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RESUMO

A modelagem da mecânica cardíaca tem levado a descobertas interessantes, porém este

continua sendo um problema complexo e de alta demanda computacional, especialmente

em modelos eletromecânicos fortemente acoplados. O tecido cardíaco é geralmente

considerado como um material hiperelástico, quase incompressível e ortotrópico, fatores

que dificultam a solução numérica do modelo. Neste trabalho, melhorias foram realizadas

em um simulador da mecânica cardíaca para tratar tais problemas numéricos de forma

mais eficiente. Com este simulador mais eficiente foi possível tratar problemas que

demandam de um maior esfoço computacional, como as análises de sensibilidade e

quantificação de incertezas, onde várias simulações precisam ser realizadas. Este tipo

de análise tem sido tópico de interesse científico para avaliar a possibilidade de usar

simulações personalizadas por paciente em aplicações clínicas. Porém, estas simulações

ainda são problemas desafiadores, por causa da grande variabilidade biológica entre

pacientes e das incertezas em medidas experimentais e em representações geométricas

do coração. Devido a estas incertezas em entradas do modelo, é difícil definir um modelo

confiável que possa ser usado em aplicações clínicas. Estudos recentes têm se voltado

à investigação de como estas incertezas podem influenciar no resultado de simulações e,

consequentemente, descobrir como tornar os modelos mais confiáveis. Então, o presente

trabalho quantifica incertezas nas geometrias usadas nas simulações para investigar como

quantidades de interesse da mecânica cardíaca podem ser afetadas. A abordagem do

polinômio caos é utilizada para a quantificação de incertezas em geometrias do ventrículo

esquerdo submetidas a simulações da mecânica cardíaca. Inicialmente, as análises foram

realizadas usando geometrias simplificadas em simulações da fase de preenchimento

ventricular e, posteriormente, análises de quantificação de incertezas em geometrias mais

realísticas submetidas a simulações do ciclo cardíaco completo são realizadas.

Palavras-chave: Modelagem mecânica do coração. Quantificaçao de incertezas.

Formulação do Lagrangiano Aumentado. Precondicionadores.



ABSTRACT

Modeling the mechanics of the heart have led to considerable insights, but it still represents

a complex and demanding computational problem, especially in a strongly coupled

electromechanical setting. Passive cardiac tissue is commonly modeled as a hyperelastic,

near-incompressible and orthotropic material, which are properties very challenging for the

numerical solution of the model. In particular, near-incompressibility is known to cause

numerical issues. In this work, some improvements were done in a cardiac mechanics

simulator in order to be more efficient in the treatment of these numerical issues. With

the improved solver for cardiac mechanics, it was possible to run problems with higher

computational cost, such as sensitivity and uncertainty quantification analyses. This type

of analysis has been a topic of scientific interest to assess the possibility of translating

patient-specific simulations to clinical applications. However, personalized simulations

are still challenging problems, because of the wide biological variability among patients,

the uncertainties in experimental measurements and in the geometric representation of

the heart. Due to these uncertainties in model inputs, it is difficult to define a reliable

model that can be translated to clinical applications. Recent studies have focused on

quantifying uncertainties for cardiac models in order to investigate how they can influence

simulation results and, consequently, how we can make the models more reliable. Then,

the present work also quantifies how uncertainties in the geometry can impact in quantities

of interest from cardiac mechanics. The polynomial chaos approach was used to quantify

uncertainties in geometries of the left ventricle during cardiac mechanics simulations.

Initially, we performed some studies using simplified geometries during ventricular filling

phase simulations and, after, we quantify uncertainties in more realistic geometries during

the full cardiac cycle.

Keywords: Cardiac mechanics. Uncertainty quantification. Augmented lagrangian

formulation. Preconditioners.
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1 Introduction

In this chapter we present a brief introduction, with the motivation and some concepts

about cardiac physiology which are necessary to study the mechanical activity of the

heart. The thesis goals and text organization are presented next.

1.1 Motivation

Every year 17.9 million people die from cardiovascular diseases (CVD), corresponding

to approximately 31% of all deaths worldwide and three quarters of them occur in low-

income and middle-income countries (World Health Organization, 2019). The majority

of deaths associated with cardiovascular diseases are due to myocardium infarction and

stroke. United States spent $351.2 billion between 2014 and 2015 with CVDs, where

coronary heart disease is the leading cause of CVD death, followed by stroke, high blood

pressure, heart failure and diseases of the arteries (Benjamin et al., 2019).

Myocardium infarction occurs due to alterations in blood perfusion of the cardiac

tissue, which changes the oxygen and nutrients supply. Consequently, the cardiac tissue

is damaged and ventricular pumping is limited due to mechanical dysfunction. Heart

failure usually affects the heart’s left side, where the muscle is unable to pump enough

blood to the body. It stretches in order to contract more strongly and become enlarged,

while the cardiac mass increases because the cells get bigger.

Therefore, the need of improvements in the understanding and treatments of cardiac

diseases is very important, which is the motivation for several researches where the focus

is the heart function, as the present work.

The electrical and mechanical activities of the heart, both at the cellular level and

on organ scale, have received considerable efforts from the scientific community with

focus in understanding its complex, multiscale and multiphysics nature. However, there

are still fundamental mechanisms that are not fully understood, for instance related to

cardiac arrhythmias (Arevalo et al., 2016), heart failure (Tomaselli and Marbán, 1999),

and other significant clinical problems. Within this context, mathematical modeling and

computer simulations have been useful tools to assess physiological and pathophysiological
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conditions of the heart. More specifically, with cardiac mechanics it is possible to

reproduce the tissue deformation and, for instance, perform simulations to verify the heart

pumping in different scenarios. Naturally, the complex physiology of the heart translates

into complex computational models, which require the use of efficient and robust methods

for numerical simulations.

Due to the development of efficient and robust simulators which are also able to

provide a better representation of the heart function, the interest of leading this tool

to clinical applications has been increased. Consequently, it is necessary to consider

patient-specific models which can help in diagnostics and in the development of individual

treatments. However, the construction of personalized models is a challenge, because of

the uncertainty associated to the experiments used to measure patient properties and the

wide biologic variability found among patients. Then, it is necessary to assess how these

models behave when the model inputs have a large variability and how the uncertainties

in measurements propagates to the results. In this context, recent studies have focused

on uncertainty quantification of models describing the electrical and mechanical activity

of the heart (Osnes and Sundnes, 2012; Hurtado et al., 2017).

1.2 Basic physiological concepts

This chapter presents some physiological concepts mentioned throughout the text. A

comprehensive description can be found in the book of Klabunde (2011).

1.2.1 Heart function

The heart works as a double pump with four chambers, comprising two atria in the

superior region and two ventricles in the inferior part, as shown in Figure 1.1. Atria

and ventricles are separated by the atrioventricular septum, which contains the tricuspid

valve in the right side and the mitral valve in the left side. The right ventricle (RV) is

connected to the pulmonary artery through the pulmonary valve, while the left ventricle

(LV) is connected to the aorta via the aortic valve. The ventricular walls are externally

involved by a thin layer named epicardium and internally by the endocardium layer, with

the cardiac muscle between them. The left ventricular wall is about three times thicker

than the right ventricular wall, due to the left ventricle function of pumping blood to the
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body, while the atria walls are considerably thinner.

The right side of the heart pumps blood to the lungs, where it receives oxygen and

returns to the left side, which then pumps the oxygenated blood to the body. The right

atrium (RA) receives the blood from the superior (SVC) and inferior (IVC) vena cava,

which carries blood from the circulatory system. This venous returning passes by the right

atrium and fill the right ventricle, due to the atrial contraction. When the right ventricle

contracts, the blood is ejected to the pulmonary artery. Whereas, the left atrium (LA)

is filled with blood coming from the lungs, then the blood flows to the left ventricle

passively when mitral valve opens and, finally, the atrium contracts to complete the

ventricular filling. With the valves closed, the left ventricle contracts, consequently the

pressure increases and when a certain value is achieved, the aortic valve opens and the

blood is ejected to the arterial system.

Aortic valve

Mitral valve

Endocardium

Epicardium

Apex

Base

Pulmonary veins

Pulmonary arteryAorta

SVC

IVC

Pulmonary valve

Tricuspid valve

Septum

Figure 1.1: Heart structure (adapted from Commons (2019)). SVC: superior vena cava,
IVC: inferior vena cava, RA: right atrium, LA: left atrium, RV: right ventricle e LV: left
ventricle. The red arrow represents the blood pathway in both sides of the heart.

1.2.2 Electrical activity and contraction

The cardiac cells or myocytes are excitable cells, that have the ability of actively

responding to an electrical stimulus. They are connected in a certain manner that a

cell can pass an electrical signal to neighboring cells. This ability allows an electrical

stimulation in some part of the heart to propagate through the cardiac tissue.
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When cardiac cells are at rest, there is a potential difference through the cell

membrane, due to the difference of ions concentration in intracellular and extracellular

media. When these cells are electrically stimulated, the transmembrane potential changes

from a negative value to a positive one, a process which is named depolarization. This

process is very fast and it is followed by a slow process, the repolarization, which

recovers the potential difference to its resting value. The full cycle of depolarization

and repolarization, as shown in Figure 1.2, is called action potential (AP).
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Figure 1.2: Action potential curve.

The myocytes have generally one nucleus with a diameter of 25µm and a length

of 100µm, approximately. They have a striated structure due to the organization of

myofibrils arrangement, which have several myofilaments, as shown in Figure 1.3. The

segment between two Z lines represents the basic contractile unit of the myocyte, named

as sarcomere. The sarcomere length is an important feature in the generated force to

the contraction, which under normal conditions varies between 1.6 and 2.2 µm in human

hearts (Klabunde, 2011).
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Figure 1.3: Myocyte structure (adapted from Klabunde (2011)).

The sarcomere has thin and thick filaments that represent about 50% of the cell

volume. Thick filaments have a protein called myosin, while thin filaments have actin

and other proteins. Chemical interactions among the filaments of actin and myosin

during the excitation-contraction coupling make the sarcomere to shorten as the actin

and myosin slide past each other. This sliding happens due to the increasing in calcium

concentration during the action potential depolarization. With repolarization, calcium

concentration decreases and the filaments slide back to the initial position. When several

sarcomeres in series have shortened, the result is the myocyte contraction, where the

active force responsible by contraction is related to the dynamic of the proteins involved

in the sarcomere shortening.

The electrical activity of the heart is directly related to the organ function, which

is to pump blood to the whole body, carrying nutrients and oxygen to the cells. The

action potential triggers the cell contraction, causing the contraction of the whole organ,

which is fundamental for blood pumping. AP is generated spontaneously in the right

atrium, as shown in Figure 1.4, in a region named sinoatrial node, responsible by the

heart rhythm. All the cells must work in a synchronous manner during the contraction

in order to pump blood effectively, and to this end the action potential must propagate

through the cardiac tissue properly. After its generation in the sinoatrial node, the AP

propagates to the right and left atria before passing to the ventricles through left and

right bundle branches. Therefore, the atria contract first in order to fill the ventricles

before their contraction.
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Figure 1.4: Action potential propagation through the cardiac tissue (adapted
from Commons (2018)).

1.2.3 Cardiac tissue microstructure

Anatomical studies performed by Streeter et al. (1969) and LeGrice et al. (1995) showed

that cardiac tissue is a material strongly anisotropic, due to its cells organization. The

myocytes are organized in muscular fibers and they are aligned preferably with the

macroscopic fiber direction, as shown in Figure 1.5. The fiber direction varies smoothly

between endocardium and epicardium. Furthermore, these fibers are also organized in

discrete layers (sheets) coupled to collagen. They are coupled to each other and can slide

among them. The orientation of the sheets is usually normal to the ventricular surface,

except in the subendocardial and subepicardial regions, where the sheets are aligned with

the ventricular wall.
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sheet layer

�bers

Left ventricle

Figure 1.5: Myocyte organization in fibers and sheets.

This complex fiber organization strongly influences the electrical conduction and also

the mechanical response of the cardiac tissue. For instance, the stiffness and conductivity

are higher in the fiber direction. Therefore, mathematical models usually must consider

the microstructure of the tissue to reproduce the heart function.

1.2.4 Cardiac cycle

The cardiac cycle can be divided in two parts: systole and diastole. The systole comprises

the events associated to contraction and ventricular ejection, while diastole refers to the

rest of the cycle, including ventricular filling and relaxation. The sequence of these events

during the cardiac cycle causes changes in volume and pressure in the chambers such as

in the left ventricle, which can be measured and analyzed over time to assess the heart

function. Another valuable tool used to analyze ventricular function is the pressure-

volume loop, where the ventricular pressure is related to volume during the entire cardiac

cycle.

The pressure-volume loop for the left ventricle is presented in Figure 1.6, which

summarizes the four phases of the cycle: filling, isovolumetric contraction, ejection and

isovolumetric relaxation. The vertical segments represent the isovolumetric phases where

the LV cavity volume remains constant. The inferior curve shows the ventricular filling,

whereas the superior curve represents the ejection phase.

Some important clinical measurements can be directly extracted from this diagram,

such as the cavity volume in the end diastole (EDV) and systole (ESV), besides the stroke
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volume (SV) that is the difference between EDV and ESV and represents the blood volume

pumped. Another important quantity that can be extracted is the ejection fraction (EF),

which is the ratio between SV and EDV, representing the percentage of blood that is

pumped each time the ventricle contracts. The diagram shape changes significantly when

the patient has some pathology such as valve disease and heart failure.
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Figure 1.6: Pressure-volume diagram representing the phases during the cardiac cycle:
ventricular filling (1); isovolumetric contraction (2); ejection (3); isovolumetric relaxation
(4).

The ventricular filling phase is initiated by the mitral valve opening. At this point, the

atrium is totally filled and the blood flows rapidly to the ventricle, which causes increase

of pressure in the ventricle.

When the electrical signal arrives at the ventricle apex, the myocytes are stimulated

and intracellular calcium concentration increases, due to depolarization, which in turn

increases the active stress in the muscular fibers that starts the contraction. The increasing

of active stress makes the pressure to rise rapidly, which results in the closing of the valves.

With all valves closed, the cavity volume remains constant, therefore the contraction is

called isovolumetric. Although the cavity volume is constant, the ventricle has a significant

change in its geometry, due to the contraction. As the contraction continues without

ejection, the pressure remains increasing rapidly until the aortic valve opens, indicating

the end of the isovolumetric contraction phase.

In the moment that cavity pressure becomes higher than aortic pressure, the
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aortic valve opens and blood is ejected from the ventricle to the circulatory system,

characterizing the ejection phase. With repolarization, the active tension decreases and

ejection rate falls, then ventricular pressure also decreases and the muscle start relaxing,

however ejection continues due to the kinetic energy of the blood.

The ventricle continues to relax and when the total energy in the ventricle is less

than the energy in the outflow tracts, occurs a reversal in the energy gradient and the

aortic valve closes. This point is the beginning of the isovolumetric relaxation phase,

where the volume remains constant because the valves are closed. The cavity volume

remains constant during this phase until the ventricular pressure becomes lower than

atrial pressure, when the cycle starts again.

1.3 Computational simulations

The electrical and mechanical activity of the heart, both at the cellular level and

on organ scale, have received considerable efforts from the scientific community with

focus in understanding its complex, multiscale and multiphysics nature. However, there

are still fundamental mechanisms that are not completely understood. Within this

context, mathematical modeling and computer simulations have been useful tools to

assess physiological and pathophysiological conditions of the heart. Naturally, the complex

physiology of the heart translates into complex computational models, which require the

use of efficient and robust methods for numerical simulations.

Cardiac electrophysiology has been studied extensively in the last years (Sundnes et al.,

2007; Vigmond et al., 2008), and there are also numerous studies of cardiac mechanics and

coupled electro-mechanical activity. Some studies of cardiac mechanics have focused on

the impact of deformation on the electrical activity (Oliveira et al., 2013; Franzone et al.,

2016). Others have addressed specific pathological conditions, such as cardiac alternans

and arrhythmia (Hazim et al., 2015), heart failure (Mann and Bristow, 2005), and growth

and remodeling resulting from a heart infarction and therapeutical interventions (Lee

et al., 2016). An important effort to verify existing mechanics codes and create an unified

set of benchmark problems in cardiac mechanics was presented by Land et al. (2015).

In spite of the increasing number of studies in cardiac mechanics, there are relatively

few works focusing on the efficient solution of the model equations (Land et al., 2012;
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Sundnes et al., 2014; Hadjicharalambous et al., 2014). The numerical performance of the

simulations is an important feature for research, and in particular for clinical applications

of the models. Coupled electro-mechanics simulations typically requires high spatial and

temporal resolution, and the resulting computational problem is challenging to solve

within the time constraints posed by clinical applications.

1.4 Uncertainty quantification and sensitivity analysis

Computational models of cardiac electro-mechanics have become valuable tools in medical

research, and the development of patient specific simulations targeted for clinical is a

research topic of substantial interest in recent years (Lee et al., 2014; Trayanova and

Winslow, 2011; Oliveira et al., 2018). Fitting a model to an individual patient typically

includes constructing a patient-specific geometry from medical images, and fitting a

number of model parameters to match relevant measurements from the patient (Balaban

et al., 2018). Both the geometrical reconstruction and the parameter fitting may give

rise to significant uncertainty in the resulting model, and it is of interest to quantify the

impact of this uncertainty on the model predictions. Figure 1.7 shows an example for the

process of left ventricle segmentation, where different experts marked the endocardium

and epicardium contours in a resonance magnetic image. The differences among experts

are visible and it impacts directly in the reconstructed geometry of the organ.

Figure 1.7: Left ventricle geometry segmentation from magnetic resonance images.
Endocardium and epicardium contours marked by different expert raters. (Adapted
from Suinesiaputra et al. (2014))
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Previous studies of uncertainty in cardiac models include Hurtado et al. (2017),

which presented uncertainty quantification of a cardiac electro-mechanics model. An UQ

analysis in cardiac electrophysiology was also presented by Quaglino et al. (2018), which

studied the impact of fiber orientation and conductivities on activation dynamics. In the

context of cardiac mechanics, uncertainties in material properties of the cardiac tissue

were studied by Osnes and Sundnes (2012), and more recently by Rodríguez-Cantano

et al. (2019). UQ and sensitivity analysis (SA) have also been performed for other

parts of the cardiovascular system, including uncertainties in flow simulations within

arteriovenous fistulae (Huberts et al., 2014), uncertainty in arterial model constitutive

parameters (Holzapfel et al., 2000), and in geometry and wall thickness of abdominal

aortic aneurysms (Biehler and Wall, 2018).

1.5 Objectives

The present work has focus on the uncertainty quantification and sensitivity analysis

of cardiac mechanics simulations in order to understand the relation between the

uncertainties in model inputs and the simulations results, contributing to the translation

of computational simulations to clinical applications.

1.5.1 Main objective

This thesis has the goal of showing how uncertainties in geometrical models can impact

in model predictions.

1.5.2 Specific objectives

An initial step in the work was to make some modifications in the cardiac mechanics

solver proposed by Rocha (2014), in order to improve its performance by modifying

the variational formulation and the preconditioner used in the iterative solver for linear

systems. Its performance was assessed and the solver results were compared with respect

to a benchmark for cardiac mechanics simulations.

Then, a parameterized approach to generate left ventricle meshes was developed, as

proposed by Rodrigues et al. (2015). It is based on wall thickness measures, which were

used to introduce uncertainties in the geometrical models.
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Using the improved solver and the approach to generate LV geometries, analyses are

performed considering uncertainties in different inputs of cardiac mechanics models, as

shown in Figure 1.8.
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Figure 1.8: Outline of the uncertainty and sensitivity analysis performed in this thesis.

The simulations consider the left ventricle function in different moments, where the

first analyses are focused on the passive filling phase and after simulations considering all

phases of the cardiac cycle are performed. We hypothesize that uncertainty in geometrical

models are at least as important as uncertainty in material properties, and test this

hypothesis by performing UQ and sensitivity analysis for the left ventricle simulations.

Then, we identify quantities of interest that can be influenced significantly by this type

of uncertainty, such as stress and strain in the ventricle wall, cavity volumes and ejection

fraction.

1.6 Outline of the thesis

The text is organized in six chapters, where all concepts necessary to understand the work

are presented, followed by the results for the chosen experiments.

The second chapter presents the equations to model the cardiac mechanics, including

passive and active deformation, geometrical models, besides boundary conditions in order

to consider the circulatory system. Then, the numerical solution of the mechanical

problem is presented, describing the variational formulation adopted which includes the

mixed three field and Augmented Lagrangian formulations, besides the preconditioning
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strategy used to improve the simulations performance. Finally, this chapter presents the

techniques used to perform uncertainty quantification and sensitivity analyses.

Next, results for different experiments are presented, where in chapter 3 the cardiac

mechanics solver is compared with respect to a benchmark and then experiments are

performed to assess the performance of the Augmented Lagrangian approach combined

to a multigrid preconditioner. Whereas in chapter 4, experiments are performed in order to

quantify how uncertainties in model inputs of cardiac mechanics can impact in predictions

of left ventricle passive filling simulations. Finally, chapter 5 presents results for the same

type of analysis, but considering simulations of the left ventricle function during the entire

cardiac cycle.

In the end, conclusions are presented and possibilities of future works are listed.
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– Joventino Olivera Campos, Joakim Sundnes, Rodrigo Weber dos Santos, and
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Sciences. (submitted)

• Conference papers

– J. O. Campos, R. Weber dos Santos, J. Sundnes, and B. M. Rocha. Augmented

lagrangian approach for quasi-incompressible cardiac mechanics. Mecánica



34

Computacional, XXXIV:1101–1114, 2016.
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4(3):153–1–153–14, 2019. ISSN 2525-4782.

– Gustavo Montes Novaes, Joventino Oliveira Campos, Enrique Alvarez-Lacalle,

Sergio Alonso Muñoz, Bernardo Martins Rocha, and Rodrigo Weber dos

Santos. Combining polynomial chaos expansions and genetic algorithm for

the coupling of electrophysiological models. In Computational Science – ICCS

2019, pages 116–129, Cham, 2019. Springer International Publishing. ISBN

978-3-030-22744-9.

– Joventino Oliveira Campos, Rodrigo Weber dos Santos, Joakim Sundnes, and

Bernardo Martins Rocha. Impact on cardiac cycle due to uncertainties in

left ventricle simulations. In Proceedings of the XXII Encontro Nacional de

Modelagem Computacional e X Encontro de Ciência e Tecnologia de Materiais,

pages 1–11, Juiz de Fora, 2019
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2 Models and methods

Some continuum mechanics concepts indispensable to present the equations used to

reproduce the deformation of the cardiac tissue are presented here, where the concepts of

strain and stress are detailed as well as the equilibrium and constitutive equations. More

details in continuum mechanics can be found in the specialized literature (Holzapfel,

2000; Javier Bonet, 2008). The other models and their coupling used in the left ventricle

simulations are also presented, such as the geometrical, active stress and circulatory

models. Then, numerical methods used to solve the mechanical model are presented,

describing the variational formulation used and the preconditioners applied to the iterative

linear solver. Finally, the techniques used to perform uncertainty quantification and

sensitivity analysis are presented.

2.1 Continuum mechanics concepts

The motion of a continuum body can be described by

x = �(X, t), (2.1)

where x are the body particles coordinates at time t, X are the particles coordinates

when the body is in the undeformed configuration ⌦0, and � is a function that describes

the motion. The displacement field that assigns a new position for all particles in the

deformed configuration ⌦ is:

U(X, t) = x � X, (2.2)

A material element dX in the undeformed configuration is transformed in dx at time

t through the motion �. Then, the relation between dX and dx is given by

dx = �(X + dX, t) � �(X, t) = (r�)dX. (2.3)

Defining F = r�, results in

dx = FdX, (2.4)
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where F is known as the deformation gradient tensor, which represents the gradient of

�(X, t) with respect to the undeformed configuration. The determinant of the deformation

gradient

J = det(F) (2.5)

measures the volume change caused due to deformation.

The relation between ds and dS, the lengths of dx and dX, respectively, is given by

ds2 = dx · dx = FdX · FdX = dX · (FTF)dX, (2.6)

where C = FTF is the right Cauchy-Green tensor.

If we instead consider the change in the squared length of an element, we obtain

dx2 � dX2 = dX · CdX � dX2

= dX · (C � I)dX

= dX · 2EdX, (2.7)

where E = 1
2(C � I) is the Green-Lagrange strain tensor.

The Cauchy stress tensor relates the unit vector n to the current surface traction t

t = �n, (2.8)

where the components �ij define the stress state in a point inside the material in the

deformed configuration.

The first Piola-Kirchhoff stress tensor

P = J�F�T (2.9)

is asymmetric and describes the stress in the deformed configuration with respect to the

unit area of undeformed configuration. The second Piola-Kirchhoff stress tensor

S = JF�1�F�T = F�1P, (2.10)

is symmetric and describes the stress in the undeformed configuration with respect to the
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unit area also in undeformed configuration.

2.2 Mechanical problem

After presenting the continuum mechanics concepts, it is possible to describe the

mechanical problem of the present study.

From the linear conservation of momentum, we have that the total force acting in some

part of a material is equal to the rate of the linear momentum of this part. Particularly,

for static cases, the linear conservation of momentum provides the Cauchy equilibrium

equation.

Then the mechanical problem is focused on finding the displacement field u,

considering that ⌦ is the volume of a body in the deformed configuration, @⌦ is its

boundary, b represents the body forces per volume unit and t are the surface forces per

unit area acting on @⌦,

8
>>><

>>>:

div� + b = 0, in ⌦,

u = u, on @⌦D,

�n = t, on @⌦N .

(2.11)

Here u are the prescribed displacements on the boundary @⌦D and t is the traction applied

on the boundary @⌦N , which has normal vector n. In order to complete the system of

equations, it is need to define the relation between stress and strain through a constitutive

model.

2.3 Constitutive equations

The use of constitutive equations is necessary to relate stress and strain. In the continuum

mechanics, these equations are models created to describe the physical behavior of

materials. These constitutive models represent the stress-strain relationship and are

postulated in terms of strain energy functions.

The strain energy function  describes the stored energy in the material due to

deformation and it is defined per volume unit in the undeformed configuration. To obtain

the stress-strain relationship we differentiate the strain energy function with respect to
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the Green-Lagrange strain tensor

S =
@ 

@E
. (2.12)

A typical example is the St. Venant-Kirchhoff strain energy function which is based

on the Green-Lagrange strain tensor and is given by

 =
�l

2
[tr(E)]2 + µltr(E2), (2.13)

which describes a simple hyperelastic material, where µl and �l are the Lamé coefficients,

while tr(·) represents the trace of a tensor. The strain energy function for the constitutive

model that represents the passive behavior of the cardiac tissue is presented below.

2.3.1 Cardiac tissue constitutive model

The cardiac cells are organized in muscle fibers, which are grouped in layers (sheets) of

parallel fibers surrounded by collagen. This layered organization of the tissue, presented

in Figure 2.1, is characterized by three orthogonal directions: fiber direction f , sheet

direction and orthogonal to the fibers s and orthogonal to the other two directions n.

s

f

n

Figure 2.1: Layered organization of the cardiac tissue.

There are different models to describe the cardiac tissue behavior, which can be

transversely isotropic (Costa et al., 1996; Humphrey and Yin, 1987; Guccione et al.,

1991) or orthotropic (Costa et al., 2001; Holzapfel and Ogden, 2009).

The constitutive model used in the present work was the model proposed by Guccione

et al. (1991), which is widely used in the cardiac research community (Wall et al., 2006;

Gurev et al., 2010; Wang et al., 2013; Land et al., 2015). The Guccione et al. (1991)

strain energy function is defined as

 =
C

2
(eQ � 1), (2.14)
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with

Q = bfE
2
11 + bt(E

2
22 + E2

33 + E2
23 + E2

32) + bfs(E
2
12 + E2

21 + E2
13 + E2

31), (2.15)

where C is a stress scale, while bf , bt and bfs are related to the stiffness in each direction;

Eij denote the Green-Lagrange strain tensor components in the local coordinate system

presented in Figure 2.1.

2.3.2 Incompressibility

Incompressible materials are able to be subjected to high loading without presenting

volume changes. Many biological tissues, including the cardiac tissue, has an

incompressible or nearly incompressible behavior (Humphrey, 2013). In the context

of continuum mechanics, incompressibility is mathematically characterized through the

constraint

J = det(F) = 1, (2.16)

where F is the deformation gradient tensor. The strain energy function  can be

described (Javier Bonet, 2008) considering the hydrostatic pressure p as

 =  m � p(J � 1), (2.17)

where m represents the strain energy function for a specific material, as the one presented

in (2.14)-(2.15); and p works as a Lagrange multiplier, which can be computed from the

equilibrium equation and boundary conditions.

2.3.3 Nearly incompressibility

The mechanical problem solution through the finite element method has a high

computational cost when the material is considered incompressible. Therefore, an

approach nearly incompressible is more attractive in the numerical point of view, where a

material incompressible is treated as compressible allowing only small volume changes. To

this end, the strain energy function is divided in an volume-preserved component, named

isochoric part, and another component related to the volume change, named volumetric

part.
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To introduce this approach, it is necessary to introduce a multiplicative decomposition

of the deformation gradient tensor:

F = (J1/3I)F, (2.18)

where F is associated to the isochoric deformation while J1/3I is related to the volumetric

deformation. Thus, using F, we can define the isochoric version of the right Cauchy-Green

strain tensor:

C = FTF = J�2/3C. (2.19)

And the isochoric part of the Green-Lagrange strain tensor can be written as

E =
1

2
(C � I). (2.20)

Then we have the following decomposition for the strain energy function

 (E) =  iso(E) + vol(J), (2.21)

where its isochoric part is the strain energy function of the material, using the isochoric

version of the strain tensor  iso =  m(E). And the volumetric part takes into account

the volume change constraint.

2.4 Geometrical models

Several cardiac mechanics studies are focused on left ventricle simulations. It is responsible

to pump oxygenated blood from lungs to body and its function can be altered in several

cardiac pathologies, such as myocardial infarction, cardiomyopathy and valve diseases.

Furthermore, LV simulations can be performed faster than whole organ simulations and

several important clinical measures can be extracted from them.

2.4.1 Simplified geometry of the left ventricle

The cardiac mechanics benchmark proposed by Land et al. (2015) performed two
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experiments considering simplified geometries of the left ventricle, that can be defined

using a truncate ellipsoid parametrization, which is shown in Figure 2.2. The endocardium

rs

rl

u

v

base

apex

epi endo

Figure 2.2: Simplified geometry of the left ventricle generated from a family of truncated
ellipsoids, where rs is the short axis, rl the long axis u and v represent rotation angles used
in the parametrization. The epicardium surface is denoted by epi and the endocardium
by endo.

and epicardium surfaces are described by the following parametrization

0

BBB@

x

y

z

1

CCCA
=

0

BBB@

rs sin u cos v

rs sin u sin v

rl cos u

1

CCCA
, (2.22)

where rs is the short axis diameter, rl the long axis length, u and v represent rotation

angles in the circumferential and apex-base directions, respectively. In the benchmark

problems, values were defined to construct a LV geometry with base plane in z = 5 mm

and wall thickness with 3 mm throughout the ventricle. Then, for endocardial surface

the parameter values are rs = 7 mm, rl = 17 mm, u 2 [�⇡, � arccos 5
17 ] and v 2 [�⇡, ⇡].

While the epicardial surface has the values rs = 10 mm, rl = 20 mm, u 2 [�⇡, � arccos 5
20 ]

and v 2 [�⇡, ⇡].

The fiber orientation assigned was based on the direction of the derivative computed

from the parametrization (2.22), as described in Land et al. (2015). The fiber angles

varies from �90� at the epicardium surface to +90� at the endocardium, resulting in the

orientation shown in Figure 2.3.
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Figure 2.3: Fiber orientation for the simplified LV geometry, varying in the transmural
direction from �90� at the epicardium surface to +90� at the endocardium.

2.4.2 Patient specific geometry of the left ventricle

The use of geometries such as that presented before makes the treatment simpler, but it

is a severe simplification of the real geometry. Ventricular wall thickness, for instance, is

considered constant throughout the domain which is not true in real ventricular shapes.

Personalized LV geometries were created using a mesh generator, initially presented

by Rodrigues et al. (2015) and that has been recently improved, which is based on

wall thickness measurements in LV segments defined by the American Heart Association

(AHA) (Cerqueira et al., 2002), as shown in Figure 2.4(a).

The 17 AHA diagram is widely used for visualization of quantitative information,

which divides the left ventricle in 17 segments. Different information of the ventricle can

be represented in these segments, where the segments 1-6 represents the basal region, while

the segments 7-12 are middle sections of the ventricle and the segments 13-16 represents

sections close to the apex, aside from the segment 17 for the apex.

These wall thickness measurements are usually extracted via software by a magnetic

resonance imaging specialist. From these information 17 blocks are created that represent

the geometry, starting from the base blocks until the apex. Blocks are created initially

using the respective segment value and then interpolations are done in the longitudinal and

circumferential directions, considering neighboring blocks, in order to obtain a continuous

and smooth geometry as that presented in Figure 2.4(b).

The inputs for the mesh generator are the 17 wall thickness values together with

the short and long axis lengths of the LV. From these potentially patient specific input
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Figure 2.4: (a) 17 AHA segments diagram used in the mesh generator. (b) Example of
LV geometry created with the presented mesh generator. Higher values of wall thickness
in the basal-lateral segments were chosen, while the short axis was 4.0 cm and the long
axis was 6.0 cm.

parameters, an LV geometry is constructed, as illustrated in Figure 2.4(b).

The LV geometry is also modeled using the ellipsoid parametrization (2.22) with some

modifications, where the basal plane is z = 0 and the component z of all points are

positive: 0

BBB@

x

y

z

1

CCCA
=

0

BBB@

a(r) cos ✓ cos '

a(r) cos ✓ sin '

c(r) sin ✓

1

CCCA
. (2.23)

The values of a and c are computed using a(r) = a1 + r(a2 �a1) and c(r) = c1 + r(c2 � c1)

with 0  r  1. And ai and ci (i = 1, 2) are coefficients that determine the short and

long axis of the ellipsoid, respectively, depending on the block. Each block is limited

circumferentially through ✓1  ✓  ✓2 and longitudinally by '1  '  '2, defining a slice

of the ventricle that corresponds to an AHA segment.

Figure 2.5 shows the steps of the procedure used for the the generation of the LV

geometry. To describe the algorithm, consider the following two parameters ncirc and nlong

which represent the number of points to be created in the circular and in the longitudinal

directions, respectively. The algorithm proceeds as follows:

1. Initially, the variables representing the angles ✓ ranging 0 to 2⇡ and ' ranging from

0 to ⇡

2 are discretized in ncirc and nlong points along the circular and longitudinal

directions, respectively.

2. For each pair of angles (✓i, 'j) the corresponding AHA segment of that point is

determined considering the angles. Then, given the segment number, the table

of wall thickness measurements is accessed and the appropriate a1, a2, c1 and c2
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parameters are computed to create the points which will result in the desired wall

thickness property (see Fig. 2.5 (a)).

3. The previous step does not consider the apex, where specific points have to be

created for the endocardium and epicardium surfaces.

4. A spline is created for each longitudinal line, from the point at the apex to the point

at the base. These splines are added to a list of splines.

5. A smooth surface is created from the list of splines to represent the epicardium

surface (see Fig. 2.5 (b)).

6. The steps 1-5 are repeated to create the endocardium surface.

7. Splines are created from the points located at the base (for both endocardium and

epicardium). Then a surface is created to represent the basal region (see Fig. 2.5

(c)).

8. Finally, a closed volume is defined with the basal, epicardial and endocardial surfaces

which defines the computational geometry of a personalized left ventricle.

9. A finite element mesh is created from the geometry using appropriate algorithms

available at the backend software (see Fig. 2.5 (d)).

Figure 2.5: Parameterized LV finite element mesh generation.

In this work we considered the computational geometry facilities of Gmsh (Geuzaine

and Remacle, 2009) to generate the LV geometries and then its algorithms for the finite

element mesh generation.

The Laplace-Dirichlet Rule-Based algorithm proposed in Bayer et al. (2012) was

applied to assign fiber orientation in the left ventricular mesh. In this approach the

longitudinal fiber direction rotates clockwise by an angle from endocardium (↵endo) to
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epicardium (↵epi) with respect to the circumferential direction. The transverse fiber

direction is perpendicular to the longitudinal direction and varies transmurally from

endocardium (�endo) to epicardium (�epi), and the sheet normal is orthonormal to the

longitudinal and transverse directions.

Figure 2.6 presents an example of fiber orientation assigned to the personalized LV

geometry where the values for the helix angles considered were: ↵endo = 60�, ↵epi = �60�,

�endo = �65� and �epi = 25�.

Figure 2.6: Fiber orientation for the personalized LV geometry, with helix angles ↵endo =
60�, ↵epi = �60�, �endo = �65� and �epi = 25�.

2.5 Active stress

The cardiac contraction is developed due to the active force generated in the cellular level.

To consider the tissue contraction, this active force must be provided to the mechanical

problem. In this work, the active stress approach (Ambrosi and Pezzuto, 2012) was

adopted to perform this coupling, which additively splits the stress tensor in two parts:

passive and active. The passive part is intrinsically related to the constitutive model for

the material, while the active part take into account the contribution of the active force

generated by cardiac myocytes.

The second Piola-Kirchhoff tensor can be defined as a sum of the passive stress and

the active stress:

S = Sp + Sa, (2.24)

where the passive stress Sp is derived from the Guccione strain energy function presented

in equation (2.14), and the active stress Sa describes the kinetics for the cellular

contraction. The active stress is considered anisotropic and it is applied in fiber direction
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of the cardiac tissue, that is

Sa = TrefTaf0 ⌦ f0, (2.25)

where Ta is the normalized active stress generated by a cellular electro-mechanical

model (Rice et al., 2008), Tref is reference value for stress and f0 is the unit vector

that defines the fiber direction in the undeformed configuration.

2.5.1 Kerckhoffs et al. (2003) active stress model

The active stress was described through an arrangement of a contractile element in series

with an elastic element, as presented in Kerckhoffs et al. (2003). It is written in terms

of the elapsed time since depolarization (ta), the sarcomere length (ls) and a contractile

element length (lc):

Ta =
ls
ls0

fiso(lc)ftwitch(ta, ls)Ea(ls � lc), (2.26)

where ls0 is the reference length of the sarcomere and Ea is the elastic element stiffness.

The function fiso describes the isometric stress in terms of lc:

fiso(lc) =

8
<

:
T0tanh2[al(lc � lc0)] lc � lc0

0 lc < lc0
(2.27)

where T0 is the reference active stress, al controls the steepness of the stress-length curve,

and lc0 is the contractile element length when active stress is zero.

The function ftwitch describes the myofiber stress dependence on ta and ls:

ftwitch(ta, ls) =

8
>>><

>>>:

0 ta < 0

tanh2( ta
⌧r

)tanh2( tmax�ta
⌧d

) 0  ta  tmax

0 ta > tmax

(2.28)

where tmax = b(ls � ld) is the twitch duration, with b describing the increase in twitch

duration, ld is the sarcomere length when twitch duration is zero, while ⌧r and ⌧d are the

twitch rise and decay time constants, respectively.

Finally, the contractile element length varies with time following a first order

differential equation:
dlc
dt

= v0(Ea(ls � lc) � 1), (2.29)
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Figure 2.7: Active stress curve used to represent the ventricle contraction.

where v0 is the unloaded shortening velocity. Table 2.1 shows the parameters values used

to generate a typical active stress as the one in Figure 2.7.

Table 2.1: Parameter values for the active stress model.

al lc0 T0 Ea v0 ls0 ⌧r ⌧d b ld

µm�1 µm kPa µm�1 µms�1 µm s s sµm�1 µm

2.0 1.5 180 20 7.5 1.9 0.075 0.075 0.21 -0.4

2.6 Circulatory model

The endocardium surface is subjected to the blood pressure which flows in and out of

the ventricular cavity. To represent the ventricle function during the cardiac cycle, a

time varying pressure boundary condition is applied to the endocardium surface. This

pressure is described by a lumped parameter model, which represents the circulatory

system through an electric circuit scheme. The electrical charge represents the blood

volume, potential difference correspond to pressure and currents to flow rates. A blood

vessel or group of vessels can be represented by a combination of resistors, capacitors and

inductors. The blood vessel resistance is modeled by resistors, which depends on the blood

viscosity and the vessel diameter. Capacitors are used to model compliance, describing the

ability of blood accumulation and release due to elastic deformation. The blood inertia
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is represented by coils and valves can be modeled using diodes. For instance, Figure 2.8

presents the circuit for the circulatory model used in this work, which was presented

by Shavik et al. (2017).

Rven Rao

Rper

qven qao

qper

mitral
valve

aortic
valve

Cven

Rmv

qmv
Pven Part

Plv

Pla

Cart

Vven Vart

Vla

Vlv

Figure 2.8: Circuit scheme for the lumped parameter model adopted in this work, in order
to reproduce the time varying pressure in the left ventricle cavity.

The flow through a compartment (e.g. venous system and mitral valve) is proportional

to the following pressure difference

q =
Pin � Pout

R
, (2.30)

where R is the resistance encountered by the blood. The pressure in a vessel is related to

the volume difference via the compliance

Pi =
Vi � Vi,0

Ci

, (2.31)

where Vi is the volume in the compartment, Vi,0 the resting volume and Ci the vessel

compliance constant.

An ideal valve stops the flow in one direction and allows the blood to flow in the other

direction, opposing a resistance R to the flow, once the pressure difference is higher than

a certain critical pressure P ⇤. Thus, the flow rate in the valves can be modeled as follows:

qvalve =

8
<

:
0 if P < P ⇤

P/R if P � P ⇤
. (2.32)



49

The Kirchhoff’s law for currents and potential difference can also be applied here,

where the sum of flow rates entering any junction is equal to the sum of flow rates leaving

that junction. The sum of all pressure difference around a loop is equal to zero. Using

theses assumptions, the circuit can described by a system of ordinary differential equations

of the following type
dVi

dt
= qin � qout. (2.33)

The lumped model used in the present work was described in Shavik et al. (2017) and

its circuit scheme is presented in Figure 2.8. The model considers the blood volumes in left

atrium (VLA), left ventricle (VLV), venous (Vven) and arterial (Vart) systems. Besides, the

mitral and aortic valves are considered as diodes, while the peripheral system is modeled

using a resistor.

The arterial and venous pressure are obtained using the compliance relation (2.31):

Part =
Vart � Vart,0

Cart

, (2.34)

Pven =
Vven � Vven,0

Cven

, (2.35)

while the pressure in the left atrium is given by a time varying elastance function and

the pressure in the left ventricle is estimated through the coupling with the FEM solver

described by van Nierop (2007).

The flow rate through the aortic and mitral valves are found using equation (2.32):

qao =

8
<

:
0 if PLV < Part

PLV �Part

Rao
if PLV � Part

, (2.36)

qmv =

8
<

:
0 if PLA < PLV

PLA�PLV
Rmv

if PLA � PLV

. (2.37)

And the flow rates for peripheral and venous systems were described by the relation (2.30):

qper =
Part � Pven

Rper

, (2.38)

qven =
Pven � PLA

Rven

. (2.39)
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Finally, using equation (2.33), the circuit can be described by

dVLA

dt
= qven � qmv, (2.40)

dVLV

dt
= qmv � qao, (2.41)

dVart

dt
= qao � qper, (2.42)

dVven

dt
= qper � qven. (2.43)

The left atrium contraction was described by a time varying elastance, which relates

the atrial pressure PLA to its volume VLA using the equation (Shavik et al., 2017)

PLA(t) = e(t)Pes,LA(VLA) + (1 � e(t))Ped,LA(VLA), (2.44)

with

Pes,LA(VLA) = Ees,LA(VLA � V0,LA), (2.45)

Ped,LA(VLA) = ALA(eBLA(VLA�V0,LA) � 1), (2.46)

where Ees,LA is the end-systolic elastance, V0,LA is the volume axis intercept of the end-

systolic pressure volume relation (ESPVR), while ALA and BLA are parameters of the

end-diastolic pressure volume relation (EDPVR). The driving function e(t) is written in

terms of the point of maximal chamber elastance Tmax, the time constant of relaxation ⌧

and the time t during the cardiac cycle:

e(t) =

8
<

:

1
2(sin[( ⇡

Tmax
)t � ⇡

2 ] + 1) if 0 < t  3
2Tmax

1
2e

�(t� 3
2Tmax)/⌧ if t > 3

2Tmax

. (2.47)

Table 2.2 presents the parameters unit and value used for the circulatory model.
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Table 2.2: Parameters for the circulatory model.

Symbol Model input Unit Value

Rao Aortic valve resistance Pa · ms · ml�1 3850

Rper Peripheral resistance Pa · ms · ml�1 140000

Rven Venous resistance Pa · ms · ml�1 1400

Rmv Mitral valve resistance Pa · ms · ml�1 1750

Cart Aortic compliance ml · Pa�1 0.014

Cven Venous compliance ml · Pa�1 0.3

Vart,0 Resting volume for artery ml 580

Vven,0 Resting volume for vein ml 3300

Ees,LA End-systolic elastance Pa · ml�1 60

V0,LA Volume axis intercept ml 10

ALA Scaling factor for EDPVR Pa 58.67

BLA Exponent for EDPVR ml�1 0.049

Tmax Time to end-systole ms 200

⌧ Time constant of relaxation ms 25

2.6.1 LV pressure estimation

The solution of the lumped parameter model provides the blood volume in the ventricular

cavity, but this volume can not be prescribed as a boundary condition in the cardiac

mechanics solver. Therefore, given a volume VLV obtained from the lumped parameter

model, a pressure value is estimated in order to be applied in the endocardium surface as

an external loading and obtain a ventricular volume close to VLV via cardiac mechanics

solver. The approach presented by van Nierop (2007) was used in the present work to

estimate the pressure, which is based on a method that minimizes the difference between

the cavity volumes found through the FEM simulation of the cardiac mechanics and the

lumped parameter model.

Algorithm 1 presents the approach performed to obtain the pressure

boundary condition for each time step that results in a ventricular

cavity volume close to the value given by the lumped parameter model.
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Algorithm 1: Algorithm to couple circulatory model to cardiac mechanics.

1 foreach time step t do

2 i = 0

3 Compute the first estimation for pressure P i

LV,t
, using Adams-Bashforth scheme

4 do

5 Solve cardiac mechanics model and determine V i

LV,t,FEM
, using P i

LV,t

6 Solve lumped parameter model and determine V i

LV,t,LP

7 Compute new pressure estimation:

8 C =
P

i
LV,n+1�P

i�1
LV,n+1

V i
LV,n+1,FEM�V

i�1
LV,n+1,FEM

9 rest = V i

LV,n+1,FEM
� V i

LV,n+1,LP

10 P i+1
LV,n+1 = P i

LV,n+1 � C · rest

11 � =
���V

i
LV,t,FEM�V

i
LV,t,LP |

V i
LV,t,LP

���

12 i = i + 1

13 while � > Vtol

14 end foreach

First, a value for pressure is estimated using a forth order Adams-Bashforth (Holmes,

2011) scheme:

Pn+1 = Pn +
�t

24
(55fn � 59fn�1 + 37fn�2 � 9fn�3), (2.48)

with fn = Pn�Pn�1

�t
is the temporal derivative of the pressure for time step n (Kerckhoffs

et al., 2007). In the first steps it is not possible to use this scheme, then the pressure was

estimated using

Pn+1 = Pn +
�P

�V
· q�t, (2.49)

with P0 = 0, �P = 1.6 kPa, �V = 50 ml, q = 0.25 ml/ms.

The estimated pressure is used in the FEM solver as boundary condition for the

cardiac mechanics problem P i

LV,t
, resulting in ventricular cavity volume V i

LV,t,FEM
. Then,

a volume V i

LV,t,LP
is computed solving the lumped parameter model using the mid-point
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method. The following equations shows this method applied to (2.43):

qi

per,n+ 1
2

=
1

2Rper

(P i�1
art,n+1 + Part,n � P i�1

ven,n+1 � Pven,n),

qi

ven,n+ 1
2

=
1

2Rven

(P i�1
ven,n+1 + Pven,n � P i�1

LA,n+1 � PLA,n),

V i

ven,n+1 = Vven,n +�t · (qi

per,n+ 1
2

� qi

ven,n+ 1
2
). (2.50)

The volumes V i

LV,t,LP
and V i

LV,t,FEM
are then used to compute a new estimation for

pressure, where the last estimation is corrected using the compliance C and the residual

rest, which should become smaller every new estimation. The algorithm stops when the

relative error between the volumes is lower than a specified tolerance Vtol.

2.7 Numerical solution of the mechanical problem

The heart tissue is considered anisotropic, nonlinear and nearly incompressible, which

are properties that increase the computational cost of the simulations. In spite of the

increasing number of studies in cardiac mechanics, there are relatively few works focusing

on the efficient solution of the model equations. Land et al. (2012) proposed a modified

Newton method and a strain prediction technique to reduce the number of Newton

iterations needed, while Sundnes et al. (2014) proposed an efficient linearization of coupled

passive and active mechanics problems, and Hadjicharalambous et al. (2014) presented a

weakly penalized formulation for the problem in order to provide an efficient treatment

of incompressibility.

The numerical performance of the simulations is an important feature for research, and

in particular for clinical applications of the models. Coupled electro-mechanics simulations

typically requires high spatial and temporal resolution, and the resulting computational

problem is challenging to solve within the time constraints posed by clinical applications.

Within this context iterative solvers become mandatory due to the large problem size, and

the use of preconditioners is essential for improving their convergence. Algebraic Multigrid

(AMG) methods are increasingly popular in computational science, due to their robustness

when solving large unstructured sparse linear systems of equations. They have been used

in a wide range of applications, ranging from computer graphics and animations (Tamstorf

et al., 2015) to fluid mechanics (Stüben, 2001) and elasticity (Baker et al., 2009). In
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the context of cardiac electrophysiology simulations these methods have shown a good

performance (dos Santos et al., 2004; Plank et al., 2007), whereas for elasticity problems

variants of the classical AMG preconditioner have been studied in (Baker et al., 2016) in

terms of parallel scalability.

The numerical treatment of incompressible or nearly incompressible materials within

the finite element method (FEM) framework can cause difficulties such as the well known

volumetric locking of the solution. The simplest approach for enforcing incompressibility

is the use of a penalty formulation with a large value for the bulk modulus, in order

to prevent volumetric changes. However, it is well know that this approach leads to a

highly ill-conditioned problem, which markedly deteriorates the performance of iterative

solvers. Many numerical approaches within the FEM literature have been proposed to

prevent these problems, which include mixed formulations (Brezzi and Fortin, 1991) and

the usage of underintegrated elements and the B-bar/F-bar methods (Elguedj et al.,

2008). An alternative approach for nearly incompressible materials is the Augmented

Lagrangian (ALG) formulation (Simo and Taylor, 1991; Weiss et al., 1996), which is

presented here for cardiac mechanics. The ALG formulation for nearly incompressible

materials allows to control the volumetric changes to a desired tolerance, and also to

reduce the ill-conditioning of the resulting linear systems.

2.7.1 Variational formulation

The finite element method was used to obtain the cardiac tissue deformation, described

by equation (2.11). Therefore, it is necessary to find the variational formulation for

this problem. A variational formulation based on the existence of an energy functional

for the stresses and loads is presented. This type of formulation is useful for the

construction of robust algorithms, which are based in optimization techniques (Holzapfel,

2000; Javier Bonet, 2008).

The total potential energy of the system ⇧ is given by the sum of the internal ⇧int
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and external ⇧ext energies, that is

⇧(u) = ⇧int(u) + ⇧ext(u), (2.51)

⇧int(u) =

Z

⌦

 (F(u))dV, (2.52)

⇧ext(u) = �
Z

⌦

b · udV �
Z

@⌦

t · udS, (2.53)

where  is the strain energy function, u is the displacement field, b are the body forces

and t is the traction on the surface.

The equilibrium state (deformed configuration) is obtained by finding the stationary

position of the total potential energy, which occurs when the directional derivative with

respect to displacements u is zero in an arbitrary direction �u. Then, the stationary

position of ⇧ is found by equating its first variation �⇧ to zero

�⇧(u, �u) = D�u⇧(u) =
d

d✏
⇧(u + ✏�u)

����
✏=0

= 0, (2.54)

where D�u represents the directional derivative with respect to displacements. The

stationary position of this functional results in a variational formulation for the

problem (2.11), which is equivalent to the principle of the virtual work (Javier Bonet,

2008) and it can be used by the finite element method to find the displacement field.

In order to consider incompressible materials, it is necessary to add a constraint in this

formulation through a Lagrange multiplier (Holzapfel, 2000). Thus, the resulting problem

has two unknowns and its solution becomes more difficult. However, there are numerical

alternatives to treat the material incompressibility, such as the Penalty method, where

the problem remains with only the displacement field as unknown.

2.7.2 Penalty method

The penalty method considers an incompressible material as nearly incompressible,

allowing small volume changes (Javier Bonet, 2008; Holzapfel, 2000).

As presented in section 2.3.3, the strain energy function can be decomposed as (C) =

 iso(C) + vol(J), where the volumetric component must be defined in such a manner

that if J = 1 and C = I, then  iso =  vol = 0, ensuring an undeformed configuration

without stress. Thus,  vol(J) is characterized by the penalty parameter  and a penalty
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function U(J):

 vol(J) = U(J), (2.55)

where the penalty function U(J) = 1
2(J � 1)2 was adopted in this work. The penalty

method treat the material as weakly compressible with a high value of . The material

would be incompressible when the value of  goes to infinity, but it is not possible

numerically, then this approach always allows the material to have a small volume

change (Holzapfel, 2000).

In a similar manner, we can split the second Piola-Kirchhoff tensor into an isochoric

and volumetric parts:

S = Siso + Svol, (2.56)

resulting in

S = 2
@ iso(C)

@C
+ JpC�1, (2.57)

where the hydrostatic pressure p is defined as

p =
d vol

dJ
= 

dU(J)

dJ
= (J � 1). (2.58)

Then, the energy functional for the penalty method ⇧p can be defined as

⇧p(u) =

Z

⌦

[ vol(J) + iso(C)]dV + ⇧ext(u), (2.59)

where the functional is written only in terms of the displacement field and the material

can be considered nearly incompressible through the penalty parameter , present in

the function  vol(J). This parameter is defined by the user and obtained by numerical

experiments with the problem to be solved. In order to ensure a small volumetric variation,

high values of  are used. However, when the value of this parameter is increased, the

conditioning number of the stiffness matrix from the finite element method also increases

significantly (Holzapfel, 2000), which causes a poor performance of iterative solvers used.

Another problem of this formulation is the locking phenomenon, a numerical problem

which occurs when the value of  is too high and the solution does not converge to the

expected value (Hughes, 2012).
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2.7.3 Simo-Taylor-Pister formulation

An alternative to the penalty method is the mixed three field formulation proposed by

Simo-Taylor-Pister (STP) (Simo and Taylor, 1991; Simo et al., 1985), which is able to

avoid the locking phenomenon. This formulation is robust to treat incompressibility and

it has been used with success in biomechanics (Gasser et al., 2006).

As in the penalty method, the STP formulation uses a decomposed strain energy

function  (C) =  iso(C) +  vol(J). Furthermore, this formulation considers three

independent variables: displacements u, pressure p and dilatation J̃ , resulting in the

following energy functional:

⇧STP (u, p, J̃) =

Z

⌦0

h
 iso(E) + vol(J̃) + p(J(u) � J̃)

i
dV + ⇧ext(u), (2.60)

The variable J̃ must satisfy the constraint J = J̃ in a mean sense, where J = det(F)

is imposed through the Lagrange multiplier p. Although this formulation has three

unknowns, it can be rewritten in such a manner that only displacement will be an

unknown. As described in Javier Bonet (2008), when the finite element discretization

uses constant interpolation functions for p and J̃ , these variables can be computed at the

element level as

J̃ =
1

V

Z

V

JdV =
v

V
, (2.61)

p =
dU

dJ̃

����
J̃=v/V

. (2.62)

It is important to emphasize that the parameter  remains in the present formulation and,

in general, it is still necessary a high value for this parameter in order to obtain small

volume changes in the solution. However, Weiss et al. (1996) and Gasser et al. (2006)

showed experiments about the robustness and applicability of this method in the context

of elasticity and biomechanics.

2.7.4 Augmented Lagrangian formulation

The mixed three field formulation has been shown to be well suited for nearly

incompressible materials (Gasser et al., 2006), but still relies on a large value of  to

control the volumetric changes, which in turn increases the ill-conditioning of the resulting
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stiffness matrix. In this context iterative solvers may have a poor performance when

solving these systems. The present work used the Augmented Lagrangian (ALG) approach

to treat near-incompressibility for cardiac mechanics problems. This formulation was

introduced in finite elasticity by Glowinski and Le Tallec (1982, 1984) and some works

have applied this formulation to solve biomechanics problems such as in Weiss et al.

(1996), which applied this method to evaluate the stress in a human knee ligament.

The energy functional for the ALG formulation is given by

⇧ALG(u, p, J̃ , µ) =

Z

⌦0

h
 iso(C) + vol(J̃) + p(J � J̃) + µ(J̃ � 1)

i
dV + ⇧ext, (2.63)

where we remark that although it considers four variables, p and J̃ are calculated at the

element level and the new Lagrange multiplier µ is iteratively computed as described next.

The ALG formulation enforces the element-wise near-incompressibility condition

through the addition of a term in the functional with a Lagrange multiplier µ for each finite

element. This new Lagrange multiplier is computed by an Uzawa-like algorithm (Brezzi

and Fortin, 1991; Glowinski and Le Tallec, 1989) given by:

µk+1 = µk + ⇠c(detF � 1), (2.64)

where ⇠c is a constant weight. When the mixed three-field formulation is used, the

constraint det(F) = 1 is imposed in a mean sense, because the constraint is considered

on variable J̃ instead of J = det(F). With the ALG approach the penalty parameter

 that controls the volumetric term  vol can be reduced, which in turn results in a less

ill-conditioned stiffness matrix.

Algorithm 2 shows how the ALG formulation enforces the constraint J̃ = 1 within each

finite element. First, the Lagrange multiplier is initialized with zero and after solving the

nonlinear problem for the current load step, the volume change constraint is verified for

each element. Then, the Lagrange multiplier is augmented for the elements that do not

satisfy the criterion. The defined tolerance tol specifies the range of volumetric changes

allowed. The next load increment is only performed when all elements satisfy the criterion.
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In this way it is possible to control element-wise volume changes to any desired tolerance.
Algorithm 2: Augmented Lagrangian algorithm

1 Set Lagrange multiplier µ0 = 0

2 while full load not reached yet do

3 Apply load increment

4 k = 0

5 do

6 Use Newton iteration to solve the nonlinear problem (2.63)

7 foreach finite element e that do not satisfy |J̃ � 1| < tol do

8 Update Lagrange multiplier as µe

k+1 = µe

k
+ ⇠c(J̃ � 1)

9 end foreach

10 k = k + 1

11 while there are elements e such that |J̃ � 1| > tol

12 end while

2.7.5 Finite element method

Computing the first variation of the functional energy, it is possible to find the stationary

position, which can be discretized using the finite element method. The domain is divided

in hexahedra or tetrahedra with the displacement field being approximated by piece-wise

linear functions while the pressure p and dilatation J̃ are approximated through constant

piecewise functions. This finite element approximation is named Q1 � Q0 � Q0.

Constant elements were chosen for pressure and dilatation in order to compute this

variables at the element level, as presented in section 2.7.3. This procedure enables to

eliminate them from the problem, resulting in a system where the unknown is only the

displacement field.

2.7.6 Newton’s method

The FEM discretization results in a system of nonlinear equations, which can be solved

using the Newton’s method with the following iteration:

K(ui)�u = Text � Tint(ui) (2.65)

ui+1 = ui +�u, (2.66)
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where K is the global stiffness matrix, Text is the vector of external loads and Tint(ui)

the vector of internal nodal forces. The external loads are applied through a series of

load increments with fixed length, which are controlled by the load parameter � such that

Text = �T, being T the total external load.

The linear systems involved in the iterations of the Newton’s method were solved using

the preconditioned Generalized Minimal Residual method (GMRES) (Saad, 2003).

2.7.7 Preconditioners

As mentioned, the linear systems that need to be solved for each step of the Newton

method are ill-conditioned, which implies in a poor convergence for the iterative solvers

used to this end. A manner to improve the convergence of this methods is the use of

preconditioners, which modify the original linear system to create a better conditioned

system.

A preconditioning approach that can be applied in an linear system of the form

Ku = f , (2.67)

is the pre-multiplication by a matrix M�1 as

M�1Ku = M�1f . (2.68)

The preconditioner M�1 needs to be efficient, the matrix has to be constructed with a

low computational cost and the product M�1K must have a condition number less than

K.

2.7.8 Multigrid method

Before presenting the the preconditioner used in this work, a brief overview of the

multigrid method is presented. The multigrid method was developed to solve linear

systems resultant from the discretization of boundary value problems (Briggs et al., 2000).

Some iterative methods such as Jacobi, Gauss-Seidel and Successive over-relaxation (SOR)

methods can reduce the high frequency errors, but the low frequency errors remains

present in the solution. This problem can be circumvented when the initial guess for the
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iterative method is obtained from iterations in coarser discretizations.

Consider the residual as a measurement of the accuracy solution:

r = f � Kū, (2.69)

where ū represent the approximate solution obtained by an iterative method. Considering

that the error with respect to the exact solution u is e = u � ū, the following relation

between error and residual can be written:

Ke = r. (2.70)

Then it is possible to correct the approximated solution using the value for the error

obtained solving (2.70):

u = ū + e, (2.71)

which results in a better approximation for the linear system solution.

Combining this information with methods of simple implementation the multigrid

method was created, which uses stationary iterative methods, such as the relaxation

methods in order to smooth the solution, removing high frequency errors. Then, the

solution is transferred to a coarser grid, which introduce more oscillations in the error,

allowing to use relaxation methods again. The coarsening process continues until it is

possible to compute the error by solving (2.70) through a direct method. Finally, the

solution u is corrected using the computed error.

Due to the use of different grids in the multigrid method, it is necessary to transfer

information between them. The information transfer from a more refined grid to a coarser

one is done trough the restriction operator R, which is usually based on a weighted average

using the values of a point and its neighbors. In order to transfer information from a

coarser grid to a more refined one, the interpolation operator P is used, where a linear

interpolation already works effectively (Briggs et al., 2000).

The multigrid method can be applied using different schemes, such as V-cycle, W-cycle

and µ-cycle, which depend on the sequence of steps and refinements used. The Figure 2.9

presents an example of the V-cycle scheme using three different grid levels.

In this example the multigrid performs the following steps:
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�h

�2h

�4h

Figure 2.9: V-cycle scheme for the multigrid method.

• Perform ⌫1 iterations using the stationary method to smooth the solution of Khuh =

fh, with initial guess ūh in the grid ⌦h

• Compute and restrict the residual r2h = Rrh

– Perform ⌫1 iterations using the stationary method to smooth the solution of

K2he2h = r2h, with initial guess e2h = 0 in the grid ⌦2h

– Compute and restrict the residual r4h = Rr2h

⇤ Compute the error K4he4h = r4h, using a direct method

– Interpolate the error e2h = Pe4h and correct the solution ē2h = ē2h + e2h

– Perform ⌫2 iterations using the stationary method to smooth the solution of

K2he2h = r2h, with initial guess ē2h in the grid⌦2h

• Interpolate the error eh = Pe2h and correct the solution ūh = ūh + eh

• Perform ⌫2 iterations using a stationary method to smooth the solution of Khuh =

fh, with initial guess ūh in the grid ⌦h

The described method is known as geometric multigrid (GMG), where different grids

were created to be used in different levels. This method works very well in structured

meshes, where it is easy to define information transference between levels. However, when

unstructured meshes are used it is difficult to apply the geometric multigrid. In order to

circumvent this problem, the algebraic multigrid (AMG) was developed~(Briggs et al.,

2000), therefore, the method is not limited to solve linear systems resultant from a domain

discretization, enabling its use in other types of systems.
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The algebraic multigrid has the same steps of the geometric, where it is necessary

to define grids with different resolutions in order to smooth the error. Furthermore, it

is necessary to define the transfer operators between grids. The most refined grid is

defined by a graph connecting the components of the matrix that represents the linear

system~(Briggs et al., 2000). An edge between vertices i and j is created in the graph if

aij 6= 0 or aji 6= 0.

After defining the finest grid, it is necessary to define the concept of smoothing

algebraically and then a scheme of relaxation. The coarser grids are constructed from

the finest grid using the defined smoothing sense. These grids are subsets of unknowns

from the original system, based on the dependence among them. Finally, the restriction

and interpolation operators are defined to transfer information between grids.

2.7.9 Algebraic multigrid preconditioners for elasticity problems

When the multigrid method is used as a preconditioner, it is applied during some iterations

using the original matrix of the system and the residual. Then, the solution from the

multigrid is used as the preconditioned residual z = M�1r, used in iterative methods

such as GMRES and Conjugate Gradient (CG).

In order to improve the convergence of iterative solvers we applied an Algebraic

Multigrid (AMG) preconditioner (Briggs et al., 2000; Stüben, 2001) for the solution of the

linear systems. When algebraic multigrid methods are applied to systems of PDEs, as is

the present case for nonlinear elasticity, one approach that have traditionally been used

for the construction of the preconditioner is the use of block preconditioner (also known

as unknown-based preconditioner (Baker et al., 2016)). Although other approaches have

been proposed for system of PDEs in elasticity (Baker et al., 2009), in this work we

focused on assessing and comparing the performance of two AMG preconditioners: the

block and the nodal approaches. The former was not considered for cardiac mechanics so

far, whereas the latter was introduced byAugustin et al. (2016).

The block and nodal preconditioning schemes are presented below for elasticity

problems. Consider the nonlinear elasticity problem in three dimensions where its

stiffness matrix is ordered separating the degrees of freedom (dofs) associated with each
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displacement direction, that is:

K =

2

6664

Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

3

7775
, (2.72)

where the degrees of freedom associated with the displacement in the x direction ux are

followed by uy and then followed by the uz dofs.

The block AMG (B-AMG) preconditioner considers the ordering of the dofs as

in equation (2.72), and then applies the classical AMG coarsening and interpolation

algorithms to the different variables separately, i.e., only to the diagonal blocks Kxx,

Kyy and Kzz. This results in a block AMG preconditioner that can be written as

M�1
B-AMG =

2

6664

M�1
xx

0 0

0 M�1
yy

0

0 0 M�1
zz

3

7775
, (2.73)

where the preconditioning operator is decoupled into three blocks, and the linear system

is divided into three problems where different preconditioners M�1
xx

, M�1
yy

and M�1
zz

can

be applied in each block. Note that this B-AMG preconditioner ignores the coupling

between the unknowns in the x and y direction, x and z, and the others as well. However,

as stated and shown in (Baker et al., 2016), it is quite effective and can be compared to

more advanced AMG preconditioners in cases when there is a weak coupling between the

different unknowns.

The nodal AMG (N-AMG) preconditioner block all unknowns common to the same

physical node of the finite element mesh and uses a nodal ordering. In this case the typical

structure of the stiffness matrix is

K =

2

6666664

K11 K12 . . . K1n

K21 K22 . . . K2n

...
... . . . ...

K1n Kn2 . . . Knn

3

7777775
, (2.74)

where n is the number of nodes of the finite element mesh and Kij denotes a 3 ⇥ 3

block matrix connecting nodes i and j. In the nodal AMG approach the strong
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dependency is considered between any nodes i and j. To compare these block entries Kij

typically (Augustin et al., 2016) the Frobenius norm is used which results in a condensed

matrix with scalar entries which are then used for the coarsening algorithm of the algebraic

multigrid preconditioner.

In the present work, B-AMG preconditioning approach was implemented through

the FieldSplit feature from PETSc, that allows combining different preconditioners

for individual fields or groups of fields. In this strategy, three blocks were created and

an AMG preconditioner was applied for each block. While for the N-AMG approach it

was necessary to perform a new ordering for the stiffness matrix and then configuring

the nodal option in the PETSc library. For both B- and N-AMG preconditioners the

BoomerAMG implementation, developed by Henson and Yang (2002) was used.

2.8 Simulations

Different types of cardiac mechanics simulations were performed in the present work to

reproduce the LV function, using different material properties and geometries.

First, we validate our solver with respect to the cardiac mechanics benchmark, which

consists of three problems, as shown in Figure 2.10(a). The former is the deformation of a

beam fixed in the left face, the second problem reproduces the inflation of the left ventricle

considering the simplified LV geometry and the later considers the same geometry, but

simulates the active contraction of the ventricle.
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Figure 2.10: Types of cardiac mechanics simulations performed in the present work. (a)
Benchmark problems. (b) Simulation of LV function during the full cardiac cycle.

The uncertainty quantification analyses were performed using simulations of the

left ventricle that considers personalized geometries created with the presented mesh

generator. First, simulations of the passive filling were considered, which are similar to

the benchmark problem 2. Then simulations of the full cardiac cycle were considered

in the analyses, as that shown in Figure 2.10(b), where the active stress and circulatory

models described previously were used.

2.9 Uncertainty quantification and Sensitivity analysis

Scientific computing has been the principal tool to understand complex physical

phenomena, where experimental studies can be expensive, difficult and lengthy to repeat.

The main goal of computational simulations is the prediction of physical events or

engineering problems behavior. To this end, scientific community has devoted extensive

effort in order to develop efficient algorithms where the numerical errors are under control.

This was the primary goal of numerical analysis which remains an active research field.

Only a few studies focused in understanding what is the impact of errors or uncertainties

in input data, such as parameters model, initial and boundary conditions and geometries.

The goal of uncertainty quantification is to investigate the impact of these errors

in results obtained by computational simulations. Although several models have been

successful in representing real phenomena, they are constrained to our ability in assigning
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accurate values for several parameters of the governing equations. The uncertainty

represents the variability in data and it is present everywhere, because models are not able

to reproduce the complete phenomenon and experimental errors are inevitable. Then, in

order to completely understand the results of numerical simulations, the capabilities and

limitations of computational models, it is necessary to consider uncertainties.

This section presents uncertainty quantification and sensitivity analysis concepts used

to investigate uncertainties in inputs of models used in cardiac mechanics simulations. The

polynomial chaos approach and a collocation method are described, which have been used

through the ChaosPy library (Feinberg and Langtangen, 2015) to quantify uncertainties

in the numerical simulations.

2.9.1 An introductory example

Consider an introductory example, presented by Feinberg (2015) and reproduced here,

describing the process of a concentration decay in time which is given by

u(t) = Ie�ct, (2.75)

where I is the initial concentration and c is the decay rate. If there is a small uncertainty

in these parameters, the decay behavior can change significantly. Figure 2.11 shows the

value of u when I and c are considered as random variables with uniform distributions in

the range (0, 0.1) and (8, 10), respectively. Note that a small uncertainty in parameters can

cause significant changes in decaying, where the final concentration has a high variation.

This simple example evidences that for some problems, specially a nonlinear problem,

a small uncertainty in the input data can cause non-negligible changes in the results.

Also, note that these variations can not be captured with increasing the precision of

the numerical methods, which makes the incorporation of uncertainties in simulations

necessary.

2.9.2 Uncertainty quantification techniques

Different methods have been applied to perform uncertainty quantification analysis, but

the most used approach has been to consider uncertain data as random variables and then

to reformulate the original deterministic systems as stochastic systems.
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Figure 2.11: Stochastic solutions for the decaying process. The solid line represents the
mean solution, whereas the dashed lines represent the deviation of random solutions.

Within this context, one of the most used methods for stochastic simulations is

the Monte Carlo (MC) method, which generates independent samples from random

model inputs based on a probability distribution. Then MC performs evaluations of

the deterministic model using these samples, known as realizations, which are used to

obtain statistical information such as mean and standard deviation for the problem. The

implementation of this method is simple, but it is necessary a large number of realizations

from the deterministic problem in order to obtain an accurate result for the statistical

information.

Computation of the mean solution, for instance, converges with a ratio of 1/
p

K,

where K is the number of realizations (Fishman, 2013). The need of several realizations

to obtain an accurate result is very expensive, specially when the deterministic problem

solution is already costly.

A popular method, which does not need realizations, is the perturbation

method (Nayfeh, 2008), where random fields are expanded using Taylor series around

the mean and the series is truncate in a determined order. The expansion order usually is

at most quadratic, because the resultant model becomes very complex for higher orders.
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This approach has been used in several engineering fields (Liu et al., 1986; Hua et al.,

2008). A limitation for this method is that the uncertainty magnitude can not be large,

for instance, the method is not accurate for an uncertainty greater than 10%.

A more recent method called generalized polynomial chaos (gPC) (Xiu and

Karniadakis, 2002) has been widely used for uncertainty quantification. In this method,

stochastic solutions are expressed through an orthogonal polynomial that depends on the

random model inputs. Here, different types of orthogonal polynomials can be used for

a better convergence of the solution. This method is a spectral representation for the

random space and its convergence is fast (Xiu and Karniadakis, 2002).

In order to compare the convergence of the MC and of the gPC methods, consider again

the previous example of concentration decay. Figure 2.12 presents a comparison between

MC and gPC approaches, in relation to the convergence when applied to uncertainty

quantification of equation (2.75). The error when mean and standard deviation are

approximated for each method was computed using different numbers of samples, in order

to assess the convergence for these specific quantities. As it can be observed, the error

decreases rapidly in gPC approach when the number of samples increases, while MC

method requires more samples to compute the statistical information in a satisfactory

way. This simple introductory example shows the accuracy and efficiency of gPC method

with respect to MC in the uncertainty quantification context.

One of the present goals of this work is the study of uncertainty quantification

in cardiac mechanics problems, where a deterministic simulation has already a high

computational cost. Therefore, the use of Monte Carlo method is not feasible, due to

the high number of realizations required in order to obtain an accurate result. Then, the

generalized Polynomial Chaos approach was the technique chosen for this work and it will

be described hereafter.

2.9.3 Generalized polynomial chaos

The uncertainty quantification investigates what are the effects in an specific quantity of

interest when uncertainties are considered in model inputs. These quantities of interest

are usually computed from the model solution and can be expressed through generalized

polynomial chaos (Xiu, 2010).

Considering a vector ⇠ = (⇠1, ⇠2, . . . , ⇠N)T of model inputs composed by independent
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Figure 2.12: Mean and standard deviation errors for Monte Carlo (MC) and generalized
polynomial chaos (gPC) methods.

random variables and assuming that the quantity of interest y is written in terms of

these variables, it is possible to express this quantity through a infinite polynomial chaos

expansion (Li and Zhang, 2007). In practical applications, this quantity of interest can be

approximated by a finite expansion obtained through a linear combination of the elements

from the polynomial chaos basis, as:

ȳ(⇠) =
PX

i=1

bi�i(⇠), (2.76)

where bi are the unknown coefficients and �i are orthogonal polynomial functions in terms

of the random variables. This polynomial chaos expansion with N random variables and

order d has P terms, where P is given by

P =
(N + d)!

N !d!
. (2.77)

For instance, a second order approximation with two random variables described by
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normal distribution has P = 6 terms and can be written as

ȳ(⇠0, ⇠1) = b1 + b2⇠0 + b3⇠1 + b4(⇠
2
0 � 1) + b5(⇠

2
1 � 1) + b6⇠0⇠1. (2.78)

Defined the approximation for the quantity of interest, as in equation (2.76), it is

necessary to determine the coefficients bi that define the polynomial in terms of the random

variables. To this end, a stochastic residual is defined

R({bi}, ⇠) = ȳ � y. (2.79)

The coefficients bi can be obtained through a weighted residual formulation in the random

space, which can be expressed as

Z

⇠

R({bi}, ⇠)vj(⇠)pjt(⇠)d⇠ = 0, (2.80)

where vj(⇠), j = 1, . . . , P are the weighting functions and pjt(⇠) is the joint probability

density function of the input random variables ⇠. Using this weighted residual formulation

it is ensured that the error is orthogonal to the space spanned by the weighting functions

and the choice of these functions will define the method properties used in stochastic

analysis (Osnes and Sundnes, 2012). A typically choice is the Galerkin method, where

weighting functions are the same functions used in polynomial expansion. Galerkin

scheme has exponential convergence with respect to the polynomial order used, however

this method needs to modify the deterministic numerical solution, resulting in a difficult

implementation for complex problems (Li and Zhang, 2007).

2.9.3.1 Stochastic collocation method

An alternative to the Galerkin scheme is the collocation method, which is not

intrusive, i.e., it can be applied without modifying the deterministic numerical solution

implementation.

In the collocation method, the weighting functions are defined as

vj(⇠) = �(⇠ � ⇠
j
), j = 1, . . . , P, (2.81)
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where � is the Dirac’s delta function and ⇠
j

are the collocation points, i.e., samples of

the input random variables. The collocation points can be chosen in different ways and

in the case of multidimensional expansion with order d, the optimal choice is to create

collocation points as combinations of the roots for the same expansion with order d+1 (Li

and Zhang, 2007).

Using (2.81) in the weighted residual formulation (2.80) and taking into account the

properties of Dirac delta function, the following relation is obtained

R({bi}, ⇠
j
) = 0, j = 1, . . . , P, (2.82)

and, through the residual definition (2.79), it becomes equivalent to

ȳ(⇠
j
) = y(⇠

j
), j = 1, . . . , P. (2.83)

This relation defines a system of equations where the unknowns are the coefficients bi of

the polynomial chaos expansion for the quantity of interest. The left hand side of the

system (2.83) represents the approximation for the quantity of interest via polynomial

expansion ȳ evaluated in P collocation points. And the right hand side is defined by

the quantity of interest obtained from the deterministic problem solution using the same

collocation points. Thus, when collocation method is applied, the deterministic problem

must be solved for P realizations using different model input values ⇠
j
, without changing

the deterministic solver implementation.

Usually the number of collocation points used is greater than the minimum required

P , which results in a better approximation to the statistics (Hosder et al., 2007). In

this case, the system becomes over-determined and regression methods are used to solve

it (Feinberg and Langtangen, 2015).

The main computational cost is related to the solution of the deterministic problem,

which is solved P times to construct the polynomial approximation for the quantity of

interest. Hereafter, statistical information for this quantity, such as mean and standard

deviation, can be extracted from the polynomial ȳ(⇠), which typically has a lower

evaluation cost than solving the original problem. It is important to remark that the

number of quantities of interest is independent with respect to the number of terms P in

the approximation, therefore an increase in quantities of interest has a negligible cost.
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2.9.4 Sensitivity Analysis

Sensitivity analysis is used to quantify the contribution of each uncertain model input ⇠i to

some output quantity of interest y. This analysis is important for model input fixing and

input prioritization. Input fixing aims to identify uncertain inputs that have a low impact

on the output, and therefore can be fixed in their range of uncertainty in future analyses.

On the other hand, input prioritization aims to identify the inputs with the highest impact

on the quantities of interest, which are the inputs that should be measured or estimated

with the highest possible precision.

2.9.4.1 Sobol sensitivity indices

A variance-based method known as Sobol sensitivity indices (Sobol, 2001) was used in

order to quantify input prioritization and fixing, through the main and total sensitivity

indices.

The main index Si

m
shows the portion of the total variance in y that could be reduced

if the exact value of ⇠i is known. It is computed as follows

Si

m
=

V[E[y|⇠i]]

V[y]
, i = 1, . . . , N, (2.84)

where V is the variance and E the expected value. The numerator represents the variance

in y caused by uncertainty in ⇠i and the denominator is the total variance.

The total sensitivity index Si

t
represents the direct effect, computed in the main index,

and in addition all interactions of ⇠i with the others uncertain inputs:

Si

t
=

V[y] � V[E[y|⇠i⇤]]

V[y]
, i = 1, . . . , N, (2.85)

where V[y] is the total variance, ⇠i⇤ is a set containing all uncertain inputs except ⇠i, then

V[E[y|⇠i⇤]] is the variance caused by all uncertain inputs interactions where ⇠i is involved.

The total sensitivity index is particularly useful to identify inputs that can be fixed, which

are the inputs with Si

t
⇡ 0. The variances used in the sensitivity indices computation can

be calculated directly from the gPC expansion (Eck et al., 2016).

The presented Sobol indices are used to assess the sensitivity of scalar quantities, but

for non-scalars such as time-varying quantities they are not the best choice. Because

these indices are scaled by the variance, which is not constant for all point of a time
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series Eck et al. (2017). Therefore, for time-varying quantities we computed the time-

averaged sensitivity indices, proposed in Eck et al. (2017), where the main time-averaged

sensitivity indices are given by

TASi

m
=

R
t1

t0
Si

m
(t)V[Y ]tdt

R
t1

t0
V[Y ]tdt

, (2.86)

and the total time-averaged sensitivity indices are computed through

TASi

t
=

R
t1

t0
Si

t
(t)V[Y ]tdt

R
t1

t0
V[Y ]tdt

. (2.87)

2.9.5 Surrogate model calibration

The polynomial degree d and the number of samples Ns have been chosen after assessing

the convergence of the variance and total Sobol sensitivity indices, as suggested in Eck

et al. (2016). The metrics considered and computed were the maximum relative error

for the variance and the maximum absolute error for the total Sobol sensitivity indices,

which were computed between different polynomial degrees. The maximum relative error

among the variance of all QoI is defined as

✏r(d1, d2) = max

✓����
Qd2 � Qd1

Qd2

����

◆
, (2.88)

where the vector Q represents the variance of all quantities of interest, obtained through

polynomial Chaos of order d1 and d2. And the maximum absolute error is defined as

✏a(d1, d2) = max(|St
d2 � St

d1|), (2.89)

with St being the vector of all total Sobol sensitivity indices.

Additionally, we performed a leave-one-out cross-validation test (Kersaudy et al.,

2015), where we generated Ns+1 samples and one point ⇠j is taken out of the construction

of the surrogate model f̂ (�j), which is created using Ns = 3P samples. The prediction
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error at ⇠j is computed as:

�(j) = f(⇠(j)) � f̂ (�j)(⇠(j)), (2.90)

then after computing �(j) for all ⇠(j), the error can be estimated by the leave-one-out

error:

ErrLOO =
1

n

nX

j=1

(�(j))2, (2.91)

To facilitate the interpretation of the leave-one-out error, the usually employed Q2

coefficient was computed as:

Q2 = 1 � ErrLOO

V(⇠)
, (2.92)

where the closer Q2 is to 1, the better is the approximation of the model.

2.9.6 ChaosPy

The Python library ChaosPy (Feinberg and Langtangen, 2015) performs uncertainty

quantification and sensitivity analysis through Monte Carlo method and also the

generalized polynomial chaos. The unknown coefficients for the gPC can be determined

through the collocation method or using a pseudo spectral projection.

ChaosPy is able to generate scalar random variables using different predefined

probability distribution, then it is possible to create samples for these variables through

different available techniques. With these samples simulations can be performed using

the Monte Carlo method or construct polynomial chaos for uncertainty quantification in

an specific model.

The Algorithm 2.1 presents an implementation using ChaosPy for uncertainty

quantification of equation (2.75). In this example, the stochastic collocation method

was used to construct quadratic polynomials chaos. After importing required libraries,

the forward model is defined in lines 5 and 6, which depends on time t, decaying rate

c and initial concentration I. The last two parameters were considered as stochastic

and therefore it is necessary to define a probability distribution for them. In this case,

uniform distribution were defined for these parameters in lines 9 and 10. Next, the

number of realizations required to create the polynomial chaos is computed, according

to equation (2.77). Then samples are generated in line 15, considering the defined
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distribution, and the model is evaluated for each sample, as shown in line 16.

A polynomial chaos is created using the function presented in line 18, which generate

an orthogonal polynomial with order d based on a given distribution. Then, polynomial

coefficients are determined in line 19 through information about the polynomial chaos

expansion, the generated samples for the random model inputs and the model evaluations

for these samples. Thus, a polynomial that approximates the quantity of interest is

obtained and it is possible to compute statistical measurements from this approximation,

such as mean and standard deviation computed in lines 21 and 22.

1 import chaospy as cp

2 import numpy as np

3 from math import factorial

4

5 def model(t, c, I):

6 return I*np.exp(-c*t)

7

8 t = np.linspace (0.001 , 10, 101)

9 c1 = cp.Uniform (0 ,0.1)

10 c2 = cp.Uniform (8,10)

11 distribution = cp.J(c1, c2)

12 d = 2

13 P = factorial (2+d)/( factorial (2)*factorial(d))

14

15 samples = distribution.sample(P,"M")

16 evals = [model(t, sample [0], sample [1]) for sample in samples.T]

17

18 polynomial_expansion = cp.orth_ttr(d, distribution)

19 model_approx = cp.fit_regression(polynomial_expansion , samples ,

evals)

20

21 expected = cp.E(model_approx , distribution)

22 deviation = cp.Std(model_approx , distribution)

Algorithm 2.1: Algorithm for uncertainty quantification in equation (2.75) using the

ChaosPy library.
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The library allows customization, such as the creation of new probability distribution,

construction of new polynomials, new sampling schemes and new approaches to generate

collocation or integration points. Due to its simple use and flexibility this library has been

chosen as uncertainty quantification and sensitivity analysis tool in the present work. See

more details in the work of Feinberg and Langtangen (2015).

2.9.7 Uncertainty quantification in cardiac mechanics

The investigation of complex problems that can help in clinical diagnostics have been

possible due to the development of mathematical and geometric models that are more

realistic in describing the cardiac function, and the use of efficient numerical methods to

solve these models. Within this context, patient specific simulations have been subject of

significant medical and scientific interest (Trayanova and Winslow, 2011; Lee et al., 2014),

where it is necessary to use a different set of parameters and geometries for each patient.

These model inputs vary significantly among patients and it is necessary to quantify how

these developed models behave in different scenarios. Then, recent studies have focused

in the uncertainty quantification of models representing the electrical and mechanical

activities of the heart.

An uncertainty quantification analysis have been performed by Hurtado et al. (2017)

through the polynomial chaos approach, using an electro-mechanical 3D model of the

heart. The action potential duration and the maximum calcium concentration were some

of the quantities of interest considered, which were the most influenced by uncertainties in

parameters representing the maximal calcium conductance and the maximal conductance

of the slow delayed rectifier potassium channel.

In the context of cardiac mechanics, Osnes and Sundnes (2012) quantified uncertainties

in parameters of a constitutive law for the cardiac tissue, considering a tridimensional

simulation of the left ventricle during the diastole phase. The polynomial chaos approach

has also been used combined with the collocation method and the quantities of interest

most impacted by uncertainties were the displacement and rotation at the apex, and the

torsion at the ventricle base. An analysis considering the same type of simulation was

reported in Rodríguez-Cantano et al. (2019), where uncertainties in the fiber orientation

field were also included. The sensitivity of fiber stress and strain due to variations in left

ventricle shape have also been shown in Choi et al. (2010); Barbarotta and Bovendeerd
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(2019). Whereas the impact of variability in shape (Di Achille et al., 2018) and material

properties (Kallhovd et al., 2019) has also been investigated in simulations reproducing

the ventricular function during the entire cardiac cycle.

The uncertainty quantification has also been applied in studies of the circulatory

system, such as in the work of Huberts et al. (2014) that consider uncertainties in flow

simulations within arteriovenous fistulae. Whereas in the work developed by Biehler and

Wall (2018) uncertainties were considered in geometries of abdominal aortas aneurysms,

where the wall thickness of aneurysms was considered as a scalar stochastic variable and

also as stochastic field. Then, the analysis quantified how uncertainties in geometries

impacts in the stress and in the aneurysm rupture risk.

Uncertainty in wall thickness is likely to be important also in cardiac mechanics models,

since the overall mechanical properties of the myocardial wall are tightly linked to its

thickness, and because patient specific models created from images are likely to include

noise and uncertainty. Also, these models are typically constructed by semi-manual

segmentation of echocardiographic or magnetic resonance images (Crozier et al., 2016).

The resolution of the images varies substantially with the image modality and the direction

(axis) considered, with typical values in the order of 1-5 mm. The process becomes a

source of uncertainty because the contour extraction depends on user intervention, and

will directly impact the ventricle wall thickness and other measurements, as discussed

by Suinesiaputra et al. (2014). Furthermore, there is substantial variability of anatomical

parameters among patients, as presented in the work of Bai et al. (2015) which reported

about 15% of variability in the wall thickness of healthy patients. Under pathological

conditions the variability can increase even more, as in the case of asynchronous electrical

activation (Prinzen et al., 1995; Van Oosterhout et al., 1998; Vernooy et al., 2004). For

instance, in the work of Van Oosterhout et al. (1998) an experiment with dogs was

reported where the late activated region wall thickness increased 23±12%. The same

study also reported an experiment in patients with left bundle branch block (LBBB),

where the septum thickness decreased about 20% and the thickness in the free wall

increased approximately 10%. These natural and pathological variations indicate that

an accurate reconstruction of the patient anatomy is important for clinical applications.

However, to properly assess the demands on this reconstruction it is important to quantify

the impact of these variations on the model’s predictions.



79

3 Cardiac mechanics solver

performance

Before presenting the main contribution of the thesis, which is related to quantify how

uncertainties impact on the cardiac mechanics simulations, we present the numerical

improvements performed in the solver.

This chapter presents results for the numerical approach presented in this work and

implemented in the in-house cardiac mechanics solver named Cardiax, where we carried

out several simulations for the cardiac mechanics benchmark problems. First we present

the results in order to validate our implementation. Next, we present some results

with focus on the performance of the block- and nodal-AMG preconditioners for cardiac

mechanics only. Finally, we assess the performance and accuracy with respect to volume

changes of the ALG formulation for the benchmark problems. The results presented in

this chapter were published in the work Campos et al. (2018).

3.1 Benchmark problems

The benchmark consists of three problems and uses the constitutive model proposed

by Guccione et al. (1995) for passive cardiac tissue. Figure 3.1 shows the geometry of the

three problems in their undeformed and deformed configurations.

The first problem consists of a deforming rectangular beam whose geometry is defined

by x 2 [0, 10], y 2 [0, 1], z 2 [0, 1] mm. The transversely isotropic Guccione constitutive

law was used with the following parameters: C = 2 kPa, bf = 8, bt = 2, bfs = 4. The

fiber direction is constant along the long axis, i.e. (1, 0, 0). Boundary conditions: the left

face (x = 0) is fixed in all directions and a pressure of 0.004 kPa is applied to the entire

bottom face (z = 0).

The second problem involves the inflation of an ellipsoid-like geometry, as presented in

section 2.4.1, representing a simplified left ventricle, with isotropic material parameters.

This problem tests a deformation pattern similar to cardiac inflation. The Guccione model

was used with the following parameters: C = 10 kPa, bf = 1, bt = 1, bfs = 1. Boundary
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Problem 1

Problem 2

Problem 3

Undeformed Deformed

Figure 3.1: Undeformed and deformed configurations of the benchmark problems 1-3.
The arrows in the undeformed configuration for problem 3 indicates the fiber orientation.

conditions: the base plane (z = 5 mm) is fixed in all directions and a pressure of 10 kPa

is applied to the endocardial surface.

The third problem used the same geometry from the second problem, but it considers

a transversely isotropic material simulating the inflation and active contraction of the left

ventricle. This problem tests the active contraction and uses a complex realistic fiber

distribution, which are important features for a cardiac mechanics solver. This problem

used the following parameters: C = 2 kPa, bf = 8, bt = 2, bfs = 4. Boundary conditions:

the base plane (z = 5mm) is fixed in all directions, a pressure of 15 kPa is applied to the

endocardial surface and an active stress Ta = 60 kPa is applied in the fiber direction.

At this point it is important to remark that problems 1 and 2 are purely passive and

as such the active stress component in equation (2.24) is not considered. Only problem 3

of the benchmark considers the active part of the additive split of the stress tensor, where

equation (2.25) is used to apply the active stress in the fiber direction.



81

3.1.1 Benchmark metrics

In order to compare the tested solvers in the benchmark, displacements and strain in

different points of the domain are measured. For problem 1, the deformed z component

of displacement is measured in the position (10, 0.5, 1), represented by the green point in

Figure 3.2.

Figure 3.2: Problem 1 geometry, where observed measures are: the deformed z position
in the green point; the deformed configuration of the red line; and the strains computed
in axial directions using the blue points. (extracted from Land et al. (2015))

The deformed configuration of the red line in the same figure, located in (x, 0.5, 0.5),

is also compared among the solvers. Finally, some strain measures are computed in the

points p1 � p10, which are located under the red line. The strains are computed in x, y

and z directions, using the blue points.

The strains Si are computed from the distance change between pair of n points with

coordinates X i

1 and X i

2 in the undeformed configuration and the coordinates in xi

1 and xi

2

in deformed configuration, where i = 0, 1, · · · , n. In order to compute the strain, a finite

difference scheme is used:

Si =

✓
||xi

1 � xi

2||
||X i

1 � X i

2||

◆
⇥ 100%. (3.1)

For x direction, the neighbor points along the red line are used: X i

1 = (i, 0.5, 0.5) and

X i

2 = (i + 1, 0.5, 0.5), i = 0, 1, · · · , 8. And for the transversal directions the used points

are X i

1 = (i, 0.5, 0.5) and X i

2 = (i, 0.9, 0.5) for y direction and X i

2 = (i, 0.5, 0.9) for z

direction, i = 0, 1, · · · , 9.

For the problems 2 and 3 the deformed z positions of the ventricle apex are measured

in the endocardium and epicardium, represented by the green points in Figure 3.3. Other

comparison measure is the deformed configuration of the red line located in the ventricular

middle wall. And the strain measurements in longitudinal, circumferential and radial

directions are also computed in points of the endocardium, epicardium and middle wall.

The longitudinal and radial strains are calculated in the points p1� p10 through the blue
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points in Figure 3.3(a) and the circumferential strains is obtained using the blue points

presented in Figure 3.3(b).

(a) (b)

Figure 3.3: Undeformed geometry used in problems 2 and 3, with green points indicating
location to measure apex displacement at endocardium and epicardium; middle wall apex-
base line in red and blue points to compute strains. (a) Blue points used to compute
longitudinal and radial strains (vi = 0) at the points p1-p9 under the red line. (b) Blue
points used to compute circumferential strains (vi = ⇡/10) at points p1-p9. (extracted
from Land et al. (2015))

The points used in strain calculation are obtained from the parametrization (2.22),

extract the points along the apex-base lines: vi = 0, ui = u1+(u2�u1)/nu ⇥(i+1)⇥0.95,

where u1 = �⇡, u2 = � arccos 5/(17 + 3t), nu = 10, with i = 0, 1, · · · , nu � 1. These

lines are extracted along the endocardium (t = 0.1), epicardium (t = 0.9) and middle

wall (t = 0.5). The pairs of neighbor points along each line are used to compute the

longitudinal strains. While the pairs of points between endocardium and middle wall;

middle wall and epicardium; endocardium and epicardium are used to compute the radial

strain at endocardium, epicardium and middle wall, respectively. In order to obtain the

circumferential strain, the second point X i

2 is derived from the rotation of each line by an

angle vi = ⇡/10, instead of vi = 0, as shown in Figure 3.3(b).

3.1.2 Metric to compare Cardiax with the benchmark participants

Prior to investigating the performance of the Augmented Lagrangian method combined

with a block-AMG preconditioner, we first assessed the ability of the Cardiax code with

the STP formulation in (2.60) for solving the benchmark problems proposed by Land
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et al. (2015).

To this end we considered the value of the solution in key points of the three benchmark

problems as a reference, which are the green points presented in Figures 3.2 and 3.3. An

average value of the solution s̃ in these key points considering the results of all participants

codes in the benchmark (Land et al., 2015) was computed. To compare our results with

this average, we considered the relative error

error =
s � s̃

s̃
, (3.2)

where s is the value of the solution obtained by our code at the selected key point.

In order to obtain a reference solution for each problem we performed a series of

experiments where we tuned the corresponding parameters of our solvers. The  value

associated to the results with smallest relative error (3.2) was considered as a reference

for further comparison of accuracy and performance of the numerical methods discussed.

3.1.3 Experiments

The experiments proposed in the cardiac mechanics benchmark, detailed in Figure 3.1,

were performed with Cardiax considering the following meshes: for Problem 1, a mesh of

50 ⇥ 5 ⇥ 5 elements was used, whereas, for both Problems 2 and 3, a mesh of 24 ⇥ 54 ⇥ 6

elements was considered. In each case the error, given by (3.2), between our solution

and the average of the results from the benchmark, was below 1%. the Newton method

was used to solve the nonlinear problem with a fixed number of load increments. For the

first problem 10 load increments were used, whereas 100 load increments were used for

the second and third problems. The Newton convergence criterion used was based on the

residual norm with 10�6 specified as tolerance. The preconditioned GMRES method was

used for the solution of the linear systems considering a relative convergence tolerance in

the residual norm of 10�4. The BoomerAMG preconditioner was used with the default

settings, that is, a V-cycle V(1,1) scheme was considered with the Falgout coarsening

strategy and a symmetric-SOR/Jacobi for relaxation.

Figure 3.4(a)-(c) shows the same graphs used by the cardiac mechanics

benchmark (Land et al., 2015), but here we added our results to verify the accuracy

of the solution obtained by our code and compare it to the other implementations.
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Figure 3.4(a) shows our results combined with the results from the benchmark

participants for Problem 1. In particular, in this case a value of  = 70 kPa resulted

in an error of 0.15%. Smaller values such as  = 50 kPa resulted in errors above 1%,

which quickly deviates from the other results of the benchmark.

The results for the Problems 2 and 3 are shown Figure 3.4(b) and (c). For Problem 2

we found that  = 300 kPa resulted in an error of 0.86%, whereas for Problem 3 a larger

value such as  = 1000 kPa had to be used in order to obtain an error of 0.78%. All

these errors are within the standard deviation of the benchmark results. Table 3.1 shows

the average solution and standard deviation (computed from the benchmark data (Land

et al., 2015)) at the key points for the three benchmark problems.

Table 3.1: Average solutions and standard deviation computed at the key points from the
results of the cardiac mechanics benchmark (Land et al., 2015).

Average Solution (Key point) Standard deviation (Key point)

Problem 1 4.161 (Tip) 0.032 (Tip)
Problem 2 -28.196 (Epi) -26.482 (Endo) 0.363 (Epi) 0.440 (Endo)
Problem 3 -15.405 (Epi) -12.098 (Endo) 0.108 (Epi) 0.231 (Endo)
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Figure 3.4: Benchmark results, where the labels in this graph refer to all the codes tested in
the benchmark paper, except our results which were added here under the label Cardiax.

We notice that our results are close to the mean of the codes tested in the cardiac

mechanics benchmark (Land et al., 2015), demonstrating that our code was able to

simulate the cardiac mechanical activity properly.

The deformed line in the domain center and the axial strains are presented in Figure 3.5

for problem 1. These measures provide global information about the solution behavior,
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where the present solver obtained satisfactory results, closer to the results presented in

the benchmark tested solvers.
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Figure 3.5: Problem 1: (a) deformation of the line (x, 0.5, 0.5); (b) strain along the lines
in direction of x�, y� and z�axes.

Figure 3.6 shows the results for problem 2, where the deformed line in the middle wall

is presented in panel (a), while the strain measures in circumferential, longitudinal and

transmural directions are presented in panel (b). Strains are computed in different points

of the endocardium, epicardium and middle ventricular wall. Both plots have qualitative

and quantitative behavior similar to the results presented in (Land et al., 2015).
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Figure 3.6: Problem 2: (a) deformation of a line in the middle of ventricular wall and
(b) strain measures in the circumferential (CIRC), longitudinal (LONG) and transmural
(TRANS) directions at different positions.

The same measures are now presented to problem 3 in Figure 3.7, where the deformed

line after the contraction is presented in panel (a) and the strains are presented in (b),

which are also in agreement with the benchmark results.
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Figure 3.7: Problem 3: (a) deformation of a line in the middle of ventricular wall; (b)
twisting motion of the same line; and (c) strain measures in the circumferential (CIRC),
longitudinal (LONG) and transmural (TRANS) directions at different positions.

Another test was still performed for problem 3, in order to view the ventricle torsion

behavior, due to the helix fiber orientation. Figure 3.8 presents this result for the line in

the middle wall, where the dashed line represents the undeformed configuration, which

moves to the blue line after contraction. This behavior is also in agreement with results

presented in the benchmark.
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Figure 3.8: Twisting motion of the middle wall line for problem 3.
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3.2 Performance of the preconditioners

After the first set of simulations was performed and satisfactory results were obtained for

the benchmark problems, we focused on the AMG preconditioners and on the Augmented

Lagrangian for improving the performance of cardiac mechanics simulations.

Initially, we assessed the performance of the B-AMG and N-AMG preconditioners

using the STP formulation. The influence of the preconditioners was analyzed mainly

through the number of iterations spent by the linear system solver. Another important

property that was investigated was the robustness of the block-AMG preconditioner with

respect to the problem size. Thus, refined meshes for each problem were created and we

observed the behavior of the Krylov solver for these instances to assess the performance

of the preconditioner.

Table 3.2 presents the number of iterations required by the Newton method to converge

and the average of GMRES iterations (within the Newton step) selected at different stages

of the solution using the block and nodal preconditioners. It shows that the GMRES

method converged with a reasonable number of iterations for all problems, even for the

most difficult Problem 3.

Table 3.2: Block (B) and nodal (N) AMG preconditioners performance study: number of
Newton iterations and average of GMRES iterations at some selected loading parameters
(�)

.

Problem 1 Problem 2 Problem 3
� Newton GMRES Newton GMRES Newton GMRES

B N B N B N B N B N B N

0.1 6 6 30.0 32.2 6 6 21.0 20.7 6 6 33.0 42.5
0.2 5 6 26.7 29.3 7 7 19.3 19.1 6 6 33.2 35.5
0.3 5 6 24.2 27.8 7 7 18.6 18.4 6 6 30.7 32.5
0.4 5 6 27.8 30.7 7 7 18.0 18.1 6 7 29.2 28.3
0.5 5 6 29.0 30.3 7 6 16.9 17.3 7 6 28.6 27.3
0.6 5 6 32.7 28.7 7 7 16.6 17.0 6 6 27.7 26.2
0.7 5 6 32.0 28.5 6 7 16.3 17.4 5 5 27.2 25.8
0.8 5 6 32.2 30.2 9 8 16.4 19.5 5 5 26.4 24.6
0.9 5 6 33.0 28.8 6 6 16.3 19.8 5 4 26.6 24.8
1.0 5 6 30.8 30.0 7 9 15.7 22.3 6 5 27.5 25.0

Next we evaluated the performance of the block and nodal AMG preconditioners when

the meshes used for the problems were refined. Figure 3.9 shows the average of GMRES

iterations per step for different levels of mesh refinements. In a mean sense, it is possible

to notice that the number of GMRES iterations does not increase when the mesh is refined

for all the problems, except in problem 2 for the nodal-AMG preconditioner which seemed

more sensitive to the mesh refinement than the block preconditioner.
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Figure 3.9: Comparison of GMRES iterations for each loading parameter (�) for different
mesh discretizations of the geometry in the benchmark problems.

Concerning a performance comparison between both preconditioners Tables 3.3 and 3.4

show the mean number of GMRES iterations for different loading parameters and the total

solution time for block and nodal AMG preconditioners, respectively. Although in terms of

GMRES iterations the block and nodal AMG preconditioners are, in general, competitive

within the 3 problems considered, it is clear that the nodal AMG preconditioner is much

faster in terms of execution time for all the cases.
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Table 3.3: Block AMG preconditioner: average of GMRES iterations at different loading
parameters (�) and total solution time in seconds for the benchmark problems using
different mesh refinements.

Problem 1 Problem 2 Problem 3

� 50x5x5 100x10x10 200x20x20 12x27x2 24x54x6 46x107x6 12x27x2 24x54x4 48x54x8

0.1 27.8 30.0 29.3 21.5 21.0 20.7 33.8 33.2 35.4

0.2 26.2 26.7 29.7 20.0 19.3 19.0 31.9 33.2 32.4

0.3 28.0 24.2 28.8 19.0 18.6 18.0 30.2 30.7 28.7

0.4 31.8 27.8 31.0 18.3 18.0 17.3 28.8 29.2 26.2

0.5 31.2 29.0 29.3 18.0 16.9 16.8 27.3 28.6 25.4

0.6 32.4 32.7 28.7 17.2 16.6 16.2 26.6 27.7 24.2

0.7 30.0 32.0 30.7 17.0 16.3 16.0 25.6 27.2 22.2

0.8 31.8 32.2 28.7 17.0 16.4 16.0 24.5 26.4 20.7

0.9 32.8 33.0 27.3 17.0 16.3 15.6 23.5 26.6 21.0

1.0 33.0 30.8 30.8 16.8 15.7 15.2 23.5 27.5 21.8

Time (s) 41 431 6835 161 3060 9098 424 7568 45080

Table 3.4: Nodal AMG preconditioner: average of GMRES iterations at different loading
parameters (�), and total solution time in seconds for the benchmark problems using
different mesh refinements.

Problem 1 Problem 2 Problem 3

� 50x5x5 100x10x10 200x20x20 12x27x2 24x54x6 46x107x6 12x27x2 24x54x4 48x54x8

0.1 45.0 32.2 27.2 22.3 20.7 26.3 44.5 42.5 38.2

0.2 45.8 29.3 27.5 17.1 19.1 17.7 34.9 35.5 30.2

0.3 45.2 27.8 25.3 15.2 18.4 15.0 30.7 32.5 24.7

0.4 47.5 30.7 25.5 14.5 18.1 14.2 28.7 28.3 23.2

0.5 46.7 30.3 26.7 13.0 17.3 14.8 26.8 27.3 23.3

0.6 38.0 28.7 27.0 12.2 17.0 13.5 25.2 26.2 24.0

0.7 41.5 28.5 26.7 13.0 17.4 15.4 24.8 25.8 24.2

0.8 44.0 30.2 28.3 13.0 19.5 13.8 23.8 24.6 21.5

0.9 41.7 28.8 27.7 11.8 19.8 13.6 22.2 24.8 22.4

1.0 41.3 30.0 28.7 12.6 22.3 14.8 22.2 25.0 21.5

Time (s) 22 194 2557 34 1411 4394 68 1244 6320

3.3 Augmented Lagrangian formulation

Here we present performance results of the ALG formulation when it is combined with the

AMG preconditioners. As we already mentioned, the ALG formulation allows controlling

the volume change a priori and thus it allows the use of smaller values for penalty

parameter  while keeping the desired level of volume change in a element-wise fashion.
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As a result we have linear systems that are less ill-conditioned, which result in faster

convergence of the iterative solvers. In all simulations of this experiment we used a

tolerance for the element-wise volume change given by tol = 0.05 when ALG formulation

was used. The experiments were performed considering the following meshes: for Problem

1, a mesh of 120⇥12⇥12 elements was used, whereas, for Problem 2 a mesh of 12⇥27⇥2

elements was considered and for Problem 3 we used a mesh of 24 ⇥ 54 ⇥ 6 elements.

In order to evaluate the performance of the Augmented Lagrangian formulation we

carried out the simulations using ALG in contrast with the simulations without it, that

is, considering the STP formulation. The performance of the Augmented Lagrangian

approach was evaluated using the number of iterations of the Newton method, the number

of iterations of the GMRES solver, the execution time measured in seconds, the total

volumetric changes (VC) as the ratio of deformed to the undeformed volume and also the

maximum value of |J̃ � 1| within all elements of the mesh.

For all the three benchmark problems, we considered the STP formulation together

with the values of the  parameter that resulted in the smaller errors as a reference.

Then, for the ALG method we started using the same  used in the STP formulation and

progressively reduced it, while controlling volumetric changes using the tol parameter of

the ALG approach. We proceeded reducing the value of  iteratively keeping error below

a specified value of 0.2% for problem 1 and of 2% for problems 2 and 3. We found that

since there was less variability in the results of the benchmark for problem 1 a smaller

value had to be used, while with 2% for the other problems all the results obtained were

in good agreement with the average of the benchmark data. Henceforth, we compared

the performance of the STP and ALG formulations, taking the previous  for the STP

and the reduced value for the ALG formulation. It is important to remark that simply

reducing  in the STP formulation results in large volumetric changes and unacceptable

measures for the error, whereas in the ALG approach we can control volume changes and

thus keeps the error under control.

Table 3.5 shows the  values for the STP formulation and also the one which resulted

in the best results for the ALG approach, time spent by the linear solver, element-

wise volume change and global volumetric change (VC) for the benchmark problems

simulations using ALG and STP (without ALG) formulations.

It is important to note that three different problems have been considered and for each
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problem a different value for  could be used. Further, after a reference value for  in

each problem was defined, the results from Table 3.5 shows that when the ALG approach

was used with a reduced , an improvement in performance was obtained, the volumetric

changes are under control and the error with this simulation is close to the error without

ALG considering a larger value for .

For the Problem 1 we could not further reduce  for two reasons: when this parameter

is reduced the error increases and the results quickly diverge from the average of the

benchmark data; and the volumetric changes in this problem are quite small, for instance,

ranging from 0.007 to 0.03 when  varies from 70 to 10 kPa. Therefore, in this problem

the ALG approach could not improve performance when using the block preconditioner

and with the nodal preconditioner an improvement of about 24% was obtained.

When  was reduced from 300 to 40 kPa in Problem 2 we obtained a 2⇥ performance

improvement using ALG formulation with the block preconditioner and 60% with the

nodal preconditioner, while keeping the error smaller than 1%. In this case, simply

reducing  in the STP formulation results in a volumetric change of |J̃ � 1| = 0.1, which

is quite large for cardiac mechanics.

For Problem 3 the original  = 1000 kPa from the STP formulation was reduced to

 = 100 kPa resulting in an error below 2%. With this setting the ALG formulation

achieved an improvement of about 91% and 21% for the block and nodal preconditioners,

respectively, and the volume change was kept below the tolerance for the ALG formulation,

whereas for the STP it achieved a higher value. Although the error here was bigger than

the other cases, it can be considered as a satisfactory result within the benchmark problem

3 and comparable to the results of other participants codes in the benchmark as shown in

Figure 3.4(c). To summarize, with this choice of  we obtained an improved performance

while controlling volumetric changes and the error. The results with  = 100 kPa in the

STP formulation delivered a very high error of about 8%, and unacceptable results both

for the key points and volumetric changes.

We also remark that in all problems small global volume changes, denoted in Table 3.5

by VC, have been achieved. In particular for problem 1 very small changes were observed,

whereas for problems 2 and 3 values of the same order of magnitude of tol were obtained.
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Table 3.5: Comparison of STP and ALG: bulk modulus , global volume change (VC),
volumetric changes measured as max |J̃ � 1| within all finite elements, error and time
spent by the linear solver using the block (B-AMG) and nodal (N-AMG) preconditioners.

Formulation  (kPa) VC max |J̃ � 1| error (%) B-AMG N-AMG

Problem 1
STP 70 1e-5 0.01 0.15 847 562

ALG 70 1e-5 0.01 0.14 995 452

Problem 2
STP 300 0.02 0.01 0.86 161 34

ALG 40 0.02 0.04 0.63 76 21

Problem 3
STP 1000 0.01 0.09 0.78 10886 1551

ALG 100 0.03 0.05 1.88 5679 1281

The most significant impact of the ALG formulation is on the iterative solver

performance as shown in Table 3.6 for problems 2 and 3 only. The table presents the

number of Newton iterations and the average of GMRES iterations in the Newton steps

selected at different stages of the solution. The Uzawa iterations are also presented for

the ALG results which were obtained with block preconditioners.
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Table 3.6: Newton iterations and average of GMRES iterations (its) at different loading
levels (�) for the benchmark problems. For ALG results, the Uzawa iterations (Uz) are
also presented. (Problem 2 with STP formulation used  = 300 kPa and with ALG used
 = 40 kPa; Problem 3 with STP formulation used  = 1000 kPa and with ALG used
 = 100 kPa).

Problem 2 Problem 3

STP ALG STP ALG

� Newton (its) Uz Newton (its) Newton (its) Uz Newton (its)

0.1 6 (21.5) 2 7 (9.9) 6 (32.7) 3 10 (14.1)

0.2 7 (20.0) 2 7 (9.0) 6 (32.8) 2 7 (13.0)

0.3 6 (19.0) 2 7 (9.0) 7 (29.9) 2 10 (12.5)

0.4 6 (18.3) 2 7 (8.8) 7 (29.0) 2 10 (12.2)

0.5 5 (18.0) 2 5 (8.6) 7 (28.1) 2 7 (11.8)

0.6 4 (17.2) 2 6 (8.0) 7 (28.9) 2 8 (12.0)

0.7 4 (17.0) 3 14 (8.0) 6 (28.8) 2 6 (12.0)

0.8 4 (17.0) 2 5 (8.0) 5 (27.0) 2 10 (12.2)

0.9 4 (17.0) 2 15 (8.0) 5 (27.2) 2 7 (12.5)

1.0 4 (16.8) 2 20 (8.1) 4 (28.5) 3 16 (14.7)

In Problem 2, GMRES iterations decreased significantly while Newton iterations

increase. This increase in Newton iterations happened because ALG formulation had more

difficulty to enforce the volume change imposed, where two or three Uzawa iterations have

been performed, however, as we observed this did not impact on the overall performance,

as shown in Table 3.5. The same behavior took place in Problem 3, where the number of

GMRES iterations decreased while there was an increase in the number of Newton steps.

However, the ALG formulation still improved the overall performance of the iterative

solver, which was the most demanding part during the solution process.

3.4 Effect of tolerance on ALG

We finally assessed the effect of choosing different values in the ALG approach for

the tolerance (tol), as detailed in Algorithm 2. Typical values for volumetric changes

within the cardiac wall are between 5% and 10% due to the intravascular blood flow, as

demonstrated experimentally in Yin et al. (1996).
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Although tol is a tolerance for the local volumetric change restriction within a finite

element, given by |J̃ � 1|, we used the value of 0.05 for it since it resembles typical

volume changes in cardiac tissue. We note however that the choice of tol is very

important and could result in improved performance or better results in terms of enforcing

incompressibility. Therefore, we carried out an experiment to study its effect on these

features (linear solver time and error).

Table 3.7 shows the results of Problem 3 simulations for  = 100 kPa with different

values for the ALG algorithm tolerance (tol). In one hand the results shows that increasing

this tolerance we get more volumetric changes and thus higher values for the error

in contrast with a shorter time spent by the linear solver with block and nodal AMG

preconditioners, since the ALG converges more quickly. On the other hand, when stricter

values for tol are used, such as 0.02 or 0.01, smaller volume changes are observed together

with smaller values for the error. However, additional iterations of the ALG algorithm

are required for convergence which in turn results in longer execution time.

Table 3.7: Effect of the tolerance (tol) on the error and on the linear solver time using
ALG using the block (B-AMG) and nodal (N-AMG) preconditioners.

ALG tol errorepi (%) errorendo (%) B-AMG (s) N-AMG (s)

0.01 0.36 0.13 6090 1619
0.02 0.77 0.46 5654 1544
0.05 1.88 1.39 5678 1281
0.10 3.48 2.85 4083 1108

3.5 Discussions

Our results show that the ALG formulation combined with an efficient preconditioner,

such as an AMG preconditioner evaluated here both with the block and nodal versions,

brought a significant gain of performance in all experiments carried out within the cardiac

mechanics benchmark suite. In addition, the ALG approach enabled to control the

volume change a priori, that is, a tolerance is chosen before the simulation and the

ALG formulation with the Uzawa algorithm guarantees that this volume change will be

respected. Without the Augmented Lagrangian it is necessary to choose a value of ,

perform the simulation and only after the simulation the volume change can be verified

to decide if this volumetric change is acceptable or not.
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With respect to the AMG preconditioners, a detailed comparison of the block and

nodal AMG preconditioners for cardiac mechanics was presented. Both preconditioners

were efficient and robust for the cardiac mechanics benchmark problems, and they

converged in a similar number of iterations. Increasing the problem size (by refining the

meshes) confirmed the robustness of both preconditioners, keeping a constant number of

iterations. However, the nodal preconditioner proved to be more efficient in terms of total

execution time, even in case where the block preconditioner converged in fewer iterations.

This result is somewhat non-intuitive, and we have explored a wide range of parameter

settings in the PETSc solver in order to improve the computational performance of

the block preconditioner. Although tuning solver parameters yield slight performance

increases for certain cases, the conclusion remains that the nodal preconditioner is more

efficient in terms of computational time.
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4 Uncertainty quantification in passive

filling simulations

This chapter presents results for experiments aimed to study how geometrical uncertainties

are propagated through a model of passive cardiac mechanics. We hypothesize that

uncertainty in wall thickness is at least as important as uncertainty in constitutive

parameters, and test this hypothesis by performing UQ and sensitivity analysis for passive

inflation of an idealized left ventricle. The relatively simple case of a passive LV was chosen

to limit the complexity and number of parameters in the model, and thereby facilitate a

quantitative study and interpretation of the results. The results presented in this chapter

were published in the work Campos et al. (2019).

4.1 Settings

The parameterized LV geometry described in section 2.4.2 is used, where the wall thickness

may be varied through the domain to create a patient-specific model. The baseline values

for the helix angles of the fiber orientation considered in this work are: ↵endo = 50�, ↵epi =

�50�, �endo = �65� and �epi = 25�, which are based on the values used by Rodríguez-

Cantano et al. (2019).

In order to reproduce the LV passive filling phase, a pressure is applied to the

endocardium surface increasing from 0 to 2 kPa with steps of 0.2 kPa, as similarly used

by Choi et al. (2010); Shavik et al. (2017) and Gao et al. (2017). On the epicardial

surface we assume homogeneous Neumann boundary conditions (i.e. stress free), while

for the basal plane (z = 0 cm) we apply the following Dirichlet boundary conditions: all

points are fixed in z-axis, and the epicardium points on the base plane are fixed in all

directions, as used by Shavik et al. (2017) and similarly in Land et al. (2015).

The UQ and SA analyses in this work were performed using the ChaosPy toolbox.

The gPC was created via collocation method, where the model realizations were obtained

using the solver described previously. The Sobol sensitivity indices were also computed



99

from the constructed gPC via ChaosPy.

4.2 Quantities of interest

Six quantities of interest (QoI) were considered in the present study: base and apex

deformed wall thickness, the cavity volume, the ventricular torsion and mean fiber stress

and strain. Next we specify the definition and calculation of each QoI in more detail.

The deformed wall thickness at the base and apex are quantified by the ratio of

deformed (end-diastolic) to undeformed (reference) wall thickness. It is defined by

WD =

q
(p⌦

epi
� p⌦

endo
)2

q
(p⌦0

epi
� p⌦0

endo
)2

, (4.1)

where the numerator represents the distance between a point in the epicardium p⌦
epi

and

a point in the endocardium p⌦
endo

at the deformed configuration; the denominator is the

distance between a point in the epicardium p⌦0
epi

and a point in the endocardium p⌦0
endo

at

the reference configuration.

The cavity volume is the volume of the left ventricle cavity at the end of the passive

filling, which is the volume between the endocardium surface in the deformed configuration

and the basal plane.

The normalized LV torsion, T , describes the twist undergone by the left ventricle at

the end of the passive filling. This measure is based on the rotation between basal and

apical slices, as shown in Figure 4.1(a). It was computed as in Shavik et al. (2017) through

T =
(�apex � �base)(⇢apex + ⇢base)

2D
, (4.2)

where ⇢apex and ⇢base are the mean radius of the basal and apical slices, respectively, and

D is the distance between the slices. In order to ensure that the slice diameter is not

zero, we chose D = 5 cm, which is smaller than the long axis. Also �apex and �base are the

rotation angles at apical and basal slices. Points on endocardial and epicardial surfaces

were used to compute an average value of T , due to the variation of twist across the

wall (Shavik et al., 2017).
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Figure 4.1: Quantities of interest. (a) Left ventricular torsion sketch adapted from Shavik
et al. (2017) with circles representing the basal and apical slices. (b) Measured positions
for WD at the apex and base, mean fiber stress and strain at segment 12 (highlighted in
blue).

Finally, the fiber stress �f and fiber strain ef are computed using

�f = fT�f , (4.3)

ef = f0
TEf0, (4.4)

where � is the Cauchy stress tensor, E is the Green-Lagrange strain tensor, f0 is the

reference fiber direction and f is the deformed fiber direction. To simplify the analysis it

is useful to define scalar output quantities, and we therefore computed the mean stress

and strain over the AHA segment 12 (blue region in Figure 4.1(b)), which was considered

as a reference segment in the experiments described next.

4.3 Uncertain inputs and experiments

SA and UQ analyses were performed for a series of experiments considering uncertainties

in wall thickness and in the material parameters in (2.14), to assess the impact of geometry

on QoIs. For material parameter uncertainty we considered global, uniform parameters,

while the uncertain wall thickness was applied for different regions. Initially we used the

same uncertain wall thickness value for all segments, resulting in LV geometry samples

with uniform thickness throughout the ventricle (Experiment 1).
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Additional experiments were performed using more realistic geometries, where the

wall thickness was allowed to vary from segment to segment. In order to simplify the

analysis we applied the wall thickness uncertainty in smaller regions of the ventricle, which

were chosen to be similar to a pathological case of asynchronous electrical activation

(Experiments 2 and 3). The selected segments correspond to the lateral wall, which

according to Smiseth and Aalen (2019) in case of asynchronous electric activation of the

left ventricle, such as in patients with left bundle branch block (LBBB), tends to become

thicker as a result of the increased workload due to out of phase contractions of parts of

the left ventricle. This leads to an asymmetric LV wall thickness distribution, which we

represent here with uncertainty in the lateral region.

Figure 4.2 presents the regions where wall thickness was considered as uncertain with

colored segments, where (a) represents the first experiment with constant wall thickness

and (b) and (c) represents the thickness variability in different segments of the LV lateral

region reproducing pathological conditions.
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Figure 4.2: 17 AHA segments diagrams representing the three experiments performed,
with the colored segments indicating where the wall thickness was considered as uncertain.
(a) Experiment 1: uncertain constant wall thickness. (b) Experiment 2: uncertainty in
medial-lateral and apical-lateral regions. (c) Experiment 3: adding uncertainty in basal-
lateral and apical-lateral segments.

The baseline wall thickness values for all segments are reported in Table 4.1, which

were extracted from Bai et al. (2015), for healthy patients.
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Table 4.1: Baseline values of the left ventricle wall thickness for each AHA segment
reported by Bai et al. (2015).

Segment Region Wall thickness (cm)

1 Basal anterior 0.621

2 Basal anteroseptal 0.638

3 Basal inferoseptal 0.623

4 Basal inferior 0.582

5 Basal inferolateral 0.538

6 Basal anterolateral 0.666

7 Mid anterior 0.640

8 Mid anteroseptal 0.706

9 Mid inferoseptal 0.841

10 Mid inferior 0.664

11 Mid inferolateral 0.594

12 Mid anterolateral 0.692

13 Apical anterior 0.547

14 Apical septal 0.619

15 Apical inferior 0.540

16 Apical lateral 0.587

17 Apex 0.437

Figure 4.3 shows geometrical samples generated in the third experiment, where it is

possible to see the variability of wall thickness in the lateral region. Note that although

the wall thickness of some segments such as 8, 9 and 14 were not considered as uncertain,

they are affected by the neighboring segments during the generation of the LV sample, as

can be noticed in geometrical sample #76.
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Figure 4.3: Long axis section of geometrical samples used in the third experiment. Color
maps represents the endocardial to epicardial distance.

An overview of the uncertain input parameters is shown in Table 5.1, where the

chosen probability distributions and ranges of uncertainty are presented. For the material

parameters and fiber angles, we chose the distributions in agreement with Osnes and

Sundnes (2012) and Rodríguez-Cantano et al. (2019), using a coefficient of variation

(COV) of 15%. The coefficient of variation is the ratio between standard deviation (STD)

and mean values: COV = 100 · Std
Mean% that provides information about the variability of

some quantity. The LV wall thickness was also considered as an uncertain model input,

through a scalar random variable with normal probability distribution using 15% and 30%

for COV, representing a range of healthy and pathological variabilities, respectively. The

chosen ranges of variability are in agreement with values reported by Bai et al. (2015)

and Prinzen et al. (1995).
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Table 4.2: Model inputs considered as uncertain.

Model input Unit Distribution Mean COV

C kPa Lognormal 1.1 15%

bf Normal 6.6 15%

bt Normal 4.0 15%

bfs Normal 2.6 15%

Angle ↵endo degrees Normal 50 15%

Angle ↵epi degrees Normal �50 15%

Angle �endo degrees Normal �65 15%

Angle �epi degrees Normal 25 15%

Bulk modulus () kPa Normal 100 15%

Wall thickness (wt) cm Normal 0.64 15% / 30%

A second order generalized polynomial chaos was used in these analyses, as used

in Osnes and Sundnes (2012), which was constructed via collocation method using 3P

samples, with P computed through (2.77). The procedure used to select this settings

is described in the next section. Mean and standard deviation were computed for the

quantities of interest through gPC in order to assess the uncertainty propagation, and the

parameter sensitivities were assessed by computing the main and total Sobol sensitivity

indices for each variable.

4.4 Surrogate model calibration

Using Experiment 1 settings, polynomial chaos expansions with orders between d = 1

and d = 4 with samples size between Ns = P to Ns = 3P were generated and UQ

analysis was carried out with COV = 15% for all uncertain inputs. Table 4.3 presents

the maximum relative error ✏r for the variance and the maximum absolute error ✏a for

the total Sobol indices, as described in Section 2.9.5, using different number of samples,

where the notation ✏r(1,2) was used to denote the error between the polynomial orders 1

and 2, while ✏r(2,3) is the error between orders 2 and 3, and so on.
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Table 4.3: Maximum relative error (reported as %) between all quantities of interest for
variance and total Sobol sensitivity indices when the polynomial order and the number
of samples are varied.

Number of samples Variance error (%) Sobol indices error (%)

Ns ✏r(1,2) ✏r(2,3) ✏r(3,4) ✏a(1,2) ✏a(2,3) ✏a(3,4)

P 15370.42 86.77 49.25 70.88 51.77 29.64

2P 28.20 31.98 27.37 10.40 10.80 8.5

3P 30.61 5.19 5.07 5.24 4.68 4.73

From the results we found that sufficient accuracy was obtained with a polynomial

degree d = 2 and Ns = 3P for the experiments. For instance, for the setup used in

Experiment 1 the errors between d = 2 and d = 3 using 3P = 198 samples were 5.19%

for the variance and 4.68% for the total Sobol sensitivity indices. Additionally, since

the errors did not decay significantly using polynomial orders 3 and 4, a second order

polynomial chaos was used for the UQ analyses presented in this work.

Table 4.4 presents ErrLOO and Q2 from the Leave-One-Out cross validation test, for

each quantity of interest considered in the experiment, where Q2 was greater than 0.9 for

all quantities, except WD Apex. The results using second order polynomial chaos and

3P samples were considered satisfactory and, therefore, this setting was adopted for the

following experiments.

Table 4.4: Leave-one-out error and Q2 coefficient for each QoI.

QoI ErrLOO Q2

WD Base 4.8064 ⇥ 10�5 0.9434

WD Apex 9.4643 ⇥ 10�5 0.7793

Cavity Volume 2.2793 ⇥ 10�2 0.9992

Torsion 5.9910 ⇥ 10�3 0.9765

Stress 3.4443 ⇥ 10�2 0.9954

Strain 1.1132 ⇥ 10�6 0.9987
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4.5 Preliminary experiment

A preliminary experiment similar to the one presented by Rodríguez-Cantano et al. (2019)

was performed to compare the results with respect to other studies in the context of SA

and UQ for cardiac mechanics. In this experiment, the parameters from Guccione model

(C, bf , bt and bfs), fiber angles, and  were considered as uncertain with COV = 15% and

a LV geometry with constant wall thickness of 0.64 cm was used. Note that in this first

experiment the uncertainty in geometry was not considered. The results showed that the

parameter C, related to material stiffness, presented the highest Sobol main sensitivity

index, as shown in Figure 4.4. This result is in agreement with findings reported by Osnes

and Sundnes (2012) and Rodríguez-Cantano et al. (2019).
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Figure 4.4: Main (Sm) and Total (St) Sobol sensitivity indices for the preliminary
experiment.
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4.6 Experiment 1: Constant wall thickness

The first experiment considered all model inputs from Table 5.1 as uncertain and

considered the same uncertain wall thickness in all LV segments, resulting in geometrical

samples with constant thickness throughout the ventricle.

Table 5.3 presents the uncertainty propagation for the chosen quantities of interest,

through the values of mean, standard deviation and coefficient of variation. The QoI

most affected by uncertainties in the chosen model inputs were torsion, stress and strain,

where the variability with respect to the mean reached 58%, 64% and 27%, respectively.

As expected, increasing the uncertainty range of wall thickness led to a higher variability

in all QoIs, but the increase was particularly pronounced for the stress, for which the

variability more than doubled.

Table 4.5: Experiment 1: uncertainty propagation for each quantity of interest,
considering 15% and 30% of uncertainty for wall thickness and 15% for the other model
inputs.

QoI Mean STD COV

15% 30% 15% 30% 15% 30%

WD Base 0.82 0.81 0.03 0.04 4.0 5.0

WD Apex 0.91 0.90 0.02 0.03 3.0 4.0

Cavity volume 81.65 82.49 5.63 7.33 7.0 9.0

Torsion 1.23 1.35 0.59 0.78 48.0 58.0

Mean stress 10.83 12.68 2.92 8.11 27.0 64.0

Mean strain 0.16 0.16 0.03 0.04 19.0 27.0

Figure 4.5 shows the Sobol sensitivity indices for each QoI, considering 15% and 30% of

uncertainty in wall thickness and 15% in the other inputs. The striped bars represent the

main sensitivity indices Sm and the dotted bars are the total sensitivity indices St. From

the main Sobol sensitivity indices it may be noticed that the material stiffness parameter

C and wall thickness (wt) are the most sensitive model inputs. When the uncertainty

range is 15% for all model inputs, C is the input with the highest impact on WD apex,

WD base and cavity volume, where it is responsible for about 40% of the total variability.

For strain measures, C is as important as wall thickness and bf , while mean stress is very

sensitive to wall thickness. Only in torsion a different behavior was observed, where bt
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is responsible for 40% of the resultant variability. However, when the uncertainty range

of wall thickness is 30% all quantities, except torsion, are very sensititive to this input.

Furthermore, the low total sensitivity indices of , bfs and fiber angles indicate that these

inputs can be fixed to an arbitrary value within their range of uncertainty, without much

impact on the results.
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Figure 4.5: Experiment 1: Main (Sm) and Total (St) Sobol sensitivity indices for each
quantity of interest considering 15% and 30% of uncertainty for wall thickness and 15%
of uncertainty for the other parameters.
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4.7 Experiment 2: Uncertainty in medial-lateral and

apical-lateral regions

Now the uncertainty in wall thickness is considered only in a few segments, instead of in

the entire left ventricle. In this experiment three segments have the same uncertain value:

one apical and two medial segments of the lateral region, while the rest of the segments

are fixed to the mean values reported in Table 4.1.

As shown in Table 4.6, torsion, stress and strain are again the quantities most affected

by model input uncertainty. In this experiment, it was observed that mean stress and

strain measures (at the selected segment 12) varied less than in the first case.

Figure 4.6 shows that wall thickness has a high impact in torsion, stress and strain.

Also, according to the Sm index, wall thickness has a small impact on the WD apex and

base, which is likely because these quantities are measured outside the region of uncertain

wall thickness.

Table 4.6: Experiment 2: uncertainty propagation for each quantity of interest,
considering 15% and 30% of uncertainty for wall thickness and 15% for the other model
inputs.

QoI Mean STD COV

15% 30% 15% 30% 15% 30%

WD Base 0.81 0.81 0.025 0.028 3.1 3.5

WD Apex 0.86 0.86 0.029 0.027 3.4 3.1

Cavity volume 82.05 82.18 5.222 5.321 6.4 6.5

Torsion 1.87 2.04 0.849 1.368 45.4 67.2

Mean stress 11.56 12.63 2.573 5.658 22.3 44.8

Mean strain 0.16 0.17 0.029 0.039 17.6 23.2
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Figure 4.6: Experiment 2: Main (Sm) and Total (St) Sobol sensitivity indices for each
quantity of interest considering 15% and 30% of uncertainty for wall thickness and 15%
of uncertainty for the other parameters.

4.8 Experiment 3: Including uncertainty in apex and

basal-lateral region

In the last experiment we increased the region of uncertainty in wall thickness by adding

the apex segment and two basal segments to the previous setting (b) (see Fig. 4.2).

This rendered the wall thickness in the entire lateral region as uncertain, as shown in

Figure 4.2(c).



111

The behavior was similar to the previous experiment, where torsion, stress and strain

are the most impacted quantities. That is, when 15% uncertainty is considered for all

inputs, torsion and stress were more influenced by wall thickness; and strain by C and

wall thickness. Therefore, Figure 4.7 presents only the Sobol indices for the quantities

where the changes were significant with respect to the previous experiment. Note that WD

for apex and base were more impacted by wall thickness, because now the wall thickness

varies in the basal and apical segments. Furthermore, when the wall thickness uncertainty

range is 30% it dominates the variability for all quantities, except for cavity volume, as

in the previous experiment.
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Figure 4.7: Experiment 3: Main (Sm) and Total (St) Sobol sensitivity indices for torsion,
WD base and apex considering 15% and 30% of uncertainty for wall thickness and 15%
of uncertainty for the other parameters.
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4.9 Global effects on stress and strain

For simplicity, fiber stress and strain measures observed in the previous experiments were

considered as the mean value over all the elements of the segment number 12 in the LV

medial-lateral region. Here, to assess the spatial variation of stress and strain, the mean

value of these quantities over each of the 17 segments was computed from the experiment

3 with 30% uncertainty for wall thickness and 15% uncertainty for the other parameters.

Figure 4.8 presents uncertainty propagation for these mean values of all segments.

In basal segments lower values of the mean stress and strain are observed, whereas in

the medial and apical segments the mean stress is higher. Note that, as expected, the

deviation was higher in the segments (and also in their neighbors) where uncertainty in

wall thickness was considered in experiment 3 (see Figure 4.2(c)). The behavior of mean

stress and strain at the apical segment are similar, where more deviation was observed.

(a)

(b)

Figure 4.8: Bull’s eye plot of the uncertainty propagation in mean fiber (a) stress and (b)
strain for all segments. The uncertainty range was 30% for wall thickness and 15% for
the other parameters.
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4.10 Discussions

The goal of the present chapter was to study the importance of uncertainty in LV

wall thickness, material properties and fiber orientation in cardiac mechanics outputs.

An image-based personalized geometrical model is usually considered an important

component of a patient-specific cardiac mechanics model, and such a geometry will

include uncertainties from a number of sources. In this work it has been shown, through

uncertainty quantification and sensitivity analyses, how these uncertainties can impact

important quantities of interest.

A parameterized strategy was applied in the generation of LV geometries, which is

based on the 17 AHA segments diagram. This approach enables the construction of

geometrical samples with thickness varying throughout the domain using scalar random

variables, instead of more complex approaches such as stochastic fields (Biehler and Wall,

2018; Biehler et al., 2015). Furthermore, this strategy allows the use of available data

from the literature, as those presented in the work of Bai et al. (2015), for wall thickness

variability to generate different geometric models.

A partial verification of our model was performed by running preliminary UQ and

SA studies considering uncertainties in material parameters and fiber orientation, and

comparing the results with previous works. The results were found to be in agreement

with the results reported by Osnes and Sundnes (2012) and Rodríguez-Cantano et al.

(2019).

The main finding of the present work is that wall thickness proved to be at least as

important as material parameter uncertainty in the majority of the cases. In the first

experiment all quantities except torsion, were significantly influenced by uncertainty in

wall thickness. As expected, the impact of wall thickness uncertainty becomes more

pronounced when the coefficient of variation is increased to 30%, which is in the range of

variations seen during pathological conditions, and therefore within the range of expected

variation from manual image segmentation. Additionally, in all experiments the coefficient

of variation for torsion, mean stress and strain was relevant, achieving large values, as

shown in Tables 5.3 and 4.6. Interesting is to note that these are exactly the quantities

of interest which were most impacted by changes in wall thickness.

Cavity volume was only significantly affected by wall thickness when it was varied

uniformly across the left ventricle, while the regional uncertainty hardly impacted this QoI
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at all. Local measures, such as WD apex and base are mostly influenced by wall thickness

when this input varies in the measured location. On the other hand, the assumption of

uncertain wall thickness only in the lateral region, which could be relevant for pathological

conditions as presented in the work of Prinzen et al. (1995), has a high impact in torsion,

which might occur due to asymmetric LV thickness.

The use of different uncertainty range for wall thickness, representing healthy and

pathological variability showed the different impacts in the quantities of interest. In the

first case material stiffness and wall thickness are the major source of variability in QoI,

while in the second scenario wall thickness becomes even more important in the majority

of the quantities.

The results of this work suggest that the generation of geometrical models for the

left ventricle is an important step in cardiac mechanics simulations for clinical use. For

instance, fiber stress was very impacted due to uncertainties in wall thickness, and this

is a quantity difficult to be computed from experiments and an accurate way to obtain

its value is through patient-specific simulations. Furthermore, fiber stress is an important

indicator in cardiac diseases involving remodeling process, where its quantification can

guide interventions to reduce abnormal stress. This sheds light on the importance

of accurate and robust image segmentation and measurements for automatic or semi-

automatic mesh generation. When considering pathological cases, where a remodeling

of the LV wall is observed, this is even more important. In summary, this makes the

generation of patient-specific geometries for clinical applications even more challenging.

Previous works (Biehler and Wall, 2018) reported that stress is very influenced by

uncertainties in wall thickness, where the peak wall stress in abdominal aortic aneurysms

is sensitive to variations in wall thickness.

In the context of cardiac mechanics, a study of passive filling simulations varying

the wall thickness and curvature of a thick-walled ellipsoid was reported by Choi et al.

(2010), where both geometrical aspects impacted significantly the transmural fiber stress

and strain. The present work is in agreement with these findings, since the experiments

showed wall thickness being responsible for more than 70% of stress variability in all

cases. This quantity was the one most strongly affected by wall thickness, which is to be

expected from fundamental mechanical considerations and the definition of stress as force

per area. Furthermore, and also in line with basic mechanical considerations, the impact
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on stress is local, in the sense that a region of uncertain wall thickness will mostly impact

the stress in the same region. Strain is also significantly impacted due to uncertainties in

wall thickness, mainly when the uncertainty range is 30%.
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5 Uncertainty quantification of left

ventricle simulations during the cardiac

cycle

This chapter presents the results for uncertainty quantification analysis in left ventricle

simulations during the full cardiac cycle. The simulations take into account uncertainties

in the ventricular geometry, fiber orientation, constitutive parameters, active stress

magnitude, and in parameters of the coupled circulatory model. Uncertainty

quantification and sensitivity analyses are performed to determine how important

quantities of clinical interest, such as ejection fraction, pressure, and stress, are affected

by these uncertainties and which model inputs have the highest impact on each computed

quantity of interest. The results presented in this chapter are going to be submitted as

a manuscript to a special issue on Uncertainty Quantification in Cardiac Modelling and

Simulation from the Philosophical Transactions of the Royal Society A.

5.1 Settings

The cardiac tissue deformation is described by the quasi-static mechanical problem

presented in (2.11), using the Guccione et al. (1995) constitutive model to describe the

passive behavior of the tissue and the Kerckhoffs et al. (2003) model to represent the

active contraction. To represent the ventricular activity during the cardiac cycle, a time

varying pressure boundary condition is applied to the endocardial surface. This pressure is

determined from the lumped parameter model presented in Section 2.6, which represents

the circulatory system.

The parameterized LV geometry described in section 2.4.2 is used, where the wall

thickness may be varied through the domain to create a patient-specific model. On the

epicardial surface we assume homogeneous Neumann boundary conditions (i.e. stress

free), while for the basal plane (z = 0 cm) we apply the following Dirichlet boundary

conditions: all nodes are fixed in z-axis, and the epicardium nodes on the base plane are
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fixed in all directions, as used by Shavik et al. (2017).

5.2 Experiments

Uncertainty quantification and sensitivity analyses were performed for left ventricle

simulations during the cardiac cycle in a series of four experiments. A cardiac cycle

of 900 ms was considered, where the active stress was applied simultaneously in all points

at time 200 ms. Uncertainties were considered in the parameters of the constitutive

model, regional wall thickness, fiber angles, maximum value for active stress, and in the

parameters of the circulatory model. The uncertain inputs were described through Normal

distributions with 5% coefficient of variation (COV), where COV = 100 · Std
Mean%.

The geometrical samples were constructed using the parameterized approach based on

the 17 AHA segments. The long and short axis lengths were fixed to 60 mm and 40 mm,

respectively. The uncertainty in wall thickness was considered through a scalar random

variable. For this, a multiplicative factor was introduced to change the wall thickness

baseline value of each AHA segment as follows:

si = si ⇤ (1 + wts), i = 1, . . . , 17. (5.1)

where si represents the baseline value for wall thickness in the ith segment and wts is a

sample of the random variable wt.

Table 5.1: Uncertain model inputs, described through Normal distribution with 5% for
the coefficient of variation.

Model input Unit Mean value Model input Unit Mean value
C kPa 0.66 Aortic valve resistance (Rao) kPa·ms · ml�1 3.85
bf 6.6 Peripheral resistance (Rper) kPa·ms · ml�1 140
bt 4.0 Venous resistance (Rven) kPa·ms · ml�1 1.4
bfs 2.6 Mitral valve resistance (Rmv) kPa·ms · ml�1 1.75
Wall thickness factor (wt) mm 0 Aortic compliance (Cart) ml · kPa�1 14
Longitudinal fiber angle (↵endo) degrees 60 Venous compliance (Cven) ml · kPa�1 300
Longitudinal fiber angle (↵epi) degrees �60 End-systolic elastance (Ees,LA) kPa · ml�1 0.06
Transverse fiber angle (�endo) degrees �65 Scaling factor for EDPVR (ALA) kPa 0.05867
Transverse fiber angle (�epi) degrees 25 Exponent for EDPVR (BLA) ml�1 0.049
Maximum active stress (Tref ) kPa 75 Time to end-systole (tmax) ms 200

Time constant of relaxation (⌧) ms 25

Experiment 1: In the first experiment the uncertain inputs were the constitutive

parameters of the passive tissue, wall thickness, fiber angles and the maximum
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value for active stress, while the parameters for the circulatory model were fixed to

reference values. The mean value of wall thickness in all segments si of equation (5.1)

was 6.4 mm, resulting in simplified LV geometries with constant wall thickness

throughout the domain.

Experiment 2: This experiment considers the same set of uncertain inputs as the

previous, except for wall thickness. Here, the mean value for wall thickness in each

AHA segment si followed the baseline values reported in the atlas of Bai et al. (2015)

(see Table 4.1) to generate more realistic geometries of the left ventricle.

Experiment 3: In this case the wall thickness uncertainty was considered only in

segments of the lateral region which corresponds to the segments 5, 6, 11, 12, 16 and

17 (see Fig. 4.2(c)). Thus, asymmetric uncertainty in wall thickness is considered

within the physiological range as presented by Bai et al. (2015). This experiment also

adds uncertainty in the parameters of the circulatory model, that is, all parameters

presented in Table 5.1 are considered in this analysis.

Experiment 4: The setting of this experiment is same of Experiment 2, but here

an increase in the uncertainty of wall thickness is considered. Here we represent

errors during the segmentation process as described in the study of Suinesiaputra

et al. (2015), where measurements of left ventricular mass or volumes obtained

by different groups for the same MR images of patients differ in average by 20%

when compared to consensus measurements. Thus, in this experiment we assume

a coefficient of variation for wall thickness of 20%, while for all the other uncertain

inputs COV was 5%.

5.2.1 Quantities of interest

Some local and global measurements were considered as quantities of interest (QoI) in the

analyses. The local measurements were the left ventricle torsion, mean fiber stress and

strain in a chosen AHA segment, which were all measured in the early ejection. Global

quantities were extracted from the pressure volume (PV) loop: ejection fraction, end

systolic pressure and maximal variation of pressure over time.

The normalized LV torsion denoted by T describes the twist of the ventricle in some

time instant and it is based on the rotation between basal and apical slices. In this work

it was considered at the end of the early ejection and was computed as (Shavik et al.,
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2017):

T =
(�apex � �base)(⇢apex + ⇢base)

2D
, (5.2)

where ⇢apex and ⇢base are the mean radius of the basal and apical slices, respectively, and

D is the distance between the slices. The rotation angles at apical and basal slices are

�apex and �base. Due to the variation of twist across the wall, an average value of T was

computed using points on endocardial and epicardial surfaces, as suggested in the work

of Shavik et al. (2017).

The fiber stress �f is calculated using the Cauchy stress tensor � and the fiber direction

in its deformed configuration f :

�f = fT�f . (5.3)

And the fiber strain ef is computed through the Green-Lagrange strain tensor E and

undeformed fiber direction f0:

ef = f0
TEf0. (5.4)

Scalar values of both measures were calculated in order to simplify the analysis, where

the average of stress and strain over the AHA segment 12 was considered as QoI in all

experiments.

The ejection fraction represents the percentage of blood that is pumped each time the

ventricle contracts and characterizes the LV function. It is defined as:

EF =
EDV - ESV

EDV
, (5.5)

where EDV is the end diastolic volume and ESV is the end systolic volume.

The maximal rate of change in pressure over time, denoted by dP/dtmax, is a common

indicator of changes in cardiac contractility and it was obtained through the computation

of the first derivative of pressure with respect to time and taking its maximal value. As

pressure is obtained at discrete time steps, a first order finite difference scheme was used

to compute the derivative. The end systolic pressure was also considered as a QoI, which

is the pressure measured in the end of the ejection phase.
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5.3 Results

This section presents the results of uncertainty quantification and sensitivity analyses for

all experiments. For the sake of compactness, we chose to present and compare only the

experiments where relevant differences appear.

5.3.1 Surrogate model calibration

The quality of the surrogate model was assessed using the Leave-One-Out (LOO) cross

validation test, as presented in Section 2.9.5. The analyses were performed using second

order polynomials chaos constructed with Ns = 3P samples, corresponding to 693 samples

for experiment 3 and 198 samples in experiments 1, 2 and 4. Table 5.2 presents Q2 for the

considered quantities of interest in each experiment, where Q2 from the cross validation

test was greater than 0.9 for most of the quantities, except for torsion. Considering a

trade-off between computational cost and accuracy of the surrogate model, this setting

for the construction of the polynomial chaos was chosen for the experiments presented

next.

Table 5.2: Q2 coefficient obtained by the leave-one-out cross validation test for the QoIs
in each experiment.

Experiment Torsion �f ef ESP EF dP/dtmax

1 0.92 0.98 0.94 0.99 0.99 0.99
2 0.85 0.98 0.97 0.99 0.99 0.99
3 0.88 0.99 0.99 0.99 0.99 0.99
4 0.75 0.98 0.88 0.96 0.97 0.99

5.3.2 Uncertainty propagation

Table 5.3 presents the uncertainty propagation results, which shows that in Experiment 1

the most impacted quantities of interest were ventricular torsion and EF, with 19.1% and

9.6% of variability, respectively. The outputs fiber stress �f , fiber strain ef and dP/dtmax

had also a variability greater than 5% considered for the uncertain inputs. Moreover, the

end-systolic pressure was the quantity less impacted by the uncertainties.

For Experiment 2, the uncertainty propagation results shows that torsion was also the

most impacted quantity with COV= 16%, followed by EF with COV= 13.4%. There was
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a significant increase in the variation of EF when compared to the previous experiment.

The mean value of torsion increased, while its variability was lower than in Experiment

1. The behaviour for the remaining quantities was similar to the previous experiment.

The most impacted quantities in Experiment 3 were torsion and EF, as in the previous

cases. The coefficient of variation for T increased to 21.7%, while for EF it decreased to

10.9%. The variability of fiber stress and fiber strain slightly increased and the remaining

observable outputs had similar variability in comparison with experiments 1 and 2, where

the COV is close to the one considered in the inputs.

In Experiment 4, which is not shown here, all quantities were very impacted by the

uncertainties considered in wall thickness, where the lowest COV was obtained in ESP

(10.5%). Note that here the ejection fraction is the most impacted quantity with 36.8%

of coefficient of variation.

Table 5.3: Mean value, standard deviation (STD) and the corresponding coefficient of
variation (COV) of the quantities of interest for all experiments.

QoI Torsion �f ef ESP EF dP/dtmax

Mean 7.15 100.55 0.21 95.75 0.59 1171.76
Experiment 1 STD 1.36 7.42 0.01 2.97 0.06 75.25

COV 19.1 7.40 5.60 3.1 9.6 6.40

Mean 9.87 112.54 0.22 94.00 0.56 1104.47
Experiment 2 STD 1.58 8.22 0.01 3.94 0.07 71.94

COV 16.0 7.30 5.30 4.2 13.4 6.5

Mean 9.73 112.35 0.22 94.18 0.56 1104.71
Experiment 3 STD 2.11 9.06 0.02 3.24 0.06 58.19

COV 21.7 8.1 7.8 3.4 10.9 5.3

Mean 10.6 118.59 0.22 91.53 0.51 1101.59
Experiment 4 STD 2.72 31.87 0.02 9.57 0.19 187.71

COV 25.7 26.9 10.9 10.5 36.8 17.0

To show the uncertainties in volume and pressures curves, we chose experiment 2 as

an illustrative case. Figure 5.1 shows the variability of pressure and volume during the

cardiac cycle from the 95% prediction interval, where it is notable that end systolic volume

is highly impacted by the uncertainties. The most significant change in the pressure

profile is the peak value, while in the PV-loop it is possible to observe high variations in

the beginning of ejection phase and also at the end of systole, which impacts the ejection

fraction. Results for experiment 1 and 3 showed the same patterns as the results of
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experiment 2.

Figure 5.1: Mean value and variations in the 95% confidence interval for volume and
pressure profiles as a function of time and PV-loop, respectively, for Experiment 2.

Figure 5.2 shows the density distribution estimated for each quantity of interest in

experiments 2 and 4. The distributions are near symmetric in fiber strain and dP/dtmax,

indicating they could be described by normal distributions, while the remaining quantities

presented significant asymmetry. Comparing both experiments, it is clear that variability

is higher in Experiment 4, as expected due to the high COV for the parameters, resulting

in more dispersion in the curves for this case.

Figure 5.2: Probability densities of QoIs for experiments 2 and 4.

5.3.3 Sensitivity analysis

The Sobol sensitivity indices were computed for all quantities of interest, and the results

are shown in Figure 5.3 (top) for Experiment 1. The results show that most outputs
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are strongly influenced by wall thickness, while parameters of the passive constitutive

model have low impact on the outputs. The magnitude of the active stress, Tref , also has

significant impact on the end systolic pressure, ejection fraction and dP/dtmax, but a low

impact on the other quantities. Variation in fiber angles mainly affects LV torsion and

fiber strain.

The time-averaged Sobol sensitivity indices (Figure 5.3 (bottom)) show that the wall

thickness and Tref are the input parameters with the highest impact in pressure and

volume as a time series. This result confirms the influence of both model inputs in the

quantities extracted from the PV-loop, presented in Figure 5.3 (top), such as ESP, EF and

dP/dtmax. The sensitivity analysis for Experiment 2, where regional differences in wall

thickness were incorporated in the geometries, showed a pattern similar to experiment 1,

which considers constant wall thickness.
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Figure 5.3: Experiment 1: sensitivity analysis with main and total Sobol indices (top)
and time-averaged indices (bottom). Striped bars represent the total Sobol indices while
the solid bars show the main indices.

Comparing the results of experiment 3 to those of experiments 1 and 2, we note that

the impact of Tref in the selected outputs increases. The sensitivity of torsion to wall

thickness increased significantly in this case, where this input shows to be as important as
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fiber angles. Wall thickness presented the largest Sobol indices for fiber stress and fiber

strain. These results show that asymmetric uncertainties in wall thickness may cause

more impact on torsion and less impact on EF, ESP and dP/dtmax.

The time-averaged Sobol indices in Figure 5.4 (bottom) show that wall thickness and

Tref are still the inputs with the highest impact on pressure and volume time series.

However, for experiment 3, these quantities were more sensitive to Tref than to wall

thickness.
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Figure 5.4: Experiment 3: sensitivity analysis with main and total Sobol indices (top)
and time-averaged indices (bottom).

In Experiment 4 it was observed that wall thickness dominates the influence in all

QoIs, as expected, since a large variation of wall thickness parameter was considered with

COV=20%. In this case the Sobol indices for wall thickness were greater than 0.7 for

all quantities and about 0.6 for torsion. The fiber angles still have an impact on torsion,

whereas the remaining uncertain inputs have low impact on the quantities of interest.

The time-averaged Sobol index related to wall thickness was greater than 0.9 for pressure

and volume times series.
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5.3.4 Stress and strain time series

The previous experiments considered fiber stress and strain as scalar quantities of interest

extracted in the beginning of ejection phase at segment 12. Figure 5.5 shows stress and

strain time series to analyze the uncertainty of these quantities during the entire cycle.

Figure 5.5(a) presents the mean stress for the whole ventricle over time, followed by

the stress time series in each AHA segment. The segments of the medial region presented

the largest values of stress and the variability is also larger in medial and apical regions,

whereas basal segments presented a lower deviation from the mean. Furthermore, the

significant variation is located in the time interval of the ejection phase. Figure 5.5(b)

presents the time series for the mean fiber strain, where it can be noted that the more

significant variability is also during the ejection phase. The time-averaged Sobol indices

for these quantities showed that wall thickness and Tref are the uncertain inputs with the

highest impact on both time series.
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Figure 5.5: Experiment 2: uncertainty propagation for (a) stress and (b) fiber strain time
series in each AHA segment si, for i = 1, . . . , 17. The figures also show the mean stress
and fiber strain over the whole ventricle (top left).
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5.4 Discussions

The aim of this chapter was to study the impact of uncertainties in different inputs and

also to determine the most important parameters with respect to the outputs of a cardiac

mechanics model for full cycle simulations. The model parameters considered in this study

were geometry (regional wall thickness), fiber orientation, constitutive model properties,

active stress magnitude and the parameters of the circulatory model used to reproduce the

time varying pressure in the LV cavity. Then, uncertainty quantification and sensitivity

analyses were performed to assess the impact on quantities that are important in clinical

use.

A parameterized approach based on the 17 AHA segments diagram was used to

incorporate uncertainties in the LV geometry, through the wall thickness value in each

segment. This approach allows changes in the left ventricle shape based on quantities with

a direct clinical interpretation. Uncertainties can be incorporated in the entire ventricle

to represent uncertainties for instance in image segmentation, or regionally to represent

pathology or some region of increased variability. Furthermore, this strategy enables the

use of scalar random variables for wall thickness instead of random fields (Rodríguez-

Cantano et al., 2019; Biehler and Wall, 2018), which are more complex to be performed.

LV wall thickness measurement in the 17 AHA segments can be found in the literature,

as in the atlas developed by Bai et al. (2015) that present the wall thickness values and

the variability among patients for each AHA segment.

All uncertain inputs were described by normal distribution with 5% coefficient of

variation, which is within the range of uncertainty usually considered. The experiments

showed that torsion and ejection fraction were the most affected quantities by the

uncertain inputs. The main responsible inputs to their variability were the wall thickness,

the magnitude of the active stress and the angles related to the longitudinal fiber direction.

Different tests were performed to incorporate uncertainty in wall thickness, where

experiment 1 and experiment 2 obtained similar results, showing that variations in the

mean values of wall thickness do not cause a different behaviour in the analyses when

uncertain wall thickness is considered in a homogeneous manner. However, when wall

thickness is varied only in the lateral region of the ventricle as in experiment 3, torsion

and fiber strain become more sensitive to this input, whereas end systolic pressure, ejection

fraction and dP/dtmax become less sensitive to wall thickness and more sensitive to active
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stress. Experiment 4 considered a large variability in wall thickness and it was observed

that uncertainties from this input dominates the impact on all quantities of interest. This

case reflects a variability caused by errors during the segmentation process, as presented

in the work of Suinesiaputra et al. (2015). The propagation of segmentation errors used

to reconstruct LV geometry can substantially affect the models predictions.

It was verified that parameters of the circulatory model have a small contribution in

the variability of the observed quantities, including the time series quantities. Therefore,

these parameters could be fixed in a value within their range of uncertainty. However,

a larger variability for these inputs is yet to be tested. In the near future, we plan to

perform new experiments, including larger uncertainties on different parameters to study

how this would affect forward uncertainty quantification and sensitivity analysis.

An interesting result was presented in the time-averaged Sobol sensitivity indices,

where the magnitude of the active stress has shown high impact in the pressure and

volume time series. Consequently, the quantities computed from the PV-loop, such as

ejection fraction, were very sensitive to uncertainties in active stress. Tref changes the

level of contractility, which in turn affects the pressure and volume of the LV cavity, as

reported by Kallhovd et al. (2019).

Other works (Rodríguez-Cantano et al., 2019; Campos et al., 2019) have also used the

Laplace-Dirichlet algorithm to assign the fiber orientation in LV geometries and reported

that uncertainty in these angles did not impact significantly quantities of interest extracted

at the end of the passive filling phase. However, the present study which considered the

full cardiac cycle showed that LV torsion and fiber strain extracted at early ejection are

very sensitive to the angles related to fiber direction, which is expected due to the LV

contraction caused by the active stress applied in the fiber direction.

As reported by Choi et al. (2010) and in the last chapter, it was observed that wall

thickness has the largest impact on fiber stress. The analysis of uncertainty propagation

for fiber stress and strain time series showed that these quantities presented significant

variability at the ejection phase. The deviation are larger in the medial and apical region

than basal region. The sensitivity analysis showed that these time series are more sensitive

to wall thickness and the magnitude of active stress.

Finally, the present study has some limitations in the sense that long and short

axis lengths were not considered, and as reported by Barbarotta and Bovendeerd (2019)
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the LV size can influence strain. Furthermore, only models of the mechanical function

were considered, and the further investigation of strongly coupled electromechanical

models (Hurtado et al., 2017), where tissue will locally contract at different times and the

electrical activity can impact in the active stress, can further advance this study.

In summary, the present study showed that the geometrical reconstruction and fiber

orientation assignment are more important than parameters of the constitutive and

circulatory models, highlighting the need of an accurate process in the generation of

geometrical models. Uncertainties in these inputs have significant impact in important

quantities such as ejection fraction and fiber stress. The magnitude of the active stress

is also very important and can cause significant variations in the ventricular function

during the cardiac cycle. Furthermore, the presented analyses can guide other works in

the construction of simplified models with lower computational cost, where geometrical

aspects should be prioritized.
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6 Conclusion

The present work focused on uncertainty quantification and sensitivity analysis for cardiac

mechanics simulations. Analyses were performed in simplified and personalized geometries

of the left ventricle to verify the uncertainty propagation in model predictions and the

influence of each uncertain input in the clinical quantities studied. Additionally, an

Augmented Lagrangian formulation combined with an algebraic multigrid preconditioner

for the numerical solution of cardiac mechanics problems was studied.

Initially, analyses for cardiac mechanics simulations reproducing the left ventricle

passive filling phase were performed. LV wall thickness, fiber orientation and constitutive

parameters were considered as uncertain model inputs, where a parametrization of the

left ventricle geometry was used to consider uncertainties in regional wall thickness.

The results showed that uncertainties in wall thickness impact the chosen quantities

of interest in the same proportion of uncertain stiffness or even more in some cases.

Particularly, the experiments showed that stress is highly influenced due to uncertainties

in wall thickness, which is a quantity difficult to be measured and generally it is computed

through computational models. The experiments also showed that biological variability in

healthy patients is sufficient to impact the quantities of interest and this impact increases

significantly when pathological variability is considered.

Next, analyses were performed considering the left ventricle function during the

entire cardiac cycle, which allowed the assessment of important quantities used in

clinical applications. The input parameters considered were the regional wall thickness,

fiber orientation, constitutive material properties, active stress and circulatory model

parameters used to prescribe pressure loading. The results showed that torsion and

ejection fraction are the quantities most impacted by the uncertain inputs and all

quantities are very sensitive to the active stress magnitude as well as by wall thickness.

When wall thickness varies only in the LV lateral region, the outputs become less sensitive

to this uncertain input, except for torsion which becomes more sensitive to wall thickness.

Furthermore, the volume and pressure over time were very sensitive to the magnitude

of the active stress and wall thickness. Therefore, the results have shown that patient-

specific simulations requires accuracy in the processes of geometry reconstruction, fiber
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orientation assignment and the choice of active stress magnitude.

In addition, numerical improvements of the cardiac mechanics solver were also

presented. The proposed Augmented Lagrangian formulation combined with the AMG

preconditioner brought more efficiency for the Krylov iterative solver in the simulations.

We also showed that the ALG formulation allows to control volumetric changes in a

priori fashion, which is not possible with other standard formulations, and how this can

affect enforcing incompressibility, error and performance. Therefore, ALG can be used to

improve performance of iterative solvers by reducing  as well as for tuning the simulations

to achieve a specified volume change.

6.1 Future works

A possible extension of the present work is to consider one random variable wall thickness

value for each AHA segment, or representing the wall thickness as stochastic fields, and

then quantify uncertainties in a more general case. The same approach could also be

applied to consider spatial variability for the material parameters and fiber orientation.

The resulting analysis will include a large number of uncertain input parameters,

which will complicate the quantification and understanding of the role of individual

contributions, but could give a more detailed assessment on the total uncertainty in the

model output.

This type of analysis could be extended to consider strongly coupled electro-mechanics

simulations, where other uncertain inputs would have to be considered, such as those from

models of the electrical and mechanical behavior at the cellular level and the model for

the electrical wave propagation in the tissue. Analyses using more realistic geometries

considering both ventricles and also both atria could be another step of study towards

the translation of these simulations to clinical applications.
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