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Abstract

Interatomic potentials laid at the heart of the molecular physics. They are a bridge
between spectroscopic and structural properties of a molecular systems. In this work, a
century-old review, from 1920 to 2020, of functional forms used to analytically represent
potential energy as a function of interatomic distance for diatomic systems is presented.
With such a purpose fifty functions were selected. For all of them motivation and main
mathematical features are discussed. Our goal is to provide a chronological pathway
showing how to calculate each parameter that composes the interatomic potentials,
as well as the methods to obtain spectroscopic constants from them. A comparative
evaluation for the Ny, CO and HeH™ systems in their ground electronic states is also
presented. Some results of a work presented at the Quitel Congress in 2018, are also
presented. Moreover, a methodology from a mathematical point of view to obtain
correct potential energy functions for diatomic systems is introduced. Finally, a new
and flexible function to represent the potential energy interactions of diatomic systems
for the whole domain of internuclear separations is proposed. This function is a member
of a family of functions containing a product of an exponential and a polynomial. A
method for generating the parameters of the new potential as a function of Dunham’s
parameters is described. Coefficients for 22 selected diatomic systems with elements
from the first to the sixth rows, including some ground and excited electronic states, are
presented. To quantify the accuracy of the so constructed potential energy functions,
the least-squares Z-test method, proposed by Murrell and Sorbie, is used. Furthermore,

main spectroscopic parameters are calculated and compared with available data.

Keywords: potential energy curves, diatomic systems, ground electronic state, spec-

troscopic parameter, analytical representation.



Resumo

Potenciais interatomicos estao no cerne da fisica molecular. Eles sao uma ponte
entre as propriedades espectroscopicas e estruturais de um sistema molecular. Neste
trabalho, uma revisao centenéaria, de 1920 a 2020, de formas funcionais usadas para rep-
resentar analiticamente a energia potencial como uma fun¢ao da distancia interatdémica
para sistemas diatomicos é apresentada. Com esse propoésito, cinquenta fungoes foram
selecionadas. Para todas elas sao discutidos a motivagao e as principais caracteristi-
cas matematicas. Nosso objetivo é fornecer ao leitor um caminho cronolégico, mesmo
com pouco conhecimento sobre o assunto, para entender como calcular cada parametro
que compoe os potenciais interatémicos, bem como obter constantes espectroscopicas
a partir deles. Uma avaliacdo comparativa para os sistemas Ny, CO e HeH™ em seus
estados eletronicos bésicos também é apresentada. Alguns resultados de um trabalho
apresentado no Congresso Quitel em 2018 sao também apresentados. Além disso,
uma metodologia do ponto de vista matematico para a obtengao de fungoes corretas
de energia potencial para sistemas diatdémicos. Por fim, uma nova e flexivel funcao
para representar as potenciais interagoes de energia de sistemas diatomicos para todo
o dominio das separacoes internucleares é proposta. Esta funcao ¢ membro de uma
familia de funcdes contendo um produto de um exponencial e um polinémio. E descrito
um método para gerar os parametros do novo potencial em fungao dos parametros de
Dunham. Sao apresentados coeficientes para 22 sistemas diatoémicos selecionados com
elementos da primeira a sexta fileira, incluindo alguns estados eletrénicos de solo e exci-
tados. Para quantificar a acuracia das funcoes de energia potencial assim construidas,
é utilizado o método dos minimos quadrados Z-teste, proposto por Murrell e Sorbie.
Além disso, os principais parametros espectroscopicos sao calculados e comparados com

os dados disponiveis.

Palavras-chave: curvas de energia potencial, sistemas diatémicos, estado eletronico

fundamental, parametros espectroscopicos, representagao analitica.
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1 Introduction

The relationship upon the potential energy and the internuclear distance between
two atoms is of the greatest importance in physical-chemical processes. Recent work
(see for example Ref. [1]) show the oldie idea of representing potential energy as a func-
tion of internuclear distance, is still extremely valuable. The potential energy surface
of a specific electronic state is associated with the electronic energy of the potential
energy surface for that state for all configurations of the nuclei. Thus to calculate the
potential energy surface from the Schrodinger equation one must solve the equation
many times, for each of the nuclear configurations that are thought necessary for a cor-
rect representation of the surface. However, due to practical limitations in the solution
of this equation for molecules, physically supported approximations are required. In
1927 Born and Oppenheimer, also with the contribution of Huang, presented a pathway
to circumvent this problem [2].

The Born-Oppenheimer approximation (BOA) consists in the separation of the
nuclear and electron motions: once nuclei have a much larger mass than electrons, they
can be considered as stationary compared to the moving electrons. The mathematical
formalism for such an approach can be followed elsewhere [2] and are fundamental in
understanding the key concept of potential energy surface (PES). Since BOA several
research works have been attempting to obtain analytical representations of energy as
a function of the interatomic distances. Such a representation is usually required to
be mathematically simple while accurately reproducing theoretical and experimental
data.

Accurate potential energy curves for diatomic molecules are required to evaluate
the Franck-Condon factors for transitions between different various electronic states,
applied in the calculation of radiative lifetimes, vibrational temperatures, predissoci-
ations, the kinetics of energy transfer, and intensities of vibrational band spectra(see
for example Ref. [3]). Potential energy curves are also important for the interpreta-
tion of molecular spectra and chemiluminescent atom recombination processes (see for
example Ref. [4]).

The potential energy curve provides a broad insight into the structure of a molecular
system. The minimum in this curve defines the equilibrium length of the diatomic

molecule. The second derivative of such function provides the force constants, which are
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fundamental for obtaining the vibrational and rotational energy levels of the molecule.
Higher-order derivatives are required for the calculation of the anharmonicity constants.
Thus, finding a simple and easy way to obtain the derivatives of the functional form is
also desired.

One of the first observations of the vibrational structure in potential energy curves
dates back to 1874, by Roscoe and Schuster [5], for the diatomic systems Nay and Ko.
However, such work was not clearly explained until the mid-twenties of the XX century.
To our knowledge, the most recent analytical way to describe PES of diatomic systems
has proposed in 2020 by Desai, Mesquita, and Fernandes [6]. The authors presented a
New Modified Morse potential, with four parameters for a high-precision representation
of the diatomic potential. In that work, the authors claim such a proposal to be more
accurate than the Hulburt-Hirschfelder |7] and the standard Morse [8] potentials, both
widely used in atomic and molecular physics. The New Modified Morse potential shown
also high accuracy compared to curves Rydberg-Klein-Rees (RKR) [9-11].

Many efforts and advances have also been observed in the computational area to fit
spectroscopic parameters and obtain vibrational energy levels. In 2016, intending to
obtain accurate potential energy functions for diatomic systems, Le Roy presented the
package dPotFit [12]. Such a tool performs the least-squares fitting of spectroscopic
data to determine analytic potential energy functions reproducing the observed levels
and other known properties of each electronic state. Four families of functions are there
available for fitting: the Expanded Morse Oscillator (EMO) function, the Morse /Long-
Range (MLR) function, the Double-Exponential/Long-Range (DELR) function, and
the Generalized Potential Energy Function (GPEF) of Surkus, which incorporates a
variety of polynomial functional forms. When the experimental information for a par-
ticular electronic state is not sufficiently extensive or systematic to define a full poten-
tial energy function (PEF) for it, dPotFit allows its energy levels to be represented by
(often quite large) sets of independent term values 7, ; or by a set of band constants
{G,,B,,D,, H,} for each vibrational level v of each isotopologue. These last capabil-
ities can be particularly important in the early stage of a multi-state analysis, as it
allows one to perform a “direct potential fit” (DPF) analysis to determine an initial
PEF for one state at a time.

Interested especially in long-range intramolecular interactions, Stawalley describes
the behavior of certain potential regions for diatomic systems Hs, LiH, Liy, Nag, Ko,
KRb, Rby, Csy, HgH and Mg, [1|. He analyzed the following potential regions: Short
Range Chemically Bound Levels, Long Range Weakly Bound Levels, Long Range
Purely Repulsive Continuum Levels, Rydberg Levels Based on Short Range Chemi-
cally Bound Ions, Rydberg Levels Based on Long-Range Weakly Bound Ions, Long
Range “Heavy” Rydberg Levels Based on Atomic Ion Pairs and Long Range Rydberg
Levels Based on an Atom @ Rydberg Atom [1], showing the relevance of still studying
PES of diatomic systems.
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Another recent work to represent potential energy surfaces for diatomic systems
is also by Le Roy and dates from 2017 [13]. There, the author describes a computer
package RKR1, which implements the first-order semi-classical Rydberg-Klein-Rees
procedure for determining the potential energy function for a diatomic molecule from
a knowledge of the dependence of the molecular vibrational energies G, and inertial
rotation constants B, on the vibrational quantum number v. RKRI1 allows the vi-
brational energies and rotational constants to be defined in terms of (i) conventional
Dunham polynomial expansions, (ii) near-dissociation expansions (NDE’s), or (iii) the
mixed Dunham/NDE “MXR” functions [13]. For cases in which only vibrational data
are available, RKR1 also allows an overall potential to be constructed by combining
directly calculated well widths with inner and the outer turning points generated from
a Morse function.

The RKR1 method can be currently seen as an important complement to the more
modern and commonly used techniques like DPF. The sophistication of the potential
function forms used in such DPF analyses requires an auxiliary tool. Their analytic
complexity makes it difficult to generate the sets of realistic initial-trial-parameter val-
ues that are required to initiate those non-linear least-squares fits. As a result, the
most common approach is to start with a classical analysis involving fits of assigned
data to some variant of Dunham’s equation, i. e., a power series expansion for the
potential energy function to the coefficients of the conventional expansion for vibra-
tional-rotational energies as a double power series in (v + 1) and [J(J + 1)], with G,
and B, represented by one of the expansions Dunham, NDE or MXR. This is then
followed by an RKR calculation using a code such as the one described in Ref. [13].
Fits the resulting potential function points using a specialized code, then yields the set
of trial parameter values required to initiate the DPF analysis. Thus, an analysis of the
performance of RKR calculations is also a crucial part of a modern DPF analysis [13].

Many comparative studies and historical reviews on diatomic potentials have been
presented over the years, such as those presented by Varshni [14| and Steele and Lip-
pincott [15]. However, we miss an updated review, covering from the oldest analytical
forms such as Kratzer [16], Morse [8], and Rydberg [9] to the most recent ones, such
as Jia-Zhang-Peng [17| and Fu-Wang-Jia [18].

Although our aim in this work is to provide a broad view of the most relevant ana-
lytical ways to represent diatomic potentials, we will present some with applications for
particular systems, as is the case with the potentials of Born-Mayer [19]|, Huggins [20]
and Heller [21], dedicated in the majority of cases to alkali halide crystals (Born-Mayer
and Huggins) and van der Waals diatomic molecules (Born-Mayer and Heller).

Preliminary, in the next chapter, we will start considering two methods that sup-
ported the development of the diatomic potential theory: the Dunham expansion and
the Rydberg-Klein-Rees method, better known as RKR.

The Dunham method motivated the construction of important power functions,
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such as that of Thakkar|22|, which will be presented below, among others, which were
based on an expansion in power series of R — R.. Besides, Dunham showed that energy
levels were given by a double series in terms of the vibrational and rotational quantum
numbers v and J, and their coefficients Y;;. He demonstrated explicitly how potential
relates to the spectroscopic constants of Bohr’s theory, which defines the Y;;’s.

The method is known as RKR, in honor of Rydberg [9], Klein [10] and Rees [11], is a
procedure to obtain potential energy curves from experimental data for the vibrational
term values F(v) and rotational constants B(v). The great advantage of this method
consists precisely in making use of experimental energy levels without reference to any
empirical function to represent the PECs. It may seem a little contradictory that
we approach this method in this work since our objective is to deal with analytical
functions to represent potentials. However, the RKR method that had its construction
begun in 1931 by Rydberg, improved by Klein in 1932 and completed (as we know
today) by Rees in 1947, is still the most widely used as a parameter of good precision
for comparing curves of potential.

In the third chapter, we will present a historical review of about fifty potential
energy functions for diatomic systems, which have been proposed from 1920 to 2020.
A chronological line is presented at the end of this chapter for a better visualization
of the evolutionary process of diatomic potentials. We know that in these 100 years
of research other functions have been proposed, however, we have chosen the fifty
analytical potentials that we consider most relevant. To choose which potentials should
be included in this work, we consider the number of different species to which they can
be applied and the simplicity in the calculations, prioritizing those that can be obtained
directly from experimental data in the literature. Then, for most potentials, it is not
necessary to know how to make complex computational calculations to obtain potential
energy curves. This review and its results (presented in chapter four) were accepted to
publish at International Journal of Quantum Chemistry in November 2020.

In the fourth chapter, a comparative analyses about all potentials for three diatomic
systems, being one homonuclear, one heteronuclear, and one cation in their ground
electronic states, they are Ny, CO and HeH™' will be given. The performance of each
potential by comparing them with experimental RKR data will be also presented.

In the fifth chapter, we will present a comparative study between the potential en-
ergy functions: Rydberg, Hulburt-Hirschfelder, Murrell-Sorbie, Aguado and Paniagua
for Oy, Ny and SO in their respective ground electronic states. In this case, all poten-
tials were fitted to ab initio points. These results were presented at the 442 Congreso
Internacional de Quimicos Teoricos de Expresion Latina (QUITEL 2018), and they are
published at Journal of Molecular Modeling [23].

In the sixth chapter, we have described the mathematical way to construct accurate
functions to describe the interaction potential energy for diatomic systems. For this,

concepts of Mathematical Analysis Theory will be introduced.
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Finally, in the seventh chapter we have introduced a new generalized potential en-
ergy function for representing the inter-atomic interaction of diatomic systems. The
parameters of the function are directly obtained from relations with Dunham’s coeffi-

cients. The model was tested in 22 cases, comprising both ground and excited states.
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2 Preliminary

2.1 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is corner stone for quantum mechanically
study molecular systems. It introduces the concept of the molecular potential energy
surface (PES). The calculations presented in this section follows the formalism from
Ref. [2], yet with more mathematical details.

First, let’s consider an isolated molecular system composed by electrons and atomic

nuclei, the time-dependent Schrodinger equation is written as:

.0
tho, ®({riy {Fu}, 1) = A D({ri}, {Fi}, 1) (2.1)
where 47 is the Hamiltonian:
h? h? 1 e? e*7;
H=—-—S —V2 - — V2N
ZI 2MIVI Zz 2mev1 + 47T€0 Zz<g |Ti _ 7,,]' ZIz |RI _ TZ’
1 €2ZIZJ
4re 2y |R; — Ry|
(2.2)

for the electronic {r;} and nuclear {R;} degree of freedom. In (2.2), M; and Z; are
mass and atomic number the Ith nucleus; m, and —e are electron mass and charge;

and € is the vacuum permittivity. Naming:

1 €2ZI € ZIZJ
Vo—e i R 2 ’
({’l“ } { I 47T6 Z ‘7"1 _ 7"]‘ 47T€0 ; ’RI — 7’1 47T€0 Z ‘ RJ’ )

and replacing in (2.2), we then have:
e G
H = — 21: AL Z: o V1T Va—e({ri}, {11}). (2.4)

Calling

Al ARY) = =3 oo+ Voo (i), () 2.5)

i
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we get

H = —Z;—]\;vi + A ({ri}, { Bi}). (2.6)

Suppose the exact solution of the corresponding time-independent, 7. e., stationary

electronic Schrodinger equation:

He({ri} {BiH) Ve = Ey({Ri}) i ({r:}, {R1}) (2.7)

is known for fixed nuclei in all configurations {R;}. Assuming the orthonormalization

relationship of bound states:

/ () AR W({r), (Re})dr = 6 (2.8)

in all possible positions of the nuclei, being the integration performed on all variables
T =T;.
Knowing all theses adiabatic eigenfunctions at all possible nuclear configurations,

the total wave function can be expanded as:

S({ri}, {Ri}.) = > Wi{r} {Rih)xi({Ri}, 1) (2.9)

in terms of the complete set of eigenfunctions {1} of % and time dependent nuclear
wave functions say {x;}.

Such expansion is an ansatz of the total wave function, introduced by Born in
1951, for the time-independent problem, in order to separate the light electrons from
the heavy nuclei [2].

Replacing (2.9) in (2.1):

zh—Z\I’z {ri AR xi({Bi}, 1) = 2> Ui({r} AR ({Ri}, 1) (2.10)

. g g
' g

(%) (i)

Multiplying both sides of the equation by Wi({r;},{Ri}) and integrating over r,

will have for (7):

ZhZ { [ vt mpudn, (i} S, = inda a0

= ZhaatXl({RI}u t).

(2.11)
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For (i7), replacing (2.6) in ‘H, multiplying by Wi ({r;}, {Ri}) and integrating over r:

/‘1’1: <— Z 27;/\/[1V2 +H ) Z Uixi({ R}, t)dr =
=0
= /\pk (—; QH—MIV%> IZ\IJZXZ({RI},t)dr +/\Il,jHelZ\Ilel({RI},t)dr

Now whereas [ = k and | # k and add both possibilities:

(2.12)

()= =3 53 T + Bl R ()05

(B} )dr + S [ GEQR) Vou((R). Odr

i

> [ |- T

(*)

(2.13)

Calculating (x) will have:

Z / vy Z 0 (ViU xi 4+ 2V1i¥, Vix, + U Vx| dr =
=

B i/ i (Z 2;} VI‘I’Z) udr ¥ Z / Vi g o (Vi) (Vixdr s (214)

=0

Returning to (ii):

(i1) = <— > %Vz + Ek({RI})) xe({ Ry )+

and calling in (i7):

—_— / v (Z . ]\ZZI v%qfl> dr + %Z [ / \IIZ(—ihVI)\Illdr] (—ihVD)  (2.16)

I
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which is the exact non-adiabatic operator coupled.

Equation (2.1) then becomes:

h? - 0
-y —Vi+E({R = ih— 2.17
< ZI: o V1 + Ex({ 1})) Xk + ZZ;CMXI g Xk (2.17)

The first approximation for this problem is the so-called “adiabatic approximation”,
which consists of considering only the diagonal terms ¢y, of the matrix, which represents
a correction of the eigenvalues Ej, of the electronic equation of Schrodinger (2.7) in the
Kth state

—h2 .
e =—) CIva / UV, dr, (2.18)
1

where the second term of (2.16) is zero when the electronic wave functions is real.

From there, we will have:

(— Z Qh_]\iflv% + Ep({Ri}) + Ckk({RI})) Xk = ih%Xka (2.19)

I

and this set of decoupled differential equations leads to the fact that the motion of
the nuclei occurs without changing the quantum state k during the time evolution.
Thus, the wave function ®({r;},{Ri};?): can be decoupled as a single product of

an electron and a nuclear wave equation:

O({ri}, {Ri}; t) = Wi ({ri}, {Ri}) - x({ Ba}; 1). (2.20)

The last and most famous simplification to be made known as the Born-Oppenheimer
approximation is to neglect the terms of the coupled diagonal, so that equation (2.1)

becomes

-2 h—QV? L BURY | e = i (2.21)
2M; ot

Both, the adiabatic and the Born-Oppenheimer approximation are only possible
due to the ansatz proposed by Born, which is what will lead to the decoupling of the
nuclear and electronic movements, allowing to calculate them separately.

The next step is to show that nuclei can be approximated to classical point particles.
For this, we will make the traditional way to extract the semi-classical mechanic from

the quantum mechanic. To do this, consider the corresponding wave function:

Xe({Ri};t) = Ap({Ru}; 1) - exp{[iSk({Ri}; 1) /P)]} (2.22)

where the amplitude factor A, > 0 and the phase Sy are real.
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Substituting (2.22) into (2.21) we will have the real and imaginary parts for the

nuclei given by:

ask 1 ) 1 V4,
— — 2.23
Re{xe} - ; oar (ViS)* + B = h Z A (223)
Tm{x:} : aA’wZ 15 (V140 (Vi) +Z—A (Vi2Sy) = (2.24)
Xk ot : 1Ak ) VIok oM, (V1 Ok :
Multiplying Im{x }by 2A;:
2A%+Z LA (VAN (ViS) + 3 A(VES) =0 (2.25)
L g VAR (VoK o k (V1 Ok :
which can be rewritten as a continuity equation:
(9A

Identifying the nuclear probability density p, which derives directly from equation
(2.22), and with the associated current density Jj 1, given by

pr = x|’ = A’ (2.27)
and
Jer = A2 (ViSy) /M. (2.28)

Thus, the equation (2.26) can be written as

% 4 ; ViJir = 0. (2.29)

In the Re{xx} part, there is the dependency with A, but in the classic limit & — 0,
then

8Sk

Re{xx} : Z 2M (ViS)? + E, = 0. (2.30)

This equation is isomorphic to the equation of motion in the formulation in the
Hamilton-Jacobi of classical mechanics,
a8,
L b H({Fr), {Vi5:}) = 0. (231)

In the classic Hamilton function
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Hy({R1},{V1Sk}) = T({ A}) + Vi ({ R1}) (2.32)
we associate
) QLMI(VISk)z © T({A}) and B < Vie({Ri}). (2.33)

I

For a given conservative energy dE*"/dt = 0, defined in terms of the coordinates

{R1} and its conjugated canonical moments { P}, then we will have

oS
a—t’“ = —(T + E;) = —E' = cte. (2.34)
Now, with the help of connection transformation
MyJ
P, = V1S [: ! ’“} (2.35)
Pk
the Newton equations of motion corresponding to the Hamilton-Jacobi equation
form,
P = -ViVi({Ri}) (2.36)
can be rewritten as

Now, using that

_on_o[T({A}) +Vk({R})] _ dT({1})

P _ 2.38
'™ op OP; dp; (2.38)
then
0 () o (ViS5
5 _ ddT({P}) _d Lopg Mk
YU at dp T dt dV1S
1 d (2.39)
= — V15
M; dt
-y 1 dh
M; dt
Then, as
. dP
B =—1=-ViE, (2.40)
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for a configuration I, we will have:

. 1dp 1
= — - = — — E
=S ag (2.41)

= MIRI = —ViE}

1.€.,

MiBi(t) = =ViVPO({Ri(t)}). (2.42)

Thus, within the Born-Oppenheimer approximation, the nuclei move according to
the classical mechanics on an effective potential VP given by the PES E} obtained
from solving, for each nuclei configuration {R;(¢)}, the time-independent Schrodinger
equation for a given k electronic state.

This potential for time-local interaction of many bodies due to quantum electrons

is a function of the set of all classical nuclear positions at a time ¢.

2.2 The Dunham Expansion

In 1932, thinking of providing a method for the direct quantitative study of molec-
ular structure from the spectra of bands of diatomic molecules, Dunham |[24] vastly
explored the theory of the rotanting vibrator. He calculated the energy levels of
this system in considerable detail by means of the method Wentzel-Kramers-Brillouin
(WKB) [25-27]. For such, firstly Dunham obtained the characteristics values of Schrodin-
ger’s equation for this system, which is:

d*yp  8miuR? K

@t [PV e

¥ =0, (2.43)

where £ = (R — R.)/R., being R, the equilibrium nuclear separation; u is reduced
nuclear mass; V' the potential function with minimum at R.. Here k = %{:“ and
the last term in (2.43) will be call by V,. = m, being V, the potential centrifugal.
The term E(I, k) is the vibrational and rotational energy expressed as a function of
the action I and the square of the angular momentum x.

The Morse [8] potential at this time, 1932, was the most used to obtain energy
levels since it was the only potential that solved exactly the Schrodinger equation,
which provided very good precision for such levels. However, to include the rotational
effect on its potential was not easy.

Dunham [24] (DUN) then proposes to expand the potential V' in a power series
around the point & = 0, since the rotational term V, has a simple expansion about this

point, first neglecting the rotation, i. e. for J = 0:

Voun = hcapf?(1 + a1 + aof® + azé® +--+) (2.44)
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where q¢ = wg /4B., being w, the classical frequency of small oscillations and B, =
h/(87*uR?c), with u the reduced mass of the diatomic molecule, ¢ the speed of light
and h the Planck constant.

Now, taking into account the rotation, and in order to express all the quantities
involving energy in terms of wave numbers, Dunham considered E(I, k) = hcF(v, J)
and V = hcU, so that the effective potential function become U + U, = Uy,

Uy = ao* (1 +aré +apf® +az€® + )+ B J(J +1)(1 — 26 + 362 —4€3 + ). (2.45)

where
U= a1+ a1é + axé® +azé® +---) (2.46)

and
U, = B J(J+1)(1 =26 +36% — 48 +---). (2.47)

Dunham then proceeds to solve equation (2.43) by the WBK method, and obtains
an expression for the energy as a doubly infinite power series in the quantum numbers

vibrational v and rotational J:
" . }
F,; = ;ylj (y + 5) JI(J + 1) (2.48)
j

Dunham calculated the first fifteen Y;; and showed that the coefficients of the various
powers of (v + 3) e J(J + 1) in the energy level formula are a series in powers of the
ratio B.”/w.?. By relating the Y); to the coefficients of Bohr’s theory he noticed that
these are not exactly equal, differing by for B.?/w.? in the case of the coefficient Y3, of

(v + %) that is not equal to w,, the same happens with the others Y;7. Thus:

Yio ~we Yoo~ —weTe Yzo ~ Wele
YE)l ~ Be lel ~ —0Q }/21 ~ Ye
Yoo ~ D. Yiz ~ Be Yio ~ weze
Yoz~ F.  You~ H.

(2.49)

With the possible exception of hydrides, the Y};’s in (2.48) are equal to the related
spectroscopic constants. Thus, since the Yj;’s are determined from the experimental
data, the potential function based on this data can be determined from Eq. (2.45).

Thus, the experimentally determined molecular levels are given for:

B — (o) —a (4 3 o v+ 1)

(2.50)
— weze () BT +1) = D AT+ 1) 4

with B, = B, — . (v+3) + 7 (v+ 3)* and D, = D, + B, (v +1).
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Dunham related the coefficients Y;; with the a,’s coefficients of potential U;. Some

these spectroscopic parameters are:

_ B2 _ 95ajaz _ 67a3 | 459a2ay  1155a}
Yie =uwe |1+ 25 (250, - Bge — O Lo i

Yoo =(%) [3(@—%)4— 1 8 8

+7335a1a2a3 _ 23865aaz  62013aia3 4 239985ataz  209055a$
4 16 32 128 512

B2 1085a2 8535a2a 1707a3
20;,2 (245%‘ o 14652111115 . 885c2zga4 o 5y 104 4 b
e

_ ( B2 17a3 | 225a%2a;  705a}
Y:v,o = <2w8) |:1OCL4 35&10,3 2 + 1 35

Vie = (2) [600+a) + (2) (175 + 2850, — 2522 4 19005 — 2% 4 17505 + 224

We

—459a 4y + 1425105 _ 795a1as 1005a3  7l5asas + 115503 9639a2as2 + 5145a2a3
4

2 8 2 4 16 8

aja? ada aj+a
+467781 5 14251961 2 —|—31185( 11;8?))}

Vao = (%) |5+ 1001 - 3a; + 5a3 — 13y, + 1555
e (2.51)

Since in this work we are interested in potential functions dependent on R and
not v, let suppose that any function can be expanded in the Taylor series, around the

equilibrium position R., so that the potential for diatomic systems is written as:

V=VR)+ (%), BRI+ (), (RBP4 (%), (R R

(8,

(2.52)
where,
av
(—> (R—R.)=0 (2.53)
dr R=R.
since R, is the minimum of the potential.
Now, doing p = R — R, and f, = (%)R:R , we have:
L,y 1,5 1 .4
V=V(0)+ 5 fep” + o fop” + 5 far 40 (2.54)

Then, we can explicit the coefficients a,, in terms of derivatives of potential V', by
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relating (2.44) and (2.54):

_ foR2 _ __R.f _ __Rfs

@0 = e ay = 1277202313u a2 = 4872 w2
(2.55)

_ R3fs _ R fe _ REfr

a3 = spom2c2wzn 4 = 2d0m2c20Zn 5 T T0080m2cZaZn
Substituting ag = w?/4B, and B, = h/(87?uR%c) for f,, we have
d*v
fo= (d—2 = 4r*uctw? =k, (2.56)
R / R=R.

where k. is the force constant.
Two other parameters that will be displayed for all potentials described in this

work can be easily obtained by the following relationships with those derived from the

Qe = OB (1 + R"’f?’) (2.57)

potential:

We 3f2

representing the vibrational rotational coupling parameter, and

SN ANRENE heo 5 (f\Y [fi\] 21078 x 10716
“e%—[@ (%) ‘é(ﬁ)] wcw[g (%) _(E)] po

representing the anharmonicity parameter.In addiction, the frequency w. can be ob-

AB, foR2\ '/
wez(%) . (2.59)

tained from:

The theoretical work of Dunham depends on the validity of its expression for the
potential (2.44), and it is necessary to evaluate if a molecular model with this form of

potential expression can represent a molecular behavior. Two questions arise [28]:

1. Even if V is expressible near £ = 0 by such an expression, it does not necessarily
follow that the series will converge over the whole range covered by the vibrational

motion;

2. Since V' = const., for R — 0o, a model in which V is represented by a power

series is not necessarily the most suitable approximation to use.

To justify the method employed by Dunham, Sandeman [28] by expanding into
power series of £ such as in (2.44), two of the most well known and important potentials
of the time, Morse [8] and Kratzer [16], he showed that both were convergent to all
values which £ assumes.

In order to establish criteria for which the expansion of Dunham converges, Sande-

man [28] applying the Gauss’s test, he verified that the maximum value of £, which we
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will call € during the motion should be given by the approximation:

£ = (v + %) Ue (2.60)

where u, = 256’.
e

Since B, is inversely proportional to the reduced mass u, for most H, states u, is
considered to be large when compared to any other molecule.

This does not prejudice the validity of the Dunham expansion for this type of
molecule, however, the convergence of the series will be slower, which is not desirable
to obtain good approximation results.

Thus, experimental functions can be developed based on any mathematical func-
tions of &, which, when expanded as power series in £, do not contain the first power.
Since the series converged, this was the most flexible way to represent a potential,
taking into account the functions available at the time, which had a maximum of three
constants, such as the Rosen-Morse [29] and Péschl-Teller [30] functions.

The Dunham method is sufficient in the order to demonstrate the relation of the
various spectroscopic constants used in describing the observed energy levels of a non-
rigid, rotating, anharmonic oscillator to the parameters of any empirical function which
may be expanded in a power series in (R — R.) [15].

The method of expansion of Dunham was highlighted by presenting good accuracy
in the region of the minimum in the potential energy curve. However, the method
should be used with caution at higher vibrational levels as it diverges as the energy

approaches the dissociation limit [24].

2.3 The Rydberg-Klein-Rees (RKR) method

The Rydberg method [9], which will be presented in more detail in section 3.1.4,
is a graphic procedure, quite laborious and, although efficient to represent certain
diatomic systems at the time, does not present good accuracy for low vibrational
levels. Klein [10] proposes modifications in the Rydberg method, introducing a more
practical and accurate way of obtaining the PECs. He expressed the two internuclear
distances maximum and minimum respectively for R; and Rs, corresponding to the

given potential energy (effective) of a diatomic molecule vibrating with an energy U as

Riao(U) = (flg+ f)2 £ f. (2.61)

where f and g are the partials derivatives of an integral .S,

oS

=0

(2.62)
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and 55
= —— 2.63
9==5. (2.63)

S is a function of the energy and the angular moment of the molecule, given by:

S(U. k) = ﬁ /0 JT =BT, r)dl, (2.64)

being E(I, k) the sum of the vibrational and rotational energy of the molecule, with

I=h (u + %) (2.65)

and

K= ( i ) J(J+1) (2.66)

8121
which are the expressions quantum-mechanics equivalents of the classical quantities [
and k.
Here, v and J are the vibrational and the rotational quantum numbers respectively,
1 is the reduced mass of the molecule, and I = I’ when U = E.
According to Klein [10], the knowledge of the quantities f and g for a value of xk and
different values of U gives directly the solution to the problem initially placed because

the definition of these quantities follows immediately

RI<U):,/§+f2+f and RQ(U)Z,/§+f2—f (2.67)

in which the potential curve is determined on both sides of the minimum. As you can
see, the minimum of this curve is, as it should, at the point I = 0, corresponding to a
movement in which the two nuclei rotate in circular motions.

In fact, Klein [10] obtained the expressions for f and g from the period of vibra-
tion au, and of (gy), as well as the Rydberg method (see the section 3.1.4) . The
integral S was introduced for mathematical convenience and has a relevant graphical
interpretation in the Klein method since it represents half the area between the total
constant energy U and the effective potential energy curve, as shown by Vanderslice,
Mason, Maisch, and Lippincott [31].

Klein [10] then reduced the problem to the solution of two integral equations:

1 r dI
fU) = 2#@/0 NG (2.68)
and
o(U) 1 (OE/Ok)dI (2.69)

~2mv2n Jy VU= E(I,r)
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whereas .
f= §(Rmax — Ryyin) (2.70)
and . . .
= - — 2.71
g 2 (Rmin Rmax) ( )

However, the solution of Klein [10] for S, as well as of f and g, could only be
obtained numerically, having a high computational cost for the time [32].

In 1947, Rees [11] suggested that the expression to be integrated (2.64) was known,
since the energy F([, k) can be expressed in terms of quantum numbers v and J,
and the derived spectroscopic constants we, WeZe,weYe,Be, o and D, are given by the
accuracy of the experimental data. Then f and g could be calculated and R(U) can
be obtained in terms of such spectroscopic constants, as was desirable. In this way,
he proposed to write F(I, k) as a quadratic in [ = h(rv + 1/2), using the expansion of
Dunham for energy (2.50):

E(I,k)=EW,J)=w. (v + 3) — weze (v + %)2 + wee (v + %)3 + B.J(J + 1)

+D JHJ+1)? = J(J+1) (v+ 1)
(2.72)
which is the total energy of the nuclear motion, assuming the Born-Oppenheimer ap-
proximation [33|, and can be expressed by E(v,J) = E(v) + E(J), where

1 1\° 1\*
EW)=we(v+5 ) —wewe (v+35) +wepe (v+5]) - (2.73)

and
1
E(J)=B.J(J+1)+ D.J*(J+1)> —a.J(J + 1) (1/ + 5) e (2.74)
Substiting (2.72) in (2.64), considering only the three fist terms of E([, k) already

introducing the variable I and x, we have:

S(U.k) = A= [ (DU = BoJ(J +1) = Do (J + 1) = [we — 0 (J + 1)1

+ [y
(2.75)
which leads to the following expressions for f and g for the rotationaless state (J = 0):

f= <—h );loge { (e = AU’ } (2.76)

8mlcpwer, We — (4wer U)2
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and

1

212 e\ 2
=\ = = e 4 e eU
g (h(wexe)3) [a (dwezU)

being c is the speed of light.

N

62 - 4 e eU %
+ (2wezeBe — aewe) loge { (w weteU)

We — (4w6er)%

(2.77)

Expressions for the energy of dissociation D and for the distance of equilibrium R,

were also determined by Rees [11]:

2

We
D= 2.78
4weTe ( )
and )
B 3
= —1 . 2.
R (87T2cBeu) (2.79)

Rees further considered the case where E(I, k) is expressed as a cubic in I, however,
we will not cover it here (for more details see Ref. [11]).

Vanderslice, Mason, Lippincott and Maish [31]| extended the study of Rees, taking
into account that in most cases, energy FE(I,k) can not be represented throughout
the experimental range by expression (2.72). Thus, they proposed to represent it as a
series of quadratics covering the interval in different regions. Thus, the integral S in
Eq.(2.75) should be written as:

S(U, k) = {(h[U = BJ(J + 1) — DiJ>(J +1)?] — [wi — auJ(J + 1)]I

1 n I;
\/m Zi:l f[l-l_l

+ |G 12}5 dI
(2.80)

where Iy = 0 and I,, = I’ and the sum extends over the vibrational energy levels.

From (2.80), for J = 0, the expressions for f and g will now be given by [31]:

n

InW;
87r2ucz (2.81)
and
rmci[% V), 08 axiw»)fwi)lnvvz-] (2.52)
being

W~:\/ w;2 — 4(wm wi — 24/ (wx)iv/Ti 1
Vw4l | w24/ (w2) VT,

Vanderslice et al. [31] perform tests and compare the Rydberg-Klein graphical pro-

(2.83)
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cedure with the Rees analytic, verifying that the Rees method is much faster and more
accurate.

Thus the Rydberg-Klein-Rees (RKR) method becomes one of the most accurate and
fast methods of obtaining PECs employing experimental data, without an analytical
function. It is a method particularly favored compared to the others when a large
number of levels are known considering the situation close to the limit of dissociation.

One of the disadvantages of the RKR method is that the PEC can be constructed
only in the region for which sufficient spectroscopic data are available. However, this
was great difficulty in the past decades, when there were computational and techno-
logical barriers, which is no longer the case today. Incidentally, in the 1960s, there was
a fair amount of experimental data available [15].

Later work such as Singh and Jain [34], and later by Richards and Barrow [35]
proposed even simpler ways to obtain f and g, making it even easier to obtain an
accurate PEC.



3 A review of fifty analytical
representation of potential energy

interaction for diatomic systems: One
Hundred Years of History

3.1 Potential energy functions

3.1.1 The Kratzer function

Our starting point is to consider the wave equation [33] for the nuclear motion of a

diatomic molecule of nuclear masses M; and Ms and charges Z; and Z, is:

872
72
where p = My My /(M + Ms) is the reduced mass, R is the internuclear distance and

V20 +

[E — (€’Z1Z5/R) + V.(R)| ¥ =0 (3.1)

Ve(R) the electronic energy.
The function of nuclear potential energy will be a combination of the term repre-

senting the nucleus-nucleus repulsion energy with the electronic energy V,:
V(R) = €*Z,Z5/R — V.(R). (3.2)
Writing the wave function in the well-known approximate form

¥ = 9(g, R) - ©(0,0) - R(R)/R (3.3)

which differs from the exact molecular equation by small terms treated as perturbations.
These effects can be either neglected or they can be calculated (see details in Ref. [36]).

In Eq. (3.3), ©(6, ¢) is a function of the angular coordinates which fix the direction
of the internuclear axis in space. ®(¢, R) is a function of all the electronic coordinates
¢ and also of the internuclear distance R. It is, in fact, the solution of the equation for

the molecule with the nuclei fixed at separation R.

39



Potential energy functions 40
Then, R in Eq. (3.3) satisfies the radial part equation of Schrodinger, given by:
d? 1 2
R_JJADR 8T 1p y(ryR —o. (3.4)

dR? R? h?

Among many proposed diatomic potentials few are those that solve exactly the
Schrodinger radial equation (3.4). Proposed in 1920, the Kratzer [16] potential was
one of the first to have this important characteristic since the wave function contains
all the information necessary to describe a quantum system in its entirety. Work such
as Bayrak, Boztosun, and Ciftci [37] and Hooydonk [38| emphasize the importance and
applicability of obtaining the eigenvalues explicitly in theoretical chemistry problems,
especially when they result from the use of the Kratzer potential in the place of V(R)
in the Eq. (3.4).

The Kratzer [16] (KRA) potential is given by:

(3.5)

R. 1R.?
R 2 R?

Vikra(R) = =2D, (—

where D is the depth of the well and R, is the equilibrium internuclear separation.
The Kratzer potential is composed of a repulsive part and a long-range attraction.
This potential presents three characteristics that will be desirable to all the potentials.

They are:
(i) V(R) has a minimum at R = R., and in this case it occurs for V(R = R,) = —D,;
(ii) V(R) — oo, when R — 0, due to internuclear repulsion;

(iii) V(R) — 0 when R — 00, occurring the dissociation of the molecule !.

In 1922, an approximate form of Kratzer’s potential was already considered [39],
with the addition of D, in (3.5), i. e., Vkra(R) = —2D, <& — 1R62> + D,, resulting

R 2 R?
n:

R—- R\’
7 .

The spectroscopic constants for the modified Kratzer potential are quite problem-
atic, as shown by Varshni [14]. When the conditions (i), (ii) and (iii) are satisfied, what

one has is the relation:

Vitodf.krA(R) = De ( (3.6)

keRe
2D,

1 (3.7)

dR?
tested by Varshni [14].

being k., = (M) . However, this can not be obtained for any of the 23 molecules
Re

'In fact, the requirement is that when R — oo the potential curve is asymptotic for a finite value,
which in general is very close to zero for systems in the ground state that has a conventional potential
curve, 7. e., with only a global minimum, maxims.
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Besides, C.Berkdemir, A. Berkdemir, and Han pointed in 2005, Kratzer’s modified
potential did not provide an analytical solution for the Schrédinger equation if the
centrifugal part was included in it. However, they provided a method for eigenvalues
to be obtained (for more details see Ref. [40]).

The modified Kratzer potential (3.6) is still of the few to have only two adjustable
parameters, D, and R,.. For that reason, when compared to potentials such as Morse [8],
Rydberg [9], Deng-Fan [41] and others with 3 or more adjustable parameters, Kratzer
will generally have the worst fit of the curve as a whole. This can be observed, for
example, in the work of Royappa, Suri, and McDonought [42|, where the Kratzer
potential was compared to 20 other potentials containing 3, 4, 5, and 8 adjustable
parameters for 14 diatomic systems in the ground state. The Z-test proposed by
Murrell and Sorbie (can be seen in detail in section 3.1.26) was used, where the curves
with the fitted parameters are compared to the curve obtained by the RKR method.
The mean of the deviations for the Kratzer function was only surpassed, surprisingly,
by Lippincott [43] function (see section 3.1.19 of this work). With 4 parameters fitted,
the Lippincott potential does not have the expected behavior when R — 0, since V (R)
converges to a finite value. The values of D, are overestimated in relation to the RKR
data in the attractive branch, and these high values lead the potential, when R — 0,
becomes smaller than the value of the potential with such R and D,., which does not
happen with the modified Kratzer potential.

Varshni [14] further proposed another way to modify the Kratzer potential so that

the spectroscopic constants could be calculated. He called the generalized Kratzer
(GENKRA) function:

Vesnat®) = 0. [1- (%" 3:5)

where

n?=A (3.9)

being A the Sutherland parameter [44] given for A = k.R?/2D,.. The spectroscopic

constants in this case are given by:

B
Qe = A1/298e (3.10)
We
and 2.1078 x 10~1¢
Weme = [SA + 12412 4 4= % . (3.11)

R p
3.1.2 The Lennard-Jones function

For a molecule consisting of two atoms, we have known that there is a repulsive
force between the atoms at close separation distances which keeps the atoms from

overlapping, and an attractive force at large separation distances which provides the
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binding of the atoms into a molecule. At some intermediate distance, these forces are
in balance. A potential form commonly used to describe this situation, first suggested
by Mie [45] in 1903, and later applied by Lennard-Jones [46] in 1924.

The Lennard-Jones [46, 47] (LJ) spherical-symmetric potential, whose parameters
are derived from the coefficients of second virial or viscosity, was considered one of the
most widely studied, especially between 1920 and 1990.

First, he considered the viscosity problem. The interest was to deduce the ap-
propriate law of dependence of the viscosity of a gas on temperature. To this end,
Lennard-Jones considered the formula given by Chapman for the coefficient of the

viscosity of a gas whose molecules may be regarded as spherically symmetrical [47]:

p=——(l+e), (3.12)

where T is temperature, k£ the usual gas content, € a small number which depends on
the molecular model, and kg is given by:
16 e

_ —y* 4(2) 64 1
ST o (ty)y dy, (3.13)

with
¢®(ry) = 107y /0 [(1 — Py(cos x)|pdp, (3.14)

being P, a zonal harmonic of the second order, p is the perpendicular distance between
one molecule and the direction of motion of a second relative to it before an encounter,
and y is the angle turned through by the relative velocity during the encounter.

Further, 7 is a function of the temperature and the mass of the colliding molecules

given by [47]:]
2kT 1
% = = - (3.15)
my+my  j(my +my)
and ( )1/2
Vv mime
—COp = — "2 3.16
TY R my + me ) ( )

where V' is the relative velocity before collision, C'z is a variable used by Chapman. In
a simple gas, m; = ms and then 7y = V/2.

Firstly, any model y has to be found in terms of p and V', and this required an in-
vestigation of the dynamics collision. If the potential of the field between two molecules
when separated by a distance R is ¢(R), then the motion of one relative to the other
during an encounter is the same as that of a particle of unit mass about a fixed center
of force, of potential "2 ¢(R).

LJ assumed that the molecules repel according to a inverse nth power law, and that

they attract according to the inverse third power, 7. e.:
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f(R) = 20— Ei' (3.17)

so that
An Am

o(R) = (n—1)Rn1 o (m — 1)Rm—1‘

(3.18)

The new formula to observed variation of viscosity with temperature is given [47]:

AT 20D
l’L = _pn=3" (319)
1+ ZoRozl SRT R

The quantity A is independent of temperature and we have:

5v/rmk 2k T
- o (—> (3.20)
8L(n)T (4 = 25) \
and the “attractive constants” Sk are given by:
J A r n—5—2Rn—3 4 7
SR ™ R(n) 3 ( 2n—1 2) (321)

2 (R)R(n) X (4 — 2 (2k) R

n—1

and so are function only of the force constants A3 and A, and of the index of the
repulsive power law n. For details about the calculations of I and Jg see Ref. [47].
When the attractive force is weak compared with the repulsive field, the formula

for the coefficient of viscosity reduces to:

ATS/Q
= (3.22)
Tw»=1 495
where A has the same value as before and S is given by:
mJi(n A
S = 1 2) e (3.23)

Another case considered by Lennard-Jones [47] was the Sutherland model, consist-
ing of a rigid sphere with an attractive field surrounding it. The formula appropriate

can be deduced from (3.22), making n — oo, such that:

ATz

1+ 9T (3:24)

1

which is a known Sutherland formula.

Based on the work of Enskog and James, it is possible to give a simple physical
interpretation of S, since the value of S for the Sutherland model to be proportional
to A¢(o), where ¢(o) is the work required to separate two molecules from contact to

infinity against the attractive field, and A is a pure number depending only on the
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nature of the field. Thus, if ¢(R) is the potential of two molecules separated by a

distance R, and o is the diameter of a molecule, then the value of S is given by:

_ A %)
S =An— (3.25)

being A,,, depending only on the index m of the attractive field (R~™) and its value
varies from 0.213 to 0.156 as m varies from 4 to 9.

The physical interpretation of S is given supposing that two molecules repelling
each other according to a inverse nth power law move towards each other in a direct
encounter with a relative velocity of the molecules of a gas at first absolute. At the
closets distance of approach: \ ]

el (3.26)

and so )

- (ﬁ) o (3.27)

The distance o is defined as the diameter of such molecules. If molecules are
considered rigid spheres, the force constant A, is infinite, and n is infinite, but A/
has definite limiting equal to the diameter.

Thus, expression obtained for S, writing § for the numerical values is given by [47]:

A3 1

S = 5)\721/71—1 (2k)n—3/n—1" (3.28)
and substituting A, in terms of the o, we have:
5 A 4\ (o)
5= 3 202 (n— 1) AT (3:29)

where ¢(0) is the work required to separate two molecules attracting according to the
law R3/R? from a distance o to infinity.

S has the same form whatever the attractive field for Sutherland’s case, and the
rule is valid not only to the inverse third power law. Then, if \,, R~™ is the attractive
field, S will be given by:

Am A Am

S = (m — 1)ko.m—1A == k}(n_m/m_l) )\%mfl/n—l)’ (330)

where A’ is a numerical factor. Thus, Lennard-Jones obtained that the coefficient of
viscosity to general law of force A" — A, R~™ is given by Eq.(3.22). He applied these
results to argon and obtained good agreement with experiment, and the repulsive field
may have any index from 15 to 25, which led him to conclude that viscosity results
alone are not sufficient to determine uniquely molecular fields [47].

In a subsequent paper, Lennard-Jones [46] begins to consider potential whose pa-
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rameters are derived from the coefficients of second virial, more specifically B. This,
however, can be applied only for two kinds of molecules: a van der Waals molecule and
a molecule repelling according to an inverse power law, without attraction. First, he

considered the equation of gas of moderately large dilution of the type:

B
pv=kNT (1 + —) (3.31)
v

where, p, v, and T" denote pressure, volume, and temperature respectively, k£ the Boltz-
mann gas constant, and B the second virial coefficient. The method aimed to determine
the force constants, both attractive and repulsive, from a comparison of the theoret-
ical and experimental values for B. For spherically symmetric molecules, B can be

represented as [46]:

B =2nN / R*(1 — ¥R\ dR, (3.32)
0

where 25 = 1/kT.
An alternative form B is:

2rN - [ ps 2j6(R)
= —— d .
KT /. R’ f(R)e R, (3.33)
where f(R) is the force between two molecules when separated by a distance R, now
is given by:
A Am
R)=———. 3.34
f(R) =z~ 2 (3.34)

and this is related to potential field ¢(R), by the equation:

S(R) = — /O " F(R)R. (3.35)

Lennard-Jones [46] obtained a general formula to B from which one can deduce the

two special cases of molecules mentioned above. This is given by:

2 )\n m—1 3/(n—m)
B=-nN Ja .
3" <n “1 0, > () (3.36)
where o
27 m — 1\
y=" = (3.37)
m—1\ 27\,
and
- 3/(n—m)00£ ™m—1+n—4 ~m—1 m—1+m—4
Fy) =y Zoﬂ{r( " "y 1 ne
(3.38)

For molecules which repel according to an inverse power of distance \,R™", we
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have:

2 2JAn n—4
B=2nN r .
3" (n—l) <n—1>’ (3:39)

where was assumed y = 0 and \,, = 0. For molecules which behave as rigid spheres of

diameter o, surrounded by an attractive field of force \,, R~™, we have:

2 5 > 3(2ju)”
B=ZmNo {1_27!(¢m—3)}' (3.40)

T=1

observing that a rigid sphere molecules corresponds to a force A\, R~ when n — oo,
the diameter o being given by:

o= lim A/ 1 (3.41)

n—o0

Lennard-Jones related the function B theoretical and experimentally, assuming that
the values of B at various temperatures applied to a unit volume of a gas is given by

expression

By = f(T) (3.42)

while theoretically, we have as above:

2 A m—1 8/(n=m)
By = 37 (n 1 ) F(y) (3.43)

being v the molecular concentration.

He obtained two equation to determine \,, and A,,, given by [46]:

3 An 3 2y 3

1 = X+Y —log— 1 44
n—lOgn—l n—m + & 3 +n—10gk (3-44)

and

3 Am 3(n—1) 27y 3
1 = X+Y —log— log k 4
m—1%m_1 (n—m)(m—1) N %673 T (3.45)
where (X,Y) is a parallel transformation, which:
logy + ——"log T = X (3.46)
n—1

and

log By —log F(y) =Y. (3.47)

Lennard-Jones applied this method to the argon [46], helium and neon gases [48],
and for hydrogen, nitrogen, and neon gases (with some corrections) [49]|. Next, he
considered the problem of determining the forces between molecules of different kinds

of a gaseous mixture from second virial coefficients of a binary mixture [50]. In 1937,
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he observed that the interaction of neutral atoms at large distances can be represented
by a potential function that varies as the inverse sixth power of the distance [51]. At
smaller distances, he noted that the function is not so simple. Nevertheless, it was
convenient to adopt the asymptotic form of the function as valid over the whole range
and to make any necessary modifications in the repulsive field which must be used in
conjunction with it. In this case, the interaction of neutral atoms at small distances can
be represented by a potential function that varies as the inverse ninth, tenth, eleventh,
or twelfth power of the distance. For this, he considered the equation of state for a gas

of small concentration given by:

B
pv=KNT + — (3.48)
v

or
/

B
pv=KNT + — (3.49)
v
where B and B’ are functions of temperature. In terms of intermolecular fields they

are given by:

B::B%AWW:QWN%ﬂlémBﬂl—emx—¢UDMﬂﬂdR (3.50)

where ¢(R) is the potential energy of two molecules at a distance R, given in Eq. (3.35).
These equations are like that of van der Waals, only first approximations and valid only
for dilute gases. When van der Waals equation is written in the form of equation (3.48),

it appears that
a

~ kNT
whereas the corresponding formula derived from (3.50) for molecules which behave as

B =b (3.51)

rigid spheres of diameter o, surround by an attractive field, whose potential is A,,, R,
is:

(tm — 3)

Bzz%wAwﬁ{l——§:£¥@iﬁzL}. (3.52)

where

Po = Ao " (3.53)

and is the potential energy of two molecules in contact.
Equation (3.52) can be written as a more general formula which corresponds to

interatomic forces whose potential is the sum of inverse power laws:

¢ =M\R " — AR (3.54)
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and this function can be written as [51]:

1 (RN\" 1 [(R\" 1 1
o=-wil5 (%) - (%) }/ (o) (359
where R, is the distance between two molecules in equilibrium under the field (3.54),
and |¢g| is the energy required to separate them from this configuration (dissociation
energy D).

The most appropriate values of n and m for the inert gases and some molecules
have been given for m = 6, corresponding to the theoretical value for van der Waals
forces, and a value of n between 9 and 12.The values of A\, and \,, were deduced from
values of R, and ¢y. For diatomic systems Hey, Nes, Ary, Hy, No, Oy and CO the best
value obtained for n was 12[51].

Then, the general potential LJ(mn), as it is better known, is a two parameter

potential energy function given by:

Vis(R) = % [m <%)n —n (%)m} (3.56)

where R, is the equilibrium distance and D is the dissociation energy. To have physical
meaning, we must have n > m > 0, but neither m or n need be an integer. However,
the function LJ(6,12) is the most widely used for diatomic systems in general.

Although it is still widely used in recent chemical research, mainly in computa-
tional simulations of liquids (see for example Ref. [52, 53]), the LJ(6,12) potential fails
to describe the viscosity of the inert gases in a satisfactory manner [54| and measure-
ments of the second virial coefficients of argon and krypton [55] at low temperatures
indicated further the inadequacies of this model. Potential functions with more than
two adjustable parameters were proposed in an attempt to overcome these defects (see
Section 3.1.43).

3.1.3 The Morse function

In 1929, Morse [8] (MOR) proposed a function that served later as a reference to
many other proposals. The functional form to describe diatomic potentials has well
represented in at short interatomic distances, being quite adequate to represent atoms
forming a chemical bond, providing greater precision in the region of the minimum
potential.

The first potential energy functions proposed for V(R) were very complicated func-
tions [8]. Proposals for such a function were almost always based on the Dunham [24]
method presented in the section 2.2, in which very general power series were obtained

from the infinite polynomial:
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E(v,J =0)=—D + hw,

(w%) . <y+%)2+Kg (w%)g—---]. (3.57)

These provide the energy levels accessible, whose spectroscopic constants x., we,
K3 --- were known, and E thus obtained empirically.

However, the use of V' as these very general expansions bring some drawbacks. The
terms in (R — R.) with power 3 or greater in the expansion of V' must be calculated
by perturbation methods since these are not small as Dunham had already pointed
out [24]. Also, since V' is obtained from known spectroscopic constants, it does not
converge to large values of R.

Morse, based on experimental data, found the spectroscopic constants K3 as well as
the higher-order parameters in the expansion in E(v, J = 0) were very small compared
to those in the first and second terms of the E(v, J = 0). Thus, he proposed to truncate
such a series up to the second term. Considering also, the deficiencies of the thus far
presented functions, Morse then proposed four criteria to be satisfied to obtain a simple

and well-behaved function to describe these potentials [8]:
1. Converge asymptotically to a finite value when R — oo;
2. Possess minimum point only at R = R,;
3. In R=0, V(R) — oc;

4. Provide exactly the energy levels accessible as a finite polynomial E(v, J = 0),

(w%)_%(wé)?

where D is the dissociation energy 2, R, represents the equilibrium distance, w, = %

being given by

E(v,J =0) = =D + hw, . (3.58)

I

“w

is the vibration frequency, with p the reduced mass of diatomic molecule. Also, k. =

(M) is the force constant and w.z., = hwg /aD, is the anharmonicity constant.
R=R.

The function proposed by Morse considering firstly only the vibrational levels, . e.,

for J equal to zero, has the form:
Viror(R) = Dee 2aB=Fe) _ 9 e~alR-Re) (3.59)

being D, the depth of the well. Note that the criteria 3 does not necessarily true for
the Morse proposal Viyor(R), because when R — 0, Viyor(R) assumes the finite value
DG(GQQRE _ 26aRe).

1
2D should not be confused with the depth of the well D,, since D, — D = §hwe.
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In the cases where the quantum rotational number J is different from zero, the
term V; = J(J + 1)h?/87%uR,* is added to the function (3.59). Morse showed his
function reasonably satisfied all four criteria, still obtaining the first notable case of
a one dimensional Schréodinger equation providing a finite number of discrete energy
levels given by E(v, J), this being the empirical form of (3.58). The vibrational energy

levels in the harmonic approximation are given by:

1
El,:(l/+§>hwe,u20,1,2~~. (3.60)

When dealing with realistic potentials, the distance between the energy levels de-
creases as the energy approaches the limit of dissociation. This is due to the anhar-
monicity of real molecules, not well described by the harmonic approach (3.60). Usually
the vibrational and rotational energy levels of a diatomic molecule are expressed as a
convergent double expansion in the variables (v 4 3) and J(J + 1) [56]%,

Bl = P, ]) =we (v +§) —were (v +5)" et (v 4 3)” — weze (v +3)°

+ o F [Be—ac(v+3)+ ] I+ 1)+ [extslD, + Be (v + 3) + ] JH(J + 1)
(3.61)
where v is the vibrational quantum number defined by (3.60) and J, the rotational
quantum number (J =0,1,2...).
At this point the Morse contribution becomes even more evident, not only with
the functional form, but also providing a finite polynomial E(v,J) suitable for the

calculation of both vibrational and rotational energy levels given by:

E(w,J) = —D + hw(v + 1/2)[1 — hw, (v + 1/2) /AD, — h*J(J 4+ 1) /167> D uR?]
(A (J + 1) /872 uR>)[1 — K2 (J +1)/167* 2 RAW?].
(3.62)

Dunham [24] questioned the accuracy of this finite series, truncated in the second-
order term, representing energy, since for light molecules like hydrogen, terms of order
greater than two are not negligible. On the other hand, as for the other molecules the
precision of the levels was considered good, this was not taken into account by Morse.
Also, Rees [11] showed that in the case where E(v,J) was expressed considering the
cubics terms in (v + 1/2), the calculations became much more difficult. Also, there
was a dependence on the precision with which the second anharmonicity constant w,y.
was obtained, being the values of w.y. are among the least reliable of the spectroscopic
constants [31].

The Morse function was also known as a three-parameter potential function, D, a

3extslD, appearing in expression (3.61) represents the centrifugal distortion constant, should not
be confused with D, the well depth in the Morse potential (3.59).
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and R.. D, can be calculated by integrating exactly the Schrodinger equation, using

Morse function Vyor(R), getting:
D, = w? /4w, .. (3.63)
Once w, and D, are known, the a parameter is obtained as:

a = (8m%cpwer. /h)Y? = 0.2454(pwez. )2, (3.64)

k
— ] 3.65
“=\3p. (3.65)

using that k. = 4r?uc’w? = 5.8883 x 107 2uw? dyne/cm . Sometimes, this value of k.

or equivalently,

is approximates by k. = uw?. This approximation is due to Dunham [24] with a slight
correction being omitted, for simplicity.

The expression (3.63) usually gives values for the dissociation energy D, that are
too large, so that it is better to use the experimental value when available [57].

To construct the potential energy curves, Morse used a different calculation for the
molecular constant R.. The relation used before his work was R.*w. = C,,, where C,,
has a different value for each molecule, and it was necessary to know at least one value
of R. before obtaining C. Morse [8] proposed an empirical law associating R, and we.
Following Birges tests [58], where the values of R, and w, for 21 molecules were known,
and using the equation logw. — plog R, = log k it was estimated that p = 2.95 and
k = 2975. To test its function, Morse assumed, even with a rather large error, p = 3,
and then

RAw. = 30004° /em. (3.66)

He noticed that the values thus obtained reproduced well the experimental data, with
an approximate error of 4%.

Morse tested its function in neutral diatomic molecules and ions, in ground elec-
tronic and excited states. Curves were calculated for the molecules BeO, BO, AlO, Cs,,
CN, CO, CO™, Fy, Hy, Hi, Iy, Ny, NJ, NO,, 05,0 and SiN.

Many comparative studies involving the Morse function were done later, such as
those by Varshni [14] or Royappa et al. [42]. Although the Morse function doesn’t
give a correct description of the potential in the long-range, this potential was still a
reference for the most current ones.

Varshni [14] showed that the approximate expression for the vibrational rotational
coupling constant a, obtained by Pekeris [59], obtained solving the Schrédinger equa-

tion for the Morse potential by perturbation method is equivalent to the his expression:
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B.\'"* B. 632
o, = 6B.x. ( ) — = (AY? —1)—=< (3.67)
Wele WeZe We
where B, = h/(8m*uR?c) is the rotational constant and A = % is the Sutherland

parameter. The anharmonicity constant w.x. in (3.67) is given by:

—16 —16
oo, = 8a22 x 2.1078 x 10 _ 8A2 X 2.10728 x 10 . (3.68)
10 Rep

However, the expression (3.63) obtained by Morse presented better results than

the expression (3.68) as verified by Varshni. He analyzed 23 diatomic systems in their
ground electronic states, and a, and w. showed very poor results for these systems
with the Morse function. The Rydberg 9] and Lippincott [43] potentials presented a
much lower average percentage error than Morse.

On the other hand, in a more recent study, Royappa [42| et al. evaluated the be-
havior of the potential as a whole, and compared it with the experimental RKR [9-11]
curve using the Z-test method of Murrell and Sorbie [60] (see details in Section: 3.1.26).
He analyzed the average of the deviations of 21 potential energy functions for 14 di-
atomic systems in their ground electronic states, and obtained that the Morse function
present lower error than Kratzer [16], Lippincott [43], Deng-Fan [41], Rydberg [9],
Varshni III [14], Rosen-Morse [29], Linnett [61] and Posch-Teller [30] potentials.

3.1.4 The Rydberg function

The potential functions used before the Rydberg proposal described only the lowest
vibrational levels and were not useful in the extrapolation to dissociation limit [9]. It
was then necessary to seek more general analytical ways to describe potential energy
functions for diatomic systems, to best fit also the dissociation region. Moreover, an
accurate representation of the series of nuclear vibrations was not known, and nuclear
vibrations are experimentally measured in terms of AF, being AE = E(v+1) — E(v),
where E(v) is the nuclear vibrational energy corresponding to the quantum number v.
Then AFE is assumed to be a linear function of the quantum number v, approximation
valid only for the simple diatomic system H,. For somewhat more complex systems
like Ny [62, 63], Oy [64] and NO [65, 66], a function of the type (AFE)? was used, more
properly describing the nuclear vibrations. However, such a function still depended
only on the quantum number v. Then, in 1931 Rydberg [9] developed a method for
calculating potential curves which makes use of the experimental energy levels yourself
and not depend on some derived formula for these levels. This a graphical method
designed to produce a curve that will give the observed vibrational and rotational
energies, when these are computed by Bohr theory with half-integral quantum numbers.
It is a method of approximation to obtain the curves, and to this approximation, the

energy levels depend only on the form of that part of the potential curve which lies
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between the classical motion of the system for the energy in question.
Rydberg [9] (RYD) suggested an empirical relationship between (AFE)? and B,:
(AE),? =k.- B2, (3.69)
where -
h 1
B, = — |, 3.70
874 (Rz)y (370)

is the rotational constants, k. is the force constant and u is the reduced mass.

Rydberg showed that for the diatomic systems CdH and HgH, the relation (3.69)
had a good fit at several vibrational levels [9]. Although with slightly greater straight-
line deviations at the lower vibrational levels, acceptable representations were also
obtained for NO and O, systems. These larger deviations were attributed to errors
in the determination of rotational constants B,. Yet, the above-mentioned systems
were considered as well represented in this frame. However, for the LiH and NaH, an
unexpected behavior occurred, plotting Eq. (3.69) produces a curve towards the origin
at the low levels, suggesting that for such systems, the relation (3.69) could be even
applied for the highest vibrational levels [67].

Rydberg used a graphical method involving the action integral, together with an-
other integral related to the spectroscopic constant B,. The action integral for a
rotating vibrator is [31]:

I= %deR - 2/R2 prdR = 2 /R2 \/2M[U — Vog(R)]dR, (3.71)

R1 Rl
where pg is the radial momentum of the particle, R; and Ry are the classical turning
points and R is the internuclear separation, p is the reduced mass and U is the constant

total energy given by:

PR’

U=

+ Ve (R). (3.72)

The term V g(R) is the effective potential curve, given by sum of the potential
V(R) and the centrifugal potential:

K

Ve (R> = V(R) + ﬁa

(3.73)

where

P
Kk = e (3.74)

24
Here pperq is the angular momentum which is a constant the motion. The quantization
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of the radial momentum, and therefore of the vibrational motion leads to:
Ro> 1
[ 2/ V20U ~Vege(R)dR = <y + -) | (3.75)
R 2

Here it is clear that the Rydberg method is based on the WBK approximation [25—
27|, since in this approximation the eigenvalues of the one-dimensional motion of a
particle in a potential are given by phase integral condition (3.75). This is also known
as Oldenberg’s condition [68|, in which the potential curve must be changed until the
relation (3.75) is satisfied [9].

To obtain a relation for the rotational energy, we start from the relation of E.q¢

to a vibrating rotator [31], which will lead us to a more explicit relation for B, (3.70).

We have:
1
Eiot =k —dt R dR (3.76)

where 7, is the period of vibration. Again, the quantization of the angular momentum

phase integral leads to

k= ( i ) J(J+1) (3.77)

8121
where J is the rotational quantum number, and the relation (3.77) is again a WKB
approximation [31]. Here & is the same of the Schrédinger equation (2.43) presented
in the section 2.2, used to obtain the energy levels of a rotating vibrator.
Finally, replacing pr and &, for equations (3.72) and (3.74) respectively, we have
the following relation to B,:

1 1 dR
. _B, 3.78
h2\2p  8m?T, j{ R?\ /U — Vog(R) (3.78)

which can now be obtained more easily than by expression (3.78), and these is know

as condition of Hulthén [69]. This was of great importance in the work of Rydberg [9],
since it was noticed when varying the values of the internuclear distance R, an infinity
of solutions satisfied the action integral. Thus, to determine the potential curve clearly,
a second condition other than Oldenberg [68] was required.

However, as the integrand of Eq. (3.78) becomes infinity at the classical turning
points, graphical integration is not very accurate.

Then, in 1932, Klein [10] presented a method to solve the integral of condition (3.75)
of Oldenberg [68]. Also, modified the Rydberg’s procedure to calculate the classical
turning points, led to the way to obtain PEC’s of the RKR method, discussed earlier
in section 2.3 this work.

The relation for (AE)? (3.69), depends entirely on the behaviour of the potential

curve, i. e., the forces acting on the atomic nuclei. To construct the potential step
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by step, the energy E(v) of the vth vibrational level and spacing of the rotational

levels of that vibrational level provinding the above two conditions (3.75), (3.78) on

the construction of the potential curve for energies between E(v) and E(v + 1).
Seeking a potential simultaneously fulfilling both conditions, Rydberg [9] proposed

the following potential function:
VRYD(R) = _De(CL(R - Re) + 1)eia(R7RE) (379)

dR2
comes large, but not infinite when R = 0, similarly than Morse potential [8]. However,

where a = (ke/De)%, being k. the force constant give for k, = (M)R . Vis(R) be-

Rydberg showed that its potential provided best fitting compared to Morse function
for the three diatomic systems mentioned before Hy, CdH and Os.
From the third and fourth order derivatives of Vzy p(R.) it is possible to obtain the

values for the spectroscopic parameters «, and wz. as shown by Varshni [14]:

22 6B,
Qe = V201, (3.80)
3 We
and 22 2.1078 x 10716
Welle = |[—A| - = >2< (3.81)
3 R
where B, is the rotational constant and A = % the Sutherland parameter.

Years after Rydberg’s work, his function was considered as good as the Morse
function to represent various diatomic potentials, surpassing it in divergent cases. The
mean error in calculating the parameter «, for 23 diatomic systems was 28% with the
Rydberg potential, whereas, for Morse, the error was about 33%. In the case of w.z.,
the corresponding error was of 23% with Rydberg versus 31% with Morse, showing then
a good improvement [14]. Additionally, the Rydberg function Vgyp(R), as was shown
by Murrell and Sorbie [60], was more easily extended to fit high order derivatives,

adjusting the order of the polynomial in Equation (3.79).

3.1.5 The Born-Mayer function

In 1932, Born and Mayer [19] (BM) proposed a potential for diatomic systems
with an extremely simple functional form, yet limited to repulsive states, i. e., it
is a potential to describe only the short-range region. They suggested the following

functional form:

Vem(R) = Aexp{(—bR)} (3.82)

where A and b are constants. Note that the potential of Born-Mayer Vg (R) — A,
when R — 0, and Vg (R) — 0 if R — oo, presenting correct asymptotic behavior
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even for the long-range region of the potential.

In 1970, Gaydaenko and Nikulin [70] presented a method, based on statistical the-
ory, to calculate the coefficients A and b for several pairs of neutral atoms in the ground
state, with charges nucleus from Z = 2 to Z = 16. The method of least-squares fit of
Born-Mayer potential (3.82) at intervals of internuclear separation in which the Vgy/(R)
curve is approximately linear is used. The maximum error of fit in a given range was
approximately 10%, and the mean error was approximately 4.8% for identical atom
pairs.

To obtain the potential value for heteronuclear diatomic systems, Gaydaenko and
Nikulin propose to use the rule of empirical combining proposed by Abrahamson [71]
in which:

1

Vig = (Vi1 Vi) /? = (A1 Ap)'/? exp{[ 2(b1 + bg)R]} (3.83)

where (A;, A2)'/? is the geometric mean of A;;A; and 5(b1 4 by)R is simply the arith-
metic mean of by;by. As pointed out by Gaydaenko and Nikulin [70], this model of
calculation of the Abrahamson [71] potential is quite accurate, with an error close to
1% only. The methods of Abrahamson and Gaydaenko-Nikulin are differentiated only
by the fact that the first uses the Thomas-Fermi-Dirac approximation (TFD), while
the second uses Hartree-Fock (HF) calculations to obtain the interaction energies.

The method presented by Abrahamson allows the calculation of the potential of
interaction based on the potential of Born-Mayer to more than 5000 different diatomic
systems, using the table presented by him in Ref. [71].

As pointed out by Murrell et al. [56], the Born-Mayer potential is a special case of
the extended Rydeberg function that will be presented in section 3.1.26. Although we
now have a few alternatives, the Born-Mayer role is extremely important in accurately
describing short-range interactions. As pointed out in the recent work (2016) of Van
Vleet, Misquitta, Stone and Schmidt [72], it is more than eighty years since the cre-
ation of the Born-Mayer function, and very little progress has been made in obtaining
potentials with similar performance, especially in problems where molecular electron
density overlap cannot be neglected (for more details see Ref. [72]).

The potential of Born-Mayer still appears in problems involving triatomic systems,
especially in those where there is molecular ion interaction, and when the effect of the

long-range attractive potential can be completely neglected (See for example Ref. [73]).

3.1.6 The Rosen-Morse function

Still in the year 1932, Rosen and Morse [29] (RM) proposed a functional functional
form to describe the potential of a single atom, which might even seem a little strange.
However, their intention was to create a potential that could be used to treat vibrational

molecular energy from larger (polyatomic) systems:
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Vem(R) = Banh(%) — Csech? (g), (3.84)
where
R,
B = —26’@nh<7> (3.85)
and D
C = ¢ (3.86)

[1 = anh(%)]”

This potential function accomplish the conditions:
(i) Vem(R) = B if R — oc;

(ii) AVryM

i = sech? (%) [B + QCanh(%)} , and then the depth of the well is given

R=R.

by D. = (B + 2C)?/4C;

(ifi) LVepa

_ 1
~ BdZC3(4C?—A2)?
R=R.

Note that Vzyy — —C if R — 0, and then this potential does not attain the
condition Vzy — oo if R — 0.

Varshni [14] suggested the introduction of a new parameter p, in order to obtain a
better fit of the curve. Once the adjustable parameter p is obtained, it is possible to
determine d. He defined:

where the new parameter p is related with the Sutherland parameter A = k. R?/2D.,:
A = p*(1 + anhp)®. (3.88)
From this parameter, Varshni obtained also the expressions to o, and w.x. spec-

troscopic parameters [14]:
632

a. = (2panhp — 1) (3.89)

e

and
2.1078 x 10716

Ry

WeTe = 8A(1 — e 4 =)

(3.90)

Like the Morse [8] function, this potential was developed to satisfy exactly the
Schrodinger equation, thus providing exact levels of energy for polyatomic systems.

Rosen and Morse [29] obtained the energy levels given by:
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2 B2
i h2 1/2 h ?
(40 + —smdz) - —\/@ﬂd(Qu +1)
(3.91)

1/2 1/2
where v can be 0 < v < [(CSW};UP + i) — (Bg;r;fﬂ) — %], being v the quantum

1 2O\
By=— {40+ -2} -2 (2v+1
4 ( * 87r2,ud2) \/8mrd( v+1)

number.
872 pd?
2

In the case where C =

> 1, the values of the energy become [29]:

1 h2 3B? 1\?
E, = ) (1+ = = 92
y = V(R,) + hw, (u+2) 8W2ud2( +802> <u+2> + (3.92)

where w, is the classical frequency of oscillation about the minimum point R,,, being

by:

(4C? — B?)

We = —47Td(21u03>1/2 . (393)

As an example, Rosen and Morse [29] used the ammonia molecule NH; and the
vibration of the nitrogen in this molecule was chosen to be calculated by the potential
(3.84).

The potential energy curve of nitrogen has two minimums and therefore two equi-
librium positions, which may be symmetrical (see discussion in Ref. [29]) and in this
case, the minimal points can be called R,, = £R,.. Since it is a peculiar case, the po-
tential must be given by the joining of two potential fields to represent the symmetry
of the problem:

V(R) { Banh(R/d — k) — Csech?(R/d — k), R >0 (3.94)

—Banh(R/d + k) — Csech®*(R/d + k), R<0

corresponding to half the distance between the minima R,, = kd — anh™'(B/2C)).
One of the major difficulties of the Rosen-Morse method is to obtain the values for
the parameters B, C', d, and k. These must be fitted satisfying the following conditions
on potential: (i) V' is reasonable in shape; (ii) |B| < 2C; (iii) the second level must
be below the center hill and (iv) the hill should not be higher than the value of V
at oo. Thus it is possible to delimit intervals where these values are contained, being
2200 < C' < 3000 cm™, 0 < B <1000 cm™!, 0.16 < d < 0.185 A and 2.20 < k < 2.24.
For the value of the dissociation D, it was assumed that it would be where V' (c0)
coincided with V(4R.), but not so precisely, could assume values within the range
2200 and 4000 cm™! in the case of ammonia. The value of R, and in turn must be

a fixed value at 0.38 A for ammonia, however assuming any value between 0.365 and
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0.390 A, the error is only 1% within spectroscopic accuracy [29].

In a comparative study of empirical potentials presented in 1962 by Steele, Lip-
pincott, and Vanderslice [15], the Rosen-Morse potential presented good results for
the spectroscopic constants and the potential as a whole. For example, spectroscopic
constant calculated by Steele et al. w.x. presented a average error lower than that
of Morse [8], Poschl-Teller [30], Frost-Musulin |74] and Varshni [14], some of these
potential being more recent than Rosen-Morse [29).

In this same work, Steele, Lippincott, and Vanderslice proposed a criterion to eval-
uate the accuracy of potential energy curve from the RKR experimental curve, using as
a parameter the dissociation energy D. The relationship [|Vrxkr — V|/D]au r (or/and
[|Vrkr — V|/D]r>r.) is known as the Lippincott criterion. This criterion was applied
to evaluate the Rosen-Morse, and the average deviation of this potential from the curve
obtained via RKR [9-11| for R > R, was lower than that obtained with the potential
of Morse [8], Péschl-Teller [30] and Linnett [61]. Also worth noting that the potential
Rosen-Morse curve coincided exactly with the RKR experimental curve value in certain
internuclear distances for the Hy and Ny molecules in the ground state X 12;, and for
NO in the excited state B*II [15].

3.1.7 The Davidson function

In 1932, Davidson [75] (DAV) begins his research for a potential that provide the
correct vibrational levels of energy when using the Schrédinger equation (2.43). It was
based upon an expansion in the neighborhood of R = R, such as that proposed by
Dunham, given by:

V() = kE*(1 + aé + b +c& +de* 4 - -+) (3.95)

where & = R% — 1 and k = 27n%w.2uR.c.

In general, the potential can be determined with considerable precision if known:

(i) Be, and therefore R, by the relation B, = #Rgc;

(ii) The approximate value of the dissociation energy D, to which V' goes asymptot-

ically;

(iiii) The constants in E,, where w, together with B, determines the radius of curvature

of Vin R,.

For Davidson [75], these data leave the constants a, b, --- in the £ series undeter-

mined, though they determine k in (3.95). Thus, he proposes a functional form for the

<R% _ %)2 (3.96)

potential given by:
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and this relates to the series (3.95) as follows |75]
k(R R\ 5., 6.4 T
S =) — ket (1= R S S S 97
4<Re R) f( E+ 38— 78+ 56 (3.97)

so that in the series we will have only the first non-zero term, that is, Vpay(R) is
compared to a harmonic oscillator. As the energy levels of a harmonic oscillator are
given by the Eq.(3.60), we can already conclude that in Davidson’s potential, the
constant of anharmonicity w.x, is zero.

Thus the exclusively vibrational part of the energy levels of E, ; in the Davidson
potential contains only the first term, i. e. has only (1/+%) hw.. However, in the
rotational part of E), ;, the same does not happen. The complete expression for the

energy levels will be given by [75]

1 1\?> 4B} 1\*
E,;= <V+§) hw. + hB, <J+ 5) — o (J-l— 5) 4+ (3.98)

The Davidson potential also has the following characteristics:
(i) Vpay — oo, when R — 0;

(ii) Vpay — oo, when R — oo, which is not desirable, since the curve does not have

an asymptotic behavior, but was already expected due to its harmonicity;
(iii) Vpay(R) has a minimum in R = R,.

In 1957, Varshni [14] further pointed out that the relationship

k.R.* = 8k = constant (3.99)

where k. is the force constant, leads to

a, =0 (3.100)

which is not valid for any molecule [14].
The Davidson function was also used to improve the precision of potential curves

obtained experimentally, through the inverse perturbation analysis (see for example

Ref. [76]).

3.1.8 The Poschl-Teller function

Poschl and Teller [30] (PT), following the steps of Klein [10] in the search for
potentials, proposed two functions and investigated the extent to which there could be
a relation between the frequencies of vibration of a diatomic molecule and the function
Ar(V'), where Ar(V') is the distance between two points of the potential curve that

have the same energy, 7. e., the same potential value V.
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The first potential proposed by Poschl-Teller [30] was

_ IPa? sBB-1) v+l
~ 8m2u |sen? (R — Ry)  cos?a(R — Ry)

Vi(R) } : (0 <a(R— Ry < g) . (3.101)

where p is the reduced mass, Ry is an adjustable real parameter, « is a reciprocal
length, S and v are two numbers greater than one, not necessarily integers.

The ansatz for the eigenfunctions that satisfy the Schrodinger equation proposed
by Péschl-Teller is given by [30]:

Y =sen” a(R — Ry) - cos” a(R — Ry) - z, (3.102)

where z is given by the series

2= apyt (3.103)
k
being y another independent variable in (3.102) given by
y =sena(R — Ry). (3.104)

Substituting this ansatz into the Schrédinger equation gives:

872

apr2[(k+B842)(k+6+1)—B(B—1)]+a+k |—(v+ B+ k)* + —5 | =0, (3.105)
which gives the following expression for the energy levels
a?h?
El/ - 2 2' Nl
S7n (v+B+2v) (3.106)

The first Poschl-Teller potential V;(R) assumes infinite when R — Ry = 0 and when
R — Ry = m/2a, and has a minimum in a more flat region of the curve in the smaller
value of v+ . The energy levels depend on the sum v+ 3, and if this value increases,
for small quantic numbers v, the energy levels become practically equidistant. The
differences between the levels are more evident the higher the energy (or the greater v),
and the vibration frequencies will increase as the energy increases [30]. This potential
is most useful in the discussion of high excitation vibrations of polyatomic molecules.

The most well-known and used potential form of Péschl-Teller is the second, given
by [30]

_ ke’ BB-1) (vt
8721 [senh® (R — Ry)  cosh® a(R — Ry)

Ver(R) ] (0gar-R)< 7).,

(3.107)
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where again § > 1 and v > 1.
With the same treatment given to the first potential, the ansatz now so that the

eigenfunctions remain finite, in the region where a(R — Ry) < 0, it will be given by:

) = senh” a(R — Ry) - cosh™ a(R — Ry) - 2 (3.108)

and z is now developed according to the powers of senh a(R — Ry). The condition to

truncate this series becomes
E, = —a*(—y+ B +2v)% (3.109)

Only when —y + 3 + 2v < 0, the values of the energy for (3.107) are discrete.

Again, when R — R., Vpr — oo. The curve has a minimum when v — § > 1.

Now the distance between levels depends on v — 3, and if this value increases,
for small quantic numbers v, the energy levels become practically equidistant, just as
occurred for the potential V;.

Poschl and Teller also pointed out that in quantum mechanics for potentials with
the same energy levels one can have Ar(V) different.

The rotational levels for potential Vpr(R) are given by:

B, = B, (1 - y\/230<ff2)3> : (3.110)

2
where f, = 4 d‘}g’gT

3
and f3 = dd‘}/ggT
R:Re R:Re

In this comparative study between the Morse [8], Rosen-Morse [29] and Poschl-

Teller [30] potentials, Davies [77] calculates the spectroscopic constants of hydrogen
halide molecules. For this, he used as base for the data treatment, the expansion of

the potentials in power series, centered in the equilibrium distance R., that is, doing:

d*V;
. 3 PT
(R—Re)*+ ==

R:RE R:Re

. 1 dQVPT

L L dVer
- 2l dR2

3! dR?

V(R) (R—Re)*+

R=R.

(R—Re)'++ -

(3.111)

dVpr
dR

remembering that = 0.

When comparing the Vﬁeues of the derivative of the potentials, which provide rela-
tions between spectroscopic constants, obtained with the three potentials, taking the
parameters calculated by Kirkwood [78|, the Poschl-Teller potential is the one that, in
general, presents greater accuracy, being slightly better than Morse function. Both, as
we have seen, depend on the same number of arbitrary constants, however, those de-

rived from the Poschl-Teller potential are more extensive. The Rosen-Morse potential



Potential energy functions

63

was the worst performance among the three [77].

Varshni [14] analyzed the simplest version of Vpr(R),
Vpr(R) = M cosech®(aR/2) — N sech’(aR/2) (3.112)

where a = \/k./4D., N = D./[(1 — 4*)?], M = Ny* and y = anh(aR./2).
Following the calculations of Davies [77], Varshni also obtained the spectroscopic

constants derived from the potential, given by:

B 2
a, = [Ad coth A3 — 195 (3.113)
We
and 2.1078 x 10716
were = 8A - T2 (3.114)

R.2u
where A = k.R?/2D, is the Sutherland parameter.

3.1.9 The Manning-Rosen function

In 1933, Manning and Rosen [79] (MR) proposed a new functional form to describe

diatomic potentials given by:

1 [B(B—1)e2Rle Ae Rl
T kpr | (1—eBIp)2 1 — e R

Vur(R) (3.115)

where k = 8um?/h*, A and 3 are two dimensionless parameters [80], but parameter p
has dimension of length. This potential remains invariant by mapping 3 <> 8 — 1, can

be rewritten in simplified form as:
Be f/r 4 Ce—2E/p
(1 — efi/r)?

where B = A and C = —A — (8 — 1). However, this form of the Manning-Rosen
potential is less well known.

Vir(R) = (3.116)

The allowed values of the energy are given by [79]:

2
gL [A-B v+ (3117)
kp? |2(B+v) 2(B+v)
The potential (3.115) must satisfy the following conditions:
(i) % =0, 7. e., Viyg has a minimum in R, = pln [1 + %}, for 5 > 1;

R=R.

(ii) Virr(oo) — Vyr(Re) = D., where D, is the depth of the well;
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(iii) % = k., where k. is the force constant .
R=R.
Using conditions (i) and (ii), we have a relationship for D.:
A?R?
D, = 3.118
32um?p?B(B — 1) (3.118)
or equivalently, a relationship for the parameter A:
16um?p?
A= T(eRe/f’ —1)D,. (3.119)

From these relationships, Wang et al. [81] suggested rewrite the Manning-Rosen
potential as:

eRe/p _ 1 2
VMR = De (1 — eR/P——l) s (3120)

where the term D, was added to the function (3.115) so that Vir(R.) = 0, without
affecting the physical properties of the potential function.

The expressions for the vibrational rotational coupling parameter . and anhar-

monicity parameter w.z., can be obtained from Dunham’s relations (2.57) and (2.58):

R3 2Re/p(pRe/p 4 q 6582
e =4 = | G| AR (3.121)
PPA (efie/p —1)3 We
and
15R§ €2Re/p(e2Re/p_|_1)2 Rg €2Re/p(7e2Re/p+22€Re/p+7)
T v B e s e S
(3.122)
where W = w, B, is the rotational constant and A is the Sutherland param-
eter.

According to condition (iii), we have the parameter p given by:

2D, e2Re/p
el T k. (3.123)

or, using that k. = 472uc?w?, we have

e2Be/p 212 puctw?
p2<€Re/p _ 1)2 - De .

(3.124)

The dissociation energy D for the Manning-Rosen [79] potential differs from the
value presented by Morse in the Eq. (3.63), increased by §

w2

D = = ) 3.125
4w, x, + ( )
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which causes even greater problems than those obtained with the Morse potential in
this region, and is still less asymptotic. Thus, the potential of Manning-Rosen is not

considered adequate [14].

3.1.10 The Newing function

In 1935, based on Morse [8] potential, Newing [82] (NEW) begins his research by
a functional form for the potential of diatomic systems. He assumed a potential with
three adjustable parameters, V (R, D,, R.,a) as well as Morse function, and with the
same basic characteristics: V' must be infinite at R = 0, V' tend to a finite value when
R tend to infinity and have a minimum value at R = R.. For 0 < R < oo, the potential

of Newing is given by:

1 — e—a(R—Re)7?
< } , (3.126)

_ 2
Vvew(R) = =D, + D.f {m

aRe D, is the depth of the well and the a parameter is different from what

where f =¢
appears in the Morse function (3.59), and should be chosen to best agreement with
experiment.

The vibrational levels are given by:

___(Ad) | (eai)(2844d) 1
E, = ~ K[HA(B—1)+1] QK[A(g_l)Jri]% (V + 5)

(3.127)
where K = 87%u/h?a® and A = KD(8 —1).

Newing estimated that the constant a is of the order of 10%. (UNITS) Compar-
ing it with the expansion (3.57), he also observed that just like the Manning-Rosen
potential [79], the value of the dissociation energy D differs little from the correspond-
ing obtained by Morse (3.63), this value can be set as D + 6D. Newing showed that
§/D is of the order of 1076, emphasizing that the difference with the energy of Morse
dissociation is very small.

The great interest shown in the work of Newing was to obtain a relation between the
nuclear distance of equilibrium R, and the frequency of vibration of the molecule w,. In

his work, he demonstrated such a connection between these parameters, obtaining [82]:

=

a = 9.507 x 105w, (-)é <§ . Y> ,

2 3 2 4wz D
- y-(x=2 X =
Py oy ( 4) ’

(3.128)
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for 1 < X < 3.
For X < 1, Newing obtained [82]:
5 — 2X — 1+ /(1 +4X — 4X2)]
41 - X)X (3.129)

a =

3.8 x 1019/(Dp) - wee[l — B+ /(62 — 1)]'

e

Since the relationships between R, and w. are obtained by Newing involve D,
further research was necessary to obtain a more definite relation, as was pointed out
by Varshini [83].

3.1.11 The Huggins function

Huggins [20] (HUG) in 1935, was dedicated to modifying the potential proposed
by Morse [8] and, like Newing [82], to obtain interesting relations between the spec-
troscopic constants. However, he was concerned with obtaining a potential and its
constants only for diatomic systems composed of elements of the first row of the peri-
odic table and having 12 or more electrons, except for Li.

First, he considered the Morse function (3.59) written in the form:

Viva(R) = CemalliFe) _ o p=a'(R=Ee) (3.130)

with a = 2a’ and C" = 2C'. Here C' — " is the dissociation energy.

To modify the Morse function, based on the Born-Mayer [19] repulsive potential,
Huggins proposed that the repulsive part of the original potential be replaced by a
term that would be the same for all electronic states of a particular diatomic system.

Thus, he suggested the following change®:

C = e~ RemFa2) (3.131)

and replacing in Eq.(3.130)
Clem = HRe) — pomalR—Fa2) (3.132)

where c is taken as 10712 erg, R,R, and R;; measured in Angstroms units and a and o’
in reciprocal Angstrom (10% cm™!). Once the value of a is determined, it is possible to
obtain the values of the constants a/, C’, C' and Ry, from the spectroscopic constants
We, Wele and R,.

For the types of diatomic systems considered by Huggins, the value a = 6 is the

4Ce~a(Re—F12) is ysed as a repulsive term to calculate lattice energies and interatomic distances
for the alkali halide crystals, with the same value a for all these crystals (See for example Ref. [84]).
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most usual, which leads him to conclude that this value of a leads to the same value
of Ry2 (approximately) not only for different states of the same molecule but also for
different molecules [20].

Huggins observed that using a = 6 to calculate the largest spectroscopic constants
(i. e. except wey. and wez.) and the dissociation energy C' — C" when R — oo, did
not lead to correct values. This is probably explained by the fact that the Morse curve
does not have an adequate behavior for large values of R [8].

In the case of the dissociation energy he used the value a = 4 and the relation:

D =08(C" - C). (3.133)

When compared to the experimental values, the energy of dissociation calculated by
Huggins from this equation presented a result more accurate to that calculated by the
original Morse equation for most of the diatomic systems in several electronic states.
The results were lower than Morse only for OF in the states b 42; and X *II,, CN in
the state B 2X*, BeO in the states B 'II and A '¥*, CO in the states F !II, B 'Y and
X 13, NO in the states D, C' 2%+ and A 227 and for BeF in the ground state X2X7.

The value of C' — C" in (3.133), as well as d/, is obtained from the spectroscopic

constants w,, w.z,. and the a:

2
(C—C' = 0.0585uw. (3.134)
(33a2/16 + 12w,z /B.R.)za — Ta? /4
with

d = (33a2/16 + 12wz, /B.R?)2 — Ta/A4, (3.135)

being B, the rotational constant.

To obtain the values of R., Huggins used [20]:

(Ri2 — R.) = (2.303/a) log 10'2C. (3.136)

For the diatomic systems tested, a = 6 provided practically constant R, values, as
desired, varying between 1.44A e 1.45A.

The rotational constant «,. was calculated from the relation:

a. = (2B?/w.)[(a + d')R. — 3], (3.137)

and the best value for a in this case is @ = 6, with average deviation from the observed
value of a, of only 0.003 cm™. When compared to the Morse function the «, values
calculated by Huggins did not present more accurate results, showing only better for
the state X 2%, of N3, for the states B 'II, a 'II, and X '3," of Ny, for the state
I of Fy, for the state A 2II of BO, for the states A II and a I of CO and for the
state B 2II of NO.

Finally, Huggins showed that the spectroscopic constant w.z. is given by [20]:
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weTe = (1/p)(1.39a* + 4.89aa’ + 1.398a%). (3.138)

A year later, in 1936, Huggins [85] following the steps of Badger [86, 87| published a
second paper on molecular constants, however the focus this time was the relationship
between the equilibrium distance R. and the constant force k.. He further expanded
the number of diatomic systems studied, now considering the first two lines of the
periodic table.

Badger [87| showed that R, is given approximately by the expression

R, = dij + C5 k.3, (3.139)

where Cj; and d;; are constant depending only on the rows in the periodic table in
which the two elements comprising the molecule are located.

Huggins then showed the relationship between his method and that of Badger to
obtain R, via k., and compared the methods. Firstly, he considered the constant force

(in megadynes per centimeter) [85]:

k. = 5.85 x 10~ % pw,? (3.140)

and combining with Eqs. (3.134), (3.135) and (3.136), he obtained:

2.303 100k,
Re = ng e log < 5 /) (3141)
a a? —aa
which is equivalent to
2.303 100k, 2.303
Re == |:R12 + 10g ( 5 /) — KZ]:| + |:[(ZJ — log k‘e:| (3142)
a a? —aa a

where K;; is any distance.

Through suitable choices for K;;, Huggins notes that Eq.(3.142) is approximately
equivalent to Eq.(3.139). Thus, he obtained a relation between the constants d;; and
C;; of the Badger equation given by

2.303 a2 —ad\ O3
di: = Ry + =21 _Zun
= ety Og( 100k, ) 3

In comparison with the experimental value of R, ,, . the values obtained by Huggins

(3.143)

are more accurate than those of Badger. In 35 different states of the 24 types of
molecules tested, the R, — R, = deviations were smaller using the Badger formulation,
whereas, for 61 different states of 35 types of molecules, the Huggins formulation showed

the smallest deviations (For more details see Ref [85]).
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3.1.12 The Hylleraas function

In 1935, Hylleraas [88] (HYL) proposes what he called the general expression for
the potential of a diatomic system, and ensures that the most important spectroscopic
constants are theoretically derived from it. To build such a function, Hylleraas im-
poses basic conditions so that its function is minimally reasonable to describe diatomic

potentials. Are they:

B, = gt
e 8229
, e 9 20,2 (3.144)
V(R) =D, V/(R.) =0, V'(R.) = p(2mw.)? = foci

2B.RZ

He introduces a new p variable, making

V(R) hwe R—R. R 2\/B.D
F(p)=———=, p= — =1 3.145
(p) D Y p 2\/-36_D Re or Re —I— hwe Y ( )
where, is immediate that
F(0)= -1, F'(0) =0, F"(0) = 2. (3.146)

Like the others, it also treats the rotational energy of the problem separately, falling

into a usual one-dimensional oscillation equation:

hw\? d* E
{<2D>;%;+5—F}¢:o. (3.147)

Hylleraas, firstly showed that the potentials Rosen-Morse [29], Manning-Rosen [79]

and Poschl-Teller [30], and their respective equivalents to calculate the vibrational

energy, can be obtained in a much simpler and faster way. By transforming Eq.(3.147)
in equations of the hypergeometric type, which can be solved in an elementary way

associated with the three potentials, now written as:

1+k 1+k
I.F= _2e(1+k)ﬂ Tk (e(1+k)9 n k) (Rosen-Morse) (3.148)
1-k 1-k ,
II. F = —Qe(lik)p — + NEEsr— (Manning-Rosen) (3.149)

II. F=-2

(1+k2)e? — 2K? (u+k%w_2w

(e — k)(c? + k) (@ —K)(e" 1K) ) (Poschl-Teller). (3.150)

In solving the three hypergeometric differential equations associated with each of
the three potentials, in which the same ansatz for the wave function can be used for

the three cases, Hylleraas obtained the following formulas for the vibrational energy,
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- 1+k — — —hw‘”’ +l
"k 4 2D 1+k\/ 1+k k2 _2D YTy

hwe k‘ k%) (h’“g) (v+1)
e e R

L+ (5) — ks (v + 1)
(3.151)

- (L+k)?* 1 (hw\* (1—k)4+1 hwe\ " huwe 1
V- 62 16 \ 2D 162 ' 16 \ 2D oD \" T2
IR0k oL (e : (1—k:)4+1 Fiwe 2+ B _heef 1
162 16 \ 2D 162 ' 16 \ 2D V™D 20 \" T2

(3.153)

% (V + %), and therefore
approximate according to the phase transition method (see details in section 2.3),

Hylleraas obtained the following relation:

/ hiw, 1
9 ——+de— 5D (u+ 2) (3.154)

Analyzing the potential of Morse with three parameters, and considered one of the

most accurate at the time, and that of Rosen-Morse that with four parameters showed
a slight improvement, Hyleraas [88] proposes a potential that contains six adjustable
parameters. If on the one hand this potential really should guarantee more accurate
results and applicable to a greater number of different diatomic systems, on the other
hand, a potential involving such a large number of parameters generally requires quite
sophisticated calculations.

The potential proposed by Hylleraas is given by [89]:
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‘/HYL(R):F—{——D_D§27 1—¢= (11b))(x1+c

1 1 1 1
— p1+k)p — _
r=e 14k 1+a+1+c 145’

(3.155)

 hwe (R—R.)
P=95/B.D R.

where D, B, and hw, are spectroscopic constants and R, is the equilibrium distance.

For b = a, ¢ = —k we have the potentials of Manning-Rosen, for b = a, ¢ = 0
the potential of Morse and for b = a, ¢ = k the potential of Rosen-Morse. Similarly,
if we have b = ¢, a = —k, 0,k we have the potentials of Manning-Rosen, Morse and
Rosen-Morse respectively. Finally, if we have a = —k, ¢ = k, b = —2k*/(1 + k?), we
get the potential of Péschl-Teller.

For the potential Viy(R), the energy equation will be calculated, using the same
idea of (3.154), by:

E hv, 1
27”}[\/ 1+ +§2dp_\/( )+§2—£§—2D(+5) (3.156)

where 3’2 is expanded in power series of &

%=1+ aé+ af® + a6 + asé' +

(3.157)
p=E+GE+EHFOFEHFOHEH O+
The energy formula can finally be expressed as [88]:
e We 2 2
L—y/—5 =55 (v+3) +3(1—a) (55) (v+3)
e\ 3 3
+[5la2 —an) + 5(1 —a2)’] (555)" (v +3)" + -+ (3.158)

30— “2)(205)2(’42)2

[1 = aa;];;%e <V+ )

~ % D)+

The coefficients aq, as, az, a4 may be derived from the expression:
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— 1 o0 L 1 _ 2k ko (1+k)€2
P=rrloere | LHR 1+ (k1 +ha+2K1 ko) 4/ [14 (k1 +ha+2k1k2)€2]— 4k ko (14k1 ) (1+k2) €2
= (5 —ma) THR), ke = (55 — 1) (LK),
(3.159)

or still,

(a1 =1—Fk —2kiky

ag =1 —k+k* + 3kikolk + k1 + ko + 2k ko],

az=1—k+ k> — k3 — dkiko [k(k + ki + k + 2+ 2kiko) + (k + by + k + 2 + 2k ky)?

+hiko (14 kp)(1 + ko) + “g—kkle]

ay=1—k+k*— k3 + k* 4+ dkko{k(k + k1 + k + 2 + 2k1ko) - [(k + k1 + k + 2

L +2k1k2)? + K 4+ (14 k)kika] + kiko(1 + k1) (1 + ko) [k + 3(k1 + k + 2 + 2k1k2)] }-
(3.160)

As observed by Varshni [14], the potential of Hylleraas does not provide any rela-

tion between the spectroscopic constants, unlike the potential of Morse, Rosen-Morse,
Manning Rosen, and Pdéschl-Teller.

Soon after proposing its potential function, Hylleraas [90] uses it to calculate the
curves for the diatomic systems Ny and CdH, both in the ground state. In the case
of N5 the accuracy that Hylleraas obtained for the series of the vibrational energy F,,
with only two terms, is remarkable.

When comparing the Morse (N3) and Rydberg (CdH) curves, he sees a good agree-
ment with Rydberg. However, when compared to Morse, the potential curve of Hyller-
aas presents good agreement for the vibrational levels of 0 to 10, presenting a very poor
result in the long-range region (and in the levels v > 21), where the Hylleraas curve
tends to be less infinity [90].

3.1.13 The Extended Morse function

In 1938, Coolidge, James, and Vernon [32| (CJV) based on the Dunham [24| theory,
have established that any potential curve of a diatomic system, which has an asymptotic

value D, can be written as

V() =DF(), &= (R-R)/R.. (3.161)

Furthermore, for CJV all potential energy functions must have at least three pa-
rameters, that is, in addition to D and R., a third parameter 5 would always be present
to ensure a good fit of the curve. The energy formulas will be related to the Dunham

coefficients (3.163) and will be expressed in terms of the constant C, given by:
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4Roo e 2
C? = ARm.f” (3.162)
PR

where R, is the Rydberg constant® and m, is the mass of the electron. The Yl; will

be related follow:

! /
Yip~we —Yoy ~ wete

(3.163)
Yo~ Be  =Y{| ~a.

To obtain terms of highest order, i. e., up to Yy, Y/, Y{1, Y41, Yos, Yo, Y5 and
Yy, CJV [32] opted to determine by numerical integration the values R, and B, for
large v, and so adjusting the values the higher Y’s as to reproduce these values.

The potential proposed by CJV is an extension of the Morse function, being known
as Extended Morse (EM) potential. Using the formulation (3.161), this potential is
given by:

8
F(&) =) e[l —e X (3.164)
n=2
or in terms of R,
8
Vea(R) = Y ea[l — e )" (3.165)
n=2

where ¢,, are adjustable parameters. These can be obtained from the relationships with

the coefficients of Dunham:

ag = 4% Dcy
apay = 482D (—2cy + 2c3)
apag = 481 D(7/3cy — 6z + 4ey)
apaz = 43°D(—2cy + 10c3 — 16¢4 + 8cs)
apay = 485D (62/45¢y — 12¢3 — 342 /3¢y — 40c5 + 16¢4)
apas = 437 D(—4/5cy — 1121 /45¢3 — 531/3cy + 1062/3c5 — 96¢6 + 32¢7)
apag = 4B8D(127/315¢cy — 91 /5¢3 + 645/5¢4 — 200c5 — 304cs — 224¢7 + 64cg).
(3.166)
The parameter § may be chosen to satisfy the auxiliary condition, ), ¢, =1, if it is
desired to reproduce the observed dissociation energy D, or as an adjustable parameter
to satisfy other condition.
CJV exhibited potentials and energy formulas for the potential of Morse, Péschl-
Teller, and Hylleraas, in addition to the one proposed by them, and presented a com-
parative study for the H2 system in the excited state 1so2so %,

The curve obtained with the potential Extended Morse function reproduces the

®The Rydberg constant is given by R., = _mee’ 10973731 x 107m~" for heavier elements and

8eog2h3c

Ry = 1.09677576 x 10”m 1 for the hydrogen molecule.
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values of the coefficients Yig--- Yy, Yo1 -+ Y3 given by Sandeman [91], who a priori
used the Hj system in the state 1so2so *%, in his work. The curve presents correct
behavior, both short and long range with deviations within the spectroscopic limit for
R between 1.5 ay® and 2.5 aj, and only one deviation of 2 ecm™! for R = 2.7 ay and
of 8 cm™! for R =2.9 ay.

Concerning the energy formulas, both vibrational and rotational, the function of
CJV was much higher than that of Morse, Poschl-Teller, and Hylleraas. The errors
in the reproduction of energy levels by the potential curve using Dunham’s terms
supplemented by results of numerical integrations are practically zero in the first levels
(0 < v <3)[32].

Among the comparative potentials, the one closest to the extended Morse is the

Hylleraas, however, this occurs only when it is constructed by the method proposed by
CJV.

3.1.14 The Mecke-Sutherland function

Firstly, in 1927, Mecke [92] based on the work of Born and Handb, used a well

known analytical expression in those time to develop his diatomic potential:

V= e [% _ %} . (3.167)

Here, the first term represents the potential of attractive forces in the molecular as-
sociation, since they are supposed to be purely radial forces, they may, in any case,
be inversely proportional to an initially arbitrary power p of the central distance R.
The second term represents the repulsive part of the potential. The inequality p < ¢
must be maintained. For dimensional reasons, the total expression was multiplied
by the square of the elemental charge e. The constants in (3.167) are related with
spectroscopic parameters (R., a, b and D).

For Mecke, the equilibrium position, that is, the distance R, from the nuclei, caused
by the compensation of the repulsive and attractive forces that prevail in it, and thus

corresponds to a minimum of the potential energy, was given by

Rq—p:q'CQ
e p’Cl

(3.168)

To obtain the elastic potential (3.167), he developed the expression for vibrations

with a small amplitude z (R = R, + ) in power of z, obtaining:

e’ci(q — p) e’ci-plg—p) ,
VZ—( R€~q )—i— 2R€+2 x. .- (3.169)

. . 2
SHere ay is the ray of the first circle of Bohr, and agy = MW
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or more generally,

- Dz 2 D3 T 5 D4 T 4
V——D—F?(E) —y(ﬁe) +Z E (317())

where D; is a product of dissociation energy D by a simple (p,q) function. In
particular, Dy = p-q- D, and as is well known, the 22 coefficient immediately gives us

the value of the molecule’s natural vibration

D
2y == eclpq cfepld — p) (3.171)

which the two constants in (3.167) can be determined by v (=a from oscillation equation
an — bn?) and J.

Analyzing the expression (3.167) Mecke [92] observed that the values p = 1 and
g from 3 to 4 were adequate for most hydrides, and p = 1 or ¢ = 4 were adequate
for oxides and nitrides spectra. In particular, for most hydride the potential curve
in the immediate neighborhood of the equilibrium position is best characterized by

particularly simple approach:

2 2 Re q
V= —% + q; (E) . (3.172)

Years later, Sutherland [44] suggested an analogous functional form to express the

mutual potential energy, known as Mecke-Sutherland (MS) potential, given by:

a p

Vs = — — — 3.173
MS Rm Rn ) ( )
where, since (d‘%s ) rp = 0, the relationship

ma =nfR" (3.174)

can be obtained.

Sutherland derived the relations between force constant k., equilibrium distance R,
and the dissociation energy D. He expanded Vj;g about R, in powers of (R — R.),
such the coefficient of (R — R.)?, i. e., the force constant k. was obtained by:

nB (n+1 m+1
prm— - '1
ke Rr—1 ( R, R, ) (3.175)
and using the relationship (3.174)
h = ma(n —m)  nB(n—m) (3.176)

m-+2 o n—+2
Ry Ry
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The dissociation energy was obtained by Sutherland [44] from (3.174)
« m
D=—(1-2) 3.177
R . (3.177)
or from (3.176)
k.R?
p = kelle _on (3.178)
mn

where A is the Sutherland parameter.

This result once reminiscent of the rule of Mecke was presented during a congress in
Leipzig (Leipziger Vortriage 1931). In this congress, Mecke was criticized by prominent
physicists that only normal vibrations involving all atoms of the molecule are possible,
but not vibrations of isolated groups of the molecule. However, Mecke’s opponents were
wrong. They did not consider the large difference in the stretching frequencies of CH,
OH, or NH groups due to the low weight of the H atom (as compared to frequencies
where no H atoms are involved), nor the influence of the great differences between
single, double, and triple bonds and their respective frequencies, effects which allow
a mathematical separation solution in the respective eigenvalue equations. Thus the
Mecke’s concepts are adequate and clear even today [93].

More some spectroscopic parameters can be obtained using the relation (3.178) [14]:

2?2
a. = (m+n)—= (3.179)
We
nd 2 , T 2 2.1078 x 10716
wete = | Sm? 4 gmn -+ S 4 d(m £ n) +4| = R;ﬂ . (3.180)

3.1.15 The Hulburt-Hirschfelder function

The Morse function was considered limited because is not flexible due to the re-
duced number of parameters, which initially seemed to be an advantage, because it
made the functional form simpler. To tackle this limitation, in 1940, Hulburt and
Hirschfelder [7] (HH) suggested the addition of two parameters, i. e., functions in-
volving five spectroscopic constants. These two parameters to be added in a so-called
correction term were easily determined, and the five-parameter functions proved satis-
factory for a large majority of diatomic molecules. However, the problem to obtain the
potential V' (R) already reported in the Morse function for large internuclear distances
was not solved with this correction. Since the high levels of vibrational energy are
unknown for many molecules, it is virtually impossible to find a unique potential that
could be universally used for diatomic systems.

For Hulburt and Hirschfelder |7], any functional form intended to describe a poten-
tial energy function must have as basic characteristics a value close to infinity when

nuclei approach each other, passing then through a minimum at the equilibrium dis-
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tance and a value close to the dissociation energy when the nuclei become distant.
They analyzed the best-known functions with three, four, five, and six spectroscopic
constants, and concluded that a function with five parameters would be ideal, being
able to be used by the largest possible number of diatomic systems.

From the fact that the spectroscopic constants w,, wex., B, and «a, are known for
most diatomic molecules, where B, = h/(87*uR?c), the function proposed by them
had three parameters used to recover the usual Morse function plus two parameters,
b and ¢, which corrected the curve of Morse, and at the same time were obtained by

means of the known constants. The function of Hulburt and Hirschfelder has the form:

Viar(R) = D.J(1 —e™®)? + (1 + br)cx’e™ ] (3.181)
where r = —¥=— [RERG} , and the constants b and c are given by the relation
2(BeDe)? e
¢ =1+ ai(D./a)?, (3.182)
[l — M]
p=24 L2 @ (3.183)
c

being ag, a; and as the Dunham coefficients given by expansion [24]

ap = w? /4B, (3.184)
a; = —1 — aw,/6B.? (3.185)
5 o  2wex,
= g2 -2 . 1
az = ya 3B, (3.186)

What made HH believe the potential they presented with five parameters was ideal,
were tests performed with selected diatomic molecules in certain states which were not
analytically well described until then, but when using Vi (R) as potential function
presented good results. They are: Hy in 1s02s0%%," state, CdH and Ny both in the
ground electronic state.

For Hs in 13025032:; state the HH potential was the one that best fitted the curve,
not better only than the potential by Hylleraas [88] with six parameters or than the
Péschl-Teller [30] that have the same vibrational levels of the Morse function, but on
account of a fourth parameter, provides better fitting for the rotational levels.

For the CdH, the maximum deviation from the Rydberg curve 9], which is a refer-
ence in the fitting of this molecule, remains very small (of the order of 0.35 kcal mol™1).

For Ny molecule, when compared with the Hylleraas [88] fitting for the first 22
vibrational levels, the HH potential again showed good agreement. Also comparing
with the Extended Morse curve of Coolidge, James, and Vernon [32], it presents the
same results, however, these are more easily obtained by the HH potential as parameters

can more easily be determined in terms of Eq. (3.181).
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For the Hy molecule, the required corrections to the Morse curve are rather small.
With the constants b and ¢ introduced, the Morse curve was corrected for small and
large nuclear separations, and with the potential HH, the curve is much smoother,
providing an improvement in the description of the asymptotic limit.

The potential of HH was conceived with the purpose of giving the best fit for
the spectroscopic constants. However, it is difficult to find a suitable polynomial to
express both the lowest and the highest vibrational energy levels. Then, the polynomial

function should also be multiplied by an exponential term, such as:

1 1\2
L40,1 (w5 ) =0005 v+

Thus, there are two different series for each case, the difference is because expo-

E, = Al —exp(—1/2(v + 1/2))] (3.187)

nentials with large negative values converge asymptotically to zero. For small values

of (v + 1/2), the energy levels are calculated by the series [7]:

1 1\2
E,/kcal mol™!' = 0,5 <u T 5) —0.075 <u + 5) 4+ (3.188)

and for large values, the series in kcal mol ™!

1 1\’
E,/kcal mol™' =140,1 (V + 5) —0.005 <1/ + 5) +e- (3.189)

The method to obtain the corresponding energy levels would replace (3.181) in the
Schrédinger equation and perform numerical integrations.

In 1961, Hulburt and Hirschfelder [94] perceived an error in the first sign of the
expression referring to parameter b, the correct signal is negative and not positive, i.

e..

(3.190)

This led researchers as Tawde [95] and Herzberg [96] to question the fit of their
potential function, being considered poorly fitted because of this error.

In a paper published in 1954, Tawde and Gopalakrishnan [95] even stated that
the fitting of the HH function was good only for distances larger than the equilibrium
distance, 7. e., for R > R, in the case of the C, molecule. However, after re-counting
with the correct sign of parameter b, Tawde and Katti, who first notice it and com-
municated the authors about the error in b, concluded that the function by Hulburt
and Hirschfelder was indeed a good representation [97]. They also verified for other
diatomic molecules the function HH is far superior to several others even more known

than the Morse function considering the prediction of molecular constants.
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3.1.16 The Linnett function

After analyzing the Morse[8] and Mecke-Sutherland[44, 92| potentials, the former

being an double-exponential function of type V = a - e ™% — b . e "% and the latter

a double-reciprocal function of type V = = — %,

function containing elements from both. Its intention was to improve the fitting of

Linnett[61] proposed a two terms

the potential energy curve for several diatomic systems and to obtain satisfactory
connections between the parameters k., and R., which did not occur in the Mecke-
Sutherland[44, 92| potential.

It was then that in 1940, Linnett [61] (LIN) introduced a potential function more

generic than the thus far proposals, involving four adjustable parameters, given by:

Virn(R) = % _p.e R (3.191)

He called this potential of reciprocal-exponential function, consisting of two terms,
both going to zero when R becomes infinite. The first term represents the repulsion
between atoms, going to +00 when R = 0, and the second term represents the attrac-
tion of two atoms, going to —oo when R = 0. Thus, the behavior of the total function
will depend on the values assigned to the parameters that compose it.

Linnett devoted himself to testing its potential for diatomic systems composed of
atoms belonging to the second period of the periodic table. First, considering the re-

lationships (d‘g%) r =0e (%) = k., the following relationships were obtained
e R

for the dissociation energy D and for the constant force k, [61]:
a m —nR,
D = 3.192
R.™ ( nkR. ) ( )
and
ke = W . m(m +1— nRe) (3193)

combining (3.192) and (3.193), and by eliminating nR. is obtained

m?- DR,

keRem+2 = ma + HTE,” (3194)

One of his major concerns was to explain the relationship between k. and R, since
the functions of the double-reciprocal type could not do so. For this, it was necessary
to assume the parameters m and a constants for all states of the same molecule, with
n and b calculated and fitted for each state conveniently from two other parameters.
Linnett [61] used m = 3 for all studied molecules in his tests, since k.R> according
to Fox and Martin [98] was approximately constant, and when analyzing the behavior
of this same expression when m = 4 came to the conclusion that if a is constant, the
expression kRS does not significantly change, that is, it can be considered constant as

well.



Potential energy functions

80

The probable reason for Linnett to have used the values m =3 and m = 4 in his tests
is that when calculating parameters such as vibration frequency and harmonicity, the
potential is usually expanded in a series of powers around the equilibrium interatomic
distance and this series is truncated in 3" or 4" power, the other terms being generally
negligible. Thus, it was reasonable to consider only such m values.

To the parameter a was given a different value for each molecule, taking into account
the atoms involved, the charge of the molecule, among other aspects.

Linnett [61] calculated R, from the observed values of k. and D for certain states
of the following diatomic systems: Liy, Cy, No, Oy, BeF, BO, CN, CO, NO, NI, OF
and CO™T.

By using k.R> = a and k.R® = a, being a constant chosen for each molecule,
Linnett [61] came to the conclusion that in general, the expression with the 6th power
of the interatomic distance provided better results than the 5th. For the states of the
molecules in general, the mean error in the calculation of R, using k.R. = a was 0.9%
while using k.R.” = a was 1.5%.

For the calculation of w.z. from k, and D, Linnett expanded the potential function
(3.191) on power series in (R — R.) in the neighborhood of R., neglecting the highest
terms in the series to be able to use the Kratzer [16] method, obtaining a value for

weT, in function of m, n and R, given by:

h 72 - ,
_ ") 5| (mFD)(m+2)—(nRe) [ (m41)(m+2)(m+3)—(nRe)
ete = 64m2cuR,> { 5[ (m+1)—nRe ] [ (m+1)—nRe ] } (3.195)

where p is the molecule reduced mass.

Except for Liy and O,, wex, values were better reproduced by the Linnett potential
than by any other known before, with an average error on all states of 16%, largely
improving the corresponding error obtained with the Morse potential, of about 46%][61].

When the values of w.x. were calculated using the same parameter a, but now
starting from k. and R,, the average error increases very little, being at the 18%,
already the calculated average error for the dissociation energy D stands at 28%, not
so good, but slightly better than the calculated via Morse potential|61].

Also, the spectroscopic parameter «, can be obtained from equation:

_ 6B [(m+1)(m—1)— (nR.)* + 3nR,
W, 3(m+1—nR,)

(3.196)

Qe

but this was not evaluated by Linnett in his paper published in 1940. Subsequent
work, such as Varshni [14] and of Steele et al. [15] approached this calculations for
Linnett potential. Varshni [14] analyzed the behavior of «, for 23 diatomic systems
and concluded that this was unsatisfactory for most of them, adequate only for CO, N,
NO and Oy. However, Steele et al. [15] obtained very different results, for the diatomic
systems in their ground and some excited electronic states: Hy, I, Ny, Og, CO, NO,

OH and HF. The average error for a, using the Linnett potential was less than for
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the Morse [8], Rydberg [9], Rosen-Morse [29], , Poschl-Teller [30], Frost-Musulin |74,
Lippincott [43] and Varshni (III) [14] potentials.

Still, in the same work, Steele et al. [15] showed that for the 8 diatomic systems
above cited, the average error for w.z. relative to Linnett potential was practically half
of the error presented relative to Morse [8], Rydberg [9], Rosen-Morse [29]|, Poschl-
Teller [30], Frost-Musulin |74] and Varshni (III) [14] potentials.

Then, the Linnett potential provided a good representation of the potential energy
curve, superior to many others functions that were known at that time, obtaining the
best results for the diatomic systems Oy and CO|61], especially when using the observed
values of k., e D.

In more recent research, such as Royappa et al. [42], has shown that if the pa-
rameters of the Linnett potential are well fitted, using, for example, the Mathcad
(Mathsoft Inc.), this function has fewer deviations from the RKR [9-11| curve than
the Kratzer [16], Lippincott [43], Deng-Fan [41] and Rosen-Morse [29] potentials.

3.1.17 The Heller function

In 1941, Heller [21] (HEL) proposed a functional form for specific diatomic systems
known as van der Waals molecules. They present a very flat potential minimum at
relatively large interatomic distances. He was interested in the diatomic system, in the
gaseous phase and for the lowest energy state: HgHe, HgNe, HgAr, HgKr, HgXe, Hg,
and in the polyatomic systems (O2)s and (NO), which can be treated as consisting of
two bodies since the two atoms in each normal O|NO] diatomic molecule are fairly
tightly bound and their internuclear separation 1.21[1.15|A [96] is much smaller than
intermolecular distance, Ry say, of (O2)2[(NO)s|.

The potential energy function is constituted by an attractive part, AE®) being
considered the dispersion forces only, and a repulsive part A(p)e_R/ P in the form of

Born-Mayer’s potential, given by:

— & C C. Cq
Viws(R) = A(p)e /P — (R—16 =t ﬁ) . (3.197)
where AE® = —& — &2 & — & and A(p)e ®/7 is the same kind of function used

in Born-Mayer’s potential [19] to treat the alkali-halide crystals (see section 3.1.5).
The coefficient of the first term, ¢; is calculated by London general expression (see
Ref. [99]) and the remaining coefficients are found using perturbation calculation using
the Margenau harmonic oscillator model (see Ref. [100]).
Heller observed the well depth D, of the potential (3.197) at R,, (minimum) is
given by:
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tusatre) == [ (1= 70) <75 (- wn) <m0 ) 7 O

(3.198)
However, this would be the minimum if and only if:
2 Rm/p
A(p) R7 361 + 4R2 5R_4 + 6R6 - pe s (3199)
being p bounded by
ot i+ L2 R
p < (3.200)

a+ PR R TR T

For the eight diatomic systems considered by Heller, p was considered equal to
0.28A, ensuring that the energy of dissociation was in good agreement with experi-
mental data.

The interatomic distance R,, considered by Heller was not identical to the equilib-
rium distance R,.. Using a graphic procedure that identifies the midpoint of the classical
range of oscillation of the lowest vibrational level with the equilibrium distance R, (for
more details see Ref. [101]).

The coefficient of term R~'? is many times neglected, and when this is considered
zero, the error for the well depth’s is only 2.1 percent or less, assuming p = 0.284, for
the analyzed systems. However, although the contribution of the term R~'? is small,
it is important when R = R, [21].

The type of function (3.197) was firstly proposed in 1938, by Buckingham [102]
for to treat diatomic system composed by rare gases, such as helium, neon and argon.
He obtained the potential energy interaction Vgpyco(R) for rare gas atoms from the

observed virial coefficients, using the classical equation of state:

(3.201)

Veve(R) = Ae™ ™ — (% 08>

Ro RS
being A and b constant, Cy and Cg parameters evaluated by Lennard-Jones and Ing-
ham [103]. However, function (3.201) has a deficiency. Although the exponential term
increases rapidly as R decreases, it remains finite when R = 0, so that the long-range
term is dominant at R — 0 when then Vpyo(R) — —oo. These problems were fixed
damping the dispersion term by Tang-Toennies potential [104].

3.1.18 The Wu-Yang function

In 1944, although intending to cover the most diverse types of diatomic systems,
and not just rare gases or crystals forces, Wu and Yang [105] (WY) proposed a potential
function similar to Heller [21], which is also based on the potential of Born-Mayer [19]
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and Buckingham [102]. They have applied their relation to diatomic systems composed
by elements of HH, KH, LH, KK, KL, and LL periods.
The potential used by Wu-Yang is given by:

b
Vivy (R) = ae™B/P — o (3.202)
being a, b, p and m constants within a molecular period (see table 1 on p.296 in

Ref. [105]).

When a new analytical form was proposed, the first concern was to obtain relations
to calculate the spectroscopic constants related to the proposed potential. In particular,
Wu and Yang [105]| sought a correct relationship between Re and the constant force
k.. To this end, they analyzed the proposals that had been successful such as that of
Clark [106], Badger [86](see section 3.1.11), Allen-Longair [107] and Sutherland [44](see
section 3.1.14).

Through the potential (3.202), with (ag%)

Yang obtained the follows relations:

OR?

» = 0and (E)QVWY) = k., Wu and
e Re

O _pop b
56 P = T (3.203)

and

k_

e eRe/p

1 {%_a(mjtl)} _ 1 [_bm(m+1)+bﬁ | (3.204)
p PR, R+t R, p

They plotted k.ef/? against 1/ R, for various diatomics systems of the HH, KH, LH,
KK, KL, and LL molecular periods, in their ground and excited states. For diatomic
molecules of HH, KH, LH periods, they obtained a good result for m = 4, and for
systems in other periods, the best value obtained was m = 6. As these constant values
of m ensured a straight line for each period, they concluded that the values of b and p
also remained constant in each period.

The average errors in k. calculated from R, for the periods HH, KH, LH, KK, KL
and LL obtained for Wu and Yang [105] were 7.1%, 5.3%, 4.5%, 12.0%, 13.1% and
19.0% respectively.

With asymptotic characteristics similar Buckingham’s function [102], the Wu-Yang
potential presented the same deficiency when R = 0, where V = —oo. However,
this was not the only problem with the potential proposed by them. As observed by
Varshni [108], in 1959, the Wu-Yang assumption that the values of m, p, and b were
constant for different states of diatomic molecules from the same molecular period is
not true even when R = Re.

Using the Wu-Yang rule for obtain k., Varshni [108] calculated others spectroscopic
constants, «, and w.x, for diatomic systems from KK period. To this end, Varshni
first obtained:
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= 1) —=< 3.205
“ ( 3 i ) We ( )
and 5 2.108 x 10716
Welle = (—X2 - Y) L (3.206)
3 HA
where
LR2 — (m+1)(m +2) 13RS — (m+ 1)(m + 2)(m + 3)
XN=""1p R and Y= LR 1R
Ee_(m—i_)e ]_36_<m+)6
(3.207)

Varshni [108] showed that, mainly, the values of the anharmonicity w.z. were very
different from the experimental values. Besides, the average error in calculating the
constant force for diatomics of that period was 12.1%, which is not at all attractive.
Varshni considers that even for the other diatomic systems, large deviations in the

values of o, and w.x. should occur.

3.1.19 The Lippincott function

In 1953, Lippincott [43] (LIP) proposed a functional form for diatomic potentials
still in the Hulburt-Hirschfelder and Morse-type, involving an exponential of the inter-

atomic distances, given by:
Viip(R) = D (1 — e A0 28Y (1 4 o F(R)), (3.208)

where D, is the depth of the well and R has the usual meaning, a and n are constants.
AR = R — R, and F(R) is a function internuclear distance so that F'(R) = oo, when
R =0and F(R) =0, when R = co. In many cases, F'(R) has no great relevance, and
can only be considered Vi;p(R) as the first term of the product.

Considering a = 0 and using the relation for the constant force k. = (%)R in
its function Vi p(R), the dissociation energy D is obtained from: ’

D(ergs/molecule) = k.R./n (3.209)

where n is empirically given by:
1 1
n=6.32 x 10*(I/1)3(I /1) cm™! (3.210)

with (I/Io)i and ([/IO)% corresponding to the ionization potentials of the atoms A
and B respectively relative to those of the corresponding atoms in the same row and
first column of the periodic table.

Lippincott [43] pointed out that most researchers were always in search of a good

analytical way to represent potential curves of diatomic systems, however, these were
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little used to predict the energy of bond dissociation D and anharmonicity constants.
He calculated D using the relation (3.209) for 22 diatomic molecules and obtained good
results compared to spectroscopically obtained values. The resulting mean deviation
of 4.5%, was considered large when compared to the experimental error for R,, k. and
(I/1y) (around 0.1%).

For the calculation of the anharmonic constants, such as w.z., a second-order per-
turbation theory was used. The potential (3.208) was expanded in power series, taking
a = 0, so that the cubic and quartic terms of this expansion represent the perturbation
potential in the Schrédinger equation. The quadratic (harmonic) term of this potential

stands for the unperturbed potential. In this way, he obtained :

weTe = 3h(n/R. + 1/R.?) /647 cp. (3.211)

He calculated the value of w.x, employing (3.211) for 22 different diatomic molecules,
and compared with the values obtained spectroscopically, reaching an average deviation
of 5.7%. This was considered as a good result compared to the same process using the
Morse function|8] (46%), or even compared with the Linnett [61] reciprocal-exponential
function (16%).

Now, D can be obtained as a function of known parameters, through (3.209) and
(3.211):

D(ergs/molecule) = k,/[(64n*cpwez./3h) — 1/R,?] (3.212)

and the results obtained from this method showed an average error of 4.8% in relation
to the D values obtained spectroscopically for 17 diatomic molecules.

In 1955, Lippincott and Schroeder [109] presented a more detailed study on the
function (3.208). First, they considered the simple function already analyzed by Lip-

pincott with a =0, 7. e.:

Vis(R) = D, (1 — ¢ MAR/21), (3.213)

where, if R — 0, then V5(R) = D,, not satisfying V5 — oo. However, for them this
was not a serious problem. The biggest problem with this function is that it provides
a, = 0 for all molecules, which is not correct. Then, they concluded that this function
would not be the most suitable to represent a generic potential.

Another important contribution by Lippincott and Schroeder was on the calculation
of parameter n. This parameter may be calculated through the following empirical

relation:

n = no(I/16)3(I/1o)% em™" (3.214)

1 1
with (1/1y)3 and (I/Iy)} corresponding to the ionization potentials of the atoms A
and B, as well as in the Eq. (3.210). For H atoms /I, they assigned the value 0.88 and
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for most molecules where the binding is primarily covalent and including all molecules
of the fourth, fifth, sixth, and seventh columns of the periodic table, ny has the value
6.32 x 10%. For the diatomic alkali metal and alkali hydrides, ny had the value of
4.21 x 10® [109].

Now, since n was calculated separately it may be used to predict w.z. from R, values
in the Eq. (3.211), without needing k. or D. The average error for w.z. calculated from
n for diatomic systems As,, Bry, Cy, CH, CIBr, Cl,, CIF, CLI, CO, F,, HBr, HCI, H,,
HI, IBr, Iy, Ny, NO, OH, Oy, Py, Sy, SO and Se; is only 5.5% [109].

Lippincott and Schroeder [109] pointed out that the simple potential (3.213), which
provided a, = 0, could be used as a first approximation to an overall potential. Fur-
thermore, they observed that since bonds in polyatomic systems usually have values
of a, are much smaller than the corresponding «, values for diatomic molecules, it
may be that Eq. (3.213) represents an improved approximation to potential curves for
the bond in polyatomic systems. They used this function for this, see for example the
Ref. [110] and [111].

Next, Lippincott and Schroeder [109] considered the complete potential (3.208),
i. e, with a # 0. The term (1 4+ aF(R)) was chosen such that Vig — oo when
R = 0 and a way that the resulting function will allow a prediction of vibrational-
rotational coupling constants. At large distances it should give a Van der Waals energy

of interaction. To accomplish this, they used three terms of power series in the quantity

[1 — exp(—b*nAR*R'Y /2R!?)]z:

1+ aF(R) =1+ (—1)a x (R./R)°[1 — exp(—b*nAR?R" /2R!?)]2

(3.215)
—(Re/R)"[1 — exp(=b*nAR*r" /2R?)]

or for the general function

Vis(R) = D.[1 — exp(—nAR?/2R)]
{1+ (=1)a x (R./R)°[1 — exp(—b*nAR?R" /2R!?)] (3.216)
—(Re/R)[1 — exp(=b*nAR*r" /2R?)]}.

For large values of R this function takes the form
V = D.[1 — exp(—nAR?/2R){1 + a[—(R./R)® + (R./R)"]}, (3.217)

where F(R) takes form of a Lennard-Jones(6,12) Van der Waals potential (see section
3.1.2). This fact ensures that the curve from Eq. (3.216) is in good agreement with the
observed curve.

From Eq. (3.216), the spectroscopic parameters D, «, and w.z. now are give by:

D = w?/2nR.B, (3.218)
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a. =0 (3.219)
Wele = 1.5B.[0.25 + nR./4 + ab(nR./2)% + (502> — ab®)nR./2). (3.220)

Note that Eq. (3.218) is equivalent to relation (3.209), since Be = h/8m?uR3c
and k, = 4r?uw?c®. Studies such as Somayajulu [112] have suggested that in the
relation (3.209), n could be a constant not depending on the ionization potential of
each molecule. However, Lippincott, Schroeder and Steele [113] have shown that such
a relationship was not valid for diatomic molecules in electronic excited states.

Although the function (3.216) is a function of 5 parameters, more complicated to
calculate than (3.213), the parameters ab and b can be considered as constants for
most molecules, simplifying the computation of a, and w.z., for example. Thus, the
potential (3.216) was considered a good general approximation to the “true” potential

function.

3.1.20 The Frost-Musulin function

In 1954, Frost and Musulin [114] (FM) initially proposed, a general potential energy
function for diatomic molecules. This kind of potential considers the possible relation
between a “reduced” potential energy and a “reduced” internuclear distance, analogous
to a reduced equation of state. For this, they considered V' the potential energy of a
diatomic molecule in the ground state or in any attractive excited state taking the zero
of the energy at infinite separation of the nuclei. At the potential energy minimum
V = —D,, being D, the depth of the well. Then, the reduced potential is defined by:

V(p)

e

Vi(p) = with  p(R) = (R~ Ry)/(R. — Ryy) (3.221)

where R and R, are the usual distances and R;; is a constant for a given molecules and
is a measure of inner shell radii of atoms ¢ and j. Note that the minimum is V' = —1
and p =1, since R = R,.

Frost and Musulin [114] assumed V' as a universal function of p for any diatomic

system. At the minimum this function, we have:

21/
(d v ) _K (3.222)
dp* ) .=

being K a dimensionless parameter. Since the force constant is given by k., = (d*V/dR?)p—p.,
it follows that:

k.(R. — R;;)?/D. = K (3.223)

or that
Ri; = R, — (KD, /k.)">. (3.224)
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For to analyze the behavior of reduce potential, Frost and Musulin [114] chose 23
diatomic systems: H,, Hj, CH, OH, HCIl, HCI", KH, ZnH, HBr, CdH, HI, HgH, Li,,
Oy, OF, CIF, Nag, Py, Cly, Ky, Bry, ICI and I. Firstly, they calculated the value of K
for the diatomic systems Hy and HJ , assuming that R;; = 0, obtaining K = 4.14 and
K = 3.96, respectively. For the other diatomic systems, they assumed the mean value
K =4.00.

To check the validity of this properties, Frost and Musulin [114]| examined the
coeflicients of the higher terms such as L/6 and M /24 in the expansion:

Vi(p) = 1+ (K/2)(p = 12 + (L/6) (o — 1)* + (M/24)(p = 1)* + - (3.225)
where B o
= (7)o = (20 -
dp p=1 dp p=1
For L and M they obtained the follow relations:
(Re — Ry)? (d*V
L= 3.227
D, dR? ) o p ( )
and (R, — R}t (dV
M= U . 22
o (), 6229

The average values for 23 molecules were L = —15.06 and M = 43.48. The mean
deviations of L and M from their averages were 13.2 and 42%, respectively. These
results, although not very satisfactory, led Frost and Musulin to believe that their uni-
versal potential was approximately correct. However, in 1961, Varshni and Shukla [115]
showed that this “universal” potential energy function does not exist. They still claim
that it is possible to obtain universal relations for spectroscopic parameters «, and
weZe in terms of the Sutherland parameter A = k. R?/2D, [14].

While Frost and Musulin [114] used the third and fourth derivatives to obtain .
and w,z., Varshni and Shukla [115] using a different method, obtained these parameters
in terms of L, M and K:

L R, 6532
O o ¢ 3.229
@ [wqa—&) }% (8.229)
and , ,
5 /(L M R, 2.1078 x 10716
o= |2 (=2) -2 3.230
et [3 (K> K {Re—Ri]} R (3:230)

where g is the reduced mass. The calculated values by Frost and Musulin [114] for
a. and w.r. presented the average percent errors corresponding to 24.9 and 17.7, re-
spectively, whereas with Varshni [14] method we have 22.1 and 11.1 for 23 diatomic
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systems, being 18 common with the analyzed by Frost and Musulin. Varshni and
Shukla still guarantee that the relatively low error for w.z,. is nothing more than a
happy cancellation of the errors [115].

In the same year, Frost and Musulin [74] suggested a semi-empirical potential energy
function aiming to overcome difficulties found in previous potentials, such as Morse |[§],
Hulburt-Hirschfelder [7], Lippincott [43]. For this, they imposed more conditions to be
fulfilled by an adequate function. They are:

(i) The potential energy for nuclear motion V' is the algebraic sum of two parts given

by:
2

e
VAR v 3.231
R (3.231)

where the first term is the nuclear repulsive potential corresponding to Coulomb
force Z,Z5¢*/ R, with e the electronic charge, Z; and Z, the atomic numbers, and
R the interatomic distance; and the second term is the purely electronic energy

defined as V,, which is also a function of R.

(ii) V becomes infinite as R approaches zero, being due to the nuclear repulsion term
e?/R, assuming therefore that V, does not become infinite in equal and opposite

sense.

(iii) V, is finite in R = 0 and assumes V = V2, being V. the known “united” atom

energy.

(iv) V. ac —e?/R for R large. This is based upon the choice of V = 0 as R — oo and
is the required condition to cancel the nuclear repulsion potential since the total

V' goes to zero faster than inversely as the first power of R.

(v) V must be capable of going through a minimum as R varies.

The potential energy function with two adjustable parameters that accomplish these
criteria presented by FM [74]:

Viu(R) = e " (% — b) (3.232)
being a and b these parameters.

In principle, the parameters a and b were fixed by demanding the function provides
any two of the known experimental quantities such as R, equilibrium internuclear
distance; D,, dissociation energy from the minimum of the curve (depth well);k., force
constant for infinitesimal amplitudes, which is related to the spectroscopic constant a;
and w.x., anharmonicity constant. Again, they applied this function to the diatomic
systems Hy and Hy in their ground states, so that the corresponding electronic energy

is given by:
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1 —aR aR
V. = ~7 (1—e ™) — be". (3.233)
with the limiting value as R — 0:
VY= —(a+b). (3.234)

For these systems, they calculated the usual parameters above described: R., D,
ke, o, wex, and also the critical distance R, which is the value of R, less than R.,
at which V' = 0, or the same as at infinite separation. For this parameter R., in
particular for the diatomic HJ, they obtained (1.136a0) [74] in good agreement with
the experimental values(1.12a0) [116].

Varshni [14] showed that the spectroscopic parameters «, and w,z. are best repre-

sented in terms of a parameter s, related to Sutherland parameter A, defined by:

A=s*/2+s or s=-1+(1+2A), (3.235)

so that,

25 +3s| 6B2
e = < 3.236
{3(3 + 2)] We ( )
and
11s* + 665 + 15652 4 144s + 36 2.1078 x 10716
Weke = : (3.237)
3(s +2)? R2p

Analyzing the behavior of these expressions in terms of s, Varshni [14]| concluded
that the FM function is very close to the Morse potential [§], being FM slightly more
complex.

In 1957, Chen, Geller and Frost [117] (CGF) provided a generalization of the func-
tion (3.232) for to be applied in a more kinds of diatomic systems, being V' now given
by:

Voar = e <£ - b) (3.238)

where the new parameter c is:

c= 217, (3.239)

with Z; and Z5 some kind of effective nuclear charges of the two atoms.
With this new potential, the three parameters a, b and ¢ can be now obtained
by direct algebraic evaluate from spectroscopic constants D,., R, and k., using the

relations:

a=p/R. (3.240)

b= D.(1+ p)exp{p} (3.241)
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c¢= D.R.pexp{p} (3.242)
where 1o
R2
p= (1 + %) -1 (3.243)

Although the potential Vogr is more flexible than the original potential Veys(R),
it does not present better results. Steele et al. [15] in a comparative study for systems
Hs, I, Ny, Oy, CO, NO, OH and HF in their ground and excited states, showed
that the CGF potential does not give any appreciable improvement over the Morse |[§]
curve. They observed also that the average errors for the quantities a, and w.x. for
the diatomic systems above cited were bigger using this more general of Frost-Musulin
potential than with the Rose-Morse [29], Rydberg [9], Linnett [61] and Lippincott [43]
potentials.

However, recent work such as Royappa, Suri and McDonough [42] has shown that
if the parameters of the Vogr potential are well fitted, using for example the Mathcad
(Mathsoft Inc.), on the whole this function present good results. They observed that
the new Frost-Musulin potential (3.238) showed average error less from RKR [9-11]
curves than the Kratzer [16], Lippincott [43], Rydberg 9], Morse [8], Rose-Morse [29],
Linnett [61] and Poschl-Teller [30] curves for C,, CF, CH, CN, CO, Hy, HF, Lis, LiH,
Ny, N3, NO, O,, and OH in their ground electronic states.

3.1.21 The Varshni function

Although already quite convinced that a universal analytical function to repre-
sent “all” diatomic potentials did not exist, as proposed by Frost and Musulin [114],
Varshni [14], in 1957, presented a comparative study of the more relevant functions
known at that time. He analyzed the behavior of potentials energy functions from
Morse [8] to Frost and Musulin [74] for 23 molecules in their ground and excited elec-
tronic states. In addition, he calculated the rotational o, and vibrational w.z,. constants
for these systems. From this analysis, Varshni concluded that it is not possible to have
an exact “universal” potential energy function for all diatomic systems, but it is possi-
ble to have a function for molecules with similar linkages. As a result, Varshni (VAR)
proposed seven different potentials.

For to construct his potentials Vi, 4r(R), Varshni [14] established the criteria that a
good potential must satisfy, such as the potentials presented before. He divided them

into criteria that are necessary and desirable:

1. Necessary:

(a) Virar(R) should come asymptotically to a finite value as R — oo;

(b) Viragr(R) should have a minimum at R = R.;
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(¢) Vyar(R) should become infinite at R = 0, but this need not be very strict,

because if Vi, ag(R) becomes very large in R = 0 it is enough.
2. Desirable:

(a) The potential function should be capable of giving rise to a least one maxi-

mum under certain conditions;
) V. is finite at R = 0;

) V.=V at R =0, where V0 is the known “united” atom energy;
(d) V. o« —e?/R for R large;
)

)

%:OatR:();

The desirable criteria (b), (c), (d) and (e), were based on the Frost-Musulin [74] po-
tential (see previous section 3.1.20), and the criteria (a) to (f) need not be exactly
true.

The First potential proposed by Varshni [14] was a function similar to Morse [8]:

Vi ar,(R) = D A1 — exp{[-b(R* — R})]}}?, (3.244)
where b is given by:
b= ( e )2 = AY2/2R?, (3.245)
8D, R? ¢

being A = k.R?/2D, the Sutherland parameter.
The potential (3.244) satisfies the criteria 1.(a) and 1.(b), and as well as the Morse
potential, Vi/ag,(R) becomes large at R = 0. Varshni obtained also expressions to

calculate the spectroscopic parameters, o, and w.x., from his potential:

B2
. = (AY? — 2)6—6 (3.246)
We
and 2.1078 x 1016
e, = [SA — 12AY2 1 19)7 0 X 0 (3.247)

Rz
For the 23 diatomic systems analyzed, this potential gives much lower values for
o, than the Morse [§] function. On the other hand, Vi 4g,(R) gives lower values for
WeTe, but these presented average error (18.2%) lesser than that Morse [8](31.2%) and
Rydberg [9](23.1%) potentials.
The Second potential proposed by Varshni [14] was:

R.

e cxp{-a(h - Ren}} (3.248)

Var,,(R) = D, {1 —
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where AL
—1
S 3.249
0= p (3249

The potential (3.248) accomplish the three criteria 1.(a), 1.(b) and 1.(c). The

parameters o, and w.x. are given by:

1 682
a, = [AW + X7 1} — (3.250)
and 8 127 2.1078 x 10716
. X N
Wele = |:8A +12 — m -+ Z:| R2/L . (3251)

In this case, the values a, and w.x, were higher than those obtained from Morse |[§]
potential, being considered unsuitable by Varshni.

Since the First potential provides low values and the Second provides very high
values, Varshni bet on a Third option that mixed the two functions.

Then, the Third potential energy function proposed by Varshni was a mixture of
the first (3.244) and the second potentials (3.248), given by:

Vian () = D, {1~ e cxpf o - )} (3252)
where
B = 2—;2[A1/2 —1]. (3.253)

This potential obeys the three necessary criteria, and in fact it was a good bet. The

expressions for a, and w.z. are given by:

2 652
a, = [AW + X7 2] — (3.254)
- 111 | 737 21078 x 10~
— 1/2 . X
Wele = |:8A + 12A / + 66 - A1/2 + Z:| R2,u . (3255)

For a, the average error from Vi ag,,,(R) (22.9%) potential is significantly lower
than that obtained from Morse [8] (33.1%) and Rydberg [9] (28.0%) potentials. In
relation to wex., the Third potential Vi ag,,,(R) presented a similar behavior to that
of Frost-Musulin [74].

The Fourth function proposed by Varshni was:

Vv aryy (R) = B(A + exp{(b/R)}) (3.256)

with the conditions
A =exp{(b/R.)}, (3.257)
B= D (3.258)

[exp{(b/Re) — 1]}
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b=R.InA (3.259)
and, here,
mAa 1?
A=|—F—| . 2
L — 1/14} (3.260)
For this function, a, and w.x. are given by:
6582
a.=(InA+1) - (3.261)
and 2.1078 x 10716
wetre = [8(In A)? + 241n A 4 64) 5% . (3.262)

R
The Fourth potential fulfills the three necessary criteria. However, this function
was discarded because this gives much higher values for a, and w.z, than the Morse [8]
function.
The Fifth potential proposed by Varshni is a generalization of Kratzer [16] function
and a special case of the Mecke-Sutherland [44, 92| potential, being given by:

War, (R) = D, [1 — <%>n} 2 : (3.263)

Here, we have:

n*=A (3.264)

and the spectroscopic parameters are given by:

o, = A= (3.265)

We

and

2.1078 x 10716
R2p '
As well as the Fourth potential, the Vi 4g, (R) function gives higher values than

Wee = [SA 4 12A12 1 4] (3.266)

the Morse for the parameters a,. and w.z., being therefore considered inadequate.

The Sixth potential proposed was similar to second Vi 4g,,:

2
Wary,(R) = D, {1 — % exp{[—a(R — Re)]}} 1+ Kf(R)] (3.267)
where f(R) is a function such that:
oo, at R=0
f(R):{ 0, at R=o

This function attain the tree necessary criteria. Note that if f(R) = 0, we have the

function very similar to Second function:
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Wary,(R) = D, {1 — % exp{[—a(R — Re)}}} (3.268)

which provides Vi ar,, = D, at R = 0. For this function, we have:
aR, = AY? (3.269)

and the spectroscopic vibrational rotational o, and anharmonicity w.z. parameters

given by:
e = [AW — A1/2 — 1} 653 (3.270)
and 1
Weie = {8A 124 % + %} 2107?2;#10 (3.271)

The behavior of «, is not suitable for the Sixth potential. However, w.x. is very
close to the Rydberg function.
The Seventh and last potential proposed by Varshni is similar to Lippincott [43]

potential:

Wary, (R) = —AR" exp{(—aR)}[1 + K f(R)] (3.272)

and, as before, f(R) = oo at R =0, and at R = oo, f(R) =0.

This function satisfies the tree necessary criteria, and as before, if f(R) = 0, we

have:

VVARVII(R> =—-AR" exp{(—aR)} (3273)

where,
a=_ (3.274)

R, :
D
A= —= 2

R2en (3.275)
n = 2A. (3.276)

The constants a, and w.x. are given by:

Qe = —=—= (3.277)

and
2.1078 x 1016

R

This potential gives a negative value to a., which is absurd. On the other hand,

WeTe = [6A + g}

. (3.278)

the values of w.x. obtained from the Seventh potential were slightly lower than that

of the Lippincott [43] function, with the average error (13.6%) very near to that of
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Lippincott (12.9%).

Varshni concluded that for the overall representation of the potential energy curves,
the Third and Sixth functions were the most useful [14].

In 1962, Steele et al. [15] in a comparative study of potential functions, analyzed 8 of
the 23 diatomic systems in their ground and excited electronic states previously treated
by Varshni [14]. The average error for the quantity «. calculated from Third Potential
(3.252) was less (15.57%) than from Morse [8] (19.67%), Rydberg [9] (17.45%), Rosen-
Morse [29] (22.33%), Poschl-Teller [30] (18.47%) and Frost-Musulin [74] (23.55%). On
the other hand, the average error for w.x. was the largest among the analyzed poten-
tials.

Steele et al. [15] also compared the average error from RKR [9-11] curves for all
R and for R > R,.. For all R, the Third potential by Varshni presented lower devia-
tion (2.28%) than Morse [8] (3.68%), Rydberg 9] (2.94%), Rosen-Morse [29] (3.71%),
Poschl-Teller [30] (3.48%), Frost-Musulin [74] (3.41%) and Linnett [61] (4.18%). Still,
for R > R, the Third potential by Varshni presented lower deviation (1.68%) than
Morse [8] (3.20%), Rydberg [9] (2.27%), Rosen-Morse [29] (2.80%), Poschl-Teller [30]
(3.28%), Frost-Musulin [74] (3.30%) and Linnett [61] (5.07%), showing that Vi ag,,, (R).

In a more recent, and similar to Steele et al. comparative study [42], the Third
potential by Varshni again showed to be more accurate than the potentials before
cited, and also more accurate that the Kratzer [16], Lippincott [43] and Deng-Fan [41]

potentials.

3.1.22 The Deng-Fan function

It is possible to note that for the various potentials analyzed until now, the Morse [§|
function is still a benchmark, although, as we have seen, it is not the ideal potential
because it does not present correct asymptotic behavior when R — 0.

In an attempt to correct this failure, in 1957, Deng and Fan [41] (DF) propose a

simple modification in Morse potential:

aRe 1 2
e—] (3.279)

Vor(R) = D, {1 TR
where a is the Morse parameter (3.64). This potential is called a generalized Morse
potential.

The function Vpp(R) has three parameters as the Morse potential. However, this
function has correct physical boundary conditions at R = 0 and oco. Note that, when
R — 0 we have Vpp — oo, which was not the case with Morse potential. Further-
more, when used as a potential function for the vibration of diatomic molecules, the
Schrodinger equation is exactly soluble as well as Morse (see in detail in Ref. [118]).

Using the relations, established by Dunham [24], we can obtain the spectroscopic

parameters vibrational rotational a, and anharmonicity w.x., in terms of the deriva-
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tives of the potential function Vpr(R):
682 R.fs3
c=——2 1 3.280
“ We ( + 3k, ( )
and ,
Be R2f4 Welle
oTe = — | ——=2 115 ( 1 3.281
Wel 3 . + ( + 252 ) ( )
where B, and k. have theirs usual meanings
B, = __ k. = dr*pctw? (3.282)
¢ 8r2cuR2’ ¢ ¢ ‘
and f3 and f; are given by:
d3V 12 3De 3aRe 6 3De 2aRe
L L (3.283)
dR3 (e*Re — 1)3 (e*Re — 1)2
R=R.
and
d4v 72 4De 4aRe 12 41)e 3aRe 14 4De 2aR.
fo=or ST TS0 el o (3.284)
dR4 o (eaRe _ 1)4 (eaRg _ 1)3 (eaRe _ 1)2

As the potential of Deng Fan brings supposedly greater accuracy than the Morse [§]
function, many researchers have conducted comparative studies involving both poten-
tials.

For example, in 2003, Rong et al. [119] presented a comparative study between
Morse and Deng-Fan potentials involving only X-H bonds in small molecules. They
observed that for several molecules the Morse model leads to better agreement with
the experiment while for other the reverse is true, which is somewhat inconclusive.
However, they easily obtained a set of Morse potential parameters while for the DF
potential different sets of parameters lead to similar frequencies and intensities. In the
molecular systems considered the Deng-Fan potential does not predict observed en-
ergy levels and intensities significantly better than Morse’s potential despite its correct
asymptotic behavior.

In 2006, Royappa et al. [42| presented a comparative study involving many more
potentials than Morse and Deng-Fan (21 in total). They analyzed the average error
of these potentials related to the RKR [9-11] curve using Murrell and Sorbie’s Z-test
(see Section: 3.1.26) for 14 diatomic systems in their ground electronic state. The
Deng-Fan [41] potential present the has a deviation 3 times greater than the Morse
potential, and with one of the worst results, it is only more accurate than the potentials
of Kratzer [16] and Lippicott [43].

Still, in a more recent comparative study, Wang et al. [81] calculated the anhar-
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monicity w, and vibrational rotational coupling parameter «, for 16 molecules in their
ground electronic states. Although the proposal of Deng-Fand [41] was an improve-
ment of Morse function, Wanget al. showed that by choosing the experimental values
of dissociation energy D, equilibrium bond length R. and vibrational frequency w,. as
input, the Deng-Fan potential is not better than the Morse potential in simulating the
atomic interaction for diatomic molecules. Furthermore, Wang et al. concluded also
that the Manning-Rosen [79]|, Deng-Fan [41] are the same potential energy function,
actually (see details in Ref. [81]).

3.1.23 The Tietz-Hua function

Whenever a new potential energy function was proposed, it was also analyzed
whether this potential exactly solved the Schrodinger equation, or if this new potential
was just another approximate solution. Since few potentials had this property until
that time, in 1963, Tietz [120] (TIE) sought to obtain potentials that were an exact
solution to the Schrodinger equation (at least for the quantum number L = 0) and
that at the same time were mathematically simple functions, such as the Morse [§|
potential.

The first proposal by Tietz [120] was a potential energy function with five param-

eters, given by:

(a+b)e 2P — pe=2PR
(14 ce=BR)2
where D, is the depth of the well. This potential, fulfill three standard conditions:

(3.285)

Vrre,(R) = D. + D,

(i) S

R=R.

(i) Vrrg, (00) — Vi, (Re) = De;

(iii) Torees = k..

R=R.

where k. and R. have their usual meanings. These conditions are also necessary to
determine a, b, ¢ and 3, which are constants. In addition, these constants depend that
the Tietz potential curve give correct values for the vibrational-rotational coupling

constant a., given by:

1 (d*Virg, (R)\ R. 65?2 65?2
ae_—[g (—dRS Rt (E)=r (2 (3.286)

where w, is the vibrational frequency and B, is the rotational constant.
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Tietz [120] showed that the four constants 3, ¢, b and a can be express using the

bl and th tity T = 1+ (22)]
2D, an e quantity I = |1 + B :

Sutherland parameter A =
BR. = 2AY2 -T2,

c= — [exp{(BRe)}} (F1/2 _ A1/2)

Al/2
(3.287)
1/2
b=2exp{(BR)} [2— (5)""],
r\1/2
a=2b [—2 + (%) ] exp{(BR.)}.
From I'" and A, Tietz also showed that the anharmonicity w.z. is given by:
8A3/27 T1/2_A1/2)3 —16

Wele = [ (2A5/27F1/2) ) }2X1028é<210

(3.288)

8[A3/2—(T1/2—-A1/2)3] 9% 1078x 1016
BRe uR?

Tietz [121] calculated the anharmonicity using Eq. (3.288) and compared his values
with the values obtained from Eq. (3.68), for the Morse potential, and also compared
with the experimental values for 23 diatomic systems in their ground electronic states:
H,, ZnH, CdH, HgH, CH, OH, HF, HCI, HBr, HI, Liy, Nay, K3, Ng, Py, Oy, SO, Cls,
Brg, Iy, ICI, CO and NO. For 16 these, the results obtained by Tietz presented less
deviation from experimental values. The Morse function showed better only for the
systems HCI, HBr, HI, Ny, O,, SO, I, and NO.

In an attempt to obtain a more general potential, Tietz [122] suggest a function

with more parameters, and therefore more flexible, given by:

il Re>2 (% i HR) (3.289)

R (F+ HR)

where D, and R, have their usual meanings, and A, B, F' and H are constants. This

Vrre, (R) = D (

potential is demanded to satisfy the conditions (i), (ii) and (iii).

One of the advantages this potential (3.289) over the first proposed by Tietz (3.285)
is that the potential Vg, (R) can solve the Schrodinger equation exactly for arbitrary
L and both discrete and continuous energy parameters F.

As before, the requirement that the second Tietz’s potential (3.289) give the correct

experimental values of F, and G, is warranted by:

1 3
_ |:_ <d VTIEI(RE)) & + 1:| _ Fe _ Qe (3290)

3 dR3 k.
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and
5 1 d3VTIEI(Re) 2 1 d4VTIE](Re) 2 wel'eﬂRZ
B ALV I 2 A = = £ . 291
[3 <ke dR3 k. dR4 fie =G 2 x 1078 x 10-16 (3:291)

The accuracy of potential (3.289) can be determined by calculating F, and G, from
Eq. (3.290) and (3.291) and comparing them with the experimental values. The values
of F, calculated by Tietz from potential (3.289) have shown to be in good agreement
with experimental values for most of the evaluated systems [122]. However, in this
potential, the parameters A, B, and H don’t have a simple physical interpretation.
Furthermore, curves generated by this function showed unphysical features at very
large or very small values of R. Then, the first Tietz’s potential (3.285) is better
known and used than the second Tietz’s potential.

In 1990, Hua [123] conducted a comparative study with the potentials of Morse [§],
Varshni [14] and Levine [124]. These three potentials had a common characteristic:
all showed large deviations from the RKR curve [9-11] when the domain of the poten-
tial extended to the limit of dissociation. Moreover, for the potentials of Varshni and
Levine the Schrédinger equation can be solved exactly, but with very difficult calcula-
tions [123]. With this in mind, Hua proposes a potential of four parameters, in order
to meet both characteristics:

1 — ce b(B—ERe

Ver(R) = D, 2, le| < 1 (3.202)
e

with
b=a(l—c) (3.293)

being a the same of the Morse equation.

The parameter c is fitted to provide smaller absolute mean deviations. Hua calcu-
lated ¢ for the systems: Lis, Nay, Ky, Rbgy, Csy, Cly, ICI, Hy all in the state XIZ;,
HF and CO in the state X'¥*, XeO in the state d'¥}, ICl in the states A°Il; and
ATy, 1, in the state XO/ and Cly in the state B°II(O]). Comparing the value of
the absolute mean deviation provided by the potential Hua with those provided by the
Morse, Varshni and Levine potentials, only Cly and ICI, both in the state X 12;, with
values of 1.89% and 1.97% respectively, generated slightly larger variances with Hua
than with Varshni (1.08% and 1.30% for Cl, and ICI respectively) and Levine (1.11%
and 1.44% for Cly and ICI respectively), which are much smaller than those provided
by the Morse potential (6.06% and 5.68% for Cly and ICI respectively) [123].

Still, the average general of the mean absolute deviation for the molecular states
above was 1.63% using the Vry(R), while it was 7.72% using Morse, 4.74% using
Varshni, and 4.67% using Levine [123].

For large-amplitude vibrations and for the extended potential domain, the Hua

function (3.292) yielded a much lower absolute mean deviation compared to Morse,
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Varshni, and Levine, as shown for ICl in the state A”II,, Cs, in the state X 12; and
CO in the state X'X+ [123].

In addition to showing a better fit potential for the cited systems, the function
of Hua Vry(R) has the advantage that when inserted into the Schrodinger equation,
it can be solved exactly when the angular momentum J is zero and can be treated
precisely for J # 0, allowing to calculate the corresponding ro-vibrational energy levels
for a given system.

The four parameters potential of Hua gained prominence because it presented a
good fit for the systems verified [123] in the overall potential, both in the spectroscopic
region and in the dissociation limit. Such results were obtained even for large domains,
dispensing a piecewise fitting of the potential without requiring spline functions asso-
ciated or other functions, as is the case of the Morse potential (see for example [56]).

Royappa [42] et al. compared the two Tietz’s potentials (3.285) and (3.289), and
also the Tietz-Hua potential with others 18 functions for 14 diatomic systems in their
ground electronic states, 9 of which are in common with those analyzed by Tietz [122].
Using the Z-test method of Murrell and Sorbie [60], Royappa verified that the average
error of the second Tietz potential (3.289) was more than twice the average error of
the first potential (3.285).

Royappa et al. further observed that the first Tietz potential was one of the
most accurate. The Tietz potential (3.285) gives an average error less than of the
Kratzer [16], Morse [8], Rydberg [9], Rosen-Morse [29], P6schl-Teller [30], Linnett [61],
Lippincott [43], Frost-Musilin [74], Deng-Fan [41], Varshni III [14], Levine [124] and
Noorizadeh [125]|. In addition, Royappa showed that the first Tietz potential (3.285)
proved to be even more accurate than Tietz-Hua’s own potential [123].

Currently, the Hua potential is known as the Tietz-Hua potential, and so we have
used the TH index in the V function. The function proposed by Hua (3.292) cor-
responds exactly to the first Tietz’s potential, according to Jia et. al [126]. They
observed that the Tietz potential in Eq. (3.285) defined with five parameters, actu-
ally only has four independent parameters, and this potential can be rewritten as an
improved representation so that the similarity to Hua’s potential is evident (see more
details in Ref. [126]).

3.1.24 The Levine function

Considering the relative accuracy obtained with the Varshni III [14] potential, in
1966, Levine [124] (LEV) proposed a similar function, but more general. This function

can be considered a modified version of Vi ag,,, (3.252), being given by:

Vi (R) = D, {1 - (%) exp{[—a(R? — Rg)]}}2 (3.204)
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where p is a function of known spectroscopic parameters k., R, and D.. Levine defined

p so that it vary for different molecules, being obtained by:

1<A1/2 _ 4)(A1/2 _ 2)

=9 2
S R VT T (3.295)
where A = k.R?/2D, is the Sutherland parameter.
The parameter a in Eq. (3.294) depends of p, and can be obtained by:
(@ -1 (3.296)
a = . .
pRY

The potential Vy gy (R), such as that of Varshni III reach the necessary conditions
(see Section 3.1.21). Furthermore, we have:

d*Vipy
dR?

(Re) = ke (3.297)

where k. is the constant force.
In this case, the vibrational-rotational coupling constant «, and the anharmonicity

WeTe are given by:

1/2 p e
a, = [A/ + 57 —p] =83 (3.208)

and

(3.299)

20p* — 12 12p2

Al/? A

Note that these expressions are identical to (3.254) and (3.255) respectively, replace 2
by p.

To check the accuracy of potential (3.294), Levine [124] calculated the average
percent error using the relation |Vigy — Vggr|/De, where the Viypr represents the
experimental data curve from RKR [9-11]. He analyzed the diatomic systems: Hs,
I, Ny, Oy, CO, NO, OH and HF in 19 states, and compared his results with the
Lippincott [43] and Varshni [14] potentials. The Levine potential can be considered
a potential with three parameters because p is obtained from k., R. and D.. This
is the reason for choosing the potentials of Varshni III and Lippincott to make the
comparison, both have three adjustable parameters too. Besides, these are considered
the most accurate (with three parameters) in the comparative study by Steele et al. [15].

The Levine potential presented an average error in |Vigy — Vrir|/De for the 19
states of 1.99%, while for Varshni III is 2.31% and for Lippincott is 2.21%. Moreover,
the values obtained by Levine for a, were also more accurate compared to the others,
with an average error of 11.1%, against 15.6% of Varshni and 13.8% of Lippincott.
For w.x., the Levine potential showed a slightly smaller error (14.5%) than Varshni
(14.6%), while the Lippincott gave only 12.2%.
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In 1974, in a comparative study, Blinkova [127] calculated the vibrational levels
for Ny, N3, Oz, OF and CO in 31 electronic states using the Levine [124], Morse [8],
Lippincott [43] and Varshni III [14] potentials, and compared them with experimental
levels. The Levine and Varshni potentials presented intermediate results, being the
Lippincott and Morse the best functions. However, it is verified only for some states
of some diatomic systems. For example, the relative errors in the vibrational levels for
A3X, state of Ny are: Lippincott 0.31%, Varshni 0.57%, Levine 0.77% and Morse 2.09%.
In this case, the Morse potential is the least accurate among the others. On the other
hand, for a'm, state of Ny, we have the relative errors: Morse 0.39%, Levine 0.60%,
Varshni 0.77% and Lippincott 1.0%, showing now, that Lippincott is the least accurate
among the others. Then, Blinkova concluded that not is possible to describe equally
well all the electronic states of various molecules using a single potential function of
three parameters.

More recently, in 2006, in the comparative study by Royappa et al. [42], the Levine
potential proved to be one of the most accurate for the 14 diatomic systems analyzed.
This potential given less average error than the Kratzer [16], Morse [8], Rydberg [9],
Rosen-Morse [29], Poschl-Teller [30], Linnett [61], Frost-Musulin 74|, Deng-Fan [41]
and Varshni I1T [14].

3.1.25 The Simons, Parr and Finlan function

The Dunham expansion (3.61) to obtain potential energy for diatomic systems was
one of the most frequently used in the 1970s and even in later years [24]. Essentially,

the Dunham expansion is based on the calculation of the potential Vpyy(R):

VDUN(R) = aO[(R - Re)/Re]Q {1 + Z an[(R - Re)/Re]n} (3300)

n=1

as a Taylor series expansion in powers of the variable (R—R.)/R., where the coefficients
of this series are usually calculated via the Rayleigh-Schrodinger [128] perturbation the-
ory. However, the Dunham expansion presented some convergence problems, especially
in the long range region, making difficult to calculate the dissociation energy and also
converging very slowly when R — R, [129].

Looking for corrections to these problems, in 1973, Simons, Parr and Finlan [129]
(SPF) decided to make a seemingly minor modification in the expansion of Dunham,
replacing (R — Re)/R. and (R — Re)/R, by placing the potential as a series of powers
in the variable (R — R.)/R:

Vsrr(R) = bo[(R — R.)/R) {1 £3 bR - Re)/R]”} S (330

n=1
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The expansion in the new variable given by (3.301) was properly justified and
validated by SPF based on the perturbation theory. They also showed the upper limit
for the radius of convergence of the new potential was infinite, while that of Dunham
cannot converge to R > 2R,[129].

For the calculation of the coefficients in equation (3.301), SPF used and adapted the
procedure proposed by Dunham [24]. In the region where both potentials Vpyy(R)
and Vspp(R) converge, the coefficients of the new potential b, and the potential of

Dunham a,, are related as follows:

a():bo, 6L1:bl—27 a2:b2—3b1+3,
a3:b3—4b2+6b1—4;

_bn+z (”“) + (1) (n+1).

=1

(3.302)

SPF compared their potential with Dunham expansion by analyzing the diatomic
systems CO and HF, both in the ground electronic state, taking as reference the curve
obtained by the known Rydberg-Klein-Rees [9-11] (RKR) method, considered to date
as the most accurate curves for diatomic systems. In order to compare the convergence
rates, they established a potential expansion of order N, set the N** order term of the

potential as:

VY 5(R) = ao[(R — R.)/R.] {1+ian [(R— R)/R]} (3.303)

n=1

VN spr(R) = bo[(R — R.)/R]? {1 + Z b.[(R — R.)/R]" } (3.304)
n=1

When testing V™ g¢pp for zero-order potential (N = 0) of the CO system, the SPF
potential showed correct asymmetry, going to a finite value, when R becomes large,
quite different from Dunham potential approaching a harmonic oscillator, going to
infinity to large R. When N = 1, the Dunham expansion was very different from the
RKR potential for R > 1.2R,, where the function presents a maximum in 1.2R, and
goes to negative infinity for large R. The SPF potential was well behaved for R up to
1.5R,., assuming a finite value for a large R. Also for the CO diatomic system, when
N =4, VN gpp fitted almost perfectly to the curve provided by RKR, especially in the
region where R assumes larger values, while V¥ p showed to be quite different, still
close to that of a harmonic oscillator [129].

For the HF diatomic system, SPF used an expansion up to the fifth-order to compare

the potentials V¥ gpr and V¥ p, using as reference the potential obtained by the RKR
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method. Once again the SPF potential presented a good fit to the RKR curve [130],
whereas the Dunham potential showed a maximum when R — oo, similarly than for
CO, indicating such series truncation provided a reliable result. However, for short-
range, R < %Re, VN ¢pr has an oscillatory behavior, converging slowly. This latter
problem was not considered as relevant since the curve in the other regions converges
quickly and smoothly as is desired [129].

Another advantage over the Dunham expansion is that due to the good behaviour
of the potential expansion of the equation (3.301) for large R, the following boundary

conditions are valid:

lim {[R*(d/dr)]’Vspr(R)} =0, p=1,--- 5 (3.305)

R—o0

from which the following relations are obtained

24> (n+21b,| =0,
L n=1

24> (n+1)sby| =0,
L n=1

3 (n)sb, | =0, (3.306)

n=1

o

> (n=1)b,| =0,

Ln=1
Z(n - 2)5bn = 07
Ln=1

where (X)y is the Pochhammer function, with (X)y =1, (X)y = X(X +1)--- (X +
N —1).

These relationships are valid for the infinite expansion (3.301), however SPF [129]
suggest that they can also be used for truncated expression (3.304), using by instead of
by, such coeflicients being calculated only from by 1 to byys, neglecting others. To test
their potential in this case, SPF performed the calculation of the dissociation energy
D for CO and HF again.

When assuming the convergence at R = oo, the equation (3.301) provides:

D = b, (1 + i bn> . (3.307)

n+1

For the potential of the CO system, SPF used the first two conditions of (3.306)
to calculate two additional coefficients, b5 and bg, and used these two extra coefficients
to obtain the dissociation energy for CO. The value of D differed by only 7% of its
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value obtained experimentally. Furthermore, the sixth order potential fitted well again
compared to the curve provided by RKR. For the HF system the result was not so good.
When calculated for large values of R, the coefficients bg and b7, and these coefficients
used to obtain the dissociation energy D, differed by 44% from the corresponding value.
In this case, the maximum values that occur in higher-order expansions can be used in
the dissociation energy calculation, differing between 10 and 15% of the experimental
values [129].

3.1.26 The Extended Rydberg function

In 1974, the Morse [8] potential was still considered one of the most popular to
describe the PES of diatomic systems, and that of Hulburt and Hirschfelder [7] was
also well known for its improved Morse potential as it corrected the long region of
the function, making it more asymptotic. Furthermore, the Rydberg [9] potential,
largely used by spectroscopists, with its simple functional form, differing little from
the potential of Morse, was also a reference at the time to describe such systems.

Taking these three potentials into consideration, seeking for a functional shape best
representing various diatomic systems, Murrell and Sorbie [60] proposed a modification
of the Rydberg function. They then compared this new potential with results obtained
using Morse and Hulburt and Hirschfelder functions, taking as reference the fitting
obtained by the RKR method [9-11]. This was done for eight benchmark diatomic
systems: HF, Hy, I, O, Ny, OH, CO and NO.

The original potential function of Rydberg [9]:

Vryp(R) = —D.[1 + a(R — R.)] exp{[—a(R — R.)|} (3.308)
where D, is the depth of the well
a = (k./D,)"? (3.309)
being the derivatives of order n are given by the relation
ke™ = ko(=1)"(n — 1)a™? (3.310)

where k. is the constant force.
MS began to investigate the properties of the modified potentials of Rydberg,

_(_p nm B
v (De[Zmmem]) . (3.311)

For the calculation of a, and b, in (3.311), MS assumed ag = by = 1, and for the
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others they used the following spectroscopic expansion:

1 n n
V= _De+§;fn(R) = _DezgnR ;

= 2k " /n‘
gn = —fn/2Dc and go =1, g1 =0

(3.312)

or more conveniently
= ns Y by /(s = 1)\, (3.313)
s=0 t=0

Since f; = 0, and the spectroscopic parameters fs, f3 and f; are known, MS [60]
imposed three conditions warrantying the solutions of Eq. (3.313) are physically ac-
ceptable. There are:

(i) ~ shall be positive;

(ii) There shall be no zeros of the b-polynomial in the region physically significant R

(i. e. all positive and small negative R);
(iii) There shall be no maxima in the attractive branch of the potential.

Murrell and Sorbie analyzed all cases of potential (3.311) which had the following
non-zero coefficients: (aq,as,as); (ay,a2,b1); (a1,as,a4); (a1, as,b1); (ag,by,by); and
(b1,b2,b3). The only one of these that led to satisfactory potential to describe the
long-range region was the first. The function (3.311) then takes the form:

Virsors(R) = De(1+ ai(R) + as(R)* + a3(R)*)e (3.314)
where the constants a;, as and a3 and v are obtained through the relations:

ap =7

az = go +7°/2

as = gs + 792 +7°/6

0= gs+793+792/2+ 7" /24,

(3.315)

In 1983, Huxley and Murrell [131] improved the Murrel-Sorbie potential, using
(R — Re) instead R in Eq. (3.314), obtaining:
Vier(R) = Do(1 4 a1(R — Re) + as(R — R.)* + az(R — R.)*)e "Rl (3.316)

This function became known as Extended Rydberg (ER) potential. The coefficients of

this function can be obtained in the same way as for the Murrel-Sorbie potential.
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The last equation in (3.315) has at least one positive root, as condition 1 demands.
Its solution is obtained numerically. However, Huxley and Murrell [131] derived more
explicit relations for the expansion coefficients a,, from f,,, which are the nth derivative
of the potential (3.314) at the equilibrium distance R., known as the Dunham’s ex-
pressions for the nth force constant (Section 2.2). For this, first they solved the quartic

polynomial for a;:

D.aj — 6foai — 4fzar — f1 =0 (3.317)

and, as before, if the roots are all real, since f; is always positive, there must be one
or three positive roots. For a physical acceptable (3.314), a; must be positive. Now, if

ay is known, as and a3 can be obtained from expressions:

as = 1 (af - ﬁ) (3.318)

2 D,
and I
3 3
= — —aj — . 3.319
a3 = G103 — 30) — ¢ D. ( )
Using the Dunham’s expressions for the nth force constants, where f,, = (%) ReR.
we have the a,, in terms of spectroscopic parameters:
fo = 4m?pcPw?
— _Sf QeWe
fs==32 (1 + W) (3.320)

[ > 8
fim g [15 (14 ) - 2]
To quantify the accuracy of their potential relative to that of Hulburt and Hirschfelder [7],

using the potential of RKR, Murrell, and Sorbie [60] calculated the deviation of Visses(R)

and Vg (R) relative to Vg, using the following function:

1 2
Z = AR Z (Vaxr — Vi) (3.321)

where n; is the number of RKR points, and AR is the range covered by these points
and V; is the calculated potential.

The Z function was calculated for three potential regions, namely: the attractive
region, the repulsive region, and the potential as a whole. This Z-test method was
employed for eight selected diatomic systems HF, Hy, 15, O, Ny, OH, CO and NO,
using the potential functions Visgo, and Vg (R) in place of V in (3.321).

For the repulsive part of the potential, Murrell and Sorbie [60] function Vissors(R),
provided a more precise fitting of Hulburt and Hirschfelder [7] Vi (R) in five of the

eight diatomic systems, offering a worse fitting only for the HF, Iy and Ny systems. In
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the attractive branch of the potential, Vrg(R) showed better results for practically all
systems except Iy and NO.

In the overall potential, the Extended Rydberg function performed better on all
systems except for Iy, thus showing that the Vi g,4(R) potential offers, in general, a
better fit to the systems tested [60]. However, this analytical empirical potential does
not produce accurate vibrational eigenvalues and eigenfunctions for highly vibrational

excited states in the asymptotic region of a stable diatomic system.

3.1.27 The Thakkar function

Usually, curves of potential energy for diatomic systems were obtained by one of
four forms: by a table of points; by an empirical function; by a series of powers trun-
cated or through the Padé approximants [22|. Expansions in power series are very
interesting because they provide an analytical form for the potential curve, facilitat-
ing the interpretation. In 1975, Thakkar [22] (THA) proposes a new and generalized
power series expansion, with a nonlinear parameter p, containing both Dunham [24]
and SPF [129] expansions as special cases corresponding to the particular choices of p

n

Vrua(R) = eo(p)X?

1+ f: en(p)/\”] (3.322)

where
A(R,p) = s(p)[1 — (Re — R)"] (3.323)
being p a nonzero number, R, the equilibrium internuclear separation and s(p) an

abbreviated notation for the sgn function defined for:

+1, p>0
s(p) = sgn(p) = . (3.324)
-1, p<O

For p = —1, the equation (3.322) becomes:

V(R) = ay[R — R./R.]? {1 + i an[R — Re/Re]”} (3.325)

n=1

where a,, = e,(—1), and the equation (3.325) is exactly the Dunham expansion (3.300).
For p = +1, the equation (3.322) becomes:

V(R) = by|R — R./R)? {1 + f: bR — Re/R]”} (3.326)

where b, = e,(1), and the equation (3.326) is exactly the SPF expansion (3.301).
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Still, for p > 0 and e,(p) = 0(p > 1) the equation (3.322) becomes:
V(R) = eo(p) + eo(p)[(Re/R)* — 2(R./R)"] (3.327)

which is simply the Lennard-Jones (2p, p) potential [46] (see section 3.1.2).

The radius of convergence of the equation (3.322) is determined by the singularity
of Vrga(R) closest to R = R, in the complex R plane. For p < 0, the singularity
occurs at (RPI — RP))/RP = —1, which implies that for p < 0 the potential (3.322)
cannot converge for R > 2Y/IPIR, [22]. In the case of Dunham potential (p = —1), as
appointed in SPF [129], the expansion can not converge to R > R.. For p > 0, the
pole at R = 0 occurs at (R? — R.”)/RP = —o0, and therefore the radius of convergence
of (3.322) is bounded by infinity.

Thakkar [22] conjectured that the equation (3.322) converges to R in the interval
(0,2YPIR,) for p < 0 and converges to R in the interval (0, 00) for p > 0, converging
faster only in the interval (R,/2/P!, c0) for p > 0. For the calculation of the coefficients
en(p) in the expansion (3.322), Thakkar adapted the Dunham [24] procedure, and
obtained a relation between e, (p) and a, [22].

Regarding the choice of p, p > 0 values lead to a better result since the potential
converges rapidly in the long-range region, which is of great interest when one wants

to study molecular dynamics. Thakkar [22], proposes
p=—a —1 (3.328)

and estimates some values for p through the extensive Calder and Reudenberg analysis
of the Dunham coefficients for 160 diatomic molecules [22].

Thakkar analyzed the behaviour of the potential Virya(R), with p given by the
relation (3.328) for the CO and HF systems, both in the ground state. He compared the

results obtained with the Dunham and SPF potentials, using the truncated expansion:

Vrra®™(R) = eo(p) A\’

1+ en(p))\"] . (3.329)

For CO, Dunham potential proved to be well below that of SPF and Viga™(R),
showing that they agree with the RKR curve [130] for N = 3 or 4. In the calculation
of the dissociation energy, the difference between SPF and Thakkar potential is very
significant, since while SPF provides a 229% error, the calculation of D via Thakkar

has an error of only —3.9% calculated via [22]:

1+) en(p)] ,p>0 (3.330)

being p calculated by (3.328).
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For the HF system, the result is similar to CO, with Dunham potential once again
diverging from the RKR and SPF curve, about 1193% deviation from the RKR curve
for N = 4. In the calculation of the dissociation energy, the truncated function of
Thakkar, for N = 5, presents the best fit with a maximum error of only 7.2%, while
the SPF expansion with the same number of terms presented an error of 204% [22].

Thakkar still calculated the values of the dissociation energy for 20 alkali halides:
LiF, LiCl, LiBr, Lil, NaF, NaCl, NaBr, Nal, KF, KCI, KBr, KI, RbF, RbCl, RbBr,
RbI, CsF, CsCl, CsBr and Csl. For these systems, in comparison with experimental
values, only NaBr had smaller deviation using SPF than Thakkar, being that in average
the deviation of SPF was in 122%, whereas by the Thakkar model the average deviation
was only 28% [22].

3.1.28 The Huffaker function

As we can see, until the 1970s, most research involving potential energy functions
was based on either the Dunham potential [24] or the Morse potential [8]. However,
although Morse presented a good approximation for real diatomic systems and the
Dunham (theoretically) could be applied to any system, both have some disadvantages.
The Dunham series has a poor convergence whereas the Morse function fails to describe
finer spectroscopic details and the introduction of rotational effects is complicated [132].

Thinking about that, in 1976, Huffaker [133| presented a formula for the rotational-
vibrational energy levels of a diatomic system using a perturbed Morse potential along
with additional perturbations describing rotational energy.

The potential function of the perturbed Morse oscillator (PMO) used by Huffaker
(HUF) is given by:

Viup(R) = D[(1 — e *R)2 43 "p, (1 — eme(B=fedyn) (3.331)
n=4

where R, and D, have their usual means. This series converges for all R, except for a

singularity at R = 0, and it is related with the dissociation energy D by:
D+ hcF,—gj—0 = De(14+by+bs+--+) (3.332)

where F, ;= >, V) (v+ %)l JI(J + 1) as in Eq.(2.48) (see Section 2.2).

Note that the potential (3.331) does not have the cubic term. This is possible
only if the unperturbed Morse potential is specified by the location of its minimum
and its second and third derivatives there. Huffaker described, for convenience, the

unperturbed Morse potential by the three parameters p, o and 7, given by:

p=akR, (3.333)
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V2uD,

= 3.334

7 ah ( )
D

= —. 3.335

T=4 (3.335)

The parameter ¢ is approximately the number of bound states of the Morse oscil-

52— Then, as a result of the perturbation calculation, Huffaker [133]

obtained expressions for Dunham coefficients Y;;, with ¢ + j < 4, as function of these

lator, then o ~

p, o, T and by, - - -, bg. He modified slightly the Dunham notation, expressing each Y;;
as Y = Yigo) + Yigg) + Yi§-4) + - -+, where the lowest-order term, of order 74 j — 1 is given
by Y( ) and the terms of higher order are Y;g ), Y;§4) , etc. Some of these coefficients for
rotatlonal—vibrational energy levels of a PMO are given by:

Vg = =%

Y@ = o = au ( 3by — 15bs + 25b5 — 6"’4)

v = el = - (2) P

0 T
v = B0 1,

o2p2

VP = BY = (ghs ) [F28 + 22— 14p+ 15— p2(7p + 9)bs + 150°5

80’4p6

) 985 — 156 — 35by + 49bs + 204  Ldhabs _ 1TToabe _ 2075

}/’2(02) = _wexe(a) == (

170703
+]

Yl(lo) E_agU) :_< 37 ) [p—l]

3%

VP = ol = ( . 8) [*2’)5 4ot AU | T og5, 4 175

8c5p

12

_p (@ _ g,y 335) by + 5p° (29ﬂ 15p + 38) bs
—15p4(17p — 15)%8 +175p%; + p4(1043p + 1005)F — 715072482

Ve) = wetl” = (5Z5) | =ba + 5bs + 5bg — 1|

Vil =40 = (3%5) |75 + 22 — 100+ 5+ p2(p — 1)by — +50°%;)
(3.336)
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where wéo) and Béo) correspond to Dunham’s w, and B, and have the values:

2
W =T (3.337)
o
and
BO - _T 3.338
e O'2p2 ( )

Making power series expansion of the exponentials in Eq.(3.331) and comparing with
Dunham expansion (2.46), Huffaker obtained the relations between the a; Dunham

coefficients and his b; coefficients:

— 2
ap = 7P,

ay = —p;
ag = p (ba+5)
az = p* (bs — 2bs — 1), (3.339)
w= (=T B ).
a5:p5(b7—3b6+%—%—i),
a6:p6(b8—%+%—%+%+%)-

Ignoring the higher-orders correction w'®, etc., Huffaker obtained the Morse pa-

rameters p, o and 7 from experimental values of w,., B. and «., given by:

(cvew, + 6B2)

_ \QeWe +55;) 3.340
2
w
= e 3.341
TS 1B (3.341)
2
o=, (3.342)
We

and with similar approximations, the first three perturbation parameter of Eq. (3.331)

are given from w,.r., V. and w.y.:

(3.343)

2
by = — | Lt P +10p — 5 —3p*(p — 1)b4} (3.344)
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1 [ 203wy, 1702
bo = = | e | by — By + — 4] . (3.345)
5! T 4

To evaluate the convergence properties of the Y;;, Huffaker compared his method
with Dunham’s formulas, and concluded that his method was not only most convenient
(mathematically), but also the most accurate.

Huffaker chose the (*X*) CO diatomic system for testing the perturbed potential
Morse Vyyr(R). He compared his results with the RKR [9-11] experimental curves.
For this diatomic system, the eight parameters o, p, 7, by, cdots, bg were calculated
using the equations from (3.340) to (3.345). Then, the higher-order corrections w'”,
Bg), o and wex(f) also were calculated. Although of these to be practically negligible,
these small corrections were included to obtain the eight parameters before cited.

To compare the accuracy of his analytical potential with others existing at the
time, Huffaker chose those that were also given by a power-series expansion, such
as Dunham [24|, SPF [129] and Thakkar [22] potentials. The unperturbed Morse
potential obtained by Huffaker showed to be superior to all others with a series using
only 3 parameters, presenting the smallest mean absolute deviation from the carbon
monoxide RKR potential. Moreover, the percent deviation of predicted dissociation
energy for CO, from the experimental value, was much smaller using the Huffaker
potential than using SPF, Thakkar, or Dunham potential.

Camacho et al. [134] in 1994, confirms the good accuracy of Huffaker potential for
('¥) CO. Huffaker showed again to be more accurate than Dunham and SPF and
obtained similar results to Thakkar.

In a second paper, Huffaker [135] extended the calculations of PMO parameters
up through by, from spectral data and applied this potential to some more diatomic
systems: HF, HCI and CO (again) in their electronic ground states and also for the
B(3II§,) excited state of I. Then, knowing that the highest PMO parameters to con-
tribute with Y;g-zk) is ba;4j+2k, he obtained the following modified Dunham coefficients:
Y,L-E)O) for i < 6; Yi(lo) for i < 5; YiE)Q) for i < 4; Yi(f) for i < 3; Yiffl) for + < 2, and Yz‘(14) for
1 < 1. Thus, using an iterative approach Huffaker calculated all twelve parameters: p,
0, T, by, -, byo.

Huffaker [135] showed that of the diatomic systems chose, CO was the most suited
for a PMO analysis including the twelve parameters, with maximum discrepancy from
RKR of only about 2 cm™! at the v = 19 vibrational level, whereas, for HF, the error
was about 200 cm™! at the v = 16. For HCI, the results were similar to HF, but
problems of convergence and truncation were not as bad. For the excited state of I,
he obtained that the values of b s were so large that the perturbation finally became
bigger than the Morse potential, and because of the very large value of o, convergence
properties were good. Huffaker claims that an accurate PMO analysis through by
should be possible for the ground state of any diatomic system, and for excited states,

consistent results should be obtained.



Potential energy functions 115

However, in 1979, Goble and Winn [136] obtained a potential function for the
X?Y* and AT of the weakly bound system NaAr and the A®Il3/, state of NaNe
derived by inverting spectral data to analytic potential functions. For NaNe(A?II;5),
the Huffaker function presented an inadequate behavior, similarly for NaAr, which led
the authors to believe that this performance was general for weakly bound molecules
when the Huffaker potential is used. For these cases, the Thakkar [22] function is more

appropriate.

3.1.29 The Ogilvie function

Ogilvie presented his first potential for diatomic systems at the Canadian Spec-
troscopy Symposium, in Ottawa, 1974. He stated that although there are many po-
tential functions which can be fit to R, and k., and other parameters derived from
vibrational-rotational spectra, for a lower portion of the potential well a flexible and
accurate function which will reliably reproduce all the fitting procedures by which the
spectroscopic parameters are derived, is still the Dunham [24] potential function given
by Eq. (2.44). Most of the potential functions purposed by Ogilvie was Dunham type,
because he believed that the general form of the potential energy of a diatomic sys-
tem should be given as a function of some general parameter related to internuclear
separation R to be represented as a truncated polynomial or power series of £ (see
Eq. (2.44)). Also, Tipping and Ogilvie [137| derive matrix elements appropriate to
a generalized (Dunham potential), and these were the most accurate analytic results
to date and were computed in detail for HCI (see details in Ref. [137]). The Ogilvie
potentials are known as the Ogilvie-Tipping series (O-T).

In 1976, Ogilvie and Koo [138] calculated the Dunham potential coefficients a;,
0 < i < 6 (except 4 for HI), derived from spectroscopic data of diatomic systems
HF, HC1, HBr, HI and CO in their electronic states. For this, they used the Dunham
potential function:

Vpun = heag€®(1+ ) ail’) (3.346)

i=1

where & = R;%—f'e. This function has the following properties:
(i) V=0at R= Ry;

2
(ii) % = k., being k. the constant force.

R=R.

The coefficient aq is related to the force constant according to equations:

w k.R
= Y _ Delte 34
T 4B T 2he (3:347)
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being w! and B} adjusted parameters where Dunham corrections to Yy; and Yjy were
applied. The other Dunham coefficients are determined by iterative procedure from
equations (given by Dunham) using the energy level equation (2.48). These coefficients
a;, © > 1 determine the manner in which the lower portion of the potential function,
V< %De, deviates from the parabolic form of the limiting case, a; = 0, for all 7 > 1, of
the harmonic oscillator [138]. The results obtained by Ogilvie and Koo were in good

agreement with the previous sets of a; existing at the time.

*

They computed correlation matrices for the coefficients a;, w;,

and B} and also
for energy coefficients Y;; for all diatomic systems. In general, the coefficients a; were
not strongly correlated with each other and w* and B} (absolute values of off-diagonal
elements less than 0.9) except that a; was fairly anti-correlated with ay (matrix element
< —0.95). The calculated coefficients Y;; also were not correlated with each other,
except Yos and Y7y for which the matrix elements ~ 0.99. Nevertheless, the calculated
Y); are generally in good agreement with observed values. Ogilvie and Koo observed
also that for the hydrogen halide molecules the coefficient aq varied little in this group
and the other potential coefficient a; to a4 (except a4 of HI) showed a smooth monotonic
increase as the halogen mass increases [138].

Still in 1976, Ogilvie [139] following the suggestion of Tipping, examined the series
expansion (3.346) in the variable £ = g;g:, with £ = —1 when R — 0, and £ =1
when R — oo. Note that, in this case, V(R) — oo at R = —R, and V(R) = 0
at R = R., and at R = 0 we have V(R) defined (or regular), what allows one to

introduce correct behavior near the origin by Coulomb subtraction, 7. e., without the

Coulomb repulsion (For more details see section B of Ref. [140]). Then, the truncated
Coulomb-subtraction Ogilvie-Tipping series (CS-OT) yield finite values V(R) at both
limits R =0 and R ~ oc.

Engelke [140] in 1978, compared the O-T and CS-OT functions with Thakkar [22]
and SPF [129] potentials, because all have the same feature: are a Dunham-type power

series. He considered O-T function as:

Vor(R) = cp&? (1 + Z ci§i> (3.348)

R—R.
R+R.

five coefficients are given by:

where £ = and the coefficients ¢; are related with Dunham coefficients. The first

co = 4ag
g =2(a; +1)
co = (4as + 6a; + 3) (3.349)
c3 = (4az + 8ag + 6a; + 2)
¢4 = (16a4 + 40a3 + 40as + 20a; + 5).

He calculated these coefficients ¢; for (1so,)? state of Hy and obtained that for
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R/R. > 1 both Thakkar and SPF were slight better than O-T when ag, a; and ay
Dunham coefficients were known. On the other hand, the CS-OT series was superior
to all the other series in this region. Now, for R/R. < 1, the O-T series was more
accurate than Thakkar and SPF potentials, and CS-OT is again better than all the
other series [140].

The similar situation occurred when ag, a1, as, az and a4 were known. In the region
R/R. > 1 the Thakkar potential was slightly superior and the SPF potential slightly
inferior to the O-T series. On the other hand, for R/R. > 1 the O-T series was more
accurate than both potentials. For 0 < R/R. < 5 the CS-OT series was better than
the all other, while for R/R, > 5 the Thakkar potential became better [140].

In 1981, Ogilvie [141] proposed a general potential energy function for diatomic
systems. This function more flexible is showed as a family of functions including
previous polynomial functions having more restricted validity, like those presented
before.

As before, Ogilvie considered the general form of potential energy as a function
of internuclear separation R being given by a truncated polynomial or power series of
argument w: )

Vocr(R) = dow? <1 +) diwi) : (3.350)
i=1

He considered that w can assumes three forms, and therefore Vo (R) can be three

different potentials series:

(i) if w — z = R};—fe, Vocr(R) is the Dunham potential (3.346), and then, the

coefficients d;, 0 < i < k, are written as a;;

(ii) if w — y = == Voer(R) is the SPF potential (3.301), and the coefficients are

written as b;;

2(R—R.)
(R+Re)
written as ¢; (actually, this is the same form presented by Ogilvie in 1976 [140],

but using the 2¢ variable).

(iii) f w — 2z = is the new form proposed by Ogilvie, and the coefficients are

In all cases, the expansion series is made about R = R,., and thus z = 21—"; — i—yy Note
also that for R ~ R., x ~ y ~ 2z and ag = by = ¢y, and for R — 0 and R — only z
remains finite at both limits, with 2 = —2 and z = 2 respectively.

For convenience, Ogilvie [141] considered a potential energy function of a general
type of truncated polynomial that could represent V(x), V(y) and V(z) in a single

expression. This is given by:

V(W) = di™w?, <1 +) d;ﬁnwfm> : (3.351)
i=1
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where the argument w,,, becomes a function of two integer parameters m and n as

well as R and R,:

W = (m(; ;)J(r}i J_%je). (3.352)

Note that these relations define a family of functions which, as earlier:

(i) if n = 0 we have V(x);
(i) if m = 0 we have V (y);
(iii) if m =m # 0 we have V(z).

To check the accuracy of your family potentials, Ogilvie [141] chose the diatomic
system Arsy in XlE;r state. For this, he used a sample of 85 points in the range
2.5 < R/1071%m < 6.7, with geometrically increasing interval, in a general routine
LMM1 for fitting parameters in the same initial estimates of parameters d"" were
applied to each set of m and n. Two sets of coefficients, numbering either seven
(dg™ — dg™) or nine (dy"™ — dg™), were tested. The data demonstrated that the V' (y)
was slightly superior in these cases than V(z), but four times as many iterations were
required.

Ogilvie highlighted that V(y) and V(z) were not the best, but the case m = 4,
n = 1 was the best for determination of seven coefficients, whereas the case m = 4 and
n = 3 was best for the set of nine coefficients.

The coeflicients d[™" are related with ¢ coefficients in V(z) by equations:

— mn

a=d"+ (3.353)

el - o
) () - ]+ 5 ) [ - ],

where (’:) is the combinatorial m and k > 1.

Thus, the V(z) function defined according to the equation for V(w,,,) is a useful
function, and among the others, it is the only one in which the wy; = z parameter
possesses the desirable equivalence of magnitude of limiting values, corresponding to
R =0 and R — oo, that ensure convergence within the entire range of accessible, real
nuclear separation [141]. The same result was obtained by Engelke [140] as cited before,

in which the function CS-OT corresponds to V(z) without the Coulomb repulsion.
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3.1.30 The Mattera function

From the 1970s, potentials began to present functional forms in power series expan-
sions of Dunham-type, and closed formulas began to appear less frequently. Simons
et al. [129], Thakkar [22], Huffaker [133] and Ogilvie [138] are some of the potentials
presented earlier that are given in this way, and these proved to be accurate.

Then, in 1980, Mattera et al. [142] (MAT) presented a new representation of po-

tential energy curves for diatomic systems using a function Dunham-type:

where © = Ré—fe and f(z) as well as the Thakkar proposal, which contains a free
parameter:
—-p
fla)=1— (1 + ﬁ) (3.355)
p
with p > 0.

The coefficients d; are given in terms of Dunham coefficients a;, the first five being:

ay
do = 2%

ot (10) o (2)
d3:3—3+2<1+1—17> [dg—%(§+5)+2—1<§+%+3)}

=2 +3(1+1) -2 (2+13) + 4 (B+2+6) — o (B + 9+ 204 31)]
(3.356)
These coefficients can be determined since the Dunham coefficients are known, and if

p and v are properly chosen.
The main advantage of the present expansion is the high flexibility of its leading

term:

2
Vo(R) :do{l— {1+ Z% (R—Re)] p} , (3.357)
and this function has a interesting property, because V4(R) becomes the Morse poten-
tial [8] for p — oo, the Lennard-Jones (6,12) potential [51] for p = 6 and the Kratzer
potential [16] for p =1 [143].

Mattera et al. also obtained the vth vibrational level E, of a particle in the potential
Vo(R) [144]:
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EV:dQ—dO

s\VS L4l
(HE) — AS2 : (3.358)

1 1
X X - (2md0)1/2Re . (lJrE) 1 _ 1 3+;
where m is the mass of particle, A = o o= s T3 The Eq.

(3.358) is more accurate than the Dunham [24] expansion of E,, evaluate for V; up to
the cubic term in (v + 1).

To get a proper Vo(R) for a given diatomic system, Mattera et al. proposed two

ways:

(i) p and 7 are obtained from Dunham coefficients a; by setting d; = ds = 0 in Eq.
(3.356), producing:

12a5 — 11a?
_ as ay ai do = @ (3359)

- T1a. =~ 92 Y=/ )
12ay — Ta} <1 N %) 2

(ii) do, 7- and p are determined by a direct fit of the vibrational spectrum with Eq.
(3.358).

The procedure (ii) with the correct choice of R, proved to be more suitable, leading
to a term Vf that accurately reproduces the RKR curves [9-11]. The procedure (i)
showed to be less satisfactory in most cases, depending on quite accurate knowledge
of the Dunham coefficients. The V[ term was calculated using both procedures for
HHg and CO, whereas for Ary, Vj was obtained from the procedure (ii) only. Here, all
diatomic systems considered are in their ground electronic states.

Mattera et al. obtained that for CO both procedures yield accurate results and
for HHg the procedure (ii) was more adequate. Furthermore, the p values obtained
in both ways, (i) or (ii), differed significantly from those obtained by Thakkar [22].
They also showed that large p values are more suitable in describing molecular inter-
actions, indicating that the Morse potential was still a good representation of diatomic
potentials.

In 1994, Camacho et al. [134] presented a comparative study of the eight most
important power-series expansions, including Dunham [24|, SPF [129], Thakkar [22],
Huffaker [133], Ogilvie [141], Mattera [142] and Surkus et al. [145](see the next section),
as fitting functions for approximating rotationless RKR potentials [9-11]. The eight
potentials given by truncated power series expansions were analyzed for CO (X!'¥T),
Hy (X'¥]) and LiH (X'S* and A'YT) diatomic system and for CO (X'XT) was
analyzed also the behaviour of Vj term.

Camacho et al. showed that the worst fit for CO corresponded to Ogilvie function
due to the convergence of this potential, which is very slow and its limits give a finite
small number when R — 0. On the other hand, the Mattera potential presented the

smallest standard and mean deviations for this diatomic system. For the ground elec-
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tronic state of LiH, the best fitting was obtained by Thakkar potential, and in this case,
the Dunham potential presented the worst fit, followed by the Ogilvie potential, which
also showed greater deviations than the others. For LiHl (A'¥*) and Hy (X'X7), the
Mattera potential presented, in both cases, lower deviations than Thakkar, SPF, Huf-
faker, Ogilvie, and Dunham. Moreover, a good fit with only 1} term of a power series
expansion was obtained more accurately from functions with two nonlinear parameters,
such as the Mattera or Surkus potential.

However, Camacho et al. observed that for fitting power series expansions with
an intermediate number of fundamental basis functions it was better to use a type of
function with only one non-linear parameter, such as the Thakkar or Huffaker poten-
tial, because the effort in calculating the second optimum non-linear parameter of the

Mattera function, for instance, was not the precision of the fits.

3.1.31 The Dmitrieva-Zenevich function

In 1983, Dmitrieva and Zenevich [146] (DZ) proposed a four-parameter potential
energy function also inspired by the Dunham expansion, following the trend of the

proposals at the time. Inspired by Simons, Parr, and Filan [129], the potential was

proposed using the power series on {(R) = R]}fe, and they presented the function as a
closed-form.
The potential proposed is given by:
Voz,(§) = %5 £<¢
DZy - (1-ta16)®’ > Qm
(3.360)
_ c
VDZH(S) - De_Wa £>€ma
where ag and a; are Dunham’s coefficients [24]
2
w
= ¢ 3.361
“= 4B, (3.361)
and
aewe
=—-1— 3.362
o 652 (3.362)
where a., w, and B, have their usual meanings.
The constants C' and &,,, are obtained by relations:
VDZI (5771) = VDZII (5771) (3363)
ensuring also the continuity of the function in &, and
% %
dDSZI = c];gZH (3.364)
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These conditions result in the quartic equation:

bm [~§01&n, + 8+ 5a1) &n+2] _ D, (3.365)

6 (1 Ltai&,)" ag

and the smaller positive root of this equation gives the desired &,,. Then, the C

parameter can be obtained from:

ao&m (2 + 3a1&m) (1 + &) RS

= 1
6 (1—2a1&m)

(3.366)

Note that Eqn (3.360) fulfills:

(i) As & — oo, the potential converges asymptotically to a finite value, and in this

case, we have, Vpz,, — De;

Vbz,
dR
R=R.

(ii) The potential has a minimum (in the region § <¢,,,) at R = R,, i. e.,

0;

(i) Vpz,, — oo at & = —1(or equivalently at R = 0).

Dmitrieva and Zenevich [146] analyzed their potential for Hy, I, Ny, Oo, CO, NO,
OH and HF diatomic systems in their ground electronic states, and compared them
with RKR [9-11] experimental curves [15|. Their potential presented the mean error
from 0.52% for HF and O, to 1.8% for NO and 1.9% for Is.

To calculate the anharmonicity w.z., they suggested to use the expression:

7 we)”
w.r. = B, (1 + ‘é gz ) (3.367)

and tested for the eight diatomic systems mentioned above, giving an average error of
7.9%, much lower than those produced with the potentials: Morse [8], Rosen-Morse [29],
Rydberg [9], Poschl-Teller [30], Linnett [61], Frost-Musulin [114], Lippincott [43] and
Varandas [147].

3.1.32 The Surkus function

We have seen several potential energy functions represented as a power series, all

based on Dunham’s expansion,

Voun = ao€? (1 + Z aifi) (3.368)
=1
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with different proposals for &, being:

(i) €= % by Dunham [24];
(i) ¢ = B by SPF [129];
(iii) & =s(p) [1 — (Z)"] by Thakkar [22];

(iv) £ =2 §+Ze by Ogilvie [141].

Then, in 1984, Surkus, Rakauskas and Bolotin [145] showed that actually, all these

potentials (i)-(iv) could be obtained from a generalized form for £, given by:
(R — RY)
(RP +nR?)
where n and p are real numbers with the conditions that p # 0 and n # —1, and
s(p) = 1if p > 0 and s(p) = —1 if p < 0, like defined by Thakkar [22] (see Section

3.1.27).
Here € is a parameter in the Surkus (SUR) potential, given by:

Vsur(R) = 90§’ <1 + Zgz ) : (3.370)

Esur = s(p) (3.369)

Surkus observed that:
(a) if n =0 and p = —1 in (3.369), we have (i);
(b) if n =0 and p =1 in (3.369), we have (ii);
(c) if n =10 1in (3.369), we have (iii);
(d) f n=1and p=11in (3.369), we have (iv).

Note that the parameter {sy g remains finite for any value of R, ensuring that the
Surkus generalized potential may produce a qualitative approximation of the potential
curve for all parts of the internuclear separation.

The Dunham’s formulas to coefficients a; are defined by the derivatives of the

potential energy function at the minimum, in this case, given by:

1 2 d%SUR
= — 371
ag R < i) (3.371)

and

RH—Q dz‘+2 VSUR
P = - . . 3.372
Y (i +2)] ( dR+? )R (8372)
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Surkus et al. [148] considering the case when p > 0, he obtained the parameters g;

relating them to the Dunham parameters a; by equations:

go = aofi_Q

g =wmé = &g

g2 = ax&y " — 1836 — 3667 — 59188y

g3 = a3&;” — 268380 — 54Tt — 31886 — 3916677 — 2926081

gs = @&yt — 2360 — £6GE’ — 56870 — 2860 — 11688 — tn&aé
—3g283¢7" - §92§351_3 — 203667

g5 = as&;° — %535451_7 - ﬁoé&ff? - ﬁ&sﬁfﬁ - §91§§53§1_7 — 518367060 - %91525451_6

— 1887 — 2860 — 92686 — R gobulTt — 2038367t — 20563607 — 39ualy
(3.373)
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where
& =R = G
R=R.
L=RME =a-1) -2
R=R.
G=RME| =& —Dp—2) —66(p— 1)+ 66,
R=R.
G=RUYE =G —1p-2)p—3) -2 (p— 1)(Tp - 11) + 365} (p — 1) — 24¢],
R=R.
=R =ap-1p—2)--(p—4) - 10&(p - 1)(p - 2)3p - 5)
R=R.
+30¢3(p — 1)(5p — 7) — 240¢{ (p — 1) + 120¢],
G=REE| =&-1D@-2)--(p—5) - 26 p - 1)(p - 2)(31p* — 132p + 137)
R=R.
+90&3 (p — 1)(6p* — 19p + 15) — 40§f(p —1)(39p — 51) + 1800&7 (p — 1)
~720¢,
G=RIGE| =a@-1D)@—2)-(p—6) =14 (p— 1)(p—2)(p — 3)(9* — 39p + 42)
R=R.

+4263(p — 1) (p — 2)(43p? — 141p + 116) — 840&} (p — 1)(10p* — 29p + 21)

+4200£7 (p — 1)(4p — 5) — 151208 (p — 1) + 5040¢7.
(3.374)
In the case that p < 0, relationships can be obtained from (3.373) by substituting
—g1, —g3, —¢gs for g1, g3 and g5 respectively. Thus, if the spectroscopic constants
F,; are known, the coefficients a; can be calculated with Dunham’s formulas [24], and
substituting a; into (3.373) and (3.374) the parameters g; of the potential (3.370) can
be obtained.
Surkus et al. [145] also obtained relations between the dissociation energy D and
the coefficients g;. If p > 0 and R — oo, then £ — 1, and thus we have:
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D = go (1 + igz> : (3.375)

On the other hand, if p < 0 and R — oo, then & — %, and thus we have:

N
90 9i
D==—11 = . 3.376
n2 ( + ;:1 m) ( )

Since the dissociation energy is known, relations (3.375) and (3.376) can be used
to estimate the following coefficient g; on the basis of the coefficients determined.

Firstly, Surkus et al. [145] applied their potential for (X'¥7) Hy diatomic system.
In order to obtain coefficients g; of the Vsyr(R) from Eq. (3.373), the values of p and

n were estimated using the relationships:

2p
n=|——|-1 3.377
) (8.377)
and 9
p* — §a§ +6as —1=0. (3.378)

The roots of Eq. (3.378) provide two potentials [148], being:
(i) Vsur,: p=1.1634, n = 0.3170, go = 0.465369 (a.u.), g1 = g» = 0;
(ii) Vsur,,: p=1,n=0.5, go = 0.817083 (a.u.); g1 = —0.4050, g, = —0.0096.

To evaluate their potential to (X'X}) Ha, Surkus et al. [145] compared it with the
Kolos-Wolniewicz potential (Vi ) using the expression A; = (|Vxw (R;) =V (R;)|/D) x
100%, where D is the dissociation energy of the ground state of Hy. The mean error
for Vsygr, and Vsyg,, potentials was 5.3%, whereas for SPF it was 5.9%, for Thakkar
it was 6.2% and for Ogilvie it was 7.5%.

The Surkus potential showed to be accurate mainly for diatomic systems containing
cations in their ground electronic states. In 1991, he applied his generalized potential
to SiF* [149] and obtained better results than SPF, Thakkar, Ogilvie, and Huffaker. In
1992, he obtained the potential energy function of PO™ [150], and in 1994, he obtained
the potential energy function of KrH™ [151], standing out for the correct long-range
behavior for both.

In 1994, the good result of the Surkus potential for (XlE;) H, was confirmed by
Camacho et al. [134] which showed that the Surkus potential was better and more
accurate than Mattera [142|, Huffaker [133], SPF [129], Thakkar [22|, Ogilvie [141],
Engelke [140] and Dunham [24] potentials.
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3.1.33 The Pseudogaussian function

Still in 1984, Sage [152] introduces a new potential with three parameters, and as
well as Morse [8], it can be used for discussing large-amplitude stretching vibrations.
Sage called his potential a Pseudogaussian (PG), and energy levels and wavefunctions
can be found for the three-dimensional rotating system using the same methods as for
the one-dimensional oscillator for this potential, in contrast with the Morse oscillator.

The Pseudogaussian potential proposed by Sage is given by:

Vpa(R) :De{l— [1+§( _%Eﬂ exp {g (1—%)” (3.379)

ke R2

where f = —24(4 + 2A)1/ ? with R, and D, having their usual meanings and A = TR

the Sutherland parameter.
This function is similar to the three parameter Varshni III potential (3.252) (pre-
sented in Section 3.1.21) in some aspects. Note that Vpg(R) satisfies:

(i) Vpg(R) come asymptotically to a finite value, in this case D,., as R — o0;

2
=0 and L'z

(ii) Vpg(R) has a minimum at R = R,, i. e., &ec v

dR

R=R.
(iii) Vpg — o0 at R = 0.

We obtained the expressions for the spectroscopic parameters a, and w.z., from
Dunham’s relations (2.57) and (2.58):

8+ 3A — (4 +2A)(4 + 2A)1/2 682
o = {830 -UH2A)A+2A) 7 1 65 (3.380)

3A We

and

64(10 4+ 9A) — 4(20 + 3A)(4 + 2A) (4 4 2A)1/? 2.1078 x 1016
WeTe = { A2 +22(6 + A) SR ,
(3.381)
where, for w.x. we use the approximation suggested by Varshni (see Eq. (7) in

Ref. [14]).

For comparison only, if we use the equations (3.380) and (3.381) to calculate «, and
were with the same experimental value A used by Varshni (see table VIII in Ref.[14])
and with R, p and w, collected by Herzberg 96| for OH diatomic system, the errors
correspond to —23.15% and —15.1% respectively. However, for the Morse potential the
errors are only 0% and +13.9% for a, and w.x., respectively. The results for Vpg(R)
potential also are less accurate than the Varshni potentials Vi 4r, and Vi ag,,,, both

with three parameters.
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As well as the Morse potential, the PG function yields a soluble Schréodinger equa-
tion [153], but in many aspects, the PG potential is easier than the Morse function.
This can be seen when dealing with a non-rotating molecule, for example.

To obtain the PG eigenfunctions, Sage suggested an expansion of the Schrodinger
equation in terms of a complete set of three-dimensional pseudoharmonic (PH) oscil-
lator functions given by [152]:

1 R R\’
Vo = —keR2 [ — — =< ) . 382
PH = ghelte (Re R) (3:382)

The PH basis set corresponds to functions with the same equilibrium force constant
k. and bond length R, as the PG oscillator. Furthermore, these functions have reason-
able behavior at R = 0, near the equilibrium bond length R, and at oo [154], and for
small amplitude motion they correspond to the rotating and harmonically vibrating
diatomic molecule. As well as the PG potential, the PH oscillator provides exactly
the energy levels and wavefunctions for any angular momentum using the polynomial
method, as demonstrated by Sage and Goodisman [155].

Sage analyzed the PG potential to the electronic ground state of the non-rotating
OH system, and he compared his results with the Morse [8] potential. The RKR [9-
11] experimental curve was used as a reference to calculate the deviations from these
potentials.

The vibrational energy levels related to the PG potential were obtained from a linear
variational calculating using a PH basis set with a maximum of fifty basis functions.
Sage observed that with 25 functions the lowest 8 energy levels were determined to
0.1 cm™!, but all states v > 10 had errors larger than 100 cm™!, and even for 50
functions accurate energy were found for v < 11. Thus, if there is interest in states
near the dissociation limit, the PH functions should be modified using smaller values
of k. or larger values of R.. For example, using the force constant equal to 0.6k, and
equilibrium bond length equal to 1.2R., Sage showed that only 25 PH functions gave
comparable results to the original calculations with 40 PH functions, a considerable
improvement.

Sage observed that to OH system, the PG potential coincides with the Morse po-
tential if R — R, and when R — oo, but in other regions, the PG potential lies above
the Morse. Although the potential PG itself has not promoted major improvements
over the potential of Morse, a modified version of this was able to accurately represent
the true internuclear potential. This modified version called MODPG is the sum of
one PG potential with force constant 0.6k, and dissociation 0.4D and one with 0.4k,
and 0.6D, respectively [152].

In 1985, Sage and Goodisman [155] showed the advantages that the pseudoharmonic
function possess over the harmonic, such as the pseudoharmonic potential has a lager

force constant inside the equilibrium distance than outside and becomes infinite for
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R = 0; its eigenfunctions and eigenvalues may be obtained in closed form, including
when a centrifugal force is present. Thus, pseudoharmonic functions are one of the
best for building potential energy curves.

Royappa et. al [42], in a comparative study already cited before, compared for 14
diatomic systems in their ground electronic state the Pseudogaussian potential with the
potentials: Morse [8], Rydberg [9], Lippincott [43|, Varshni III [14] and Deng-Fan [41],
all with three parameters, and also with others potentials with 2, 4, 5 and 8 parameters
(as can be seen in before sections). In relation to the functions with three parameters,
the Pseudogaussian potential energy curve, on average, presented a lower error than
Lippincott and Deng-Fan, but it proved to be less accurate than Varshni, Rydberg and
mainly in relation to Morse, with almost twice the average error. Particularly for OH

diatomic system, the same results were observed.

3.1.34 The Varandas function

The construction of Varandas potential [156] was inspired a method known as many-
body-expansion (MBE). The many-body expansion was proposed by Sorbie and Mur-
rell [157], in 1975, when they presented the method for constructing analytical potential
energy surfaces for stable triatomic system from spectroscopic data. The analytical po-
tential for triatomic system are an extension of Extended Rydberg function [131]. They
chose as variables, for the potential of the ABC system, the three internuclear distances
Ri(Rap), R2(Rpc) and R3(Rca). The three bond lengths are independent coordinates
but they must accomplish the triangulation restriction R; < R; + Rj. The complete

potential is written as a sum of two and three-body terms as follows:
V(Ry, Ry, R3) = Vap(R1) + Ve (Rs) + Vac(R3) + Vi(Ry, Ra, R3), (3.383)

where the two-body potentials Vip(R1), Vec(R2) and Vac(R3) are given by Murrell-
Sorbie potential (3.314):

Vxy = =D.(14+ a1 R + ayR* + agR3)e” 7 (3.384)

and the three-body potential has the form:

3
Vi(Ry, Ra, R3) = P(s1, 53, 83) [ [(1 = anhry;si/2) (3.385)

i=1

being P a polynomial up to quartic terms and s; the internuclear distance relative to
the triatomic equilibrium configuration. V; becomes zero at all dissociation limits, i.
e., when any two of the three coordinates becoming infinite.

The essential feature of the model is to take the potential as a many-body expan-

sion the individual terms of which are determined by the potential functions for the
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dissociation fragments. The MBE was first applied to HoO system by Sorbie and Mur-
rell [157]. In 1976, Murrell, Sorbie, and Varandas [158| applied the same potential to
O3, making the first application to a system in which there is more than one stable
minimum in the triatomic surface.

Then, in 1977, Varandas and Murrell [159] extended the Sorbie and Murrell po-
tential (3.383) to deal with larger polyatomic systems. This extension is based upon
a many-body expansion of the total potential energy and has the objective of repro-
ducing both the equilibrium properties of any stable molecule on the surface and the
asymptotic dissociation limits. In this work, they presented a general N-body poten-
tial which consists of expressing the total molecular potential energy as a many-body
expansion in the energy of all the fragments. According to this approach, the potential

of a polyatomic molecule is written as:

Vagc.n(R) = Y VED(R) + D ViDo(Ry, By, Bs) + -+ + > Vi y(R)  (3.386)

where the summations extend to all distinct interactions of a given type, and the energy
of the separated atoms, in the states which are produced by adiabatically removing
them from the polyatomic, is taken as the zero of energy. The coordinate R denotes the
set of all interatomic separations and is assumed that only one atomic state is produced
upon dissociation. Analogously, Vﬁg)(Rl) represents the two-body interaction potential
for atoms A and B separated by R;, and VEB)(Rl) — 0 asymptotically, when R; — oo.
Still, VfgC(Rl, Ry, R3) represents a three-body term that must become zero as any of
the three atoms is infinitely separated from the other two, and so on for the higher-order
N-body energy terms.

In the same year, Varandas and Murrell [160| presented an MBE type function which
covered a limited region of the ground state surface of ammonia. This region contains
the two minima and the inversion barrier. They concluded that the surface, in general,
was in fair agreement with the experimental data. However, the barrier to inversion
however was more than twice as great as the experimental value. In 1983, Spirko [161]
showed that several approximations to the ammonia potential function were introduced
and this potential function was, unfortunately, of very limited accuracy. At the time,
Spirko presented a significantly better description of the genuine ammonia potential
function by using a modified Pliva potential function (see more details in Ref. [162]).

In 1982, Varandas and Brandao [163| expressed the interaction diatomic potential
in terms of the Hartree-Fock (HF) interaction energy, Vgyr(R), and the interatomic
correlation energy as approximated semi-empirically from the second-order dispersion
energy calculated including the effect of charge overlap between the electron clouds of
the two interacting species, Vipser/aisp(R2). The total interaction energy by the sum of

the Hartree-Fock interaction energy and the interatomic correlation energy that goes
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asymptotically to the dispersion energy:
V(R> = VHF(R) + V;nter/disp(R) (3387)
The dispersion energy calculated, including the effect of charge overlap, is given by:

‘/inter/disp(R) = - Z OZA,IBXZA,IB (R)R_2L (3388>

la)lp

with x;,, being R-dependent dispersion damping functions which account for the

charge overlap effects. These functions are given by general form [163]:

Xiaip(R) ={1— exp{[_dl(QL)$(1 + d2<2L>x)]}}2L (3.389)
with .
v== (3.390)
p= e J;VRO), (3.391)
Ro =2((ra®)' + (rs®)'/?), (3.392)

where R, is the equilibrium diatomic geometry, is to be self-consistently determined,
Ry is the Le Roy [164] distance at which the undamped dispersion energy, and dEQL)(i =
1,2; L = 3,4,---) are universal numerical constants which are obtained from existing
ab initio data on the >3 state of Hy. Still, (r4?) is the expectation value of the square
of the radius of the outermost electrons in the interacting species A.

As the dispersion damping functions corresponding to a given value of L have
the same R-dependence irrespective of the specific pair (I4,(5) involved, Vinier/aisp(R)

assumes the approximate form to:
L=3

with
(Re + 2.5Ry)

2 Y

The short range repulsive region of the potential can be approximately described

p= (3.394)

by Hartree-Fock theory. In many cases the potential shows, in this region, an inverse
exponential dependence in R which is commonly approximated by a Born-Mayer [33]

type function:
N
Virr(R) = Aexp{ (— > bZ-Ri> } (3.395)
i=1

being N usually 1 or 2. Varandas and Brandao [163] obtained an equally good func-
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tional form given by:

Vir(R) = AR™! exp{ (— > bZ-RZ) } (3.396)

They showed that by combining the asymptotic power series expansion of the dis-
persion energy suitably damped to account for charge overlap effects at a small R
with the generalized Hartree-Fock repulsion good agreement was obtained with the
available information on the lowest triplet state potential of the alkali dimers. In all
other applications made including rare gas-rare gas, H-rare gas, and alkali-rare gas
interactions as well as MgQ(lE;), and the isotropic components of the H-H,, He-Hy
and Hy-Hy potential energy surfaces, the model presented in (3.387) produced results
in excellent agreement with ab initio and experimental data. Thus, the model provides
a physically correct description of the interaction potential particularly at the interme-
diate regions close to the van der Waals minimum [163|. This success indicated that
a general potential for N-body systems was about to be born which would be widely
used worldwide.

Then, in 1984, Varandas [165| suggested using a double many-body expansion
(DMBE) of potential energy surfaces which, being an extension of the previous ap-
proach (3.386) leading to a reliable description of the potential surface from short to
large interatomic separations. He used for this a well-known approach making a further
partition of the molecular potential energy by splitting each N-body energy term into
Hartree-Fock and correlation energy type components.

In the DMBE approach the two-body energy terms is given by:
Vip(R1) = Vi gyp(Ba) + Vi, oy (1) (3.397)
and analogously, the three-body energy terms is given by:
V(R Ra, Rs) = Ve, (R, Ra, Rs) + Ve o (Ry, Ro, Ra). (3.398)

As the two-body energy terms are written as a sum of the near Hartree-Fock en-
ergy, which is purely repulsive in the case of interactions involving neutral closed-shell
atoms, and approximate representation of the correlation energy which is generally an
attractive contribution, Varandas referred to this model by HFACE, i. e., Hartree-
Fock-approximate correlation energy [165]. From this moment, the long-range term
Vinter daisp(R) is referred as Vo, (R).

This model was applied to the triatomic system HeH,, and the results were in good
agreement with available accurate ab initio calculations. Varandas [165| highlighted

some advantages of using the DMBE approach:

Firstly, one expects different rates of convergence of the many-body ex-
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pansion at short distances where the Hartree-Fock energy is the dominant
component, and at large distances where the interatomic correlation energy
dominates. Secondly, there are practical advantages in treating the Hartree-
Fock and correlation energy components separately due to their different
functional forms. The third reason is related to our main goal which is to
interpolate the potential energy surface at intermediate distances, where
a fully correlated ab initio electronic structure calculation is prohibitively
expensive, from its asymptotic energy components at short and large dis-
tances which are much easier to compute. Finally, one should refer to the
advantages of following current quantum chemical ideas on the partitioning
of the total interaction energy, thus conveying the model a sound full basis

lying on physically meaningful energy components (VARANDAS, 1984).

In 1986, Varandas and da Silva [166] showed how to obtain diatomic potential
energy surfaces, in special, using the Hartree-Fock Approximate Correlation Energy
(HFACE) model. As before, the total potential is given by:

V(R) = Vigp(R) + Veorr(R) (3.399)

where Vi p(R) stands for the (extend) Hartree-Fock energy including the amount of
correlation energy which is necessary to guarantee the proper behavior on dissociation,
and V,...(R) is the interatomic correlation energy which is semiempirically represented
by the dispersion energy damped.

The global short-range energy was chose as

i=1

Viur(R) = —DR” (1 + Z airi> exp(—~r), (3.400)

being r = R — R., D the dissociation energy and « can be zero, and in this case, it
represents the Hartree-Fock energy by the Extended-Rydberg potential, as suggested
by Murrell and Sorbie [60]; or v = —1, which was imposed the proper Coulombic
behaviour at small values of R [166].

The « value can be obtained using the similar method (3.315) proposed by Murrell
and Sorbie in the section 3.1.26, from the quartic equation:

UW 4+ 4yU® 4 6420@ + 4430 +4*D = 0, (3.401)

and then, the coefficients a;, i = 1,2, 3, by the relations:

UM
m= "5 +1 (3.402)
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1 [U® aU®)
== 2 2 A4
w=g |G 0+ (3.409)
1 TU® U® 2U(l) 5
_ = _ R 404
as 6[D +37D + 37 o) ~|—7] (3.404)
being
y d'U(R)
() — 4
U ¥ (3.405)

the ith derivative of U(R) = —R™*[V(R) — Veorr(R)] with respect to R. The largest
~v-root gives the best potential in general.

To represent V., they used:

Verr ==Y CPxa(R)R™ (3.406)

n=6,8,10,-

where now, the damping functions are defined as:

Xn(R) = [1 — exp{(—Az — Bz*})]" (3.407a)
r=2R/(R.+2.5Ry) (3.407Db)

Ap = agn™ (3.407c)

B, = Boexp{(—pin)} (3.407d)

where oy = 16.36606, oy = 0.70172, By = 17.19338 and (1 = 0.09574 are universal
parameters dimensionless for all isotropic interactions, and Ry is given by Eq.(3.392).

Varandas and da Silva [166]| suggested the universal relationship:

Ci” (a(n—6)/2]
. =k, R, , n=28,10 (3.408)
where o = 1.57, ks = 1 and kg = 1.13, and the coefficient CZ'P is known (see

Ref. [167]). From this correlation, they obtained:

= ko, (3.409)

gﬁ?;— _ 8.82(<T2>1/2)1'57

(3.410a)

Gt — 88.59((r2)1/2)314,

They analyzed the behavior of the HFACE model for 77 diatomic systems in their
ground electronic state. For bound-state interactions, if & = 0 in Eq.(3.400), in general,

in the valence region their potential and the Extended-Rydberg [60] showed similar
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accuracy and, in the long-range region, the HFACE potential proved to be superior
with correct behavior at R — oco. Still, if & = —1, the results proved to be slightly less
accurate than Vi p with o = 0, when both are compared to RKR data [31]. The HFACE
model proved to be a real general analytic representation of the potential energy curves
for diatomic interactions. This potential was considered the most realistic and accurate
to represent bound-state and van der Waals diatomics systems, which is still widely
used today. This model is known as EHFACE2 (extended Hartree-Fock approximate
correlation energy to diatomic systems).

Then, in 1992, Varandas and da Silva [168], following previous work, presented the
best version of the general potential for diatomic systems, called EHFACE2U then
given by:

Veuracew = Venr + Vac (3.411)

where now, the first term represents the extended-Hartree-Fock type energy and the
second term provides the dynamical correlation energy. Here, Vj. corresponds ex-
actly to Voo in Eq.(3.406), with the same characteristics of the damping functions in
Eq.(3.407).

One of the changes in relation to the potential previously proposed was the definition

of the parameter v, which is now given as:
v = [l + manh(y2R)] (3.412)

adding two new parameters to potential proposed in Ref. [166]. However, these param-
eters provide the correct asymptotic behavior at R — oc.
To obtain the a; and v; parameters, three fit methods were proposed by Varandas
and da Silva. We discussed one of these here, and the others can be seen in Ref. [168].
The a; and ~; parameters were determined from a least-squares fit. The second
essential difference between the EHFACE2 and EHFACE2U is that, now, to make this
least-squares fit, the total kinetic field of the total potential must be normalized to give

the correct description of the potential energy at R — 0, i. e. [168],
/ T(R) — T(c0)|dR = ZaZs (3.413)
0

where the electronic kinetic energy is given by:

dVenracew (R)

T = —Vggraceuv(R) — R IR

(3.414)

and Z4 and Zpg are the nuclear charges of the atoms A and B. This expression together

with the expression for the potential energy,

dVenracew(R)
dR

U= 2VE‘HFACE2U(R> + R (3.415)
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provides the well known virial theorem relating the electronic kinetic energy 7', the
potential energy U and the total Born-Oppenheimer energy V(R) = T(R) + U(R).
Furthermore, 7'(0) = —W(0) is the energy of the united-atom (this condition is repre-
sented by U in EHFACE2U).

From Egs.(3.413) and (3.1.34), the integral form of the virial theorem is obtained:

V=g {ziz- [T - reonar| (3.416)

and thus, the normalization condition ensures also the correct Coulomb potential [168]:

. _ ZaZp
Il%lin() VEHFACE2U(R) = R . (3417)
Varandas and da Silva also observed that, if T'(c0) = —Vegracgav(oo) = 0, the
normalization condition for Vgyr with @ = —1, corresponds to impose:
3
D [1+ ) ai(—R.)'| exp{{y0[l — nanh(2Re)}} = ZaZp. (3.418)
n=1

The EHFACE2U potential energy function proved to be quite accurate to describe
the 13 chemical stable diatomic systems, which were evaluated: Hs, Liy, Nay, Ky, Rbs,
Cs,, Cly, Ng and O,, HF, CO, OH and NO, all in their ground electronic state. In
addition, Varandas and da Silva presented a case study of Ary van der Waals molecule
and obtained the most accurate potential energy curve reported at the time (see the
details in Ref. [168]).

The EHFACE2U potential energy curve is considered one of the best and more
accurate functions to describe diatomic interactions, it is still widely used in recent
researches [169-171]. In a recent work presented by da Silva and Ballester [172] the
diatomic potential energy curves for triplet electronic states, X*¥~ and B3X~ of SO has
been described using the approach proposed by Varandas and da Silva [168]. Another
recent application this potential can be seen in Ref. [173|. In a detailed investiga-
tion about the vibronic transition parameters as Franck-Condon factors, r-centroids,
Einstein coefficients, and radiative lifettimes for some bands of the second positive
(C®I1, — B%I,) and Herman infrared (C"°II, — A/5E;) band systems of N,. Again, the
diatomic potential energy curves for all electronic states studied have been modeled

using the approach proposed by Varandas and da Silva [168].

3.1.35 The Schioberg function

We have seen that the Morse potential [8] is still, in relation to some potentials,
more accurate. However, as mentioned in Section 3.1.3, the Morse potential presents

some problems, such as not warranting proper asymptotic limits, 7. e., if R — 0,
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Vior(R) assumes a finite value. Although this should not affect the properties of the
bound state, it will give a rise to some difficulties in solving the collision problems
considered. The Morse function also is inaccurate for large R, due to the replacement
of the Van der Waals term by an exponential.

In an attempt to obtain a potential that could improve the accuracy of the Morse
potential, Schicberg [174] (SCH) proposed in 1986, a hyperbolic potential function with

three parameters given by:
Vsc(R) = D[1 — o coth (aR))? (3.419)

where D, a and o are adjustable positive parameters. Using the relation coth (aR) =

EaR+€7aR

Sr—ar, the function (3.419) can be rewrite as:

20

VSCH(R):D 1—J—m

(3.420)

The Schitberg potential must satisfy:

(i) dVscH

dR = 0;

R=R.

(ii) Vscu(o0) — Vsen(Re) = De, where D, is the depth of the well;

(ifi) LVegu

dR2 = ke;

R=R.
(iV) VSCH — o0 at R=0.

Wang et al. [81] observed that to satisfy the condition (i), we must have:

€2aRe -1

g = m. (3421)

Now, by using the condition (ii), we obtain:

2
D1-0)2-D|l-0— (62R—U_1) = D,, (3.422)

and using the relation (3.421), we can obtain a relation to parameter D given by:

D.

D —
4

(e22Fe 4 1)2, (3.423)

Substituting the expressions (3.421) and (3.423) into the potential (3.420), we have
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a new expression to Schioberg potential:

eQaR —1

€2aRe -1 2
Veen(R) =D, ([1- ———) . (3.424)

where 2a = b, being b a parameter in the Tietz-Hua potential(3.292).

Wang et al. [81] used this expression to compare the Schidberg potential with the
Manning-Rosen potential [79] and with the Deng-Fan potential [41], and they concluded
that these three functions correspond to the same potential, actually.

The expressions for the vibrational rotational coupling parameter o, and anhar-

monicity parameter w.z., can be obtained from Dunham’s relations (2.57) and (2.58):

8a3R3 64aRe (€2al’%e + 1) 632
e = - 1 - 3.425
a { A [ (e2afe — 1) ] + } e ( )
and
12003 R} [ etafte(glafte 4 1)2 16a* R? [ elofte(Telalte 4 99c2alte 4 7)
Wele = — x W,
A2 (e2¢Fe — 1)3 A (e2¢Fe — 1)
(3.426)
where W = w, and B, and w, have their usual meanings, and A is the

Sutherland parameter.

Schitberg [174] claimed that his potential was a better description for the potential
energy of a molecular vibration than the Morse function, and he showed it for Hs in its
ground electronic state. In special, in the region of large R, the Schioberg potential is
closer to reality than the Morse potential for some diatomic molecules [175]. However,
in 2012, Wang et al. [81] showed that the Schioberg potential is not better than the

traditional Morse potential in simulating the atomic interaction for diatomic molecules.

3.1.36 The Reduced function

In this moment of history, the problem of obtaining reliable diatomic potentials
is considered solved, especially after the EHFACE potential described earlier (Section
3.1.34). However, in 1989, according to Tellinghuisen et. al [176], there was still a
search for the “magic potential” which he called the Holy Grail of Spectroscopy.

The Holy Grail of Spectroscopy would be a universal analytical function that would
describe the potential energy curve accurately and without prior knowledge of the
potential. Some researchers claimed that this function must also satisfy the Lippincott
criterion [15], which the average absolute deviation of less than 1% of D between
experimental energies and those calculated by the function at the distances of the

spectroscopic potentials, 7. e.:

O =100 3" ([Viapt — Veute)/ (N, D). (3.427)
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where N, is the number of points on the spectroscopically derived potentials.

The Reduced Potential Curves (RPC) method would produce such a universal po-
tential with ideal characteristics. The idea of the reduced state equation of gases in
thermodynamics introduced by Puppi [177], in 1946, is analogous to the reduced poten-
tial. Frost and Musulin [114] were the pioneers to use this method (see Section 3.1.20),
proposing, in 1954, the first Reduced Potential Curve:

Vip)

e

Vrpe,(p) = with  p(R) = (R — Ry;)/(Re — Ryj) (3.428)
with
Ry =R, — A (3.429)

being A = (KD, /k.)"/?.

Later, in 1963, Jen¢ and Pliva [178] observing the reduced Frost-Musulin model,
they tested to obtain reduced potential curves from experimental potential curves cal-
culated by the RKRV method. The RKRV method was proposed by Vanderslice and
coauthors (see the references 7-16 in Ref. [178]) and was a modification of the Rydberg-
Klein-Rees [9-11] analytical method, being applied to calculate the potential functions
of a series of diatoms.

By analyzing the diatomic systems Hy, Hy, LiH, BeH", OH and OF in their ground
electronic states, they concluded that the mean value K in Eq. (3.223) should be
K = 3.96 instead K = 4.00 used by Frost and Musulin, yielding better coincidence
of the reduced curves. In addition, the coincidence of the reduced curves for Og, No,
CO, and NO, all in their ground electronic states, were also analyzed, and for these
a pronounced discrepancy using the Frost-Musulin potential was observed, even using
K = 3.96. This suggested some modifications to FM potential.

They observed that, for R = 0, the value p is negative and assumes different values
for different diatomic systems. Then, they proposed the reduced internuclear distance

given by:
p=[R—(1=e™r)-py] [[Re— (1=e7/00)- pij] = (€47 = 1) /(& e —1) (3.430)

where p;; was introduced instead R;;, £ = R/p;; and & = R./p;j. This new definition

for the parameter p satisfies the conditions:
(i) p=0;
(ii) if R — 0, then p — 0;
(iii) if R = R., then p = 1.

The parameter p;; is determined, assuming the universal value K = 3.96, as:

pi; = (Re — A) /(1 — e~ Belrii), (3.431)
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where A has been defined before.

For the modified Frost-Musulin potential the hydrides coincided remarkably, sim-
ilarly, the curves of the other molecules also showed a close coincidence. However,
the two groups of molecules do not quite coincide. Then, Jen¢ and Pliva concluded
that Frost-Musulin curves exist for groups of closely related diatomic molecules, but
not universally. They also compared the reduced RKRV potential for LiH, BeH™, and
HF with the Morse [8], Rydberg [9], Varshni I and VI [14] and Lippincott [43] poten-
tials and concluded that the approximations afforded by the individual functions are
different for different diatomic systems.

Then, in 1989, Tellinghuisen et. al [176] suggested that even where the reduced
potentials presented poor agreement, their repulsive branches were often in good agree-
ment, and this behavior could be until in approximating unknown potentials.

Tellinghuisen et. al to use a similar potential proposed by Frost and Musulin [114]:

V(R
Vepc,, = 1() ) _ 2 (3.432)
with
z = (2n%cp/ D) *we(R — R.). (3.433)

They evaluated the behavior of their potential for 35 molecular states. The reduced
potential curves for alkali-metal diatomic systems in their ground electronic states
were represented practically by a unique curve, coinciding in the attractive region and
slightly different in the repulsive region. For the ground electronic states of halogens,
a good description of the repulsive and spectroscopic region was obtained, but not so
good in the attractive branch. In turn, for the electronically excited states of halogens,
the curves in the attractive region perform poorly in contrast with the repulsive branch.

Tellinghuisen et. al also obtained the reduced potential for homonuclear diatomic
systems Cly, N, Oy, Ps, So, Sey and Tey in their ground electronic states, and in addi-
tion, for No(A) and ICI(X). The reduced potentials for all diatomic systems coincided
quite well in both branches.

The same alkali-metal diatomic systems were analyzed by Tellinghuisen et. al [176]
using the Jen¢ and Pliva [178] reduced potential (described above). For this group of
the molecules, the Jen¢ and Pliva model showed considerably less agreement in the
attractive branch than the Tellinghuisen et. al approach.

Thus, it is possible to observe that obtaining a universal function to represent “all

diatomics” in a unique reduced potential curve is not a simple task.

3.1.37 The Aguado and Paniagua function

One of the simplest and generally successful methods of obtaining potential energy

curves for diatomic systems directly from spectroscopic data is through the RKR meth-
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ods [9-11], as already mentioned in previous sections, and used in the vast majority of
cases as a parameter for comparing whether the potential is well fitted. However, the
results obtained by the RKR method are presented in the form of tables containing, in
general, the numbers v, G(v), B,, R; and R_, not being very convenient for a rapid
interpretation of the potential behavior.

Aiming at producing accurate and well-behaved potential energy curves in 1992,
Aguado, Camacho, and Paniagua [179] (ACP) presented a simple functional form,
similar to the perturbed-Morse-oscillator (PMO) potential, with better results mainly
for the long-range region. ACP presented analytical potential energy curves for the CO
and LiH systems, both in XY™ electronic state, obtained by fitting the RKR values
in the Chebyshev sense [179].

For a tabulated function y; = f(z;) (¢ = 1,2,--- ,n), where y; are the observed
G(v)+ Yoo and z; are the turning points rotation-less potential curve, they suggested a
approximated potential function Vop(R) written as a linear combination of functions
¢ that will be conveniently chosen,

VACP(R> = i Ck¢k(I) (3434)
k=0

where ¢ (z) belongs to the basis of functions {¢x}, k =0,1,--- ,m.

To calculate error vector @), with components ¢; given by ¢; = V(x;) — y;, related
RKR data, the method the maximum norm that uses the Chebyshev technique was
chosen. Such a methodology was selected because of the interest in getting an error
vector () with a limited value point by point [179].

The chosen basis function was one that contains functions similar to PMO
orp(z) =[1—€e’* k=0,1,--- ,m. (3.435)

where [ is a nonlinear parameter independently set to obtain the best approximation
and r = R — R,, with R and R, as already defined in this work.

The procedure proposed by ACP [179] to obtain the energies and consequently of
the potential energy curves for the systems of interest, starts with the use of Vicp(R)
(3.434) and the functions ¢(3.435) in the radial equation of Schrédinger for J = 0:

—h >
———+ V(R , =5, 3.436
(s + V() = B (3.436)
Its resolution is carried out through the diagonalization of the Hamiltonian matrix,

in order to obtain the eigenvalues F,. For this is used as a basis the orthogonal functions

of Hermite given by:

Xo(z) = e 2H, (a'?z), n=0,1,2-- (3.437)
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where H,, are the Hermite polynomials and « ~ 27w, pu/h.
The Hamiltonian matrix obtained through of the integrals V,,,,, =< xn|e ™% |xm >,

which can be calculated using the recurrence relation,

B

al/2

Vnm - Vn—lm + QmVn—lm_1 (3438)

where the first column (m = 0), provides Vo = (2)1/ ? 8% A,

ACP [179] showed that for the systems CO and LiH, both in the X'X* electronic
state, the optimal numbers of fundamental functions were 15 and 8 respectively. This
already represents the first advantage of the method, because it is a finite and relatively
small set of parameters facilitating further calculations.

In general, the ACP [179] method provided an optimum fit for the potential energy
curves of the tested systems. It also presents an excellent degree of self-consistency for
all evaluated parameters E,, B, and for the potential curves themselves CO and LiH,
both in the state XX,

However, still in 1992, Aguado and Paniagua [180] (AP) proposed a functional form
to obtain analytical potentials of triatomic molecules ABC, in which the full potential

was written as an many-body-expansion (MBE) [56]:

Vagc = Z VoD 4+ Vap@(Ras) + Vasce® (Ras, Rac, Ree) (3.439)
A

where Rag,Racand Rpc are the internuclear distances and the sums are over all the
terms of a given type and where Vo™ is the energy of atom A in its appropriate elec-
tronic state; Vag? is the two-body energy that corresponds to the diatomic potential
energy curve which vanishes asymptotically when Rap — 0o and goes to infinity when
Rag — 0; VABC(g) is the three-body energy.

The diatomic terms Vag® of the potential (3.439) are expressed as a sum of
two terms corresponding to the short- and long-range potentials, and will be called
Vap [180]:

VAP(Q) (RAB) = Vshort(Z) + Vlong(z) (3440)
where "
—aaBRaB
Ras
and
N
vlong(2) = Z CiplAB (3442)
i=1

where (3.441), with the restriction ¢y > 0, ensures that the diatomic potential goes
to infinity when Rag — 0. Aguado-Paniagua [181] showed that a modified form of the
functions, introduced by Rydberg [9], in the polynomial variables p, given by (3.440)
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PAB = RABG_BAB(2)RAB, 6AB(2) > 0. (3443)

The linear parameters ¢; , i =0,1,--- ;N and the nonlinear parameters aag, both
in the Eq.(3.440) and fap (Eq. (3.443)) are determined by fitting the ab initio energies
for the diatomic fragments computed at the same level of theory than the used in the
triatomic system [180].

Although it is a proposition for a triatomic potential, the two-body term Vap(Rap)
in Eq. (3.440) was known as a new diatomic potential of Aguado-Paniagua, being very
used today due to its high precision for several systems, in excited states including (see
for example Ref. [182]).

In 2019, a recent work by Araujo et. al [23] has compared four potential en-
ergy functions: Rydberg 9], Hulburt-Hirschfelder [7], Murrell-Sorbie [60] and Aguado-
Paniagua [181] to Ny, Oy and SO diatomic systems in their ground electronic states.
Based on PECs obtained by fit ab initio points, the spectroscopic parameters R., D,
we and wex, of the molecules have been computed. Although, in overall potential the
Aguado-Paniagua function proved to be the most accurate for all diatomic analyzed,
the same did not happen with the spectroscopic parameters. Surprisingly, the Rydberg
potential, the oldest of the functions considered, showed less deviation in the calcula-
tion of the parameter R, for Ny and SO diatomic systems. In addition, the Rydberg
function proved to be the second most accurate, behind AP, in relation to the overall

potential of the SO. More details are presented in Chapter 5.

3.1.38 The Williams-Poulios function

Potential energy functions that are exact solutions to the Schrodinger equation are
extremely desirable, as we have already seen throughout this article. Thinking about
that,in 1993, Williams and Poulios [183] proposed a simple method for generating ex-
actly solvable quantum mechanical potentials. This method was applied to Gegenbauer
polynomials (see Ref. [184]) to generate the attractive radial Williams-Poulios (WP)
potential, given by:

a? [em 1ol 4 (A —8)e ™22 + (4 — A)
Viwp(R) = — 3.444
we(R) = 5 E=r (3.444)
where A is a real constant and o > % is given by:
A—2—472 (3.445)
o= —— .
8v+4

being v the quantum number.
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The energy for this solvable potential is obtained from:

E:a—2{1—4[”2+”+(A_2)/4r}. (3.446)

4 2v+1

Ovando et. al [185] observed that the standard potential Vjy p was not a minimum.

Then, they proposed to use the negative of the Williams-Poulios potential, given by:

Vo) = 2 [AF(R) + 3£2(R) + (A 4] (3.447)
where .
f(R) = 16;6—_%3 (3.448)

The potential (3.447) has a minimum provided that [185]:

2
—2D, (e**Fe — 1) = ATb (3.449)
and
2aR 2 3b2
D (e"* —1)% = e (3.450)
leading to
v,
D,=—A 451
= (3.451)
and
—A
F(Re) = ==, (3.452)
for which
Ro=—tmi-S (3.453)
T 2 A ‘
Ovando et. al obtained the relationships for parameters b and A, given by:
2v/3D,
b= 3.454
3/(F.) 40
and
A=—-6f(R.) (3.455)

using the expression (3.448).

They also showed that the multiparameter exponential-type potentials by Manning-
Rosen [79], Deng-Fan [41], Schioberg [174], Tietz [120], Tietz-Hua [123|, Modified Ex-
tended Rydberg [186] and the negative Williams-Poulos potential are equivalent. In

this equivalence, the potential (3.447) can be rewrite as:

B e2aRe -1 2
Vigp(R) =D, [1-———= . (3.456)

620¢R —1
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Note that it is now easy to see that this potential meets the conditions:

(i) Towe = 0;

(i) Viyp(o0) — Viyp(Re) = D..

The vibrational rotational coupling parameter a, and the anharmonicity w.x. can be
obtained from Dunham relations (2.57) and (2.58), and are equivalent to the potentials
mentioned above. In Section 3.1.49 we will detail the multiparameter exponential-type

potentials.

3.1.39 The Fayyazudin function

In 1995, Fayyazudin and Rafi [187] (FR) proposed an empirical potential function
to describe the bound states of diatomic systems. The potential has four parameters,
which can be related to spectroscopic parameters well known.

The potential is given by:
K R
Vrr(R) = — + ARe™* (3.457)

where K, A\ and a can be determined from D,, k. and R., and n is a free parameter
greater than one.
This potential satisfies the desirable features, . e., Vpg — o0 at R = 0, and

Vrr — 0 at R — oo. In addition, this potential must satisfy:

(11) VFR(OO) — VFR(Re) = De, 1. €., VFR(Re> = —l)6 )

(iii) LVen

L 42,2, 2
e = ke = Am*ctuwy?.

R=R.

From this conditions, Fayyazudin and Rafi obtained the relationships:

nk

Tofte = 4

Ae Rl e (3.458)

B D.(1—aR,)
KR"=-——— < 3.459
€ n+1—akR, ( )

and
24 30+ 2A) + /(n* + 2n% + 5n2) — 4An(n — 1) + 4A?

o, = A3+ 28) & (ph+2n’ 4 50f) — dAn(n —1) + (3.460)

2n
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where A = % is the Sutherland parameter. Only the negative sign in this equation
is relevant.

The vibrational rotational coupling parameter a, and the anharmonicity w.z, were
obtained from Dunham relations (2.57) and (2.58), but using the Varshni [14] method

given by:

BQ
Qe = 65, (3.461)
We
and the anharmonicity w.z., is given by:
1
Wele = gBeG (3.462)
where .
F=- {gXRe + 1} (3.463)
and .
G=§aﬂy—Yﬁ (3.464)
Here,
x_5 (3.465)
f2
and
Y = Ja (3.466)
f2

being fo = (‘fj—Y) , f3= (dj—g,‘/) and f; = (dt;—f) . We can write X and Y
R / R=R. R / R=R. R / R=R.

in terms of w.x, and a.:

—3 | Wetre
— 1 A
= [QBe ; } (3.467)
and . g
y = 2x2 _ Lele 4
3 B2 (3.468)

The expressions to R.X and R?Y obtained for the potential (3.457) can be seen in
Ref, [187].

To evaluate the accuracy of their potential, Fayyazudin and Rafi calculated the
values of a, and w.z. for eight diatomic systems in different electronic states: H,
(X)), I, (X'2)), HF (X'3F), Ny (X'3]), Ny (A°SF) Ny (a'Tly), Ny (B°Il,), O,
(X?%;), 02 (B%%;), Oy (A’S)), OH (X°1I;), OH (A*¥X7), NO (X*II), NO (B?II), CO
(X1¥F), CO (a*A), CO (a°Tt), CO (AMI) and CO (¢*S7). Then, they compared
their results with other potentials already treated here: Morse [8], Rosen-Morse [29],
Rydberg [9], Poschl-Teller [30], Linnett [61], Frost-Musulin [74], Varshni [14] III and
Lippincott [43]. The average error for both spectroscopic parameters using the FR
potential was less than for all other potentials.

In addition, they analyzed the deviation of their potential from the RKR curve to
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Hy (X 12;) diatomic system, and then, they compared with the same potentials. The
FR potential provides good accuracy, being inferior only to the potentials of Hulburt-
Hirschfelder, Rydberg, and Poschl-Teller.

Then, in 1996, Fayyzudin et. al [188] extended the FR potential to five-parameters
(FAY7) given by:

Viay, (R) = e [% —a— bl — 652} (3.469)

where £ = R/R., K, a, b, ¢ ans t are parameters which can be obtained from known
spectroscopic parameters.

They also considered the three-parameters potential function (F'AY7;), doing a =
c¢=0in Eq. (3.469):

Viay,, (R) = e {? — bg] (3.470)

These potentials must satisfy the equations (i), (ii) and (iii) above, so that their pa-
rameters can be obtained. Fayyzudin et. al [188] showed that for Vg 4y, the parameters
K, a, b and ¢ can be expressed in terms of parameter ¢ determined from polynomial:

4 3 2 G

46— 120+ 24A1 = 6A | (L+ F)(5F +1) = 5 [ =0 (3.471)
where F' and G are defined in Eqs.(3.463) and (3.464). Only the root real positive is
considered.

For Vpay,,, the parameters can be obtained, using the relationships (i)-(iii), and

are given by:
De(t B 1)

Ke ™' = SR (3.472)
. D.(t+1)
be ! = = (3.473)
and
t?+t—(1+2A) =0, (3.474)

choosing the positive root again.

To evaluate the accuracy of their potentials Vray, and Viray,,, seven diatomic sys-
tems in different electronic states were chosen (practically the same used by Fayyazudin
and Rafi described above, see Ref. [188]) and compared with the Morse [8], Rosen-
Morse [29], Rydberg [9], Péschl-Teller [30], Linnett [61], Hulburt-Hirschfelder |7], Frost-
Musulin |74], Varshni [14] IIT and Lippincott [43] potentials. They used the deviations
from the RKR curve to check the behavior of the potentials, using Lippincott’s crite-
rion [15].

The five-parameters Vpay, was most accurate than all the others, except for the
Hulburt-Hirschfelder potential which the average error was almost equal. The three-

parameters Vpay,, perform slightly worse, but still showed more accuracy than Morse,
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Rosen-MOrse, Poschl-Teller, Linnett, and Frost-Musullin.

In 2006, Lim [189] showed that the parameters of the Fayyazudin potential Veay,,
can be related to the parameters of the Extended-Rydberg potential proposed by Mur-
rell and Sorbie [60]. From conversion matrices that convert the former’s parameters
into the latter and vice versa, they obtained a list of 71 sets of Fayyazuddin diatomic
parameters applying one of the conversion matrices on the Huxley—Murrell [131] data.
Potential energy curves of the OSi, FO, BeS, and HH diatomic parameters exhibit
very good agreement between the two potential functions considered, confirming the
conversion matrices validity. Based on the Huxley—Murrell parameters, the Fayyazud-
din parameters were calculated for a total of 71 combinations of diatomic systems (see
table 1 in Ref. [189]).

3.1.40 The Modified Extended Rydberg function

In 1997, Sun [190] by analyzing the Extended Rydberg potential [60], observed that
it is still necessary to obtain a better theoretical method to easy calculate vibrational
potential for stable diatomic systems, and for this, he suggested a Modified Extended

Rydberg potential (MER) as a alternative to calculate potential energy curves:

Vier(R) = =D (ﬁ‘l + an(R - Re)”> e~Par(i-Fe) (3.475)
n=1

where f is an adjustable width parameter, and the potential width can be changed by
varying the value of S.

The coefficients a, can be obtained using the same equations (3.312) and (3.313)
proposed by Murrell and Sorbie [60], and derived from:

n 1 nl ek
DCLl - 5_2 §ma1 Fk = 0, (3476)
and
F, (n—1) - a’ "a
—__n —1)" — n 1 n—k+1 71 k > 9 4
=g+ R s ez eam)

The general expression for coefficients Fj, can be obtained as:

n2(n—1)

— F2p=(57)  (n>3). (3.478)

F, = <_1)
Here D is a quantity related with D,:

D = BD,. (3.479)



Potential energy functions 149

Sun [190] considered the series to be truncated at fifth power and obtained the
potential energy curve for Ny and CIF in their ground electronic states. He compared
his results with the Morse [8] potential and the main difference for Ny occurred in the
asymptotic region, precisely where the Morse potential fails.

In 2006, Royappa [42] showed that on average the Modified Extended Rydberg po-
tential by Sun [190] provides the best accuracy among all 21 potential energy functions
analyzed, including the Murrell-Sorbie potential [60].

Although the MER potential has better qualities than MS potential, it did not show
satisfactory results in molecular asymptotic region for diatomic molecular electronic
excited states. Then, in 1999, Sun and Feng [186] tried to find a physically better
potential. For this, they proposed an energy-consistent method (ECM) which uses a
new analytical potential to calculate numerical vibrational potentials. They built a
new analytical potential by adding a potential correction A(R)§V (R) to the Extended
Rydberg potential (3.316):

Vsr(R) = Vegr(R) + A(R)0OV (R) (3.480)

where the potential correction A(R)0V (R) remedies the Vgr(R) potential such that the
new potential Vgr behaves well enough not only in the equilibrium internuclear distance

region, but also in the molecular asymptotic region. For §V(R), they suggested:
0V (R) = Ver(R) — Vmor(R) (3.481)

where Vijor(R) = D [e~20(F—Re) _ 9e=a(F=Fe)] is the Morse [8] potential.
A(R) is Eq. (3.480) is a force-field function and was chosen as:

R-R.)

A(R):/\( I [1 — e N (R-R/Re] (3.482)

where A is an adjustable parameter. This function should play two roles:

(i) It scales the potential changes 0V (R) in Eq. (3.481) properly to ensure the
potential correction A(R)6V (R) behaves correctly;

(ii) It ensures that the new potential satisfies the physical property that its nth-order

derivative equals the nth force constant, f,,, at equilibrium.

Thus, the new potential proposed by Sun and Feng [186] is given by:
Vsr = [A+ 1)VEr(R) — AVaor(R) (3.483)

which is physically well defined potential.
The numerical values of this new potential agree much better with the known

exact diatomic potential than other analytical empirical functions, in particular for
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electronically excited states of diatomic systems as Hy and O,. Therefore, for Sun and
Feng [186] the ECM generates much more accurate theoretical vibrational eigenvalues
and eigenfunctions for the corresponding stable molecular states than other analytical
potentials.

In 2006, Royappa [42] showed that on average the Modified Extended Rydberg po-
tential by Sun [190] provides the best accuracy among all 21 potential energy functions
analyzed, including the Extended Rydberg potential [60].Then, although the potential
has eight parameters,

3.1.41 The Rafi function

In 2000, Rafi et. al [191] (RAF}) proposed a four-parameter potential energy func-
tion to describe stable diatomic systems. This function is a modification of the Morse [§]
potential, and is given by:

Viar, (R) = D[l — e @ E=EI12[1 4+ canh(R — R,)] (3.484)

or

(3.485)

ea(RfRe) + efa(RfRe)

a(R—Re) _ ,—a(R—R.)
Viar, (R) = D,[1 — e~o(R=Fe)2 {1 + S € }

where a is the Morse parameter given by a = / 2%@ and ¢ can be determined from

known spectroscopic parameters.

This potential satisfies the conditions:

(i) Dran —0;
R=R.,

(ii) Vrar, (00) — Vrar, (Re) = De;

oy A2V
(ili) —pz =k, = 4n? P uw?.
R=R.
. d3V; . .
(iV) d’;gf” = Xk., where X is the cubic force constant.
R=R.
dV, . .
(v) dlzfpf = Yk, where Y is the cubic force constant.
R=R.

Here, X and Y are the relationships defined by Varshni [14] given in Egs. (3.465) and
(3.466). See Egs. (3.467) and (3.468) to remember how these parameters are related

with w.x, and a.
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In 2005, Birajdar et. al [192] derived the vibrational rotational coupling parameter

@, from Dunham relation (2.57):

[—35{6;@ o), 11 6B? (3.486)

We

where they obtained the relationship for parameter c:

evwe 1
c= {AI/Q 1 (2;2 )} = (3.487)

where AY? = @R, is the Sutherland parameter.

Using this expression for ¢, the anharmonicity w.x., is given by:

2.1078 x 10716

Wele = [8A — 18AY2 +15(cR.)?] o

(3.488)

Birajdar et. al [192] obtained the potential curves for Iy and CO diatomic systems
in their ground electronic states using the Rafi potential Vzap,, with the ¢ parameter
given by Eq. (3.487) and their results presented large deviations from the experimental
RKR curves.

Then, in 2007, Rafi et. al [193] (RAF;;) proposed a new four-parameter empirical

potential function to describe diatomic systems, given by:
Viar,, (R) = De[e™2eB=Re) £(g) — ggmalR=Fe)] (3.489)
where
flz) = %{anh[b(R — R.)] + e P B=Re) t sech [b(R — R.)|}. (3.490)
The potential (3.489) can be rewrite as:

VRAFH (R) =D, [1 — 267‘1(R*Re) + %efaQ(R—Re)
(3.491)

o <eb(R—Re)_efb(R7Re) —b(R—Re) + 2 )}

SR Re) reBR-Fa) 1+ € b(R—Re) 1o b(R—FRe)

ke
2D.”’

the potential Vgap,, satisfies the conditions (i)-(iv) above. In this case, beta is given
by:

being b = (a, where a is the Morse parameter a = and 3 can be obtained since

XR, = —3A"? l1 + iﬁ?’] (3.492)

where X R, is XR. = =3 | %55 + 1}, with w,, a. and B, with their usual meanings.

To evaluate the accuracy of the potential Vrar,,, Rafi et. al [193] using the Lippin-
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cott criterion [15|, compared their results with RKR experimental data, for 15 diatomic
systems: Hy, LiH, NaH, KH, CsH, K,, Nay, Rby, CO, ICI, XeO, I,, Cs, and RbH, in
their ground electronic states and for (A®II) state of ICI.

In addition, they compared their result with the Morse [8] potential, Fayyazudin-
Rafi [188| potential and with the first proposal of the Rafi [191]. The average error of
the potential Vrap,, was only 1.86% of D, whereas, Morse was 5.01% of D, Fayyazudin-
Rafi was 3.30% of D and Vrap, was 4.06% of D.

3.1.42 The Noorizadeh-Pourshams function

In 2004, Noorizadeh and Pourshams [125] (NP) presented a new empirical poten-
tial energy function with four variational parameters. The purpose was to propose a
mathematically simple and comprehensive potential, which can be applied to different
diatomic systems in fundamental and excited states.

The potential is given by:

aR’ +m
Vyp(R) = ———— 3.493
we(R) = S (3.493)
where a, b, m and n are adjustable parameters.

This potential satisfies the basics conditions, i. e., Vyp — o0 at R = 0, and

Vnp — 0 at R — oo. In addition, this potential must satisfy:

() e

dR =0;

R=R.

(11) VNP<OO) — VNP(Re> = De;

o 2
(iii) Sae = k., = 4P puw?.

R=R.

To evaluate the accuracy of the potential (3.493), Noorizadeh and Pourshams cal-
culated the spectroscopic parameters R., D., B., k., w., w.x. and a, for eight diatomic
states in different electronic states, and then, they compared their results with experi-
mental data. The diatomic systems chosen were: Hy (X'¥7), I, (X'X]), HF (X'XF),
Ny (X'3F), Ny (A°5]) Ny (a'lly), No (B°II,), Oy (XP%)), Oy (BY,), Oz (A*E]), OH
(X21I;), OH (A2%F), NO (X2II), NO (B2II), CO (X'¥+), CO (a®A), CO (a’*SF) and
CO (e3X7). The average error for the calculated quantities were: R, (0.43), D, (1.87),
B. (0.82), k. (3.68), we (2.08), wexe (9.42) and . (10.78), showing good accuracy of
the potential.

In addition, Noorizadeh and Pourshams [125]| obtained the expressions for the vi-

brational rotational coupling parameter a, and anharmonicity parameter w.z., can be
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obtained from Dunham’s relations (2.57) and (2.58). They compared their results with
nine potential energy functions already presented above: Morse [8], Rosen-Morse [29],
Rydberg [9], Péschl-Teller [30], Linnett [61], Frost-Musulin [74], Varshini [14] III, Lip-
pincott [109] and Fayyazudin [188]. The NP potential provided the most accurate
result for w.z., and for a, only the Fayyazudin potential showed better accuracy than
the NP potential.

The general behavior of the DN potential was also satisfactory for other diatomic
systems. In the comparative study by Royappa et. al [42], previously described, they
showed that the Noorizadeh-Pourshams potential in average, provide best accuracy
than the potentials: Kratzer [16], Morse [8], Rosen-Morse [29], Rydberg [9], Poschl-
Teller [30], Linnett [61], Frost-Musulin [74]|, Varshini [14] III, Lippincott [43] Deng-
Fan [41], Pseudogaussian [152], Levine [124], Tietz [122] II and Fayyazudin [188].

3.1.43 The Extended Lennard-Jones function

In 2000, considering the Lennard-Jones (2n,n) potential, Hajigeorgiou and Le Roy [194]

proposed a modified version of the function which is given by:

Vis(R) = D, {1 - <%)nr. (3.494)

Hajigeorgiou and Le Roy observed that although this function was considered to be
a correct model to describe diatomic systems, there was not the flexibility required to
represent accurately extensive experimental information. However, this function with
the appropriate choice of the power n it has the correct theoretically predicted limiting
long-range functional behavior.

The Modified Lennard-Jones (MLJ) proposed has the generalized form:

Vaurs(R) = D, {1 - (%)n gb(R)} 2 : (3.495)
where ¢(R) is a empirical function given by:
P(R) = e Pmrs(2)z (3.496)
being z = Eg;g:g one-half of the Ogilvie-Tipping expansion parameter [141].

This function has the form at R — oo [194]:

Virrs(R) = D, — 2D, e (%) =D, — —, (3.497)

where . = limg_,o Brrrs(2), and

C, = 2D (R,)"e P (3.498)
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or
Boo =In[2D.(R.)"/C,. (3.499)
The function Byr1(2) is expressed as a power series in z, given by:
M
Busn(z) =) Bu™ (3.500)
m=0
so that
M
Bro = lim(2) = Z_Oﬂm, (3:501)
with the last term expressed by:
M-1
By = [2De(Re)"/Crl = Y~ B (3.502)
m=0

Although this modified version of the Lennard-Jones potential is quite accurate,
the function ¢(R) is complicated to obtain.
Then, in 2010, Hajigeorgiou [195] proposed an Extended Lennard-Jones (ELJ) given

by: ,
n(R)
Vers(R) = D, [1 - (%) ] , (3.503)

where the function n(R) is the simplest function:

n(R) = fo + 1 + BaC® + B¢’ (3.504)
being .
(= m (3.505)

with z = (R — R.)/(R+ R.) and ¢ a even integer.

Note that the function n(R) is well-behaved in the limit R — oo, because in this
case ( — +1.

The potential (3.503) satisfies:

(1) VELJ(R) = 0;

(ii) VELJ(OO) - VMRM(Re) = D..

Hajigeorgiou [195] concluded that for R < R, the best results were obtained with
qg = 6, and for R > R., with ¢ = 4. To determine the coefficients g;, + = 1,2,3 in
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Eq. (3.504), he related them with the Dunham coefficients [24], obtaining:

Bo =, /g_i, (3.506)

Qpay 50 53

B = 25.D. to (3.507)
Qpag f2
— — 3.508
where
fo = TB1 — 368062 + 1853 + 1287 — 24506, + 1153, (3.509)
and F
apas3 3
— 5l
%= 28D, T 2 (3910
where

fs = —280185 + 14535 — 545165 + 360237 + 21585 + 1237 — 246185 — 226001 + 24502

+102 + 368087 + 3035.
(3.511)
Hajigeorgiou [195] tested his potential Vg for sixteen diatomic systems in their
ground electronic states: AgH, Cly, CO, Cs,, DF, HCl, HF, KLi, Liy, LiH, MgH,
Nay, NaH, NaK, Oy and RbCs. To evaluate the accuracy of these results he used
the Lippincott criterion [15] given by Eq. (3.427), where the experimental data were
obtained from the RKR method. Besides, Hajigeorgiou compared the ELJ potential
with the Hulburt-Hirschfelder |7] and Murrell-Sorbie [60] potentials and the average
deviation of the Vg, ; was about four times less than the of ER and five times less than
that of HH.
The potential Vg7 ; was analyzed ignoring the cubic term in n(R), but it presented

an inferior result.

3.1.44 The Modified Rosen-Morse function

In 2012, Zhang et. al [196], proposed a modification for the Rosen-Morse poten-
tial [29]. Inspired by the reduced potential curves suggested by Frost and Musulin [114]
(see sections 3.1.20 and 3.1.36) they considered the effect of inner-shell radii R;; of two
atoms for diatomic molecules given by:

(3.512)

where K is defined by Eq. (3.223).
By introducing the parameter R;;, the Modified Rosen-Morse (MRM) potential is
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given by [29]:
2

2(Re—R;j)
e a +1
Viuru(R) = D, (1 - W) . (3.513)

e a4  +1

This potential satisfies the three basics conditions:

(i) AVyvrMm

dR = 0;

R=R.

(ii) VMRM(OO) - VMRM(Re) = D,;

2
(iii) acmu = ke = uw?,

R=R.
where R., D, have their usual meanings, and k. is approximated with a slight correction
being omitted [24].

Using the (iii) condition, Zhang et. al [196] obtained the value of the d parameter:

-1
ke 1 ke —(Re—Rij)1/ e
—9 W (R. — Ry; Ry b, 514
d [ T s ((Re R\ 55 v . (3514)

where W is the Lambert W function, which satisfies z = W (z)e"(®) (see mathematical
details of this function on p.331 in Ref. [197]).

Zhang et. al also obtained expressions for the Morse [8] parameter a and for the
original Rosen-Morse [29] parameter d. Then, they compared their Modified Rosen-
Morse potential with the Morse and Rosen-Morse potentials for six diatomic systems:
ICI (AIL,) , 1o (XO;F), Csy (XlE;f)7 MgH (X2%T), SLi, (Xlﬁj) and "Li, (XlE;F).

To evaluate the accuracy of these functions, Zhang et. al used the experimental
RKR [9-11] data, and obtained the average deviation from Lippincott criterion [15]
given by Eq. (3.427). The Modified Rosen-Morse provided to be more accurate for
the six systems analyzed, with an average error between the evaluated systems of only
2.94% of D, while the Morse potential is given an average error of 8.68% of D and the
standard Rosen-Morse of 6.90% of D.

In 2014, Tang et. al [198] presented a study about the vibrational energy levels
calculated using the Modified Rosen-Morse potential for “Liy (6'IT,) and SiC (X®II),
and both were in good agreement with the experimental RKR data. For these diatomic
systems, Tang et. al also compared the Modified Rosen-Morse potential with the
Morse [8], Frost-Musulin [114], Varshni [14] III and Lippicott [199] potentials. For "Li,
(6'I1,), the Modified Rosen-Morse potential is the most accurate, and for SiC (X?3II)

this potential is superior to the Morse, Frost-Musulin, and Lippincott potentials.
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3.1.45 The Uddin function

Still in 2012, Uddin et. al [200] (UDD) proposed a five-parameter potential energy

to describe stable diatomic systems. This potential is given by:

Vupp(€) = g — e (a+ b€ + c?) (3.515)
where £(R) = R%, K, t, a, b and ¢ are parameters which can be obtained by spectro-
scopic parameters D., R., ke,w.T., . and B,, all previously defined throughout the
text.

The first term of the potential corresponds to repulsive energy and the second term
is analogous to the Extended-Rydberg potential proposed by Murrell and Sorbie [60],
but with a coefficient of cubic term equal to zero.

To determine the five parameters, Uddin et. al claimed that the potential (3.515)

must satisfy two extra conditions, in addition to the usual ones. They are:

(i) Vupp(§)| = —De;
e=1
(ii) Vupp(€) has a minimum at R = R,, i. e., dv’é% = 0;
e=1
(i) Spe| = kR
e=1
(iV) % = keR}X, where XR, = —3 (‘geTf‘; + 1) is a anharmonic force con-
e=1
stant;
(V) _d4‘;g4DD = k.R2Y , where Y R2 = 2 X2 R?—8%“% i3 a anharmonic force constant.
e=1

Here, X and Y are the relationships defined by Varshni [14] given in Eqgs. (3.465) and
(3.466).
These conditions applied to the potential (3.515) yields a six order polynomial [200]:

3
+6A2(—8X R, + Y R? — 40) + 24A (=Y R? + 30) + 40A(6X R, + YR?) = 0
(3.516)

where A is the Sutherland parameter. This polynomial has six roots. They analyzed

(9= 36° (44 20) 4 301 (2 1 4A 4+ 20) + 1 (16AXR, — 2257 — 120)

the behaviour of the potential Vi pp for 14 different states of the seven diatomic sys-

tems, and only one of the six roots was workable for all states.
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Uddin et. al [200] suggested rewrite the potential (3.515) in the form:

K/De) B (1 + K/D,

& a+b+c

where the depth of the well D, was included, so that Vypp(R = R.) = 0 and
Vupp(oo) = D..

Uddin et. al analyzed the diatomic systems: Hy (X'X}), Ny (X'X1), Ny (a'Il,),
N, (BIl,), O, (X?%;), OH (X°II;), OH (A’XF), HF (X'¥*), NO (X*IIy/), NO
(B?I), CO (X'sH), CO (AMI), CO (e*L~) and CO (a’*SF), and compared them with
experimental RKR [9-11] curves. With the exception of the OH A%%* state of OH
and A'II state of CO, the potential provide excellent agreement with the RKR curves.

Vupp(§) = De [(1 + > e (a b+ c€?)],  (3.517)

3.1.46 The New Deformed Schioberg-type function

In 2015, Mustafa [201] proposed a new deformed Schi6berg-type [174] (NDS) po-
tential given by:
Vaps(R) = A(B + anhy(aR))?, (3.518)

where A > 0, B, ¢ and « are four adjustable parameters and the ¢ deformation of the

usual functions is defined by relationships:

anhgy(x) = %; senh,(z) = =1

(3.519)

cosh,(z) = <,

The potential (3.518) must satisfy:

A%
() L

R=R.

(ii) Vaps(00) — Vaps(Re) = De;

2
(i) “iaps = k. = 4m2Ppuw?,

R=R.

where R., D. and k. have their usual meanings. Mustafa added the additional con-
dition, Vyps(R.) = 0, which simply shift the zero of potential, without physically
affecting its properties.

Using these conditions, the parameters A, B and ¢ can be obtained by:

De 2aRe 2
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2aRe
B——(i——ﬁ>, (3.521)

eQaRe + q

and

2
g=—[1- ‘1 e2eFe, (3.522)
3D,

Mustafa [201] also showed that his New Deformed Schitberg-type is equivalent to

2c¢
ke
2De

2a = b in Eq. (3.292). Thus, the expressions to a, and w.z. can be obtained in the

= c and

the Tietz-Hua [123] potential, considering the correspondences: | 1 —

same way.
He obtained a closed-form analytical solution for the ro-vibrational energy levels
using the supersymmetric quantization. The ro-vibrational energy values obtained

for NO (X'IL,), Oy (X?%;), O3 (X?II,) and the vibrational values obtained for Ny
(X 12;) presented high accuracy.

3.1.47 The Improved Poschl-Teller function

The Poschl-Teller potential [30] has been widely explored by several researchers
([42, 125, 202], many times in different versions. In this section, we present two of
them.

In 1994, Simek and Yalgin [203] proposed a generalized Poschl-Teller (GENPT)
potential which was also an exact solution for the Schrodinger equation. This new
potential as well as the original Poschl-Teller potential has four parameters and is

given by:
Ae—QaR B€_2aR
(1 + b2e—20R)2 + (1 — b2e—20R)2

where a, b, A and B are constants that can be obtained in terms of spectroscopic

VGENPT(R) =

(3.523)
constants.
The function (3.523) must satisfy the following properties:

2\ dV
(1) GdEéVPT

R=R.

(ii) Vaenpr(oo) — Vaenpr(Re) = De;

2
(i) S5Err) =k,

R=R.

where R., D, and k. have their usual meanings.

Using these conditions, Simek and Yalgin [203] obtained the constants a, b, A and
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B in potential (3.523), given by:

a= j:;/T%, b = yeej“/Z
) (3.524)
_ D5b2 1_ e 4 _ 1+ e
b= (yzé)’ A_B(I—Ze>
where v, is given by:
+/I'/JA -1
= (8.525)
2
being A = k.R?/2D, the Sutherland parameter and T' = %(%) R? with f, =
PVggarr|  and fy = Pgyer

R=R. R=R.
The vibrational rotational coupling parameter a, can be obtained from Dunham

relation (2.57):

R.fs3 682
e = — 1 £ 3.526
¢ |: 3f2 - :| We ( )
and the anharmonicity w.z., given by:
2.1078 x 10716
wee = 8A * . (3.527)

R

This version of the Poschl-Teller potential was not well accepted. The coefficients
of the potential (3.523) are extremely difficult to obtain, requiring the solution of
complicated algebraic equations. Besides, in 1996, Znojil [204] demonstrated that the
“exact” solution to the Schrodinger equation presented by Simek and Yalgin was not
correct.

Then, in 2017, Jia, Zhang and Peng [17] presented a improved version of the Péschl-
Teller potential [30]. They considered the potential (3.107):

A B

Ver(R) = -
pr(R) senh”’ (R — R,) cosh®’a(R — R,)

(3.528)

where, they assumed A = gigi (B—1) and B = Qi%‘iv(v +1).

By using of the conditions (i), (ii) and (iii), applied to this potential, they obtained

the following expressions to A and B:
A = D.senh® a(R, — Ry), (3.529)

B = D, cosh® a(R, — Ry). (3.530)

To obtain Vpr(R.) = 0, they added a uniform shift —\/ﬁ(a —VAB)(B — \/AB)
to the right hand of expression (3.528).
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Thus, the improved Poschl-Teller (IMPT) potential proposed by Jia et. al [17] is
given by:

senh’ a(R. — Ry)  cosh’ a(R, — Ro)) (3.531)

senh”® (R — Ry)  cosh? a(R — Ry)

[ 1
= er | ——- 3.532
a = mew 5D, ( )

Using the Dunham relation (2.57), they obtained av:

Vinpr(R) = D, + D, (

where now,

o——l1s 8D.R.o® (senh’ a(R. — Ry)  cosh® a(R, — Ro) 6B§. (3.533)
ke cosha(R. — Ry)  senha(R. — Ry) We
From Egs. (3.532) and (3.533), the parameter Ry is given by [17]:
A2 B o §3ﬁ2wg + 3h%mwew? 1
1 2D, Hi0e Xe ! ? \ 2D
Ry = In 2 ni R (3.534)

N 47 cw, ) 2.9,,.3 3 3h2w? 3n2mew? 1
dmictuwgae + 5 P 5uD:

Jia et. al [17] applied the improved Péschl-Teller potential for Hy, LiH, LiD, HF,
and CO in their electronic ground states. They compared their function with the
Morse potential [8] and calculated the average absolute deviations of these potentials
from experimental RKR curves. For all systems analyzed, for the overall potential,
the improved Poschl-Teller presented more accurate results than Morse. In the branch
of R < R, the improved Pdschl-Teller performs better than Morse and in the branch
R > R, they practically coincide.

3.1.48 The Fu-Wang-Jia function

In 2019, the interest in obtaining a closed-form representation of the interaction of
two atoms for diatomic systems in chemistry and physics remained very high, despite
the various models presented over the nearly one hundred years of research in the area.

Among the potentials presented, the Tietz potential has been evidenced as a typical
potential energy model, widely used in several recent researchers (see for example
Refs. [205, 206]). Considering this, in 2020, Fu, Wang, and Jia [18] has proposed an
improved five-parameter exponential-type potential energy for diatomic systems, and
they explored the relationship between their potential and the Tietz potential.

We are referring to an improved model, because, in 2001, the same researchers Fu,
Wang, and Jia [207] (FWJ) presented a unified exponential-type molecule potential that
contains special cases of most previously given exponential-type molecule potentials and
their deformations, such as the Generalized Morse potential [41] (proposed by Deng-
Fan), Tietz-Hua potential [123], improved Péschl-Teller potential [17], and others.
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The five-parameter exponential-type potential energy is given by [207]:

P Py

Vi R)=P
Fwa(R) 1+ 20k | ¢ + (e20R + ¢)2

(3.535)

where Py, P,, P3, ¢ and « are adjustable parameters, with g # 0.

This potential satisfies the following relationships:

A%
() L

R=R.

(ii) Vewy(oo) = Vews(Re) = De;

(iii) LVews

- kev
R=R.

where R., D. and k. have their usual meanings.
By using these conditions, Fu et. al [18] obtained two expressions to parameters
P, and P3, given by:
Py = —2D,(e**" + q) (3.536)

Py = D (e**% 4 ¢)2, (3.537)

Substituting these expressions to P, and Ps in Eq. (3.535), the potential is rewrite

as:

e2aRe 4 q 2
VFWJ(R) =P+ D, (1 — m) — D, (3.538)

or putting Vew s(Re) = 0, and replacing « by «/2 for simplify, Fu et. al obtained:

aRe 2
ﬂ) | (3.539)

VFWJ<R) = De (1 — ok T

This potential corresponds exactly to the improved Tietz potential showed by same
researchers in Ref. [126], and choosing g = 0, the improved five-parameter exponential-
type potential corresponds to Morse potential [8]. Still, if ¢ # 0, the parameter « is
given by [18]:

2 1 2 /57D
Q= TCpWe | H’i + EW (cheReq Fie_”C“eRE 2“/De) , (3.540)
where W represents the Lambert W function, which satisfies z = W (2)eV®) [197].
Fu et. al [18] analyzed the behavior of their potential for the ground electronic
state of CO and compared their results with RKR experimental curves, obtaining

good agreement.
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3.1.49 The Improved Multiparameter Exponential-type func-
tion
In 2012, Garcia-Martinez et. al [208| proposed the solution to a spectral problem

involving the Schrédinger equation for a particular class of multiparameter exponential-
type potentials (MPETP), given by:

qAe—H/K qBe R/K q2Ce—2R/K
1 —ge R/K + (1 — ge~R/K)2 + (1 — ge~R/K)?2

Vupere(R) (3.541)

where A, B, C, q and k are adjustable parameters.
Then, in 2020, Xie and Jia [209], observed that to represent the internuclear inter-

action of a diatomic systems, this potential must satisfy the conditions:

2\ dV]
<1> Mdl;%ETP

R=R.

(ii) Vamperp(oo) — Vauperp(Re) = De;

(iii) Vyperp

dR2 = kE)

R=R.

where R., D, and k. have their usual meanings.
Using these conditions, they obtained the relationships:
2D,

T(eRe/ F—q), (3.542)

A+ B =—

and
D,

e
Thus, by substituting the Eqgs. (3.542) and (3.543) into (3.541), Xie and Jia rewrite

the MPETP potential as a improved multiparameter exponential-type potential (IM-
PETP), given by:

B+ C = Z£(efelk — )2, (3.543)

eRe/k _

2
Vivperp(R) = D, <1 — eR/k—q> : (3.544)

—q

The IMPETP is equivalent to the Tietz [120] and Williams-Poulos [183] potentials
(see Refs. [126, 185]).

In addition, Xie and Jia [209] obtained the expressions to parameters k and ¢ as

function of the known spectroscopic parameters:

1

k= -
/ 1
27TCCL)6 B% ~ R

(3.545)
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and

1 D,
T (ﬂcw K\ 2 1) o e

To evaluate the efficiency of the improved multiparameter exponential-type poten-
tial, Xie and Jia simulated the internuclear potential energy curve for A3Il; state of
CIF and compared their results with the Morse [8] potential. They used the Lippincott
criterion to calculate the deviation of the IMPETP from RKR experimental curves.
They obtained that the average absolute deviation of the IMPETP was 0.653% of D,
whereas the Morse potential given 8.56% of D, showing that the Morse potential is
not suitable for reproducing this molecular state of CIF. Furthermore, they obtained
the potential curve for X2X% state of CP. Again, the IMPETP was more accurate than

Morse and showed an excellent agreement with the experimental RKR curve.

3.1.50 The New Modified Morse function

This is the last potential that we will discuss here. This is the most recent analytical
representation of potential energy interaction for diatomic systems we found until the
end of this work. The function is a New Modified Morse potential and has been
proposed in 2020 by Desai, Mesquita, and Fernandes [6] to try to reduce the discrepancy
between the experimental and calculated values. The new function contains one more
parameter than the original Morse function, and this will be responsible for improving
accuracy in the region where the potential extends to near the dissociation limit.

The New Modified Morse potential (NMM) is given by:

Vianr(R) = D1 — exp{[—asenh (B(R — R,))]}}* (3.547)

where « is dimensionless constant, 3 is a parameter with units of cm™'. These param-

eters are related to the Morse parameter a, by:

af = /2’;; —a (3.548)

since ‘FZN% = k.. In addition, as well as the Morse potential, Viysas satisfies also the

conditions:

Y
(i) g

R=R.

(i) Vaam(00) = Vnrn(Re) = D, where D, is the depth of the well.

By using the Dunham relation (2.58), Desai et. al, obtained the anharmonicity

2\ 2.1078 x 1016
Woll = (a2ﬁ2 - %) 078 > 1077 (3.549)
1

constant given by:
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In the same way, we can obtain the parameter «, from Dunham relation (2.57):

o = [aBR, — 1) 35 (3.550)

e

To obtain the optimized value of o parameter in Eq. (3.547), Desai et. al developed
a program to solve the Schrédinger equation for all values of a within a select range,
from the observed value of w.x.. Then, the range was extended till they got the
minimum value of the sum of the absolute difference between each calculated and
observed vibrational energy eigenvalue. These were obtained by solving the time-
dependent Schrédinger equation for their dimensionless reduced potential, which was
calculated by applying the Matrix Numerov method (see all details in Ref. [6]).

Desai et. al analyzed the behavior of the New Modified Morse potential for the
X 12; state of the Hy and Ny systems and compared them with RKR experimental
curves. Morse [8] and Hulburt-Hirschfelder [7] potentials were also used in the com-
parison.

They observed that in the region R > R,., for the H,, the average absolute de-
viation for Viasy was almost half that produced by Vyy and Vy,. For the Ny, the
differences were even greater, with the average absolute deviation of the New Mod-
ified Morse potential corresponding to practically one-third of the deviation of the
Hulburt-Hirschfelder and almost one-tenth of the deviation of the Morse.

The anharmonicity constant obtained using the New Modified Morse potential also
proved to be quite accurate, with a deviation of about 1.2% from the observed value,
while the original Morse function presents about 21% deviation.

Although this function has been verified only two diatomic systems, the results
obtained by Desai et. al suggest a relatively simple new potential such as the original
Morse function, but with far superior results.



4 A comparative analysis for Ny
(X'S), CO (X'ST) and HeH'
(X1E1) diatomic systems

A comparative analysis for the Ny, CO, and HeH™" diatomics systems in their ground
electronic states will be presented in this chapter.

We recognize that analyzing a few diatomic systems is not ideal, considering the
particularities of each potential presented in this review. However, along with the
text we have already highlighted which systems each potential offers the best accuracy.
Thus, in this section, we want to give a compact view of the behavior of potentials for
three different ranges of R: over the repulsive part of the potential, over the attractive

part of the potential, and over the whole range.

4.1 Calculations

In this review, the potential energy functions that depends on adjustable param-
eters are: Vgar, Vavr, Vem, Vru, Vrua, Voar,Vaar, Vsur, VEaraceau, Vap, Vier,
Ve, Viver, Vewy, Vimpere and V. These functions were fitted to calculated
ab initio energies. The electronic structure calculations for the homo-and heteronu-
clear systems were carried out using as reference complete active space self-consistent
(CASSCF) [210] wave function. Dynamical correlation effects were included by means
of internally contracted multireference configuration interaction (MRCI(Q)) [211]. The
aug-cc-pVbZ basis set of Dunning was employed, and we have performed CASSCF fol-
lowed by MRCI(Q) approach. All calculations were performed with the Molpro 2012
package of ab initio programs [212].

On the other hand, the potential energy curves from functions that do not depend
on adjustable coefficients have been directly calculated using the experimental data
given by Huber and Herzberg [96]. The spectroscopic constants used for calculating
such non-adjustable potentials can be seen in table 1.

To have a precise measure of the accuracy of the various potentials, we have used the
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Table 4.1: Molecular constants [96] used in the calculations of the potential energy
curves for No(X'¥7), CO(X'YT) and HeH* (X'XF).

De Re we wexe ae Be
(eV) (A) (m™)  (em™h) (em™h) (em)
N, 99056 109768 235857  14.324 0.017318 1.99824
CO  11.2265 1.12832 2169.81358 13.2883 0.01750 1.93128
HeH* 20452 0.7743 32284  157.71  2.636  34.887

least-squares Z-test method proposed by Murrell and Sorbie [60], given by Eq. 3.321.
RKR data used in the comparison for the diatomic systems Ny [213] and CO [214]
were obtained from the literature. For HeH' we have used the experimental Born-
Oppenheimer energy values [215], because the conventional RKR method for obtaining

experimental energy curves is intractable.

4.2 Results

The results of the Z-test for three ranges of R can be observed in tables 4.2, 4.3
and 4.4, for (Ny), (CO), and (HeH™), respectively. The smallest Z value implies the
most accurate potential energy function.

For the diatomic system Ny, in the repulsive part, the most accurate potential en-
ergy function was the Extended Rydberg (Vgg), which can be seen in Fig. 4.5. Then,
the Levine (Vogy) potential presented the second better result, as can be seen in
Fig. 4.7. Both were obtained using the experimental data, without a fit. Next, the Ex-
tended Lennard-Jones (Vgr;) and the Varandas and da Silva (Vegracgey) performed
the best results, both fitted, in this case. These results can be observed in Fig 4.4 and
4.2, respectively. On the other hand, in the attractive part, the best potential was
the Varshni (VAR;;;) potential, which does not depend on adjustable parameters and
it can be observed in Fig. 4.1. Next, we have Vg, the Simons-Parr-Filan (Vspr),
and the Modified Extended Rydberg (Visgr), which were all fitted and the graphics
can be observed in Fig. 4.4, 4.6 and 4.3, respectively. Vg is superior to all other
potentials over the whole range of R. Next, Vgr, Vegracrsu, and Vspr proved to be
more accurate than the others.

On the other hand, for Ny the Born-Mayer potential showed the greatest deviation
from the RKR curve, as can be seen in Fig. 4.8. The same occurred for CO, as can
be seen in Fig. 4.13. These results were already expected in view of the fact that the

Born-Mayer potential is a repulsive potential, and therefore has no minimum.
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Table 4.2: Results of the Z-test for No(X'X ). Z values are given in 107°E,% ap!

RANGES AR/ay GENKRAT LJ MOR RYD BM

Repulsive branch 0.420 824.586 1184.116 157.207 194.764 1 044 946.6
(1.6544<R<2.0743)

Attractive branch 1.004 95.528 585.683  53.693  37.075 40 068.184
(2.0743<R<3.0778)

Whole potential 1.423 155.199 380.957  42.095 41.773 168 127.383
(1.6544<R<3.0778)

RM DAV PT MR NEW HUG HYL EM MS HH

8.797 2 837.581 592.860 59.785 46.427 8.135 341.972 8.831 270.589 20.774
2.524 319.032  17.480 18.469 61.350 2.368 39.569 5.164 44.261 1.433
2,18  530.655  93.537 15.321 28.467 2.034 64.347 3.122 55480  3.567

LIN HEL WY LIP FM VAR DF TH LEV SPF ER

13.396 - 33.298 821.181 8.829 3.182 10.522 17.722 0.241 1.627 0.096
2.000 - 715.661 59.024 3.536 0.119 29.575 1.381 1.012 0.229 0.500
2.679 - 257.164 141.830 2.548 0.511 11.975 3.099 0.392 0.320 0.189

THA HUF OGI MAT DZ SUR PG EHFACE2U SCH RPCyy

4.095 3.782 3.730 4.031 1.794 3.764 14.929 0.319 2 755.523 1707.831
0.810 0.806 0.778 0.777 7.505 0.785 1.282 0.717 25.613 1 396.130
0.898 0.842 0.771 0.858 2.910 0.838 2.646 0.302 415.137 743.462

AP WP FAYy; MER RAFI; NP ELJ MRM UDD NDS

4.528 2 757.500 47.059 4.937 225.219 10.435 0.272 369.333 3 108.995 17.726
1.148  26.547  11.712 0.380 37.306 0.710 0.271 18.984 24.910 1.382
1.072 415339 11.064 0.861 46.342 1.788 0.135 61.124  466.984  3.099

IMPT FWJ IMPETP NMM
116.404 17.722  17.730  4.960
25.806  1.381 1.383 7.959
37.292  3.099 3.101 3.536
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Table 4.3: Results of the Z-test for CO(X'Y¥). Z values are given in 107°E,? ay™!

RANGES AR/ay GENKRAT LJ MOR RYD BM RM

Repulsive branch 0.443 469.897 469.967 1.019 3.727 548 267.785 3.097
(1.6890<R<2.1320)
Attractive branch 1.054 284.017 283.840 1.776 6.424 7 241.027  2.468
(2.1320<R<3.1860)
Whole potential 1.497 169.565 169.513 0.776 2.814 83 697.611 1.328
(1.6890<R<3.1860)

DAV PT MR NEW HUG HYL EM MS HH  LIN

2108.226 3 946.702 33.847 6.745 0.660 1666.928 30.511 19.829 0.515 2.141
169.032 274.522 15599 0.148 0.097  60.933  13.313 7.968 0.009 0.069
371.558 680.814  10.503 1.051 0.132 268.175  9.204 5.741 0.079 0.341

HEL WY LIP FM VAR DF TH LEV  SPF ER THA

- 28.366 624.046 9.125 20477 346.128 6.470 12.206 22.719 0.498 24.394
- 3.588 100.822 1.029 10.009 13.247 0436 5.664 2.230 0.028 2.468
- 5.462 127.868 1.713 6.556  55.895 1.111 3.801 4.148 0.084 4.479

HUF OGI MAT DZ SUR PG  EHFACE2U SCH RPCy AP

29.796 23.088 24.742 1.543 27.268 41.437 30.706 11.130 1 044.960 5.872
1.897  2.554 2459 2.644 0.246 21.308 1.880 9.261 2 293.515 0.875
5.078 4316 4528 1.159 4.122 13.637 5.215 4.909  962.326 1.177

WP FAY MER  RAFIy NP ELJ MRM UDD NDS IMPT

11.130 363.925 10.812 10.065 157.127 0.522 51.204 18 438.152 6.469 8.545
9.261 3.326  58.142  0.928 9.467 0.011 21.377  340.065  0.437 1.142
4.909 55.035 367.106 1.816 11.789 0.081 15.107 2 848.737 1.111 1.667

FwJ IMPETP NMM
6.470 6.471 9.434
0.436 0.436 2.012
1.111 1.111 2.091
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Table 4.4: Results of the Z-test for HeH*(X'%%). Z values are given in 107°E),% o~

RANGES AR/ay GENKRAT LJ MOR RYD BM RM
Repulsive branch 0.563 139.000 139.885 2.763 9.514 - 23.617
(0.9000<R<1.4600)
Attractive branch 0.737 2.616 1.356  0.012 0.082 - 1.311
(1.4600<R<10.0000)
Whole potential 1.3 30.928 31.012 0.601 2.082 - 5.482

(0.9000<R <10.0000)

DAV PT MR NEW HUG HYL EM MS HH LIN
- 12 357.302 24.283 0.708 3.762 39.357 1.640 61.430 0.191 29.062
- 963.975 0.155 0.879 0.002 0.858 0.415 42.719 0.011 0.114
- 2947164 5299 0.402 0.815 8760 0472 25395 0.044 6.321

HEL WY LIP FM VAR DF TH LEV SPF ER
50.578  280.158 222.313 0.050 0.720 302.701 3.489 0.299 2315 1.627
100.349 251414 1.594 0.062 0.083 0.621  0.004 0.057 0.022 0.001
39.372  131.846 48.559 0.028 0.179  65.680 0.756 0.081 0.507 0.352

THA HUF OGI MAT DZ SUR PG EHFACE2U SCH RPCy
1.696 4.207 1.792 1.795 0.020 1.663 9.912 2.253 190.602 -

0.049 0.050 0.032 0.074 0.070 0.715 0.336 0.020 0.242 -
0.381 0.925 0.397 0.409 0.024 0.563 2.240 1.142 41.315 -
AP WP FAY MER RAFIy NP ELJ MRM UDD

0.083 190.602 5 181.941 27 489.490 0.742 585.920 1.835 49.958 91.005
0.522  0.242 163.562 640.252 0.004  39.182 0.005 0.330 48.595
0.328 41.315 1167.692 539 667.803 0.162 137.891 0.398 10.904 33.459

NDS IMPT FWJ IMPETP NMM
3.489 0.064 3.489 3.489 7.114
0.004 0.003 0.004 0.004 0.187
0.756 0.015 0.756 0.756 1.592
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Figure 4.1: Comparison, for Ny (X 12;), of the Varshni III potential with the experi-

mental RKR curve [213].
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Figure 4.2: Comparison, for Ny (X 12;), of the EHFACE2U potential with the exper-

imental RKR curve [213].
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Figure 4.3: Comparison, for Ny (X 12;), of the Modified Extended Rydberg potential

with the experimental RKR curve [213].
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Figure 4.4: Comparison, for Ny (X 12;), of the Extended Lennard-Jones potential
with the experimental RKR curve [213].

Thus, according to our comparative study, for the ground electronic state of Ny the
functions in order of decreasing accuracy, over the whole range of R, are: Vg, Veg,
Verraceau, Vspr, Viev, Vwary,, Voar, Vsur, Vavur, Vaar, Vuer, Vraa, Vap, Ve,
Vuva, Vem, Vrm, Veas Viin, Voz, Vrae = Vews = Vps, Vinrere, Veu, Vuu,
Vaw, Vrav,,, Vor, Vur, Vvew, Viver, Veyp, Vumors Vrarn,, Vus, Viru, Vavr,

Ver, Vire, Veenkrar, Vwy, Vg, Vscua, Ve, Vubp, Vbav, Vepc,, and Vg
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Figure 4.5: Comparison, for Ny (X IE;), of the Extended Rydberg potential with the
experimental RKR curve [213].
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Figure 4.6: Comparison, for Ny (X 12;), of the Simons-Parr-Filan potential with the

experimental RKR curve [213].
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Figure 4.7: Comparison, for Ny (X IZ;), of the Levine potential with the experimental

RKR curve [213].
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Figure 4.8: Comparison, for Ny (X 12;), of the Born-Mayer potential with the exper-

imental RKR curve [213].
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For the diatomic system CO, as well as for Ny, the best potential in the repulsive
part was the Extended Rydberg by Huxley and Murrell [131], as can be seen in Fig 4.12.
Next, the Hulburt-Hirschfelder (Vigy), Vers and the Huggins (Vypg) were the most
accurate, being all analytical functions which their parameters were obtained directly
from experimental data, except Vg ;. The accuracy of these potentials can be noted in
Fig. 4.10, 4.11 and 4.9, respectively. In the attractive region, the results were similar
to those in the repulsive region, being Vygy, Vers, and Vggr those with the lowest Z
value, respectively. The Hulburt-Hirschfelder potential proved to be the best among
the 50 analyzed considering the whole potential.

1
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CO Huggins

CORKR [214] o
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Figure 4.9: Comparison, for CO (X'X1), of the Huggings potential with the experi-
mental RKR curve [214].
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Figure 4.10: Comparison, for CO (X'X), of the Hulburt-Hirschfelder potential with
the experimental RKR curve [214].
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Figure 4.11: Comparison, for CO (X'XT), of the Extended Lennard-Jones potential
with the experimental RKR curve [214].

For the ground electronic state of CO the functions in order of decreasing accuracy,
over the WhOle range Of R, are: VHH; VELJ, VER, VHUGa VLIN7 VMOR, VNEW7 VTH ==
Vews = Vnps = Vinpere, Voz, Var, Veu, Viner, Veur, Vearn,, Vvar, Veyp, Viev,
Vsur, Vspr, Voar, Vraa, Viar, Vsca = Ve, Vaur, Vearaceau, Viwy, Vs, Vwar,;

Veum, Vur, Ve, Vea, Vira, Viay,,, Vor, Vere, Vi, Veenkrar, Vavr, Vuer, Vbav,
Ver, Vree,,s Vupp, and V.
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Figure 4.12: Comparison, for CO (X'¥1), of the Extended Rydberg potential with the
experimental RKR curve [214].



Results 176

T T
CO Born-Mayer
CORKR [214] ©

0.8 |

0.6 |

04 |

E(h)

02

R(bohr)

Figure 4.13: Comparison, for CO (X'X1), of the Born-Mayer potential with the ex-
perimental RKR curve [213].

Finally, for the diatomic system HeH™ the results were slightly different from those
obtained with Ny and CO. The best function for the repulsive range was the Dmitrieva-
Zenevich (Vpz) potential without adjustable parameters as can be seen in Fig. 4.16. Af-
ter, the fitted Frost-Musulin (Vgys) (see Fig. 4.18) and Improved Poschl-Teller (Vi pr)
potential functions were the most accurate. In the attractive range, the function with
the lowest Z value was Vgg, after Vyye and Viypr, being the first a potential without
fit and the second fitted. These results can be observed in Fig. 4.17, 4.14 and 4.15
respectively. Last, for the whole potential Vi pr yielded the least deviation. Next,

Vbz, Ven, and Vg were the most accurate, respectively.

T
HeH+ Huggins
0.6 HeH+BO [215] o

04

R(bohr)

Figure 4.14: Comparison, for HeH™ (X!X1), of the Huggings potential with the ex-

perimental Born-Oppenheimer curve [215].
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Figure 4.15: Comparison, for HeH' (X!'X1), of the Improved Péschl-Teller potential

with the experimental Born-Oppenheimer curve [215].

For the ground electronic state of HeH" the functions in order of decreasing accu-

racy, over the whole range of R, are: Viypr, Voz, Veurr, Vaw, Viev, Vrarn, Vwar,

VAP7 VERa VTHA) VOGIa VELJ, VNEW7 VMAT7 VEM7 VS’PF7 VSUR7 VMOR7 VTH = VFWJ =

Vvps = Vimpere, Vuve, Vaur, Verrace2v, Vv, Vevp, Vea, Var, Vev, Vi,

Vave, Viurm, Vus, Veenkrar, Vis, Voop, Vuer, Vsew = Vwe, Viie, Vor, Vvy,

Vnp, VFAYH, Vpr and Vigr.
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Figure 4.16: Comparison, for HeH' (X1X7), of the Dmitrieva-Zenevich potential with

the experimental Born-Oppenheimer curve [215].
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Figure 4.17: Comparison, for HeH' (X'¥1), of the Extended-Rydberg potential with

the experimental Born-Oppenheimer curve [215].

For the Heller function (Vygr) was not possible to obtain potential energy curves
for Ny and CO. This is due to the fact that this potential describes well only van der
Waals diatomics [21]. For HeH™, the Born-Mayer (Vg,/), the Davidson (Vpay) and
the Reduced (Vgpc,,) potentials did not provide correct PECs.

Note that, for the three diatomic systems considered here, the results for functions
Vru, Vew s, and Viypg are identical, confirming the claims of Fu, Wang, and Jia [18] and
Mustafa [201], respectively. For CO and HeH™, Vi prrp also proved to be equivalent
to Vg, Vewy, and Vypg, and for Ny their values for three regions analyzed yielded
results approximately equivalents, confirming the statement of Xie and Jia [209].

For HeH™, the Modified Extended Rydberg showed the greatest deviation from the
Born-Oppenheimer experimental curve, demonstrating that such a function does not

work well for this ion, as can be seen in Fig. 4.19.
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Figure 4.18: Comparison, for HeH™ (X'X7), of the Frost-Musulin potential with the

experimental Born-Oppenheimer curve [215].
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Figure 4.19: Comparison, for HeH™ (X'X1), of the Modified Extended Rydberg po-

tential with the experimental Born-Oppenheimer curve [215].



5 A comparative study of analytic
representations of potential energy
curves for O9, N9, and SO in their

ground electronic states

In this chapter we will present some results of a work presented at the Quitel
Congress in 2018 (see Ref. [23]). Here we will consider only the functions that were
in fact adjusted, leaving out the historical review (which can be checked in chapter 3)
and the functions of Thakkar and Hua (who not been adjusted). Here we refer to the
Extended Rydberg potential as the Murrel-Sortbie potential.

Among the analytical representations available in the literature, four functions
were chosen: Rydberg, Hulburt-Hirschfelder, Murrell-Sorbie and Aguado-Camacho-
Paniagua. This selection was motivated considering that the first three were proposed
a long time ago, and the curves were obtained theoretically or semi-empirically, in the
case in which the functions were based on a compromise between results of empirical
measures of experimental character and few reliable theoretical calculations available
until the mid-1980s, except for very simple diatomic systems [216]. In counterpart,
the latter potential Aguado-Paniagua, had been presented using ab initio calculation
together with semi-empirical calculation techniques. Thus, the aim of this work is to
apply ab initio calculation techniques to the earliest potentials and compare them with

more recent ones, using Os, No, and SO as case studies diatomic systems.

5.1 Electronic structure calculations

In order to obtain a sufficiently accurate potential energy curves, the electronic
structure calculations for the homo-and heteronuclear systems were carried out using
as reference complete active space self-consistent (CASSCF') [210] wave function. Dy-
namical correlation effects were included by means internally contracted multireference
configuration interaction (MRCI) [211]. Such a strategy has been previously applied
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RMSD (kcal/mol)

Figure 5.1: Root-mean squared deviation of diatomic molecules: (a) No(X'3}), (b)
02(X?%; ), (¢) SO(X?L™) calculated in different basis set and potentials.

in several diatomic molecules [217-219]. Furthermore, the multireference Davidson
correction (+Q) was included to compensate for the effects of higher-order correla-
tion. The aug-cc-pVXZ (X = T,Q,5,6) basis sets of Dunning were employed. For each
basis set, we have performed CASSCEF followed by MRCI approach. It must be also
highlighted that for the sulfur atom, we have used the Dunning correlation consistent
basis set (aug-cc-pV(X+d)Z), which contain an additional d function for the purpose
of partially ameliorating a known SCF-level deficiency in the AVXZ sets for second-row
elements of periodic table [220].

All calculations were performed with the Molpro 2012 package of ab initio pro-
grams [212]. We must point out that Molpro only uses Abelian point group symme-
try. Following this, we consider irreducible representations of the D,y point group
for homonuclear molecules (N5 and O,) but due to limitations of the procedure, we
adopted Doy, subgroup of D, point group in the calculations; for SO, Csy, subgroup of
Coov is used. In general, the mapping calculations of the PEC were made at intervals
of 0.025 ag over the internuclear distance range from 1.0 to 15.0 ay, where ag is the

Bohr radius.

5.2 Results and discussion

5.2.1 Performance Analysis

We start this discussion showing the results obtained from the root-mean-square
deviation (RMSD) for the different potentials, basis set and diatomic systems. From
the statistical point of view, RMSD values are generally used to evaluate the error of
the PEC in relation to the curve obtained via the points ab initio data. The root-

mean-square deviation is calculated by:

AEgrmsp = (Vab initio — V)2 (5.1)

i=1

Zl =

N 1/2
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Table 5.1: Basis Set Dependence of the spectroscopic constants for the Nz(XlZg)
Potential Basis set Re AR /R We Awe[we® De AD,/D,° WeXe AweXe /WeXe
(a0) (%) (cm™!) (%) (eV) (%) (cm™!) (%)
Ryd. AVTZ 2.07431 0.0 2394 1.52 9.41768 23.48 15.80 10.33
AVQZ 2.07431 0.0 2391 1.39 9.63082 13.20 15.60 8.93
AV57Z 2.07310 0.05 2395 1.56 9.73632 8.12 15.87 10.82
AV6Z 2.07531 0.04 2396 1.61 9.76785 6.60 15.93 11.24
MS AVTZ 2.06669 0.36 2449 3.85 9.54045 17.56 17.68 23.46
AVQZ 2.08315 0.42 2399 1.73 9.76039 6.96 15.95 11.38
AV57Z 2.05913 0.73 2474 491 9.88354 1.02 17.81 24.37
AV6Z 2.05857 0.75 2476 5.00 9.91620 0.54 17.85 24.65
HH AVTZ 2.06865 0.27 2418 2.54 9.46758 21.07 16.67 16.41
AVQZ 2.06580 0.40 2434 3.22 9.61217 14.10 17.04 18.99
AV57Z 2.06075 0.65 2443 3.60 9.81957 4.10 17.52 22.34
AV6Z 2.06031 0.67 2445 3.68 9.86220 2.05 17.63 23.11
AP AVTZ 2.09175 0.84 2326 1.35 9.44831 22.00 15.21 6.21
AVQZ 2.08314 0.42 2349 0.38 9.69849 9.94 14.46 0.97
AV57Z 2.08333 0.43 2345 0.55 9.77486 6.26 14.53 1.46
AV6Z 2.08285 0.41 2346 0.50 9.80564 4.78 14.58 1.81

?The experimental values of AR, can be seen in the Table 5.4
bThe experimental values of Aw, can be seen in the Table 5.4
¢The experimental values of AD, can be seen in the Table 5.4
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Table 5.2: Basis set dependence of the spectroscopic constants for the OQ(X?’Zg)
Potential Basis set Re AR /R We Awe[we® De AD,/D,° WeXe AweXe /WeXe

(a0) (%) (cm™') (%) (eV) (%) (cm™!) (%)

Ryd. AVTZ 2.28969 0.42 1605 1.58 5.00247 8.55 13.21 10.26
AVQZ 2.28970 0.42 1600 1.26 5.08499 4.93 13.18 10.01

AV57Z 2.28970 0.42 1600 1.26 5.11076 3.80 13.17 9.93

AV6Z 2.28970 0.42 1600 1.26 5.12831 3.03 13.15 9.76

MS AVTZ 2.28889 0.39 1664 5.31 5.15345 1.93 13.72 14.52
AVQZ 2.28115 0.05 1677 6.13 5.25710 2.61 13.78 15.02

AV57Z 2.26425 0.69 1680 6.32 5.28918 4.02 13.82 15.35

AV6Z 2.27939 0.02 1682 6.45 5.31066 4.96 13.85 15.60

HH AVTZ 2.27876 0.05 1651 4.49 4.99806 8.74 13.64 13.85
AVQZ 2.27106 0.39 1667 5.50 5.10291 4.14 13.70 14.35

AV57Z 2.26937 0.46 1671 5.75 5.13348 2.80 13.72 14.52

AV6Z 2.26898 0.48 1672 5.82 5.16390 1.47 13.77 14.94

AP AVTZ 2.30267 0.99 1543 2.28 5.04119 6.85 12.80 6.84
AVQZ 2.29298 0.56 1567 0.81 5.14910 2.12 12.45 3.92

AV57Z 2.29152 0.50 1569 0.64 5.17947 0.79 12.39 3.42

AV6Z 2.29166 0.51 1565 0.88 5.19745 0.001 12.42 3.67

?The experimental values of AR, can be seen in the Table 5.5
’The experimental values of Aw, can be seen in the Table 5.5
¢The experimental values of AD, can be seen in the Table 5.5
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Figure 5.2: Potential energy curves for Nj, Oy, and SO calculated at the
MRCI+Q/AV6Z level of theory.

where Vb iitio Te€presents the ab initio points and V is the potential energy given by
four analytic forms selected among those previously presented.

To obtain the two-body energies, we have employed the functions of Rydberg
(RYD), Murrell and Sorbie (MS), Hulburt-Hirschfelder (HH), and Aguado and Pa-
niagua (AP). These potentials are very well documented in the literature being, ac-
cordingly, good models for this study [221-223]. We remember, of course, that the
smaller RMSD values represents the better performance of the fit. To avoid long tables
of coefficients, only the results calculated using these functions set are shown. The
remaining data is gathered in Supplementary Material (see Ref. [23]).

To investigate in details the quality of the fits, graphics of the calculated RMSD
values for Ny, Oy, and SO molecules can be seen in Figure 5.1. As expected, the best
results are found when the AP function is used in combination with a higher basis set,
so that for the three systems, differences in the order of 0.10, 0.04, and 0.02 kcal /mol
were obtained from other data, respectively.

The ability of the other analyzed potentials, Ryd, MS and HH, to reproduce ab
initio points [calculated mainly in the intermediate region| can be clearly seen in the
Figure 5.2. The Ryd function is represented by a red solid line, while MS is in blue.
In black are shown the results of the HH functions and those for AP are in magenta.

Comparing the RMSD test, in almost all cases the fits are above the threshold
of chemical accuracy (1 kcal/mol) [224]. In particular, the AP function shows good
performance with RMSD values below 0.25 kcal/mol. For sulfur monoxide Fig. 5.1
(c), note the very poor quality and the greater deviation of the fit in the AV(T-+d)Z
when the MS function is applied (RMSD value close to 7 kcal/mol). In such a Figure,
the values of AEgrysp for Rydberg function (2.75, 3.04, 3.21, 3.07 kcal/mol) are not
significantly modified when changing the basis set. The same behaviour is observed for
the MS potential (1.41, 1.42, 1.37 kcal/mol) in the basis sets AV(X+d)Z (X = Q,5,6).

In the case of nitrogen molecule (Fig. 5.1 (a)), when the Ryd potential is applied,
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Figure 5.3: Potential energy curves for the ground electronic state of the Ny molecule
calculated with different basis sets. The circles represent energies calculated by
EHFACE model from Ref. [226]. In addition, also plotted in the inset is a zoom
of the minimum region of the curve.
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Figure 5.4: Potential energy curves for the ground electronic state of the Oy molecule
calculated with different basis sets. The circles represent ab initio points calculated in
Ref. [227]. In addition, also plotted in the inset is a zoom of the minimum region of
the curve.
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Figure 5.5: Potential energy curves for the ground electronic state of the SO calculated
with different basis sets. The circles represent ab initio points calculated in Ref. [228].
Solid green line represents the analytical form (EHFACE model) obtained in Ref. [229].
In addition, also plotted in the inset is a zoom of the minimum region of the curve.

Table 5.3: Basis Set Dependence of the spectroscopic constants for the SO(X3X7)

Potential ~ Basis set Re AR¢ /R We Awe/we® D, AD,/D,° WeXe AweXe /WeXe

(a0) (%) (cm™") (%) (eV) (%) (cm™") (%)

Ryd AV(T+d)Z 2.79884 3.21(—4) 1204 4.87 5.17952 8.91 6.71 9.64
AV(Q+d)Z 279884  3.21(-4) 1195 409 520416  4.81 6.68 9.15
AV(5+d)Z 279884  3.21(-4) 1192 3.83 533319  3.42 6.66 8.82
AV(6+d)Z 279884  3.21(-4) 1191 374 536028  2.45 6.63 8.33

MS AV(T+d)Z 2.81980 0.74 1195 4.09 5.24626 6.52 6.68 9.15
AV(Q+d)Z 2.81239 0.48 1211 5.48 5.40960 0.69 6.65 8.66
AV(5+d)Z  2.80792 0.32 1216 5.92 5.46320 1.22 6.67 8.98
AV(6+d)Z 2.80625 0.26 1218 6.09 5.49369 2.31 6.70 9.47

HH AV(T+d)Z 2.82807 1.04 1103 3.91 4.66886 27.15 7.15 16.83
AV(Q+d)Z 2.79948 0.02 1204 4.87 5.36251 2.37 6.40 4.57
AV(5+d)Z 2.81032 0.41 1128 1.74 4.94807 17.18 6.73 9.96
AV(6+d)Z 2.77639 0.80 1244 8.36 5.23775 6.83 7.05 15.19

AP AV(T+d)Z 2.82532 0.94 1124 2.09 5.15158 9.91 6.41 4.73
AV(Q+d)Z 2.81270 0.49 1134 1.21 5.29857 4.65 6.32 3.26
AV(5+d)Z 2.80765 0.31 1139 0.78 5.35029 2.81 6.25 2.12
AV(6+d)Z 2.80572 0.24 1141 0.60 5.38058 1.72 6.20 1.30

?The experimental values of AR, can be seen in the Table 5.6
’The experimental values of Aw, can be seen in the Table 5.6.
¢The experimental values of AD, can be seen in the Table 5.6
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unexpectedly the values of AEgrysp increases monotonically as the basis sets increases
from AVTZ (2.16 kcal/mol) to AV6Z (2.77 kcal/mol). For the Hulburt-Hirschfelder
function, the average value of the RMSD is around 2.0 kcal/mol. For MS function
although 0.55 kcal /mol be the smaller value of RMSD found at AVQZ, the other basis
sets present bigger values, near to 1.80 kcal/mol. The Aguado and Paniagua potential
led to deviations of the magnitude of 0.10 kcal/mol these values being close to those
found by Xiao-Niu et al. (0.09 kcal/mol) [225].

Finally, the plot of the oxygen molecule represented in Fig. 5.1 (b) demonstrated
a Gaussian-like behaviour for the Ryd, MS, and HH functions with a peak at 2.80,
1.25, and 2.50 kecal /mol, respectively. Again, the lower RMSD values are found for the
potential AP with a value of approximately 0.04 kcal/mol. As can be noted, the quality
of the computed potentials critically depends upon the size of the basis set employed.

To conclude this section the potential energy curves for ground electronic states of
Na, Oy, and SO, are plotted in Figures 3 to 5. For convenience, in both cases, we used
only the analytical representation proposed by Aguado and Paniagua (see Eq. (3.440))
together with basis set aug-cc-pVXZ where X is the cardinal number of the basis set
(X =T, Q, 5, 6). For comparison, the theoretical data are available in Refs. [226]
for Ny, [227] for Oq, and [228, 229] for SO are also included in this work. We justify
the choice of these works mainly because their results reproduce well the experimental
energies. Therefore, they are very close to spectroscopic accuracy.

Figure 3 exhibits the curves for the ground electronic state of the Ny molecule
obtained in this work, along with the PEC extracted from the double many-body
expansion (DMBE) potential energy surface for ground state HNy [226]. We highlight
that the analytical form used by Poveda and Varandas to fit the ab initio points for
nitrogen molecule is based on the EHFACE2U model [168]. It can be seen from this
plot, the potential curves computed for AV5Z (dashed black line) and AV6Z (dashed
magenta line) indicate excellent agreement for all points except in the region between
3.5 < R/ag < 5.0, where the energies of the EHFACE model (circles) are lower than
our potential curves. In addition, the major difference (around of 0.013 Ej, or 0.35 eV)
is observed in the zoom of this same figure if we compare the energies calculated at
AVTZ (solid red line) basis set and the EHFACE model in the range of 1.8 ag to 2.4
agp.

Figure 4 shows our potential energy curves now for the oxygen molecule, together
with the ab initio energies reported by Bytautas et al. [227]. The electronic energies
for X3Zg_ were calculated with the CBS limit, in addition, corrections such as the
scalar relativity, spin-orbit coupling, and the core-electron correlation are included.
The energies, namely, CBS+SR+SO+CV are listed in the last column of Table I from
Ref. [227]. As before, our results at AVXZ (X = 5,6) basis set are in agreement
with those previously reported in Ref. [227] within the range of internuclear distances

considered here. When examining the inset of this same figure, we observe that there
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Figure 5.6: Largest basis set used versus differences between our results obtained with
the setup of table 5.1 and the experimental data: (a) AR, (b) Awe, (¢) AD, for Ny
molecule. The experimental values of 2.0743 ag, 2358 cm™!, and 9.9008 eV are from
Ref. [231].
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are slight differences around the minimum between AVTZ basis set and the other ones.

Finally, in Figure 5 are represented potential energy curves for the sulfur monoxide
molecule. The circles represent ab initio energies reported by Borin and Ornellas at
internally contracted multireference configuration interaction (icMRCI) level of theory
with the cc-pVQZ basis set [228]. For completeness, the solid green line illustrates the
PEC for SO molecule extracted from the DMBE potential energy surface for ground
state SOq [229, 230]. Again, the diatomic interactions are represented according to
the EHFACE2U model. It can be noted that the electronic energies in function of
internuclear distances listed in column 2 of Table 1 (Ref. [228]|) are between our re-
sults obtained from the AV(T+d)Z (solid red line) and AV(Q+d)Z (dashed blue line)
basis set (see zoom in the minimum region). There are small differences in all ener-
gies, in particular, in the energies calculated at AV(T+d)Z basis set are larger than
EHFACE2U model (0.009 E;, or 0.24 eV).
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Figure 5.8: Largest basis set used versus differences between our results obtained with
the setup of table 5.3 and the experimental data: (a) AR, (b) Awe, (¢) AD, for SO
molecule. The experimental values of 2.7986 ag, 1148 cm™!, and 5.429 ¢V are from

Ref. [96].

5.2.2 Spectroscopic parameters

Based on PECs obtained by fit ab initio points, we computed the ground state
spectroscopic parameters of the molecules analyzed here determined from the Egs.
(3.79), (3.181), (3.314), and (3.440). These results are presented in the Tables 5.1 to
5.3 and can be seen graphically in the Figures 5.6 to 5.8. The column one of all tables
indicates the analytical form used in the fit, whereas the basis sets are given in column
two. The third, fifth, and seventh columns of these tables show calculated values of the
equilibrium bond distances R, harmonic vibrational frequencies we, and the potential
well depth D,. The relative differences between the available experimental data and
the results obtained by us given by AY/Y (Y = R, we, and D,), are displayed in the
fourth, sixth, and eighth columns, and are expressed in percentages. The experimental
values adopted in this work were obtained from Refs. [231] for Ny and [96] for Oy and
SO molecules. For completeness, the anharmonicity parameter (wex.) from our curves
and its comparison with the corresponding experimental values (Awex,) are also shown
in last columns.

Although higher values of RMSD are found for the functional forms of RYD, MS and
HH, it can be seen from these tables that in general, some spectroscopic parameters
obtained by these analytical representations appear to be close to the experimental
results. Note that in Figs. 5.6, 5.7, and 5.8 the red bars represent the Rydberg function,
while in blue it refers to the Murrell-Sorbie potential. The black and magenta bars are
used to refer to the potential HH and AP, respectively.

Notice now the results of the Table 5.1. Note that when we compare the bond
lengths calculated by us with experimental values [231] for ground state Ny molecule,
we obtained a very good agreement with relative differences of 0 < AR./R. < 0.84, in
percentages. Surprisingly, the results for the Rydberg function (the earliest studied
here) presents almost negligible AR, since their root-mean-square deviation results
overestimate the threshold of chemical accuracy by about 1.2 kcal /mol. Analyzing the

fourth column, the consistently increasing quality with increasing base set size only
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Table 5.4: Spectroscopic parameter from available results for Ng(XlZg) molecule.

Method Re (a0) we (em™) D, (eV) Source
NOF-OIMP2/VTZ _ 2.0749 - 10.004 232
RHF 20862 29071 ; 233]

CCSD(T)/V6Z 2.0732 2370 - [234]
RMR CCSD(T)/VQZ 2.0813 2343 9.893  [235]
Exp. 2.0743 2358  9.9008  [231]

for the potential AP is remarkable. However, the results of other functions exhibit
inverse behaviour, i. e., increasing the size of the basis set produces bond lengths
less precise. This is the case, for example, of the MS function where we obtained
DeltaR./Re equal to 0.36% for AVTZ, 0.42% for AVQZ, 0.73% for AV5Z, and 0.75%
for AV6Z. In contrast, the AP functions provide the following values for this relation:
0.84% for AVTZ, 0.42% for AVQZ, 0.43% for AV5Z and 0.41% for AV6Z. The Hulburt-
Hirschfelder potential yields close values with experimental differences of: AVTZ ~
0.007ag, AVQZ ~ 0.008ay, AV5Z ~ 0.001ag, and AV6Z ~ 0.001lag. Such information
can be seen of form summarized in Fig. 5.6 (a).

In the sixth column of the Table 5.1, note that the vibrational frequencies present
relative differences, with Aw,/w,. between 0.38 and 5.0%. Comparing the values ob-
tained for w, for the four potentials in question, we conclude that the best result
is obtained when the functional form proposed by Aguado and Paniagua is used at
MRCI(Q)/AVXZ (X = T,Q,5,6) level of theory (see also Fig. 5.6 (b)).For this particu-
lar potential, our theoretical harmonic vibrational frequencies differ by less than 1.4%
of the experimental values from Ref. [231]. Concerning to Rydberg function a similar
results emerges from our analysis (around 1.6%), with deviations close to 38 cm™' (in
red), while for the MS potential are overestimated in ~ 118 cm™*. In addition, with
respect to cardinal number X of the basis set, we obtained the values 2418, 2434, 2443,
and 2445 cm ™!, corresponding to HH potential. In Fig. 5.6 (b), we identify that Aw,
for these values (in black) slightly increases with the basis set as well as for Murrell-
Sorbie potential (in blue), except in the case of aug-cc-pVQZ basis.

Further, in Table 5.1, the dissociation energies (D,), obtained using all potentials
are unexpectedly larger than the corresponding experimental values, relative differ-
ences are between 0.54 to 23.48 %. This large error can be partly attributed to the
fit process, in particular for AVTZ basis. Energetically, the MS potential seems to
represents reasonably well the experimental value of 9.9008 eV [231], however it may
differ quantitatively in more than 7% when Dunning’s augmented correlation consis-
tent valence triple-( basis set (aug-cc-pVTZ) is used (see Fig. 5.6 (¢)). From Fig. 5.2,
one can see that the Murrell-Sorbie function has a larger depth in the well than the

other functions described. This fact indicates consistency in our results. Moreover,
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according to Ref. [236] the reliable description of the dissociation profile of the ground
state of the nitrogen molecule is a difficult problem for any ab initio method due to
the presence of strong dynamical and nondynamical correlation effects.

Besides this study, a series of theoretical spectroscopic investigations have been
performed about the Ny system [232-235]. For the convenience of comparison, all
these results are described in Table 5.4. In these investigations, probably the first
calculations for this system, made by Fraga and Ransil [233], were made through the
Hartree-Fock (RHF) restricted method. Their R, and w, values are larger than the
experimental results [231] by 0.01ay and 613 cm™!, respectively. Pawlowski et al. [234]
computed the values of molecular properties by using the MP2/CCSD(T) level of
theory in combination with a series of correlation-consistent basis sets. From what
we know, the depth of the well was not calculated in their work. The bond length
and harmonic frequency values calculated at CCSD(T)/V6Z differ of ours results with
the AP function/AV6Z (and experimental) in ~ 0.009 (0.001)ag and 24 (12) em™!.
Subsequently, the treatments of the nitrogen molecule using the RMR CCSD and RMR
CCSD(T) methods was verified by Li and Paldus [235]. As results, in both cases,
the spectroscopic constants perform well when compared to the experimental ones.
More recently, Piris using the formulation of the natural-orbital-functional second-
order-Moller-Plesset (NOF-MP2) calculated binding energies and bond lengths for this
system and others [232]. In general, the present spectroscopic parameters for the
ground state of Ny are in good agreement with the experimental [231| and previous
theoretical data [232, 235].

Now, a complete discussion about the results from Table 5.2 and Fig. 5.7 for
oxygen molecule is done. When equilibrium bond distances (R,) are analyzed, the
best value found corresponds to the relative difference of 0.02% for MS potential at
MRCI(Q)/AV6Z level. In Fig. 5.7 (a), the Rydberg potential (in red) displays values
almost constants around 0.0lag. On the other hand, the Table 5.2 shows that the
deviations are in the range 0% < AR./R. < 1.0%, which is in general agreement
with Ref. [96]. An unusually large error in the AP representation leads to bond lengths
with slightly overestimated (AVTZ basis), and they are more accurately predicted with
the aug-cc-pV67Z basis. As one can see from Fig. 5.7 (a) or in the Table 5.2, Rydberg
and HH predictions do not improve when larger basis are used for the bond lengths.
However, the O2 bond lengths are very good with the AVXZ (X = Q, 6) basis sets,
with small relative errors.

The relative errors in harmonic vibrational frequencies (w,) are represented in Fig.
5.7 (b). The MS function predictions show a typical error 80 to 100 cm™! overestimate
in most cases, whereas the AP frequencies are considerably improved, with most errors
less than or equal to 1%. Obviously, the value 1569 cm™! based on AV5Z is the best
compared to the experimental value [96] of 1580 cm™?, there is no significant deviation

in this case. The values of w, for the Hulburt-Hirschfelder representation deviate from
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Table 5.5: Spectroscopic parameter from available results for OQ(X3Eg ) molecule.

Method Re (a9) we (ecm™) D, (eV) Source
B3P36/CC-PV5Z  2.2676 1645 522 [237]
DFT/ET-QZ3P-3Diffuse 2.2733 1621 - [238]
CI 23054 1614 472 [239)]
DFT/B3LYP 2.2790 1585 5.96 [240|
MRCI(Q) 2.2979 1522 5.09 [240]
CASPT2 22884 1536 517 [240]

Exp. 2280 1580 519 [96]

the experiment results by 4.49%, 5.50%, 5.75%, and 5.82%, respectively for the basis
AVXZ (X =T, Q, 5, 6). As before, the Rydberg interaction potential (in red ) shows
almost constant values for vibrational frequency (near to 1600 cm™!). Note that this
same behaviour was observed in Fig. 5.6 (b). From the information contained in this
figure and those displayed of Table 5.2 (sixth column), we can easily find that the big
errors of harmonic frequencies are obtained between the functional forms of MS (blue)
and HH (black).

From the energetic point of view, we found the following results:

(i) relative differences of 0.01 < AD,/D, < 8.0, in percentage, were calculated
being the depth of the well major described when the AP function in aug-cc-pV6Z
basis set is used (5.19745 eV);

(ii) as well as for Ny, here the spectroscopic constant D, tends to smaller differences
from the experimental values at MRCI level of theory with Davidson correction if we
increase cardinal numbers (X = T, Q,5, and 6) of basis, however, MS (blue) does not
exhibit this behaviour see Fig. 5.7 (c);

(iii) our results with Rydberg are underestimated by 8.55%, 4.93 %, 3.80 %, and
3.03 %. compared to experimental values [96]. On the other hand, the AVXZ (X =
Q, 5, 6) basis set for MS are overestimated by 2.61 %, 4.02 %, and 4.96 %. It can be
clearly seen in Fig. 5.2 that the well for MS is deeper than Ryd potential.

For completeness, available theoretical results from the literature are summarized
in Table 5.5. We are also including the experimental ones from Ref. [96]. Guan et
al. calculate using time-dependent density functional theory (TDDFT) with Tamm-
Dancoff approximation (TDA) spectroscopic properties and potential energy curves
for the six lowest bound electronic states of the oxygen molecule. In Table IV, it
can be seen that their theoretical values for the ground state at this level of theory
provides: R, near to experimental one and w, it is overestimated by ~ 4lcm~!. Our
values obtained from the AP function/AV5Z for the harmonic frequency (1569 cm™!)
and equilibrium bond distance (2.2915a0) it seems to be better than of these, mainly

we. Dong-Lan et al. [237]| proposed a potential energy surface for SO in the ground
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Table 5.6: Spectroscopic parameter from available results for SO(X3X ™) molecule.

Method Re (9) we (em™) D, (eV) Source

icMRCI/VQZ ~ 2.8213 1137 - [228]
icMRCI(Q)/AV5Z  2.8090 1149 5418  [241]

CI 2.8326 1200 - [242]
DFT/B3LYP  2.8194 1129 572 [240]
MRCI(Q) 2.8280 1130 532 [240]
CASPT? 2.8043 1125 540  [240]
Exp. 27986 1148 5429  [96]

electronic state using the many-body expansion theory. Table 2 and 3, from Ref. [237]
contains features such as Re, we, and D, removed of two-body terms not only for Og
but also for SO molecule. There, the diatomics (O2 and SO) are modeled by the MS
potential function (Eq. (3.314)) minus a extra term (cg/R®). As results, the vibrational
frequency is larger than the experimental one in at least 65 cm~! and the depth of the
well and equilibrium internuclear distance are in good agreement with your respective
experimental values. However, the reported values of Schaefer obviously deviate from
Ref. [96], see Table 5.5 for details. At last, comparing some of our results with those
of Azizi et al. [240] slight differences are found. According to them, calculations at
second-order multiconfigurational perturbation theory (CASPT2) and MRCI(Q) are of
comparable accuracy for few-electron systems.

For the sulfur monoxide in the ground electronic state, the spectroscopic features
of the functional forms used to fitting ab initio points of this molecule are displayed in
Table 5.3 and Fig. 5.8. The triplet state considered here converge to the dissociation
limit S(°*P) + O(®P). Looking at basis set effects, all binding energies calculated are
lower than the experimental one. In opposition to this, the Murrell-Sorbie energies
at AV5Z and AV6Z are above by ~ 0.03 and 0.06 eV, respectively. These values are
close to D, (5.429 ¢V) reported in Ref. [96], however, the harmonic frequencies tend

to increases in approximately 40 cm™!.

Again, the best results observed in Table
5.6 are for the Aguado and Paniagua function in combination with AV(6+d)Z basis
(Re = 2.8057a9, we = 1141ecm ™!, and D, = 5.3805eV ). The same tendency holds when
analysing nitrogen and oxygen molecules (Tables 5.1 and 5.2). As can be seen from
Table 5.3, the equilibrium bond lengths obtained for Rydberg functions reproduce the
experimental value. On the other hand, this fact does not reflect better results of the
other molecular features. For example, according to the present table, the frequencies
for different basis sets are 1204, 1195, 1192, and 1191 cm™!,

It is interesting to note that in Figs. 5.8 (a), (b), and (c), the Hulburt-Hirschfelder
representation show higher deviation percentages in almost all spectroscopic constants

chosen, see also Table 5.3 for complementary informations. So, one verified that for our
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purpose this function is inefficient compared the other ones. We infer that this fact can
be directly connected with the values found in Fig. 5.1(c). In general, the bond lengths
and harmonic frequencies estimate for the AP function are acceptable (less than 2.1
%).The main variations are predicted in the binding energy: 9.91%, 4.65%, 2.81%, and
1.72%, respectively for AV(T+d)Z, AV(Q+d)Z, AV(5+d)Z, and AV(6+d)Z.

Over the years many works have been done to SO system certainly due to its high
reactivity. Historically, the sulfur monoxide has been detected in interstellar clouds and
in the atmosphere of planets [243]. Its interest goes beyond the astrophysical studies
being necessary in areas such as combustion [244] and photodissociation [245]. From an
extensive literature, the spectroscopic properties of both experimental and theoretical
were chosen from Refs. [228, 240-242] in order to comparison with our results. These
values are conveniently listed in Table 5.6. As discussed, Borin and Ornellas calculated
ab initio PECs at icMRCI/VQZ level of theory with the intention to study the singlet
and triplet states of sulfur monoxide. As results, deviations from the experimental
values for ground state (triplet state) were obtained by differences of 0.0227a, for bond
length and 11 cm™! for vibrational frequency. These data show smaller variations of our
best results: 0.0156a¢ and 4 cm™!. Unfortunately, an important constant, D., was not
evaluated. In 2011, Yu and Bian performed the icMRCI calculations in combination
with the aug-cc-pV5Z basis sets. The R., w., and D, values they provide for the
SO(X3¥ ™) are 2.8090ag, 1149 cm™!, and 5.418 eV, respectively. It is observed good
accord between the present spectroscopic parameters and our results, and consequently,
with experimental ones. Tabulated is also the data from Ref. [242|. There, a complete
study for seven low-lying electronic states of sulfur monoxide is reported by Swope
et al. carried out using configuration interaction (CI). They were found that w, it

is overestimated around 52 c¢m™!.

Again, D, was not evaluated for this work also.
All other results are shown in table 5.6 one refer to Ref. [240] except the last line (
Exp.) that contain values from Ref. [96]. It is interesting to note that all harmonic
vibrational frequencies are smaller in relation to 1148 cm™" [96]. In the contrary, There
are a disagree for R, in ag, by ~ 0.0208 (DFT/B3LYP), 0.0303 (MRCI(Q)), and 0.0057
(CASPT2).

In general, our best spectroscopic constants predicted are in excellent agreement
with theoretical and experimental results. Therefore, we can conclude that the AP
function obtained at MRCI(Q)/ aug-cc-pV6Z level of theory can well describe the
interaction potential of the sulfur monoxide molecule in the ground state. Furthermore,
the same functional form presents similar results for other molecules investigated by
us.



6 Methodology to obtain Accurate
Potential Energy Functions for
Diatomic Systems: A Mathematical

point of view

As we saw in the previous chapters, there is no analytical representation of potential
energy capable of accurately describing correct curves for all diatomic systems. Despite
this, some of the potentials listed, describe satisfactorily the energy of interaction for
a reasonable number of systems, mainly in their ground electronic state. In contrast,
for excited states, there are few precise analytical models and, in general, these can be
applied to a very small number of diatomics.

In this chapter our goal will be to suggest a mathematical step-by-step used to

build potential models that well describe the energy of interaction of two bodies.

6.1 The choice of functions

In general, the more accurate and appropriate potentials have some mathematical
characteristics in common: they are sums and /or products of exponential functions and
polynomials (or functional rational) involving spectroscopic constants and the distance
R.

An appropriate non-repulsive potential of Born Oppenheimer V(R) must satisfy
three criteria:

(i) Z—; =0, 4. e, V(R) has a minimum at R = R, ;

R=Re.

(ii) V(R) come asymptotically to finite value as R — oo, in general 0 or —D., where
D, is the depth of the well ;

(iii) If R — 0, then V(R)— oc.

195
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Why choose such functions? Although we are talking about a function that describe
a physical problem, we will find the answer first in mathematics. Let us begin our
discussion with the Dunham potential, who can be considered "the father" of analytical
potentials.

Dunham derived relationships to calculate the most important spectroscopic pa-
rameters (see Section 2.2). Note that, they depend on derivatives of potential. Then,
the “ideal” potential energy function must satisfy some mathematical properties re-
lated with derivative and continuity. Although derivatives of an order greater than 4
are hardly necessary, the ideal is to guarantee that the potential energy functions are

of class € (at least in some points), as defined below.

6.2 Mathematical theory

While it is chronologically more obvious to define continuity before differentiability,
we are going to reverse the order here. Soon it will be clear why this.
Note that the spectroscopic parameters in Egs. (2.56), (2.57), (2.58) and (2.59) are

obtained from derivatives of the potential at R,, the equilibrium distance.

Definition 6.1. Consider V : X — R and a € X N X', where X' is the set of
accumulation points of x (for more details see Ref. [246], p.52). The derivative of

function V' at point a is the limits

Vi(a) = tim Y =V@) _y Vie+h) =Vie)

r—a Tr— a h—0 h

(6.1)

Theorem 6.1. For the function V : X — R to be derivable at point a, it is necessary
and sufficient that there is ¢ € R so that a+h € X = V(a+h) = f(a) +c-h+ R(h),
where limy_,o R(h)/h = 0. In this case, ¢ = V'(a).

Corollary 6.1. A function is continuous at points at which it is derivable.

This is a relevant result of the Theory of Mathematical Analysis. It is important to
highlight that, the reciprocal is not true, i. e., not all continuous function is derivable

(just remember the function f(z) = |z]).

Definition 6.2. Consider an open range I on R and a function V : I — R. Letn
be a non-negative integer. The function V is said to be of class €" if the derivatives

VIV V™) exist and are continuous [246).

Then, the first mathematical requirement to start building a potential candidate:
the function must be derivable n times at the point R, € I. We could demand that the

potential function be of class " for all points in I, ensuring that the function (and
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its derivatives) are also continuous at all this points. Although this (the continuity) to
be necessary for every interatomic distance R, the condition of being derivable in all
of them is very strong.

Thus, the second fundamental characteristic is the continuity of the potential func-

tion, defined below.

Definition 6.3. A function V : X — R, defined in set X C R, is called continuous
at point a € X, if for all € > 0 given arbitrary, it is possible to obtain 6 > 0 so that
reX and |z —a| <0 =|V(zx)—V(a)| < e [246].

Theorem 6.2. For the function V : X — R to be continuous at point a, it is necessary
and suffictent that, for all sequence of points z, € X with limz, = a, implies in

V(z,) = V(a) [246].

Corollary 6.2. IfV, U : X — R are continuous at point a € X, then the functions
V+U, V-U:X — R are continuous at same point. In addiction, if U(a) # 0, the
function V/U : X — R is continuous at a [246].

This corollary is very important to support the possible combinations with the
exponential functions and polynomial expansions that we will suggest next for the
construction of the potential energy function.

From results above, we can state:

Statement 6.1. All polynomial p : R — R is a continuous function. All rational
function p(x)/q(x) (quotient of two polynomials) is continuous in its domain, which is
the set of points x such that q(x) # 0.

Statement 6.2. All exponential function e : R — R*, where R* denotes R — {0}, is

continuous and deriwvable for all x € R.

Now, a third (and perhaps one of the most important) characteristic that the po-
tential function must satisfy is related to convergence. We known that one of the
characteristic of the BO potential energy function is that V' (R) should assumes a finite
value as R — oo, in general 0. In contrast, the potential must also satisfy V(R) — oo,
as R — 0.

It is important to note that, if one does not impose correct asymptotic behaviour
at infinity the potential will be useless for studying atomic collisions, or even for high-
energy rotation-vibration states of the system [56].

This can be a problem when dealing with infinite expansions in power series of some
types. However, there are many results of Analysis to ensure the convergence of such

functions, so that it will guide us in choosing the terms of the expansion.
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Definition 6.4. A power series is a function given by [246]

Vi(z) = Zan(l' —20)" = a0+ ai(x — o) + -+ an(z —x0)" + . (6.2)

n=0

These functions are considered the most important functions of Analysis and are a
natural generalization of polynomials. The set of values to which this series converges
is a range centered at x.

" or converges only to x = 0, or there

Theorem 6.3. A power series Y -, an(x — o)
is T, with 0 < r < oo, such that a series converges absolutely in the open range (—r,r),
and diverges outside the closed range [—r,r[. At the extremes, —r and r, the series can

converge or diverge. The number r is called convergence radius.

Theorem 6.4. Suppose that r is the convergence radius of power series Y -, an(x —
zo)". The function V : (—r,r) = R, defined by V(x) =" an(x — o), is deriable,
with V'(x) =307 nan(z—x0)"", and the power series of V'(x) still has a convergence

radius equal to r.

This theorem ensure that if the candidate function has a convergence radius r, then
it will automatically derivable of class €. Therefore, the choice of a function that
has a good convergence radius is fundamental, because, consequently, this will ensure

that the other required properties are also satisfied.

Statement 6.3. The power series

o0 :L'n
> - (6.3)
n=0

converges for all x € R, then the function V : R — R, defined by V(z) = >~ fl—f 18

of class €. Deriving term by term, we have V'(z) = V(z). Now, as V(0) = 1, it
follows that V (z) = e for all x € R, and then [246|
N a2

Therefore, the choice of polynomial and exponential functions is not arbitrary, since

in most cases both are expansions in series of powers.

6.3 Discussion

Returning to the Dunham potential (2.44), where £ = (R — Re)/Re, we have

Vb = ag[(R — R.)/R.]? {1 + ) an[(R— Re)/Re]"} . (6.5)

=1
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Note that this power series expansion is derivable and therefore continuous for all
R € R. However, the convergence is not exactly what is required.

Thus, in general, a series of powers alone is not enough to provide the appropriate
potential energy for interaction for diatomic systems.

The same occurs with the well known Morse [8],
Vior(R) = Dee 2R _op ealf—Fe) (6.6)

The functional form to describe diatomic potentials is quite adequate to repre-
sent atoms forming a chemical bond, providing greater precision in the region of the
minimum potential. In addiction, this function is derivable and continuous for all R.
However, note that when R — 0, Vy;or(R) assumes the finite value D, (e?fte — 2¢3%e),
and then does not satisfy the criterion (iii). Furthermore, the Morse potential does not
have a correct asymptotic behaviour, where the his function is too negative at large R.

We chose the potential of Dunham and Morse as a reference, because they are the
most widely known diatomic potentials. In addition, they have the characteristics of
potentials that we want to unite: one is composed only by exponentials and the other
by a series of powers.

The history [247] and recent comparative studies [23] have shown that, in gen-
eral, the most accurate analytical potential energy functions are obtained joining both
functions. We can list the following functions as good examples of accurate analytical

potentials:

(i) Extended Rydberg [60, 131]

Ver(R) = De(1+ ay(R — R.) + as(R — R.)? + as(R — R.)*)e "R (6.7)

(ii) Varshni IIT [14]

Vi () = D, {1 = T oxp{(-ptre - )} } (69
(iii) Levine [124]
Viev(R) = D {1 = R cxpf-atrr - m)} | (©.9)

The Extended Rydberg is still considered one of the most accurate analytical po-
tentials today. The Levine function can be considered a modified version of Vi ag,,,.
The Hulburt-Hirschfelder |7] potential

Vi (R) = De[(1 — e ™) + (1 + bx)cr’e ] (6.10)
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does not appear in this list, although it apparently corresponds to the type of function
we are search. This potential is considered a Morse modified function, being the re-
pulsive branch of the potential multiplying by a polynomial in (R — R.). However, the
attractive branch is not modified, and therefore does not produce significant improve-
ments over the Morse potential.

Now, we can also list some functions (described above) that are sums and/or prod-

uct of exponential by polynomials, and in this case, they have adjustable parameters:

(i) EHFACE2U [168]

Vearaceew = Veur + Vac (6.11)
where ,
Verr(R) = —DR® <1 + Zairi) exp(—r), (6.12)
i=1
and
Vie=— Y CMx.(RR™ (6.13)
n=6,8,10,--

(ii) Aguado and Paniagua [180]

VAP(2) (RAB) = Vshort(Q) + Vlong(Q) (614>
where R
—OQABRAB
vshort@) = ot (615)
Ras
and
N
Vlong(2) = ZCipIAB (616)
i=1

Both potentials satisfy all the criteria described in chapter 4. These are two of the
most well-known and used functions for fitting potential energy curves to ab initio
points. Very flexible, these functions can be used for a large number of different
diatomic systems in their fundamental and excited electronic states (see more details
in Ref [247]).

6.4 Results

In this section, we will describe a methodology for how to build a potential, based

on Dunham’s potential.

1. First, two functions that satisfy all the criteria described in section 4 must be
chosen, one being a polynomial expansion and the other an exponential one. (A
tip: do not choose a function exactly like Dunham or Morse, as they already

know that they do not meet all requirements);
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2. Make the product of the chosen functions. Remember that one must satisfy the
short range while the other satisfies R large. To verify this, do the test with
R — 0and R — oo;

3. The function can be given by:

V(R) = byG2(R)F*(R) <1 + ib,ﬁ”(R)) . (6.17)

where F'(R) is a exponential-type function, G(R) is a polynomial term (in general

(R— R.) and its variations) and N must be truncated in some satisfactory value;

4. In the region of its convergence, the Dunham potential converges to the RKR [9-
11] potential derived from the energy levels of Eq. (2.48) (see Ref. [248]). Then,
for the corresponding property to hold for the new expansion V(R), it must be

equal to the Dunham expansion in the region where both series converge:

boG2(R)F2(R) (1 +oV bnG”(R)>
(6.18)

= ao[(R — R)/ R’ {1+ 372, an[(R — R.)/R]"}

5. Now, a simple way to obtain coefficients b,, can be followed: taken the derivatives
of both sides with respect to R and equated them at R = Re;

6. Then, a series of expressions relating the new potential coefficients b, and the

Dunham coefficients a,, is obtained, providing the full potential.

This method, although simple and illustrative, can be well used to obtain potential
energy surfaces. One of the difficulties that may arise is in relation to obtaining Dun-
ham’s coefficients a;. These are not widely available in the literature and in general,
for ¢+ > 6, they are quite inaccurate and difficult to obtain. Thus, to use this method,

the function must not have a degree greater than 8.



7 A New Generalized Potential

Energy Function for Diatomic Systems

Despite the recent development of new and upgraded numerical approximations
to solve the electronic problem, the state-of-the-art ab initio methodologies are not
extensively used in systems with a large number of electrons [249, 250]. In turn,
spectroscopic measurements, without the theoretical limitations, provide accurate data
for such systems.

Therefore obtaining an accurate curve directly from experimental spectroscopic
data is an interesting pathway.

Thus, in this chapter we introduce a new generalized potential for diatomic sys-
tems fine-tuned with spectroscopic information. Such a function is here tested for 22
diatomic systems comprising ground and excited electronic states. To quantify the
accuracy of the analytical representations, we followed the least-squares Z-test method
proposed by Murrell and Sorbie [60]. Spectroscopic parameters R., D, and w,, and the

Morse [8] parameter «, are also calculated and compared with experimental data [96].

7.1 Potential Energy Function

The proposed generalized potential energy function for diatomic systems is given
by:

icn [(1 +€_25(R?Tfe)) (%)r, R<R.
. = (7.1)

(1_672a(R7Re))

2
De[m} ,R>Re

1
3

to be fixed by direct comparison with RKR data, R, is the equilibrium distance and

where § = za, being a the Morse [8] parameter, - is a fine-tuning parameter 1 < < 3,
the ¢,, n =2,---,8 coefficients are related with the Dunham [24] coefficients.

The coefficients ¢; has been obtained from relationships between derivatives of the
new potential and derivatives of Dunham’s potential. In last chapter, we have seen that

the region of its convergence, the Dunham potential converges to the RKR potential

202
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derived from the energy levels of [248]

VJ—Z ( )ZJJ(J+1) (7.2)

Then, for the corresponding property to hold for the new expansion V(R), it must be

equal to the Dunham expansion in the region where both series converge:
8 _ n
> [(1 + 6_2’8<RT?)) (—R;%Re)}
= (7.3)
= ao[(R — Re)/Re]* {1+ 3%, an[(R — Re)/Rc]"} .

Derivatives of the two sides with respect to R have been taken and equated at R = Re.
These resulted in expressions that relate the new potential coefficients ¢, and the

Dunham coefficients a,,, given by equations:

1
C2 = o3 (7.4)
1
=3 l[agar + 8(1 4 5)cs] (7.5)
1
4= 75 [aoas + 24(1 + B)es — 4(38% + 48 + 3)ca] (7.6)
5 = 35 [aoas + 64(1 + B)cq — 4(123% + 183 + 12)c3
(7.7)
+4 (2B + 652+ 66 +4) o ;
6 = g5 [aoas + 160(1 + B)cs — 4(408% + 643 + 40)cy
+4 (1863% + 3653 + 363 + 20) ¢ (7.8)
—4 (36" + R0+ 962 + 86 +5) 5] ;
¢7 = 135 [aoas + 384(1 + B)cg — 4(1203% + 2003 + 120)cs
4 (246° 4 16082 + 1608 + 80) ¢4
(7.9)

—4(226* + 5433 + 723? + 608 + 30)c3

+4 (3255 + 68" +108° + 1262 + 108+ 6) 2 | ;
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s = 555 [aoas + 896(1 + 3)cr — 4(3363% + 5763 4 336)cs
+4 (5323% + 60053 + 600 4 280) ¢5
—4 (34054 + 8083 4 4005 + 32053 4 140) ¢4 (7.10)
+4 (H25° + 665 + 1084% 4 12082 + 9053 + 42) ¢3

_4(% 6_|_68 5+954 40B3+15B2+125+7)02]_

The potential (7.1) satisfies the necessary continuity conditions in R = R,:

) ()] =

(a) Note that

lim C, (1+e
e

(7.11)
. (1 _ 67201(R7Re)) 2
ngg; D [(1 + e—W(R—Re))] =0
(b) The same occurred with the first order derivatives,
8 n
d _93( B=Re R—R
lim — a1 (1 (=) © =0
non: dR 2;0 [( e )( R >]
= ) (7.12)
d (1 — e~20(R-Fe))
lim — | D, =0
rorE AR {(1 + 6_7“(R_Re))}

In addition, the new potential (7.1) satisfies the following necessary criteria [14]:

(i) %

Vi =0, 4. e, V(R) has a minimum at R = R, ;

R=Re.

(ii) V(R) come asymptotically to finite value as R — oo, and in this case V(c0) = D,;

(iii) If R — 0, then V(R)— oc.

We have also added the condition, V(R.) = 0, which simply shifts the zero of
potential, without physically affecting its properties.

The precise calculation of Dunham’s coefficients a;, with ¢« > 6, is extremely com-
plicated (some of them can be obtained from Refs. [138, 251]). Sometimes inaccuracies
are found even for az or ay. Once the proposed potential converges at R = oo, Eq. (7.1)
gives:

De=> ca, (7.13)
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when the value of if D, is known, the latter equation can be used to estimate an
additional coefficient ¢,,. More precise values for parameters that depend on Dunham’s
highest coefficients can also be obtained in this way, ensuring correct dissociation in
regions where R is large.

To quantify the accuracy of the various potentials, we used the least-squares Z-test
method proposed by Murrell and Sorbie [60], described in Section 3.1.26.

7.2 Results and Discussion

The new potential energy function is very flexible, and it can have between five and
eleven parameters directly obtained from experimental data. This is an important issue,
especially when we consider the calculation of potential energy of diatomic systems
formed by heavier atoms and/or with many electrons, such as I, Bil, Csy, Mgy, Nay
and others. For these types of systems, the ab initio calculation is still very expensive
due to a large number of integrals [252] and the size of the base of functions that

diatomic systems with these characteristics demand.
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Figure 7.1: Comparison, for Nay (BII), of the New Potential (1) with the experimental
RKR points from Ref. [267].

We have calculated the parameters of the new potential (7.1) for 22 diatomic sys-
tems in their ground electronic states and some in their first excited state also. At this
stage, only potentials with a single minimum were studied. We select some hydrides,
some non-hydrides, and some homonuclear diatomic systems. The potential energy
parameters for these systems can be seen in Tables 7.1, 7.2, 7.3 and 7.4, respectively.
The Z-test has been applied and the results for chosen diatomic systems are collected
in Tables 7.5 to 7.26.
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Table 7.1: Potential energy parameters of some Hydrides
H, HBr HCl HF HI
X's)) X'zt (X'¥h) o X'zt (X'E)
y 1 1 1 1 3/2
B(agl) 0.34163  0.317970 0.328270 0.389637 0.307710
ca(Ep) 0.090648 0.238267 0.240500 0.232434 0.235315
C3 0.049423 0.023666 - 0.061110 0.007245
Cy 0.034153 0.003340 - 0.038719 -0.010474
Cs 0.024441 -0.000250 - 0.034088 -0.006899
Ce 0.020766 -0.009964 - 0.025322 -0.033020
Cr 0.017404 -0.019620 - - -0.050560
cs 0.016014 - - - 0.005253
Table 7.2: Potential energy parameters of some further Hydrides
HS LiH NaH OH SiH
() (XIS (XIeH) (X)) (xR0
vy 3/2 1 1 1 1
ﬁ(aal) 0.331200  0.195723 0.188879 0.404518 0.254500
co(Eh) 0.221300 0.074888 0.079836 0.210412 0.158300
C3 0.033100 0.018018 0.010030 0.057625 0.014560
Cy -0.038700 0.005975 0.000593 0.031385 0.003180
s -0.006899 -0.045700 - 0.016560 0.023913 -
Ce - - 0.019008 0.016378 -
Cr - - 0.023123 0.009114 -
Cg - - 0.030577 0.009353 -
Table 7.3: Potential energy parameters of some Non-Hydrides
Bil CN CN CO COt CS NO
(X0*) (xX*x*t) (Aa) X'yt (X*xt) (X'ZY) (XPI)
¥ 3 2 1 1 1 1 1
B(aal) 0.203530  0.206379  0.405700 0.405620 0.44137 0.324980 0.483927
ca(Ep) 0.280941 0.641432 0.545495 0.694217 0.70615 0.573479 0.617586
C3 -0.164342 -0.079323 0.011975 - - -0.067492 -
Cy -0.001269 -0.097787 -0.043735 - - -0.061932 -
Cs - -0.057813 -0.052448 - - -0.031447 -
Co - -0.035160 - - - -0.022906 -
Cr - -0.059140 - - - -0.020079 -

Cs
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Table 7.4: Potential energy parameters of some Homonuclear diatomic systems

C82 12 Mg2 Nag Na2
XrH (XD (X (X)) (Bl
5 3 3/2 1 3/2 1

Blagh) 0.101230  0.327810 0.192261  0.149360  0.122779
ca(Ep) 0.039596  0.350619  0.008013  0.046607  0.035002

c3 -0.002788 -0.221393 -0.009399 0.008256 -
Ca - -0.114230 - -0.008496 -
Cs - -0.095649 - -0.0050160 -
Ce - - - - -
C7 - - - - -
cs - - - - -
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Figure 7.2: Comparison, for CN (A?II), of the New Potential (1) with the experimental
RKR points from Ref. [256].



Results and Discussion 208

0.10 T
Bil(X0™) PEC
This work
RKR points =
0.08 - R
0.06 - R
=
=
=
0.04 - 1
0.02 |- i
Il Il Il Il
46 48 5 52 54 56 58 6
0.00 . .
0 5 10 15 20

R/a,

Figure 7.3: Comparison, for Bil (XO"), of the New Potential (1) with the experimental
RKR points from Ref. [254].

Specially for diatomic systems Ir(X'X}), Bil(XO"), Csy(X'S}), Mgy(X'E}) and
Nay(X'E}) the Z-test has presented very small values, all smaller than zero (remem-
bering that Z values are given in 107°E},> ao~1). This is an important characteristic of
this new potential.

Among these cited above, two diatomic systems are especially difficult to obtain
via theoretical calculation: Bil and Cs,. Their potential energy curves are presented in
Fig 7.3 and 7.4, respectively. The results of Z-test for both systems are excellent with
deviations of only 0.00237x107°E,? for Bil and 0.04656x10~°E),% for Cs, in whole
potential range.

Furthermore, the new potential has described the diatomic systems CN(AZII) and
Nay(BI) with good accuracy, showing that it is applicable also diatomics in their
excited electronic states. The potential energy curve for Nag(B'IT) and CN(AZ?II) can
be seen in Fig. 7.1 and 7.2, respectively.

For the ion, COT(X2XT), the results of Z-test can be considered reasonable, with
deviation 12.17507x107°E,? ao~' in whole potential. As well as CO (see subsec-
tion 7.2.1), the potential energy function for CO™ required only one term in the series,
where R < R., with the potential represented by the same function (7.14).

Among the hydrides, those with the best Z-test results have been SiH(X?1I), LiH(X'X ),
NaH(X'XT), and HI(X'XT), all with Z values less than zero for three regions of the
potential. See the potential energy curve for LiH(X'XT) in Fig. 7.5 which presented
only 0.00287 x 107°E},% ay~! deviation from RKR points [253] in the entire potential
range.

In Table 7.27 are presented the calculated and experimental values [96] of the equi-
librium distance (R.), the frequency (w.), the deep of the well (D.) and the Morse
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Figure 7.4: Comparison, for Csy (X'X1), of the New Potential (1) with the experi-
mental RKR points from Ref. [258].
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Figure 7.5: Comparison, for LiH (X'¥T), of the New Potential (1) with the experi-
mental RKR points from Ref. [264].
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parameter («) for all 22 diatomic systems treated here. From columns 4, 7, 10, and
13 in this table, the calculated values are very near to the experimental values, and in
many cases they are coincident. It is case for example of the parameters R, and D,
for CN(X), CO™T, CS, Csy, Hy, HCIL, Mgy, NO, OH and SiH. The calculated values of
the frequencies also differ very little from the experimental values for practically all
systems. These results confirm the accuracy of the new potential proposed in this work

for different types of diatomic potentials.

Table 7.5: Results of the Z-test for Bil(XO™).

RANGES AR/ay Z-value
Repulsive branch 0.330 0.00016
(4.9624 < R < 5.2922)
Attractive branch 0.425 0.00829
(5.2922 < R < 5.7170)
Whole potential 0.755 0.00237

(4.9624 < R < 5.7170)
RKR experimental data from Ref. [254]

Table 7.6: Results of the Z-test for CN(X2XT).

RANGES AR/ay Z-value
Repulsive branch 0.416 0.09108
(1.7983 < R < 2.2144)
Attractive branch 0.874 23.41254
(2.2144 < R < 3.0884)
Whole potential 1.290 7.94587

(1.7983 < R < 3.0884)
RKR experimental data from Ref. [255]

Table 7.7: Results of the Z-test for CN(AZII).

RANGES AR/ayg Z-value
Repulsive branch 0.506 0.25423
(1.8249 < R < 2.3306)
Attractive branch 1.509 1.51046
(2.3306 < R < 3.8399)
Whole potential 2.015 0.59740

(1.8249 < R < 3.8399)
RKR experimental data from Ref. [256]
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Table 7.8: Results of the Z-test for CO(X'XT).

RANGES AR/ayg Z-value
Repulsive branch 0.443 0.51536
(1.6894 < R < 2.1322)
Attractive branch 1.054 0.18981
(2.1322 < R < 3.1861)
Whole potential 1.497 0.14312

(1.6894 < R < 3.1861)

RKR experimental data from Ref. [214]

Table 7.9: Results of the Z-test for COT(X2XT).

RANGES AR/ay Z-value
Repulsive branch 0.344 38.40305
(1.6894 < R < 2.1322)
Attractive branch 0.663 17.05412
(2.1322 < R < 3.1861)
Whole potential 1.007 12.17507

(1.6894 < R < 3.1861)

RKR experimental data from Ref. [214]

Table 7.10: Results of the Z-test for CS(X'LT).

RANGES AR/ay Z-value
Repulsive branch 0.431 0.01901
(2.4699 < R < 2.9006)
Attractive branch 0.762 0.67729
(2.9006 < R < 3.6623)
Whole potential 1.192 0.21988

(2.4699 < R < 3.6623)

RKR experimental data from Ref. [257]

Table 7.11: Results of the Z-test for Csy(X'S]).

RANGES AR/ayg Z-value
Repulsive branch 1.211 0.31724
(7.2358 < R < 8.4471)
Attractive branch 2.942 0.00091
(8.4471 < R < 11.3894)
Whole potential 4.154 0.04656

(7.2358 < R < 11.3894)

RKR experimental data from Ref. [258]
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Table 7.12: Results of the Z-test for Hy(X'3}).

RANGES AR/ay Z-value
Repulsive branch 0.624 110700.710
(0.7767 < R < 1.4011)
Attractive branch 4.759 0.35020
(1.4011 < R < 6.1605)
Whole potential 5.384 6413.83310

(0.7767 < R < 6.1605)

RKR experimental data from Ref. [259]

Table 7.13: Results of the Z-test for HBr(X'XT).

RANGES AR/ay Z-value
Repulsive branch 0.723 0.48348
(1.9499 < R < 2.6729)
Attractive branch 6.398 0.87706
(2.6729 < R < 9.0707)
Whole potential 7.121 0.41871

(1.9499 < R < 9.0707)
RKR experimental data from Ref. [260]

Table 7.14: Results of the Z-test for HC1(X'3T).

RANGES AR/ay Z-value
Repulsive branch 0.680 17.28680
(1.7282 < R < 2.4086)
Attractive branch 3.030 2.01149
(2.4086 < R < 5.4386)
Whole potential 3.710 2.40629

(1.7282 < R < 5.4386)

RKR experimental data from Ref. [261]

Table 7.15: Results of the Z-test for HF(X'XT).

RANGES AR/ay Z-value
Repulsive branch 0.559 16.30813
(1.1735 < R < 1.7325)
Attractive branch 3.188 0.70458
(1.7325 < R < 4.9208)
Whole potential 3.747 1.51555

(1.1735 < R < 4.9208)

RKR experimental data from Ref. [262]
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Table 7.16: Results of the Z-test for HI(X'XT).

RANGES AR/ay Z-value
Repulsive branch 0.761 0.19782
(2.2797 < R < 3.0408)
Attractive branch 7.920 0.29059
(3.0408 < R < 10.9604)
Whole potential 8.681 0.14107

(2.2797 < R < 10.9604)

RKR experimental data from Ref. [260]

Table 7.17: Results of the Z-test for HS(X?II).

RANGES AR/ayg Z-value
Repulsive branch 0.702 0.26094
(1.8321 < R < 2.5339)
Attractive branch 8.794 0.29905
(2.5339 < R < 11.3280)
Whole potential 9.496 0.14816

(1.8321 < R < 11.3280)

RKR experimental data from Ref. [263]

Table 7.18: Results of the Z-test for I,(X'X]).

RANGES AR/ay Z-value
Repulsive branch 0.748 0.14432
(4.2840 < R < 5.0323)
Attractive branch 7.151 0.04828
(5.0323 < R < 12.1831)
Whole potential 7.899 0.02866

(4.2840 < R < 12.1831)

RKR experimental data from Ref. [259]

Table 7.19: Results of the Z-test for LIH(X'XT).

RANGES AR/ayg Z-value
Repulsive branch 0.644 0.00210
(2.3716 < R < 3.0154)
Attractive branch 1.091 0.00782
(3.0154 < R < 4.1064)
Whole potential 1.735 0.00287

(2.3716 < R < 4.1064)

RKR experimental data from Ref. [264]
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Table 7.20: Results of the Z-test for Mgy (X'3}).

RANGES AR/ay Z-value
Repulsive branch 1.213 0.00180
(6.1390 < R < 7.3520)
Attractive branch 5.380 0.000002
(7.3520 < R < 12.7317)
Whole potential 6.593 0.00018

(6.1390 < R < 12.7317)

RKR experimental data from Ref. [265]

Table 7.21: Results of the Z-test for Nay(X'S}).

RANGES AR/ay Z-value
Repulsive branch 1.631 0.00229
(4.1877 < R < 5.8182)
Attractive branch 5.095 0.00488
(5.8182 < R < 10.9132)
Whole potential 6.726 0.00213

(4.1877 < R < 10.9132)

RKR experimental data from Ref. [266]

Table 7.22: Results of the Z-test for Nag(B'II).

RANGES AR/ay Z-value
Repulsive branch 1.093 0.00740
(5.3757 < R < 6.4682)
Attractive branch 1.732 0.00151
(6.4682 < R < 8.1997)
Whole potential 2.824 0.00200

(5.3757 < R < 8.1997)

RKR experimental data from Ref. [267]

Table 7.23: Results of the Z-test for NaH(X!':T).

RANGES AR/ay Z-value
Repulsive branch 0.928 0.00389
(2.6390 < R < 3.5667)
Attractive branch 2.128 0.25952
(3.5667 < R < 5.6945)
Whole potential 3.056 0.09096

(2.6390 < R < 5.6945)

RKR experimental data from Ref. [268]
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Table 7.24: Results of the Z-test for NO(X?II).

RANGES AR/ay Z-value
Repulsive branch 0.419 5.66391
(1.7556 < R < 2.1746)
Attractive branch 1.085 5.22213
(2.1746 < R < 3.2600)
Whole potential 1.504 2.67237

(1.7556 < R < 3.2600)

RKR experimental data from Ref. [269]

Table 7.25: Results of the Z-test for OH(X?1I).

RANGES AR/ay Z-value
Repulsive branch 0.162 0.78033
(1.6705 < R < 1.8324)
Attractive branch 0.210 12.17212
(1.8324 < R < 2.0428)
Whole potential 0.372 3.60563

(1.6705 < R < 2.0428)

RKR experimental data from Ref. [270]

Table 7.26: Results of the Z-test for SiH(X2II).

RANGES AR/ayg Z-value
Repulsive branch 0.444 0.00023
(2.4283 < R < 2.8726)
Attractive branch 0.699 0.01053
(2.8726 < R < 3.5716)
Whole potential 1.143 0.00212

(2.4283 < R < 3.5716)

RKR experimental data from Ref. [253]



Table 7.27: Comparison of experimental spectroscopic parameters [96] with calculated values for 22 diatomic systems.

Diatomic Re (ap) Re(a0) ARe/Re ©  we(em™ 1)  we(em™ 1) Awe/we’ Do (Ep) De (Ep) ADe/De®  alay') alag') Aaja?
system Exp. Calc. (%) Exp. Calc. (%) Exp. Calc. (%) Exp. Calc. (%)
BiI(XO+) 5.29218 5.29217 0.00020 163.8800 163.91600 0.02200 0.07200 0.07200 0.00000 0.61060 0.74670 22.28960
CN(X22+) 2.21438 2.21438 0.00000 2068.59000 2067.88800 0.033940 0.28520 0.28520 0.00000 1.19420 1.35450 13.42320
CN(A2H) 2.33060 2.33060 0.00000 1812.56000 1812.09400 0.025700 0.28930 0.28930 0.00000 1.21710 1.17840 3.17970
CO(X12+) 2.13222 2.13220 0.00090 2169.81400 2169.06900 0.03430 0.41260 0.41260 0.00000 1.21690 1.21670 0.01640
cot (X2E+) 2.10731 2.10731 0.00000 2214.24000 2213.46000 0.03520 0.31146 0.31146 0.00000 1.32411 1.42900 7.92150
CS(X12+) 2.90062 2.90062 0.00000 1285.08000 1283.97100 0.08630 0.27320 0.27320 0.00000 0.97490 0.99880 2.45150
ng(Xlzg) 8.78530 8.78530 0.00000 42.02200 40.43300 3.78000 0.01460 0.01460 0.00000 0.30370 0.38990 28.38330
HQ(XIEQ) 1.40112 1.40112 0.00000 4401.21000 4401.91000 0.01590 0.17460 0.17460 0.00000 1.02490 1.02880 0.38050
HBr(X12+) 2.67289 2.67299 0.00370 2648.97500 2660.96700 0.45270 0.14410 0.14410 0.00000 0.95390 0.96210 0.85960
HCI(XIE+) 2.40861 2.40861 0.00000 2990.94600 2989.76000 0.03970 0.16970 0.16970 0.00000 0.98480 0.98830 0.35540
HF(X12+) 1.73251 1.73256 0.00290 4138.32000 4135.50000 0.06810 0.22510 0.22500 0.04440 1.16890 1.17340 0.38500
HI(XIE+) 3.04076 3.04069 0.00230 2309.01400 2319.38900 0.44930 0.11750 0.11750 0.00000 0.93320 0.93090 0.24650
HS(XQH) 2.53393 2.53390 0.00120 2711.60000 2730.62200 0.70150 0.13660 0.13660 0.00000 0.99360 1.00470 1.11710
12(X12;) 5.03230 5.03233 0.00060 214.50200 214.78800 0.13330 0.05720 0.05717 0.05240 0.98340 0.98430 0.09150
LiH(X12+) 3.01544 3.01543 0.00030 1405.65000 1406.05800 0.02900 0.09250 0.09250 0.00000 0.58720 0.59680 1.63490
Mgz(Xlzg—) 7.35198 7.35198 0.00000 51.12100 50.78500 0.65730 0.00200 0.00200 0.00000 0.57680 0.55040 4.57700
Nag(Xlzg) 5.81822 5.81821 0.00020 159.12400 159.13100 0.00440 0.02680 0.02682 0.00000 0.44810 0.45310 1.11580
NaQ(Bll‘[) 6.46816 6.46815 0.00020 124.09000 123.90700 0.14750 0.02650 0.02650 0.00000 0.36830 0.35530 3.52970
NaH(X12+) 3.56667 3.56667 0.00000 1172.20000 1171.69000 0.04350 0.07180 0.07176 0.05570 0.56660 0.59120 4.34170
NO(XZH) 2.17464 2.17464 0.00000 1904.20000 1922.47000 0.95950 0.24310 0.24310 0.00000 1.45180 1.46580 0.96430
OH(XZH) 1.83239 1.83239 0.00000 3737.76000 3738.01700 0.00690 0.16990 0.16990 0.00000 1.21360 1.21470 0.09060
SiH(in) 2.87257 2.87260 0.00100 2041.80000 2041.62000 0.00880 0.11710 0.11710 0.0000 0.76340 0.80950 6.03880

PARe/Re = |Rep,, — Regaye |/ (Regyp)
bAwe/we = |weEzp, — Wecaie. |/(weEzp,)
CADE’/DE = |D6Emp. - D60a1c. |/(D€Ea‘p)

/(@Bap.)

dAa/a = |aEmp. — QCale.

UOISSNOSI(] PUB SHMNSIY

91¢



Results and Discussion 217

7.2.1 Comparisons between different CO (X!X") potentials

To compare the new proposed function with previously reported potentials, we
select the CO (X'X1) molecule. In chapter 4, we have analyzed the behavior of fifty
potential energy functions for the ground electronic state of the CO and other diatomic
systems [247]. Among these potentials, we can list some that are mathematically com-
parable to the new potential proposed in this article, are they: Extended Morse [32]
(EM), Simon-Parr-Filan [129] (SPF), Thakkar [22] (THA), Huffaker [133] (HUF), Mat-
tera [142] (MAT), Surkus [145] (SUR), EHFACE2U [168| and Aguado-Paniagua [180]
(AP) potentials. All these potentials are expansion in series of powers-type with pa-
rameters obtained by fitting them to ab initio energies.

To calculate the potential energy curve for the ground electronic state of CO, the
functions listed above required between eight and fourteen parameters (given in paren-
thesis): SPF (8), AP (8), EM (9), THA (11), EHAFACE2U (12), HUF (13), MAT (14)
and SUR (14), while the new potential energy function has required five (5) parameters

with only one term in the power series. Thus, the new potential for CO is given by:

& [ (147 055)) (%)]27 R<R,
V(R) = (7.14)

(1—e—2a(R—Re))

2
De [m] 5 R> Re.

Table 7.28: Results of the Z-test for CO(X'Y*). Z values are given in 107°E},% ap~*

RANGES AR/ag This work EM SPF THA
Repulsive branch 0.443 0.51536 30.511 22.719 24.394
(1.6890 < R < 2.1320)
Attractive branch 1.054 0.18981 13.313  2.230  2.468
(2.1320 < R < 3.1860)
Whole potential 1.497 0.14312 9.204 4.148  4.479
(1.6890 < R < 3.1860)

RANGES HUF MAT SUR EHFACE2U AP
Repulsive branch ~ 29.796 24.742 27.268  30.706  5.872
(1.6890 < R < 2.1320)

Attractive branch 1.897 2.459 0.246 1.880 0.875
(2.1320 < R < 3.1860)
Whole potential 5.078  4.528  4.122 5.215 1.177

(1.6890 < R < 3.1860)

For CO, the same RKR experimental data used in Ref. [247], has been used

here [214], and the new potential energy curve (7.1) proved to be more accurate (for the
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three different ranges of R) than all those listed above, as can be seen in the comparison
presented in Table 7.28.



8 (Conclusions

We have concerned with several aspects of the potentials here described: the number
of parameters, its simplicity and quality in the short and long-range regions, and the
diversity of diatomic systems that each function can be applied.

Nowadays, computational resources are much powerful than what we had in the
recent past, making it possible, for example, to obtain excellent ab initio points and,
therefore, accurate PESs. In turn, for the here studied cases, functions fitted to ab
initio points did not necessarily provide better precision than those obtained without
the fitting. For the latter type, the best results were for those with five parameters,
highlights for the Hulburt-Hirschfelder, Huggins, and Extended Rydberg potentials.
The Dmitrieva-Zenevich function with three parameters shows good results only for
HeH". Furthermore, for CO and N,, among the fitted functions, the more accurate
has six parameters, and for HeH™, the best choice has four adjustable parameters.

Thus, a potential energy function with only three parameters, fitted or not, is un-
likely to provide the best results, as was thought possible in the past. The potential
energy functions consisting of power series expansions presented good accuracy for
the diatomics treated here, highlighting mainly the EHFACE2U and Aguado-Paniagua
potentials. Mathematically (and physically) models containing a product of an expo-
nential by a polynomial, with its variations, remains the ideal potential energy function.
A function that escapes this configuration will hardly provide accurate results.

Since we have used the Murrell and Sorbie Z-test, it was expected the potentials
obtained from spectroscopic data to be more accurate than those with adjustable coef-
ficients. However, this was not the general trend observed. In many cases, adjustable
potentials produced a smaller errors than the other.

Therefore, the accuracy of a potential related to the RKR data is directly linked
to the mathematical structure of the analytical form, and not to the specific way the
coefficients are obtained. After analyzing these 50 potentials and the hundred years
of history that were necessary to develop them, we remain with the same opinion
expressed by Varshni in 1957, and many other researchers: it is not possible to find a
universal potential energy function. However, as we can see, the search for the Holy
Grail of Spectroscopy will continue perhaps for another hundred years.

The search for a correct functional form is not so simple, it also requires a lot of
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physical knowledge to define the parameters that will compose the functional form
and in which positions. We have been described mathematical details to obtain good
potentials.

The Extended Rydberg, Varshni III, Levine, EHFACE2U and Aguado-Paniagua
potentials, besides involving exponentials and polynomials, have another characteristic
in common: the correct asymptotic behaviour of the potential for dissociation into
atoms. This is a necessary condition to obtain a potential which is satisfactory over
all accessible values of R [56].

For this reason, in order to obtain potential energy functions, it is necessary to
ensure the convergence and all other requirements described in chapter 5. In general,
potentials that do not satisfy these conditions do not produce accurate results.

By using the methodology described in chapter 5, we have introduced a new general-
ized potential energy function for representing the inter-atomic interaction of diatomic
systems. The parameters of the function are directly obtained from relations with
Dunham’s coefficients. The model was tested in 22 cases, comprising both ground
and excited states. Among these, the interaction potential for Bil and Cs,, in their
ground electronic states, are especially accurately represented with the new function.
The calculated values of the spectroscopic parameters are consistent with the observed
values for all analyzed systems. Also, the new potential curve for the ground state of
CO outperformed the Extended Morse, Simon-Parr-Filan, Thakkar, Huffaker, Mattera,
Surkus, EHFACE2U, and Aguado-Paniagua potentials in the three described interac-

tion regions of the potential.



9 Future Perspectives

In this work only surfaces of potential energy for diatomic systems have been con-
sidered. However, we are also researching the interaction potentials of three or more
bodies. A new algebraic potential energy function for triatomic systems have been
discussed, and we will present preliminary results that should be completed soon.

Triatomic molecules are of dynamical symmetric chain

01(4) ® Ox(4)

Ui(4) ® Us(4) D { Us(4)

} > O15(4) 9.1)

and the Hamiltonian for the chain (9.1) is
H = A,Cy + AyCy + A CYy) + ACE) + AMs (9.2)

Ch, Cy, Cg) and CS) are the Casimir operators and M;s is so-called Majorana operator.

The classical limits of algebraic Hamiltonian will be obtained using group coherent state

| N1, Noj &1, &) = (N1INRD) T2 [(1 = £560) o) + &m]™ x [(1— £&) %08 + &m] ™ |0)

(9.3)
where £, & are the canonical coordinates and momenta [271].
The classical Hamiltonian is
He(q1, G2, p1,p2) = (N1, No; &1, §o| H N1, Nos &1, &2) (9.4)
and the potential energy surface is given by:
Vg, q2) = Ha(q1, g2, p1 = 0,p2 = 0) = (A1 + A12) N7 (2 — i) qi
+H(Az + A1) N3 (2 = 3)g5 + 241 N1 No[(2 = 1) (2 = ¢3)]*q1 - 4o (©.5)

FIANINA{(2 = @)@ + (2 — q}) g}
—2[2-a¢})2 - &) q - @2+ 2(q1 % g2)*}-

By using the transformation between the bond (r;) and canonical (g;) coordinates and
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the transformation between the angle between ¢; and ¢o and the bond angle [272]
@2 = e i) and ay - ay = [coshy(¢ — m)] 7D G =12, (9.6)

where a; is the vector along the vector ¢; and ¢ is the bond angle, v is a parameter
determined by the expansion coefficients and the molecular parameters and «; is the
Morse parameter [8].

The novel analytical PES for N,O is given by:

V(ry,re, @) = (A; + A1) N2[2 — e Ar(mimrie)]e=Bilri—rie)

+(Ag + A1a) N2[2 — e~ Palrz—rze)|g=Falra—rac)

F2ALN, Ny {2 — - (ri-mo)]o-r(rin)

x[2 — e P(rzmrae)je=fa(ra=r2e) M1/2 . o5 |y |(¢ — ) . (9.7)
+le)\N1N2{2€—/31 (ri=rie) 1 9e=P2(r2=r2e) _ 9p=P1(ri—rie)=Pa(ra—rae)

< cost (6 — ) — 2[(2 — e (=)=

(2 — R0 ) BTV o (6 — )

. . _ 2 <
where we will consider 8; = ri oy, 1 =1, 2.

Parameters Zheng-Ding [272] Calc. |273]
N, 134 133
N, 163 163
A; (em™) -1.7376 -3.8315
Ay (em™1) -1.5033 -3.8406
Ajp (em™) -0.2787 0.8245
A (em™) -0.5105 -0.008683
B (AT 2.7083 2.457556
By (A7) 2.7676 2.51568
rie (A) 1.1273 1.09768
roe (A) 1.1815 1.15077
~ 2.6677i 0.5561

Tfy and N are dimensionless, 1 = ryn, 2 = rNO

In summary, the algebraic approach allow us to obtain PES without ab initio
points. In Fig. 7.3 and Fig. 7.4, can be seen clearly that with the new PES for
N20O the well depth value was corrected by approximately 3 eV relative to the origi-
nal Zheng-Ding [272] potential for both Ny and NO diatomics. However, the correct
global minimum of NyO is approximately 0.278386 hartree [274], and the new PES
provides a value around 0.5 hartree. This error is probably related to the function’s

symmetrization, which should be revised and corrected.
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Abstract

In this work, a review of six functional forms used to represent potential encrgy curves (PECs) is presented. The starting point
is the Rydberg potential, followed by functions by Halburt-Hirschfelder, Murrell-Sorhie, Thakkar, Hua and finalizing with
the podential for diafonie systems by Agoado and Pamagoa. The matbematical bebavior of these functions for the short- amd
long-range regions is discussed. A comparison highlighting the positive and negative aspects of cach representation is also
presented, As smdy cazses, three distomic systems Oz, Na and S0 in their respective ground electronic states were selected,
o obtain spectroscopic parameters, of wio energies were Tirst caleulated at multi-reference configuration imbteraction
(MRCT) with the Davidson modification (IMRCT+0) level of theory, using aug-ce-pWXZE (X = T,0.5.6) Dunning basis sets,
Such energies were then fitted to respective functional forms. The so-obtained spectroscopic constants are compared also

with availabde liferature data,

Keywords Potential cnergy curves - Diatomic systems - Spectroscopic paramcters - ab inifie calculations

Introduction

The relationship between the potential cnergy and the inter-
nuclear distance of two afoms is of the preafest importance
in physical chemistry. The study of processes like molec-
ular scattering, photodissociation, chemical kinetics, and
electric discharges relies on the knowledge of these func
fions [1-6]. Due fo practical limitations in the solution of
the Schridinger eguation for a molecular system. physi-
cally supported approximations are required. In 1927, Bomn
and Oppenheimer, also with the contribution of Hoang,
presented a pathway o circurmvent this problem | 7).
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The Born-Oppenheimer approximation (BOA) consists
of the separation of the nuclear and electron motions: once
nuclei have muoch larger masses than the electron {moere than
1838 times), they can be conzidered as stationary compared
o e mowing electroms. The mathematical [ormalism
for such an approach can be followed elsewhere [7]
and iz fuondamental in onderstanding the key concept of
potential epergy surface (PES). Within BOA, neclei in
a midecular system mowe on the PES resolting from
the solution of the electronic problem. Since BOA,
several researchers have been attempting to obtain analytic
represenlations of energy as a lunction of the inleratomic
distances. Such a representation is wsually reguired to
b mathematically simple while accorately  repiodiscing
Ihesoretical and experimental data.

The potential energy curve provides broad insight into
the structure of a molecolar system. The minimum in this
curve defines the bomd lengih of the diatomic molecale. lis
second derivative provides the lorce conslanis, Irom which
vibraticnal and mational energy levels of the molecule can
be calculated. Higher-order derivatives are required for the
calculation of the anbarmonicily constants.

Among the analvtical representations available in the
litcrature {over 30 w oor knowledge), six functions
were chosen: Hydberg,  Hulburt-lirschfelder, Murrell
Sorbie, Thakkar, Hua, and Aguado-Camacho-Paniagua,
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In Electronic Structure Colculotions: An introduction Judith de Paula Aradjo
presents a text dedicated mainly to undergraduate students and rese-
archers in the fields of Physics and Theoretical Chemistry. One of the
author's concerns was to produce a didactically organized text, with
several examples and exercises solved step by step.

The main purpose of this book is to explore methods for obtaining
solutions to the electronic Schrodinger equation for N-body systems. To
this end. the author first presents a formal demonstration for the Born-
Oppenheimer Approximation proving that the nuclei move according to
classical mechanics. Then, the Hartree-Fock Approximation is discus-
sed. showing that it is possible to replace the complicated problem of
many electrons with a problem of one electron. In the chapter Configu-
ration Interaction, the energy differences produced by the Hartree-Fock
Approximation are calculated. that is. the correlation energies.

In a session dedicated to Second Quantization, the author shows
that the Principle of Antisymmetry can be satisfied from this, as an
alternative to the use of Slater Determinants. A rigorous solution of the
Schradinger equation determining the stationary states for the Harmo-
nic Oscillator, which is one of the simplest systems. is presented. In
addition. it also demonstrates how to obtain energy levels via annihila-
tion and creation operators.

The penultimate chapter discusses the Coupled-Cluster Theory. This
method is capable of recovering much of the correlation energy and
can be applied to larger systems. The coupled cluster wave function
provides an accurate correction to the Hartree-Fock description.

Finally. a short introduction to Many-Body Perturbation Theory is
presented and exemplified by the perturbations containing two-parti-
cles interactions.
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Interatomic potentials laid at the heart of molecular physics.
They are a bridge between the spectroscopic and structural
properties of molecular systems. In this paper, a century-
old review from 1920 to 2020, of functional forms used to
analytically represent potential energy as a function of in-
teratomic distance for diatomic systems is presented. With
such a purpose fifty functions were selected. For all of them,

motivation and the main mathematical features are discussed.

Qur goal is to provide a chronological pathway to the reader,
evenwith little knowledge on the subject, to understand how
to calculate each parameter that composes the interatomic
potentials, as well as obtain spectroscopic constants from
them. Comparative evaluation for the Np, CO, and HeH*

systems in their ground electronic states are also presented.

KEYWORDS
potential energy curves, diatomic systems, ground electronic state,
spectroscopic parameters, analytical representation
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Mew Uencralized Polential Energy Function for Diatomic Sysicms

New Generalized Potential Energy Function for Diatomic Systems

Judith P. Araijo™ ™ and Maikel ¥. Ballester?:
Phyzics Department, Federal University of Juiz de Fora.
{ ‘Drated: 23 Pebraary 20203

A new and Mexible function o represent the potential energy inleractions of diatomic systems for the whole domain
of internuclear separations is proposed. This function is a member of a Tamily of funclions containing a product of an
cxponential and a polynomial. A method for gencerating the parameters ol the new polential as a function of Dunham’s
parameters is described. Coeflicients for 22 selected diatomic systems with elements from the first 1o the sixth rows,
including some ground and excited electronic states, are presented. To gquantify the aceoracy of the so constrocted
polential energy functions, the least-sguarcs Z-test method, proposed by Murrell and Sorbie, is used.  Furthermore,
fiain speclioscopic paramelers are calculated and compared with available data,

1. INTRODUCTION

The construction of accurale analytical polential energy
funciions For diatomic systems, within the Bom-Oppenheimer
Approximation (BOA), from experimental data is still an im-
portant problem in chemical and molecular physics. In recent
work, we reviewsd and compared fifty analytical representa-
tions of dislomic polential energy lunclions, which were pro-
posed Trom 1920 10 20207, Among them, we observed the po-
tentials that can be obtained from the spectroscopic constants,
and alzo those depending upon parameters obiained from -
ting ab initio points, For a relatively large sumber of diatomic
syslems, the construction of an ab initio-hased potential en-
ergy function is quite straightforward. However, ils accuracy
will be strongly linked to both, the selected function and the
quality of the molecular structure calculations?

Drespite the recent development of new and wpgraded mu-
mencal approximations o salve the electrome problem, the
state-of-the-art ah initioc methodologies are not exlensively
used in sysiems wilh a large mumber of elecirons (see for ex-
ample Rels. 2.3). In tom, spectroscopic measarements, with-
oul the theoretical limitations, provide accurale data For such
Syslems.

Therefore obltaining an accurale curve directly from exper-
imental spectroscopic data is an interesting pathway.

Mudels contaimng a prodect of an exponential by a poly-
nomial, with ils varistions are in general trustworthy selec-
i Fow representing diatomic polential energy functions, A
function thal escapes this configuration will hardly provide
hoth accurate resulis in the spectroscopic region and cormect
asympiotic behavior in the dissociation limit?, Furihermare,
potential functions consisting of power series expansions have
been considered the best models due o lexibility and preci-
sion, & is the case of the EHFACE2U” and Agusdo-Paniagua®
potentials.

T, this paper aims (o introdece a new penseralioed polen-
tial for distomic systems line-tuned with spectroscopic infor-
atiod, Such a fenction is here tested for 22 diatomic syalems
comprising ground and excited electronic states. To quantiy
ihe accuracy of the analytical represeniations, we followed the

* s ol Plivaics Department, Federal Univerwity of Juiz de Fora
B filectronic mail: Second. Authariinstitutionodu.

leasi-squares Z-test method proposed by Murrell and Sorhic”.

Spectroscopic parameters K, [}, and w,, and the Morse® pa-
rameter i, arc alzo calculated and compared with cxperimen-
tal data®.

I. POTENTIAL ENERGY FUNCTION

The proposed generalized podential energy Tunction for di-
alomic syslems is given by:

E]j_,‘j:.'.[(l+e B (555) " k<,
V(R) — m

where i = la, being @ the Morse® parameter, ¥ is a fine-
mning parameter 1 < ¥ < 3, o he lixed by direct compari-
son with RER data, K, is the equilibrium distance and the e,
m=2,.-. & coeflicients are related with the Dunham'™ coef-
licients.

The coeflicients ¢; has been oblained from relationships be-
tween derivatives of the new potential and derivatives af Dun-
ham's poteniial. In the region of its comvergence, the Dunham
potential converges o the RKR potential derived from the en-
ergy levels o'

]
Fuy =Y 1 (v i %) Hir ey, (2
]

Then, for the comesponding property 1o hold Tor the new ex-
pansion V(R), it must be equal 1o the Dunham expansion in
the region where both series converge:

g‘,zc.. [(I i r‘i"“(!x,"]') {R_—l&]]’

= apl (R — R )[R {14 X (R — Ko} /ReJ") ®

Derivatives of the two sides with respect to R have been laken
and equaled al B = Re. These resulied in expressions that
relate the new potential coeficients o, and the Dunham coef-
ficients g, given by equations:
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Methodology to obtain Accurate Polential Energy
Functions for Diatomic Systems: A Mathematical
point of view

Judith P. Aradjo - Maikel Y. Ballester
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Abstract Ingert your abstract here. Inclisde keywords, PACS and mathoemat-
ical subject classification mmbers ss nooded.
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1 Introduction

The Born-Oppenheimer spproximation is corper stone for quantum mechan-
wally study meolecular systems. TE inbroduees. the comcepl. of the molocular
potential energy surface (PES). The molecular potential energy surface is the
potential energy that determines the motion of puclei. In the Born Oppen-
heimer Approximation (BOA) the eloctrons adjust their positions instante-
neously W pllow any moversent of Uwe oeeled, 2o Chal (e poterdial enerpy
surface can be cqually be thought of as the potential for the movements of
atoms within a molecule or atom in collision with one other. The motion with
this churactenstic = called sdisbatic, where the dynsonie of the system are
associated with @ single polential energy surface [13].

Comsidering an isolated molecular system composed by electrons and alomic
nuelei, the time-depemndent Schridinger equation is given by

i a({ri}, {Rih. ) = e({ra), )1 M
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