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RESUMO

Como muitos projetos de engenharia, a recuperacao de petrdleo, bem como a
recuperacao avancada de petroleo, sao sensiveis ao gerenciamento correto dos recursos
economicos. Ensaios em plantas piloto, bem como experimentos em amostras retiradas do
reservatorio, sao ferramentas fundamentais para estimar o retorno econémico do processo
estudado. Nesse sentido, as simulacoes numéricas aparecem como alternativas acessiveis
para resolver diferentes cendrios em vérias escalas (escala de poros, escala de laboratério,
escala de campo). Apesar das muitas vantagens que um simulador tem, eles nao sao
protegidos contra incertezas. Nesta tese mostramos avancos e contribui¢coes na andlise
de incertezas em simulac¢oes bifdsicas em meios porosos. A calibragao dos modelos foi
realizada usando o método de Markov Chain Monte Carlo. Além disso, a incerteza dos
parametros foi verificada por meio de estudos de identificabilidade revelando os casos
em que a incerteza dos parametros foi superestimada. A confiabilidade dos modelos foi
determinada usando emuladores como a expansao em polinomial chaos, nos casos em que
o custo computacional era uma complicagdo. Uma vez que as incertezas dos modelos
foram estimadas, realizamos uma andlise de sensibilidade para vincular a incerteza dos
modelos com as incertezas nos parametros e identificar suas interacoes. Calculamos os
indices Sobol principais e totais para materializar a analise de sensibilidade. Os resultados
apresentados nesta tese mostram uma metodologia consistente para estimar e reduzir
incertezas em modelos de escoamento de espuma em meios porosos, que por sua vez pode
fornecer simulagoes confidveis. Essas conclusoes sao de grande interesse e relevancia; no

projeto de técnicas adequadas para recuperacao avancada de petréleo.

Palavras-chave: Quantificagdo de incertezas. Andlise de sensibilidade. Expansao em
polinomial chaos. Escoamento de espumas em meios porosos. Recuperagao avancada de

petroleo.



ABSTRACT

Like many other engineering applications, oil recovery and enhanced oil recovery
are sensitive to the correct administration of economic resources. Pilot tests and core
flood experiments are crucial elements to design an enhanced oil recovery (EOR) project.
In this direction, numerical simulators are accessible alternatives for evaluating different
engineering configurations at many diverse scales (pore, laboratory, and field scales).
Despite the advantages that numerical simulators possess over laboratory experiences, they
are not fully protected against uncertainties. In this thesis, we show advances in analyzing
uncertainties in two-—phase reservoir simulations, focusing on foam—based EOR. The
methods employed in this thesis analyze how experimental uncertainties affect reservoir
simulator’s responses. Our framework for model calibration and uncertainty quantification
uses the Markov Chain Monte Carlo method. The parametric uncertainty is tested against
identifiability studies revealing situations where posterior density distributions with high
variability are related to high uncertainties and practical non—identifiability issues. The
model’s reliability was evaluated by adopting surrogate models based on polynomial
chaos expansion when the computational cost was an issue for the analysis. Once we
quantified the model’s output variability, we performed a global sensitivity analysis to
map the model’s uncertainty to the input parameters distributions. Main and total Sobol
indices were used to investigate the model’s uncertainty and highlight how key parameters
and their interactions influence the simulation’s output. As a consequence of the results
presented in this thesis, we show a technique for parameter and uncertainty estimation
that can be explored to reduce the uncertainty in foam-assisted oil recovery models, which
in turn can provide reliable computational simulations. Such conclusions are of utmost

interest and relevance for the design of adequate techniques for enhanced oil recovery.

Keywords: Uncertainty quantification. Global sensitivity analysis. Polynomial chaos

expansion. Foam flood experiment. Enhanced oil recovery.
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1 Introduction

This chapter describes this work’s general context, its motivations, a brief literature

review, and the objectives pursued with this thesis.

1.1 Contextualization

The pre-salt reservoir is a new kind of deepwater reservoir (i.e., deepness beyond 400
m), discovered in 2006 during exploration and drilling operations conducted by Petrobras.
The pre-salt belongs to the Atlantic continental shelf under a 2 km layer of salt. The pre—
salt extended the level of oil production to a new level, and it remains under exploration.
The extraction locations are depicted in Figure 1 showing the proximity between the wells
and the Brazilian coast.

. .

@Petrobras
@ Total E&P do Brasil

Trident Energy

Figure 1 — Detail of production wells in the pre-salt since 2006, adapted from [111].

At present, the pre—salt reservoir has been explored only in a small proportion
compared to its full extension. Within the first ten years of production, the operative oil
& gas companies extracted in 2017 the record of 1.5 million oil barrels per day. In 2018,

the pre—salt contained just 83 extraction locations, returning an average production rate
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of 17 thousand oil barrels per day. Figure 1 shows the location of the active production

wells reported by September 2020.

In December 2017, the Brazilian reserves of oil and gas were proven to be 12.8
billion barrels of oil and 363 billion cubic meters of gas. The pre—salt contains more than
half of such reserves (56% of the total oil, and 53% of the estimated gas [110]). The
remainder of fossil reserves is distributed within other "traditional" offshore operative
wells and continental extraction wells. The potential of offshore activities has dominated
investments since the very beginning of such operations [122]. The immediate future of oil
and gas extraction in Brazil reflects a trend to avoid investments in continental reservoirs,
increasing the financial resources destined for offshore production wells. ANP [110] released

the predictions for a short term period contemplating until 2024, these trends are depicted

in Figure 2.
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Figure 2 — ANP short term expectation of produced oil and gas considering continental
activities (left) and offshore reservoirs operations (right), adapted from [110].

1.2 Motivation

As discussed in [6] EOR activities are often conditioned to the following main threats
(i) reducing the complexity from the physical extraction process to deal with laboratory
scale solvable problems. Such simplifications are responsible for distorted synthetic reservoir
responses. (ii) Controversial choices of laboratory scale samples to generalize the physical
behavior, even considering pilot tests. In silico evaluations are excellent techniques to
extend the experimental evidence obtained from laboratory scale samples. However, the
validity of such simulations is constrained to the degree of representation that the core
sample provides towards the pilot test scale experiment. (iii) Eventual variations in the
EOR project execution may affect the performance of the technique. EOR projects do
not differ from other engineering projects; they become less attractive when the invested

resources are higher than the benefits obtained.
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1.3 Oil recovery and enhanced oil recovery

The removal of oil from a reservoir can be divided into different stages. Initially,
when the reservoir is perforated, the pressure difference between the fracture and the
reservoir mobilizes the oil. This stage is known as primary recovery. However, the pressure
drop that mobilizes the oil in the reservoir decreases as being extracted. Other techniques,
such as water injection, gas, and other fluids, can continue the extraction. The stage that
corresponds to the injection of fluids to maintain the flowing pressure is secondary recovery.
At a certain point, the oil recovery ceases, and advanced techniques are used to extract
the remaining oil from the reservoir. This stage is known as tertiary recovery. In terms of
extracted oil, the primary recovery corresponds to only ~ 10% of the removable oil, while
the secondary recovery corresponds to ~ 30% of the removable oil [84]. The remaining
oil is supposed to be extracted with enhanced oil recovery (EOR) techniques, usually
associated with the tertiary oil recovery stage. EOR has been defined [6] as injection of
a fluid, with or without additives, to the reservoir, to displace oil while changing the oil
and interfacial properties and providing extra pressure at the secondary, tertiary, or even

primary stage.

EOR methods may involve the injection of fluids (liquids or gases), chemicals, and
energy transport (for example, thermal energy). The injection of fluids aims to remove
oil from the reservoir by generating a (shock) front with the remaining oil. Usually, the
injected gases are carbon dioxide, nitrogen. Similarly, chemical substances like polymers,
surfactants, and hydrocarbon solvents are used to remove the oil from reservoirs. In the
same way, energy can be injected into the reservoir as heat. In general, EOR techniques
inject an external agent to the reservoir to create favorable conditions to remove oil, like
reduce the interfacial tension with the oil, alter the reservoir’s wettability, modify the oil’s

viscosity, among others.

1.3.1 Gas and foam injection

Injection of fluids into the reservoir contemplates oil recovery improvement, creating
suitable conditions to displace the oil. However, the effects of displacing oil injecting
continuous slugs of one fluid meet the efficiency break point when the production well
receives the injected fluid. To further extend the efficiency of the fluid injection, the
continuous slug should be interrupted with alternatives like water alternated gas (WAG)

schemes to perform this injection swap.

The sweep efficiency of (in—) miscible schemes may be hampered by the formation of
viscous fingers as proved mathematically by Saffman & Taylor [118], and experimentally by
Tabeling et al. [132], as well as Woods [141]. The Saffman—Taylor instability occurs when
the injected fluid has less viscosity than the resident fluid. Recently, numerical studies
such as the works of Jha et al. [70], Yazdi & Norouzi [146], and Abdul & Muggeridge [1]
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corroborated the negative effects of viscous fingers in oil recovery. In particular, Abdul
& Muggeridge [1] studied the dynamics of viscous fingers, analyzing their evolution to

provide a prior—estimate to avoid the formation of fingers.

Moreover, WAG projects can have their efficiency reduced by buoyancy effects
(also known as gravity override), where the less dense fluid (often the gas) attempts to
flow through the higher layers of the reservoir. Furthermore, channeling is caused by the

heterogeneities of the reservoir, as reported by [133, 62]. Examples of heterogeneities are

fractures and preferential paths. Figure 3 shows the effects of a preferential path, altering
the bulk streamflow.

Figure 3 — Absolute permeability field for the 36 layer of the SPE10 project (left) and
simulation results of water saturation in a gas flooding experiment (right). (adapted from
[34]).

1.3.2 Historical review of foam assisted EOR

WAG oil recovery projects benefit from the foam dynamics properties, Albrecht et
al. [2] reported two main advantageous features like delay the gas flow and block the
gas flow. Initially, [2] presented experimental shreds of evidence on unconsolidated sand-
packs and sandstones revealing excellent capabilities to seal gas leaks in a reservoir. In
particular [2], suggests the use of foam process in the sealing of natural gas reservoirs. The
experimental evidence belongs to core samples with permeabilities varying from 3 to 16
Darcy, including in some cases fractures. In these harsh scenarios, the author claims to

achieve the blocking of the gas phase.
In the mid '80s [64, 41, 42] presented valuable contributions accepted until our days

on the modeling of foam dynamics at pore—scale. These articles and others used arrays of
capillary tubes to mimic the flow through a pore throat and pore networks. Hirasaki &
Lawson [64] proposed a mathematical model to explain the effects of foam dynamics on the
viscosity of the gas phase. Falls et al. [41] extended the model presented in [64], adding new
mechanisms to generate new bubbles. In terms of mathematical models, the mechanisms to
generate foam bubbles were incorporated, adding a population balance partial differential
equation, yielding a more complex model, but gaining a modeling technique to evaluate
transient aspects of foam dynamics. Experimentally this was achieved, including capillary
tubes with bifurcations. Falls et al. [42] generalized the findings reported in [64, 41] with an
experimental setup that consisted of a capillary flow including a regular array of obstacles

that altered the streamflow. The models were validated with experimental observations,
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and their relevance remains valid until the present day. In addition to this, the three

articles exposed modifications exclusively on the gas viscosity.

The contributions from Heller & Kuntamukkula [61], Khatib et al. [82], as well
as Hanssen [57, 58] were focused on relate the microfluidic findings from [64, 41, 42] to
Darcy’s—scale properties. Pore scale and Darcy’s scale models including their experimental
validation suggest that the collapse of foam bubbles is achieved at pore scale when the
critical disjoining pressure is achieved; whereas at Darcy’ scale when the system meets
the critical capillary pressure. At Darcy’s scale, the massive collapse of foam bubbles
was corroborated experimentally by Osterloh & Jante [109] and Alvarez et al. [3], clearly
recognizing two flowing regimes low—quality regime (LQR) featuring stable and wet foam,

and high—quality regime (HQR) presenting unstable and dry foams.
On a different take, Hirasaki et al. [65] documented the results of a pilot test

involving a contaminated aquifer, where the contaminant was segregated to the lower
layers of the reservoir. Foam processes were applied to mobilize the contaminated water,
diverting surfactants to the lower permeability regions, showing promising performances.
The aquifer had permeability regions varying from 10 to 100 Darcy. The injection well had
6 meters long, and three extraction wells were located on a radial basis, separated each
from the other 3.7 meters. Extraordinary responses were evidenced, taking into account
that the reservoir was located 47 meters under the surface level. This work was confirmed
by Portois et al. [113], where the authors explored the sealing capabilities of foam assisted

soil remediation.

In 2019, Katiyar et al. [81] reported outstanding results in a pilot test project
involving foam-assisted EOR. The authors screened at least 11 commercial surfactants
subjected to harsh conditions (120°C, 3.23% salinity, and ~ 27% of Clay). The chosen
surfactant was additionally tested against rock adsorption, ensuring economic viability.
The pilot test consisted of a single horizontal well surrounded by two production wells.
The baseline operation was composed of the co—injection of water and gas at constant
fractional flow and flow rate. Within five weeks of surfactant injection, the oil recovery
exceeded the baseline configuration in more than 2000 oil barrels. The oil recovery trend

was increasing monotonically during six weeks.

1.4 Uncertainty estimations in reservoir simulators

Reservoir simulators combine mathematical models with engineering expertise to
assess the reservoir’s behavior considering particular geological settings and production
conditions. Considering simulators as black—box processes that receive specific inputs and
return a set of outputs, this work analyzes the effects of uncertainties on the simulations.
Uncertainties usually have origin from two factors [100]: (i) the adopted model and (ii) the

quality of the data used to calibrate the model. This work will explore these uncertainties
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and how they can affect predictions of two-phase flow models, focusing on foam flow for

EOR.

Laboratory experiments, and often field data, are commonly used to calibrate the
parameters of the mathematical models behind reservoir simulators. In particular, the
acquisition of accurate relative permeabilities data is critical and has been of interest
in the petroleum industry and scientific community [101]. The inherent difficulty to
experimentally determine relative permeabilities have been extensively reported in the
literature [101, 14, 124]. Laboratory experiments to obtain relative permeabilities are
complicated and time consuming [124]. Three methods are commonly used for measuring
the relative permeability data: unsteady—state, steady—state, and centrifuge. These
methods are discussed in terms of their disadvantages and limitations in [14]. The authors
highlight the fact that these data are subject to errors and uncertainties. The errors in
relative permeabilities estimated from displacement experiments under different operating
conditions using the Johnson, Bossler, and Naumann (JBN) method [71] were studied
in [134, 135]. Their results indicate that errors were in the range of 0.2% to 15%.

In most cases, errors were below 5%, except near the residual water saturation,
where they were notoriously higher. Also, the relative permeabilities are functions of
the phase saturations and are affected by several other parameters that may contain
uncertainties as well [67]. Figure 4, exposes the consequences of uncertainty propagation

in a simulator based on the Buckley—Leverett Equation, following the structure developed
by Tao & Watson [134, 135].
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Figure 4 — Interpretation of the posterior error—estimation workflow proposed in [134, 135].
Gray lines represent different model’s evaluations, whereas color lines represent the
(deterministic) "best fit" solution.

Similar findings were reported by Berg et al. [8, 9], where the authors exposed how
experimental uncertainties affect the uniqueness of the model calibration; considering two

different relative permeability models.

Concerning foam flow for EOR, experimental studies have been explored quite
successfully in the literature [62]. Foam quality—scan and flow-rate—scan experiments are
usually employed to assess foam properties for calibrating the parameters of computational
models [148]. In the flow quality—scan experiment, the total flow rate is constant, while

the pressure drop in the core sample is measured as a function of foam quality (i.e. gas
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fractional flow). In the flow-rate-scan, the foam quality is fixed, while the flow rate is
varied. In this context, physical modeling of the foam flow in porous media [5, 74, 23, 149]
is challenging due to its non—Newtonian nature, its dependence on the foam texture, and
the complex bubble generation/coalescence process. Consequently, model calibration is
not straightforward, and the role of uncertainties in the estimated parameters remains
unexplored [12, 95, 98, 148].

The methods commonly used for parameter estimation of foam flow models neglect
the inherent uncertainty due to technical limitations or measurement errors present in
experimental data. In addition, model discrepancy, i.e., the mismatch between model
and experiment, and the correlation between the parameters are also overlooked. The
uncertainties in the experimental data and the model discrepancy should be considered to

assess the mathematical model’s reliability.

1.5 Objectives

This thesis focuses on two goals, firstly the calibration of different two—phase models
used in reservoir simulators taking into account experimental data and its variability. And
secondly, study how the uncertainty is propagated from the model’s input parameters
to the reservoir simulator’s outputs. In particular, this thesis aims to shed light on
foam—assisted EOR projects and different problems related to two—phase flow in porous

media. The objectives pursued here are listed as follows.
1.5.1 Main objective

Analyze how experimental uncertainty impacts the predictions of different models
used in two—phase reservoir simulators, in particular those related to foam—based EOR.

1.5.2 Specific objectives

To accomplish the main objective of this work, the following specific objectives are
listed:

e Tailor a robust computational framework designed for two—phase flow in porous
media to conduct model inversion considering measurement errors in the experimental
data.

e Recognize model’s identifiability issues to determine which parameters challenge

model calibration and increase model uncertainty.

e Perform uncertainty quantification (UQ) studies to determine the reliability of the

analyzed model’s predictions.
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e Execute global sensitivity analysis (SA) based on variance to identify key parameters

for model calibration and uncertainty quantification.

e Investigate the impact of different objective functions and experimental data in

parameter estimation and uncertainty quantification processes.

An overview of the framework and techniques considered in this work is presented
in Figure 5 to tackle uncertainty in two-phase foam displacement models. The framework
relies on experimental data and a mathematical model. The inverse UQ problem is solved
by combining the efforts of identifiability analysis with Bayesian inference. Depending on
the size and complexity of the problem, emulators or simulators are used to propagate
the parametric uncertainty through the mathematical models, solving the forward UQ
problem. Later the variability of the analyzed Qol is plausible to be reduced by identifying
relevant input parameters. Here a global sensitivity analysis is conducted using the Sobol

indices. By the end of these operations, we can improve the reliability of the model’s

prediction.
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Figure 5 — Framework to perform inverse—forward uncertainty quantification and sensitivity
analysis.

1.6 Contributions of this work

The studies and results presented in this thesis aim to shed light on practical
aspects related to two-phase reservoir simulations, model validation, and decision making.
Assessing the reliability of a specific model establishes the appropriate environment to

decide if the model is a good or lousy approximation for a given experimental observation.
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In addition to this, the reliability analysis will expose the variability of a model in many
other different scenarios. We show efforts towards analyzing uncertainties arising from
(i) oil-water displacement satisfying the Buckley-Leverett equation, where solutions were
computed using the fractional flow theory. (ii) calibration of two different foam models
(where one is used in the industry). Furthermore, (iii) the effects of the adjustment
(objective) function to obtain more reliable calibration results for a foam model used in the

industry. Each of these research efforts were compiled into the following research articles.

» Uncertainty quantification and sensitivity analysis for relative permeability models
of two-phase flow in porous media. Journal of Petroleum Science and Engineering,

2020. doi: 10.1016/j.petrol.2020.107297.

o Foam assisted water-gas flow parameters: from core-flood experiment to uncertainty
quantification and sensitivity analysis. Transport in Porous Media, 2021. doi:
10.1007/s11242-021-01550-0

» Assessing uncertainties and identifiability of foam displacement models employing

different objective functions for parameter estimation. in preparation.

1.7 Organization of the text

The remaining chapters of this thesis are organized as follows. Chapter 2 presents
the mathematical modeling techniques used to study the displacement of two phases in
a porous medium. Particular focus is given to the Buckley-Leverett equation and the
analysis of different models to study the displacement of foam in a porous medium. Then,
Chapter 3 introduces the methods used for uncertainty quantification and sensitivity
analysis. Next, the Chapters 4, 5, and 6 presents the results obtained so far in this
work, where three peer-reviewed articles are included. Finally, Chapter 7 presents the
conclusions of this work, discussions exposing the limitations of our study. Future research

lines are also suggested in this chapter.
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2 Mathematical models

2.1 Fundamental concepts

This work focuses on modeling the scenario where a fluid is injected into a porous
medium to remove other resident fluid from the domain. The removal of the resident fluid
or phase can be divided into two different stages. The initial stages correspond to the
period where the injected fluid did not reach the production well, while at a later stage,
the injected fluid reaches the production well. Figure 6 shows three different schematic
representations to describe the removal of a resident fluid by injecting another fluid. In
particular Figures (6 (a)) and (6 (b)) are equivalent qualitative scenarios, where the
injected fluid did not reach the outlet of the porous medium. Nevertheless, Figure (6
(c)) shows that at the outlet, the product contains a mixture of both fluids (resident and

injected).
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Figure 6 — Schematic representation of the removal of a fluid from a porous domain with
the injection of a different fluid.

The diagram represented before shows devices to measure the pressure drop at
different positions of the domain and devices to measure the fluids obtained at the outlet.
Figure 7 shows typical curves for the accumulated (removed) fluid and the pressure drop
recorded during the execution of the experiment. Figure 7 distinguishes the regime where
the injected fluid did not meet the production well and when the injected fluid reached

the production well.
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Figure 7 — Measurement of removed fluid from the porous domain and assessment of the
pressure drops dp during the experiment.

Different factors can affect the performance of the fluid’s removal. In Figure 7 it is
possible to recognize that after the breakthrough time, the accumulated (removed) fluid
reaches a stagnation state. It does not matter how much fluid is injected; the accumulated
(removed) fluid will not increase considerably. Typically, the removal of the fluid can
face two situations (see Figure 8): (a) stable piston—like displacement, and (c) unstable
displacement. The concept of stability is linked to the formation of different shock fronts
that affects the shape of the fluid’s interface, as proved by Saffmann & Taylor [118] and
commented by Langtangen et al. [85], Tripathi & Mohanty [136], and Chorin [28].
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Figure 8 — Comparison of different kind of interfaces recognized in the displacement of
immiscible fluids in a porous medium.

Next, the mathematical formulation of a two—phase flow problem in a porous domain
is described. We start with some essential definitions and then extend the single-phase
Darcy’s law to more flowing phases. Two problems are presented: (i) the Buckley—Leverett
equation [19], and (ii) mathematical models that take into account the effects of foam in

the water—gas flow.
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2.2 Two phase flow in porous media

To model the flow of two species in a porous medium, we start recalling some
definitions. The porosity is defined as the ratio of the porous domain €2 that is occupied

by void space. It is represented by:

¢>—-v%§¢“,
where V' is the total volume and Vo is the volume of the void space. The absolute
permeability k describes the resistance that the porous medium offers to the flowing fluids,
and it is usually measured in Darcy D (or mili-Darcy mD) or surface units m?. The
saturation S, of any phase « is defined as the fraction of the pore volume occupied by the

« phase. In general, the saturation S, is given by:

Va
Sa = 5

‘/porous

where V,, is the volume occupied the the a phase.

The equations describing two—phase flow in porous media are obtained from the
principle of mass conservation of each phase [7]. Considering the porous domain  C R"?

where nd is the number of spatial dimensions, the mass balance of the a phase is given by:

0 (¢Sapa)

5 div(paas) =0, nQx [0,7], (2.1)

where qq, is the flux vector of the @ phase. Assuming that the flowing phases have no mass
transfer between them and that the interface remains chemically inertial, each phase’s
composition remains constant during the entire modeling time. The flux vector is derived

from Darcy’s law for a single phase [105, 140], and can be written as:
Qo = KA (VDo + pagVz), inQ x[0,7], (2.2)

where the term p,g Vz represents buoyancy effects, Vp, is the pressure gradient of the
phase, and A, is the mobility of the o phase. The phase mobility A, is defined in terms of

the relative permeability of the phase (k,q) and viscosity (f) as:

K
Ao = —. 2.3
- (2.3

Considering that the porous medium is fully saturated (3>, S, = 1), the porous domain is

rigid, and assuming the phases are incompressible, Equation (2.1) can be rewritten as:

95,
ot

+ div(—krAo (Vpa +gV2)) =0, inQx[0,7]. (2.4)

To obtain solutions for the Equation (2.4) boundary conditions and initial values must be

declared.
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2.3 The Buckley—Leverett equation

The mass balance equation written in Equation (2.4) represents the conservation of
each phase. The conservation of the total mass can be obtained by adding both components
of Equation (2.4). For simplicity, here, the phases are denoted with w and n, describing
the wetting phase and non—wetting phase, respectively. Neglecting buoyancy effects the

following equation is obtained for the total mass conservation:

0S, 05,
ot ot

> + div(—=kAy, Vpy — KA, Vp,) =0, inQ x [0,7]. (2.5)

The first term (transient) is zero, since S, + S, = 1. Capillary effects are introduced as
the difference between the phases pressure, p. = p, — pn, therein it is possible to write the

mass balance in terms of p,, and p,. as:
div(—&Ay Vpy — KA, Vy + KA, Vpe) =0,  inQ x [0,7]. (2.6)
In particular assuming that p. is constant in 2 x [0, 7], the total mass balance is re-arranged:
div(—=kAy Vpuw — KA, VD) =0,  inQ x [0,T7. (2.7)

The total mobility Ar is defined as Ay = A, + A,,. Consequently, the total mass balance

results in:
div(—kAr Vp,) =0, inQ x [0,T7. (2.8)

The vector resultant from the operation —kAr Vp,, is the total Darcy’s velocity u. It
is common to write the phase balance in terms of the total flux vector; this is possible
defining the fractional flow (f,) as the ratio:

AU] KJ’/"U}
fu = = , (2.9)
g H;T"UJ + <ILL’LU> KZT'?’L
consequently, the conservation of the wetting phase reads the following expression:
oSy, .
e +div(uf,) =0, inQ x[0,7T]. (2.10)

For a one-dimensional flow €2 = [0, L], where L is the length of the domain, the

conservation of the wetting phase reads the next expression:

(95
Assuming the relation ﬂuvaelocity () = wa, where a is the cross—section of the porous
domain, the conservation of the mass for the wetting phase relies on the so—called Buckley—

Leverett [19] equation:

Q

a .
at T oags ) =0 [0, LIx [0, 7] (2.12)
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The Buckley—Leverett equation is solved supplying boundary conditions (for
example fixing S,(0,%)) and initial values (for example fixing S, (z,0)). Within this
context, semi-analytic solutions are obtained for Equation (2.12) employing the method
of characteristics following Marle [99] and Welge [139]. To illustrate the method of

characteristics, the total differential for a fixed wetting phase saturation S, (z,t) = S is:

85, . 05,
_ W o — 2.1
ds, = =" dt + = de =0, (2.13)

Isolating 8—;} and replacing in (2.12) the following expression is obtained:

85 Q o '
B () &2 oo eaw

In particular, assuming that the fractional flow depends only on the wetting saturation

fuw = fuw(Sw), the next identity can be recognized:

(‘“) _ Qdfy (2.15)

dt )4 _g ~ pads,’

which means that any wetting saturation S,, = S takes initial and boundary data and
Q dfw

transports them through the x—axis with speed given by —— . This speed is often

va dS,
called characteristic speed. Further readings concerning the method of characteristics can

be found on Marle [99] and Welge [139].

2.4 Relative permeability models

Supported by experimental evidence, Darcy’s law [33] relates the pressure gradient
with the velocity of a single flowing phase. The extension to many flowing phases
demanded nearly 80 years, until Muskat & Meres [105] proposed Equation (2.2) modeling
the experimental observations reported in the works of Wyckoff et al. [143] and Wyckoff &
Botset [142]. Wyckoff & Botset [142] compiled a vast collection of experimental evidence
employing different combinations of gas and oil using unconsolidated sand; the authors
introduced the concept of "experimental" relative permeabilities. Similarly, Leverett [89]
presented results for displacements of water and oil considering unconsolidated sands.
The work of Leverett [87] presents the functional relation between capillary pressures and
wetting phase saturation. In the same article, Leverett introduces a new non-dimensional
relation named after him as J-Leverett function. Finally, Leverett [87] corroborates that
the extension of Darcy’s law to more flowing phases showing a similar conclusion as the
done by Muskat & Meres [105]. In Leverett & Lewis [88] the authors show experimental
observations to certify the displacement of oil-water-gas considering steady-state and

unconsolidated sands.
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2.4.1 Evaluation of relative permeabilities

In Burdine [20], the author expresses the flowing rate of the wetting and non-wetting
phases employing the Poiseuille law for a collection of tubes with radii between r and

r 4+ dr analyzing f(r)dr tubes, yielding the next expressions:
_mNp [T

4
w — d ’ n— =
Q 8 /~'Lw Tmin g f(/r) g Q 8 /Ln T

T Vp Tmax

rt f(r)dr. (2.16)

The wetting phase covers the smallest tubes, and the non-wetting phase flows through the
largest tubes. Relative permeabilities are defined normalizing the fourth-order moments,

yielding the following expressions

T 4 d Tmaz .4 d
by = LT SO e () dr (2.17)
et fr) dr e ) dr
The pore size distribution for this particular case is defined as follows [11],
0
G(r) = 2.18
(") = eyt foyar (218)
and it is related to the capillary pressure through the next relation [11, 7],
ds
G(r) = —p. —2, 2.19
)= p. g (2.19)

1 o is the surface tension

where p,. is a function of the tube’s radius p. = 20 cos@r~
between the flowing phases, and @ is the wettability contact angle. After some algebra,

Burdine [20] reaches the next expressions that links relative permeabilities with capillary

pressures,
Sw max Sy,
[ w2ads, | ntas,
min Sy, w
w max Sw ’ n — max Sw . (220)
[ tas, [ nas,
min Sy, min Sy,

The previous expressions are often known as Burdine’s relative permeability equations.

Different authors proposed models to relate the capillary pressure with the wetting
phase saturation, such as Gardner’s model [50] where the author proposes two models,
a rational and an exponential expression. Childs and Collis—George [27], Irmay [69] and
Corey [32] proposed polynomial equations to relate the wetting phase saturation with the
relative permeabilities. In particular Brooks & Corey [16] extended Corey’s model [32]
adding physical parameters in the mapping of capillary pressure and water saturation.
Within this framework, it is possible to write relative permeabilities as functions of the

wetting phase saturation.

In general, polynomial approaches for relative permeability, like the Corey’s

model [32], presents limitations to capture changes on curvature near the endpoint
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saturations. Some models were proposed to overcome these limitations. In particular,
Chierici [25] proposed an exponential model, whereas Lomeland et al. [92] proposed a
rational model, known as the LET model. Both models (Chierici’s and LET) also depend
exclusively on the saturation of the wetting phase. In particular, any of these models show
dependencies with the relative permeability endpoints (S,0, £2) and (Spo, £%). This work

will use and compare the following models: Corey, Chierici, and LET.

2.4.2 Corey’s model

Corey’s relative permeability model [32] remains one of the most used models due
to its simplicity. It depends on four physical parameters and two empirical parameters
without physical meaning. These non—physical parameters are adjusted using experimental

data. Corey’s model is given by:
Forw = KO (Swe) ™™, K = K2 (1.0 — Sye)V™, (2.21)

where N, and N,, are Corey’s exponents (real numbers to be determined), k¥, and % are
the relative permeabilities at endpoints for wetting and non—wetting phases, respectively.
Here S,. refers to the mobile saturation defined as a function that depends on the
endpoints saturations, (S,o for wetting and S, for non—-wetting phase), yielding the
following expression:

Sw_ w0

Swe: 1_SwO_SnO'

(2.22)

2.4.3 Chierici’s model

Chierici’s model [25] consists of two exponential equations. The number of
parameters that need to be determined (or adjusted to experimental data) is two for each
phase. The model has better performance than Corey’s model [32] and other polynomial
approaches, especially near the saturation endpoints and in the presence of experimental

data points showing curvature changes. Chierici’s model yields the following expression:

Sw - SwO

Ky = Ii?u exp (—B Si;tM>, Kypp, = Ii% exp (—A S{;jt), St = T-g —g
— Ow — Ono

(2.23)

where A, L, B and M are the parameters of the model.

2.4.4 LET model

The LET model was proposed by Lomeland, Ebeltoft, and Thomas [92]. The
primary capability, when compared to Corey’s model [32] and Chierici’s model [25], is the
flexibility to capture relative permeability points showing substantial curvature changes

(S—shaped). The number of parameters to be determined employing the LET model is
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three for each phase. The LET model is represented with the following rational expression:

0 Sk 0 (1 — Sue)™r

= , 2.24
M SEr 1 By(l = SurTe’ " T N (T S, 4 By ST (2.24)

K'rw -

where L,,, F,, Ty, L,, E,, and T,, are the parameters of the model. In addition to this,
it is important to mention that the LET model is flexible enough to recover Corey’s
model under certain hypotheses. The LET model can be considered an extension and

improvement of Corey’s relative permeability relations.

2.5 Comparing the relative permeability models

A comparison of the relative permeability models is shown in Figure 9, which
highlights how different can be the conclusions drafted employing the Corey’s [32] model,
Chierici’s [25] model or the LET [92] model. Figure 9 shows a considerable mismatch in
the models’ calibration focusing on Corey’s model where the oil relative permeability curve
is poorly captured if comparing with the calibration of the Chierici’s and LET models.
We note that both Chierici’s and LET models present an acceptable fitting. However, the
LET model captures all the experimental data with higher fidelity. In addition to this,
we show the discrepancies between the relative permeability models evaluating several
quantities of interest. On the one hand, we have characteristics used to compute the
solution to the Buckley—Leverett equation (2.12), such as water fractional flow function
vs. water saturation, water fractional flow derivative function vs. water saturation. On
the other hand, we show different physical evaluations concerning the properties of the
waterflood in the core-sample, such as oil recovery factor vs. simulation time, water cut
function vs. simulation time, and the water saturation profile at a fixed time. Analyzing
the physical quantities like oil-recovery, water cuts, and water saturation profiles, we
can notice that the distance between the evaluations adopting the Chierici’s and LET
models are more proximal than the model evaluations obtained adopting the Corey’s.
In any case, discrepancies exist between the Chierici’s and LET model predictions. In
summary, we verified that the model selection has significant consequences on the posterior
analysis of the Buckley—Leverett equation, even if the model calibration presented minor
discrepancies. The Corey’s model parameters are {N,, = 3.16, N, = 1.55}, the Chierici’s
mode parameters are {B = 2.29, M = 0.86, A = 2.73, L = 3.72}, and the LET model
parameters are {L,, = 242, E,, = 3.13, T,, = 1.03, L, = 6.11, E, = 1.79, To = 4.11}.
The water and oil viscosity are 4.7 x 107* (Pa s), and 2.7 x 1072 (Pa s), respectively.
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Figure 9 — Relative permeability models vs. model evaluations.

The characteristic speed depicted in Equation (2.15) transports saturation from

boundary and initial conditions through the rectilinear domain x € [0, L]. Figure 9 shows
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discrepancies in fractional flow functions (and fractional flows’ derivatives) when employing
the relative permeability models. These discrepancies had origin in the adjustment of
the relative permeability models. It is possible to observe how the solutions of the
Buckley-Leverett equation are affected by such model mismatch, altering the predictions
of recovered oil and water cut functions. The experimental observations of oil and water
relative permeability values were chosen to highlight the flexibility of the Chierici’s and
LET models in contrast to Corey’s model. Ignoring Corey’s model, a "single" misfit on

Chierici’s oil-relative permeability evaluation affects all the forward results.

Different reservoir properties were evaluated considering the three relative
permeability models. Table 1 displays the values of water—breakthrough instant (WBT),
the saturation of the shock front (RK-H), mobility ratios at shock saturation (MRT),
and relative permeability crossing point (CPT). Each of these evaluations can be used to

characterize the flowing regime of the core sample.

Table 1 — Evaluation of water—breakthrough instant, saturation of the shock front, mobility
ratio at shock front saturation, and relative permeability crossing point, using different
relative permeability models.

Petrophysical feature Corey Chierici LET

WBT [min] 1.78 146  1.70
RK-H [] 0.57 0.57  0.56
MRT [-] 3.77 267 11.4
CPT [ 0.74 0.57  0.60

With this example, we remark how the choice of the model affects the predictions and
conclusions one may bring out solving the Buckley-Leverett equation, adopting the same
experimental dataset and boundary conditions. Similar conclusions were communicated
by Berg et al. [8, 9], Moghadasi et al. [101] as well as in [138].

2.6 Foam flow in porous media

In this section, the fundamental concepts of foam flow in porous media are described,

and then the governing equations are discussed.

Modeling foam displacement at pore scale

Foam is defined as a dispersion of gas in a liquid such that the liquid phase is
continuous (i.e., one gas region is connected to other gas regions by a liquid film) [41].
The liquid films are called lamellae, and the boundary between two contiguous gas regions

are the Plateau borders.
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Saye & Sethian [123] presented numerical simulations of different scenarios involving
foam dynamics. The authors proved numerically that foam dynamics is a cumbersome
problem that should be tackled considering different spatio—temporal scales. Based on
their numerical evidence and experimental observations, the authors highlighted three

main events:

o Drain. While foam seems to be in macroscopic equilibrium, liquid drains from the

lamellae to the Plateau borders,

o Rupture. When the lamellae thickness approximates to a small value, (i.e., the foam

bubble reaches the limiting disjoining pressure), the foam bubble will collapse,

o Restore. Rearrangement of the fluids due to surface tension and gas dynamics in

order to recover a new macroscopic equilibrium, following the Plateau law.

According to [123], these three events happen in six different scales involving different
spatial-temporal orders of magnitudes, and each of them may be modeled by non-linear

partial differential equations.

As time evolves, liquid drains from the lamellae to Plateau borders, reducing the
thickness of the lamellae. Immediately before the collapse of a foam bubble, the difference
in pressure between the gas and liquid phases achieves a maximum value. This critical
value is often known as critical disjoining pressure. The works of Bergeron & Radke
[10] and Aronson et al. [4], conducted experiments with synthetic glass devices revealing
that positive increments of disjoining pressure are proportionally correlated to significant
reductions of the flowing rate (i.e., the flow gets slower as long as the disjoining pressure
increases). While proximal foam bubbles will experience high values for the disjoining
pressure, distant foam bubbles will experience small values of disjoining pressure. Foam
flow with small values of disjoining pressure will also reduce the speed of the flow, yet in
a smaller proportion than flow with higher disjoining pressure values. This behavior is
because dryer foams are tempted to block the flow, while wet foams are responsible for

maintaining a reduced flow rate.

Modeling foam displacement at Darcy’s scale

Motivated by experimental observations, Falls et al. [41, 42], reported that the

behavior of foam displacement in a porous medium satisfies the following statements:

o Foam does not alter the mobility of the water (i.e., wetting) phase,

o No conclusive results expressed that foams affect the gas relative permeability.
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o The mobility of the gas is controlled by adjusting the viscosity of the gas. This
behavior can be described by employing experimental information like pressure

gradient and gas velocity, resulting in an effective gas viscosity.

The validity of these experimental observations was confirmed by Eftekhari & Farajzadeh
[40]. The authors proved that foam affects gas mobility by modifying its viscosity. In
addition to this, the authors exposed the relations between pore scale physics and Darcy’s—
scale physics. Hanssen [57, 58] and Heller & Kuntamukkula [61] listed the most relevant

factors that affect the foam dynamics at pore scale, for completeness we mention them:

—_

ratio between the bubble size and the size of the pore,
size distribution of bubbles,

flow—induced anisotropy of bubble distribution,
foamer—channel interactions,

pore-throat geometry,

foam quality,

fluid’s properties,

pressure drop,

e O A e o o

time dependent properties of foam bubbles.

In particular, Heller & Kuntamukkula [61] validated the models developed by Falls et
al. [42] and Hirasaki & Lawson [64], supporting the concept of foam texture, which relates
to the number of foam bubbles per volume. Following Hirasaki & Lawson [64] the effective
gas viscosity relies on the geometry of the slugs between two bubbles, resistance to deform
the bubble, and the surface tension gradients. Moreover, Khatib et al. [82] exposed dynamic
aspects of the generation and coalescence of foam bubbles, developing the Darcy’s—scale
concept for limiting capillary pressure (arising as a counterpart to the pore scale disjoining

limiting pressure).

The modeling of foam dynamics at Darcy’s scale inherits several concepts from the
modeling at pore scale. At pore scale the foam stability is determined by the disjoining
pressure between two different bubbles. Similarly, in Darcy’s scale the stability of foam
bubbles is governed by the concept of limiting capillary pressure. Dryer foam bubbles can
reduce the flow motion, although they are suitable to face massive collapse due to the
liquid film drainage phenomena. Dry foams are often known as strong foams due to the
high values of disjoining pressure they are subjected to. Analogously, wet foams are known
as weak foams due to their poor capability to slow down the fluid motion. Figure 10
presents a schematic representation extending the explanation observed in the work of

Khatib et al. [82]. In particular, we link the critical capillary pressure with the concept of
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limiting water saturation and critical foam quality. The two flowing regimes are known as
low—quality regime (LQR) and high—quality regime (HQR). From Figure 10 we can notice
that the events happening in the HQR are in the presence of dryer and unstable foam
formulations. Whereas the events happening in the LQR count with the presence of wet

and stable foam formulations.
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Figure 10 — Schematic representation of the LQR-HQR regimes.

As appointed by Aronson et al. [4] if the capillary pressure in the porous medium
is above a threshold value, the lifetime of the foam lamellae will be shorten significantly,

reducing the number of foam bubbles per volume not collaborating to slow the flow motion.

With the experimental evidence and mathematical developments, there is an
agreement to model foam dynamics at the Darcy’s scale altering the gas mobility by
redefining the gas viscosity. The effects of adding foam bubbles to the water-gas system
presents two different regimes. On the one side, the low—quality regime (LQR) and on the
other side the high—quality regime (HQR). The transition between regimes corresponds to
the abrupt collapse of foam bubbles due to higher values of capillary pressure, as depicted

in Figure 10.

Mathematical models to simulate foam displacement at Darcy’s scale

The modeling of foam dynamics at Darcy’s scale is done incorporating the gas
mobility reduction factor (MRF) concept. This mobility reduction factor changes the total
relative mobility (of the mixture water and foamed gas) and allows to define the apparent
viscosity of the system; these changes are addressed as follows. First the total relative
mobility,

A

Ap= Ay + —9 2.2
r T MRE (2.25)

and secondly for the apparent viscosity,

A\ -1
Happ = <)‘w + MngF> : (2.26)
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The fractional flow for the gas phase (known as foam quality) takes into account these
modifications showing the next functional dependency with the MRF,
A Ag
Jo = N, \ MRFM
MRF

g

MRF </\w +

(2.27)

From the literature, we can recognize two main groups for labeling models to

simulate the displacement of foam in porous media, briefly they are introduced as follows:

e Population Balance (PB) models. They are based on partial differential equations
to characterize foam dynamics in a porous medium. The displacement of water and
foamed gas in a porous medium is based on the mass conservation principle for the
two phases (water and gas) and a population balance equation for the foam texture
variable. The latter describes the lamellae creation and coalescence rates to calculate

the foam texture. The following system of equations gives the typical structure of a

PB model:
9 Q@0 v g in[0, L] x [0, 7],
%ts napa&g (2.28)
gt =+ ox (ugnp) = ¢Sy (rg —re), in [0, L} < [0, 7.

where np is the normalized foam texture (related to the number of bubbles per
volume). Most of the PB models make use of the Hirasaki & Lawson expression [64]

for effective gas viscosity (,uﬁ ), yielding the following definition:

il = g1, <1 + a%) , (2.20)

Hg Vg
where (a, ) are parameters to be determined, and vy, = u,/(¢ S,) is the gas effective
velocity. The physical interpretation of the Equation (2.29) has been described in
[22, 149], where shear—thinning and shear—thickening behavior are discussed. Because
of the nonlinearities presented in Equations (2.28) and (2.29) most of the PB models
poses numerical challenges. PB models that used the Hirasaki & Lawson expression

will produce the next closed equation for the MRF function,

MRF = (1 ta "%) . (2.30)
Hg Vg
e Semi-FEmpirical (SE) models. They are primarily used in commercial simulators
like CMG-STARS [31] or UT-CHEM [24] due to their capacity to perform fast
computations. These models use algebraic expressions to calculate the mobility
reduction factor rather than solving the partial differential equation to obtain the
foam texture and MRF values. Therefore, SE models should not be trusted to describe
the transient regimes of creation and coalescence of foam bubbles in a porous medium.
However, they assess numerical solutions accurately enough compared with the PB

models at steady—states’ flowing regimes.
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Assuming local-equilibrium (LE), it can be shown that the PB and SE models foam
flow responses agree with each other. Gassara et al. [51, 52] compared CMG-STARS [31]
with the Kam and Rossen model [76, 75|, while Cavalcante et al. [48] studied the PB
model proposed by Chen et al. [23] and the SE implementation found in UT-CHEM [24],
in a similar approach Lotfollahi et al. [95] compared the mentioned foam models and

others that were omitted employing two datasets.

2.6.1 Foam models

This thesis presents a detailed comparison of two different foam flood models. The
CMG-STARS model [31] and the Linear Kinetic (LK) model developed by Ashoori et
al. [5].

CMG-STARS model [31]. Due to its versatility, the CMG-STARS model can
simulate the effects of foam in a reasonable computational time considering different
effects like surfactant concentration, water saturation, oil saturation, gas velocity, capillary
number, critical capillary number. In this thesis, we will expose the main features of the
CMG-STARS model analyzing the water saturation and the capillary number effects. The
CMG-STARS’ mobility reduction factor reads the following expression:

MRF =1+ fmmob Fyuer Fshear, (2.31)

1 1
Footer = 5 + —arctg (sfbet(S, — SF)),
T

epcap
(fmcap) , if Ny > fmcap,
Fshear = Nca

1 , if Now < fmcap.

The model parameters are fmmob, sfbet, SF, and epcap. Where fmmob represents the
maximum mobility reduction that can be achieved considering the effects of foam, sfbet is
a transition coefficient associated to the LQR-HQR flowing regime passage (higher values
of sfbet represent a sharp transition, while smaller values of sfbet will produce a smooth
transition), SF corresponds to the water saturation where the capillary pressure meets
its critical value collapsing the foam bubbles. After fixing the parameter fmcap in the
lowest capillary number (as suggested by Farajzadeh et al. [45], and Kapetas et al. [79]) it
is recommended to use the calibrated value of epcap to characterize the foam rheology
as Newtonian or non—-Newtonian. The Capillary number written in Equation (2.31) is
evaluated using the definition:

Ny, = Har® (2.32)

g

where u and o are the inflow velocity (Darcy’s velocity) and the water-gas surface tension,

respectively. From here two different models can be used independently. On the one hand,
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foam model with Newtonian behavior
MRF =1+ fmmob Fger- (2.33)
And on the other hand, a model with non-Newtonian rheology,

MRF =1+ fmmob Fyater Finear- (2.34)

Linear Kinetic (LK) model [5]. The LK model is a population balance model
that satisfies the structure of Equation (2.28), where the source term associated with the
foam texture equation is given by a first—order kinetic expression based on the works of
Zitha [150] as well as Zitha & Du [149], yielding the following equation:

rg —re = ke (np” —np), (2.35)

where k. estimates the frequency of creation and coalescence of foam bubbles, nkF stands
for the foam texture at local equilibrium state. Here the authors proposed the next

expression for the nkP variable:

tanh(A(S, —S%)), Sw > S5,
nkt = (Al ) (2.36)
0, Sy <S5
The mobility reduction factor reads the next definition, revealing functional discrepancies

with the Hirasaki & Lawson’s Equation (2.30) returning a Newtonian constitutive law,
MRF(np) =14 Cpysnp, (2.37)

where Ci,, 5, A and S are the parameters of the model. The parameter C,,, s is the
maximum mobility reduction that can be achieved by the model, A quantifies how sharp
or smooth is the LQR-HQR transition, and S}, is the water saturation where the capillary

pressure meets the critical value, above which foam bubbles will massively collapse.

2.7 Comparing the LK and the CMG-STARS models

Comparisons between the CMG-STARS models and the LK model were reported
in the literature; for instance, the work of Kapetas et al. [80] exploits the capabilities
of the CMG-STARS model’s F 4., to rewrite the local equilibrium expression for the
LK’s mobility reduction factor. In particular, [80] proposes a transient extension in the
CMG-STARS model. In a different study, we exposed in [137] the similarities using
the Bayesian calibration considering the Newtonian variant of CMG-STARS and the LK

model, with a Newtonian experimental dataset.

The following example takes a dataset from the literature [3], in particular, we

highlight the discrepancies between the Newtonian and non—Newtonian variants from
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CMG-STARS with the Linear kinetic (LK) approach. Initially, we show in Figure 11
the discrepancies between the three models, highlighting their apparent similar fitting
capabilities and their notorious rheological differences. Analyzing the mobility reduction
at the LQR, we can notice the shear—thinning effects on the non-Newtonian CMG-STARS’
variant. In this context, Newtonian models achieve uniform stagnation of their MRF
values in the entire LQR. The three models revealed the same foam bubbles’ collapse
pattern reducing the MRF monotonically at the HQR.
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Figure 11 — LK and CMG-STARS models evaluation vs foam quality.

The model comparison is completed by analyzing different quantities like apparent
viscosity, total relative mobility, mobility reduction factor, and foam quality as functions
of the water saturation. The analysis depicted in Figure 12 shows that the three models
capture the same limiting water saturation (i.e., same limiting capillary pressure). The
non—Newtonian variant of CMG-STARS reports differences with the other models only on
the mobility reduction factor for higher water saturation values. At lower water saturation
values (i.e., dryer foams), the collapse of foam bubbles shows the same trend in the three
models analyzing the four quantities of interest. However, the LK model experiences the
LQR-HQR transition with remarkable sharpness, whereas both CMG-STARS’ variants

present smooth transitions.



total relative mobility

apparent viscosity (cP)

45

x 102
—— Newtonian 1.0+
8 - non-Newtonian

— LK 0.8

61 =
= 0.6

jan}

(@
4 E 0.4
27 0.2
01 0.0 1

x 10°

10*4 3

8
< 1.51

10%5 5
£1.0

107 =

=
Z 0.5

1] o

10 =
109+ 0.0

2 4 6 8 2 4 6 8

water saturation x 1071 water saturation x 107!

Figure 12 — LK and CMG-STARS models’ evaluation vs water saturation.
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3  Uncertainty quantification and sensitivity analysis techniques

One of the challenges in the application of foam flow models for EOR is the
adaptation of model parameters (inputs) to characterize core, reservoir or fluid flow
conditions. In particular, the inputs to be characterized in the context of foam—assisted
EOR include relative permeability models, physical parameters (describing for instance
foam dynamics such as effects of water saturation, shear—thinning effect, creation and
destruction of bubbles and others), initial and boundary conditions (describing, for
instance, injection and recovery). Experimental data of these properties are usually
hindered by measurement uncertainty, which in turn translates into uncertainty of these
input parameters. The identification of these parameters and its uncertainties, and the
quantification of the uncertainty in the model predictions that results from uncertainties in
model inputs are crucial for robust and reliable simulations. In addition, the determination
of which model parameters have the major impact on the outputs through a sensitivity
analysis is also important to improve measurements accuracy or to fix these parameters at

their baseline values.

This chapter introduces the methods used to perform inverse uncertainty
quantification, forward uncertainty quantification, and sensitivity analysis. In particular,
we will introduce the following methods for uncertainty quantification: the Markov Chain
Monte Carlo method, the classical Monte Carlo, and Polynomial Chaos Expansions. A
detailed introduction to UQ methods is available in the literature [35, 39, 46, 145] as well
as for SA methods [128, 59, 36, 125, 112, 21].

3.1 Uncertainty Quantification

Uncertainty quantification (UQ) aims to estimate the variability that a model can
propagate in the presence of unpredictable inputs [100]. Every model is subjected to a
certain degree of uncertainty due to manufacturing tolerances, constitutive properties
of materials, or insufficient knowledge related to operational conditions. Propagating
these uncertainties to the models’ output is one aspect of UQ, which is often referred
to as to forward uncertainty quantification. The other aspect that UQ pursues is the
characterization of the input parameters of a model given experimental data, which is

known as inverse uncertainty quantification.

The general framework to perform UQ studies, as described by Eck et al. [39],
McClarren [100], and Sudret [129], consists of a series of steps to assess the uncertainty in

a model. The following steps summarize an UQ study:

1. Identify Quantities of Interest (Qols);

2. Model uncertainties in the system’s inputs;
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3. Propagate uncertain inputs through simulations to the outputs;

4. Determine how uncertainties affect the model predictions.

Each of the previous steps should be carefully designed by the user. Different kinds
of problems (for instance, elasticity, fluid mechanics, or reservoir engineering) will have
different kinds of Qols and different kinds of model inputs. Figure 13 shows a scheme
exposing the interaction between the main parts of the UQ-SA workflow. In particular, it
is possible to recognize the cyclic nature of the UQ-SA study, starting from parametric

uncertainty and concluding on parameters’ influences on several Qols.

Input parameters' Models' evaluation Uncertainty Quantification
variability sl

density
distribution

density
distribution

density
distribution

Figure 13 — Main parts of the UQ—-SA workflow and it’s interactions.

Identifying Qols

Computational models generally return the solution of a problem defined over a
specific domain with a fixed set of boundary/initial conditions. In this work, the two—phase
flow in a porous medium is considered. Under specific hypotheses, the solution to this
problem is wetting and non—wetting saturation through time and space. However, a Qol

should be a single scalar function.

3.2 Modeling of uncertainties in the system’s inputs

Theoretical models are conceived to extend and better explain experimental
outcomes. Under particular constraints/hypotheses, the model should recover the
experimental setting and extend the experiment to different scenarios. In this context, the

limitations of the developed model rely (mostly) on the hypothesis. By adjusting the model
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to the experimental setting, the user should explain the experiment with the theoretical
model. Two sources of uncertainties are recognized [100, 129] aleatory uncertainty and
epistemic uncertainty. Aleatory uncertainty concerns the system’s inherent randomness
(for example, predicting the position and momentum of an electron that orbits the core
of an atomic model). Epistemic uncertainty refers to the limited knowledge about the
system. An example of epistemic uncertainty could be a tolerance related to experimental
measuring. At the end of this stage, the system inputs should be identified, and their
uncertainty should be described, for example, with a probability density function (PDF).

3.2.1 Estimating input uncertainties

The Bayes’ rule relates the probability of an event employing prior information;

the following expression gives it:
P(BJA)P(A)
P(B)
where P(m|z) is the probability of the event m constrained to the probability of the event

P(A|B) = (3.1)

z, and P(m) is the probability of the event m. In this thesis, the Bayes’ rule is used to

estimate the variability of the model’s parameters considering errors on the observed data.

For a finite set of input parameters x € R"? the Bayes’ rule is applied straightforwardly

considering experimental data D as follows:

7(D|x) m(x)
m(D)

where 7(D) is the probability distribution associated with the experimental observations.

(x| D) = (3.2)

7(x) is the prior knowledge associated with the uncertain parameters x. w(D|x) is
the probability of the observed data conditioned to the parameters’ x probability. The
conditional probability term 7(D|x) is materialized by the likelihood function. Assuming
that the experimental observations’ variability does not change, the following relation
holds true

7(x|D) < w(D|x) 7(x).
The Markov Chain Monte Carlo (MCMC) method is a class of algorithms that benefits

from successive evaluations of the Bayes’ rule by storing samples in a Markov chain. After
many evaluations, the Markov chain converges asymptotically to the kernel of the posterior

distributions associated with each model, parameter [17, 18].

In this work, the execution of the MCMC method was carried out using different

implementations available as Python libraries [54, 49, 121].

An example of the MCMC method

An academic example is used next to illustrate how the MCMC method results

are presented. Given a finite collection of data—points (x;,y;), we estimate the parameters
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of the function y = (o + 3 sin(z)) exp(—0.05z) using the MCMC method. The dataset
was generated adding a 20% Gaussian noise relative to the values of the known function
y = (2 +sin(z)) exp(—0.05z).

Figure 14 (left) is used to explain how the synthetic dataset was created. Gaussian
noise was added to the model evaluations. In this example, we employ the perturbed data to
recover the original noise—free function. Figure 14 (right) displays different posterior model
evaluations in shaded green, and the model evaluation corresponding to the maximum a

posteriori (MAP), that equals the mode of the posterior distribution, in dashed red.
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Figure 14 — Inverse modeling calibration results and the MAP estimate.

The MCMC method was executed adopting the following prior distributions for

the uncertain coefficients o and f3:
a~U0,15), B~ N(0,10).

That is, an uniform prior distribution ranging from 0 to 15 was assumed for «, whereas a
normal prior distribution was assumed for § with mean and standard deviation given by 0

and 10, respectively.

The posterior distribution for each model parameter o and S obtained by the
MCMC method is depicted in Figure 15. One can observe that the posteriors have a
symmetric shape resembling normal distributions, whereas the mean values for o and 3

are close to 2 and 1, respectively.
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Figure 15 — Posterior distributions obtained the parameters « (left) and /5 (right).

In this example, we used the MCMC method to perform the model calibration
and estimate the variability of the parameters. The example shows the robustness and
versatility to solve inverse problems associated to non-linear models and considering
experimental data hampered by measurement errors, and how to characterize parametric

uncertainty.

3.2.1.1 ldentifiability analysis

The MCMC method is a robust alternative to estimate the variability of parameters
when performing the model calibration to a finite dataset. Yet, the MCMC is not
fully protected against over—parametrized models and/or non-adequate experimental
observations. Identifiability studies are employed to determine if the model’s complexity
matches the information contained within the experimental records. Therein, identifiability
analysis returns alternatives to improve the model and/or add different experimental

observations to constrain better the posterior density distributions.

A common approach used to screen identifiability is the analysis based on the profile
likelihood [77, 115]. For any model parameter x; € x the associated profile likelihood is
defined as:

X3 () = min [ X%(x)] (3.3)

x\{xi}

where Xpp(x;) stores the residual values after fixing z; € [min(z;), max(z;)] and fitting

the remaining model parameters x \ { z;}.

The estimation of a model parameter can be classified as (i) identifiable, (ii)
practically non-identifiable, and (iii) structurally non-identifiable [115, 116, 77]. Structural
non—identifiability is related to the mathematical structure of the model, whereas practical
non-identifiability is related to the quality of observed data. In practical terms, a model

parameter is identifiable if the profile likelihood function depicted in Equation (3.3) presents



o1

a single minimal value. In a similar take, a model parameter is identifiable if its confident
interval (estimated with the profile likelihood function) is finite [115]. A model parameter
x; is structural non—identifiable if the associated profile likelihood remains flat or shallow
in the entire search range [min(x;), max(z;)|. Practical non-identifiable parameters have

profile likelihood functions that contain a minimal value, yet it is not necessarily unique.

Practical non—identifiability problems associated to the model parameter x; may be
corrected restricting the range [min(x;), max(z;)] where the best fit value is being explored.
Alternatively, practical non—identifiability issues are suitable to be reduced if the quality
of the experimental data is improved. Another different solution to mitigate practical

non—identifiability issues is to fix redundant model parameters.

3.3 Propagation of uncertainties

Once the (posterior) distributions of the parameters have been characterized by the
MCMC method (or any other alternative), we assess the models’ variability via forwarding
UQ. The estimated uncertainty in the model parameters can be propagated to the model’s
outputs and be quantified in terms of expected value, variance, and other statistical

information.

Models are described as functions like M : x + Y = M(x) where x € R here
N, represent the number of input parameters. The response ) is the result of the process
M (usually considered as a black boz) applied to the input vector x. For a fixed input
vector x, the response ) given by the model remains the same (deterministic). This thesis
employed the Monte Carlo method and emulators based on polynomial regressions like

the Polynomial Chaos Expansion (PCE) method to perform forward UQ studies.
The result of UQ studies should be knowledge of the Qol and its uncertainty.

Expected value, variance, and prediction intervals are used as metrics to characterize the
variability in the output. Prediction intervals are evaluated using the percentile estimation
for any Qol distribution, as reported by Eck et al. [39)].

3.4 Sensitivity Analysis

Sensitivity analysis (SA) arises as a tool that can contribute to the process of
evaluating a model. A SA study evaluates how sensitive the outputs of a given model are

to uncertainties at the inputs. Two primary SA methods can be identified [120]:

» Local methods: varies each parameter one by one while keeping the others fixed and
explore the model’s output dependency with the variation of each parameter, for

example, methods based on derivatives.
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« Global methods: varies all the parameters simultaneously, exploring the input space

of the model, for example, Sobol’s method.

Differently from local techniques like derivatives or adjoint methods, global
approaches usually require more computational efforts. However, they can easily identify

interactions between input parameters [130, 119].

In this work, a global SA approach based on Sobol’s indices is used to classify
the input parameters in terms of their influence on the model’s output. With this input
parameter ranking, two different groups of parameters will be distinguished: parameters
that can be fixed (without compromising the model’s output) and parameters that can

not be fixed and should be worth improving its estimation.

3.5 Emulators, surrogate models

UQ and SA studies usually require several evaluations of the computational model.
Eventually, when the cost of one model evaluation is high, or the number of model
evaluations required to carry out the UQ and SA study is very high because many
parameters are involved, the study may be impractical. When the number of model
evaluations or the total cost becomes impractical, the analysis can be carried out by
constructing approximations of the model evaluations. These approximations are often
known as surrogate models or emulators. In this work, emulators based on the Polynomial

Chaos Expansion (PCE) are also explored.

3.5.1 Polynomial Chaos Expansion (PCE)

The posterior density distributions obtained after the MCMC execution are used
to define the joint probability distribution yielding the following expression,

m(x) = Hpm(mi), (3.4)

where {z;};.5; = x € RN?. Each marginal distribution m;(x) span a subspace U; with the

following inner product operation,

(u;v),, = / wvm(z)de. (3.5)
: R
By taking an orthonormal basis of the subspace U;, we extend the inner product operation

to Np dimensions as follows:

(u;v),, = /RNpuvﬂ'(x) dx. (3.6)
PCE emulators benefit from the orthonormal basis returning the following linear
combination,
N-1
Y= 3 () (37)
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The number of terms N considered in the expansion is a function of the number of

uncertain inputs Np and the polynomial degree P, given by [39, 131]:

_ (Np+ Py)!
N_ W- (3'8)

The coordinates y = {y; N are determined using the properties of each inner product
subspace ;. On the one hand, we have the projection method [129] based on the

orthogonality of the basis. For example, the coordinate y; is defined as the next projection

b= i)y = [ Yo0) (o) dx. (39)

And on the other hand, we have the regression method based on minimizing the distance
between the PCE emulator V¢ and the model ). The functional to be minimized reads

the next definition:
J(b) = UD (Y — ¥(x)b) m(x) dx]z, (3.10)

where b € RY are any possible coordinates (including the unknown PCE coordinates),
and ¥ (x) = {¢;(x)}1*,". Consequently the PCE coordinates are feasible to be obtained

as:
y = arg miny g~ J(b). (3.11)

The minimization scheme has an algebraic equivalent problem which is obtained setting
null the first variation of the functional 7 evaluated in the unknown coordinates y towards

any possible change of such coordinates. We write the variational equation as follows:
Cij(y%—ayﬂs_ozo, Vy e RY, for anye € R, (3.12)
after some manipulations, the next equation is obtained,
/D PU(x)yP(x)ymw(x)dx — /Dy\Il(x) ymw(x)dx =0, VyecRY, (3.13)

By setting ¥(x)y = d(x — x;), with §() being the Dirac delta function with i =
{0,1,..., N — 1}, we obtain the following linear algebra problem,

PU(x)d(x—x)y =YVo(x—x). (3.14)

The system of linear equations whose solution determines the coordinates of the PCE

expansion reads the next matrix vector representation:

‘Ifo (X(o)) ‘Ill (X(0)> ce ‘I/N,l (X(o)) Yo y (X(o))
v, (X(1)) v, (X(l)) R (X(1)> v _ N (X(1))
v, (X(N—1)> v, (X(N—1)> oo Wy (X(N—l)) YN—1 Y (X(N—1)>
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Increasing the polynomial order P; can improve the surrogate model’s performance
but at the expense of high computational cost. A typical procedure to improve the accuracy
of the polynomial surrogate model obtained with PCE is to consider several samples N,
larger than the minimum N required to determine the coefficients of the polynomial [68].
Typically a number of samples N, = k N with k is a positive integer factor. This procedure

results in an over determined system that is solved using linear least-squares methods [47].

E[Y] = /Dyp%(x) dx = yo, (3.16)

VY = /D (¥ —EY]) ) dx =Y o (3.17)

Another useful metric to study the Qol’s uncertainty is the coefficient of variation (CoV),
which is defined as the ratio of standard deviation and expected value CoV(Y) = 100% x
\/ VIV]/E[Y]; as well as the prediction intervals evaluated from the Qols’ distributions.

3.5.2 Accuracy of the surrogate model

The PCE surrogate model’s performance for each output quantity ) depends on
the chosen polynomial degree P; and the number of samples N, used. One approach
to verify the surrogate model performance is the leave-one-out (LOO) cross—validation
test [55], which was employed in this work to check if a specific combination of polynomial
degree and the number of samples results in an accurate approximation. The LOO test

can be summarized in the following steps:

1. From the N, samples, take one sample x;, evaluate Y7 (x;) and V[YFC];
2. With the remaining N, — 1 samples adjust a new PCE emulator Y'¢;

3. Compute the error between Y (x;) and YFC(xy);

4. Restore the removed sample x; and take a different sample;

5. Repeat the previous steps N, times and store the computed values;

The LOO test allows to compute the Q? coefficient, which is defined as:

2 Errroo . 1 & PC PC 2
Q = 1 — W7 Wlth ETTLOO = ﬁ Z y k (Xk;)) s (318)

and represents a normalized measure to check the accuracy of the surrogate model. The

closest Q2 is to the value of 1, the better agreement between the simulator and emulator.
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An illustrative example: emulators vs. simulators

The next example compares the performances of emulators and the classical Monte
Carlo method to perform forward UQ. Considering the model as the solution « : [0, 7] — R

of the following differential equation:

w(t) = —au(t), Vtelo,T],

Here we assumed that x = {a,(} are input parameters subjected to uncertainties
characterized by a ~ U(0.1,0.2) and | ~ U(1,2). The UQ study was done using the
classical Monte Carlo (MC) and a third-order PCE emulator. The UQ results presented

in terms of expected value and standard deviation are shown in Figure 16.

—— MC-Mean —— PCE-Mean

Figure 16 — Parametric uncertainty propagation study MC evaluations vs PCE. Solid lines
represent the expected values and shaded regions represent the 4+ standard deviation.

The PCE emulator associated to this problem is given by:

VPO =y 2l + yp adtys g - 22 4 yga? - 10 + ys 22+

y6x%—|—y7:1;1 Ty + Ys 1 + Yo T2 + Y10, for a fixed ¢ € [0,T].

The coordinates {y;}12,, were determined solving the linear system from Equation (3.15).
For this example, we performed 1000 forward evaluations of the model simulations,
oversampling the corresponding minimal number of evaluations required to fit the PCE

regression.

Both methods, MC and PCE, returns equivalent results in terms of propagated
uncertainty. Figure 17 shows for each UQ method (MC and PCE) the relative error
of expected value and standard deviations as functions of the total number of model
evaluations. The fast convergence of the PCE emulator towards variations of the number

of samples justifies the use of a surrogate instead of the model evaluation.
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Figure 17 — Comparison between MC and PCE concerning the number of samples.

With the same number of evaluations, the PCE emulator always had minor
variations in expected value and standard deviation than the MC method. In other
words, PCE emulators require fewer model evaluations to obtain accurate results for UQ
studies than the classical MC method. Further readings on the convergence of several
methods for UQ studies can be found on [53, 144].

3.6 Computing Sobol’ sensitivity indices

The variance V[))] of the output ) is decomposed in the Sobol indices, as described
in the work of Sobol [126, 127] and Saltelli [120]. It can be used to evaluate the influence
of each uncertain parameter x on the variance of ). We used variance-based SA in terms

of the main and total Sobol indices, which are defined next.

The main Sobol index expresses how a specific uncertain input x; directly contributes

to the variance of the output ). The following expression gives it:

_ V[ED}\%H

S, = VD (3.19)

The total Sobol index estimates a decomposition of V[)] considering first and
high—order interactions involving the i—eth uncertain input. The following expression gives
it:

VIEY|z_i]]

Spi=1— ,
! V[

(3.20)
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where z_; denotes the set of all inputs except z;.

The main Sobol index does not account for eventual interactions between two or
more uncertain inputs. The total Sobol index captures these higher—order interactions.
The execution of UQ and SA studies that were carried out employing PCE emulators are
based on the ChaosPy library [47]. In some studies MC method was used based on the
low computational cost to evaluate the model; there, we employed the Saltelli sampler
implemented in the SALib library [63].
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4  Uncertainty quantification and sensitivity analysis for relative

permeability models

This chapter was first published in Journal of Petroleum Science and Engineering,
2020 by Elsevier. The content of this chapter is a reprint of the work of Valdez et al. [138],
DOI: 0.1016/j.petrol.2020.107297. Reproduced with permission from Elsevier.

Computer simulations are usually employed for the prediction of oil reservoir
performance under different extraction scenarios. Computational model parameters are
adjusted to petrophysical properties of the reservoir and production data to forecast
production profiles. However, some key features of these models, such as relative
permeabilities of water and oil, are difficult to measure experimentally. As a consequence
they can be considered a source of uncertainties, affecting the reliability of predictions.
This work presents a study of uncertainty quantification and sensitivity analysis of different
relative permeability models to assess the effects of input uncertainty on quantities of
interest computed from a model of two-phase flow of water and oil. To explore different
wettability regimes two different datasets were used, and two permeability models were
employed. The probability distributions of parameters were estimated via the Markov
Chain Monte Carlo method. Uncertainty propagation and sensitivity analyses were
performed using the polynomial chaos expansion. The paper highlights output quantities
that were most impacted by uncertain input data, and also the parameters which most

contribute to the output variances.

4.1 Introduction

Mathematical and computational models are key tools to predict the effectiveness
of enhanced oil recovery (EOR) techniques, including the reservoir performance and the
production of hydrocarbons. The validation and reliability of these simulations depend on
a set of rock-fluid properties required for tuning the computer model. Among all the model
parameters, the relative permeabilities of the flowing phases (e.g. water and oil) are of
utmost importance and play a central role in the physics of the reservoir. These functions
are obtained experimentally by measuring the pressure drop at different points inside the
sample for different physical conditions and then applying Darcy’s law. Typically, the

relative permeability curves are represented as functions of the wetting phase saturation.

Acquisition of accurate relative permeabilities data is critical and has been of
interest in the petroleum industry and scientific community [101]. The inherent difficulty
to experimentally determine water and oil relative permeabilities have been extensively
reported in the literature [101, 14, 124]. Laboratory experiments to obtain relative
permeabilities are complicated and time consuming [124]. Three methods are commonly

used for measuring the relative permeability data: unsteady-state, steady-state and
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centrifuge. These methods are discussed in terms of their disadvantages and limitations
in [14]. The authors highlight the fact that these data are subject to errors and uncertainties.
The errors in relative permeabilities estimated from displacement experiments under
different operating conditions using the Johnson, Bossler and Naumann (JBN) method [71]
were studied in [134, 135]. Their results indicate that errors were in the range of 0.2% to
15%. In most of the cases, errors were below 5%, except near the residual water saturation
where they were higher. Also, the relative permeabilities are functions of the phase
saturations and are affected by several other parameters, that may contain uncertainties
as well [67].

Uncertainty quantification analysis can be used to study how the measurement
errors propagate from input parameters to the model predictions. Recent works have
investigated models for relative permeability, considering uncertainty in the experimental
data. In particular, Moghadasi et al. [101] applied model identification criteria to rank
and to assess relative permeability models for laboratory-scale experiments. Together with
parameter estimation and model comparison, uncertainties of the estimated parameters
are also considered in their analysis. Moreira et al. [125] applied the Markov Chain Monte
Carlo (MCMC) method to estimate the parameters of the Corey relative permeability
model [32] from laboratory scale data of a coreflood experiment. The mean values of
the parameter distributions obtained by the MCMC method were used to estimate the
pressure drop and oil production. In addition, the investigation can be improved by the
sensitivity analysis (SA), which studies the effects of input parameters on the variance of
the output quantities. For example, Yoshida et al. [147] performed a sensitivity analysis
with Monte Carlo simulations of a Corey-type relative permeability model in the context
of CO; injection in reservoirs. Other studies have applied sensitivity analysis for EOR
techniques [103, 108].

The main contribution of this work is the investigation of a new method for
performing uncertainty quantification (UQ) and sensitivity analysis (SA) of a model of
two-phase flow in porous media based on a polynomial surrogate model. The Buckley-
Leverett equation is used as the prototype model for studies of water-oil displacement at
the core-scale. The proposed scheme determines the probability distribution functions
for the parameters required in the UQ and SA analyses using the Markov chain Monte
Carlo method. We demonstrate the method in a detailed UQ and SA study of two relative
permeability models [25, 92] commonly used for two-phase flow in a porous medium. Given
the input parameter distributions, UQ is performed using polynomial chaos expansions
(PCE) [145, 55], whereas SA is achieved using variance-based Sobol indices [127, 120].
The scheme is computationally efficient and requires fewer model evaluations than the
classical Monte Carlo method, and to the best of our knowledge has not been applied in

this context.

The remainder of this text is organized as follows. In Section 4.2 the model for
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two-phase flow in porous media, the methods for UQ and SA, input parameters and
quantities of interest are described. In Section 4.3 the results of the analyses are presented,

followed by discussion and conclusions in sections 4.4 and 4.5, respectively.

4.2 Methods

4.2.1 Two-phase flow model

The water-oil displacement in a petroleum reservoir can be approximated with
the Buckley-Leverett (BL) model [19]. This model assumes the following hypothesis: the
porous medium is fully saturated with immiscible and incompressible fluids. The interface
between the fluids remains chemically inactive, the flow is horizontal and capillary effects
are neglected. Following [7] the two-phase transport in a porous medium using the BL

model can be described by:

S, qg O B )
WjL%%(f)_o7 in Q x [0, 7], (4.1)

where ¢ is the total influx, a is the core sample cross section area, ¢ matrix porosity,
Sw = Su(x,t) denotes the water saturation and f expresses the fractional flow function.

The fractional flow function is defined as:

Ryrw
f= . , (4.2)
Forw + <w> Foro

Ko

where K,y = Ky (Sw) and K., = K0(Sy) are the water- and oil-phase relative permeabilities,
respectively. Here, u,, and p, denote the water and oil viscosities, respectively. Finally,

equation (4.1) is supplemented with the following initial conditions:
Sw(x,0) = Syo, (4.3)
whereas the following boundary conditions are assumed:
Sw(0,t) = 1.0 — S, (4.4)

that is, the maximum of water is injected at a constant flow rate of ¢. Within this
context semi-analytic solutions are obtained for equation (4.1) employing the method of
characteristics following Marle [99] and Welge [139].

4.2.2 Relative permeability models

Two widely used relative permeability models were considered for the Buckley-
Leverett equation (4.1): Chierici’s model [25] and the LET model [92].
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The Chierici’s relative permeability model was proposed by [25, 26] and is
represented with the following expressions:

_B( Sw_SwO )—]\4 —A( Sw_SwO )L
Kpw = Ko  \1=Sw=Se0 Kro = Koe  \17Sw=50’ (4.5)

Tw 9 TO

where A, L, B and M are parameters for the relative permeabilities.

The LET relative permeability model was proposed by Lomeland, Ebeltoft and
Thomas [92] and was extensively studied [93, 91, 37, 38]. The relative permeabilities in

this model are given by:

0 Sk o — 40 (1 — Sue)l
Y SLw 4 Fu (1 — Spe)Te’ 7

Rpw =

= 4.
R, (1 _ Swe)LD +Eo Sgoev ( 6)

where L., E,, T,, L,, E,, and T, are parameters of the model where w indicates the
water phase and o indicates the oil phase. Here S, is the effective water saturation given
by

Sw_ w0

Sue = 1 —Suwo— Se0’

(4.7)

where S,,0 denotes the connate water saturation and S,g the residual oil saturation. In
addition to this, 0 is the oil relative permeability at the connate water saturation and 2,

is the water relative permeability at the residual oil saturation.

4.2.3 Datasets

The uncertainty quantification and sensitivity analyses were carried out with data
calibrated from two different datasets. In this work, we considered experimental and
synthetical core flooding data for water and oil available in the literature [90, 56]. The
physical and wettability properties of each dataset, referred hereto as dataset 1 and 2 are

summarized in Table 2.

Dataset 1 was obtained from core flooding experiments [94] and is freely available
at [90]. Dataset 2 was extracted from specialized literature [56]. Figure 18 shows the water
and oil relative permeability as a function of water saturation for each dataset. The error
analysis of relative permeability presented in [134] showed that most of the errors were
below 5%. Therefore, for the analyses presented in this work, error measurements were

assumed as normal distributions with 5% of the coefficient of variation (CoV).
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Table 2 — Petrophysical properties of the two core samples [90, 56].

Property Dataset 1 Dataset 2
Porosity 0.27 0.2062
Oil absolute permeability (mD) 1042 303
Water viscosity (cp) 0.306 0.65
Oil viscosity (cp) 0.670 1.25
Core length (m) 0.1174 1.22
Core diameter (m) 0.0377 0.05
Inflow rate (ml/min) 0.1 1
Wettability regime water-wet oil-wet
Connate water saturation (Syo) 0.20 0.15
Residual oil saturation (S,0) 0.26 0.35
Dataset 1 Dataset 2
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Figure 18 — Relative permeability values for water k.., and oil k,, as a function of water
saturation S, for the two datasets from the literature [90, 56].

4.2.4 Input Parameters and Quantities of Interest

To perform uncertainty quantification and sensitivity analyses studies we must
define a set of input parameters @ and relevant quantities of interest (Qols). For Chierici’s
model we considered the following input parameters 8¢ = {B, M, A, L}, whereas the
following input parameters @ppr = {Luw, Ew, Tw, Lo, Eo, T,} were considered for LET
model. The following Qols were considered in this study: relative permeability crossing
point, shock front saturation and displaced oil at a fixed time, which are denoted by Se,

Sy and V(t), respectively. These output quantities are defined next.

The relative permeability crossing point Se, corresponds to the water saturation
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that satisfies the following equation:

Iirw(Scpt) - Kro(scpt) = 0. (48)
The shock front saturation Sy is computed by Welge’s method [139] as:
af(S
gg 1) (5 — Su0) — £(Sp) = 0. (4.9)

The produced oil at a fized time V (t), as defined in [7], is the result of evaluating the

following integral:

Vi) = a /th (1= F(Su(L, 7)) dr, (4.10)

where f(S,(L, 7)) represents the fractional flow function evaluated at any time instant 7

and at the position x = L which, corresponds to the size of the core sample.

The datasets and the simulations performed in this work focus on core-scale
experiments. Qols used in this work were chosen considering their relevance to both
core-scale and field-scale experiments. For instance, the crossing point saturation S, and
the shock front saturation Sy are essential indicators of the performance for both mature

Or NEeW Ieservoirs.

4.2.5 Parameter and distribution estimation

For each relative permeability model (Chierici and LET) we performed a parameter
estimation based on the presented datasets using the Markov Chain Monte Carlo (MCMC)
method [17]. The MCMC method attempts to find the most probable parameter set to fit
the model to a given dataset, as well as a characterization of the parameter uncertainty

by means of a posterior distribution of parameters.

This step was carried out using the MCMC method implemented in emcee
library [54]. The Levenberg-Marquardt method, implemented in the 1mfit [107] package,
was used to obtain an initial guess for the relative permeability model parameters required
for the MCMC.

Assuming 6 as the relative permeability model parameters and D as the dataset,

MCMC tries to estimate:

poID) =~ (w11)

where P(6) denotes the prior knowledge about the input parameters € as a joint probability
distribution, P(D|0) is the likelihood function and P(D) is the evidence that the data was
generated by this model. In equation (4.11) we adopted the following likelihood function:

In(P(D|@)) = —0.5 Z

(D’—?/(")>2 P 1Og(ai)] | (4.12)
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where Ny represents the size of the dataset, o represents the error values, and () is an
entry of the vector representing the relative permeability model evaluated at the sample

parameters 6.

The MCMC method requires the definition of a prior distribution, which in this

work was considered as a flat prior distributions [66]:

0 if all entries of @ € R > 0,
In(P(0)) = (4.13)

—o00 elsewhere.

4.2.6 Uncertainty quantification

The method used to carry out the forward UQ study was based on the Polynomial
Chaos Expansion (PCE), which expresses any output quantity as an orthogonal polynomial

regression that depends on the uncertain input model parameters.

The uncertain input vector @ = [0y,...,0y,] is a multivariate random variable
defined on the sample space A. In addition, we assume that the inputs #; are independent
and identically distributed. The joint probability distribution function is given by w(8) =
[12" 7:(6;), where N, represents the number of uncertain parameters and ;(6;) the marginal

probability distribution functions.

For any output quantity Y = {S., Sr,V(t)} the associated PCE emulator is
written in terms of a truncated polynomial expansion. Following [106, 55] the basis used

to perform the expansion is an orthonormal basis that yields the next expression:

N-1
Y= 40y = > $aldya, (4.14)
i=0 QeA

where 1;(0) or 1, (0) represents the orthonormal basis and Y7 is the approximation of
the random response of the Qol. Equation (4.14) shows two representations of the same
polynomial expansion, where A features the set of multi-indices & = {ay, g, ..., anp}-

The number of terms N considered in the expansion is a function of the number of

(Np+Pd)!

uncertain inputs and the polynomial degree P, given by N = PN

The coordinates y; or yo that determine the polynomial expansion written in
equation (4.14) are obtained minimizing the difference between Y and Y¥¢. This is

achieved by solving the following least squares minimization problem:

o = g i g (Y= 3 wa(0)a) (1.15)

A

The size Ny of this problem should be equal to or greater than the number of coefficients

N of the polynomial chaos expansion.

Increasing the polynomial order P; can improve the performance of the surrogate

model but at the expense of high computational cost. A typical procedure to improve the
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accuracy of the polynomial surrogate model obtained with PCE is to consider a number
of samples N, larger than the minimum N required for determining the coefficients of
the polynomial [68]. Typically a number of samples Ny = k N with k is a positive integer

factor is used.

After the coordinates yo are determined, they are used to construct the PCE
emulator. Then, the evaluation of statistical moments like the expected value and variance

of Y are computed as:

Hﬂ=ﬂ§wwmA=m, (4.16)
VY= [ (Y -ED) 7(0)dA = 3 ya (4.17)
aZo

The coefficient of variations (CoV) defined as the ratio of standard deviation and expected

value CoV(Y) = 100% x /V[YV]/E[Y], was also used as a metric of variability.

4.2.7 Sensitivity analysis

Sensitivity analysis is used to assess how the input parameters ¢; € 6 and also
interactions between them contribute to a particular output quantity ). This type of
analysis allows recognizing input parameters that do not affect the variability of a chosen
Qol, and input parameters that significantly contribute to variations of the Qol.

Global sensitivity analysis was performed using variance based Sobol sensitivity
indices [127, 120]. The first order Sobol index (also known as main Sobol index), expresses

how a certain uncertain input 6; directly contributes to the variance of the output ). It is

given by the following expression:

_ VIED[6i]]
S; = v

The first order Sobol index neglects eventual interactions between two or more different

(4.18)

uncertain inputs. To estimate the changes on V[)] considering first and high-order

interactions of the i-th uncertain input, the total Sobol index [120] is used, which is given

by:

~ VIED|0]]
viyp o

where 6_; denotes the set of all inputs except 6;.

Sri =1 (4.19)

4.2.8 Calibration of the surrogate model

The performance of the PCE surrogate model for each output quantity ) depends
on the chosen polynomial degree P, as well as on the number of samples N, used. To verify

the surrogate model performance we employed the leave-one-out (LOO) cross validation
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test [55] to check if a specific combination of polynomial degree and the number of samples

results in an accurate model. The LOO test can be summarized in the following steps:

o From the N, samples, take one sample 6y, evaluate Y(6;) and V[)];
o With the other Ny — 1 samples adjust a new PCE emulator );

« Compute the error between Y(6y) and Vi (6y);

o Restore the removed sample 8, and take a different sample;

o Repeat the previous steps Ny times and store the computed values;

Thus, the LOO error is defined as:

1 s
Errroo = A > (V(6y) — Vi(01))%, (4.20)
s k=1
while the Q? coefficient is given by:
Err
21— 4.21
¢ VD) (4.21)

which is a normalized measure to check the accuracy of the surrogate model. The closest

(Q? is to the value of 1, the better is the performance of the model.

4.2.9 Computational implementation

The UQ and SA studies were performed employing the open source library ChaosPy
developed by [47]. The solution of the BL equation, as well as the computation of the

Qols were implemented in an in-house code.

To summarize, we present the computational workflow used for the numerical
experiments carried out in this work. The procedure for performing the experiments with

each dataset can be summarized as follows:

o Compute an initial estimate of Chierici’s and LET model parameters for a given

dataset using Levenberg-Marquardt method;

o With the given initial estimate, perform the MCMC analysis to obtain the parameter

estimates and posterior distribution of the model parameters;

o Construct the PCE surrogate model to perform UQ and SA studies using the
probability distributions obtained via MCMC;

e Check if the surrogate model is accurate enough; if not, increase the number of

samples N, or polynomial degree Py, in the previous step;
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o Study the parametric uncertainty propagation analyzing the variability of the output

quantities;

« Compute Sobol sensitivity indices for each output quantity.

4.3 Results

4.3.1 Parameter estimation using MCMC

The parameter estimation and determination of the posterior distribution of the
parameters were obtained with the MCMC method with a chain of length 32000. The
length of the chain summarizes the 250 number of iterations performed by the 128 random
walkers for each model parameter, for both datasets. With this settings the MCMC

estimated the parameters in a total of 8 hours of execution time.

Figures 19 and 20 present the histogram of the marginalized parameter distribution
for each model, as well as projections of the posterior distributions for pairs of variables, for
dataset 1 and 2, respectively. For dataset 1, the MCMC results presented Gaussian shapes
for the posterior distributions of the parameters for both Chierici’s and LET models. For
dataset 2 the results indicated that Chierici’s model parameters remain with Gaussian
distributions as well as the LET model, with the exception of the E,, parameter which

presented a log-normal distribution.

With respect to Chierici’s model, no correlation between parameters B and M
(water permeabilities) was observed, whereas small correlations between A and L for the oil
permeabilities can be observed considering dataset 1. For the dataset 2, small correlations
were observed for both pairs of variables {B, M} and {A, L} from Chierici’s model. For
the LET model strong correlations between the following pairs of parameters (E.,, Ly,),
(Ew, Tw), (Eo, L,) and (E,, T,) were observed from the MCMC results for both datasets.
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Figure 19 — Summary of parameter values from the results of MCMC for Chierici’s (panels

(a) and (b)) and LET (panels (c¢) and (d)) models considering dataset 1. The panels

on the diagonal show the histograms of each model parameter, with dashed vertical

lines to indicate the 2th, 16th, 50th, 84th and 98th percentiles of the samples in the

marginalized distributions. The off-diagonal panels show projections of the posterior
probability distributions of each pair of parameters.
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Figure 20 — Summary of parameter values from the results of MCMC for Chierici’s (panels

(a) and (b)) and LET (panels (c¢) and (d)) models considering dataset 2. The panels

on the diagonal show the histograms of each model parameter, with dashed vertical

lines to indicate the 2th, 16th, 50th, 84th and 98th percentiles of the samples in the

marginalized distributions. The off-diagonal panels show projections of the posterior
probability distributions of each pair of parameters.

Table 3 presents a compilation of the posterior probability distribution functions

for each permeability model considering the two datasets.

Dataset 1 contains a change of curvature for the oil relative permeability curve and
is characterized by an oil-wet regime, whereas dataset 2 is characterized by a water-wet
regime and does not present a change of curvature. As shown in Figures 19 and 20, and
summarized in Table 3, the MCMC method results in similar-shaped posterior distributions

for Chierici’s model using the two datasets. For the LET model, however, different posterior
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distributions were obtained for the datasets, where for the dataset 2 the E,, parameter
presented a log-normal distribution while the other parameters were characterized by

normal distributions.

Table 3 — Calibrated posterior distribution of model parameters considering the different
datasets. For each case, minimum, maximum and the corresponding normal (or log-normal)
posterior probability distribution is presented in terms of mean p and standard deviation

o as N(u,0).
Dataset 1
Model Parameter Minimum Maximum Posterior distribution
A 1.47 1.59 N(l 529,0.014)
Chierici L 0.60 0.68 (0 637,0.010)
B 2.83 2.96 N(2 891,0.015)
M 0.64 0.72 /\/(O 678,0.009)
L, 2.82 3.62 ./\/(3 225,0.108)
E, 2.32 6.21 N(3 919,0.516)
LET Tw 0.66 1.20 N(O 928,0.072)
L, 0.98 1.36 N(l 158,0.050)
E, 6.43 15.38 ./\/(10.13, 1.092)
T, 2.16 2.95 (2 542,0.103)
Dataset 2
Model Parameter Minimum Maximum Posterior distribution
A 1.91 2.06 N(1.987, 0.019)
Chierici L 0.42 0.49 N(0.447, 0.009)
B 1.86 2.04 N(1.941, 0.025)
M 0.80 0.97 ./\/(0.879, 0.020)
L, 3.34 4.57 /\/'(4.0007 0.187)
E, 0.26 1.43 InE, ~ N(—O.736, 0.296)
LET Tw 0.01 1.05 ./\/(0.441, 0.165)
L, 1.20 1.72 N(1.455, 0.684)
E, 3.10 7.78 N(4.938, 0.605)
T, 0.66 1.33 N(0.986, 0.084)

4.3.2 Surrogate model calibration

The parameter distributions presented before were used to perform UQ and SA
studies using PCE surrogate models. The calibration of each PCE emulator was verified
employing the LOO cross validation test. It was verified that PCE emulators characterized
by second order polynomials adjusted with 2 times the minimal number of samples to
perform the regressions were accurate enough. Using these settings a total of Ny = 30
and N; = 56 samples for Chierici and LET models were generated. The Buckley-Leverett

solver takes about 0.28 and 0.45 seconds to execute each sample for Chierici and LET
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models, respectively. For both datasets and relative permeability models values of the Q?

coefficient for the output quantities were: Q% = = 1.0, Q%f = 1.0 and Qf,;) = 0.999.

4.3.3 Forward uncertainty quantification

The emulators used in this study were PCE regressions calibrated as described in the

previous section, where the uncertainties of the input parameters are those characterized
in Table 3.

We evaluated the impact of input uncertainties on the behavior of the normalized
oil-production and water-cut curves for both relative permeability models as shown in
Figure 21. For both datasets the expected values for the oil-production and water-cut
present some relevant differences between the relative permeability models. One can also

observe that the 90% prediction interval estimated by the LET model is greater than the
one for Chierici’s model in both datasets.
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Figure 21 — Parametric uncertainty propagation study of recovery factors (oil and water
cut). Solid lines represent the expected values and shaded regions represent the 90%
prediction interval.

The impact of uncertainty on the selected Qols (relative permeability crossing

point Sgy, produced oil V' at time ¢ = 1 and the shock front saturation Sy), in terms of
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expected value (i), standard deviation (o) and coefficient of variation (CoV) are presented

in Table 4 for all datasets considered.

Table 4 — Uncertainty propagation in terms of expected value (i), standard deviation (o)
coefficient of variation (CoV) for the Qols = {Sc, Sy, V(1) }.

Sept Sy V(1)

Model Dataset o CoV (%) | u o CoV (%) | n o CoV (%)

Chierici 1 0.58 0.0016 0.27 0.65 0.0021 0.32 0.52 0.0007 0.13
2 0.45 0.0018 0.39 0.50 0.0024 0.49 0.46 0.0012 0.25
LET 1 0.57 0.0074 1.29 0.63 0.0087 1.36 0.50 0.0053 1.05
2 0.44 0.0135 3.09 0.48 0.0177 3.66 0.44 0.0095 2.16

First note that the range of variability for all the Qols studied is upper bounded
by 3.1% of CoV. As a matter of fact, the measurement errors were assumed to have 5% of
CoV. In particular, we note that the crossing points between relative permeabilities Sy
were not affected by the uncertainty propagation process. Indeed, for dataset 1 the mean
value of S,,; was greater than 0.5 which is consistent with a water-wet regime. For the

dataset 2 the mean value of S+ was smaller than 0.5, indicating a oil-wet regime.

4.3.4 Sensitivity analysis

Figure 22 shows the Sobol indices for all Qols considered when adopting both
permeability models, where the uncertain parameters correspond to the distributions

reported in Table 3 using dataset 1.

For all output quantities, parameters A and L of Chierici’s model have significant
sensitivity indices. Concerning the produced oil at a fixed time, significant higher-order
interactions between all parameters of Chierici’s model can be observed from the total

Sobol indices.

The analysis for the LET model revealed that for S, and S; the E, and £,
parameters had the highest Sobol indices, which conforms with the literature [38], since the
E parameter of the LET model controls the intermediate height of the relative permeability
curve. For the oil-production at ¢t =1 (V/(1)) the parameter E, achieved the highest main

Sobol sensitivity index.
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Figure 22 — Variance based SA results for all Qols considering the dataset 1.

Next, we performed a sensitivity analysis for the oil-wet dataset 2. Figure 23
presents the Sobol indices for all output quantities considered. For Chierici’s model, the
A parameter of the oil relative permeability curve clearly emerged as the one with the
highest sensitivity index value for all Qols. For the dataset 2 case, it is important to
note that parameters B and M also significantly contributed to S, and Sy, whereas the
parameter L contributed significantly to V/(1).

For the LET model, parameters E,,, T, and E, influence the outputs S, and Sy,
with a significant contribution from F,,. For the output V' (1), in addition to these three
parameters, L, has also some impact on the produced oil. For this Qol, we observe again
some higher-order interactions between the parameters of the two relative permeability

models.
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Figure 23 — Variance based SA results for all Qols considering the dataset 2.

4.3.5 Effects of relative permeability endpoints

In the previous experiments relative permeability endpoints k2 and x? which are
also part of Chierici’s and LET models, as well as physical parameters like the residual
water and oil saturations S, and Sy, respectively, were not considered for the UQ and

SA analyses. To assess the effects of relative permeability endpoints we performed an
0

0

experiment considering k% k0, S,0, and S, as uncertain input parameters. Due to
the difficulty in estimating the posterior PDFs for these parameters using the MCMC
method, a different approach was performed for this study. Normal distributions with
mean values from Table 3 and 1% of CoV were assumed for all input parameters of the

relative permeability models.

The results in terms of uncertainty propagation for all quantities of interest,
recovered oil, and water cut profiles are qualitatively similar to the ones presented in
Table 4 and Figure 21.

The sensitivity indices computed for this study revealed a much more clear impact
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of the endpoint parameters on the Qols for both datasets. For instance, in both models,
the residual oil saturation S,y is the parameter which most impacts all outputs, achieving
sensitivity values greater than 0.5 in all cases. Specifically for the produced oil, the residual
water saturation S, also appears as an important parameter for this output. Since the
results for both datasets and models (Chierici and LET) are qualitatively similar in this
study, we only report the sensitivity indices for the LET model and dataset 1, as shown in
Figure 24. Nevertheless, the relative permeability endpoints parameters (k% and x2) have

small contributions to all outputs.

S, cpt S f V(l)
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Figure 24 — SA results using the LET for dataset 1 considering the LET model parameters
and the relative permeability endpoints (2, k2, Su0, and Sy) for the analysis.

4.4 Discussion

The datasets present different petrophysical and phenomenological properties of
core flooding experiments [90, 56]: dataset 1 had a wettability regime with a preference
to displace more oil than water, while dataset 2 had the opposite behavior. The relative
permeability crossing point S, is the Qol that most closely characterizes this property.
Figure 25 shows the density distribution estimated for S, for the different models and
datasets. Note that, for a given dataset (water-wet or oil-wet), the uncertainty propagation

did not produce samples with S,,; values that crossed the threshold of 0.5.
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Figure 25 — Density distribution estimated for S, using the different models for both
datasets.
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For the Chierici’s model, the posterior distributions obtained for the parameters
by the MCMC method (Table 3) had similar shapes (normal distributions) with small
variances. In contrast, for the LET model, the posterior distributions of the parameters
had different shapes (normal and log-normal) with larger variances. In addition, a strong

correlation between the parameters of the LET model was observed.

The inverse uncertainty propagation analysis performed in this work revealed
that assuming 5% of measurement errors had different effects on the input parameter
distributions as detailed in Table 3. Nevertheless, both relative permeability models
propagated these uncertainties to all the outputs with a variability bounded by 3%, as
shown in Table 4. However, with respect to the produced oil and water-cut, the choice
of the relative permeability model (Chierici’s or LET) affected the predictions given by
the simulator for dataset 1. The oil-production curve (shown in Figure 21), reported
significantly different expected values between Chierici and LET models (Table 4). The
average value for oil-production at ¢ = 1 was about 4% higher with the LET model

compared to Chierici’s model.

The SA study revealed different behaviors depending on the rock wettability and
on the particular Qol. For instance, for dataset 1 and Chierici’s model the parameters
with highest Sobol sensitivity index for Sy, Sy, and V(1) were A and L (see Figure 22).
For dataset 2, the B parameter from water relative permeability functions appears as a
relevant parameter to both Sg,; and Sy. Another interesting result revealed interactions

between all the two permeability model parameters’ for the output V(1) for both datasets.
Both relative permeability models (Chierici and LET) had their corresponding

parameters adjusted to reproduce two different datasets containing measurement errors,
which were considered equal to 5% of the reported values. This resulted in a non-uniform
distribution of error for each dataset, as shown in Figure 18, where the higher endpoints
measurement contains more error than other regions of the permeability curves. This

approach represents a modeling limitation of this study.

Other limitations of this study are worth remarking. In this work, we focused
only on the propagation of uncertainty from the relative permeability input parameters to
the model outputs considering two different relative permeability models and datasets.
The present study allowed to evaluate how the uncertainty from experimental data and
calibration of the model’s parameters can influence the predictions of the model. Therefore,
other physical inputs like porosity, absolute permeability, cross-section area, and flow
rate were not included in the analysis. Future studies can evaluate the propagation of

uncertainties from these parameters to the model predictions.

The framework used for the estimation of parameters’ posterior distribution based
on MCMC method started from an initial estimate of the parameters obtained from a

least-squares problem. Then, the MCMC starts a sequence of chains from the neighborhood
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of the initial estimate and move around randomly exploring the parameter space. In
the end, the samples from the chains are used to determine the type of probability
distribution (e.g. normal) and its parameters (for example, see Figure 20). In this
work, the relative permeability models, datasets, and procedure used for the estimation
of posterior distributions never obtained values for any parameters, which resulted in
unphysical relative permeabilities. Consequently, the simulations of the Buckley-Leverett
model employing the posterior distributions obtained with the MCMC method never

resulted in any model failure.

4.5 Conclusions

In this work, uncertainty quantification and sensitivity analyses of two relative
permeability models were performed in the context of two phase flow in a porous medium.
Relative permeability data for water and oil from the literature were used to adjust the
models using the MCMC method. Posterior distributions of parameters were determined by
the MCMC method, which were used as uncertain input parameters for the two-phase flow
in porous medium. We have considered two different datasets with different petrophysical

properties.

The simulations results showed strong correlations between LET parameters for
both analyzed datasets, whereas less significant correlations were observed for Chierici’s
model. Sensitivity analysis highlighted that the parameter with the highest sensitivity
index varied, depending on the Qol and on the wettability of the dataset. Besides, the
SA revealed high interactions between all the two permeability model parameters’ for the

output associated with oil-production.

This work presents modern methods for data analysis and model evaluation such
as the MCMC method, global UQ and SA methods with an application to a model of
two-phase flow in a porous medium at core-scale. The observations in terms of uncertainty
and sensitivity of the parameters will be useful for further studies regarding the calibration
of the models as well as for guiding new experiments. The method presented in this work
requires no changes to the computer model and is computationally efficient, in the sense
that fewer model evaluations are required to achieve convergence when compared to the
classic Monte-Carlo method. Thus, the proposed method for performing UQ and SA
analyses seems an attractive alternative for field-scale problems, where the computational

cost of one model evaluation is typically very high.
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5 Foam assisted water—gas flow parameters: from core—flood experiment
to UQ and SA

This chapter was first published in Transport in Porous Media, 2021 by Springer
Nature. The content of this chapter is a reprint of the work of Valdez et al. [137], DOL:
0.1007/s11242-021-01550-0. Reproduced with permission from Springer Nature.

Uncertainty quantification and sensitivity analysis are crucial tools in the
development and evaluation of mathematical models. In enhanced oil recovery, the
co-injection of foam in porous media has been investigated through laboratory experiments
and mathematical models as a promising technique for improving sweep efficiency. In
this work, we study two mathematical models of foam flow in porous media. First, we
present a foam-quality scan experiment using nitrogen and low concentration of an alpha-
olefin sulfonate surfactant in brine using Indiana limestone carbonate core. Second, we
evaluate the models based on their ability to represent the experimental data using inverse
uncertainty quantification techniques. Third, the parameters’ estimated distributions are
used to perform both forward uncertainty quantification and sensitivity analysis. We also
present a detailed comparison of the models, and analyses on the experimental data, model
discrepancy, and sources of uncertainties. The experimental results of foam apparent
viscosity in carbonate rocks are consistent with other experiments in sandstones: the
foam quality transition is present; the difference in apparent viscosity values is of the
same magnitude as the difference in permeability. Propagation of uncertainties from the
estimated parameter distributions through the models showed a good match between
experimental data and model predictions. The sensitivity analysis showed that the model’s
parameters play different roles and depend on the quantity of interest, the foam-quality
regime, and limiting water saturation. To summarize, this study provides essential
information for possible improvements in the experiments and mathematical models of

foam flow in EOR processes

5.1 Introduction

Water-alternating gas (WAG) injection technique is commonly used to increase the
sweep efficiency in enhanced oil recovery (EOR). However, WAG is subjected to different
factors that may reduce the efficiency of gas flooding for EOR. In this context, sweep
efficiency may be hampered by effects like the formation of viscous fingers [62], gravity
override, and reservoir heterogeneities [133]. The injection of foam in the water and gas
displacement, if properly designed, can address these issues and help to restore the sweep
efficiency. The foam assisted process during EOR can significantly reduce gas mobility

and increase the apparent viscosity of the gas phase, which improves recovery efficiency.

Experimental studies on foam flow applications for EOR have been explored quite
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successfully in the literature [62]. Foam quality-scan and flow-rate-scan experiments are
usually employed to assess foam properties for calibrating the parameters of computational
models [148]. In the flow quality-scan experiment, the total flow rate is constant, while
the pressure drop in the core sample is measured as a function of foam quality. In the

flow-rate-scan, the foam quality is fixed, while the flow rate is varied.

Physical modeling of the foam flow in porous media is challenging due to its
non-Newtonian nature, its dependence on the foam texture, and the complex bubble
generation /destruction process. Several models can be found in the literature [5, 74, 83, 150].
In particular, equilibrium models consider foam texture given by an empiric relation. In
the present work, we analyze two simplified versions of equilibrium models: (1) default

model used in STARS commercial simulator [31] and (2) linear kinetic model [5].

Model calibration is not straightforward, and specialized methods have been
proposed before [12, 95, 98, 148]. The method proposed by Boeije & Rossen [12] uses
a manual procedure to fit foam flow models to the apparent foam viscosity data. The
procedure works separately with data in the low- and high-quality regimes and uses the
apparent viscosity and foam quality plot. The method presents some limitations for fitting
experimental data with a gradual transition from the low- to high-quality regimes. [98]
and [97] proposed a combined approach based on a graphical method and least-squares
minimization, which uses constraints and weighting factors in the cost function to improve
the fitting procedure. [45] and [95] have also used data weighting and constraints when
employing non-linear least-squares minimization methods. A different approach was
proposed by [148], which converted the problem of fitting many parameters to a procedure
based on linear regression and single-variable optimization. Their improved algorithm
avoids problems concerning non-uniqueness solutions and sensitivity issues of the initial

estimates.

The methods used so far to estimate foam flow model parameters neglect the
inherent uncertainty, due to technical limitations or measurement errors, present in
experimental data. In addition, model discrepancy, i.e., the mismatch between model
and experiment, and the correlation between the parameters are also overlooked. The
uncertainties in the experimental data and the model discrepancy should be considered to
assess the mathematical model’s reliability. One way to investigate the above questions
is via Bayesian parameter estimation methods, such as the Markov Chain Monte Carlo
(MCMC) method, which is used to characterize a model’s parameters in terms of their
posterior distributions, given a set of experimental data and a model [18]. For linear
models and parameter uncertainties described by Gaussian distributions, simple methods
can backpropagate the experimental errors to the model’s parameters, such as linear and
non-linear least-squares methods. However, since the phenomenon of foam flow in porous
media is highly complex and non-linear, the MCMC method is better suited for the task of

uncertainty quantification. The MCMC method provides global information on parameter
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uncertainties, such as posterior probability distribution functions of general shapes, and

better estimations than least-squares methods.

A recent study described a workflow for inverse and forward uncertainty
quantification (UQ) and sensitivity analysis (SA) to evaluate different models for relative
permeability [138]. The framework used the MCMC method to estimate the probability
distributions of parameters. For forward UQ and SA, the Polynomial Chaos Expansion
(PCE) method [30] was applied to reduce the costs associate with the solution of partial
differential equations. In the present work, we focus on a particular EOR technique [29]
where foam injection in porous media is used to improve sweep efficiency. Algebraic foam
flow models under local-equilibrium conditions are studied by performing forward UQ and
SA through the more straightforward, although robust, Monte Carlo (MC) method.

In this work, we present new high-pressure (10 MPa) foam quality-scan experimental
data using a mid-range permeability Indiana limestone rock (2.70 x 107* m?). Foam-scan
experimental data in carbonate rocks and at this permeability range are scarcely found in
the literature and may provide further insight into how foam parameter may change with

the type of rock.

These experiments are further analyzed via the use of two different mathematical
models, model’s parameter fitting, uncertainty quantification, and sensitivity analysis.
The two models used in this work were the commercial [31] model and the Linear Kinetic
(LK) model, described in [5].

The remainder of this article is organized as follows: Section 5.2 describes
experimental settings, experimental data, mathematical models, and numerical methods
used to study the effects of foam displacement in water and gas drainage processes.
Section 5.3 introduces the framework used to execute uncertainty quantification and
sensitivity analysis on experimental data and computational models. In Section 5.4, the
results of inverse uncertainty quantification characterization of experimental data followed
by forward UQ and SA analyses are presented. Discussions and limitations of this study
are presented in Section 5.5, while in Section 5.6 we present the main contributions of this

work.

5.2  Foam displacement in porous media

5.2.1 Fluids and Rocks

The brine used in this work was prepared by dissolving appropriate amounts of salt
in distilled water at concentrations presented in Table 5. Prior preparation of surfactant
solution, brine was degassed using a vacuum pump. All the salts used to prepare this

brine were purchased from Sigma-Aldrich Brazil and were reagent grade.

A sodium alfa-olefin sulphonate (Bioterge AS-40) was the chosen surfactant for
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Table 5 — Tonic composition of injection water (IW) used in this study.

Tons Nat K+ Ca?t Mg?>t SO~ CI-
Concentration (mg/L) 11008 393 132 152 41 17972

foam injection, and used in this work at concentration of 0.1 wt%. It was kindly donated
by Stepan Brazil, and its critical micelle concentration (CMC) in IW at 20°C and ambient
pressure conditions was 0.0017 wt.%. Nitrogen (99.992% purity, Linde Brazil) was used as

gas phase for foam injection in this work.

Indiana limestone (Kocurek Industries, USA) was the rock used for carrying out
the foam experiments, whose dimensions and petrophysical properties of the core used in

this work are presented in Table 6.

Table 6 — Dimensions and petrophysical properties of Indiana limestone used in this work.
L, D, PV, ¢, and k are the length, diameter, pore volume, porosity, and permeability of
the Indiana Limestone core respectively.

L D PV 0 k

m m 107% m3 - m?

0.150 0.0382 26.7 0.155 2.70 x107*3

5.2.2 Coreflood experiments

To start the experiment, the core was loaded into the Hassler core holder under
confining pressure of 3.44 MPa (500 psi) in vertical position (Figure 26). The core was
vacuumed for 2 h and then saturated under vacuum with IW. Confining pressure and pore
pressure were then simultaneously raised to 17.2 MPa (2500 psi) and 13.8 MPa (2000 psi),
respectively. The core sample was maintained at this pressure for 24 h to guarantee that
the core was completely saturated with brine. Afterwards, pore pressure was decreased
to 10 MPa (1500 psi) and brine permeability was measured, by injecting IW at different
flowrates for several pore volumes. After measuring brine permeability, 0.1 wt% AOS
surfactant solution was injected through the bypass and then through the core for at least
5 pore volumes (PV), to displace IW. Next, the system temperature was raised to 60°C.
Once pressure and temperature were constant, and the system leak tight, nitrogen and
surfactant solution were co-injected at constant superficial velocity (1.45 x 107° m/s) and

total injection flow rate (0.967 mL/min), but at different gas/liquid ratios.
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Figure 26 — Schematic drawing of coreflood apparatus used for foam injection.

The foam quality is given by
g
fo = Ma (5.1)
where ¢, and ¢,, are the injection flow rates of gas and liquid, respectively.

Co-injection of fluids took place in a top-to-bottom direction to avoid front
instability due to gravity, at an initial foam quality (f;) of 0.5. At each foam quality,
fluids were co-injected until steady states of pressure drop and fluid production were
reached. Foam apparent viscosity (fi.,,) was calculated using the values of pressure
gradient (APfoqm/L), the core absolute permeability (%), the superficial (Darcy) velocity
of injection (v), and core length. It is given by

Happ = i%y (5.2)
where APjo., was calculated as the mean value of the last 500 seconds of measured
pressure drop for each foam quality (f;). Corey relative permeability model was used for
the two-phase flow of water and gas without surfactant. Considering k2, and k:?g as the
end-point relative permeabilities for water and gas, respectively, S,. is the connate water

saturation, and Sy, the residual gas saturation, the relative permeability models are given

by:
Sy — 95 e
kpp = KO | —2 ¢ 7 ]
Tw <]_—ch—597«> (5 3)
Sy — S, "
— 0 g gr 4
k‘rg rg (1 _ ch _ Sgr> ’ (5 )

where n,, and n4 are the Corey exponents for water and gas, respectively. The relative
permeability data for high permeability Indiana Limestone found in the literature [102] was
considered. Fitting of the experimental data resulted in the following values: k% = 0.302,

/{:799 = 0.04, ny, = 2.98, ny = 0.96, S, = 0.4, and Sy, = 0.293.
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5.2.3 Mathematical models

Two different foam flood models were analyzed in this work: a Semi-Empirical
(SE) and a Population Balance (PB) model. SE models are mostly found in commercial
simulators such as the [31] and UT [24], which include a texture-implicit local-equilibrium
foam model that represents the effects of foam directly on the gas relative permeability by
considering a mobility reduction factor. PB models employ partial differential equations
to characterize the dynamics of foam bubbles in the porous medium. The displacement of
water and foamed gas in a porous medium is modeled considering the principle of mass

conservation for the two phases (water and gas) and a population balance equation.

For a porous medium 2 the general structure for a PB model is the following:

0Sy, 0 B )
o TV (fw) =0, inQx0,T], (5.5)
oS, n 0 )
gt D +%(u9np):gosg (rg —me), in2x 0,77, (5.6)

where ¢ represents the porosity of the core sample. The variable np is the normalized
foam texture (related to the number of bubbles per volume). Considering that the medium

is fully saturated, the solution to this problem is characterized by the pair (S,,np).

Under the assumption of local-equilibrium (LE), i.e., when the foam is no longer
created or destroyed, it can be shown that the PB and SE models foam flow responses
agree with each other. [51, 52| compared STARS and the [76], while [48] studied the PB
model proposed by [23]. In this work, we consider the [31] mathematical model and the
Linear Kinetic model [5]. In these models, the authors tailored the concept of mobility
reduction factor (M RF') as function that alters the mobility of the gas phase. In general,

the apparent viscosity can be written as the inverse of the total relative mobility as follows:

\ —1
Happ = <>\w + M]%F) 5 (5.7)

in this settings the gas fractional flow is re-defined as the next ratio including the M RF

function:

Ag
Jo= N \ MRF !
MRF

(5.8)

5.2.4 STARS model

In the [31] commercial simulator, the effects of foam are modeled by considering
a reduction factor that affects gas mobility. In the foam modelling used in STARS, the
mobility reduction factor (M RF) describes the effects of the surfactant concentration, of
the water and oil saturations, of the shear-thinning, and also of the capillary-number. In

order to allow a fair comparison between STARS model and the one proposed by [5], this
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work only considers M RF' dependencies on water saturation. In particular we neglect
capillary effects, non-Newtonian flow behavior. The simplified STARS foam model gas
mobility (),) is given by:

ky
)\g = W;M’ MRF =1+ fmmOng, (59)

where F5 accounts for water saturation effects:

1 1
F, = 3 + —arctan (sfbet(S,, — SF)), (5.10)
T

5.2.5 Linear kinetic model

The linear kinetic model proposed by [5] follows the structure of Equations (5.5)
and (5.6), but it also shares similarities with the mobility reduction factor employed in
the STARS model. The mobility reduction factor from [5] is given by:

_ Frg(Sw)

g

In the original work [5] the value for C,,, s was fixed at 18500, whereas here we allow it to

change. In this model the source term from Equation (5.6) is given by:
0 Sy (rg —re) =@k S, (néE —np), (5.12)
where the LE state it is assumed to be:

tanh(A(S, — S%)), S, > S,
nkl = anh(4( ) (5.13)
0, Sw < S,

where k., Cprp, A and S}, are parameters of the model. In particular, we will assume that
np =nl¥ ie., np is always at local equilibrium. For this case, the parameters C,,,, s, A

and S} can be estimated in a similar fashion as the parameters from the STARS model.

5.3 Methods for uncertainty quantification and sensitivity analysis

In this section, we describe the methods used for analyzing the foam flow models
and experimental data. First, we describe the quantities of interest that shall be evaluated
by the models, then we introduce the methods for inverse and forward U(Q) as well as for
performing sensitivity analysis. The techniques used in this work for the foam flow has

also been discussed extensively for other contexts in the literature [39, 100, 117].

5.3.1 Quantities of Interest

Both foam models described in Section 5.2 are conceived to reproduce, in a

computational environment, the effects of foam in applications like water and gas drainage.
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In such models the main effect of foam is materialized with a mobility reduction function
with similar expressions (see Equations (5.9) and (5.11)). In addition to this, both foam

models attempt to replicate how apparent viscosity depends on foam quality.

To compare both foam models, the following quantities of interest (Qols) were
studied: (i) apparent viscosity (fiqpp), (ii) mobility reduction factor (M RF'), (iii) total
relative mobility, and (iv) pressure drop for each foam scan data calculated at equilibrium.

The apparent viscosity: described in Equation (5.2) is an important quantity that
links the pressure gradient measured in the core sample and the total inflow rate imposed

in the core sample.

The mobility reduction factor: models how the presence of foam reduces gas mobility.

For the analyzed foam models, this quantity was presented in Equations (5.9) and (5.11).
The total relative mobility is a quantity defined by:

krw krg
fw ~ MRFu,

Ap = (5.14)

This function has two regimes: the regime where there is no foam and \,; achieves its
maximum value and the regime where foam reduces its value. In general, the transition
between the two regimes is abrupt. As discussed in [44], the total relative mobility is
an important indicator of fingering, which might occur when the total relative mobility
upstream is larger than that downstream. The pressure drop (APfoem) can be simply

written as a function of the apparent viscosity (5.2) as:

oV L
APjoam = L2’ (5.15)

k

where L is the distance between two different points for instance injection-production

wells.

5.3.2 Parameter estimation and propagation of uncertainties

Our overall approach for estimating and propagating uncertainties in the model
is described in detail in a previous paper [138]. To estimate the uncertainty in the
parameters (inverse UQ), we used a Bayesian framework for the foam flow models based
on the Markov Chain Monte Carlo (MCMC) method available in the PyMC3 package [121].
The MCMC requires the specification of prior distributions for the model parameters,
which were chosen considering physical ranges of the parameters and available knowledge
from the literature [45]. The inferences were performed using 400,000 samples and the
slice sampler algorithm. To evaluate if the MCMC has converged, we performed multiple
simulations with Markov chains from different initial parameter sets and compared the
resulting posterior distributions. Owing to the large number of samples used for the

experiments, other choices of prior distributions, keeping the same physical and known
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ranges for the parameters, did not significantly affect the obtained posterior distributions.
We acknowledged convergence after checking if the same distribution was obtained for
different realizations of the MCMC method.

Once the posterior distributions are determined for all the model’s input parameters
using the experimental data, the propagation of such uncertainties to the foam flow model
can be carried out (forward UQ). We used the classical MC method to perform this task,
which samples the distributions obtained for the parameters via the MCMC method.

To analyze the propagation of uncertainty, for each Qol, we measured the expected
value, variance, and confidence intervals [39]. The 90% prediction interval were also
calculated by evaluating the percentiles of the distributions of the output Qols. The
90% prediction interval (90%P1I) highlights the results that are within the 5* and 95"

percentiles.

5.3.3 Sensitivity analysis

To assess how the input parameters z; € x and their interactions contribute to the
variations of any quantity of interest ), a variance-based sensitivity analysis was performed.
This allows us to identify the input parameters that do not affect the variability of a
chosen Qol, from the input parameters that significantly contribute to the uncertainty
of the Qol. To this end, we used the main and total Sobol indices [120, 127]. The first
order Sobol index (or main Sobol index), expresses how any an uncertain input x; directly

contributes to the variance of the output ). It is given by the following expression:

_ V[E[y\xz“
S; = 7%7[)/] . (5.16)

The first order Sobol index neglects eventual interactions between two or more different

uncertain inputs. To estimate the changes on V[)] considering first and high-order

interactions of the i-th uncertain input, the total Sobol index [120] is evaluated. It is is

given by:

_ VED|z_i]]
viyp o

where x_; denotes the set of all input parameters except x;. Sobol indices were computed

Spi=1 (5.17)

with the SALib package using the Saltelli sampler algorithm [63].

5.4 Results

5.4.1 Quality-scan experiment

Figure 27 show the results of the foam quality-scan experiment (left) and the
relative permeabilities used in this work, which was fitted from data reported in the

literature [102] (right). The quality-scan results show that the foam apparent viscosity
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first increases with increasing foam quality up to a maximum value (around f, = 0.75),

and then decreases.
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Figure 27 — Foam quality-scan experiment results: (top) pressure drop at steady state, (left)
adjusted relative permeability curves adapted from [102]; and (right) apparent viscosity
values as function of foam quality.

5.4.2 Characterization of foam model parameters

To characterize the posterior distribution of the foam model parameters in the
STARS and LK models, the MCMC method was executed using uniform priors for all
parameters x. Table 7 shows the properties of the priors used. Uniform priors were
chosen due to the limited knowledge about the variables of interest where only physical
or practical ranges obtained in the literature are known. In particular, SF' and S} were
bounded by physical limits considering the connate water S, and residual gas Sy,. For the
other parameters, a large range was used for the uniform distributions, as very different

values were reported before [44, 78].
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Figure 28 — Kernel density estimates for each parameter posterior distribution of the
STARS (left/green) and linear kinetic [5] (right/blue) foam models.

After the execution of the MCMC method, we obtained the posterior distribution
for each model parameter. Figure 28 exhibits the densities of both STARS and LK model
parameters. The distributions for the STARS parameters’ fmmob and SF as well as C,,,
and Sy for the Linear Kinetic model are more concentrated around the most frequent
value. The posterior distribution of A (LK) and sfbet (STARS) are more spread and less

symimetric.
To perform a forward uncertainty propagation and sensitivity analysis of the foam
models, the posterior distribution of the parameters exhibited in Figure 28 were adjusted

to normal or log-normal distributions. Table 7 summarizes the properties of the posterior
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distributions obtained by the MCMC method and which were further used by the forward
UQ and SA study.

Table 7 — Prior and posterior distributions of the parameters in the foam models: STARS
and Linear Kinetic [5].

STARS Linear Kinetic
Fmmob 24(0, 1000) Cours 24(0, 1000)
Priors SF 24(0.40,0.707) S* 14(0.40,0.707)
sfbet (10, 1000) A 2(10, 1000)
fmmob  N(295.988,61.268) | Chury  N(264.788,34.452)
Posteriors SF N (0.434,0.009) Sk N (0.431,0.006)
log (sfbet)  N(6.526,0.321) | log(A)  N(5.563,0.726)
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5.4.3 Uncertainty propagation
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Figure 29 — Uncertainty quantification results of (a-b) apparent viscosity; (c-d) mobility

reduction factor (MRF); and (e-f) total relative mobility (A,;) for the STARS (left column)

and linear kinetic [5] (right column) foam models. The shaded regions correspond to the
90% prediction interval (90% PI) and the solid lines represent the expected values.
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Figure 30 — Uncertainty propagation in the pressure drop using STARS (left) and Linear
Kinetic (right) models. Box plots of the data evaluated by the MC execution and
experimental data (red squares).

Figure 29 shows the propagation of uncertainty for apparent viscosity, mobility
reduction factor, and total relative mobility computed by both foam models. First, for
the apparent viscosity, the expected value curves are very close to the experimental data,
except for f; = 0.5. Also, the prediction interval (90% PI) observed in the low-quality
regime is smaller than in the high-quality regime, where more uncertainty can be noticed
in both models. More uncertainty was observed for low water saturation values for total
relative mobility, around the limiting water saturation S}, than for high values of water
saturation. In addition, we observed higher uncertainties in the STARS model than in the
Linear Kinetic model when comparing the results for mobility reduction factor and total

relative mobility.

Figure 30 presents the results of the uncertainty propagation of pressure drop. At
each level of foam quality (f,) we present the results using box plots by evaluating the
corresponding foam model using the posterior MCMC parameters’ samples. Both STARS
and Linear Kinetic models capture the experimental pressure drop within the uncertainty
range, except at f; = 0.5. For the high-quality regime at f, = 0.9, the uncertainty range
is large, undermining the model’s predictions. One possible reason for this large range of
uncertainty is the lack of measured data in this region. In particular, for the high-quality
foam (on the descendent part of the apparent viscosity function in Fig. 29 (a)-(b)), there is
only one measurement at f; = 0.9. Section 5.2 investigates this issue with a more in-depth

UQ analysis using an augmented dataset.
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5.4.4 Sensitivity analysis

We present the sensitivity analysis results using main and total Sobol indices for
all Qols in Figure 31. For the apparent viscosity in the low-quality regime, we observe
that frmmob (C,,,s) of STARS (Linear Kinetic) almost dominates the quantity. However,
in the high-quality regime, the parameter SF (S}) of STARS (Linear Kinetic) becomes
the most relevant one. Near the foam quality transition, the parameters sfbet (STARS)

and A (Linear Kinetic) also influence the apparent viscosity.

Similar behavior was observed for the mobility reduction factor (MRF) and total
relative mobility (A.). The roles of the parameters change near S, = 0.43, which
corresponds to the expected value found for SF' (STARS) and S}, (Linear Kinetic) shown
in Table 7. For values below 0.43, the sensitivity to SF and S} is high, whereas for values
above this limit, fmmob (STARS) and C,,, s (Linear Kinetic) dominate.

In addition, we remark that high-order interactions among the parameters were
only observed in the two regimes’ transition, as indicated by the total Sobol indices when
using the Linear Kinetic model. In the case of STARS, high-order interactions are present

for low-quality regimes or S, below the critical value.

Next, the sensitivities of the model parameters with respect to pressure drop were
evaluated. Figure 32 presents the main and total Sobol indices for STARS and Linear
Kinetic models for each level of foam quality used in the experiment. For both models,
the sensitivity to fmmob (STARS) and C,,; (LK) is high in the low-quality regime.
For the STARS model, the pressure drop remained sensitive to sfbet uniformly for all
foam qualities. In contrast, the pressure drop evaluated with the LK model showed more
sensitivity to the parameter A for foam qualities near the transition region. The parameters
SF (STARS) and S}, (LK) had relevant influences only at f, = 0.9.
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Figure 31 — Sensitivity analysis using Sobol indices results of (a-b) apparent viscosity; (c-d)
mobility reduction factor (MRF); and (e-f) total relative mobility (\,;) for the STARS
(left column) and LK [5] (right column) foam models.
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Figure 32 — Sensitivity analysis of the pressure drop for different foam quality levels. Main
Sobol and total Sobol indices are shown for STARS and linear kinetic (LK).

The sensitivity analysis revealed that the model’s parameters play different roles
and depend on the quantity of interest, the foam-quality regime, and limiting water
saturation. It was shown that fmmob for STARS and its equivalent parameter in the
Linear Kinetic model are highly relevant in the low-quality regime. In contrast, in the
high-quality regime the SF parameter from the STARS model (and the corresponding
parameter in LK model) is the most relevant for apparent viscosity. For quantities related
to mobility (such as M RF and ), the roles of these two parameters change with respect
to water saturation: for low values of water saturation, SF' is the key parameter, whereas

for higher values, the fmmob parameter appears with a higher impact on these quantities.

5.5 Discussions

This work aimed to study the impact of uncertainties in parameters of foam flow
models and also to determine the most important parameters using sensitivity analysis.
To this end, a foam quality scan experiment was performed, and the posterior distribution
of the model parameters was characterized using the MCMC method. Forward UQ and
SA were then performed to study the effects of the inputs on apparent viscosity, mobility

reduction factor, total relative mobility, and pressure drop.
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5.5.1 Experimental data and model discrepancy

Foam-quality scan experiments for mid-range permeability carbonate rocks are
scarce in the literature. Most foam-quality experiments performed with nitrogen gas and
AOS surfactant is performed with different permeability sandstone rocks [72, 73, 78, 79],
and few are dedicated to studying foam formation in carbonate rocks. Results of foam
apparent viscosity as a function of foam quality for the Indiana limestone used in this study
showed similar profile and foam quality transition to experimental results performed with
Bentheimer sandstones at the same surfactant concentration (0.1 wt.%) and superficial
velocity (1.45 x 107° m/s) [73]. Foam apparent viscosity reported in this work was an
order of magnitude smaller than those reported by [73], which is in agreement with the one
order of magnitude difference in permeability between Indiana limestone and Bentheimer

sandstone used for the experiments.

Although we have simplified both models used in this work, we have observed a
good match between the experimental data and the model predictions. The only exception
was the data measured at f; = 0.5, i.e., both the STARS and LK models presented a
discrepancy to the experimental data (see Figures 29 (a)-(b) and Figure 30).

However, taking a closer look at the raw data of measured pressure drop for
fq = 0.5 we have noticed large oscillations that might have undermined the calculation
of its steady-state value. Figure 33 shows all the data related to pressure drop (in red)
for f, = 0.5, including the transient phase. A visual inspection may suggest that the
pressure drop did not reach its steady-state value. Indeed, by fitting the experimental
data to a simple exponential model p(t) = (po — peq)e ™" + Peg, With pg = 0, pe, = 0.6, and
b= 1.66 x 1074, we observe a good fitting (see the blue curve in Figure 33). In addition,
the value of pressure drop at equilibrium p., = 0.6 is within the range of values predicted
by both STAR and LK models, as presented in Figure 30. Therefore, the fact that the
pressure drop in the experiment did not completely reach steady-state presents itself as a

possible explanation for the discrepancy of models and experimental data for f, = 0.5.
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Figure 33 — Experimental records of pressure drop and evaluations of the exponential
model.

5.5.2 Source of uncertainties

The propagated uncertainties presented in Figures 29 (a)-(b) and Figure 30 are
quite high when compared to those found in the experimental data. Usually, many factors
can contribute to these uncertainties: model discrepancy, uncertainties in the experimental
data, model structure, parameter identifiability, insufficient data, among others. As
discussed in the previous section, we can exclude model discrepancy, as both models were
able to reproduce very well the experiments. The fitting process and inverse UQ were also
successful, and the parameters were found to be identifiable, mainly due to the simplicity
of the mathematical models. Experimental uncertainty was taken into account during the
inverse UQ. Nonlinear models can amplify input uncertainties that come from experiments.
However, it is worth first investigating if the issue is not due to the lack of experimental
data.

To this end, we performed the following exercise. We artificially augmented
the amount of available data by including three new synthetic pairs: (fy, fapp) =
{(0.84,109.3), (0.91,76.4), (0.99, 13.3) }. Using this new data set, we performed the inverse
UQ via the MCMC method, followed by the forward UQ using the two mathematical
models. Figure 34 shows the obtained results for this new set of data. We can observe
that the propagated uncertainty was significantly reduced. Therefore, the main source of
uncertainties is likely the insufficient amount of data, in particular, in the high-quality

regime, i.e., for high values of f;.

These results show the importance of the framework presented here, which combines
mathematical models, inverse and forward uncertainty quantification, and sensitivity
analysis. Based on these tools, we can now suggest new experiments to be performed to

further contribute to the understanding of this complex phenomenon.
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Figure 34 — Uncertainty quantification results of augmented data set: (a-b) apparent

viscosity; (c-d) and pressure drop for the STARS (left column) and linear kinetic [5] (right

column) foam models. The shaded regions correspond to the 90% prediction interval (90%
PI) and the solid lines represent the expected values.

5.5.3 Comparing the two models

STARS and LK models’ responses for foam flow in porous media under local
equilibrium were similar, as demonstrated by the uncertainty propagation and sensitivity
analysis presented before. However, some differences between the two models are worth
discussing. The parameters fmmob (STARS) and C,,, s (LK) are key parameters for the

low-quality regime and control the amplitude of the mobility reduction due to foam.

On the other hand, SF' (STARS) and S}, (LK) model the critical saturation, i.e.,
the water saturation at which foam collapses, and are key parameters for the high-quality
regime. This is in consonance with the literature [78]. In addition, in [95, 98], it was
reported that the water saturation obtained with different models and datasets was not
sensitive to the initial guess used in the parameter fitting procedure. Similar behavior was
observed here in the estimated posterior distributions, as they share small coefficients of

variations (see Table 7 and Figure 28).

The transition between these two regimes is modeled by the parameters sfbet
(STARS) and A (LK). As mentioned before, the sensitivities of these parameters with
respect to MRF and \,;, as shown in Figure 31, are different around the connate water

saturation Sy.. To explain this behavior, Figure 35 shows the mobility reduction factor and
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total relative mobility of both models using parameter values fitted to the experimental
data. The figure highlights the discontinuous behavior of the Linear Kinetic model as
described by equation (5.13). The discontinuity in the LK model translates into high
values for the Sobol sensitivity indices around S,, = 0.4, whereas low sensitivity values

and a smooth behavior for the corresponding parameter in the STARS are observed.

@
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Figure 35 — Mobility reduction factor (MRF) and total relative mobility (\.) for STARS
{fmmob = 293.27, SF = 0.437, s fbet = 359.33} and Linear Kinetic {C,,, s = 276.40, S} =
0.433, A = 152.32}.

5.5.4 Limitations

This work has some limitations worth of discussion. The simplified STARS foam
model considered in this work uses M RF' depending only on the water saturation, namely
the F5 dry-out function. However, we considered this choice for the STARS functions
to allow a fair comparison with the Linear Kinetic model [5], which was assumed in the
local-equilibrium. A natural extension would overcome these simplifications by considering
the dynamics of foam creation, destruction, and by including more terms in the STARS

model to perform a more detailed analysis.

Another limitation is that we only studied uncertainties from the STARS and LK
foam models’ parameters. Other parameters, such as those from the relative permeability
(Corey) model, connate water saturation, residual gas saturations, end-point saturation,
porosity, and others, could be included in the UQ and SA study. Other models, such as
LET and Chierici, can be used to describe relative permeability data following similar
procedures [138]. However, since the present work focuses on uncertainties stemming from

foam parameters, these models were not explored.

5.6 Conclusions

This work presented a framework for uncertainty quantification and sensitivity

analysis of core-flood experimental data and Bayesian model calibration in foam flow in



99

porous media. The foam flow core-flood experiment in the Indiana limestone showed a
foam-quality scan profile similar to those found in the literature. Foam apparent viscosities
were significantly lower than in the literature, in agreement with the larger magnitude of
rock permeability. After calibrating the models to the experimental data using an inverse
Bayesian estimation, forward UQ analysis for apparent viscosity and pressure drop revealed
larger uncertainties for the high-quality foam compared to the low-quality foam. Adding
synthetic data for high-quality foam made it possible to reduce the model’s uncertainties
significantly. As we used experimental data with low apparent viscosity, the same analysis
performed on high apparent viscosity setups may provide even greater insights in terms of
uncertainty quantification. Therefore, based on the tools presented in this work, we could

suggest a new set of experiments that can improve the understanding of the phenomenon.

Experimental data are inherently hampered by errors originating from equipment
precision, neglected phenomena, human mistakes, and others. Likewise, models are
always wrong, by definition. Yet, scientific knowledge is based on experiments and theory
(model). The framework presented in this work acted as a two-way bridge. The tools
allowed the evaluation of the model’s reliability (via UQ) when confronting the model with
experimental data: from experiments to model. The theory rarely improves by merely
repeating the same experiments. Nevertheless, the framework (via SA and synthetic
experiments) suggested how to increment the experimental data to reduce the model’s

uncertainties: from models back to experiments.

In summary, based on Bayesian inference, uncertainty propagation, and sensitivity
analysis, the presented approach has great potential to improve the understanding of the
phenomenon of foam flow in porous media. These tools combined can help confront the
theory (models) and experiments to evaluate the model’s quality and uncertainties; and

suggest new experiments that can improve the model’s reliability.
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6  Assessing uncertainties and identifiability of foam displacement models

employing different objective functions for parameter estimation

Foam injection in porous media is often used to improve the recovery in water
alternated gas applications. This work presents a new objective function to calibrate foam
models and investigates parameter identifiability and uncertainty quantification (UQ).
The new objective function includes data of mobility reduction factor (MRF) and the
traditional apparent viscosity data. Identifiability analysis shows that key parameters
of the models are practically non—identifiable when using traditional objective functions
that rely only on apparent viscosity. This is solved by adding MRF data to the objective
function. The UQ analysis revealed a similar trend, with lower uncertainty when using
the new objective function than only apparent viscosity. In summary, the new objective
function generated the best—calibrated models with the highest fidelity and the lowest
uncertainty. The examples presented in this manuscript are taken from the literature to

highlight that the new objective function does not require new experimental observations.

6.1 Introduction

The process of alternated water and gas injection into an oil reservoir may be
hampered by viscous fingers, gravity segregation, and reservoir heterogeneity (also known
as channeling). A promising alternative to overcome these situations is the injection of
foam for controlling gas mobility and improve sweep efficiency [43, 15]. Therefore, the
injection of foam can improve oil recovery [81]. Understanding the complex phenomenon
of foam flow in porous media is crucial for a successful foam—based enhanced—oil recovery
(EOR) process design. A remarkable and established technique in this context is the use

of numerical simulations based on mathematical models.

Numerical simulators of foam flow in EOR can be split into population balance
(PB) and semi-empirical (SE) models. Population balance models [75, 74, 23, 5] take into
account the effects of foam by proposing conservation laws for a new variable related to
the number of foam bubbles per volume. Semi-empirical models [31, 24] do not take into
account the transient dynamics of foam and simulate the effects of foam through algebraic
relations and modifications of the gas mobility. Some clear advantages of the SE approach
are the lower computational cost, fewer numerical issues, and fewer parameters to estimate
when compared to PB models. However, to perform useful simulations to improve the
design of foam—based EOR processes, one must adequately estimate the parameters of the

SE foam models from experimental data.

The process of parameter estimation for SE foam models has been approached
by different studies [12, 95, 98, 97, 148, 138]. Specific methods that take into account

features of the foam model, nonlinear least-squares methods, and Bayesian methods have
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been considered. The estimation of these parameters is usually performed considering
experimental data from a foam quality scan experiment where the total velocity is fixed,
and a range of experiments at different foam qualities are performed, resulting in the
computation of the so-called apparent viscosity. However, many studies reported on
the difficulties associated with the non—uniqueness on the estimated parameters, even
for simple foam flow models [12, 98, 96, 97] which only considers the effects of water
saturation and neglects, for instance, non-Newtonian behavior or the effects of surfactant
concentration. When non—Newtonian effects of foam such as shear—thinning are considered
in these models, the issue of non—unique (unidentifiable) parameters is expected to be

even harder to handle due to the increase in the number of parameters.

In this work, we focus on the task of parameter estimation for semi-empirical
foam models, such as the one considered in the commercial EOR foam simulator [31],
including shear-thinning behavior. To this end, we take advantage of a set of powerful
and robust techniques. For parameter identifiability analysis, the profile likelihood (PL)
technique is used, whereas, for parameter estimation, we relied on the Markov Chain
Monte Carlo (MCMC) method complemented by forward uncertainty quantification (UQ)
and sensitivity analysis (SA). In particular, we propose to consider additional experimental
data in the objective function used for model calibration, combining the traditional
apparent viscosity experimental data with information that reflects the mobility reduction
factor. The mobility reduction factor requires no additional experiments and can be simply
derived from existing two—phase foam flow relations. The identifiability analysis shows
that this approach improves the estimation of some important parameters and reduces

model uncertainties, as confirmed by the MCMC method and UQ analysis.

The remainder of this text is organized as follows. Section 6.2 introduces the
foam models, the employed datasets and presents the different methods for parameter
estimation and analysis. In Section 6.3 the results of the analyses are presented, followed
by discussions in Section 6.4. The main contributions of the manuscript are summarized

in the conclusions Section 6.5.

6.2 Methods

6.2.1 Foam displacement in porous media

Based on experimental observation, the presence of foam preferentially affects the
displacement of the gas phase, changing its mobility [40]. The effects of adding foam into
the modeling are taken into account by modifying the viscosity of the gas phase. These
effects are modeled in the CMG-STARS [31] and other simulators via the concept of
mobility reduction factor (MRF). Here we consider foam as a mixture of water and gas

with surfactant diluted in the liquid component. The apparent viscosity of the mixture is
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obtained from Darcy’s law, and is given by

kVp
Ug + Uy

(6.1)

Happ = —

where k is the absolute permeability of the porous medium, Vp is the pressure gradient,
and u,, and u, are water and gas velocities, respectively. In particular, the total flowing
velocity is u = wu,, + u,4, such that Darcy’s law can be used again yielding u = —xkAr Vp;
where A7 is the total relative mobility of the mixture given by:
Ag
MRF’

R Ry
A = g

pu— :A'LU
Mo +MRFM9 "

(6.2)

where k,,, and k,, are the water and gas relative permeability functions, respectively.
MRF represents the mobility reduction factor that models the effects of foam bubbles in
the displacement of water and (foamed) gas. Linking the total mobility definition [86, 60]
with the two—phase flow (averaged) Darcy’s law, the apparent viscosity of the mixture

(water and foamed gas) is defined as:

\ -1
Happ = <)‘w + M]_%F> ; (6.3)

which gives the following expression for the mobility reduction factor a function of apparent

viscosity, foam quality, and gas mobility

A
MRF = fi Lapp- (6.4)
g

6.2.2 Foam model

Semi—empirical models of foam flow in local equilibrium, like the CMG-STARS
simulator, consider the effects of foam via the mobility reduction factor that affects gas
mobility. An important feature of this model is the distinction between two flowing regimes
in steady-state flow: low—quality (LQR) and high—quality (HQR) regimes. In the foam
modeling used in STARS, MRF may include the effects of water saturation, oil saturation,
surfactant concentration, gas velocity, and critical capillary number [109, 3, 78]. However,
in this work, we focus on two effects: the dry—out function (Fyaer), related to the water
saturation, and the shear—thinning function (Fypeq,), which are introduced in the MRF as

follows:

MREF =1+ fmmob Fyier Fapear, (6.5)

1 1
Foater = 3 + —arctg (sfbet(S, — SF)),
7r

epcap
mca
(Z5) it > fican
Fohear = Nea

1 , if Noo < fmcap.
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The capillary number is evaluated using:
app U
N,, = Hamw® (6.6)
o
where u and o are the inflow velocity (Darcy’s velocity) and the water—gas surface tension,

respectively.

The model parameters are fmmob, sfbet, SF, epcap, and fmcap. The parameter
fmmob is the maximum mobility reduction that can be achieved considering the effects
of foam, sfbet is a value representing the transition between LQR and HQR regimes
(higher values of sfbet represent a sharp transition, while smaller values of sfbet will
produce a smooth transition), and SF' corresponds to the water saturation where the
capillary pressure meets a critical value collapsing the foam bubbles. The value of epcap
characterizes the foam rheology as Newtonian or non—Newtonian, and fmcap defines the
smallest capillary number expected to be encountered by foam in the simulation. Although
the value of fmcap may influence the other parameters, it is usually not treated as a
parameter during the calibration and its values is set to the lowest capillary number
expected, as described in [13, 45, 79].

6.2.3 Datasets

Experimental datasets from the literature were considered in this work to explore
the proposed approach for parameter estimation. In particular, we considered two synthetic
cases with known parameters to explore the capabilities of the methods in recovering the
true (ground truth) parameters, and also two datasets from the literature [78, 104]. The
four datasets employed different commercial surfactants and have well-defined rheology
presenting non—Newtonian behavior with shear—thinning. These datasets are described in

more detail next.

Synthetic datasets #1 and #2

Initially, two synthetic datasets were considered, one with a sharp and another
with a smoother LQR-HQR transition. In the first case a value of sfbet = 500 was used

to represent a sharp transition, whereas on the second case sfbet = 50 was considered.

Kapetas et al. (2016)

The experimental data from this dataset was taken from the foam quality scan
presented in [78]. In particular, the test case used in this manuscript corresponds to
the experimental measurements observed at 20°C'. The fluids employed were brine and
Nitrogen and the surfactant solution used was an Alpha Olefin Sulfonate (AOS, Bio—Terge
14-16C, Stepan Chemical Co.). In the original work, the authors evaluated the effects of
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the same surfactant solution at different operative temperatures (20 — 40 — 60 — 80°C)).
The experimental observations registered at 20°C' reported the highest values of apparent
viscosity for all the considered foam qualities. The same trend is recognized for the
surface tension measurement and predictions. In [78] it is mentioned that the experimental
observations presented shear-thinning effects after recognizing the maps between pressure

drop and gas—velocity.

Moradi—Araghi et al. (1997)

An experimental dataset from [104] was also considered. In particular, we refer to
the test rig labeled as RF1, where the foaming agent was a commercial surfactant known
as CD-1050 developed by Chaser in a synthetic South Cowden brine. The gas-phase
was COs,, and the experimental temperature was fixed at 36°C. The authors reported
that the RF1-core sample achieved steady states of pressure drop much faster than other
core samples; this is motivated by the selective mobility reduction in high permeability
cores. In addition to this, the authors reported in [104] that they observed shear thinning
behavior. The flowing conditions (i.e., inflow velocity and water—gas surface tension) were

taken from the recent works [45, 12, 13, 95] that explored the same experimental dataset.

Table 8 summarizes the core sample and fluid properties of the datasets used in
this work. The core samples’ absolute permeabilities vary significantly among the datasets
to show the robustness of the calibration procedure without loss of generality. Relative
permeability parameters are not considered within the parameter estimation process,
although they are remarkably influential on the modeling and simulation [138, 8, 9].
Corey relative permeabilities are rather taken from the corresponding sources and are also

reported in Table 8.

Table 8 — Overview of input parameters for all investigations of this study.

Parameter ~ Synthetic =~ Kapetas (2016) Moradi-Araghi (1997)

tw [Pas]  Tx 107 1% 10°% 6.5 x 10~
g [Pas] 2x 1075 2x 1075 5x 1075
o [N/m] 3 x 1072 2.81 x 102 5 x 10
wlm/s] 98819 x10°  1.383 x 1075 1.763 x 103
& [m?] 523 % 107 1.67 x 1012 5.44 x 10-13
[0} 0.18 0.24 0.18
Swe 0.20 0.25 0.10

Sor 0.20 0.20 0.05

Ty 4.20 2.86 4.00

ng 1.30 0.70 1.83

kY 0.20 0.39 0.22

I{(g) 0.94 0.59 1.00
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6.2.4 Parameter estimation

In the literature, different methods to calibrate the MRF parameters using foam
scan experimental data have been reported. Boeije & Rossen [12, 13] proposed a manual
procedure that works independently for each foam quality regime. Ma et al. [98] and
Farajzadeh et al. [45] proposed a weighted least squares method that captures accurately
enough the flowing regime transition. In a similar study, Lotfollahi et al. [95] presented
least—squares optimization to fit the parameters of many different SE and PB models.
Recently, Gassara et al. [51] and Cavalcante-Filho et al. [48] reported results that fit the
same experimental dataset for different population balance models. Motivated by the
difficulties of obtaining unique results, Zeng et al. [148] presented a staggered method
to determine the best fit values for different CMG-STARS configurations using different

experimental datasets.

In this work, three different objective functions X? for minimizing the sum of the
squared differences between experimental data and model predictions are considered for
parameter estimation. The different objective functions differ from each other in terms of

the type of experimental data used. The first objective function (OF1) is given by:

Np erp _  model 0 2
Xj _ Z <,uapp,k gcgpp,k ( )) : (67)
k=1 O-(/J“app,k)

where Np is the number of experimental observations, pg’h denote experimental

model(@) denote model evaluations, and the term o(ugi? ) represents the

experimental variability. It is important to remark that Xi is the objective function

observations,

traditionally employed in the literature [45, 95, 98, 97] in the context of nonlinear least

squares methods for estimating foam model parameters.

Next, we introduce two objective functions considering that MRF can be directly
computed from experimental data using Equation (6.4). The second objective function
(OF2) computes the sum of squared differences between the experimental evaluations of
the mobility reduction factor represented with Equation (6.4) with the model evaluations
obtained by Equation (6.5). Thus, the second objective function X% pp is written as

follows

Np exp model 2
<MRFk MRF] (9))’ 63

p o a—
Mre = 2 o(MRF™)

k=1
where o(M RF}"™") represents the experimental variability of the mobility reduction factor.

The third objective function (OF3) combines the objective functions X2 and X3, g,

and is given by the following expression:

ET; mode 2 EX moae
v A% (MmO | (MR - MERPe))
W S 7 (Happ k) o(MRE™) ' '
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Note that OF3 not only considers apparent viscosity from experimental data as given
by (6.1), but also employs information provided by equation (6.4) about the mobility
reduction factor. We remark that this information does not require additional experimental

realizations and can improve parameter estimation, as will be shown.

The model parameters are usually estimated [97, 98, 45] using nonlinear least

squares methods, such as the Levenberg-Marquadt (LM) method, to obtain

A

0 = argmin {XQ(H)} , (6.10)

the best—fit set of parameters that minimizes the chosen objective function.

We remark that in the literature [98, 97, 45, 95] the parameter estimation procedure
has been limited to apply the objective function Xi. In this work, we will show that the

. . . 2 . . .
objective function X L MRF Call Improve the parameter estimation process.

6.2.5 DBayesian estimation

Parameter estimation using Bayesian methods such as the Markov Chain Monte
Carlo (MCMC) method [17, 18] can provide good estimates and additional insights
about the parameters of the model, as reported previously for estimation of foam model

parameters [137] and relative permeability parameters [138, 9, §].

The MCMC method relies on the Bayes’ rule for the estimation of the distribution

of the model parameters, which is given by:

P(D|6) P(6)

POID) = =5

(6.11)
Considering the foam model parameters € and the dataset D, we denote by P(6) the prior
distribution which encodes our prior knowledge about the parameters and P(D) is the
evidence that the data was generated by this model. The MCMC estimates P(6|D) which
represents the posterior probability distribution of the parameters given the observed data.
To describe how probable are the observed data for a specific parameter set, a likelihood
function P(D|0) is defined.

Considering the objective functions described before, two likelihood functions were
used in this work. The first likelihood function is associated to OF1 (A7) and OF2 (X3 zp),

and is given by:
1 M —pu?
— 12
4J\/7_Texp< [ P }>, (6.12)

where M represents the model evaluation, y is the observed data mean value and o is the

LMlp,0) =

standard deviation. Here, the model evaluation and observed data correspond to jigy, or

M RF accordingly to the objective function used. The next multivariate normal likelihood



107

function [121] was used for the objective function A7,/ pp:

L(M|p, Cov) = (W exp (—; (M — pu)" Cov™ (M — u)) : (6.13)

where M and p are vectors containing more than one model evaluation and experimental
observation’s expected value, respectively. The covariance matrix Cov is evaluated
considering apparent viscosity and mobility reduction factor data, and affected by the

experimental error.

For all parameters of the foam model studied here, a uniform distribution was
taken as its prior distribution considering physical ranges of the parameters and available
knowledge from the literature [3, 78, 95]. The SF parameter is the only one which has clear
physical limits defined by S, < SF <1 — S, where S, and S, are the connate water
and residual gas saturation, respectively. The only restriction on the other parameters
is that they should be greater than zero. In practical terms, the uniform distribution of

these parameters were bounded, as described in Table 9, without any loss of generality.

Table 9 — Prior distributions of the parameters in the STARS non—-Newtonian foam model
used for Bayesian estimation.

Parameter fmmob SF sftbet  epcap
Synthetic datasets U(1,300000)  ¢(0.2,0.8) U(10,10000) U(0,2)
Kapetas (2016) U(1,200000) ¢(0.25,0.8)  U(10,3000) U(0,5)
Moradi-Araghi (1997) 4(10,40000) #(0.1,0.95) U(10,200) U(0,1)

The MCMC implemented in the Python library PyMC3 with the SLICE sampler [121]

was used for all Bayesian parameter estimations presented in this work.

6.2.6 Identifiability analysis

A crucial step during parameter estimation process is to examine parameter
identifiability, which assess whether or not a set of parameters can be uniquely estimated
for a given model and data set. The works of Raue et al. [115], Rannala et al. [114] as
well as Kao et al. [77] states that a model parameter can be classified as (i) identifiable,
(ii) practically non—identifiable, and (iii) structurally non—identifiable. Structural non—
identifiability is related to the mathematical structure of the model, whereas practical
non—identifiability is related to the quality of the observed data. Consequently, the
identifiability of a model parameter depends on the quality of the experimental data as

well as the structure of the model; for instance, over parametrized models are susceptible
to be non-identifiable [77].

One approach to perform parameter identifiability analysis is the concept of profile

likelihood [115], which we introduce as follows. For any model parameter 6;, the associated
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profile likelihood is given by:

X2, (6;) = min [X%(0)] (6.14)

0\{0:}’

where Xpp(6;) stores the residual values after fixing 6; € [min(6;), max(6;)] and fitting the
remaining model parameters 0 \ {6;}. X?(0) takes any of the functional representations
described in Equations (6.7)-(6.9).

A model is identifiable if the profile likelihood function described by Equation
(6.14) presents a single minimal value [116, 77]. A model parameter 6; is structural non—
identifiable if the associated profile likelihood remains flat or shallow in the entire search
range [min(6;), max(6;)]. Practical non-identifiable parameters have profile likelihood
functions that contain a minimal value, yet it is not necessarily unique or the curvature of

its likelihood profile is shallow.

Practical non—identifiability issues associated with the model parameter #; may
be corrected, restricting the range [min(6;), max(6;)] where the best fit value is being
explored. Alternatively, practical non—identifiability issues are suitable to be reduced if
the quality of the experimental data is improved. Another solution to mitigate practical
non-identifiability issues is fixing "redundant" model parameters. In this manuscript, we
will explore the alternative of improving the experimental data employed to perform the

model calibration.

6.2.7 Uncertainty quantification and sensitivity analysis

Once the posterior distributions are determined for all the models’ input parameters
using the experimental data, the propagation of such uncertainties to the foam flow model
can be carried out (forward UQ). The Monte Carlo method was employed to perform
this task by simply taking the samples obtained from the posterior distributions obtained
by the MCMC method. Expected value, variance, and the 90% prediction interval were

compute to characterize the quantities of interest.

Global (variance based) sensitivity analysis based on Sobol sensitivity indices [127,
120] was used to assess how an input parameters ; € 8 and also interactions between
them contribute to a particular output quantity ). Sobol indices were computed with the

SALib package using the Saltelli sampler algorithm [63].

6.3 Results

6.3.1 Synthetic datasets

First we present the results using two synthetic datasets to show the capabilities of
the proposed methodology to perform the model calibration and estimate the variability

of different output quantities. The two synthetic datasets are mainly based on core and
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fluid properties from the literature [3, 95]. The only difference in the datasets #1 and
#2 is the parameter sfbet controlling how smooth is the transition between LQR and
HQR. In both cases a Gaussian noise of 5% was added to the synthetic data to explore

the robustness of the parameter estimation.

Synthetic dataset #1

To evaluate identifiability issues on the parameters and whether including MRF
in the objective functions could enhance it, we computed profile likelihood for all the
objective functions. The results are shown in Figure 36. One can notice that the profile
likelihood using the objective functions OF2 and OF3 are identifiable with clear minima,
which are in good agreement with the ground truth parameters. The OF1, however,
highlights difficulty for the identification of fmmob and epcap as can be observed in their
flat profiles.
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Figure 36 — Profile likelihood for the synthetic dataset #1 considering the different objective
functions. Red stars correspond to the minimum and dashed green line to the ground
truth parameter set.

The posterior PDFs obtained by MCMC for the foam parameters are shown in
Figure 37 together with the ground truth parameter set. The posterior density distributions
obtained using OF2 and OF3 properly tail out to zero, ensuring that the parametric
uncertainty is not overestimated. Note that the posterior PDF obtained with the OF3 is
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more restricted, indicating a better identification of the parameters. The posterior PDF
obtained using OF1 also tails out to zero, except for the fmmob posterior. The practical
non-identifiability of fmmob and epcap, previously observed via the profile likelihood,

translates in wider posterior PDFs, resulting in more uncertainty.
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Figure 37 — Posterior PDFs obtained for the synthetic dataset #1.

The expected values of the parameters obtained for each objective function and
the ground truth is presented in Table 10 for the synthetic dataset #1. Clearly objective
function 3 delivers better estimates when compared to the other objective functions,

specially for fmmob and epcap parameters.

Table 10 — Non—Newtonian model parameters calibrated to fit the synthetic dataset #1.

Parameters fmmob SF stbet epcap
Ground Truth 1.60e+05 3.10e-01 5.00e+02 5.00e-01
OF1 1.87e4+05 3.10e-01 3.85e+02 5.37e-01
OF2 1.72e405 3.09e-01 7.22e+02 5.30e-01
OF3 1.65e+05 3.10e-01 3.71e+02 5.06e-01

Figure 38 shows the results of uncertainty propagation for apparent viscosity and
mobility reduction factor as functions of the foam quality. For the apparent viscosity,
the OF1 exposes uncertainty on both foam quality regimes, whereas the OF2 presents
more uncertainty in the high—quality regime. Clearly, the uncertainty propagation pattern
obtained using the MCMC samples associated with the objective function OF3 presents
less uncertainty in both regimes than the other objective functions. For the mobility
reduction factor, we can observe more uncertainty using the objective function OF1 in
the LQR, while for the OF2 there is more uncertainty in the HQR. The uncertainty
propagation for the OF3 presents less uncertainty on almost all foam quality values, as

expected since OF3 represents a combination of the other two objective functions.
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Figure 38 — Forward uncertainty quantification in terms of apparent viscosity and mobility
reduction factor for the synthetic dataset # 1.

Synthetic dataset #2

This case consists of modifying the previous synthetic dataset #1, where the sfbet
parameter that controls the foam quality regime’s transition sharpness is significantly
reduced. The remaining parameters were unchanged. In this case, the LQR-HQR
transition is smoother than the previous dataset. Again, a Gaussian noise of 5% relative

to the experimental measurements of apparent viscosity was considered.

Figure 39 shows the profile likelihood evaluated with the different objective functions.
In particular, we observe flat profiles for fmmob and epcap, meaning difficulties in
estimating unique values for these using OF1. Also, note that the minimum value obtained
for the sfbet parameter is not as good in the synthetic case #1. On a different take,
the profile likelihoods obtained with the objective functions OF2 and OF3 show explicit

unique minimal values.

The posterior density distributions obtained with the MCMC method for each
objective function are depicted in Figure 40. In particular, we can observe that the
worst calibration results correspond to the MCMC samples obtained with OF2 and OF1.
Non—negligible misfits are observed between the ground—truth values and the mean value
of each distribution. In particular, we observe problems to constrain the variability of the
parameters. Note that the OF2, which only considers MRF data for the likelihood, is not
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Figure 39 — Profile likelihood comparison analyzing the best fit configurations of the
Synthetic dataset #2. Red stars correspond to the minimum.

sufficient to obtain a reasonable estimation of sfbet. Nevertheless, the posterior density
distributions obtained with OF3 are clustered around the ground-truth reference values

and tail to zero for all parameters, ensuring a small degree of uncertainty.
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Figure 40 — Posterior density distributions obtained employing the objective functions
OF1, OF2, and OF3; employing the Synthetic dataset #2.

Table 11 shows the expected values of the model parameters. The problems related
to the density distributions employing the objective function OF2 are reflected in Table 11,

where we can observe the poor estimates for fmmob, SF, and sfbet. Nevertheless, the
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results associated with the objective function OF3 show the best results possible for all

the parameters.

Table 11 — Non—Newtonian model parameters calibrated to fit the synthetic dataset # 2.

Parameters fmmob SF stbet epcap
Ground Truth 1.60e4+05 3.10e-01 5.00e4+01 5.00e-01
OF1 1.89e+05 3.13e-01 7.76e+01 5.28e-01
OF2 2.12e+05 2.84e-01 2.38¢+03 6.85e-01
OF3 1.67e+05 3.11e-01 4.48e+01 4.98e-01

Figure 41 shows the uncertainty propagation analyzing the apparent viscosity
and mobility reduction factor as functions of the foam quality. The uncertainty pattern
obtained considering the MCMC samples associated with the objective function OF2
propagates variability preferentially on the HQR. Differently, the uncertainty propagation
related to OF1 and OF3 presented fewer uncertainties, reproducing with the expected
values the ground-truth model evaluations. In addition, the model evaluations related to
the objective function OF3 possess the lowest variability when recovering the ground—truth
behavior. Concerning mobility reduction factor (lower panel of Figure 41), we can observe
significant variability on the LQR for the objective function 1. A similar uncertainty
pattern is observed on the UQ analysis for OF3, yet showing less variability. For OF2; one
can note that the uncertainty is clustered on the lowest foam quality and highest foam

quality values.

6.3.2 Experimental data from Kapetas et al. (2016)

Figure 42 shows the posterior PDFs obtained after executing the MCMC method
employing different likelihood functions for the Kapetas et al. (2016) dataset. In particular,
we can observe problems to estimate the variability of the fmmob parameter using the
objective function OF1. The same problems are recognized on the density distributions for
the parameters SF and sfbet when adopting the objective function OF2. The objective
function OF3 results in proper shapes that tail to zero, ensuring low uncertainty for the

estimated parameters.

Figure 43 shows the uncertainty propagation employing the MCMC samples
obtained using different likelihood functions. The likelihood function OF1 propagates less
variability to the apparent viscosity than to the mobility reduction factor. In contrast
to this behavior, the likelihood function OF2 propagates less variability to the mobility
reduction factor than to the apparent viscosity. As expected, the results related to OF3
combine the features of the other two cases, without excessive uncertainties in both
apparent viscosity and mobility reduction factor, the only exception being at very low f,

values for mobility reduction factor.
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Figure 41 — Forward uncertainty quantification in terms of apparent viscosity and mobility
reduction factor for the synthetic dataset #2.
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Figure 42 — Posterior density distributions obtained employing the objective functions
OF1, OF2, and OF3; employing the Kapetas et al. (2016) dataset.

6.3.3 Experimental data from Moradi-Araghi et al. (1997)

Figure 44 shows the density distribution function obtained employing different
likelihood functions. Figure 44 present proper density distributions for all the parameters,
ensuring that the variability is not over estimated. Note, however, the multi-modal
behavior for the parameters fmmob and epcap. The three likelihood functions returns

proper density distributions associated to the parameters SF and sfbet.

Figure 45 presents the uncertainty propagation, adopting MCMC samples obtained
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Figure 43 — Forward uncertainty quantification in terms of apparent viscosity and mobility

reduction factor for Kapetas et al. (2016) dataset. Top row: uncertainty propagation

for the apparent viscosity as function of the foam quality. Bottom row: uncertainty
propagation for the mobility reduction factor as function of the foam quality.
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Figure 44 — Posterior density distributions obtained employing the objective functions
OF1, OF2, and OF3; employing the Moradi-Araghi et al. (1997) dataset.

after using different likelihood functions. We generally observe low variability on apparent
viscosity for the samples obtained with OF1 and OF3 and note higher uncertainties when
using the OF2 samples in the HQR. For the MRF, we note that most of the uncertainty is
propagated to the LQR.
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Figure 45 — Summary of forward uncertainty quantification and sensitivity analysis

results considering the Moradi-Araghi et al. (1997) dataset, comparing the three objective

functions. Top row: uncertainty propagation for the apparent viscosity as function of the

foam quality. Bottom row: uncertainty propagation for the mobility reduction factor as
function of the foam quality.

6.4 Discussion

The synthetic datasets were used to show that the model calibration quality relies
strongly on the objective function and experimental data used. The objective function
OF1 shows limitations to reproduce the ground truth behavior, whereas the objective
function OF2 shows promising capabilities to solve the synthetic dataset #1. Nevertheless,
the objective function OF3 was the only one that could reproduce both synthetic datasets

accurately.

The identifiability analysis showed that key parameters, fmmob and epcap, are
practically non—identifiable when the traditional objective function OF1 is used. This is
remediated when using the MRF as experimental data in the objective functions OF2 and
OF3. The inverse UQ analysis revealed a similar trend. The PDFs for fmmob and epcap
recovered by the MCMC method had narrower compact support with OF2 and OF3 than
when using OF1, i.e., low uncertainty. However, here we have a tradeoff since the opposite

was observed for the parameters SF' and sfbet.
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Finally, the forward UQ results revealed how the experimental data of apparent
viscosity and MRF complement each other. The results obtained with OF1 consistently
showed low uncertainty in the apparent viscosity but very high uncertainty in the MRF
for LQR. This is likely due to the mathematical structure of apparent viscosity. In the
LQR, total mobility (the inverse of apparent viscosity) is dominated by water mobility.
This way, any uncertainty in the MRF at LQR is filtered out of p,y,. On the other hand,
small uncertainties in the MRF appear amplified in the apparent viscosity in the HQR.
These two situations were consistently observed and suggest why the combination of the
two experimental data, MRF and ji4y,, in the objective function OF3 generated the best
calibrations with high fidelity and lowest uncertainty.

6.4.1 Sensitivity analysis

Figure 46 presents the results of a sensitivity analysis based on Sobol indices for
the synthetic dataset #1. The SA study was carried out using the range of the parameters
estimated from the MCMC for each objective function. The results of SA for the other
cases (synthetic data #2, Kapetas et al. (2016), and Moradi-Araghi et al. (1997)) are very

similar, and therefore are not reported here for the sake of compactness.

The reported sensitivities for apparent viscosity and mobility reduction factor are
very similar. For instance it is possible to recognize that the parameters fmmob and epcap
are responsible for most of the uncertainty in the Qols. In particular the effects of epcap
are important mostly in the LQR part of the diagram, while fmmob has a significant
impact in the entire foam quality range. We can observe that the parameters SF' and

sfbet are more relevant on the HQR.

We can also observe from Figure 46 that the parameter epcap, controlling shear-
thinning effects, has a significant impact on both apparent viscosity and mobility reduction
factor in a wide range of foam qualities. In particular, the impact of epcap on MRF explains
why including its data on the parameter estimation process improves the estimation of

parameters for this non—-Newtonian case.

The fact that the total Sobol indices are higher than the main indices in the
results for objective function 1 indicates interactions between the parameters fmmob and
epcap. These interactions are smaller for the objective function 2, and almost negligible
for the objective function 3. Parameter interactions can cause model parameters to be not
uniquely identifiable. In fact, this was noticed before in density distributions presented in

Figure 37 and shallow profile likelihood in Figure 36.

6.5 Conclusions

In this work, we studied the problem of parameter estimation and identifiability

for non-Newtonian foam models in two—phase flow in porous media. We proposed a new
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Figure 46 — Main and total Sobol sensitivity indices for the synthetic dataset #1. Red:
fmmob, yellow: SF, blue: sfbet, and green: epcap.

objective function that can be used to perform model calibration employing nonlinear
least square methods and Bayesian inference methods. The proposed objective function
includes experimental data for mobility reduction factor and the traditional data for
apparent viscosity. Nevertheless, it is important to highlight that there was no need for

new experiments to obtain the experimental values of MRF.

Identifiability analysis showed that key parameters of the models are practically
non-identifiable when using the traditional objective function that relies only on the
experimental data for apparent viscosity. This is solved by adding the MRF experimental
data to the objective function. The inverse UQ analysis revealed a similar trend. The
probability density functions estimated for the parameters were more compact, i.e., with
lower uncertainty when using the new objective function than when using only apparent
viscosity. Finally, the forward UQ revealed how the experimental data of apparent viscosity
and MRF complement each other. In summary, the new objective function generated the

best calibrations with high fidelity and the lowest uncertainty.
The proposed approach for parameter estimation of the STARS foam flow model

was explored for the particular case of dry—out and shear-thinning behavior in the MRF
function. However, this approach can be useful for extended versions of the STARS
model, which include parameters for taking into account the other effects (e.g. surfactant

concentration and oil saturation) into foam mobility.



119

7 Conclusions

In this thesis, different aspects of multiphase flow in a porous medium were studied
and analyzed under the perspective of inverse and forward UQ and SA. The contributions

of this work were divided in three parts.

In particular, in a first study, we have considered the two—phase flow described by
the Buckley—Leverett equation and considered two different relative permeability models
for the UQ and SA studies. In the second study the co—injection of foam into the water—gas
flow taking into account experimental data was approached. Two different modeling foam
flow dynamics were adopted and compared: semi—empirical and population balance models.
Moreover, the third study explored the consequences of performing the adjustment of
foam models using different objective functions. The results of this last problem reflected

on the reliability of the foam model forward evaluations.

In the first work presented, relative permeability data for water and oil from the
literature were used to adjust the relative permeability models. The posterior distributions
of parameters were determined by the MCMC method. The distributions were used as
uncertain input parameters for the two—phase flow in a porous medium. The results showed
strong correlations between LET parameters for both datasets, whereas less significant
correlations were observed for Chierici’s model. Sensitivity analysis highlighted that the
highest sensitivity index parameter varied, depending on the Qol and wettability. Besides,
the SA revealed high interactions between all the two permeability model parameters’ for
the output associated with oil production. These observations in terms of uncertainty and
sensitivity of the parameters will be helpful for further studies regarding the calibration of
the models and guiding new experiments. The method presented in this work requires
no changes to the computer model. It is computationally efficient because fewer model
evaluations are required to achieve convergence compared to the classic Monte Carlo
method. Thus, the proposed method for performing UQ and SA analyses seems an
attractive alternative for field-scale problems, where the computational cost of one model

evaluation is typically very high.

In the second part of this work, we have investigated the propagation of uncertainties
from experimental data to computational models of foam flow in porous media. Two
established foam flood models were considered under local equilibrium conditions
concerning foam creation and destruction. A core—flood experiment based on a foam
quality scan was performed and used to characterize these models’ parameters using a
Bayesian estimation technique. Monte Carlo evaluations were then used to perform a
sensitivity analysis and propagate uncertainties from input parameters to quantities of

interest.

The sensitivity analysis revealed that the model’s parameters play different roles and
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depend on the quantity of interest, the foam—quality regime, and limiting water saturation.
It was shown that fmmob for STARS and its equivalent parameter in the Linear Kinetic
model are highly relevant in the low—quality regime. In contrast, in the high—quality
regime, the SF parameter from the STARS model (and the corresponding parameter
in the LK model) is the most relevant for apparent viscosity. For quantities related to
mobility (such as M RF and \.;), the roles of these two parameters change concerning
water saturation: for low values of water saturation, SF' is the crucial parameter, whereas,
for higher values, the fmmob parameter appears with a higher impact on these quantities.
Higher uncertainties were observed in the high—quality regime for apparent viscosity and
pressure drop than in the low-quality regime. By artificially augmenting the data set
with synthetic data at the high—quality regime, it was possible to reduce the uncertainties
significantly. Together, these results show the importance of the framework presented here,
which combines mathematical models, inverse and forward uncertainty quantification, and
sensitivity analysis. Based on these tools, we can suggest new experiments to further

contribute to the understanding of this complex phenomenon.

In the third part, we explored how the CMG-STARS model’s reliability is affected
by different objective functions used to calibrate foam models. Techniques from Bayesian
inference, deterministic model calibration, forward uncertainty quantification, and variance—
based sensitivity analysis were used to compare and evaluate the responses of the same
foam model using different experimental observations. The traditional objective function
to adjust foam models was compared against two new potential objective functions. In
particular, after executing the MCMC and evaluating the profile likelihood of each model
parameter, we observed that the results obtained employing the traditional objective
function overestimate the uncertainty and may suffer from unidentifiability, turning the
model evaluations less reliable. In contrast, using the objective function that combines the
experimental measurements of apparent viscosity (traditional) with experimental records
of mobility reduction factor, the posterior density distributions are more constrained,
retrieving a better identification of parameters, resulting in more reliable model evaluations.
The results and conclusions of this study case are of utmost relevance for the successful

application of foam—assisted EOR models in projects.

The approach presented in this work, which is based on Bayesian estimation,
uncertainty propagation, and sensitivity analysis, holds great potential to advance the
physical modeling and calibration of foam flow models in porous media. When applied to
more complex models of foam flow, it can help assess the model’s reliability and identify
parameters that most affect the predictions. This could be used to guide the calibration
and tuning of the foam flow model used. Therefore, it could be viewed as a possible way

to improve foam application in EOR processes based on reservoir simulators.
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7.1 Academic contributions

During the development of the present work, different academic contributions were

published in specialized journals and presented in scientific conferences.

Articles in peer reviewed journal:

e Valdez, A. R., Rocha, B. M., Chapiro, G., & dos Santos, R. W. (2020). Uncertainty
quantification and sensitivity analysis for relative permeability models of two—phase
flow in porous media. Journal of Petroleum Science and Engineering, 107297,
d0i:10.1016/j.petrol.2020.107297.

e Valdez, A. R., Rocha, B. M., Gramatges A., Facanha J. M., de Souza A, Chapiro,
G., & dos Santos, R. W. (2021) Foam assisted water—gas flow parameters: from core—

flood experiment to uncertainty quantification and sensitivity analysis. Transport in
Porous Media. doi:10.1007/s11242-021-01550-0.

Articles in preparation to be submitted to peer reviewed journal:

e Valdez, A. R., Rocha, B. M., Chapiro, G., & dos Santos, R. W. (2021). Assessing
uncertainties and identifiability of foam displacement models employing different

objective functions for parameter estimation.
Complete articles published in conference proceedings:

e Valdez, A., dos Santos, R. W., Chapiro, G., & Rocha, B. M. (2020). Um estudo de
quantificacao de incertezas e analise de sensibilidade de fung¢oes de fluxo fracionério
da equagao de Buckley-Leverett. Proceeding Series of the Brazilian Society of

Computational and Applied Mathematics, 7(1).
Abstracts published in conference proceedings:

e Valdez, A., dos Santos, R. W., Chapiro, G., & Rocha, B. M. (2020). A study of
uncertainty quantification and sensitivity analysis of a relative permeability model
used to simulate two—phase flow in porous media. 3" BR-InterPore Conference on
Porous Media, Petrépolis, RJ, Aug 2019

e dos Santos, R. W., Valdez, A., Rocha, B. M. & Chapiro, G., (2020) Uncertainty
quantification in a model for foam flooding in porous media. 12 Annual meeting
InterPore (online), August, 2020.

e Valdez, A., Rocha, B. M., Chapiro, G. & dos Santos, R. W. (2021) Rheological
response of foam flooding models considering experimental uncertainties. 13** Annual

meeting InterPore (online), June, 2021.
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7.2 Future steps

The simplified STARS foam model considered in this work uses MRF depending
only on the water saturation (F2 or F-) and shear—thinning (F'5 or Fype,,) functions.
The identifiability and inverse UQ analysis performed for the CMG-STARS foam model
could be extended to consider the functions describing other effect such as surfactant

concentration and oil saturation.

Another limitation is that we only studied uncertainties from the STARS and LK
foam models’ parameters. Other parameters, such as those from the relative permeability
(Corey) model, connate water saturation, residual gas saturations, end—point saturation,
porosity, and others, could be included in a complete recovery analysis using UQ and SA.
Other models, such as LET and Chierici, can be used to describe relative permeability

data following similar procedures.

One natural extension of this work would be to consider the dynamics of creation
and coalescence of foam bubbles, by taking into account other models such as, the Zitha
& Du [149] model, the Kam & Rossen [76, 75] model, as well as the transient part of
the Linear Kinetic [5] model studied in this work. The modeling of foam dynamics in
porous media remains until our days as a cumbersome and challenging problem without a
generalized methodology to solve the problem. The conclusions obtained from this thesis

represent, possible alternatives to draw general patterns among the different foam models.
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