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ABSTRACT

Knowledge of temperature distribution in power transformers is essential for the
management of electrical distribution systems. Monitoring the hot-spot temperature of
a power transformer can extend its lifetime. In this work, we present two new models
based on Set-Membership filtering: the Set-Membership evolving Multivariable Gaussian
and the Enhanced Set-Membership evolving Multivariable Gaussian. Both approaches are
acting by adjusting the learning rate in the evolving fuzzy modeling system. To evaluate
its performance were applied synthetic data sets, as benchmarks, and data for thermal
modeling of real power transformers, under two load conditions: with and without an
overload condition. The obtained results are compared with the performance of the original
evolving Multivariable Gaussian and with other classical models suggested in the literature.
Both proposed models obtained lower errors and presenting a competitive number of rules,
suggesting that the models are flexible and efficient approaches in these scenarios.

Keywords: Enhanced Set-Membership. Evolving Fuzzy Systems. Power Transformers.
Thermal Modeling.



RESUMO

O conhecimento da distribuição de temperatura em transformadores de potência é
essencial para o gerenciamento de sistemas de distribuição elétrica. O monitoramento da
temperatura do ponto quente de um transformador de energia pode estender sua vida útil.
Neste trabalho, apresentamos dois novos modelos baseados na filtragem Set-Membership: o
Set-Membership evolutivo Gaussiano Multivariado e o Enhanced Set-Membership evolutivo
Gaussiano Multivariado. Ambas as abordagens agem ajustando a taxa de aprendizagem
no sistema de modelagem fuzzy evolutivo. Para avaliar seu desempenho foram aplicados
conjuntos de dados sintéticos, como benchmarks, e dados para modelagem térmica de
transformadores de potência reais, sob duas condições de carga: com e sem sobrecarga.
Os resultados obtidos são comparados com o desempenho do modelo evolutivo Gaussiano
Multivariado original e com outros modelos clássicos sugeridos na literatura. Ambos os
modelos propostos obtiveram erros menores e apresentam número competitivo de regras,
sugerindo que os modelos são abordagens flexíveis e eficientes nestes cenários.

Palavras-chave: Enhanced Set-Membership. Sistemas Fuzzy Evolutivos. Transformadores
de Potência. Modelagem Térmica.
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1 INTRODUCTION

Power transformers are essential equipment in electrical distribution systems. These
equipment are used in the generation, through transmission and distribution to delivery
to the end customer, and require cautious operation and management. Due to their high
price and critical function in the power system, they need more diligence in their operation
in order to ensure safety and efficiency.

Regarding the use of power transformers, maintenance and reliability are essen-
tial issues. An important factor concerns the working temperature (i.e., the hot-spot
temperature), which is directly related to the aging of the insulation and the service life
of the power transformers. Power transformer life is determined by its insulation aging
rate, moreover, monitoring the hot-spot temperature is a crucial factor in transformer
life expectancy (JAFARBOLAND, M., 2019) and to develop overload protection systems
(GOMIDE, F., 2007). Unexpected failures can seriously affect the power system, causing
economic and social losses (GOMIDE, F., 2008).

Adequate knowledge of the temperature distribution inside a transformer, as well
as all thermal aspects, are important to management to maximize the service life and
the power rating and minimize the operation cost (LEBRETON, R., 2018). The most
common model used in practice for the prediction of the hot-spot temperature of power
transformers is based on the IEEE Standard C57.91-2011, which uses transient heating
equations and specific thermal characteristics and parameters of power transformers (IEEE,
2012). However, this modeling can become an inaccurate method due to its simplifications.
Therefore, it is necessary to employ more advanced techniques to optimize the use of the
power transformer capacity and increase its useful life, maintaining its functionality and
safety (GOMIDE, F., 2007).

There is a considerable amount of research on monitoring power transformers in
the literature. For instance, (VILLACCI, D., 1996) presents a method to monitor and
estimate the heating of the transformers based on neural identification techniques. In
(VACCARO, A., 2000), the authors intend to predict the hot-spot temperature of the
winding of a power transformer in the presence of overload conditions using a radial
basis function network (RBFN). Reference (IPPOLITO, L., 2004) deals with a fuzzy
Takagi-Sugeno-Kang (TSK) model capable of reproducing the temperature distribution
of power transformers to implement an overload protection system and in (BIRATTARI,
M., 2005) discusses an architecture to integrate the modeling of physical knowledge with
machine learning techniques, focusing on forecasting of the hot-spot temperature of a
transformer. Moreover, (GOMIDE, F., 2007) presents a recurrent neurofuzzy hybrids
network to model the thermal condition of power transformers and (GOMIDE, F., 2008)
uses the concept of Participatory Learning (PL) to train a hybrid neurofuzzy network, to
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the same purpose.

1.1 MOTIVATION

Thus, motivated by the need for adaptable systems, evolving intelligent systems
(FILEV, D., 2004) have received great attention in recent years, being widely applied
in problems of modeling, control, forecasting, classification, and processing of data in
dynamic and non-stationary environments (BALLINI, R., 2018).

A wide variety of these models can be found in the literature, with the evolving
Takagi-Sugeno (eTS) model as a precursor (FILEV, D., 2004). This model updates the
system recursively, adding new rules, or updating existing rules. The antecedents are
determined through a subtractive grouping (CHIU, S., 1994) based on the notion of the
potential function and the parameters of the consequents are updated through Recursive
Least Squares (YOUNG, P., 2012).

However, the aforementioned models, as noted by (GOMIDE, F., 2011), are not
robust in the presence of imprecise or noisy data, i.e., this kind of data are also incorporated
by the learning process which can result in a model that does not truly represent the real
system.

To overcome this problem, in (LIMA, E., 2010) was introduced an evolving system
based on the concept of Participatory Learning proposed by (YAGER, R., 1990). This
approach assumes that learning and beliefs about an environment depend on what the
system already knows about the environment (YAGER, R., 2004).

In this way, the model proposed in (LIMA, E., 2010), called evolving Participatory
Learning (ePL), uses an unsupervised dynamic fuzzy clustering algorithm that captures
many of the salient features of human learning where the update of the rule base is a
function of existing rules and new information received. A similar process occurs with
human learning, which is amplified if there is already prior knowledge on a given subject.
This means that a new data sample that are very distant from what has already been
learned by the system tend to be discarded or have their effect smoothed making the
model more robust to outliers.

More recently a new evolving fuzzy model, named evolving Multivariable Gaussian
(eMG) (GOMIDE, F., 2011), was proposed as an evolution of the ePL model. In the eMG
each fuzzy cluster is represented by a multivariable Gaussian membership function instead
of a single variable Gaussian membership function as in ePL. Also, clusters in the eMG
approach are estimated using a normalized distance measure (similar to the Mahalanobis
distance) and trigger ellipsoidal clusters, whose axes are not necessarily parallel to the
axes of the input variables thus preserving the information about interactions between
input variables.
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Due to its evolving structure that makes the model can adapt quickly to changes in
the power transformer’s operating characteristics, such as insulation aging, environmental
changes, among others, the eMG model was applied to the hot-spot temperature modeling
problem achieving extremely promising results (BOAVENTURA, W., 2012).

In another branch of studies, the Set-Membership (SM) adaptive filtering theory
(HAYKIN, S., 1996) was combined with a fuzzy system trained by Steepest Descent
method in order to reduce the computational complexity of the model and to increase
the convergence speed during the training phase (RIBEIRO, M. V., 2017). The results
presented by this study suggest that the combination of the SM framework with an
evolving system can lead to models of less computational complexity and with the ability
to adapt to changes in the environment over time. This characteristic makes this strategy
an interesting candidate for the proposed problem, especially for real-time applications.

1.2 JUSTIFICATION

In this sense, this work suggests a synergism between the SM framework and its
enhanced version, named Enhance Set-Membership (ESM), and the eMG evolving fuzzy
model to create a power transformer’s thermal model with low computational complexity,
which can handle inaccurate or noisy data, which preserves the iterations between the
input variables and which can adapt to changes in the dynamics of the transformers
imposed by the aging of equipment, changes in the load profiles or environmental changes.

1.3 AIMS AND OBJECTIVES

The objectives of this work are listed as follows:

• To propose two evolving fuzzy models, called Set-Membership evolving Multivari-
able Gaussian (SM-eMG) and Enhanced Set-Membership evolving Multivariable
Gaussian (ESM-eMG), based on the Set-Membership filtering (RIBEIRO, M. V.,
2017, LAMARE, R. C., 2011, JIANG, T., 2016) to adjust the learning rate in the
evolving Multivariable Gaussian (eMG) algorithm.

• To adopt synthetic time series forecasting and nonlinear system identification pro-
blems, and measured data set of power transformers for thermal modeling, which
has two load conditions considered: with and without an overload condition, and we
evaluate the results in terms of error metrics and the number of final rules.

• To compare the performance with other approaches suggested in the literature:
evolving Participatory Learning with Kernel Recursive Least Squares (ePL-KRLS)
(BALLINI, R., 2018), Set-Membership evolving Participatory Learning with Kernel
Recursive Least Squares (SM-ePL-KRLS) and Enhanced Set-Membership evolving
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Participatory Learning with Kernel Recursive Least Squares (ESM-ePL-KRLS)
(ALVES, K. S., 2020), IEEE Deterministic Model (IEEE, 2012), Adaptive Neurofuzzy
Inference System (ANFIS) (JANG, J., 1993) and Multilayer Perceptron (MLP)
(STORK, D. G., 2012).

1.4 STRUCTURE OF THE WORK

This work is organized as follows: Chapter 2 deals with the problem formulation.
Chapter 3 details the proposed models. Chapter 4 presents and discusses the results of
computer simulations. Finally, Chapter 5 states the main conclusions.
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2 PROBLEM FORMULATION

The problem of thermal modeling of power transformers consists of determining the
hot-spot temperature from other variables that can be obtained more easily, such as the
load current, the temperature on the surface of the transformer’s oil (top-oil temperature)
and the environment temperature.

Currently, the classic way to deal with this problem is to apply the deterministic
model proposed in the IEEE Standard C57.91-2011 (IEEE, 2012). In this model, the load
curves and operating conditions (especially the operating temperature) of the transformer
are used to compute a series of differential equations for which conservative safety rates
are generally applied (VACCARO, A., 2000). To summarize this deterministic model, as
presented in (GOMIDE, F., 2007), the following variables and parameters are considered:

Variables (functions of time):

ΘA = environment temperature, ◦C.
ΘTO = top oil temperature, ◦C.
ΘH = hot-spot temperature, ◦C.
∆ΘH = hot-spot rise above top oil temperature, ◦C.
∆ΘH,U = ultimate hot-spot temperature rise over top oil

(for a given load current), ◦C.
∆ΘTO,U = ultimate top oil temperature rise over environment

(for a given load current), ◦C.
IL = load current, per unit.

Parameters (constants):

ΘA,R = rated environment temperature, ◦C.
ΘH,R = rated hot-spot winding temperature, ◦C.
∆ΘTO,R = rated top oil temperature rise over environment, ◦C.
∆ΘH,R = rated hot-spot temperature rise over top oil, ◦C.
τTO = top oil rise time constant, hours.
τH = hot-spot rise time constant, hours.
R = ratio of load loss at rated-load to no-load loss at applicable

tap position, dimensionless.
m, q = empirically derived values, depend on the cooling method,

dimensionless.
The first step of the hot-spot calculation by the IEEE deterministic model is to

calculate the ultimate top oil temperature rise over the environment temperature (∆ΘTO,U ),
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as follows:

∆ΘTO,U = ∆ΘTO,R

[
I2
LR + 1
R + 1

]q
(2.1)

The next step is to calculate the increment in the top oil temperature (ΘTO) that
is found from Equation (2.1) and the environment temperature (ΘA) through the following
differential equation:

τTO
dΘTO

dt
= [∆ΘTO,U + ΘA]−ΘTO (2.2)

The values for the τTO parameter or a method for estimate them are described in
detail in (IEEE, 2012). In sequence, the ultimate hot-spot rise over top oil (∆ΘH,U) is
computed as follows:

∆ΘH,U = ∆ΘH,RI
2m
L (2.3)

To obtain the value of ∆ΘH,R is necessary to perform thermal tests on the equipment.
Alternatively, the IEEE Standard C57.91-2011 presents another method to estimate this
value.

Now, the increment in hot-spot rise above top oil temperature (∆ΘH) can be
calculated using the value of ∆ΘH,U using the following differential equation:

τH
d∆ΘH

dt
= ∆ΘH,U −∆ΘH (2.4)

Finally, the hot-spot temperature is calculated as a function of ΘTO and ∆ΘH as
follows:

ΘH = ΘTO + ∆ΘH . (2.5)

In the previous calculations, several simplification assumptions are made to ensure
the safe operation of the transformer. These assumptions establish that the calculated
operational rate of the power transformer can be 20% to 30% lower than its nominal
capacity (VILLACCI, D., 1996). Thus, the use of the deterministic model in the operational
planning of the electrical system implies the underutilization of the installed equipment,
which can leads to financial losses for the energy companies (GOMIDE, F., 2008).

In this sense, the main objective of the models proposed in this work is to present
an algorithm capable of predicting the temperature of the hot-spot with high accuracy.
An advantage of these models is that they can adjust their structure to changes in the
dynamics of the problem, in order to increase the operating margin of the system mainly
in the presence of overload conditions (VAIDYANATHAN, S., 2015).
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3 THE ENHANCED SET-MEMBERSHIP EVOLVING MULTIVARIA-
BLE GAUSSIAN

The thermal modeling approach suggested in this work is based on the concepts of
evolving fuzzy systems (FILEV, D., 2004), multivariable Gaussian participatory clustering
(GOMIDE, F., 2011), Set-Membership (RIBEIRO, M. V., 2017, LAMARE, R. C., 2011)
and Enhanced Set-Membership filtering (ALVES, K. S., 2020). For a better understanding,
in this Chapter, these concepts are briefly reviewed and then the proposed model is
introduced.

3.1 EVOLVING FUZZY SYSTEMS

Evolving fuzzy systems (eFS) are highly adaptive fuzzy systems whose models
are self-developed from a stream of data through recursive methods of machine learning
(FILEV, D., 2006). In general, these systems propose strategies to continuously evolve
the antecedents/consequents parameters of a rule-base system by the use of recursive
clustering algorithms.

In particular, evolving Takagi-Sugeno (eTS) based systems (FILEV, D., 2004)
demonstrated to be highly applicable to nonlinear dynamic systems modeling in dynamically
evolving environments, such as the modeling of the temperature distribution of power
transformers problem (BOAVENTURA, W., 2012). These models are based on a first-order
Takagi-Sugeno functional rule-based model whose fuzzy rules are as follows:

Ri : IF x is Γi THEN yi = γio +
p∑
j=1

γijxj (3.1)

where Ri is the i-th fuzzy rule, for i = 1, . . . , ck, ck is the number of fuzzy rules at step k,
x ∈ [0, 1]p is the input data, yi is the output of the i-th rule, Γi is the vector of antecedent
fuzzy rules, γio and γij are the parameters of the consequent. The antecedent fuzzy sets in
Γi are Gaussian membership functions:

µ = e−r‖x
k−vi‖ (3.2)

where r is a positive constant that defines the zone of influence of the i-th local model
and vi is the respective cluster center or focal point, i = 1, . . . , ck.

To find the cluster centers vi, the eTS model requires online clustering procedure.
For the original eTS this clustering procedure is a form of subtractive clustering, a variation
of the Filev and Yager mountain clustering approach (FILEV, D., 1994). In this approach,
a Cauchy function is used to measure the potential of a point to become a cluster center.
If the potential of new data is higher than the potential of the current cluster centers,
then the new data become a new center and a new rule is created. If the potential of
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new data is higher than the potential of the current centers, but it is close to an existing
center, then the new data replace the existing center. This makes the eTS model capable
of continuously develop its structure and functionality through an online self-organization.

More recently, a variation of eTS model was introduced with the intent of being more
robust to erroneous or anomalous observations in the input data. This new model, called
evolving Multivariable Gaussian (eMG), implements a different clustering algorithm, based
on the concept of Participatory Learning (YAGER, R., 1990), instead of the subtractive
clustering of the original eTS model. In addition, for eMG, the antecedent fuzzy sets in
Γi are multivariable Gaussian membership functions instead of single-variable Gaussian
membership functions as presented in Equation (3.2). In the next Sections, these concepts
are briefly discussed.

3.2 GAUSSIAN PARTICIPATORY EVOLVING CLUSTERING

The Gaussian Participatory Evolving Clustering (GPEC), proposed in (GOMIDE,
F., 2011), is an evolving fuzzy clustering procedure in which each cluster is characterized
as a multivariable Gaussian membership function of the form:

H(x) = exp
[
−1

2(x− v)Σ−1(x− v)T
]

(3.3)

where x and v are 1×m vectors containing the input and the cluster center, respectively,
and Σ is a m ×m symmetric, positive-definite matrix containing the dispersion of the
cluster and represents the spread of H(x).

If the input variables interact (e.g, if the problem uses lagged values of the input
and/or output as inputs), the use of the multivariable Gaussian membership functions
defined in Equation (3.3), avoid the information loss induced by the computation of the
fuzzy relation through an aggregation operator (e.g., a t-norm) and the single-variable
Gaussian membership functions defined in Equation (3.2) (GOMIDE, F., 2011). As will be
seen later, this is exactly the case with thermal modeling of power transformers problem.

As mentioned earlier, the GPEC also implements a new kind of fuzzy clustering in
which the cluster structure (number, shape and centers of clusters) is recursively updated
at each step by an algorithm based on the Participatory Learning paradigm (YAGER,
R., 1990). In this learning process, the influence of a new observation in the cluster
structure depends on the knowledge previously learned by the model. The strength of this
influence is calculated using a compatibility measure ρki ∈ [0, 1], which indicates the degree
of compatibility of an observation with the current cluster structure and an arousal index
aki ∈ [0, 1], which defines whether the current structure should be changed. In addition,
Tρ and Ta, are, respectively, used as thresholds for both parameters ρki and aki . Based on
these thresholds, at each step, the learning process may create a new cluster, modify the
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parameters of an existing one, or merge two similar clusters.

As detailed in (GOMIDE, F., 2011), if, at each step, the compatibility measure of
the current observation is less than the threshold for all clusters, i.e., ρki < Tρ ∀ i = 1, . . . , ck,
and the arousal index of the cluster with the greatest compatibility is greater than the
threshold, i.e., aki > Ta for i = arg maxiρki , then a new cluster is created. Otherwise, the
cluster center with the highest compatibility is adjusted as follows:

vk+1
i = vki +Gk

i

(
xk − vki

)
(3.4)

where xk is the input at step k, vki is the cluster center, for i = 1, . . . , ck, ck is the number
of clusters at step k, and Gk

i is defined as follows:

Gk
i = α

(
ρki
)1−ak

i (3.5)

where α ∈ [0, 1] is the learning rate. This is the parameter that will be updated with the
SM or ESM algorithm, in order to improve the model learning.

According to (YAGER, R., 1990) the compatibility ρki is a function that measures
the compatibility between the current belief of the model, represented by each cluster
center, and the current observation.

The compatibility measure ρki suggested in (GOMIDE, F., 2011) uses the squared
value of the normalized distance between the new observation and cluster centers (M-
distance), given by:

M(xk, vki ) = (xk − vki )(Σk
i )−1(xk − vki )T (3.6)

To compute the M-distance, the dispersion matrix of each cluster Σk
i must be

estimated at each step. The recursive estimation of the dispersion matrix proceeds as
follows:

Σk+1
i = (1−Gk

i )(Σk
i −Gk

i (xk − vki )(xk − vki )T ) (3.7)

The compatibility measure at each step k is given by:

ρki = F (xk, vki ) = exp
[
−1

2M(xk, vki )
]

(3.8)

The function F (xk, vki ) ∈ [0, 1] is such that it should approach zero as observations
become contradictory with the current belief, i.e., the cluster centers, and approach one as
the observations become in complete agreement with the current belief.
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To find a threshold value for the compatibility measure, we assume that the values
M(xk, vki ) can be modeled by a chi-square distribution. Thus, given a significance level λ,
the threshold can be computed as follows:

Tρ = exp
[
−1

2χ
2
m,λ

]
(3.9)

where χ2
m,λ is the λ upper unilateral confidence interval of a chi-square distribution with

m degrees of freedom, where m is the number of inputs.

The arousal index is defined by the probability of observing less than nv violations
of the compatibility threshold on a sequence of w observations.

To compute the arousal index for each observation, a related occurrence value oki is
found using the following expression:

oki =

0, for M(xk, vki ) < χ2
n,λ

1, otherwise
(3.10)

Given a sequence assembled by the last w observations, the number of threshold
violations nvki is as follows:

nvki =


∑w−1
j=0 o

k−j
i , k > w

0, otherwise
(3.11)

The discrete probability distribution of observing nv threshold violations on a
window of size w is p(NV k

i = nv), with NV k
i assuming the values nv = 0, 1, . . . , w.

The binomial distribution gives the probability of observing nv threshold violations in a
sequence of w observations.

p(NV k
i = nv) =


(
w
nv

)
λnv(1− λ)w−nv, nv = 0, . . . , w

0, otherwise
(3.12)

The arousal index is defined as the value of the cumulative probability of NV k
i , i.e.,

aki = p(NV k
i < nv). The multivariable Gaussian evolving clustering procedure is shown in

Algorithm 1.
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Algorithm 1 MGEC
1: Input: k, xk, v,Σ, λ, w,Σinit, c
2: Output: v,Σ, cluster_created, cluster_merged, c, idxk
3: if k == 1 then
4: Initialize first cluster :
5: v1 = x1; Σ1 = Σinit

6: c = 1
7: end if
8: Compute ρi and ai for all clusters
9: for i = 1 , c do
10: M(xk, vi) = (xk − vi)(Σi)−1(xk − vi)T
11: ρi = exp

[
−1

2M(xk, vi)
]

12: if ρi < Tρ then
13: oki = 1
14: else
15: oki = 0
16: end if
17: if k > w then
18: nvi = Σw−1

l=0 o
k−l
i

19: ai = p(NV k
i < nvi)

20: else
21: ai = 0
22: end if
23: end for
24: idx = arg maxiρi
25: if ρi < Tρ ∀ i and akidx > Ta then
26: Create new cluster :
27: c = c+ 1; vc = xk

28: Σc = Σinit; idx = c
29: cluster_created = c
30: else
31: Update an existing cluster :
32: Gidx = α (ρidx)1−aidx

33: vidx = vidxk +Gidx

(
xk − vidx

)
34: Σidx = (1−Gidx)(Σidx −Gidx(xk − vidx)(xk − vidx)T )
35: \\ SM or ESM is called here
36: end if
37: Check for redundant clusters
38: for i = 1 , c do
39: if ρidx(vidx, vi) > Tρ or ρj(vj, vidx) > Tρ then
40: Merge two redundant clusters:
41: vidx = mean(vj, vidx); Σidx = Σinit

42: c = c+ 1; cluster_merged = [idx j]
43: end if
44: end for
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It is worth mentioning that, according to (GOMIDE, F., 2011), the clustering
algorithm uses only three parameters:

• the learning rate α;

• the window size w, which is used in the arousal mechanism;

• the confidence level λ, which is used to compute Tρ and Ta.

The confidence level, λ, is chosen based on the value of w, suggested in (GOMIDE,
F., 2011), according to the Equation (3.13). The window size, w, is chosen considering
the number of consecutive observations in the arousal index calculation.

λ =


0.01, if w ≥ 100

0.05, if 20 ≤ w < 100

0.1, if 10 ≤ w < 20

(3.13)

For more details about GPEC algorithm see (GOMIDE, F., 2011).

3.3 THE EVOLVING MULTIVARIABLE GAUSSIAN MODEL

As mentioned before, the evolving Multivariable Gaussian (eMG) model is an
evolving functional Takagi-Sugeno (eTS) model in which the rule base is continuously
updated through the GPEC algorithm presented in Section 3.2 and the membership
functions in the antecedent of the rules are the Multivariable Gaussian functions presented
in Equation (3.3) that are adopted to preserve information between the interactions of
the input variables. In addition, the eMG model uses the recursive weighted least squares
algorithm to estimate the consequent parameters of the rules. As with (GOMIDE, F.,
2011), the number of eMG rules is the same as the number of clusters determined by the
clustering algorithm at each step. The learning structure of eMG is represented in Figure
1.
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Figure 1: Mechanism of learning of eMG model

Source: Adapted from BALLINI, R. (2018), GOMIDE, F. (2011).

The model consists of a set of functional fuzzy rules, as follows:

Ri : IF xk is Hi THEN yki = γkio +
m∑
j=1

γkijx
k
i (3.14)

where xk is a 1 x m input vector, Hi is a fuzzy set with multivariable Gaussian membership
function, Ri is the i-th fuzzy rule, for i = 1, . . . , ck, ck is the number of rules, and γkio and
γkij are the parameters of the consequent at step k (GOMIDE, F., 2011).

The model output is the weighted average of the outputs of each rule (GOMIDE,
F., 2011), i.e.,

ŷk =
ck∑
i=1

Ψi

(
xk
)
yki (3.15)
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with normalized membership functions

Ψi

(
xk
)

=
exp

[(
xk − vki

)
Σ−1
i

(
xk − vki

)T ]
Σck

i=1exp
[(
xk − vki

) (
Σ−1
i

)−1 (
xk − vki

)T ] (3.16)

where vki and Σk
i are the center and dispersion matrix of the i-th cluster membership

function at step k. Hence, the consequent parameters and matrix Qi of the update formulas
for rule i at each iteration k are as follows:

γk+1
i = γki +Qk+1

i xkΨi

(
xk
) [
yki −

((
xk
)T
γki

)]
(3.17)

Qk+1
i = Qk

i −
Ψi

(
xk
)
Qk
i x

k
(
xk
)T
Qk
i

1 + (xk)T Qk
i x

k
(3.18)

In case a cluster is updated, the antecedent parameters of the corresponding rule
are updated. In case a new cluster is created, the consequent parameters are computed as
the weighted average of the parameters of the existing clusters

γknew = Σck

i=1γ
k
i ρ

k
i

Σck

i=1ρ
k
i

(3.19)

In case two clusters i and j are merged, the consequent parameters are computed
as follows:

γknew =
γki ρ

k
i + γkj ρ

k
j

ρki + ρkj
(3.20)

In both cases, the matrix Q is a set as Qk
new = ωIm+1, where Im+1 is anm+1 identity

matrix, and ω is a large real value, (GOMIDE, F., 2011) suggests ω ∈ [102, 104]. The
evolving Multivariable Gaussian fuzzy system modeling procedure is shown in Algorithm
2.
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Algorithm 2 eMG
1: Input: x, yd, λ, ω,Σinit

2: Output:ys
3: γ1 = [y10 · · · 0]
4: Q1 = ωIm+1
5: for k = 1, length(x) do
6: Compute the output
7: for i = 1, c do
8: ρi = exp

[
−1

2(xk − vi)TΣ−1
i (xk − vi)

]
9: yi = xkγi
10: end for
11: ys = Σc

i=1ρiyi

Σc
i=1ρi

12: [v,Σ, cluster_created, cluster_merged, c, idxk] =
MGEC(k, xk, v,Σ, λ, w,Σinit, c)

13: if cluster_created then
14: Create a new rule
15: γc = Σc−1

i=1 γiρi

Σc−1
i=1 ρi

16: Qc = ωIm+1
17: end if
18: for i = 1, c do
19: Update consequent parameters
20: γi = γi +Qix

kΨi

(
xk
) [
yki −

((
xk
)T
γi

)]
21: Qi = Qi −

Ψi(xk)Qix
k(xk)T

Qi

1+(xk)T
Qixk

22: end for
23: if cluster_merged then
24: Merge two rules
25: [ij] = cluster_merged
26: γi = γiρi+γjρj

ρi+ρj

27: Qi = ωIm+1
28: end if
29: end for

For a detailed discussion about the eMG procedure see (GOMIDE, F., 2011).

3.4 THE SET-MEMBERSHIP EVOLVING MULTIVARIABLE GAUSSIAN MODEL

The Set-Membership (SM) concept can be seen as an adaptive filtering technique
that acts by adjusting a given parameter as a function of model errors (LAMARE, R. C.,
2011). The update of the parameter is performed by comparing the error with a pre-set
default value. In this work, the parameter to be adjusted was chosen as the eMG model’s
learning rate α, as mentioned earlier. In this way, if the error value is greater than a limit
(γ̄), then the variation in the learning rate (α) increases to improve the model’s learning.
Otherwise, α becomes zero, reducing computational complexity of the model (ALVES,
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K. S., 2020). Some works in the literature (RIBEIRO, M. V., 2017, LAMARE, R. C.,
2011) demonstrate that SM is a framework that limits the increase of the error, reduces
computational complexity and improves the capacity of convergence in a learning process.
So, for a learning procedure based on the SM concept, the learning rate α is updated at
each step k as follows:

αk =


1− γ̄

|ẽk| , if
∣∣∣ẽk∣∣∣ > γ̄

0, otherwise
(3.21)

where ẽki is the error at i−th iteration. Thresholds, inferior limit (IL) and superior limit
(SL) are set to keep α in a specified range, i.e., α ∈ [IL, SL], where IL ≥ 0, SL ≤ 1, and
IL ≤ SL.

To the SM-eMG model proposed in this work, we applied the concept of SM
filtering, previously discussed, to the eMG model presented in Section 3.3. The main
contribution of this model in relation to original eMG is the application of Equation (3.21)
to produce a new strategy to update the learning rate parameter in the eMG algorithm.
This results in a convergent learning method in which the model’s error is asymptotically
upper bounded in magnitude (LAMARE, R. C., 2011).

In this way, during the learning process, when an existing cluster is updated, after
using Equations (3.4) and (3.5), the learning rate is also updated as a function of model
error making an algorithm that requires less computational effort and with faster tracking
without compromising the error performance (RIBEIRO, M. V., 2017, LAMARE, R. C.,
2011).

The SM model is shown in Algorithm 3.

Algorithm 3 SM
1: ẽk = yk − ŷk
2: if ẽk > γ̄ then
3: αk = 1− γ̄

|ẽk|
4: else
5: αk = 0
6: end if
7: if αk < IL then
8: αk = IL
9: end if
10: if αk > SL then
11: αk = SL
12: end if
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3.5 THE ENHANCED SET-MEMBERSHIP EVOLVING MULTIVARIABLE GAUS-
SIAN MODEL

The Enhanced Set-Membership (ESM) approach is an improvement of the SM
method described in the previous Section. In this approach, the learning rate α is reduced
when the error is lower than γ̄ instead of becoming zero as in the SM. This adjustment
mechanism of the learning rate is given at each step k, as follows:

αk =

α
k−1 + |ẽk|

10gr×γ̄ , if
∣∣∣ẽk∣∣∣ > γ̄

αk−1 − |ẽk|
10dr×γ̄ , otherwise

(3.22)

where gr, dr ∈ Z are the rate of parameter increase and decrease, respectively.

In a similar way to the SM-eMG, the ESM-eMG model proposed suggests an
adaptive way to update the learning rate α as a function of model error, through the
application of Equation (3.22). Again, as proved in literature (LAMARE, R. C., 2011), the
SM/ESM-based model provides a flexible trade-off between the computational complexity
and the bound on the asymptotic model error in the learning process, which leads to a
better performance of the model.

In particular, the conjunction of both, SM and ESM approaches, with the eMG
model emerges as a promising alternative to the thermal modeling of power transformers.
Since it combines the characteristic of the eMG to robustly adapt to dynamically evolving
environments with the characteristic of the SM approaches to reduce the computational
complexity of the resulting model. This statement is tested in the next Chapter.

The ESM model is shown in Algorithm 4.

Algorithm 4 ESM
1: ẽk = yk − ŷk
2: if ẽk > γ̄ then
3: αk = αk−1 + |ẽk|

10gr×γ̄
4: else
5: αk = αk−1 − |ẽk|

10dr×γ̄
6: end if
7: if αk < IL then
8: αk = IL
9: end if
10: if αk > SL then
11: αk = SL
12: end if
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4 EXPERIMENTAL RESULTS

To evaluate the modeling performance of proposed models, the following parameters
were calculated: Root Mean Squared Error (RMSE), Nondimensional Error Index (NDEI)
and Mean Absolute Error (MAE), been expressed by Equations (4.1), (4.3) and (4.2),
respectively.

RMSE =
√√√√ 1
n

n∑
k=1

(yk − ŷk)2 (4.1)

NDEI = RMSE

std (yk) (4.2)

MAE = 1
n

n∑
k=1

∣∣∣yk − ŷk∣∣∣ (4.3)

where n is the size of the data set used, yk is the target output, ŷk is the obtained output,
and std() is the standard deviation function.

In order to statistically validate the performance of the proposed models we also
perform the Morgan-Granger-Newbold test (MGN) introduced in (MARIANO, R. S.,
2002).

The statistical test is performed as follow:

MGN = ρ̂sd√
1−ρ̂2

sd

n−1

(4.4)

where ρ̂sd is the correlation coefficient between s and d, with s = r1 + r2, d = r1 − r2, r1 is
the residual of model 1 and r2 is the residual of model 2. As can be seen in the Equation
(4.4), this test is based on the correlation between the sum (r) and the difference (d) of
the prediction errors. Therefore, the MGN values, and consequently the p-values, can vary
significantly due to the differences in models outputs.

This statistical test is a Student’s t-distribution with n − 1 degrees of freedom,
considering a significant level (αMGN ) of 5%. If the p-value is lower than αMGN , we reject
the null hypothesis, which assumes the models have equal accuracy.

In eMG, SM-eMG and ESM-eMG some parameters are adopted in the simulations
for all this models as specified as follows: ω = 103, λ = 0.05 and the initial α = 0.01.
Furthermore, the SM-eMG and ESM-eMG have the following additional parameters:
IL = 0.00001, SL = 0.1, gr = 1, dr = 1, these last two only for ESM-eMG. In short, all
of these parameters cited were chosen from the references already cited throughout the
work. The other parameters (w,Σinit and γ̄) were chosen heuristically.
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For both models, SM-eMG and ESM-eMG, a γ̄ specified was chosen as the best
result between 700 simulations, starting at γ̄ = 0.001 and ending at γ̄ = 0.7. More infor-
mation about the developed codes can be found at: https://github.com/rocha-mvg/
sm-esm-emg.

4.1 SYNTHETIC DATA SETS

Considering the evolving models introduced, tests were performed to develop long-
term forecasting of the Mackey-Glass time series, and using a classic nonlinear system
identification problem, and a high-dimensional system identification problem.

The MAE values of some simulations will be omitted in this Section, cause the
other related authors did not use them as a metric in their work.

4.1.1 Mackey-Glass Time Series Forecasting

Simulations were performed with the proposed algorithms to develop long-term
forecasting of the Mackey-Glass time series, and its results are compared with other
approaches.

This series is made through the time-delay differential equation:

dx(t)
dt

= 0.2x (t− τ)
1 + x10 (t− τ) (4.5)

where x(0) = 1.2 and τ = 17.

The goal is to predict the value xk+85 from the input vector [xk−18 xk−12 xk−6 xk]
for any k.

The computational simulations were performed following the same roadmap pre-
sented in (GOMIDE, F., 2011). The data set was generated with k = 8001 samples. Thus,
3000 data samples were collected, considering k ∈ [201, 3200], and they were used as
inputs of the evolving learning procedure (training phase). Afterwards, 500 data samples,
considering k ∈ [5001, 5500], were collected to verify the performance during the test phase.
The same training and test sets were adopted for all models portrayed in this Subsection.

The additional parameters adopted for eMG, SM-eMG and ESM-eMG are: w = 40
and Σinit = 2 x 10−2I4. Furthermore, the γ̄ = 0.2160 and γ̄ = 0.1970 were chosen for
SM-eMG and ESM-eMG, respectively. Table 1 shows the results of simulations.

https://github.com/rocha-mvg/sm-esm-emg
https://github.com/rocha-mvg/sm-esm-emg
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Table 1: Performance of Mackey-Glass time series forecasting approaches

Model RMSE NDEI MAE Rules
eTS (FILEV, D., 2004) 0.0858 0.3720 - 9
xTS (ZHOU, X., 2006) 0.0764 0.3310 - 10
DENFIS (QUN, S., 2002) 0.0637 0.2760 - 58
FLEXFIS VarA (LUGHOFER, E. D., 2008) 0.0475 0.2060 - 69
FLEXFIS VarB (LUGHOFER, E. D., 2008) 0.0362 0.1570 - 89
ESM-eMG 0.0270 0.1174 0.0194 43
eMG (GOMIDE, F., 2011) 0.0254 0.1103 0.0179 36
SM-eMG 0.0239 0.1040 0.0178 44

Source: Author (2020).

The result of the simulation is shown in Figure 2, comparing the actual value with
the results of the ESM-eMG, SM-eMG and eMG.

Figure 2: Comparison of Mackey-Glass time series forecasting

Source: Author (2020).

Table 2 presents the results of the MGN tests considering the proposed models
in relation to the original eMG model. Since the p-value is lower than 0.05, the null
hypothesis is rejected, assuming that the models have different accuracy.
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Table 2: Results of the MGN test, Mackey-Glass time series forecasting

Model 1 x Model 2 MGN p-value
ESM-eMG x eMG 1.8061 0.0357
SM-eMG x eMG 2.1757 0.0150

Source: Author (2020).

4.1.1.1 Comparative Mackey-Glass Time Series Forecasting for Different Values of τ

In this Subsection, a comparative study of the performance of the proposed models
is made considering the Mackey-Glass time series under different values of the τ parameter.
Considering equation (4.5), the τ parameter defines how chaotic the Mackey-Glass time
series will be. As τ increases, keeping the other parameters, the series becomes more
chaotic.

The values of τ = {10, 20, 70} were adopted to evaluate the performance of the
proposed models. Furthermore, x(0) = 1.2 was maintained. The goal is to predict the
value xk+85 from the input vector [xk−18 xk−12 xk−6 xk] for any k.

The computational simulations were performed following the same roadmap pre-
sented in the previous Subsection, varying only the database for each τ . The additional
parameters adopted for eMG, SM-eMG and ESM-eMG are: w = 40 and Σinit = 2 x 10−2I4.
Furthermore, the γ̄ = 0.2160 and γ̄ = 0.1970 were chosen for SM-eMG and ESM-eMG,
respectively. Table 3 shows the results of simulations. Figures 3, 4 and 5 show the series
for τ = {10, 20, 70}, respectively.

Table 3: Performance of Mackey-Glass time series forecasting approaches

Model τ RMSE NDEI MAE Rules
eMG (GOMIDE, F., 2011) 10 0.000633 0.003562 0.000458 10
SM-eMG 10 0.000626 0.003520 0.000420 14
ESM-eMG 10 0.000625 0.003513 0.000419 14
eMG (GOMIDE, F., 2011) 20 0.064503 0.268862 0.038642 60
SM-eMG 20 0.070043 0.291956 0.042115 58
ESM-eMG 20 0.089415 0.372700 0.052973 51
eMG (GOMIDE, F., 2011) 70 0.314659 0.999031 0.247178 73
SM-eMG 70 0.314097 0.997247 0.254866 73
ESM-eMG 70 0.346286 1.099445 0.283625 59

Source: Author (2020).



30

Figure 3: Comparison of Mackey-Glass time series forecasting, with τ = 10

Source: Author (2020).

Figure 4: Comparison of Mackey-Glass time series forecasting, with τ = 20

Source: Author (2020).
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Figure 5: Comparison of Mackey-Glass time series forecasting, with τ = 70

Source: Author (2020).

It is noticed that the proposed models performed better in scenarios with lower
tau value. As expected, as the value of τ increases, the error also increases. In addition, it
can be noted that even when the time series are more chaotic, the SM-eMG or ESM-eMG
achieved better or at least competitive results compared to the original eMG.

4.1.2 Nonlinear System Identification

Simulations were performed with the proposed algorithms using a classic nonlinear
system identification problem, and its results are compared with other approaches.

The nonlinear system to be identified is defined by:

yk =
yk−1yk−2

(
yk−1 − 0.5

)
1 + (yk−1)2 + (yk−2)2 + uk−1 (4.6)

where uk = sin (2πk/25) , and y0 = y1 = 0.

The intention is to predict the current output of past inputs and outputs. The
model of this data set has the following format:

ŷk = f
(
yk−1, yk−2, uk−1

)
(4.7)

where ŷk is the output.
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The computational simulations were performed following the same roadmap pre-
sented in (GOMIDE, F., 2011). The data set was generated with k = 5200 samples.
Thus, 5000 data samples were collected, considering k ∈ [1, 5000], and they were used as
inputs of the evolving learning procedure (training phase). Afterwards, 200 data samples,
considering k ∈ [5001, 5200], were collected to verify the performance during the test phase.
The same training and test sets were adopted for all models portrayed in this Subsection.

The additional parameters adopted for eMG, SM-eMG and ESM-eMG are: w = 40
and Σinit = 10−2I3. Furthermore, the γ̄ = 0.0030, was chosen for both SM-eMG and
ESM-eMG. Table 4 shows the results of simulations.

Table 4: Performance of nonlinear system identification methods

Model RMSE NDEI MAE Rules
SAFIS (SARATCHANDRAN, P., 2006) 0.0221 0.0202 - 17
SOFMLS (RUBIO, J., 2009) 0.0201 0.0183 - 5
FLEXFIS VarA (LUGHOFER, E. D., 2008) 0.0176 0.0161 - 5
FLEXFIS VarB (LUGHOFER, E. D., 2008) 0.0171 0.0156 - 8
xTS (ZHOU, X., 2006) 0.0063 0.0057 - 5
SM-eMG 0.00058 0.00053 0.00021 22
eMG (GOMIDE, F., 2011) 0.00022 0.00020 0.00013 21
ESM-eMG 0.00010 0.00009 0.00004 22

Source: Author (2020).

The result of the simulation is shown in Figure 6, comparing the actual value with
the results of the ESM-eMG, SM-eMG and eMG.
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Figure 6: Comparison of nonlinear system identification

Source: Author (2020).

Table 5 presents the results of the MGN tests considering the proposed models
in relation to the original eMG model. Since the p-value is lower than 0.05, the null
hypothesis is rejected, assuming that the models have different accuracy.

Table 5: Results of the MGN test, nonlinear system identification

Model 1 x Model 2 MGN p-value
ESM-eMG x eMG 19.6879 0.0000
SM-eMG x eMG 23.0536 0.0000

Source: Author (2020).

4.1.3 High-Dimensional System Identification

Simulations were performed with the proposed algorithms using a high-dimensional
system identification problem, and its results are compared with other approaches.

The high-dimensional system to be identified is defined by:

yk =
∑m
i=1 y

k−i

1 +∑m
i=1 (yk−i)2 + uk−1 (4.8)

where uk = sin (2πk/20), and yj = 0, for j = 1, ...,m and m = 10.
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The intent is to predict the current output from past input and outputs. The data
set has the form as follow:

ŷk = f
(
yk−1, yk−2, ..., yk−10, uk−1

)
(4.9)

where ŷk is the model output.

The computational simulations were performed following the same roadmap pre-
sented in (GOMIDE, F., 2011). The data set was generated with k = 3300 samples.
Thus, 3000 data samples were collected, considering k ∈ [1, 3000], and they were used as
inputs of the evolving learning procedure (training phase). Afterwards, 300 data samples,
considering k ∈ [3001, 3300], were collected to verify the performance during the test phase.
The same training and test sets were adopted for all models portrayed in this Subsection.

The additional parameters adopted for eMG, SM-eMG and ESM-eMG are: w = 25,
Σinit = 2 x 10−2I11. Furthermore, that the γ̄ = 0.0270 and γ̄ = 0.1360 were chosen for
SM-eMG and ESM-eMG, respectively. Table 6 shows the results of simulations.

Table 6: Performance of high-dimensional system identification methods

Model RMSE NDEI MAE Rules
xTS (ZHOU, X., 2006) 0.0331 0.0351 - 9
FLEXFIS VarA (LUGHOFER, E. D., 2008) 0.0085 0.0090 - 15
eTS (FILEV, D., 2004) 0.0075 0.0080 - 14
eMG (GOMIDE, F., 2011) 0.000016 0.000017 0.000009 62
SM-eMG 0.000015 0.000016 0.000009 62
ESM-eMG 0.000013 0.000013 0.000006 62

Source: Author (2020).

The result of the simulation is shown in Figure 7, comparing the actual value with
the results of the ESM-eMG, SM-eMG and eMG.
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Figure 7: Comparison of high-dimensional system identification

Source: Author (2020).

Table 7 presents the results of the MGN tests considering the proposed models
in relation to the original eMG model. Since the p-value is lower than 0.05, the null
hypothesis is rejected, assuming that the models have different accuracy.

Table 7: Results of the MGN test, high-dimensional system identification

Model 1 x Model 2 MGN p-value
ESM-eMG x eMG 11.0879 0.0000
SM-eMG x eMG 3.4033 0.0004

Source: Author (2020).

4.2 THERMAL MODELING OF REAL POWER TRANSFORMERS

To evaluate the effectiveness of the method proposed in this work with actual data,
the models presented in previous Chapter are also applied in the estimation of the hot-spot
temperature of a real transformer whose characteristics are shown in Table 8.
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Table 8: Characteristics of the experimental power transformer

Copper losses 776 W
Factory year MACE/1987
Iron losses 195 W
Nameplate rating 25 kVA
Tank dimensions 64× 16× 80 cm3

Top oil temperature rise at full load 73.1 ◦C
Type of cooling ONAN
Vprimary/Vsecondary 10 kV / 380 kV
Weight of core and coil assembly 136 kg
Weight of oil 62 kg

Source: GOMIDE, F. (2008).

The data sets collected from this transformer are the same presented in (VACCARO,
A., 2000) and were obtained through a measurement system composed of three fiber-optical-
based temperature sensors and a hall-effect current sensor. The first two temperature
sensors (S1 and S2) were inserted in the spacer between the disks at the top of the
high-voltage and low-voltage windings, as shown in Figure 8. The aggregation of the values
obtained from these two sensors provides a measure of the actual value of the transformer’s
hot-spot temperature (ΘH). The third temperature sensor (S3) was inserted at the top of
the tank and provides the actual value of the top oil temperature (ΘTO). The hall-effect
current sensor (S4) provides the actual value of the load current (K). Figure 8 shows the
location of these sensors in the experimental transformer used in this work.
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Figure 8: Sensor’s location in the experimental transformer

S1       S1

S2       S2

hot-spot

top oil
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Source: ALVES, K. S. (2020).

In our experiments, two data sets composed of the records of the temperatures
and load current acquired from each sensor in an interval of 24h with a 5-min sample
rate were used to evaluate the proposed models. Figure 9 shows the learning data set
adopted during the training phase. To cover relevant operating conditions, two different
load conditions were considered for model evaluation during the testing phase : i) Data
set 1: without overload and ii) Data set 2: with overload. Figures 10 and 11 shows the
behavior of the hot-spot and top oil temperatures for a given load current for these two
data sets.
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Figure 9: Learning data set

Source: Author (2020).

Figure 10: Data set 1: without overload condition

Source: Author (2020).
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Figure 11: Data set 2: with overload condition

Source: Author (2020).

Therefore, the purpose of the proposed models is to estimate the hot-spot tempera-
ture from the load current and the top oil temperature. Different studies (GOMIDE, F.,
2008, VACCARO, A., 2000), experimental trial and error tests indicate that the relevant
model inputs for this case are the load current (K), the top oil temperature (ΘTO) and
one step delayed load current (q−1K, where q−1 is the delay operator). This choice has
shown to reduce the model sensitivity concerning fluctuations in the thermal parameters,
which can vary considerably from one transformer to another (BIRATTARI, M., 2005).

To prove the efficiency of evolving models in the estimation of the hot-spot tem-
perature of power transformers, they were also compared with other non-evolving (fixed
structure) models described in the literature. These models include the deterministic model
based on IEEE Standard C57.91-2011 (IEEE-DM) described in Chapter 2, a model based
on a Multilayer Perceptron Neural Network (MLP) and a model based on an Adaptive
Neurofuzzy Inference System (ANFIS) (JANG, J., 1993).

In the deterministic modeling (IEEE-DM) the experimental transformer characte-
ristic parameters used in this work were the following:

R = 4, ∆ΘH,R = 5◦ C , ∆ΘTO,R = 54◦ C , ΘH,R = 80◦ C

ΘA,R = 21◦ C , q = 0.8, m = 0.8, τTO = 3 h, τH = 0.1 h

The MLP neural network was implemented with a single hidden layer with 4 neurons
trained with the backpropagation algorithm. The ANFIS model was implemented with
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four fuzzy sets for each input variable and four fuzzy rules generated by means of the fuzzy
c-means clustering procedure (BEZDEK, J. C., 1981). The additional parameters adopted
for eMG, SM-eMG and ESM-eMG are: w = 15 and Σinit = 2 x 10−2I3. Furthermore,
the SM-eMG has γ̄ = 0.0270 for the data set 1 and γ̄ = 0.0150 for the data set 2. And
ESM-eMG has γ̄ = 0.0290 for the data set 1 and γ̄ = 0.0360 for the data set 2.

Tables 9 and 10 show the results obtained for all models implemented in this work.

Table 9: Performance of thermal modeling of real power transformers, operation without
overload condition

Model RMSE NDEI MAE Rules
IEEE-DM (IEEE, 2012) 1.0245 16.1089 0.7524 -
MLP (STORK, D. G., 2012) 0.0467 0.7336 0.0343 4
ePL-KRLS (BALLINI, R., 2018) 0.0137 0.2153 0.0101 1
ANFIS (JANG, J., 1993) 0.0124 0.1952 0.0091 4
eMG (GOMIDE, F., 2011) 0.0113 0.1791 0.0067 3
ESM-eMG 0.0105 0.1663 0.0074 3
SM-ePL-KRLS (ALVES, K. S., 2020) 0.0103 0.1624 0.0076 1
ESM-ePL-KRLS (ALVES, K. S., 2020) 0.0103 0.1616 0.0075 1
SM-eMG 0.0096 0.1521 0.0062 3

Source: Author (2020).

Table 10: Performance of thermal modeling of real power transformers, operation with
overload condition

Model RMSE NDEI MAE Rules
IEEE-DM (IEEE, 2012) 0.4005 1.9446 0.2769 -
ANFIS (JANG, J., 1993) 0.0481 0.2340 0.0333 4
ePL-KRLS (BALLINI, R., 2018) 0.0330 0.1615 0.0242 2
eMG (GOMIDE, F., 2011) 0.0330 0.1615 0.0196 3
MLP (STORK, D. G., 2012) 0.0317 0.1539 0.0219 4
ESM-eMG 0.0283 0.1385 0.0203 3
SM-ePL-KRLS (ALVES, K. S., 2020) 0.0265 0.1293 0.0188 1
ESM-ePL-KRLS (ALVES, K. S., 2020) 0.0252 0.1231 0.0186 1
SM-eMG 0.0245 0.1197 0.0155 3

Source: Author (2020).

Figures 12 and 13, presents graphical depictions of the results obtained from SM-
eMG and ESM-eMG models for the two data sets and compared with the deterministic
model described in Chapter 2, which is the most used model in practice for the prediction
of the hot-spot temperature, as mentioned earlier.
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Figure 12: Hot-spot estimation, operation without overload condition

Source: Author (2020).

Figure 13: Hot-spot estimation, operation with overload condition

Source: Author (2020).

Tables 11 and 12 present the results of the MGN tests considering the proposed
models in relation to the original eMG model. Since the p-value is lower than 0.05, the
null hypothesis is rejected, assuming that the models have different accuracy. In Table 11,
the SM-eMG x eMG test returned a p-value greater than the established limit αMGN .
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Thus, this is the only occurrence where the null hypothesis was accepted, assuming that
the compared models have equal accuracy.

Table 11: Results of the MGN test, operation without overload condition

Model 1 x Model 2 MGN p-value
ESM-eMG x eMG 3.2414 0.0004
SM-eMG x eMG 0.6436 0.2613

Source: Author (2020).

Table 12: Results of the MGN test, operation with overload condition

Model 1 x Model 2 MGN p-value
ESM-eMG x eMG 23.0633 0.0000
SM-eMG x eMG 26.8007 0.0000

Source: Author (2020).

As can be seen in presented Tables and Figures, the proposed models reached
the best results in general, with a competitive number of rules when compared with the
original eMG model. These results show that the proposals yield improved performance if
compared with previous techniques discussed in (GOMIDE, F., 2011) and (ALVES, K. S.,
2020).

In particular, for the case where the data contains an overload condition the
SM-eMG and ESM-eMG models show statistically significant evidence of much superior
performance if compared to the other models. This is an important result because the
determination of a precise real-time transformer overload rating is critical to increasing
system operation margins (VACCARO, A., 2000).

It is interesting pondering that in order to real implementation in power transfor-
mers, a few simple modifications are necessary, for instance, adding temperature sensors in
the locations specified to thermal modeling. The acquisition and management of the data
from these sensors are a way to control and extend the time life of power transformers.
As discussed in (ALVES, K. S., 2020), these modifications include the installation of a
hall effect sensor to measure the load current and the insertion of only one temperature
fiber-optical based sensor in the transformer’s inspection cover to measure the top oil
temperature. Many transformers in operation already have such sensors installed, which
makes the proposed approach highly applicable to the real-world problem of estimating
the hot-spot temperature of power transformers. These modifications are suitable for
being non-invasive and low-cost implementations.
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5 CONCLUSION

This work has introduced two innovative models to deal with the estimation of
hot-spot temperature in power transformers: the so-called SM-eMG and ESM-eMG.
The models were evaluated using synthetic time series forecasting and nonlinear system
identification problems, and actual data for thermal modeling power transformers, which
has two load conditions considered: with and without an overload condition.

To evaluate and compare the results were considered error metrics and the number
of rules, as well as different evolving and non-evolving approaches. To support the
effectiveness of the proposed models compared to eMG, the results of the MGN statistical
tests were presented.

The obtained results showed that the SM-eMG, followed by ESM-eMG, reached
the best results with a competitive number of rules in comparison with the original eMG
model. These results suggest both as interesting options to integrate a decision support
tool in the operational management of the electrical system, to control the load current
and prolong the lifetime of the power transformers, in particular in the presence of overload
conditions.

5.1 FUTURE WORKS

As future work, we plan to integrate one of the proposed models into a decision
support tool to control the load current and extend the lifetime of the power transformers.
Moreover, implement a system to update the initial parameters of the model in use,
SM-eMG or ESM-eMG. Also, we plan to investigate the usefulness of interval type-2 fuzzy
logic system (FLS) to handle the presence of uncertainty in the data sets.
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