using an orthogonal basis with the method
cp.orth_ttr, then, with the samples, evaluations and polynomial expansion available, the
surrogate model is created using the method cp.fit_regression.

With the surrogate model available, analysis can be done by computing the UQ and SA
metrics desired:

Listing 2.5 – Python code for obtaining the UQ and SA metrics.

1 mean = cp.E(surr_model , distribution)

2 std = cp.Std(surr_model , distribution)

3 sm = cp.Sens_m(surr_model , distribution)

4 st = cp.Sens_t(surr_model , distribution)

The expected value µ[Y ] and standard deviations σ [Y ] are obtained with the methods cp.E and
cp.Std, respectively, while the Sobol’s main Si and total ST,i sensitivity indexes for the parame-
ters r and K (i = r,K) are obtained with the methods cp.Sens_m and cp.Sens_t, respectively.
The year of the inflection point in the logistic growth curve was considered as a QoI. Table 1
shows the results of the analysis for this QoI. It is possible to note that the growth rate is the
most influential input when measuring this QoI.

Table 1 also shows the effects of choosing different combinations of the polynomial
degree p and the multiplicative factor m. One can see that, as the polynomial degree increases,
the mean and standard deviation converge to a specific value. This confirms that the gPC method
can be accurate enough (in terms of the determination coefficient Q2) with a small number of
samples Ns. Figure 3 shows the computed mean values and standard deviations for the inflection
point using the Monte Carlo method. It is evident that it requires a larger number of samples to
converge to values similar to those obtained with the gPC method.
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Table 1 – UQ and SA results for the logistic growth model: p is the polynomial degree, m the
multiplicative factor of the minimum number of samples required Ns the number of samples

used to create the surrogate model, and Q2 is the determination coefficient.

p m Ns µ[Y ] σ [Y ] Sr SK ST,r ST,K Q2

1 1 3 6.404 2.816 0.772 0.228 0.772 0.228 0.781
1 2 6 5.069 0.485 0.985 0.015 0.985 0.015 0.902
2 1 6 4.951 0.582 0.683 0.244 0.765 0.317 0.343
2 2 12 5.126 0.566 0.996 0.003 0.996 0.003 0.857
2 3 18 5.130 0.560 0.988 0.012 0.988 0.012 0.914
3 2 20 5.125 0.557 0.992 0.006 0.994 0.008 0.902
3 3 30 5.135 0.529 0.985 0.001 0.999 0.015 0.908

Source: Elaborated by the author.

Figure 3 – Mean value and standard deviation convergence for the Monte Carlo
method.

Source: Elaborated by the author.



39

3 CARDIOVASCULAR MODELS

The function of the left ventricle and systemic arteries within the cardiovascular system
provides important hemodynamic parameters for clinical assessment. By measuring quantities
such as ventricular and arterial blood volumes and pressures at crucial moments of a cardiac
cycle, one can trace the overall situation of a given patient and, through these measures, obtain
insights and design proper treatments and therapies (53).

This chapter considers two closed-loop pulsatile LP models, one having five compart-
ments and other with three-compartments. We also discuss one coupled model of the systemic
circulation composed by the three-compartment LP model and an electromechanical model of
the left ventricle simulated by three-dimensional FE method.

The underlying physiological notions for understanding the models are presented in the
first section of this chapter. In the following sections, all the mathematical equations, numerical
techniques used in the models for numerical simulations are described.

3.1 CARDIOVASCULAR PHYSIOLOGY BACKGROUND

For cells to function correctly, they need mechanisms that allow them to acquire metabolic
substrates from the external environment and remove byproducts of metabolism. In large
organisms, these exchanges are made possible by a complex blood vessel system that exchanges
substances between cells and blood and between blood and environment. This complex system of
blood vessels is the cardiovascular system (Figure 4), which is made of the systemic circulation,
the pulmonary circulation, and the heart connecting these two parts closing a circulatory loop
(54, 55, 56, 57, 58).

The heart can be seen as a pair of pumps that ensure correct blood flow throughout the
muscles and organs. The heart’s left side consists of the left ventricle and the left atrium, while
the right side of the heart consists of the right ventricle and the right atrium. The right side
is anatomically smaller than the left side of the heart. The left ventricle pumps blood into the
systemic circulation through the aorta. This way, oxygen-rich blood flows through a branch of
progressively smaller vessels, from the aorta to the small arteries, then to the arterioles, until it
reaches the capillaries, where the exchange of oxygen and carbon dioxide occurs.

Blood leaves the systemic capillaries carrying less oxygen and more carbon dioxide
and enters the systemic veins and flows through a vasculature that branches into progressively
larger vessels until it reaches the right atrium. Blood is discharged from the capillaries into the
venules; then, it flows through the small veins entering the vena cava, which transports it to the
right atrium. Next, blood goes from the right atrium to the right ventricle, which pumps it into
the pulmonary circulation. The partly de-oxygenated blood flows into the lung tissues through
the pulmonary capillaries from the pulmonary arteries, where carbon dioxide is exchanged
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Figure 4 – Schematic diagram of the cardiovascular system circulation. On the left
is an overview of the cardiovascular circuit. On the right is an overview of the blood
flow within the heart. RA, right atrium; RV, right ventricle; PA, pulmonary artery;
Ao, aorta; LA, left atrium; LV, left ventricle; SVC, superior vena cava; IVC, inferior

vena cava.

Source: Adapted from Klabunde (2011).

for oxygen. Finally, the (re-)oxygenated blood leaves the pulmonary capillaries, going to the
pulmonary veins and flowing back to the heart’s left side, thus completing the circulation. This
whole circuit can take about a minute to occur.

There is a structural symmetry between the systemic and pulmonary circulations. When
translating their dynamics into mathematical equations, it is expected that systemic and pul-
monary circulations equations look the same. The same happens to the heart’s left and right
sides and their relationship with the systemic and pulmonary circulations. However, despite the
similarities in the equations’ forms due to symmetry, there are significant quantitative differences
in pressure and blood volume. Systemic arterial pressure is about six times greater than the
pulmonary arterial pressure. The pulmonary circulation has about 14% of the total blood volume,
while the systemic circulation has approximately 74%, whereas the heart has the remaining 12%
of the total volume (Table 2).

Table 2 – Normal resting pressure (P) and volume (V ) of the systemic and pulmonary vessels.

P (mmHg) V (litres)
systemic arteries 100 1.0
systemic veins 2 3.5
pulmonary arteries 15 0.1
pulmonary veins 5 0.4

Source: Adapted from Hoppensteadt and Peskin
(2012).

Also, since the left side of the heart, the systemic circulation, the right side of the heart,
and the pulmonary circulation have an in-series relationship, the output of each side of the heart
must be balanced. More details on cardiovascular circulation can be found in (54, 57).
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3.1.1 The cardiac cycle

The heart’s pumping activity is regulated by the four chambers and four valves between
the atria and the ventricles, and between the ventricles and the outflow arteries. The tricuspid
valve is located between the right ventricle and the right atrium. Between the left ventricle and
the left atrium is located at the mitral valve. The pulmonary valve is located at the outflow from
the right ventricle. At the outflow from the left ventricle is located the aortic valve.

The cardiac cycle is the name given to the events from the beginning of one heartbeat
to the beginning of the next pulse. It consists of a period of relaxation when the heart fills with
blood, and a period of contraction, during which the heart ejects the blood into the arterial blood
vessels. The relaxation period is called diastole, and the contraction period is called systole.

In Figure 5, the top panel shows the variation of left ventricular pressure (LV pressure)
and volume (LV volume) during the time during a complete cardiac cycle. When we consider
the left ventricular function during a cardiac cycle, an important diagram is the pressure-volume
loop obtained by plotting the left ventricular pressure against the left ventricular volume during
the full cycle. Therefore, the pressure-volume loop is a representation of the phase plane, where
the time is implicit. As shown in the bottom panel of Figure 5, the pressure-volume loop is made
up of four phases, labeled from (a) to (d).

The systole begins with the contraction of the left ventricle muscles due to electrical
stimulation, which is the phase (b) in Figure 5. At this point, all valves are closed, and an
isovolumetric increase of ventricular pressure occurs. When it is the same as the arterial pressure,
which is about 80 mmHg, the aortic valve opens, starting phase (c), and blood is ejected into the
aorta, while the pressure rises and then falls according to muscle contraction. The maximum
ventricular pressure is achieved at this phase and is about 120 mmHg. At the end of this phase,
when ventricular pressure drops below the arterial pressure, the aortic valve closes and concludes
systole phase. During this phase, ventricular volume decreases while blood is ejected into
the aorta and the end of ejection leaves a residual blood in the ventricle, which is called the
end-systolic volume (ESV), and is about 50 ml. With the closure of the aortic valve, a period
of isovolumetric relaxation begins (phase (d)), corresponding to the onset of diastole. At this
phase all valves are closed and ventricular pressure drops until it is below atrial pressure. At this
point the mitral valve opens and phase (a) begins. In this phase, left ventricle starts to fill with
venous blood flowing from the atrium. Since the muscles are still relaxing, pressure continues
to drop until it reaches the minimum ventricular pressure at about 8 mmHg. Once the ventricle
is at maximal relaxation, the pressure begins to rise again as it fills. At the end of diastole the
ventricle is fully loaded and the cardiac cycle ends. The maximum amount of blood inside the
filled ventricle is called the end-diastolic volume (EDV), which is about 120 ml. The difference
between EDV and ESV is called stroke volume (SV) and is about 70 ml. The ratio between the
SV and the EDV represents the ejection fraction (EF) of the ventricle and is typically greater than.
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Figure 5 – Top: Left ventricular pressure and volume during
a full cardiac cycle; EDPVR: end-diastolic pressure-volume
relationship; ESPVR: end-systolic pressure-volume relati-
onship; a: ventricular filling; b: isovolumetric contraction; c:

ventricular ejection; d: isovolumetric relaxation.

Source: Klabunde (2011).

The red curves in the bottom panel of Figure 5 are the end-diastolic pressure-volume relationship
(EDPVR) and the end-systolic pressure-volume relationship (ESPVR). The filling phase moves
along the EDPVR, also called the passive filling curve of the ventricle. The ESPVR describes
the maximal ventricular pressure that can be reached at any given ventricular volume, meaning
that the pressure-volume loop cannot cross over it 0.55 (54). Table 3 shows normalized values
for some of the aforementioned left ventricular hemodynamic parameters, with differentiation
into males and females by age deciles.
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Table 3 – Normal left ventricular hemodynamic values by age deciles for male and female sub-
jects; Max AP: maximum arterial pressure; Min AP: minimum arterial pressure; CI: confidence

interval; SD: standard deviation.

Hemodynamic Value 20 - 29 years 30 - 39 years 40 - 49 years 50 - 59 years 60 - 69 years

male
EDV [ml] (mean, 95% CI) 167 (126 , 208) 163 (121, 204) 159 (117, 200) 154 (113, 196) 150 (109, 191
ESV [ml] (mean, 95% CI) 58 (35, 80) 56 (33, 78) 54 (31, 76) 51 (29, 74) 49 (27, 72)
SV [ml] (mean, 95% CI) 109 (81, 137) 107 (79, 135) 105 (77, 133) 103 (75, 131) 101 (73, 129)
EF [%] (mean, 95% CI) 65 (57, 74) 66 (57, 75) 66 (58, 75) 67 (58, 76) 67 (58, 76)
Max AP [mmHg] (mean, ± SD) 125 ± 7 130 ± 4 123 ± 3 123 ± 9 126 ± 7
Min AP [mmHg] (mean, ± SD) 73 ± 5 77 ± 5 73 ± 4 77 ± 6 75 ± 7

female
EDV [ml] (mean, 95% CI) 139 (99, 179) 135 (94, 175) 130 (90, 171) 126 (86, 166) 122 (82, 162)
ESV [ml] (mean, 95% CI) 48 (29, 66) 45 (27, 64) 43 (25, 62) 41 (22, 59) 39 (20, 57)
SV [ml] (mean, 95% CI) 91 (63, 119) 89 (61, 117) 87 (59, 115) 85 (57, 113) 83 (56, 111)
EF [%] (mean, 95% CI) 66 (56, 75) 66 (57, 75) 67 (58, 76) 68 (59, 77) 69 (60, 78)
Max AP [mmHg] (mean, ± SD) 121 ± 12 123 ±6 115 ± 13 116 ± 18 119 ± 14
Min AP [mmHg] (mean, ± SD) 70 ± 9 68 ± 4 71 ± 9 71 ± 11 73 ± 6

Source: Adapted from Maceira et al. (2006).

3.1.2 Heart contraction

The pumping action of the heart is made possible by the contraction of its muscle fibers,
which receive energy from biochemical processes and develops a force that manifests as an
increasing cavity pressure (58). The cardiac muscle is made up of cells called cardiac myocytes
(see Figure 6), which arrange themselves as a branching network of cells that allow cell-to-cell
conduction of electrical signals thanks to the low-resistance pathways between the cells. This
configuration of the cardiac cells permits the heart to contract synchronously.

Figure 6 – Cardiac myocyte structure. Myocytes are joined together by intercalated
discs and are composed of myofibrils, which in turn are composed of thick and thin

filaments. Between the Z-lines lies the sarcomere.

Source: Adapted from Klabunde (2011).

As shown in Figure 6, the cardiac myocytes are composed of myofibrils that are bundled
together in a parallel fashion. The myofibrils are in turn, made up of parallel bundles of thick
and thin myofilaments lying between the Z-lines. The segment between the Z-lines is called the
sarcomere, which is the basic contractile unit of a myocyte. The length of the sarcomere plays an
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important role in the determination of the force of myocyte contraction (57). During the process
called excitation-contraction coupling, an active force is developed as the distance between
neighboring Z-lines shortens and the overlap between the myofilaments increases. Chemical
interactions between the thick and thin filaments cause a shortening of the sarcomere as the
filaments slide past each other. The protein interactions involved in the sarcomere shortening are
responsible for the active force that makes the myocyte contract.

Preload and afterload are two important physiological concepts related to cardiac muscle
contraction. The preload is the initial stretching of the cardiac myocyte as the muscle begins to
contract, and is usually associated to the pressure at the end of diastole, that is, the pressure when
the ventricle has become filled. The afterload is the load against which the muscle exerts its
contractile force, which is considered to be the aortic pressure that the ventricle must overcome
to eject blood, commonly referred to as the systolic pressure (54, 57).

3.2 LUMPED PARAMETER CIRCULATORY MODELS

Cardiovascular LP models provide an adequate description of the global hemodynamics
in the entire circulation by employing only the global variables and parameters of the system in
modeling. LP models are also called zero-dimensional, or 0D, models since, at any instant in
time, they assume a uniform distribution of the fundamental variables within any compartment
(organ or vessel). Though simple, this type of representation can yield accurate quantitative
predictions of the cardiovascular system function (18).

The fundamental variables when modeling the cardiovascular dynamics are pressure,
flow, and volume. There is a close correlation between the blood flow in the circulatory loop
and the electric conduction in a circuit. Blood flow-rate and pressure and their interactions are
analogous to current and voltage and their interactions. The resistance and capacitance properties
in an electric circuit can be seen as the properties of resisting blood friction and elasticity of a
vessel, for example. Therefore, cardiovascular dynamics are often studied and represented in an
analogous way to the well-established methods for analyzing electric circuits. However, when
dealing with cardiovascular dynamics, special attention must be paid to nonlinearities, like the
pressure-volume relationship in a real vessel, as the electrical analogue is unable to express such
nonlinearities (18).

The blood can be considered as an incompressible fluid; therefore the amount of blood in
any part of the circulation can be directly measured as the volume of blood, in millilitres (ml) and
denoted by V . The blood pressure p within a particular compartment is given by the difference
from a reference pressure and is measured in millimetres of mercury (mmHg). The atmospheric
pressure is the pressure outside most of the blood vessels, so it is commonly considered as the
reference pressure. The blood flow, given by millilitres by seconds (ml/s) and represented by q,
is measured as the volume of blood passing a particular point of the circulation per unit of time.



45

The blood that is pumped from either side of the heart is called the cardiac output (CO) and is
the most important measure of flow in the circulation (55). It can be measured as the product of
the SV and the number of heartbeats per unit of time, which is the heart rate. Thus, if a person
has an SV of 70 ml/beat and a heart rate of 1.3 beats/s, her cardiac output will be of 91 ml/s.

Two important properties of a blood vessel are resistance and compliance. Although any
vascular district has these properties, some are more rigid, while others are more complacent.
The resistance of a blood vessel is the ability that it has of opposing the blood flow. A rigid vessel
has negligible deformation when subjected to an increase in pressure. Figure 7 shows a rigid
vessel with resistance R subjected to an inflow qin at pressure pin, and an outflow qout at pressure
pout . The external pressure is the reference, or atmospheric, pressure pre f = 0. Since the vessel
is rigid, its volume V is known and constant. Considering the vessel is in a steady-state, then the
outflow and inflow are equal, that is qin = qout = q. A relationship between the pressures pin,
pout and the flow q can be defined as

q =
pin− pout

R
. (3.1)

A vessel that satisfies Equation (3.1) is called a resistance vessel and the resistance R is measured
in mmHg s/ml.

Figure 7 – A resistance vessel; pre f : refe-
rence pressure; qin: inflow; qout : outflow;
pin: upstream pressure; pout : downstream

pressure; V : constant volume.

Source: Elaborated by the author.

Differently, a complacent vessel, or compliance vessel, has no resistance to blood flow,
thus the pressures at its both ends are equal (pin = pout = p) for any given flow q. As shown
in Figure 8, when a nonzero pressure variation is applied to a compliance vessel, a volume
variation must be observed. Suppose these variations are linear, then the ratio between the volume
variation and pressure variation is always constant. This constant is called the compliance of the
vessel and is given by

C =
V −Vus

p− pus
, (3.2)

where C is the compliance, V is the total volume after the vessel distention, Vus is the unstressed
volume, p is the instantaneous blood pressure and pus is the associated unstressed pressure.
Adopting a null unstressed pressure, the pressure-volume relation can be formulated as

V =Vus +Cp. (3.3)
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The vessel compliance is measured in millilitres by millimetres of mercury (ml/mmHg) and its
representation is analogous to that of a capacitor in an electrical circuit. It is also possible to
introduce the idea of an elastance vessel (inverse of compliance), which given the assumed linear
variations of volume and pressure, is expressed by

E =
p− pus

V −Vus
, (3.4)

where E is the elastance. Using this constant, the pressure-volume relation can be expressed as

V =Vus +E−1 p. (3.5)

Figure 8 – A compliance vessel. In the left the compliance vessel is at its
unstressed state and in the right the vessel is subjected to a nonzero pressure
variation; Vus: unstressed volume; pus: unstressed pressure; V : total volume

after the vessel distention; p: instantaneous pressure.

Source: Elaborated by the author.

If we consider that a compliant vessel undergoes a change of volume at an instant of
time t, such that its volume is given by V =V (t), then the blood volume retained in the vessel is
exactly equal to the volume variation it underwent. Thus, the rate of change in volume is equal
to the difference between the inflows and outflows, that is:

dV
dt

= qin−qout . (3.6)

The assumption of linear variations of pressure and volume within a vascular vessel considered
so far are convenient simplifications. However, they are not suitable if we take the pumping
action of the heart into account. The cardiac valves regulate the pumping of blood by allowing
it to flow from a compartment i to a compartment j if the pressure pi at the compartment i is
greater than or equal to the pressure p j at the compartment j, that is, if pi ≥ p j. Otherwise, the
blood flow is denied in case pi < p j, by keeping the valve closed. Modeling the cardiac valves
with this opening-closing mechanism is analogous to the representation of a diode in an electrical
circuit since it ensures that blood will flow in only one direction (55).

Additionally, since the heart chambers are actively pumping blood, it is not suitable to
model them as a compliance vessel with a constant compliance or elastance. Therefore, they
should be regarded as a vessel whose compliance (or elastance) changes as a function of time.
Adapting Equation (3.3), the pressure-volume relation for a heart chamber should be

V (t) =Vus +C(t)p(t), (3.7)
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or adapting Equation (3.5) it results in:

V (t) =Vus +E−1(t)p(t), (3.8)

where C(t) and E(t) are time-varying compliance and elastance functions, respectively.

The models studied here are concerned with the systemic circulation and consider only
the left heart (ventricle and atrium) function, out of the four chambers of the heart. The left
heart pressure-volume relation, as expressed in Equation (3.8), was first presented by (59) and
has been widely used in other studies (29, 55, 58, 33, 25). The time-varying elastance function
provides the pumping mechanism of the heart chambers. Here, we present an elastance function
for the left heart, based on (33), which has the following form:

Elh(t̃) =


EM−Em

2

(
1− cos

(
π t̃
Ts

))
+Em, t̃ ≤ Ts

EM−Em
2

(
cos
(

π(t̃−Ts)
Tr−Ts

)
+1
)
+Em, Ts ≤ t̃ ≤ Tr

Em, Tr ≤ t̃ ≤ T

(3.9)

where t̃ is the time within a cardiac cycle. Maximum and minimum elastances are represented
by the parameters EM and Em, respectively, while the times at which they occur are given by Ts

and Tr, respectively. As depicted in Figure 9 the function reaches its maximum value EM at time
Ts, which is when systole ends, and the minimum value Em is achieved at time Tr.

Figure 9 – Time-varying elastance function during a
cardiac cycle; Ts: time of maximum elastance; Tr: time
of minimum elastance; EM: maximum elastance value;

Em: minimum elastance value.
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3.2.1 Five-compartment model

The first model studied was a five-compartment LP model describing a closed-loop
systemic circulation. This model was first presented in the work of (25) to examine cardiovascular
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regulation during the head-up tilt (HUT) protocol. It considers the dynamics of the systemic
circulation, taking into account the upper and lower body vessels and the left heart.

Figure 10 – Systemic circulation representation of the five-
compartment model.
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Source: Elaborated by the author.

In this model, equations for the pressure-volume relation in the systemic vessels are
defined following Equation (3.3), that is

Vau =Vau,us +Cau pau, (3.10)

Val =Val,us +Cal pal, (3.11)

Vvu =Vvu,us +Cvu pvu, (3.12)

Vvl =Vvl,us +Cvl pvl, (3.13)

where the subscripts au, al, vu, vl denote the upper and lower arteries and the upper and lower
veins, respectively. The left heart compartment equation for the pressure-volume relation follows
Equation (3.8), that is:

Vlh(t) =Vlh,us +E−1
lh (t)plh(t), (3.14)

where the subscript lh denotes the left heart and the time-varying elastance function Elh(t) was
defined in Equation (3.9).

Flows between upper and lower arteries (qal), lower and upper veins (qvl), and through
upper and lower peripheral arteries (qaup and qal p, respectively) are modeled following Equa-



49

tion (3.1) for resistance vessels, that is:

qal =
pau− pal

Ral
, (3.15)

qvl =
pvl− pvu

Rvl
, (3.16)

qaup =
pau− pvu

Raup
, (3.17)

qal p =
pal− pvl

Ral p
. (3.18)

Flow through the mitral and aortic valves (qmv and qav, respectively) must respect the opening-
closing mechanism of the valves, that is:

qmv =

{
pvu−plh

Rmv
, pvu ≥ plh

0, pvu < plh
(3.19)

qav =

{
plh−pau

Rav
, plh ≥ pau

0, plh < pau
(3.20)

Finally, the rate of volume change in the compartments follows Equation (3.6) and is denoted by

dVau

dt
= qav− (qaup +qal), (3.21)

dVal

dt
= qal−qal p, (3.22)

dVvu

dt
= (qvl +qaup)−qmv, (3.23)

dVvl

dt
= qal p−qvl, (3.24)

dVlh

dt
= qmv−qav. (3.25)

Section 3.3 describes models and numerical methods regarding the simulation of the
coupled multi-scale model studied in this work. The model couples the FE simulation of the
electromechanical activity of the left ventricle with the simulation of the systemic circulation
performed with a LP model. Such multi-scale simulation can be costly, time-consuming, and
difficult in terms of parameter calibration. Therefore, it is attractive to consider simpler models.
Since our study is concerned with hemodynamic parameters regarding left ventricular volumes
and global arterial pressures, a separation between upper and lower body dynamics as in the
five-compartment model presented here is not necessary and therefore, a model simplification
can be considered to reduce the parameter space and enhance the simulation.

3.2.2 A reduced model

We present a possible simplification of the five-compartment model to a model with a
reduced number of parameters. A possible procedure to reduce the model is to lump the lower
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and upper body compartments together, as depicted by Figure 11. The sensitivity analysis for the
five-compartment model presented in the next chapter will substantiate the model simplification
considering the quantities of interest evaluated.

Equations applied for this 3-compartment model follow the same idea presented for the
original model. The number of equations to be solved was reduced, whereas some parameters
and initial conditions needed to be recalculated to reproduce the original model. Further
considerations taken for the reduced model are presented next.

Figure 11 – Systemic circulation representation of the three-
compartment model.
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Source: Elaborated by the author.

The model is simplified by merging the lower and upper veins compartments into the
veins compartment (subscript v). The lower and upper arteries are combined into the arteries
compartment (subscript a), as seen in Figure 11. Parameters and initial conditions of the
simplified model were adapted as follows.

Initial volume for the arteries compartment Va is given by the sum of the initial volumes
of the upper and lower body compartments from the original model. The same idea is applied
for the volume Vv of the veins compartment. Thus, the initial volumes are given by:

Va(0) =Val(0)+Vau(0), (3.26)

Vv(0) =Vvl(0)+Vvu(0). (3.27)

Compliances are obtained with

C =
V −V us

p
=

Vs

p
, (3.28)

where C is the compliance and V , V us, Vs and p are mean values for volumes and pressures
from the original five-compartment model (33). Thus, we approximated the compliances for the
simplified model as follows

Ca =
Vau,s +Val,s

pa
, (3.29)

Cv =
Vvu,s +Vvl,s

pv
, (3.30)
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where pa = (pau + pal)/2 and pv = (pvu + pvl)/2. The value of the peripheral resistance of the
simplified model was also adapted. Resistances Rvl , Ral and Ral p are in series, and the sum
of them is in parallel with Raup, as shown in Figure 10. Thus, we calculated the equivalent
resistance Rp using the following expression:

1
Rp

=
1

Ral p +Rvl +Ral
+

1
Raup

. (3.31)

Therefore, the equations for the pressure-volume relation for the three-compartment model are
given by

Va =Va,us +Ca pa, (3.32)

Vv =Vv,us +Cv pv, (3.33)

Vlh(t) =Vlh,us +E−1
lh (t)plh(t), (3.34)

where Va, Vv and Vlh are the arterial, venous and left heart volumes, respectively, and the time-
varying elastance function Elh is defined in Equation (3.9). Peripheral flow qp, and flows through
the mitral valve qmv and aortic valve qav are given by

qp =
pa− pv

Rp
, (3.35)

qmv =

{
pv−plh

Rmv
, pv ≥ plh

0, pv < plh
(3.36)

qav =

{
plh−pa

Rav
, plh ≥ pa

0, plh < pa
(3.37)

Lastly, the rate of volume change in the compartments are given by

dVa

dt
= qav−qp, (3.38)

dVv

dt
= qp−qmv, (3.39)

dVlh

dt
= qmv−qav. (3.40)

3.2.3 Numerical solution

The pulsatile nature of the models is characterized by the time-varying elastance curve
and the opening and closing mechanism of the valves, which predicts flow into and out of the
valves. Such a mechanism introduces discontinuity characterizing the system of differential
equations as stiff (32), which in turn introduces numerical difficulties. When solving stiff
problems, explicit methods perform poorly and require small time steps. Therefore, it is essential
to consider appropriate methods for their solution.

The backward differentiation formula (BDF) methods (60, 61) are a class of methods
capable of efficiently solving stiff problems. To solve the LP equations, we used the BDF method
implemented in the SciPy (62) library of the Python programming language.
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For both models, once the volumes are calculated by applying the BDF method on the
equations for the rate of volume change (equations (3.21)-(3.25) for the 5-compartment model
and equations (3.38)-(3.40) for the 3-compartment model), and using the appropriate flows qin

and qout , pressure and flow are obtained. To compute them, equations for the pressure-volume
relation are used (equations (3.10)-(3.14) for the 5-compartment model and equations (3.32)-
(3.34) for the 3-compartment model) as well as the equations for the resistance vessel flows
(equations (3.15)-(3.20) for the 5-compartment model and equations (3.35)-(3.37) for the 3-
compartmento model).

3.2.4 Five-compartment model simulation

Since the focus of this work is on UQ and SA for the LP and coupled models, we
present here the results of simulating the five-compartment model using nominal values for the
parameters reported in the literature. The parameters and initial conditions considered for the
simulation of the five-compartment model are from the work of (33), which were obtained from
experimental data and model fitting, considering a study of patient-specific dynamics during
HUT. Table 4 shows all the parameter values and initial conditions used in the simulation.

Table 4 – Five-compartment model: initial conditions and parameters.

Name Description Value Units
initial conditions

Vau,s(0) Upper arterial initial volume 145.241 ml
Val,s(0) Lower arterial initial volume 25.631 ml
Vvu,s(0) Upper venous initial volume 161.378 ml
Vvl,s(0) Lower venous initial volume 28.479 ml
Vlh,s(0) Left ventricle initial volume 132.000 ml

parameters
Cau Upper arterial compliance 2.1335 ml/mmHg
Cal Lower arterial compliance 0.37649 ml/mmHg
Cvu Upper venous compliance 46.108 ml/mmHg
Cvl Lower venous compliance 7.5943 ml/mmHg
EM Maximal ventricular elastance value 1.8399 mmHg/ml
Em Minimum ventricular elastance value 0.026515 mmHg/ml
Raup Peripheral upper arterial resistance 0.86735 mmHg s/ml
Ral p Peripheral lower arterial resistance 3.3828 mmHg s/ml
Ral Lower arterial resistance 0.073149 mmHg s/ml
Rvl Lower venous resistance 0.013431 mmHg s/ml
Rav Aortic valve resistance 0.001 mmHg s/ml
Rmv Mitral valve resistance 0.001 mmHg s/ml
T Cardiac cycle duration 0.98 s
Ts Time of maximum ventricular elastance 0.12 s
Tr Time of minimum ventricular elastance 0.30 s

Source: Adapted from Williams et al. (2019).
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The simulation performed considered 10 cardiac cycles with 100 time steps of size
∆t = 0.0098 s, producing cycles of 0.98 seconds. Figure 12 depicts the left heart pressure-
volume loop, arterial pressure, left heart pressure, and volume during the last cardiac cycle. One
can observe the systolic phase from 0 s to 0.12 s and the diastolic phase from 0.12 s to 0.98 s in
the left heart pressure and volume curves. The results show physiologically consistent data for
the left heart and arterial measures, which agree with those presented in (33). The figure also
indicates the obtained hemodynamic parameters from the left heart (SV, EDV, ESV) and the
arteries (Max AP and Min AP).

Figure 12 – Five-compartment model simulation results. (a) Pressure-volume loop for the
last of 10 cardiac cycles; (b) Left heart volume during the last of 10 cardiac cycles; (c) Left

heart and arterial pressures during the last of 10 cardiac cycles.
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EDV
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Source: Elaborated by the author.

Table 5 shows the hemodynamic values obtained with the simulation of the model. ESV,
EDV, SV, EF, Max AP and Min AP quantities were calculated using the data from the last cycle
of the simulation.

Table 5 – Hemodynamic values obtained in the simulations of the 5-compartment model.

ESV [ml] EDV [ml] SV [ml] EF [%] Max AP [mmHg] Min AP [mmHg]

48.74 144.50 95.76 66.27 90.19 54.86

Source: Elaborated by the author.
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3.2.5 Three-compartment model simulation

To maintain a similar qualitative and quantitative response to the five-compartment model,
the reduced three-compartment model considered the same initial conditions and parameters
when possible, and applied the adaptations described previously when necessary. Table 6 shows
the parameters and initial condition values used.

Table 6 – Three-compartment model: initial conditions and parameters.

Name Description Value Units
initial conditions

Va,s(0) Arterial initial volume 170.872 ml
Vv,s(0) Venous initial volume 189.857 ml
Vlh,s(0) Left heart initial volume 132.000 ml

parameters
Ca Arterial compliance 2.50985 ml/mmHg
Cv Venous compliance 54.2446 ml/mmHg
EM Maximal left heart elastance value 1.8399 mmHg/ml
Em Minimum left heart elastance value 0.026515 mmHg/ml
Rp Peripheral arterial resistance 0.69384 mmHg s/ml
Rav Aortic valve resistance 0.001 mmHg s/ml
Rmv Mitral valve resistance 0.001 mmHg s/ml
T Cardiac cycle duration 0.98 s
Ts Time of maximum left heart elastance 0.12 s
Tr Time of minimum left heart elastance 0.30 s

Source: Elaborated by the author.

The simulation considered the same settings provided for the five-compartment model
simulation, that is: 10 cardiac cycles, each with 100 time steps of size ∆t = 0.0098 s. The results
of the three-compartment model are very similar and, therefore not presented. A comparison
between the five and three-compartment models is presented in Figure 13, which shows the
pressure and volume of the left heart during 10 cardiac cycles in both models. The results
show that the simplified model responds very closely to the five-compartment model for this
experiment. Within all cycles, solutions for the left ventricle pressure and volume showed a
relative error of about 0.011 and 0.006, respectively.

Lastly, Table 7 compares the obtained hemodynamic parameters by the five-compartment
and three-compartment model. One can see that the values are very close, confirming that the
reduced model was able to predict similar LV hemodynamics of the original model under the
conditions considered in the present work.

3.3 COUPLED MODEL

The multi-scale model studied in this work is presented here. Following, the details of
the mechanical problem to be solved by the FE model, as well as the approach used to perform
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Figure 13 – Comparison between the two models for a simulation of
9.8 s. (a) Left heart pressure. (b) Left heart volume.

(a)

(b)

Source: Elaborated by the author.

Table 7 – Comparison between values obtained in the simulations of the models.

Hemodynamic Value 5-compartment model 3-compartment model

ESV [ml] 48.74 48.38
EDV [ml] 144.50 143.96
SV [ml] 95.76 95.58
EF [%] 66.27 66.39
Max AP [mmHg] 90.19 89.16
Min AP [mmHg] 54.86 54.92

Source: Elaborated by the author.

the coupling of the LP model and the FE element model, are described.

3.3.1 Cardiac tissue mechanics model

The modeling of cardiac tissue mechanics is based on fundamental concepts of continuum
mechanics, which will be only briefly presented here for a detailed presentation and discussion
see (63, 15, 64). From the principle of linear conservation of momentum, the equations of force
equilibrium can be derived. Neglecting inertial effects, the governing equations used to describe
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the cardiac tissue deformation results in the following problem: find the displacement field u,
such that 

∇ · (FS)+B = 0, in Ω0,

u = u, on ∂ΩD
0 ,

FSN = T, on ∂ΩN
0 .

(3.41)

where Ω0 is the reference configuration, u are the prescribed displacements on the boundary
∂ΩD

0 and T is the traction applied on the boundary ∂ΩN
0 , with a normal vector N. The strain

gradient tensor is given by F, S is the second tensor of Piola-Kirchhoff and B are the body forces.

The cardiac tissue is composed of muscle fibers that are bundled in sheets of parallel
fibers. The complex microstructural organization of the cardiac tissue results in an anisotropic
mechanical response. Constitutive models attempt to describe this anisotropic behaviour, in
which, the stiffness is greater in the fiber direction than in other directions (65, 66, 67). The
constitutive model for the cardiac tissue used is the one proposed by (67), in which the strain
function is given by

Ψ =
c
2
(eQ−1), (3.42)

with
Q = b f E2

11 +bt(E2
22 +E2

33 +E2
23 +E2

32)+b f s(E2
12 +E2

21 +E2
13 +E2

31), (3.43)

where c, b f , bt and b f s are material related parameters and Ei j are the Green-Lagrange strain
tensor components.

3.3.2 Active stress

The active force generated at the cellular level is responsible for the contraction of cardiac
myocyte, which when combined results in cardiac tissue contraction. To model the effects of
contraction, the mechanical problem must take the active force in consideration. One way to
model (68) is to split the second Piola-Kirchhoff stress tensor in a passive component Sp and an
active component Sa, thus

S = Sp +Sa, (3.44)

where the passive component describes the passive behaviour of the heart and is derived from
the constitutive model (Equation (3.42)), while the active part is given by:

Sa = Tre f Taf⊗ f, (3.45)

where Ta is the normalized active stress generated by a cellular electro-mechanical model
(26, 69, 70), Tre f is a reference value for the stress and f defines the fiber direction in the
undeformed configuration.

To generate the active stress Ta as in Equation (3.45), the model presented by (69) is
used here. In this approach, the magnitude of Ta depends on the time elapsed since activation of
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a cell membrane ta, sarcomere length ls, and contractile element length lc:

Ta =
ls
ls0

fiso (lc) ftwitch (ta, ls)Ea (ls− lc) , (3.46)

where ls0 is the sarcomere length in the stress-free state and Ea is the stiffness of the elastic
element. The function fiso describes the isometric stress as follows

fiso (lc) =

{
T0 tanh2 [al (lc− lc0)] , lc ≥ lc0

0, lc < lc0
(3.47)

where T0 is a reference active stress level, al is responsible for the steepness of the stress-length
curve, lc0 is the contractile element length when the active stress is zero. The myofiber stress
time dependence function ftwich is given by

ftwitch (ta, ls) =


0, 0 > ta
tanh2

(
ta
τr

)
tanh2

(
tmax−ta

τd

)
, 0≤ ta ≤ tmax

0, ta > tmax

(3.48)

where tmax = b(ls− ld) is the twitch duration, τr and τd govern the rise and decay time of the
twitch, respectively, b is the increase of twitch duration with sarcomere length, and ld is the
sarcomere length where twitch duration is zero. The time course of the contractile element lc
follows the first order differential equation

dlc
dt

= [Ea (ls− lc)−1]v0, (3.49)

where v0 is the unloaded shortening velocity. Figure 14 illustrates the active stress curve, as well
as the bahaviour of the fiso and ftwitch functions over the course of cardiac cycle of 0.98 seconds.

Figure 14 – Active stress curve during a full cardiac cycle. (a) The fiso function; (b) The
ftwitch function; (c) Active stress curve.

(a) (b) (c)

Source: Elaborated by the author.

3.3.3 Models coupling

Given all the concepts and models related to cardiac tissue mechanics, along with the
active stress approach presented, the procedure used to couple the three-compartment LP model
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and the FE model can now be explained. The method of ventricular-vascular coupling used here
is based on the method proposed by (71) in which ventricular cavity pressures are estimated until
convergence is achieved. The blood volume in the ventricular cavity provided by the LP model
cannot be used as a boundary condition when solving the FE mechanics model. Therefore the
procedure is to estimate new cavity pressures based on the minimized cavity volume differences
between the LP model and FE model predictions. Hemodynamic coupling is achieved by
attending the scheme represented by the flowchart in Figure 15. Next, we present the coupling
procedure of (71) in a simplified way, which accounts for the left ventricle only, whereas the
original method works for biventricular simulations.

For each timestep t, multiple estimations i are made for the ventricular cavity pressure.
The first stage of the procedure consists of an initial estimation pt+1

LV,i using the fourth order
Adams-Bashforth scheme (60), that is

pt+1
LV,i = pt

LV,i +
∆t
24
(
55 f t−59 f t−1 +37 f t−2−9 f t−3) , (3.50)

where f t denotes the time derivative of the pressure for the timestep t, approximated by

f t =
pt

LV,i− pt−1
LV,i

∆t
. (3.51)

Since at the initial timesteps there are no previous knowledge of the pressure, a simple perturba-
tion is applied to perform the estimation (71):

pt+1
LV,i = pt

LV,i + ε∆t, (3.52)

where ε = 0.005 is the perturbation value.

The ventricular cavity pressure estimation pt+1
LV,i calculated is prescribed as boundary

condition to solve the mechanics problem (3.41), which yields a ventricular cavity volume
V t+1

LV,i,FE . At the same time, the LP model computes the volume V t+1
LV,i,LP using the mid-point

method (60). First, fluxes are computed as

q
t+ 1

2
p,i =

1
2Rp

(
pt+1

a,i−1 + pt
a− pt+1

v,i−1− pt
v

)
, (3.53)

q
t+ 1

2
mv,i =

1
2Rmv

(
pt+1

v,i−1 + pt
v− pt+1

LV,i−1− pt
LV

)
, (3.54)

q
t+ 1

2
ao,i =

1
2Rao

(
pt+1

LV,i−1 + pt
LV − pt+1

a,i−1− pt
a

)
. (3.55)

and then using Equation-(3.25) the left ventricular volume is updated. A new pressure estimation
pt+1

LV,i+1 is computed as:
pt+1

LV,i+1 = pt+1
LV,i−Crest , (3.56)

where the compliance C is calculated using the previous estimates of the pressures (from steps i

and i−1) and volumes provided by the LP and FE models (V t+1
LV,i,LP and V t+1

LV,i,FE , respectively),
that is

C =
pt+1

LV,i− pt+1
LV,i−1

V t+1
LV,i,FE −V t+1

LV,i−1,FE
, (3.57)
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Figure 15 – Flowchart of the iterative coupling scheme between the LP
and FE models.

t	=	t	+	1

YES

i	=	i	+	1

NO

Source: Elaborated by the author.
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and rest is the estimation residual given by the difference between the cavity volume provided by
the LP and FE models:

rest =V t+1
LV,i,FE −V t+1

LV,i,LP. (3.58)

After each new estimation step i, this residual should be reduced, until the relative volume
difference given by

δ =

∣∣∣∣∣V
t+1
LV,i,FE −V t+1

LV,i,LP

V t+1
LV,i,LP

∣∣∣∣∣ (3.59)

becomes smaller than a given tolerance Vtol . Figure 16 shows a diagram of the coupled FE and
LP model.

Figure 16 – Systemic circulation representation of the coupled
model.
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Source: Elaborated by the author.

3.3.4 Numerical solution of the coupled model

The ventricular tissue contraction problem given by Equation (3.41) is solved with the
in-house FE simulator Cardiax, which employs a mixed finite element formulation and the
Augmented Lagrangian formulation (ALG) approach (64). The FE method uses a Q1−Q0−Q0
scheme, where displacement is approximated with linear polynomials, whereas dilation and
pressure are treated as constants at the element level (64). The discretization of this problem
results in a non-linear system of equations, which is solved by Newton’s method (72, 73). Then,
a preconditioned iterative method based on an algebraic multigrid (AMG) preconditioner (73) is
applied for the numerical solution of the resulting linear systems (15, 64).

3.3.5 Coupled model simulation

The simulation of the coupled model considered the same parameters of the three-
compartment model for the systemic circulation, while the constitutive mechanics parameters
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(Equations (3.42) and (3.43)) are adapted from the work of (15). The active stress curve applied
to model the cellular contraction was obtained from the mathematical model presented by (26).
The values used for the initial conditions, as well as parameters of the systemic circulation,
mechanical problem, and the active stress models are shown in Table 8.

Table 8 – Coupled model: initial conditions and parameters.

Name Description Value Units

initial conditions

pa(0) Arterial initial pressure 68.08 mmHg
pv(0) Venous initial pressure 3.50 mmHg
pLV (0) Left ventricle initial pressure 0 mmHg

circulatory parameters

Va,us Unstressed arterial volume 778.41 ml
Vv,us Unstressed venous volume 3607.26 ml
Ca Arterial compliance 2.50985 ml/mmHg
Cv Venous compliance 54.2446 ml/mmHg
EM Maximal ventricular elastance value 1.8399 mmHg/ml
Em Minimum ventricular elastance value 0.026515 mmHg/ml
Rp Peripheral arterial resistance 0.69384 mmHg s/ml
Rav Aortic valve resistance 0.001 mmHg s/ml
Rmv Mitral valve resistance 0.001 mmHg s/ml
T Cardiac cycle duration 0.98 s
Ts Time of maximum ventricular elastance 0.12 s
Tr Time of minimum ventricular elastance 0.30 s

mechanical problem parameters (adapted from (15))

c Stress scale 6.38 kPa
b f Stiffness related parameter 6.63
bt Stiffness related parameter 3.65
b f s Stiffness related parameter 2.65
κ Bulk modulus 100 kPa

active stress parameters (adapted from (26))

al Stress-length curve steepness 2.0 µm−1

lc0 Contractile element length below 0 1.5 µm
T0 Reference active stress 180.0 kPa
Ea Elastic element stifness 20.0 µm−1

v0 Shortening velocity 7.5 µms−1

ls0 Sarcomere reference length 1.9 µm
τr Twitch rise constant 0.075 s
τd Twitch decay constant 0.150 s
b Twitch duration increase 0.13 sµm−1

ld Sarcomere length below 0 -0.4 µm
Tre f Maximum active stress 65 kPa

Source: Elaborated by the author.
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The simulation considered 1 cardiac cycle of 0.98 seconds divided in timesteps with a
length of ∆t = 0.0005. The input left ventricular FE mesh is a three-dimensional mesh comprised
of 5752 nodes and 21609 tetrahedral elements. The active stress curve, as shown in Figure 17,
was adjusted so that the times of maximum and minimum active stress values coincide with
the times of maximum and minimum elastance (Ts and Tr, respectively) of the time-varying
elastance function of Equation (3.9).

Figure 17 – Active stress and elastance curves for a cardiac cycle of
0.98 s. (a) Normalized active stress curve; (b) Time-varying elastance

curve.

systole diastole

(a)

(b)

Source: Elaborated by the author.

Results shown in Figure 18 depicts the left ventricular pressure-volume loop, along with
the arterial pressure and left ventricle pressure and volume. By comparing these results with
the five-compartment results shown in Figure 12, it is possible to observe the desired similar
qualitative behavior between the models. The systolic phase occurs from 0 s to 0.12 s and
the diastolic phase from 0.12 s to 0.98 s, as shown in the left ventricular volume and pressure
curves. Though slightly different from the LP models, results also show reasonable physiological
responses for the left ventricular and arterial measures. The obtained hemodynamic parameters
from the left ventricle (SV, EDV, ESV) and the arteries (Max AP and Min AP) are presented in
Figure 18.

To show left ventricular behavior during a whole cardiac cycle, Figure 19 depicts the
FE mesh at the beginning of each of the four phases of the left ventricular pressure-volume
loop. At the beginning of the cycle (a), all valves are closed, and systole is at the beginning,
representing that the left ventricle is filled and contraction leads to a rapid isovolumetric increase
of pressure. The next phase (b) begins with the aortic valve opening, and the left ventricle ejects
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Figure 18 – Coupled model simulation results. (a) Pressure-volume loop for the last of
3 cardiac cycles; (b) Left ventricle volume during the last of 3 cardiac cycles; (c) Left

ventricle and arterial pressures during the last of 3 cardiac cycles.
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Source: Elaborated by the author.

blood into the aorta until the end of the systole. After that, diastole begins (c) with the closing of
the aortic valve, the left ventricle starts to relax, leading to an isovolumetric decay of pressure.
Finally, when the mitral valve opens (d) the ventricle starts to fill again until the end of diastole
is reached, completing the cycle.

Table 9 shows the hemodynamic values obtained with the simulation of the coupled
model, which shows a response within typical physiological ranges.

Table 9 – Hemodynamic values obtained in the simulations of the coupled.

EDV [ml] ESV [ml] SV [ml] EF [%] Max AP [mmHg] Min AP [mmHg]

39.82 113.88 74.06 65.03 87.65 57.58

Source: Elaborated by the author.
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Figure 19 – Left ventricle during the cardiac cycle. (a) Isovolumetric contraction phase
(beginning of systole); (b) Ejection phase; (c) Isovolumetric relaxation (beginning of

diastole); (d) Filling phase.

(c) beginning of diastole

(b) ejection phase

(a) beginning of systole(d) filling phase

Source: Elaborated by the author.
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4 RESULTS

In this chapter the results of UQ and SA studies performed in the LP and coupled models
are presented. The goal is to analyze how the propagation of uncertainties from the input
parameters of the model impacts on simulated measures of clinical interest. Six left ventricle
hemodynamic quantities (Tables 3, 5 and 9) of common interest in clinical settings are considered
as outputs of interest, that is: ESV, EDV, SV, EF, maximum AP, and minimum AP.

In this sense, we choose the sets of uncertain inputs and their configuration in such a way
that the analyses can be done parsimoniously and objectively. We investigate those inputs of
greater influence and that deserve to be measured with more precision (input prioritization), as
well as those whose uncertainty has little impact when interact with others (input fixing).

4.1 ANALYSIS OF THE FIVE-COMPARTMENT MODEL

To carry out UQ and SA analyses we begin by defining the set of uncertain parameters
for the five-compartment model. We regarded the parameters related to the elastance function
(3.9), the resistances and the compliances as uncertain inputs. That is, the vector of uncertain
inputs is given by:

Z5 = {Raup,Ral p,Ral,Rvl,Rmv,Rav,Cau,Cal,Cvu,Cvl,EM,Em,Ts,Tr}. (4.1)

Since we have no previous information about the distribution of these inputs, neither available
experimental data, we set all parameters with a normal distribution with a coefficient of variation
of 20% around their baseline values (from Tables 4).

The polynomial expansion in Equation (2.14) was constructed with order p = 2 and a
multiplicative factor m = 4, resulting in a total of Ns = 480 samples. The calibration of the
surrogate model shows that the determination coefficient (Equation (2.26)) was close to one for
all QoIs, see Table 10. Therefore, we considered this choice of the polynomial degree p and
multiplicative factor m in the following studies. Table 10 shows the determination coefficient
obtained for different combinations of p and m. Table 10 shows that for p = 2 and m = 4 a
reasonable accuracy is obtained at a moderate computational cost of performing 480 forward
simulations to construct the surrogate model. Larger values for p or m can further increase the
accuracy, but with a high computational cost.

4.1.1 UQ and SA results

Uncertainty metrics calculated are presented in Table 11 for the scalar QoIs and in
Figure 20 for the left heart pressure and volume as a time series. The ESV showed a significant
variability (CoV=23%), whereas the others showed a moderate variability. The EF was the QoI
that presented less variability, about 8% for the coefficient of variation. Figure 20 shows that the
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Table 10 – LOO accuracy for each QoI of the 5-compartment model.

Factor Order Samples Q2

m p Ns ESV EDV SV EF MaxAP MinAP

1 1 15 0.9635 0.4814 0.5179 0.9959 0.0905 0.7625
2 1 30 0.8868 0.7614 0.8007 0.9995 0.9146 0.9250
3 1 45 0.9061 0.8134 0.8456 0.9996 0.8901 0.9356
4 1 60 0.8493 0.8307 0.8743 0.9995 0.8783 0.9003
1 2 120 0.7212 0.8629 0.6002 0.9989 0.7837 0.9208
2 2 240 0.9393 0.9578 0.9486 0.9998 0.9557 0.9712
3 2 360 0.9736 0.9572 0.9563 0.9999 0.9556 0.9703
4 2 480 0.9690 0.9655 0.9641 0.9999 0.9661 0.9759

Source: Elaborated by the author.

left heart pressure has a significant variance during the systole, around the period of maximum
elastance at t = 0.12 seconds, and during the beginning of diastole for t ≤ 0.3, until it reaches its
minimum value and maintains a small variance. The LV volume presents an opposite behavior:
a significant variance is observed during the ventricular filling for t > 0.3 seconds.

Table 11 – Uncertainty measures of each QoI for the 5-compartment model.

QoI µ[Y ] σ [Y ] CoV [Y ] 90% PI

ESV [ml] 50.95 11.62 0.23 [35.04, 72.70]
EDV [ml] 148.64 21.28 0.14 [117.97, 187.04]
SV [ml] 97.69 16.60 0.17 [73.78, 128.62]
EF [-] 0.66 0.06 0.08 [55.56, 74.51]
MaxAP [mmHg] 91.06 14.80 0.16 [69.53, 119.22]
MinAP [mmHg] 53.46 9.17 0.17 [38.28, 69.11]

Source: Elaborated by the author.

Figure 20 – Uncertainty propagation in the 5-compartment model for left ventricular
pressure and volume; (a) pressure; and (b) volume.

(a) (b)

Source: Elaborated by the author.
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Figure 21 shows the evaluation of each QoI probability density function and reference
values from the literature (74). It is possible to note that EDV, SV, Max AP, and Min AP present
more symmetrical densities when compared to ESV and EF, which are more asymmetrical. Mean
values from the literature (74) for a healthy male young adult (between 20 and 29 years old) are
shown for all QoIs, together with the 95% confidence interval of the same type of subject for
the ESV, EDV, SV, and EF. One can observe that the mean values of the 5-compartment model
for ESV, EDV, SD, and EF are close to the values reported for a normal male adult (74). Values
obtained for maximum and minimum pressure are lower than the reference values reported
by (74), which does not report the 95% confidence interval for the systolic and diastolic blood
pressures.

Figure 21 – Evaluated distribution of each scalar QoI for the 5-compartment model.
The thick black line is the mean value obtained with UQ; the red dashed line is the
mean value for a male young adult (74); the light red area is the 95% confidence

interval for a male young adult (74).

Source: Elaborated by the author.

Figure 22(a) shows the Sobol sensitivity indices for the output quantities. The results
show that ESV and EF are profoundly impacted by the maximum elastance EM parameter,
whereas EDV and SV are impacted by the minimum elastance Em parameter. The Max AP
is highly impacted by the upper arterial compliances Cau, while the Min AP is significantly
influenced by the upper body arterial resistance Raup.

Results for the time-averaged Sobol sensitivity indices are presented in Figure 22(b).
It shows that the pressure within one cardiac cycle is most impacted by the time of maximum
left ventricle elastance Ts. The time-averaged sensitivity indices for the left ventricle volume
indicates that Em is an important parameter for this quantity. It is important to note that Cau

and Cvu have some contribution to the volume time series. Differently from the time-averaged
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sensitivity indices, Figure 22(c) shows the Sobol indices as a function of time for the last cardiac
cycle. One can observe that Tr and Ts are significant parameters during the systole for the
pressure, whereas during diastole, Em has high sensitivity values. For the volume, one can
observe that the maximum elastance EM is the dominant parameter during systole and beginning
of diastole (for t ≤ 0.3 seconds). It is also important to note from panels (b) and (c) that some
higher interaction between Ts and Tr occur for 0.2≤ t ≤ 0.4 seconds, as can be seen from total
Sobol indices.

Figure 22 – Sensitivity analysis for the 5-compartment model. (a) Sobol’s indices;
(b) time averaged Sobol’s indices TASi and TAST,i for left heart pressure and volume;

and (c) time series for Sobol’s indices of pressure and volume.

(a)

(b)

(c)

Source: Elaborated by the author.

4.2 ANALYSIS OF THREE-COMPARTMENT MODEL

To perform an UQ and SA analyis of the 3-compartment model we define the set of
uncertain parameters, as in the 5-compartment model, considering the parameters related to the
elastance function, the resistances and the compliances as uncertain inputs:

Z3 = {Rp,Rmv,Rav,Ca,Cv,EM,Em,Ts,Tr}. (4.2)

Here, we also set all parameters with a normal distribution with a coefficient of variation of
20% around their baseline values (from Table 6). The polynomial expansion in Equation (2.14)
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was constructed with the same configurations used for the 5-compartment model, which also
yielded a good convergence. Table 12 shows the determination coefficient computed for different
combinations of p and m. Further increasing the polynomial degree or the multiplicative factor
increases the accuracy as expected, but results in a significant increase in computational time
which does not seem to pay off.

Table 12 – LOO accuracy for each QoI for the 3-compartment model.

Factor Order Samples Q2

m p Ns ESV EDV SV EF MaxAP MinAP

1 1 10 0.6899 0.5719 0.8820 0.9990 0.9283 0.7303
2 1 20 0.8545 0.7237 0.8258 0.9996 0.7050 0.9327
3 1 30 0.9321 0.7963 0.8408 0.9997 0.8813 0.9061
4 1 40 0.9052 0.8563 0.8895 0.9996 0.8911 0.9162
1 2 55 0.8113 0.9485 0.8628 0.9995 0.6723 0.8693
2 2 110 0.9615 0.9524 0.9569 0.9999 0.9546 0.9672
3 2 165 0.9672 0.9456 0.9619 0.9999 0.9501 0.9717
4 2 220 0.9671 0.9514 0.9604 0.9999 0.9562 0.9718
1 3 220 0.9233 0.8784 0.9145 0.9998 0.9626 0.9520
2 3 440 0.9898 0.9868 0.9858 0.9999 0.9839 0.9902
3 3 660 0.9860 0.9883 0.9781 1.0000 0.9864 0.9878
4 3 880 0.9924 0.9890 0.9912 1.0000 0.9920 0.9930

Source: Elaborated by the author.

4.2.1 UQ and SA results

Table 13 shows the uncertainty metrics calculated for the output quantities, while Fi-
gure 23 shows the left heart volume and pressure in time. The QoIs maintained their mean values
and slightly increased their coefficient of variation in comparison to the 5-compartment model.
The ESV was the output with the largest variation, achieving CoV=24%.

Table 13 – Uncertainty measures of each QoI for the 3-compartment model.

QoI µ[Y ] σ [Y ] CoV [Y ] 90% PI

ESV [ml] 50.93 12.07 0.24 [35.34, 73.93]
EDV [ml] 148.42 23.75 0.16 [114.29, 192.36]
SV [ml] 97.50 18.56 0.19 [71.40, 132.13]
EF [-] 0.66 0.06 0.09 [0.55, 0.75]
MaxAP [mmHg] 90.53 16.53 0.18 [67.88, 120.61]
MinAP [mmHg] 53.77 10.45 0.19 [36.36, 70.15]

Source: Elaborated by the author.

The same behaviour of the results for the 5-compartment occurs in terms of the probability
densities of the QoIs and, therefore, are not presented here. Results for the Sobol sensitivity
indices are depicted in Figure 24(a). Maximum elastance EM is the crucial parameter for the ESV



70

Figure 23 – Uncertainty propagation in the 3-compartment model for left ventricular
pressure and volume; (a) pressure; (b) volume.

(b)(a)

Source: Elaborated by the author.

and EF, EDV is more impacted by the minimum elastance Em, whereas SV is more influenced
by Rp. The MaxAP and MinAP are significantly influenced by the arterial compliance Ca and
peripheral arteries resistance Rp, respectively.

Results for the time averaged sensitivity indices are shown in Figure 24(b), where the
same behaviour as in the five-compartment model can be observed here, that is, Ts has a high
contribution to the pressure time series, whereas the set of parameters formed by Ca and Em

impact the volume time series. Figure 24(c) shows the Sobol indices as a function of time for
the last cardiac cycle. For the volume time series, similarly to the five-compartment model,
the maximum elastance EM plays a significant role during systole and beginning of diastole.
The timings at which maximum and minimum elastances occur (Ts and Tr, respectively) also
contribute to the pressure and volume series.

4.3 ANALYSIS OF THE COUPLED MODEL

Given the complexity and computational demand of the coupled model, and the fact that
to build the gPC surrogate model it is necessary to run the model multiple times, we used a
reduced set of uncertain parameters to avoid an excessive computational cost. The coupled model
is the result of coupling the: (i) 3-compartment circulatory model, (ii) continuum mechanics (or
FE) model, and (iii) active stress model.

Considering the previous simulations results and the SA performed, we considered the
3-compartments model can provide a similar response in terms of LV hemodynamics compared
to the 5-compartments model. For the choice of the uncertain input parameters, we chose the
most influential parameters of the LP model simulations, which are the vessels compliances
and the peripheral resistance (Ca, Cv and Rp, respectively). Although the SA revealed that EM
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Figure 24 – Sensitivity analysis for the 3-compartment model. (a) Sobol’s indices;
(b) time averaged Sobol’s indices TASi and TAST,i for left heart pressure and volume;

and (c) time series for Sobol’s indices of pressure and volume.

(a)

(b)

(c)

Source: Elaborated by the author.

is a key parameter for EF, SV, and ESV, the elastance function is not present in the coupled
model, which derives its elastance from the continuum mechanics model (see Figures 11 and 16).
Consequently, the elastance parameters (EM, Em, Tr, and Ts) were not considered in this study of
the coupled model.

We also considered the parameters from the active stress curve (Section 3.3.2) in this
study, since they have a direct effect on the duration and rise of the active stress curve, which
can have a significant impact on the dynamics of systole and diastole. They are the maximum
active stress value, the twitch rise constant and the twitch duration increase (Tre f , τr and b,
respectively).

Then, for UQ and SA of the coupled model the following input parameters were conside-
red:

Zcoupled = {Ca,Cv,Rp,Tre f ,τr,b}. (4.3)

We set all parameters with a normal distribution and 5% of variation around their baseline values
(Table 8). The choice of a 5% of variation is mainly because greater variations would lead to
non-physiological responses. To construct the polynomial expansion, we chose a polynomial
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order p = 2 and a multiplicative factor m = 3. With this number of samples we reached a
reasonable convergence for almost all QoIs (see Table 14), while the computational demand
could remain practicable.

The computational cost of the forward solution of the coupled model is considerably
higher than that of the circulatory models. Therefore, a detailed study for the appropriate choice
for the polynomial order and multiplicative factor for the coupled model, was not considered.
Instead, we simply assumed the same setting used for the previous models could be applied to
obtain a reasonable accuracy.

4.3.1 UQ and SA results

The uncertainty metrics calculated are shown in Table 14 and in Figure 25 they are
depicted for the left ventricle pressure and volume time series. The mean values are considerably
different from those obtained for the uncoupled LP models, with the only exception being the EF
which resulted in a value within the normal physiological range. One can also observe that the
variation propagated is significantly low for most of the QoIs when compared to the results for
the LP models, even if we consider that the inputs are subjected to only 5% of variation. The
only exception is the ESV which presented the largest variation in terms of the coefficient of
variation. For this case it is important to observe that the effects of the uncertainties in the left
ventricular pressure and volume are mainly concentrated in the beginning of diastole, as shown
in Figures 25 and 26.

Table 14 – Uncertainty measures of each QoI for the coupled model.

QoI µ[Y ] σ [Y ] CoV [Y ] 90% PI Q2

ESV [ml] 40.39 4.22 0.10 [34.43, 47.94] 0.5399
EDV [ml] 113.89 0.17 0.001 [113.62, 114.18] 0.9867
SV [ml] 73.51 4.14 0.05 [66.18, 79.37] 0.5512
EF [-] 0.64 4.00 0.06 [0.58, 0.70] 0.9960
MaxAP [mmHg] 87.46 1.77 0.02 [84.36, 90.25] 0.8267
MinAP [mmHg] 57.37 1.78 0.03 [54.23, 60.14] 0.8833

Source: Elaborated by the author.

Figure 27 shows the probability density for the QoIs. The ranges given by (74) are not
shown, since there is very little variability for most of the QoIs. In particular, we note that EF
and ESV are within the ranges given by (74).

In Figure 28(a) the Sobol’s sensitivity indices for the QoIs are depicted. ESV, SV, EF and
Max AP are greatly impacted by the reference maximum stress value Tre f , while EDV and Min
AP are more influenced by the peripheral resistance Rp. The time averaged Sobol indices reveal
that the LV pressure and volume are more impacted by the twitch duration increase parameter
b, as shown in Figure 28(b). In Figure 28(c) the Sobol’s indices are depicted as a function of
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Figure 25 – Uncertainty propagation in the coupled model for left ventricular pressure and
volume; (a) pressure; (b) volume.

Source: Elaborated by the author.

Figure 26 – Uncertainty propagation for left ventricular pres-
sure and volume loop in the coupled model.

Source: Elaborated by the author.

time, and it is possible to observe the influence of b and Tre f during a considerable time interval.
Lastly, one can see that very little discrepancy between the main and total indices occur for
this model, indicating there is no significant higher order interaction between the parameters
considered in this analysis.

4.4 DISCUSSION

In this work we performed an UQ and SA analysis for LP models of the systemic
circulation, as well as, with a coupled LP+FE model, which helped us find the most influential
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Figure 27 – Evaluated distribution of each scalar QoIs for the coupled model.
The thick black line is the mean value obtained with the UQ.

Source: Elaborated by the author.

uncertain inputs when measuring important quantities of clinical interest. In the following, we
discuss the findings and limitations of this work, and also related work from the literature.

4.4.1 Lumped parameter models

The LP models (5-compartment and 3-compartment) were subjected to an UQ and SA
study with a CoV=20% for the uncertain inputs. The propagated uncertainty, for most of the
QoIs, was lower than the variability of the inputs, except for the ESV which presented a 24% of
variation. For the non-scalar QoIs, we observed that the left heart pressure showed the highest
values of uncertainty around the end of systole, while the volume showed increasingly higher
variability of diastole.

The sensitivity analysis of the 5-compartment model revealed that EM, Em, Raup, and Cau

are the most sensitive uncertain inputs for the chosen QoIs. The time-averaged Sobol indices
indicated that parameters for the time at which maximum and minimum elastances occur Ts and
Tr, respectively, are significant for pressure and volume time series. In general, the results of
SA for the 3-compartment model were very similar to the one for the 5-compartment model. It
revealed that EM, Em, Rp, and Ca are the inputs that most influence the variance of the outputs.
Small differences were observed for SV and EF, where the Rp parameter appeared with higher
sensitivity and Em with lower when compared to their counterparts in the 5-compartment model.
The results indicated that Ts and Tr have high values for time-averaged Sobol sensitivity indices.

With this analysis, we identified the most influential uncertain inputs and non-influential
ones, which could be fixed to the literature or population-based values. For instance, in the
3-compartment model, Rmv and Rav could be fixed at their baseline values, due to their small
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Figure 28 – Sensitivity analysis for the coupled model. (a) Sobol’s indices; (b) time
averaged Sobol’s indices TASi and TAST,i for left heart pressure and volume; and (c)

time series for Sobol’s indices of pressure and volume.

(a)

(b)

(c)

Source: Elaborated by the author.

sensitivity values for all physiological QoIs considered in this work. Whereas, due to high
sensitivity values of EM, Em, Rp, and Ca, these parameters should be calibrated accurately
since, for the QoIs analyzed in this work, they are highly influential. To summarize, the
results for the 3-compartment model suggested that, at least for the quantities of interest and
simulations performed in this work, the model retained the key characteristics and responses of
the 5-compartment model.

4.4.1.1 Model reduction

Model simplification could usually lead to less accurate or detailed predictions than
a complex model. In contrast, calibrating a complex model is very difficult, and quite often,
simplified models are better adjusted to patient-specific data (75).
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In Section 3.2.2, we presented a possible reduction or simplification of the 5-compartment
model to a 3-compartment model, which was then explored using UQ and SA. We observed
that the reduced model maintained the quality of the predictions for LV hemodynamics. Also,
the UQ studies showed that the range of uncertainty propagated in both models is very similar.
Therefore, for the output quantities considered here, mainly related to LV function, the same
insights provided by the 5-compartment model analysis could be achieved by the 3-compartment
model.

The SA of the 5-compartment model showed that the parameters of the lower body, such
as Ral , Rvl , and Cvl , have minimal impact on the LV hemodynamics outputs under consideration.
This fact corroborates with the results obtained in which the 3-compartment model obtained a
similar response to the 5-compartment model in the simulations performed.

However, it is essential to remark that this reduced model neglected the distinction
between the upper and lower parts of the body since they were merged to reduce the number
of compartments. Therefore, the reduced 3-compartment model could not be appropriate for
simulating sudden hemodynamics shifts such as postural changes or a localized variation in
vascular properties between upper and lower parts of the body, such as the cardiovascular
regulation during HUT (25).

4.4.2 Coupled model

Since the 3-compartment model response was suitable for left ventricle hemodynamics,
it was used to perform a coupled multi-scale simulation of a full cardiac cycle. In this scenario,
the LP model was coupled to a FE model of the left ventricle mechanics. It is important to
remark that the coupled model was not adjusted to reproduce the same LV hemodynamics of the
uncoupled LP models, which would require a detailed calibration of the left ventricle FE model.

The coupled model was analyzed with parameters that consider the most influential
circulatory parameters and the active stress parameters that can impact the dynamics of systole
and diastole. With this, the set of parameters subjected to a CoV=5% produced very few
uncertainties to almost all scalar QoIs, in special EDV showed a small CoV=1%. The exception
was the ESV, which showed a CoV=10%, which is twice the variation present in the inputs.
These results show that, when considering this particular set of uncertain inputs, although the
coupled model is consistent in measuring most of the QoIs, it propagates a considerable amount
of uncertainty to ESV. These facts are observed in the time series results since the highest values
of uncertainty are concentrated at the end of systole and the beginning of diastole interval for
both the LV pressure and volume.

The sensitivity analysis showed that quantities related to the end of diastole, that is
EDV and Min AP, are the least influenced by the uncertainties in the inputs. They are also
the most influenced by circulatory parameters, specially the peripheral resistance Rp and the
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vessels compliances Ca and Cv. Especifically, Ca is more influential when measuring the Min AP,
whereas Cv is more influential when measuring the EDV, and Rp is the most influential for both
the QoIs. For the other QoIs, Tre f is greatly influential, while τr and b have negligible impact.
On the other hand, when we consider the time series QoIs, b is the most influential parameter,
and Tre f and τr have very little impact, while the circulatory parameters have negligible impact
on average.

Despite this fact, the UQ and SA analyses of the coupled model were useful to reveal
important information about the model. For instance, the sensitivity analysis showed that the
maximum value of the active stress Tre f is the parameter which most affects ESV, SV, EF, and
MaxAP. This finding is consistent with the literature (76), where it is reported that the Tre f

parameter represents different levels of contractility, which affects the pressure and volume of
the LV cavity.

The simulation of a cardiac cycle with the coupled model produced qualitative results
similar to the simulation made with the LP models. Some physiological outputs showed values
within the normal range (EDV and EF), while others were relatively a little lower than reported
typical values from the literature. This fact indicates that for a detailed analysis, the parameters
have to be adequately calibrated. To summarize, in the analysis of the coupled model, we found
out that the parameters regarding the active stress curve (which are also related to contractility)
are the most influential and, therefore, should be measured or calibrated more accurately.

Regarding the choice of the uncertain parameters considered for the analysis (Zcoupled),
we left out many parameters from the FE LV mainly to ease the analysis, since we wanted the
analysis to be focused and not too computationally burdensome. We also remark that other
properties of cardiac mechanics were explored in the literature, such as the parameters related to
the constitutive mechanics and the active stress (15, 4, 42, 43).

4.4.3 Related work

Here, we discuss related work of the literature and compare them to the present study
in terms of our methods and findings.In (77) a mathematical model based on experimental data
to investigate how parameters describing the heart and the arterial system contribute to the
systolic and diastolic pressures and stroke volume was presented. Dimensional and sensitivity
analysis were used in their work to characterize the role of the parameters. In particular, they
showed that the minimum elastance and venous pressures (denoted as Emin and Pv in their work)
determine filling and end-diastolic volume. Our SA results agree with their findings since the
minimum elastance Emin and the venous compliance Cvu for the 5-compartment model (or Cv for
the 3-compartment model), revealed to be essential parameters for EDV and SV.

Another feature identified by the SA study was the relevance of maximum elastance
EM parameter, representing a particular state of contractility (77). The maximum elastance
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EM is known (78, 79, 59) to be determinant for the left ventricular EF. The Sobol sensitivity
analyses performed in this work for the two lumped parameter models confirmed this behavior,
where high values were obtained for the sensitivity of EF concerning EM. Simple mathematical
equations could be used to explain the relation between EM and EF or other outputs, as shown
in (79). However, this could be a difficult task for nonlinear time-dependent or more complex
models, as is the case for coupled PDEs, such as those studied in this work or reported in the
literature (15, 75). These results highlight the efficacy and viability of the Sobol SA method for
identifying the essential features that complex physiological models should be able to describe.

Lumped parameter models of the cardiovascular system have been studied in the context
of uncertainty quantification and sensitivity analysis in the literature (36, 80, 31, 32, 33). In
particular, (32) presented a practical identifiability approach based on sensitivity analysis and
uncertainty quantification for a lumped parameter cardiovascular model calibrated with experi-
mental rat data. The analysis was based on the Markov-Chain Monte-Carlo (MCMC) method
for model calibration and uncertainty propagation. For sensitivity analysis, a local method based
on partial derivatives was employed. First, we note that the results of the present work are in
good agreement with the findings of the local SA methods used in (32), in the sense that both
identified EM, Em, Tr, and Ts as critical parameters of the model. However, we remark that
the Sobol indices and its time-averaged variants used in this work revealed that compliance
parameters, such as Cau (for the five-compartment model) and Ca (for the three-compartment
model), also contribute significantly to the variability of pressure and volume in time. Besides
the advantages of global SA analysis over local techniques discussed in Section 2.2, we remark
that the variance-based Sobol approach can provide information on how the input parameters
affect essential QoIs, rather than quantifying the sensitivity with respect to the residual (32).
With the approach used in this work, one can gain insight into the model or verify that it can
reproduce known physiological relations.
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5 CONCLUSION

In the present work, global uncertainty quantification and sensitivity analysis were used
to study mathematical models of the cardiovascular system. Two lumped parameter models
and a coupled model were analyzed. We presented an efficient approach based on polynomial
chaos, which allowed us to assess the propagation of uncertainties from parameters to the model
predictions and identify the essential parameters using variance-based Sobol sensitivity analysis.
Besides, a possible reduction of the 5-compartment model was presented and evaluated in terms
of its response to LV hemodynamics.

Uncertainty quantification results consistently indicated, for all the models studied, that
ESV is the quantity of interest most impacted by the uncertainties in the input parameters. The
other QoIs presented levels of variation below the one considered for the inputs. Sensitivity
analysis of the lumped parameter models indicated that, in general, parameters related to the
elastance of the LV (EM, Em, Tr, and Ts) are the most influential for the QoIs. The SA results for
the 5-compartment model, indicating that lower body parameters have insignificant effects on
LV hemodynamics, explains why the reduced 3-compartment model had a similar response as
the complete model. Additionally, the SA for the coupled model revealed that the active stress
parameters are very influential, especially the maximum active stress value for the scalar QoIs,
while the twitch duration increase is very influential for left ventricular pressure and volume
time series.

In summary, we have shown the viability of using the polynomial chaos method and
Sobol indices for UQ and SA studies of lumped parameters and coupled LP/FE mechanics of
the left ventricle. The methods have shown to be efficient and reliable, considering that the SA
captured known physiological relations. Also, SA has shown to be an essential tool during the
reduction of the LP model, which in turn demonstrated to be as good as a more complex model
for describing relevant left ventricular function biomarkers.

5.1 LIMITATIONS AND FUTURE WORKS

This work has some limitations which are worth mentioning. We equally applied a 20%
variation to the baseline values of the model parameters. The assumed 20% variation could not
be equally relevant to all parameters. Also, one further investigation regarding the assumptions
adopted in this work would be to explore if the input parameters are indeed independent and
identically distributed, as assumed here for the application of the gPC.

Additionally, the values obtained for the systolic and diastolic pressure in the simulations
are a little below the physiological values. However, as stated before, the baseline values for
the parameters were taken from (32), and no procedure to calibrate these outputs of the model
was considered here. With these limitations in mind, one natural extension of the present work
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is to calibrate the model using experimental data. Ideally, that could be performed using an
inverse uncertainty quantification technique such as the Markov Chain Monte Carlo (MCMC)
method (81) or the Sequential Monte Carlo (SMC) to estimate the distribution of the input
parameters.

Also, regarding the coupled model, a complete study of the active stress model could be
done by considering more of its uncertain parameters and their interactions in the analysis. It
is worth noting that the active stress model used (26) is a rather simple model. Thus, it would
also be interesting to consider using a more realistic active stress model (70) and to analyze the
effects of uncertainties in its parameters when simulating the coupled model.
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