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RESUMO

As redes de Purkinje sdo uma parte fundamental do sistema de conducao cardiaco e sdo conhecidas
por iniciar uma variedade de arritmias cardiacas. No entanto, a modelagem especifica das redes
de Purkinje de um paciente permanece desafiadora devido a alta complexidade morfologica e a
falta de técnicas de imagem nao invasivas para identificar estas estruturas. Este trabalho tem
como objetivo apresentar um novo método chamado Shocker baseado em principios de otimizagao
para a geracao e quantificacdo de incertezas de redes de Purkinje especificas de paciente que
combinam precisao geométrica e elétrica no tamanho do ramo, angulos de bifurcacao e ativagao
das Jungbes-Musculo-Purkinje. Varios modelos de redes de Purkinje sdo gerados em quatro malhas
biventriculares diferentes com complexidade crescente para atingir esse objetivo. Estas malhas sao
utilizadas para avaliar o desempenho do nosso modelo em uma variedade de cenarios diferentes.
Simulacoes adicionais de monodominio acoplando as redes de Purkinje ao tecido biventricular sao
executadas para avaliar as redes geradas em um cendrio mais realista usando os modelos celulares
humanos Purkinje/ventricular mais recentes, valores fisiologicos para o atraso caracteristico das
Junc¢oes-Mtusculo-Purkinje e um resolvedor GPU de alto desempenho. Os resultados demonstram
que o novo método é capaz de gerar redes de Purkinje especificas de paciente com métricas
morfolégicas controladas, tempos de ativagao nas Jungoes-Musculo-Purkinje, nos pontos estimados
dados pelo mapa eletroanatéomico do paciente e por eletrocardiograma. Além disso, a geracao de
varios modelos de rede de Purkinje que podem reproduzir os mesmos dados especificos do paciente
¢ uma importante ferramenta para quantificar as incertezas associadas a modelagem computacional

desse importante sistema de conducao do coragao humano.

Palavras-chave: Eletrofisiologia. Paciente-especifico. Fibras de Purkinje. Quantificacao de incerteza.



ABSTRACT

Cardiac Purkinje networks are a fundamental part of the conduction system and are known to
initiate a variety of cardiac arrhythmias. However, patient-specific modeling of Purkinje networks
remains challenging due to the high morphological complexity and the lack of non-invasive imaging
techniques to identify these structures. This work aims to present a novel method called Shocker
based on optimization principles for the generation and uncertainty quantification of patient-specific
Purkinje networks that combine geometric and electrical accuracy in branch size, bifurcation angles,
and Purkinje-Ventricular-Junction activation. Several Purkinje network models are generated over
four different biventricular meshes with increasing complexity to reach this goal. They are used to
evaluate the performance of our model in a range of different scenarios. Additional Purkinje-tissue
coupled monodomain simulations are executed to evaluate the generated networks in a more realistic
scenario using the most recent Purkinje/ventricular human cellular models, physiological values
for the Purkinje-Ventricular-Junction characteristic delay, and a high-performance GPU solver.
The results demonstrate that the new method can generate patient-specific Purkinje networks
with controlled morphological metrics, local activation times at the Purkinje-Ventricular-Junctions,
estimated points given by the patient electro-anatomical map and electrocardiogram. In addition,
the generation of multiple Purkinje network models that can reproduce the same patient-specific
data is an important tool for quantifying uncertainties associated with the computational modeling

of this important conduction system of the human heart.

Keywords: Electrophysiology. Patient-specific. Purkinje Fibers. Uncertainty Quantification.
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PN. Each segment has access to its parent and left /right off-springs, which are
all pointers to the segment structure. Moreover, each segment has two pointers
to the two nodes that define the segment. Using these pointers is possible to

retrieve the proximal and distal coordinates of any segment. . . . . . .. .. ..
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1 Introduction

1.1 Motivation

The ventricular conduction system (VCS) is an essential part of the heart since it is respon-
sible for synchronous stimulation of the ventricular walls and crucial for the correct maintenance of
the heart rhythm. The VCS comprises the His-bundle, left and right bundles branches, and the
Purkinje fiber network. The system provides ventricular contraction from apex to basal, together
with synchronization of the left and right ventricles, which allows the correct coordination of
electrical activity in all mammalian species and is a fundamental process to maintain optimal stroke

volume [54].

In the current clinical and modeling literature, several studies indicated the Purkinje network
(PN) as both trigger and maintainer of deadly cardiac arrhythmias, like ventricular fibrillation (VF)
and left or right bundle branch block [25, 26, 23, 32]. Furthermore, there is enough evidence which
sustains that Purkinje cells (PCs) and ventricular cells (VCs) have different electrophysiological
properties [74, 78]. For instance, PCs’ action potential (AP) has a faster depolarization and a
more negative plateau phase. This characteristic results in longer action potential duration (APD)
when compared to VCs [10], which turns PCs more susceptible to developing pro-arrhythmic
abnormalities, like early-after-depolarizations and delayed after-depolarization. This contrast in the
APD form is likely apparent at the Purkinje-Ventricular-Junctions (PVJs) sites. Due to the distinct
shape of the action potential (AP) of PCs and VCs, electrotonic effects and APD dispersion occur
between the cells from the Purkinje fiber and the ones from the ventricular tissue [78]. In addition,
at the PVJs sites, a characteristic delay in conduction, 3 to 5 ms, is observed from the Purkinje to
the ventricular tissue. Mainly, this phenomenon arises when a small volume (i.e., the source, PCs)
tries to depolarize a large volume (i.e., the sink, many connected VCs). This is also referred to as
source-sink mismatch [47, 79, 17, 40]. Therefore, to properly study cardiac electrophysiology via
computational modeling, reliable models of the PN are needed and must take into account both

morphological and electrical properties.

The usage of personalized models of cardiac electrophysiology that match clinical observation
with high fidelity, referred to as cardiac digital twins (CDTs), show promise as a tool for tailoring
cardiac precision therapies [21]. An essential step towards building CDTs models relies on the
ability of models to replicate the ventricular activation sequence under a broad range of conditions.
However, even with all today’s progress on cardiac functional and imaging techniques, there is not
a valid technique to extract a PN from clinical data, which turns the development of a coupled
Purkinje-Ventricular patient-specific computational model a challenge [77, 53]. Therefore, as a
result of its complex geometry, manual generation of PNs can become a highly demanding and

time-consuming task [38], making the development of methods that can automatically generate
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PNs a requirement to advance the studies in this field.

The main motivation of the present thesis is to develop a novel method using optimization
principles to generate patient-specific PNs with geometrical and electrical accuracy. The new
method, named Shocker, is an extension of a previous method developed by our research group [76]
and considers cost functions that rely on electrical and geometrical metrics and focus on generating

patient-specific PN models that can be utilized in coupled Purkinje-tissue biventricular simulations.

1.2 Thesis goals

The aim of the thesis is to investigate the role of Purkinje networks play on ventricular
activation. This is done by implementing a novel method for generating patient-specific Purkinje
networks which relies on optimization principles in terms of geometric and electrical accuracy.
In addition, realistic computational models of biventricular meshes are utilized to validate the
proposed model alongside with the usage of the most recent human cellular models for Purkinje and
ventricular cells. Furthermore, important physiological features of the phenomenon, such as the
characteristic delay that occur at the PV J sites, are also considered in the simulations that evaluate
the generated Purkinje networks by the novel model. The method should also be expandable and
reusable by providing the possibility to extend Purkinje networks generated by other methods

available in the literature by including additional branches or by adding more PV Js on its structure.

The specific goals of the thesis are:

1. Develop a new method able to automatically generate models for patient-specific Purkinje

networks in any endocardium surface with morphological and electrophysiological accuracys;
2. Validate the generated PN models with electroanatomical maps and electrocardiograms;

3. Provide the necessary methods to quantify the uncertainties in the generated patient-specific
PN models.

1.3 Thesis outline

After the Introduction chapter, Chapter 2 includes a brief overview of the basics concepts
related to cardiac electrophysiology. Within this context, the anatomy and function of the human
heart is explained focusing on the morphology of the VCS. Fundamental aspects related to the
mathematical modelling of the electrical stimulation of the organ are described in the following

sections, explaining how to model from cellular to tissue level.

Chapter 3 outlines a description of the novel method to generate patient-specific Purkinje

networks. Next, a description of all the biventricular meshes that will be utilized in the work is
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presented. For each mesh all the materials and methods necessary to reproduce the simulations of
the work are described. Furthermore, a description of how the Purkinje-Ventricular-Junctions are

modeled is presented alongside a sensitivity analysis of the input parameters of the method.

Chapter 4 focuses on the first results of the method by presenting the geometric and
electrical features of the generated Purkinje networks over three biventricular meshes that possess
an increasing level of complexity. In this initial experiment the ability of the method to adjust
the structure of network trying to minimize the associated cost functions are analyzed for each

ventricular region and important insights are discussed.

Chapter 5 considers the evaluation of the best Purkinje networks generated in the previous
experiments in a Purkinje-tissue coupled monodomain simulation using a high-performance GPU
solver. In the following simulations the most recent cellular models for human Purkinje and
ventricular cells are utilized, as well as important physiological features of the phenomenon, like
the characteristic delay that happens at the PV J sites, are correctly modeled. The final part of the
chapter is dedicated to the analysis and discussion of the experiments and the validation of the
best Purkinje network generated for the patient-specific mesh using the available electroanatomical

map data.

Chapter 6 explores both the method ability to extend an already constructed Purkinje
network over a patient-specific mesh with new branches at the same time that generate different
PVJ density clouds using the new extra branched trees. Both the Purkinje networks and the PVJ
clouds are utilized to investigate their roles in biventricular activation by comparing the results

with the clinical electrocardiogram readings that are available for the mesh.

Chapter 7 provides a summary of the thesis, including main findings and future work.

1.4 List of publications

During the development of the thesis, the following works were published in national and

international journals.

o An optimization-based algorithm for the construction of cardiac Purkinje network models.
Authors: Ulysses, J. N., Berg, L. A., Cherry, E. M., Liu, B. R., Dos Santos, R. W., de
Barros, B. G., and de Queiroz, R. A. IEEE Transactions on Biomedical Engineering, 65(12),
2760-2768. (2018).

o A Study of the Electrical Propagation in Purkinje Fibers. Authors: Berg, L. A., Santos, R.
W. D., and Cherry, E. M. In International Conference on Computational Science (pp. 74-86).
Springer, Cham. (2019).
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Potential Roles of Purkinje Fibers in Ischemia-Induced Arrhythmias. Authors: Walz, T. P.,
Azzolin, L., Chleilat, E., Berg, L., and Arevalo, H. In 2020 Computing in Cardiology (pp.
1-4). IEEE. (2020).

Variability in electrophysiological properties and conducting obstacles controls re-entry risk in
heterogeneous ischaemic tissue. Authors: Lawson, B. A., Oliveira, R. S., Berg, L. A., Silva, P.
A., Burrage, K., and Dos Santos, R. W. Philosophical Transactions of the Royal Society A,
378(2173), 20190341. (2020).

A comparison between different Purkinje network generation methods. Authors: Berg, L. A.,
and dos Santos, R. W. Revista Mundi Engenharia, Tecnologia e Gestao (ISSN: 2525-4782),
5(2). (2020).

Improved accuracy of cardiac tissue-level simulations by considering membrane resistance as
a cellular-level optimization objective. Authors: Pouranbarani, E., Berg, L. A., Oliveira, R.
S., dos Santos, R. W., and Nygren, A. In 2020 42nd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 2487-2490). IEEE. (2020).

Calibration of single-cell model parameters based on membrane resistance improves the
accuracy of cardiac tissue simulations. Authors: Pouranbarani, E., Berg, L. A., Oliveira, R.
S., dos Santos, R. W., and Nygren, A. Journal of Computational Science, 53, 101375. (2021).
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2 Background on Computational Cardiac Electrophysiology

In this chapter, general concepts about cardiac electrophysiology are presented. Starting
with a description of the structures and functioning of the heart with a focus on the cardiac
conduction system. Then it is explained how the electrical stimulus propagates through heart
cells. Next, mathematical models capable of capturing the phenomena are presented. And finally,
the basic concepts for the computational modeling of the electrical stimulation of the heart are

depicted.

2.1 The heart: anatomy and function

The heart is a muscle that works as a pump capable of carrying blood to all body parts,
supplying each cell with nutrients essential for life. Its structure comprises four cameras, two atriums
in the superior part, separated by the interatrial septum, and two ventricles in the inferior part,
separated through the interventricular septum through the interventricular septum, as depicted in

Figure 1.

The atria have the function of serving as a reservoir and an entryway for blood to the
ventricles. In addition, it functions as a weak pump, which helps to propel the blood. The ventricles,
in turn, provide the main force to propel the blood through the pulmonary and peripheral circulations
[37]. For the heart to function correctly, the entire process of pumping must be synchronized. This

synchronization is controlled by an electrical stimulus that causes the heart muscle to contract [34].

As can be seen in Figure 1, the electrical activity of the heart originates in the sinoatrial
node (SA), which is a group of pacemaker cells located in the atrium and capable of self-stimulation.
Under normal conditions, cells generate an electrical stimulus that propagates through the right

and left atria. In this way, the myocardial muscle of both atria is contracted.

The activation wave then reaches the atrioventricular (AV) node located at the base of the
atria. AV cells have a relatively low propagation speed and are responsible for most of the delay in
contraction between the atria and ventricles. These delays are coordinated to optimize pumping

and protect the ventricles from prior stimulation.

After its activation, the AV cells conduct the stimulus through a septum, activating a set
of specialized fibers of the bundle of His and the Purkinje system, which spread branches in a
tree-like shape ending on the surface of the endocardium of the ventricles. Purkinje fibers are
characterized by conducting the electrical stimulus in very high speed, ranging from 1m/s to
4m/s [19, 61, 56]. This feature is necessary for strong and rapid activation of the ventricle muscles

so that its contraction releases blood to all parts of the body during peripheral circulation.
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Atrial Muscle
(~0.5 m/sec)

AV Node
(~0.05 m/sec)

Bundle of His
(~2 m/sec)

Left & Right
Bundle Branches
(~2 m/sec)
Purkinje Vﬂ&i{éﬂar
Rt (~0.5 m/sec)

(~4 m/sec)

Figure 1 — Main structure of the human heart showing the main structures of the cardiac conduction
system. Figure adapted from [37], where the sinoatrial (SA) and atrioventricular (AV) nodes
are depicted. In addition, the approximate conduction velocity of the electrical stimulus in
each part of the cardiac conduction system is illustrated in red between parentheses.

As shown in Figure 2 the Purkinje fibers begin to branch after the bundle of His and seek
to cover the entire surface of the endocardium uniformly. From the image, it can be seen that the
gauge of the fibers is different depending on their localization. In the region close to the bundle of
His, its size is slightly larger, while in the terminal regions, close to the surface of the endocardium,

the fibers are smaller.
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Figure 2 — Image highlighting the Purkinje fibers in a calf ventricle. The heart muscle was prepared with
a solution in order to facilitate the visualization of the Purkinje fibers, which were artificially
colored using a specilized ink. Figure adapted from [65], where PN describes the Purkinje
network and HB the His-bundle.
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At the terminal sites of the Purkinje network, there are structures that are called Purkinje-
Ventricular-Junctions (PVJs). They are responsible for transmitting the electrical stimulus from PN
to the ventricular walls and enabling ventricular stimulation to occur. Under normal propagation
conditions, in the regions where the PVJs are located, there is a characteristic delay in the
conduction of the stimulus, which may vary from 3 to 5 ms [3]. Mainly, this phenomenon arises
when a small volume (i.e., the source, Purkinje cells) tries to depolarize a large volume (i.e., the
sink, many connected ventricular cells). This is also referred to as source-sink mismatch [47, 79, 40],

and is illustrated schematically in Figure 3.

cv=0.3-0.5m/s

cv=2-4mls delay =3 -5 ms

- -
Electrical wave

Figure 3 — Ilustration of the PVJ coupling between the Purkinje fibers and the working myocardium. The
electrical wave coming from the Purkinje encounters a characteristic delay of approximately
3 to 5 ms when reaches the working myocardium cells. The conduction velocity (CV) in the
Purkinje fibers ranges between 2 to 4 m/s, while in the ventricular myocardium the CV is
around 0.3 to 0.5 m/s [18].

2.2 Cardiac action potential

As in other muscle cells, contraction of cardiac cells is initiated by an electrical activation
caused by an action potential (AP). An action potential is a depolarizing current capable of raising
the transmembrane potential of a excitable cell from its resting value, typically between -90 to -80
mV, to slightly positive values. Then a repolarizing current returns the potential transmembrane
to its resting value. The difference in transmembrane potential is caused by ionic currents that
cross the ion channels of cells. Figure 4 represents all phases of an action potential in a cardiac cell,

as well as the ionic flux that occurs in each phase.
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Figure 4 — Representation of an action potential in a cardiac cell and its phases. (A) Rest, (B) Depolariza-
tion, (C) Initial repolarization, (D) Plateau and (E) Repolarization. The ionic currents related
to the potential change in each phase are shown at the bottom of the figure.

For the generation of an action potential to occur, the cell needs to be stimulated by an
external current strong enough and capable of crossing the threshold necessary for the opening
of sodium channels (Na*t). Otherwise, the action potential is not generated. Therefore, phase B
(depolarization) begins shortly after the sodium channels opening, which enables rapid depolar-
ization of the cell membrane. After this elevation, these channels are quickly closed, causing the

characteristic peak behavior of the initial repolarization that occurs during phase C.

Then, the cell begins to open calcium channels (Ca?"), stimulating the release of calcium
stored in the cell’s sarcoplasmic reticulum, causing an increase in the calcium level in the intracellular
environment and promoting the constriction of the cardiomyocytes, responsible for generating
cardiac muscle contraction. The plateau identifies this one behavior in the action potential, which

occurs during the D phase. During this period, calcium channels remain open and calcium entry is
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counterbalanced mainly by a repolarizing potassium current (K ™). As time passes, calcium channels
become inactivated, while more calcium rectifier channels potassium open. A more significant
number of open potassium channels results in repolarization of the cell, characteristic of the E
phase. In this way, the transmembrane potential returns to its initial resting value, and the whole

process is repeated for one more heart cycle.

The propagation of an action potential from one cell to another only occurs due to the
presence of gap junctions, which are specialized proteins present in the cell membrane and allow
the diffusion of ions and other particles between neighboring cells. Furthermore, as cardiac tissue
is composed of a set of cells connected in series with each other when a cell is excited, ions are
transported to the cell neighbors through gap junctions, thus altering the ionic concentration of
the cells that are still at rest. An action potential will be generated if the ion flux in neighboring

cells is large enough to exceed the current threshold. This process is schematized in Figure 5.

Action Potential

mV
20 ‘\_‘ |\_‘ Gap Junctions
-80

Yogo[©1%° el [ [T
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Figure 5 — Representation of the electrical propagation through a bidimensional cardiac tissue. The
difference in ionic concentration of the cell membrane generates a difference in potential, which
is responsible for triggering an AP, depolarizing the cell when it reaches a certain threshold. In
addition, ions can pass from one cell to another by gap junctions, activating the adjacent cells
in a wave-like form.

2.3 Electrical model of the cell membrane

The cell membrane plays an essential role in action potential propagation. Its structure

is composed of a phospholipid bilayer, as can be seen in Figure 6, with each phospholipid, as
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highlighted in Figure 7, formed by two hydrophobic ends connected by a hydrophilic one [35].

Aqueous solution
OIONONOIOIO® (D) C (D) () ()

Aqueous solution

Figure 6 — Illustration of the cell membrane.

Polar | Choline
“Head group” | Phosphate
i | Glycerol

Fatty acid
“tails”

Figure 7 — Illustration of a macromolecular phospholipid.

Because of this characteristic of having a part of the membrane with a higher affinity for
water and another with lower affinity, the hydrophobic ends of the phospholipid repelled by water
face towards the inside of the bilayer while the hydrophilic end faces outward, thus forming a

natural barrier that prevents the passage of charged molecules [35].

In addition to the phospholipid bilayer, the membrane is also formed by small fractions of

sugars and proteins, which include ion channels, which are structures responsible for controlling the
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flow of ions through the membrane. The intracellular and extracellular media are aqueous solutions
of dissolved salts, mainly of NaCl and KCI, which dissociate into K+ , Nat and Cl~ ions. Due

to this difference in ionic concentration, a potential difference forms across the membrane [35].

From an electrical point of view, the cell membrane can be compared to a capacitor, where
its value is determined by the quotient between the amount of charge stored and the potential

difference between the two plates that compose it:

Cpp = -4 (2.1)

The ion channels present in the cell membrane can be modeled as resistances, which
are nonlinear functions of the potential difference between the intracellular and extracellular
environments, which is given by V,,, = V; — V. . In this way, the model of the cell membrane can be
represented by the electrical circuit of Figure 8, where I. represents the capacitive current, Iy, is
an external stimulus current and [;,, is the current connected to the flow of energy ions that occur

in the cell membrane.

Extracellular

X
> 4
| | . |
C ——p— stim ion
X
> 4
Intracellular

Figure 8 — Illustration of the electric model for the cell membrane.

Based on the electrical circuit in Figure 8, a differential equation for the transmembrane

potential, V,,, can be extracted. This equation is obtained by applying Kirchhoff’s law for electric



33

currents, which relates that the sum of the currents leaving a node in the circuit must be zero.

Thus, considering that a given node has k currents, Kirchhoft’s law is written as follows:

I, =0. (2.2)

i=1

In the circuit of Figure 8 we have 3 currents. The capacitive current I. is obtained by

deriving the expression (2.1):

=Co\Vy = —=C,— = I1.=C,—. 2.3
¢ dt dt dt (2:3)
Applying Kirchhoff’s law (2.2) on the lower node of the circuit in Figure 8 we get:
dV,
Ic+Istim+]i0n =0 = Cm% +[stim+]ion =0 =
= W __ 1 (Lion + Istim) 20
dt - Cm won stim ) |

where (), is the capacitance of the cell membrane, I, is an external stimulus current and I;,,
is the sum of the ionic currents that cross the ion channels and depends directly on the type of

cellular model being used.

2.4 Tonic current modelling

Ion channels are pores formed by specialized proteins that allow the selective flow of ions
across the cell’s plasma membrane. The conductance of these channels may depend on the value of
the transmembrane potential since changes in its value change the arrangement of proteins altering

the permeability of the channel [35].

This potential difference occurs due to the movement of ions across the cell membrane.
During this ion transport, there are two main flows. The first is a diffusive flux Jp, which is
related to the difference in ion concentration between intracellular and extracellular domains. This
difference causes particles from a region of higher concentration to be transported to regions of

lower concentration.

When a system exhibits a concentration difference inside and outside the membrane, there
is a concentration gradient proportional to the number of particles crossing the membrane per unit
of time. It is possible to define an unit area perpendicular to the direction of the diffusion flow,
where the proportionality constant is given by a diffusion coefficient of the molecules that cross
the membrane [35]. That process is known as Fick’s law and its mathematical representation is
described by:
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Jp = —DVe, (2.5)

where Ve is a concentration gradient of ions ¢, D is the diffusion coefficient of the domain and Jg

is the ion flux related to the diffusion.

The second flux Jp occurs due to an electrical force that is generated by the electric field
related to the potential difference between the intracellular and extracellular media. This flow has
the opposite direction to the diffusion and is given by:

z

cVV, (2.6)

Jp = —m
2]

where m is the ionic mobility, z is the ion charge, |z| is the ion valency, ¢ is the ion concentration
and VV is the electrical potential gradient [35].

When the two fluxes Jr and Jp are equal the cell membrane reaches a steady state scenario:

J=Jrp+Jp=0=
iJ:—DVc—miCVV:O

||

(2.7)

This process is illustrated in Figure 9. There is a concentration difference across the cell
membrane and due to this concentration difference a diffusive flux Jr and an electric flux Jp are

generated.

High Cellular Low
Concentration Membrane Concentration

Figure 9 — Illustration of the equilibrium between the diffusive (Jp) and electric (Jr) fluxes across a cell
membrane of length L.
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The ionic mobility, m, is given by the following expression:

plE
RT
where F' is the Faraday constant, R is the ideal gas constant and 7' is the absolute temperature

[35]. Then, we substitute equation (2.8) in (2.7) and obtain,

(2.8)

—DzF

J=—-DVc+ cVV =0=

(2.9)

J= <vc + Rchv>

Considering that the ionic flux occurs by only one ion, the previous expression can be

simplified as follows:

de zF dV

- 2.10
dz T RmT RT“dz — (2:10)

Dividing both sides of the expression by ¢ and calculating the integral from z =0 to z = L:

1 de 1 zF dV L1dc L 2F dV
SIS o /f—d L =0
cdr ¢ RT dx 0 cdx o RT dx 911
L de ZFdV 0. (2.11)
# P - J—
0 c+ o RT

Considering that the extracellular domain is in # = L and the intracellular in z = 0 and
Vin =V, — V., we obtain:

c=L F F
In(c) = ;T = In(c.) —In(g) = —;—T(V Vi) = -
= 1<C€>_ZFV |y o B (66) 212
"\e) " RT™ m=oF \a)

where ¢, and ¢; are the extracellular and intracellular concentrations of ion ¢, respectively.

In the expression (2.12), V;, is also known as the Nerst equilibrium potential, and when the
transmembrane potential is different from the Nerst potential, an ionic current passes through the

channels of the cell membrane.

It is important to address that equation (2.12) is valid only if a single ion crosses the
membrane. If the membrane allows the passage of more than one ion, another approach known as
Goldman-Hodgkin-Katz (GHK) should be used. More information about deducing the equations
from this formulation can be found in literature [35]. In order to exemplify the GHK equation,

let’s consider the flow of ions Na™ and K:
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RT (PNa[Naﬂi + P K7]; ) | (2.13)

)
Vin F '\ Pya[Nat]. + Pr[K+.

where Py e Py, are the cell membrane permissiveness to the ions K e Na*, respectively.

It is worth mentioning that both in equation (2.12) and in equation (2.13) if the value of
the transmembrane potential is equal to the Nerst equilibrium potential, there will be no flow of

ions in the cell membrane, thus denominating a steady state scenario.

In addition, the relationship between ion channels and transmembrane potential can be

modeled by two different models, one linear and the other non-linear.

In the linear model, the difference between the transmembrane potential (V') and the
Nerst equilibrium potential (V},) is multiplied by the conductance G of the ion channel, with the

conductance being the inverse of the resistance [35].

I=GV =V,). (2.14)

On the other hand, the nonlinear model considers that the relationship between potential
and ionic current must follow the GHK equations, which are represented as follows:
I PZQFQV(Ci —c.)exp(—2zFV/RT) 7
RT 1 —exp(—zFV/RT)

where exp indicates the exponential function, P is the permeability of the membrane to the

(2.15)

considered ion, and ¢; and ¢, are the internal and external ionic concentrations of this ion. To
obtain the equation (2.15) it is assumed that the electric field is constant over the cell membrane
[35].

Depending on the value of the transmembrane potential, some ion channels may be open
while others are closed. This behavior can be modeled considering that an ion channel will be
in only two possible states, open (O) or closed (C). In addition, there is a transition probability
that depends on the value at which the transmembrane potential is, in order to allow a channel to

change from one state to another, as represented by:

C2o0. (2.16)

Considering that X denotes the number of open channels, we can describe the temporal

variation of X as follows:

B = b(Va) (= X) = (V) X, (217)
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where the term p(V},) determines the transition rate from the closed to the open state and 7(V,,)

the transition rate from the open to the closed state.

In most cellular models of cardiac electrophysiology, the variables related to the opening
or closing of channels are also known as variables of type gate and are described by differential

equations as in equation (2.17).

However, some ion channels may have more than one unit, as shown in Figure 10. Thus,

the channel will only be fully open if all sub-units are also open.

®© ® ®© ® ®© ® ®© ®
_II_II_II onic channel .II.II.II Extracellular

®
®C+) ®

Figure 10 — Ilustration of a cell membrane with an ionic channel with more than one sub-unit, where one
is open and the other two are closed.

Intracellular

Within this context and considering a simple case in which an ion channel has a total of n

independent and equal sub-units, the probability of this channel being in the open state is given by:

O=X" (2.18)
where X is given by equation (2.17).

However, both the sub-units and transition rates may be different. In this case, we will
consider that an ion channel is composed of m units of type X and with transition rates pux and
Tx, and n units of type Y and with transition rates iy and 7y. Thus, the number of open channels

for this ion channel is given by following expression:

O=X"Yy" (2.19)

Similarly, the previous expression can be extended to any number of sub-units that a given

ion channel has.
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Substituting to the expression (2.14), we can represent the ionic channel equation as given
by:

I = GaxOV = Vi), (2.20)

where the term G, equals the maximum conductance obtained when all channels are open.

2.4.1 Noble model

The first mathematical model to express specific cardiac action potentials for Purkinje cells
was the 1962 Noble cellular model [49]. Much of its development was based on the famous work
of Hodgkin-Huxley which won the Nobel Prize in Physiology or Medicine in 1963 for describing
the behavior of the action potential in squid giant axons [30]. In addition to replicating the shape
of the action potential, as shown in Figure 11, the model could also predict the presence of other
ionic currents that were later discovered experimentally. Another significant achievement of this
model was to show how the generation and control of the cardiac cycle occur in mammals without

an explicit oscillator.

Action potential - Noble (1962)
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Figure 11 — Action potential described by the Noble cellular model with a basic cycle length of 300ms [49].
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Most of the ionic currents formulations of the cellular model was developed using Hodgkin-
Huxley equations and are similar to what is given by equation (2.20). For instance, three types of
current over the cell membrane are considered, one for the sodium Iy,, one for the potassium [x
and a leak current I;.;, which is related to chloride ions C1~. Figure 12 illustrates each of these

currents.

Na

K leak

Figure 12 — Ionic currents present in the Noble cellular model [49].

The transmembrane potential across the cellular membrane V,,, is given by:

dvm o _[Na + [K + Ileak

= 2.21
dt Cm ’ (2:21)

where the sodium current Iy, is given by:
Ing = (400m3h + 0.14)(V,, — Ena), (2.22)

where m and h are calculated in equations (2.25) and (2.26). The potassium current Ix can be

obtained from:
1 0

I — (1 20~ "5 1 0.015¢" 5™ 4 1.2n ) (Vo — Exc), (2.23)

where n is calculated in equation (2.27). The leak current [j.. is defined by:

Ileak - 0075(Vm - Eleak)- (224)
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In addition, the Nerst potential for the sodium is Ey, = 40 mV, potassium Ex = —100 mV
and leak Ej.qx = —60 mV. The membrane capacitance is given by C,, = 12 puF' and the gating

variables m, h e n are described by:

dm

e (1 —m) — Bm, (2.25)
dh
dn

where the transition coefficients of each gating variable are written as follows:

—0.1(V}, + 48) 0.12(V,, + 8)
m = T (Vi td) B = T Vmts) (2.28)
e 15 -1 e 5 —1
—(Vim+90) 1
ap = 0.17e 20 , ﬁh S l—C vy o (229)
l4+e 10
—0.0001(V;,, + 50 ~(Vin
Qp = 7(vm+(5o) * )7 Bn = 0.002e¢ (V80+90) . (230)
e 10 @ —

Therefore, the Noble cellular model is described by equations (2.21), (2.25), (2.26) and
(2.27), which together form a non-linear system of Ordinary Differential Equations (ODEs). The
physical units for this model, following the equations above, are given in millivolts, microsiemens

and milliseconds, respectively.

The cellular model was an important step in the cardiac electrophysiology field, since
determinant features of an AP are present as seen in Figure 11. For instance, the sharp upstroke
comes from a large, fast, inward Na™ current, and the plateau is maintained by a continued inward
Na™ current, which nearly counterbalances the instantaneous outward KT current. Repolarization
occurs by a slow outward Kt current which is activated over time. In addition, a small inward

Na™ leak is responsible to increase the potential again leading to another AP.

Although the Noble model succeeds in reproducing the Purkinje fiber action potential with
a model of Hodgkin—Huxley type, the underlying physiology is incorrect, primarily because the

model was constructed before data on the ionic currents were available. This lack of data was
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mostly because the voltage-clamp technique was not successfully applied to cardiac membrane until
1964.

The weakness of the physiology in the Noble model is exemplified by the fact that there
is no calcium current, and the inward sodium current was given the dual role of generating the

upstroke and maintaining the plateau [49].

2.4.2 Trovato for human Purkinje cells model

The state of human cardiac cellular models has evolved significantly over the last years. In
the past, most cellular models relied on data from animal experiments, which in turn could not be
accurate to study specific phenomena observed in humans, like for example arrhythmia, diseases
and genetic mutations. However, over the last decades much more electrophysiological data have
been collected from humans, leading to the development of more accurate cellular models that

surpasses limitations of previous models.

Among these models is the recent human Purkinje cellular model Trovato2020 [74] which
had the objective of integrating the current knowledge on human Purkinje cells electrophysiology
in order to investigate mechanisms of pro-arrhythmic abnormalities. The model presents Purkinje-

specific ionic currents and a detailed C'a®™ subsystem which was not accounted in the previously
published Purkinje models, like for example the Noble [49], STW [68], TT08 [71] and SMP [60].

The main contributions of the Trovato2020 Purkinje cellular model were the reproduction
of several experimental recordings in a wide range of protocols as well as electrophysiological
alterations followed by Ca®" channels blocks. Secondly, the model presents explanations to the
ionic mechanisms underlying pro-arrhythmic abnormalities and automaticity. For this particular
study the cellular model also accounts for biological variability by constructing and evaluating
a population of models and demonstrate the mechanisms related to Early-After-Depolarization

(EADs), Delayed-After-Depolarization (DADs) and triggered activity in human Purkinje cells.

Figure 13 illustrates the main structure and ionic currents presented in the Trovato2020
cellular model. The model was built based on the ionic formulations of the O’Hara-Rudy human
ventricular model, ORd [50], and the Purkinje-specific Ca®>" sub-system, cellular compartments
and intracellular ionic fluxes of the canine Purkinje model, (PRd) [41]. Within this context the
Trovato2020 model includes the ORd mathematical formulation for each of the following currents:
fast Na™ current (Iy,), Na™ late component (Inqar), L-type Ca*" current (Icqr), rapid and slow
delayed KT rectifiers (I, and If, , respectively), Na™-Ca*" exchanger (Iycx) and Nat-K*
pump (Inax)- Lio 5 Lsus and gy were formulated based on the data from ionic recordings [27]. In
addition, two Purkinje-specific currents from the PRd model were included: T-type Ca®* current
(Icqr) and funny current (/7). An important aspect of the model is to account for the differences

between ionic current in ventricular and Purkinje cells, and between human and canine Purkinje
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Figure 13 — Illustration showing the ionic currents present in the Trovato2020 human Purkinje cellular
model. The intracellular space is represented with 3 different compartments: peripheral
coupling subspace (SS), sub-sarcolemma (SL), and bulk myoplasm (MYO). The sarcoplasmic
reticulum (SR) also consists of 3 compartments: junctional (JSR), network (NSR), and
corbular (CSR). 18 dynamic current models are included for Na™ (blue), K* (purple) and
Ca®t (brown) channels, Na™-K* pump, and Na*-Ca?* exchanger (yellow). Intracellular
Ca?7 release and up-take fluxes (green) are distributed across the 3 SR compartments. Ca?*
buffers are shown as blue clouds. Global CaMKII phosphorylation is also included, and the
affected currents are marked by a spiky circle. Figure adapted from [74].

Furthermore, the model is composed by a system of ODEs with a total of 46 state variables
to be solved and present stiff properties, similarly to some other recent cellular models [33, 66, 45].
For that reason the performance of standard explicit solvers, such as the Euler method, are highly
affected due to stability constraints. The baseline AP of the Trovato2020 human Purkinje model
with a Basic-Cycle-Length (BCL) of 1000ms is shown in Figure 14.
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Action potential - Trovato (2020)
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Figure 14 — Action potential described by the Trovato2020 human Purkinje cellular model with a basic
cycle length of 1000ms [74].

2.4.3 ToRORd human ventricular models

From the same research group (Ozford Computational Cardiovascular Science team) that
developed the Trovato2020 Purkinje human cellular model, the human ventricular cellular model
ToRORd-fkatp-2019 was implemented in 2019 [72]. Similarly to the Trovato2020, most of its
development was based on the ionic formulations of the O’Hara-Rudy human ventricular model,
ORd [50]. The main contributions of the ToRORd-fkatp-2019 was to improve the current state-of-art

ORd model in several aspects, especially when compared to human ventricular experimental data.

Using a development strategy based on strictly separated model calibration and validation,
to design, develop, calibrate and validate the model of human ventricular electrophysiology and
excitation contraction coupling, the ToRORd-fkatp-2019 model aims for simulations that are able
to reproduce all key depolarisation, repolarisation and calcium dynamics properties in healthy
ventricular cardiomyocytes, under drug block, and in key diseased conditions such as hyperkalemia

(central to acute myocardial ischemia), and hypertrophic cardiomyopathy [72].

The main contributions of the ToRORd-fkatp-2019 human ventricular model was to improve

ionic balances during the repolarization phase of the ORd by focusing its implementation on
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a re-evaluation of the L-type calcium current (I¢,z) formulation, given its fundamental role in
determining the AP, the calcium transient and sodium homeostasis through the Na — C'a exchanger.
The second main focus is the re-assessment of the rapid delayed rectifier current (I, ), the dominant
repolarisation current in human ventricle, under conditions that reflect experimental data-driven

plateau potentials by using an implementation of the Lu-Vandenberg [46] Markov model.

Regarding its structure, the ToRORd-fkatp-2019 model follows the general ORd structure.
The cardiomyocyte is subdivided into several compartments: main cytosolic space, junctional
subspace, and the sarcoplasmic reticulum (SR, further subdivided into junctional and network
SR). Within these compartments are placed ionic currents and fluxes described by Hodgkin-Huxley
equations or Markov models. The main ionic current formulations altered compared to ORd are
highlighted in orange in Figure 15A, while the structure of the Lu-Vandenberg Markov model is
illustrated in Figure 15B.

Although the ToRORd-fkatp-2019 is able to ensure the reproduction of key physiological
cellular features, with independent multiscale validation demonstrating a correct response to channel
blocking drugs and pathophysiological remodelling, the model display drifts in its behaviour in very
long simulations, like for example simulations considering extremely long protocols, or for studies
on model stability. It was found later in 2020 that the main reason to these changes are caused by
modelling chloride concentrations as constant values. To remedy this issue, an updated version,
termed ToRORd-dynCI-2020, with dynamic representation of intracellular chloride was introduced.
This model behaves very similarly to the original ToRORd-fkatp-2019, but with stable properties

over long simulations and only a small increase in model complexity as shown in Figure 16.

Therefore, in the ToRORd-dynCI-2020, intracellular chloride concentrations are not held
constant, as in ToRORd-fkatp-2019, but updated dynamically according to its two chloride currents
(calcium-sensitive Cl current I(cq)c; and background Cl current Ieg). Simulations with ToRORd-
dynCl-2020 achieve a steady state, and its steady-state behaviour is very similar to ToRORd-fkatp-
2019. The original ToRORd-fkatp-2019 is nevertheless suitable for simulations of thousands of
beats, whereas for long simulations, the stability of the ToRORd-dynCI-2020 is a clear advantage
[73].
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Figure 15 — Illustration showing the ionic currents and associate Markov model present in the ToRORd-
fkatp-2019 human ventricular cellular model. In panel (A), the ionic currents of the model
are depicted, where in orange indicates components, substituted, or added, compared to
the original ORd model. ‘SS’ indicates junctional subspace compartment, where calcium
influx via L-type calcium current occurs and where calcium is released from the sarcoplasmic
reticulum. ‘JSR’ and ‘NSR’ are junctional and network sarcoplasmic reticulum compartments,
respectively. ‘Main cytosolic pool’ is the remaining intracellular space. Transmembrane
currents are indicated with an ‘I’ in their name, with fluxes indicated as ‘J. Components
with a green underscore are modulated by CaMKII signalling. In panel (B), the structure
of the Lu-Vandenberg [46] Markov model used for the rapidly activating delayed rectifier
repolarisation current (Ix,). Figure adapted from [72].
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Figure 16 — Illustration with the main differences between the original ToRORd-fkatp-2019 cellular model
[72] and the new ToRORd-dyncl-2020 model [73]. The main model compartments (main
cytosolic pool, junctional subspace SS, and subcompartments of the sarcoplasmic reticulum),
currents, fluxes, and buffers are depicted. Intracellular concentration of ions are listed in the
main cytosolic pool and SS compartments using color labels within a grey box. Compared
to the original model which dynamically updates concentrations of sodium, calcium, and
potassium, ToRORd-dyncl-2020 also dynamically updates chloride concentrations. Figure
adapted from [73].

The updated ToRORd-dyncl-2020 human ventricular model is composed by a system of
ODEs with a total of 45 state variables, and just like the ORd and ToRORd-fkatp-2019, presents
transmural heterogeneity in the cellular dynamics of endocardium, midmyocardial and epicardial
ventricular cells. The baseline APs of the ToRORd-dyncl-2020 model with a Basic-Cycle-Length
(BCL) of 1000ms are shown in Figure 17 and illustrate the transmural cellular dynamics differences

for each ventricular region.
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Figure 17 — Action potentials described by the ToRORd-dynCI-2020 human ventricular cellular model
with a basic cycle length of 1000ms [73], where the transmural heterogeneity of model is

illustrated by their corresponding APs, blue (endocardium cell), red (epicardium cell) and
orange (midmyocardial cell).

2.4.4 Explicit Euler and Rush-Larsen methods

To properly solve the non-linear system of ODEs given by a cardiac cellular model a numerical
scheme must be applied. The explicit Euler method is a first order method to approximate solution
of ODEs. Consider the ODE % = f(t,y), where f(t,y) is a function given and y(t) is the function

to be determined or approximated. By expanding y(¢) in a Taylor series around ¢

4+ h) =30+ hF0.0 + O+ DO+ 23

where h is the time step. Truncating the approximation y(¢ + h) after the series terms which power

of h are superior to 2 we achieve

gt +h) =y(t) + hf(y(t),t) = y(t + h) + O(h?). (2.32)

Given yo = y(to) and y; = Y(to + h), for n = 2,3, ... is established by the Euler method that
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where t,, = to + nh. The error that arises from the approximation of y(ty + nh) by vy, is order h.
Furthermore, it can be verified that the explicit Euler method has stability conditioned to the step
h used and the characteristics of the ODE to be approximated, being classified, therefore, as a
conditionally stable method.

Such techniques, limit the size of the time steps taken in the simulation process, due to
its stability conditions. Such a limitation is accentuated with the presence of stiff equations. In
general a problem is called stiff when we attempt to compute a particular solution that is smooth
and slowly varying (relative to the time interval of the computation), but in a context where the
nearby solution curves are much more rapidly varying. In other words, if we perturb the solution
slightly at any time, the resulting solution curve through the perturbed data has rapid variation
[39].

The Rush-Larsen (RL) method [58] seeks to mitigate the problem of instability on certain
types of equations present in electrophysiological models. When such equations constitute the
stiff part of the system as a whole, as in the case of the recent models Trovato2020 [74] and
ToRORdA-dynCl-2020 [73], the method allows the use of considerably larger time steps, reducing
the time of computing sharply [44, 22].

The RL method focus on the gating variables that are written using Hodgkin-Huxley’s
formulation [30]. This method considers the coefficients a; and f3; of the gating variables equations,

which have the form of equation (2.34), approximately constant in a small time interval.

dy

4 a;(1 —y) — Bjy. (2.34)

Therefore, the method consists of a local linearization of the gating variables equations (also

called quasi-linear equations), which are numerically solved by

_ Q; —(aj+B;)h Q;
Yn _<yn_)€ 7 +77
" a; + B a; + B (2.35)
k= ’C“j + ﬁj’?

where h is the time step. The remaining equations of the model are evaluated by the Euler method.
If the value of k, defined by equation (2.35), is close to zero, the Euler method is used instead of

equation (2.35) for the corresponding gating variable at that point of the simulation.

For example, the Noble model defined in section 2.4.1 can be directly solved using the RL
method by considering the gating variables m, h and n as Hodkin-Huxley type. Consequently, the
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variable V' defined by equation (2.21) is solved using an explicit Euler scheme, while variables m, h

and n given by equations (2.28), (2.29) and (2.30), respectively, are solved using the RL method.

In equation (2.36) we show each state variable from the ToRORd-dynCl-2020 model and
the appropriate scheme used to solve the equations of the model, where 6., denotes the variables

solved using an Explicit Euler scheme and 0g;, the ones being solved with the Rush-Larsen one.

Ocrier = {v, CaM Kt, nai,nass, ki, kss, cansr, cajsr, cai,
ncags, nca;, C1,C2,C3,1,0,cli,clss}

Orr = {m,h,j, hp, jp,mL,hL, hLp,a,iF,iS,ap,iFp,iSp,

d, ff,fs, feaf, feas, jea, f fp, feafp, xsl, xs2, Jrel,,, Jrel,},

(2.36)

Similarly, in equation (2.37) we show each state variable from the Trovato2020 model and
the appropriate scheme used to solve the equations of the model, where 6., denotes the variables

solved using an Explicit Euler scheme and 0r; the ones being solved with the Rush-Larsen one.

Ocrter = {v, CaM Kt, cass,nai, nasl, nass, ki, kss, ks,

cai, casl, cansr, cajsr, cacsr, Jrell, Jrel2, nca,u}

Orr, = {m,hf, hs,j, hsp, jp,mL,hL, hLp, a,il,i2,d, ff,

fs, feaf, feas, jea, f fp, feafp,b, g, xrf, xrs, xsl, xs2,y, xkl},

In addition to the first-order methods described by the Explicit Euler and RL schemes,

it is available in the literature second-order and hybrid methods that can provide an increase in

(2.37)

accuracy at the expense of an increase in computation time, like for example the second-order
method provided by Sundnes et al. [69], also known as SAST2 [22]; and hybrid methods that
consider not only the resolution using RL schemes but also applying uniformization techniques for

the Markov chains associated to these models [22].

2.5 Cardiac tissue modelling

Cardiac tissue comprises a set of cells that connect to each other through gap junctions,
which allows the passage of a cell’s action potential to another. Among the models capable of
describing this phenomenon, two famous models are available in the literature: the bidomain and

monodomain.

2.5.1 Bidomain and monodomain models

The bidomain model considers that the cardiac tissue is composed of a set of cells, and the

transmembrane potential of each cell depends on both intracellular and extracellular domains [35].
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In this model, the intracellular cells are connected by gap junctions, while for the extracellular cells
there is a current flowing in the spaces between each cell. In this way, for each domain, a potential
and an electrical current are defined, where for the intracellular domain we call V; and I; for the
potential and the intracellular current, respectively, and V, and I, for the potential and current of

the extracellular domain, respectively. Figure 18 shows how the bidomain model is represented.
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Figure 18 — Schematic of the bidomain model.

Using Ohm’s law, the relationship between potential and current is obtained for each domain

I, = DiVV;,

(2.38)
Ie = Dev‘/ea

where D; and D, are intracellular and extracellular conductivity tensors, respectively. Furthermore,
by the conservation of current principle, the total current at any point in the circuit will be

conserved if no other external current is applied, so:

V.1, =V-(D;VV;+ D,VV.) = 0. (2.39)

At each point in the domain, the transmembrane potential V,, and the transmembrane

current [, can be expressed by:

Vi =Vi— V. (2.40

Ly =V - (D;VV;) = =V - (D,VV,). (2.41)

The transmembrane current I, relates that all current leaving one domain must enter the
other.
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Now rearranging the equation (2.4) and converting the transmembrane current per unit of
area to unit of volume through a factor 3, which is the surface-to-volume ratio of the cell membrane,

we arrive at the equation:

In,=p (Cmaavt;n + Lion + Istim) =V. (DQV‘/Z) (242)

Using the expression V; = V,, + V, in order to eliminate the intracellular potential V; and
include the extracellular potential V, and the transmembrane potential V,, in the expressions (2.39)

and (2.42)

V- (DNVm) + V. (DiVVe) = (Cma(,;/;n + Lion + Istim) , (2.43)
V- (DNVm + (.Di + De)VVe) =0, (2.44)

where the equations (2.43) and (2.44) are known as the bidomain model in its most used formulation

for modeling electrical propagation in cardiac tissues [28].

The bidomain model is a system of partial differential equations (PDE), which requires
a high computational cost. Thus, the model can be simplified considering that the extracellular
environment does not affect the electrical activity, in such a way that the extracellular potential is

equal to zero. As a result, the expression (2.40) becomes:

V= Vi (2.45)

Considering this simplification in the equation (2.43), the formulation of the monodomain

model is expressed by:

V- (DzVVm> - 6 (Cma;/;n + ]ion + ]stz'm) . (246)

If the propagation of the electrical stimulus occurs in a single direction, as is the case with

Purkinje fibers, the above equation can be further simplified by

o*v,, oV,
Im - = B <Cm + [ion + Istim) 5 (247)

e ot
where o, represents the conductivity of the Purkinje cells in the direction of the fiber propagation.
Although this model is not able to capture certain phenomena that the bidomain model

can, the computational cost of the monodomain model is much lower. Therefore, it is a model

widely used in several works [42, 55, 51].



52

Within this context, if we assume that the intracellular and extracellular domains are
anisotropic, but to the same degree, the bidomain equations can be reduced to the monodomain
equations. Consequently, the cardiac tissue can be simplified by a single conducting domain that
relates D, = AD;, where X is a scalar. Using this expression we can rewrite the monodomain

equation.

OV,
V : (Dmvvm) = 5 (Cmat + Iion + Istim> ) (248)

where D,, is the effective bulk conductivity. As a result of this expression it is possible to match
conduction velocities between bidomain and monodomain formulations along the axial directions of

the tissue as can be seen in more details in the works from Bishop, M. J. and Plank, G [7, 8] or in
the work from Sundnes, J. et al. [70].

In both of these works it is shown that activation patterns including bath-loading effects
observed only in bidomain models can also be reproduced with monodomain models in which
conductivity tensors are further correctly chosen. In this case, the effective bulk conductivity tensor
D,, in equation (2.48) is represented by D}, , where % means either b in the tissue bulk or s along
the surfaces. If the propagation occurs along the individual principal axes, the eigenvalues of Dy,

are given as

™ Df+ D¢

where ( = [/t/n are the eigendirections of the tissue along the longitudinal cardiac fiber direction

(2.49)

(¢ =1), transverse (¢ = t) to fibres within a sheet, and along a sheet normal direction (¢ =n). A
thin augmentation layer is defined by assuming that extracellular resistivity close to tissue surfaces
is rather given by the bath conductivity Dy than the interstitial conductivity D, which leads to a

conductivity in the augmented layer given by:

DiD,

DX = T
Df—l—Db

m

(2.50)

The above representation is also called augmented monodomain and is used to reproduce
the bath-loading effects of a surrounding extracellular medium when wavefront morphologies and

conduction velocities are considered [7, 8].

2.6 Pseudo-ECG

A major advantage of the augmented monodomain formulation, shown in the previous

section, is that it can provide a similar activation sequence as the bidomain model with a much
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cheaper computation cost and , most importantly, it can provide realistic ECG signals in a bounded

medium surrounding the heart.

However, to calculate an approximation of the 12-leads-ECG we can simply use the mon-
odomain formulation. Basically, the procedure consists of first compute the bioelectric activity
of the heart using the monodomain model given by equation (2.46). Next, we can retrieve the
¢. surface potential if we assume that the tissue is immersed in an unbounded volume conductor

during a standart monodomain simulation by solving the following equation:

1 g B
~drwDy Ja ||r|]

where 7 is the distance vector between source and field points, which are essentially the electrode

Pe (2.51)

positions of the 12-leads-ECG approximation. Using a standard monodomain simulation the source

term (1, is given by the solution of V.(D;AV,,), which is available in every timestep.

To properly measure an 12-leads-ECG in a patient, a total of 10 physical electrodes,
commonly known as leads, must be used. This 10 physical leads are placed over the body of the
patient at certain locations as can be seen in Figure 19. In this figure, there are four limb leads,
namely RA(right arm), RL(right left), LA(left arm), LL(left leg); and six chest leads, known as V1,
V2, V3, V4, V5 and V6.
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RA = Right arm

LA = Left arm

RL = Right leg |RA LA
LL = Left Ie(_g o

RA LA

RUICRS . L

RL LL

Figure 19 — Illustration of the 10 physical leads placement over a patient body for an ECG measurement.

When the ECG is calculated, we have at our disposal the signals coming from these 10
physical leads. However, the ECG readings are commonly represented to a medical person using 12
tracing leads. To convert the 10-leads to 12-leads ECG we must use the Einthoven Triangle shown
in Figure 20, which retrieves the readings coming from the limb leads and generate six new leads,
namely Lead-I, Lead-II, Lead-III, aVR, aVL and aVF. To calculate the new leads readings we use

the following equations:
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Leadl = LA — RA
Leadll = LL — RA
Leadlll = LL — LA

WV — Leadl —2Lead[I[ (2.52)
—Leadl — LeadlIl
VR — ead . ead
Leadll + Leadlll
WVF — ead —i—2 ead

After this procedure the 12-leads ECG is computed with the precordial leads given by V1,
V2, V3, V4, V5, V6; and the frontal leads given by Lead-I, Lead-II, Lead-III, aVR, aVL and aVF.

o Lead-I o

Lead-lll

Lead-ll

LL

Figure 20 — Representation of the Einthoven Triangle utilized to generate the six additional leads for the
12-leads ECG. Normally, the RL electrode is consider the grounding lead and does not appear
in this sketch.

Furthermore, the ECG readings are commonly normalized before presenting in a comparison
study. In this work we normalize all the ECGs using the technique presented in the work from
Camps, J. et al. [12]. In addition, only the readings from 8-leads (V1, V2, V3, V4, V5, V6,
Lead-I, Lead-II) are utilized for comparison. The main idea of the normalization is to first average
the values given by the leads LA, RA, LL and RL, then normalize the values of all leads to the
maximum amplitude of each one. To compare two ECG readings we consider the computation of

the Pearson correlation factor, which is given by the equation:
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pPXyYy = ———, (2.53)
Ox0y

where pxy is referred to as the population correlation coefficient or the population Pearson
correlation coefficient, cov is the covariance, ox is the standard deviation of the random variable

X and oy is the standard deviation of the random variable Y.

2.7 Geodesic paths

To generate Purkinje networks sustaining its structure over the endocardium surface, the
usage of the geodesic path algorithm is commonly utilized [13, 48], especially when the endocardium
surface is extremely irregular and have several particularities, like for examples tendons and papillary
muscles. In addition, the shortest geodesic paths is a common operation in many algorithm that
tackles problems in the field of computer science. In general this operation is commonly used in the
area of computer graphics, where triangular meshes are used to represent a given object. Geodesic
paths provide solution to several problems, like mesh parametrization [80], shape matching and

classification [29] and shape retrieval [57].

The geodesic path problem can be stated as: find the shortest path between two points on
the surface of a polyhedron. A shortest path 7 (s, ) between s and ¢ is defined as a path of minimum
Euclidean length among all possible paths joining s to ¢, constrained to lie on the surface of the
polyhedron. Moreover, the length of 7(s,t) is defined as the sum of the lengths of all segments on
the faces which the path traverses [64]. In Figure 21, we show an example of computational geodesic

path constructed over a simplified surface which represents the structure of the left ventricle.
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Figure 21 — Illustration of a geodesic path build over a simplified representation of the left ventricle. The
given mesh is represented by triangles and the source s and target ¢ point of the geodesic path
7(s,t) are highlighted in blue. The pathway 7(s,t) is colored in red and is the shortest path
between s and t within the surface.

A wide range of algorithms for computing geodesic paths handle the single source variant of
the problem, which seeks to determine shortest paths from a source vertex to all other vertices of
the polyhedron. Basically, all algorithms that employ a graph to discretize the paths are divided in
two stages: building such a graph and computing the shortest geodesic paths. A simple way of
building the graph is to consider the input triangular mesh as the graph itself. For each triangular
cell in the mesh, the connections between the points that represent the cell are parsed to nodes
and edges in a graph data structure. Once the graph is built for the whole mesh, the second stage

can be performed by executing a shortest path algorithm from any source vertex [64].

An optimization aspect of this variational problem is that when the triangular mesh does
not change over time, the associated surface graph needs to be constructed only once. This feature
becomes valuable in applications where the computation of paths from multiple sources in an
unchanged surface is required, which is the scenario associated to the Purkinje network generation

over an endocardium surface problem.

In this work to compute geodesic paths we use the VTK library [63] implementation
written in C++ and described in the vtkDijkstraGraphGeodesicPath class. The main idea of this
implementation is to first load the associated surface, which must be given by triangles, and convert
it to a Polydata object. Next, the associated surface graph is construct using the triangles of the

mesh only once. After the main structure of the graph is built, any subsequent geodesic path is
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computed by simply computing the single source shortest path calculus using the Dijkstra algorithm
passing the location of the source and target points within the surface. The implementation is
similar to the one described in Cormen, T. H. et al. [15]. Some minor enhancement are added
though. All vertices are not pushed on the minimum heap at start, instead a front set is maintained.
Furthermore, the heap is implemented as a binary heap. The output of the operation is a set of

lines describing the shortest path from s to t.

In terms of computational cost, the time to build the associated surface graph is proportional
to the number of triangles in the surface, which can highly affect the resultant execution time if
the given endocardium mesh is extremely detailed. After the associated graph is constructed and
supposing that it is given by a directed graph G(V, E'), with a total of V' vertices and F edges, the
total running time of querying a Dijkstra single shortest path search is O(E.logV') if all vertices are
reachable from the source and the graph is sufficiently sparse, in particular, E = o(V?/logV’), which
is exactly the case for G. For more details regarding the performance of the Dijkstra algorithm,

please refer to Cormen, T. H. et al. [15].

2.8 Literature review

Purkinje networks are known to have a complex morphology with several branches and
bifurcations, as can be seen in physiological images [42, 48, 67, 52]. A wide variety of methods have
been used to address the generation of realistic PNs. In particular, PNs can be generated using
image processing techniques by extracting the structure from images of dissected ventricles and
them projecting these flat networks onto realistic endocardial surfaces [42]. Such models gather both
the geometry and the Local Activation Time (LAT) from the processed network. On the other hand,
the generated PN may not be acceptable for other subjects due to biological variability. Another
set of widely utilized methods for PN generation is fractal trees. In such models, the L-System
is commonly described as an alternative to automatically produce PNs using a pre-defined set of
rules that can not only prevent collisions [31] but also enhance its geometry [65]. An alternative
to the L-System is the fractal method proposed by Costabal, F. S. et al. [16] which allows the
automatic generation of PNs using controllable curvature of the branches, enhancing the geometry
of the tree, especially in irregular surfaces. Moreover, fractal trees and image processing techniques
can be combined to construct the VCS. For instance, in the work of Bordas, R. et al. [9], from
Magnetic Resonance Images (MRI) of a rabbit, it was possible to identify the Purkinje system
partially. After manually constructing the His-Bundle, a fractal method was applied to extend the
PN to the myocardium.

Another class of methods is based on optimization principles [76] and was inspired by the
Constructive Constrained Optimization (CCO) method that can generate detailed and realistic

vascular trees [62]. A major advantage of this method is the flexibility of using any cost function
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in the method’s optimization process and including as many topological and electrical metrics as
needed (e.g., bifurcation angles, PVJ location, LAT).

In addition to these observations, important aspects of the Purkinje system alongside the
proper activation of PVJ sites still need to be further investigated as can be seen in the work from
Behradfar, E. et al. [6]. Mainly, it is not entirely clear how many PVJs are actually active in a
Purkinje network. Within this context, evaluating different Purkinje network morphologies and
distinct PVJ density clouds can be a valuable study to investigate their role in not only phenomena
associated to their ventricular activation, like the resultant eletrocardiogram, but also help the
understanding of reentry dynamics which can appear around these structures and can ultimately

evolve to ventricular arrhythmias.

The main contribution of this thesis is the development of a novel method based on
optimization principles to generate patient-specific PNs with geometrical and electrical accuracy.
The new method, named Shocker, is an extension of the CCO algorithm and considers cost
functions that rely on electrical and geometrical metrics and focus on generating patient-specific
PN models. We have evaluated the generated PN models by coupling them to biventricular meshes
and comparing the LATs obtained in the simulations to different references. The simulations are
based on modern cellular electrophysiology models for human Purkinje and ventricular cells and
a fast parallel cardiac simulator. Our results show that the generated patient-specific PNs can
accurately reproduce important geometrical and electrical features. In addition, the new PN models
also correctly reproduced the physiological delay at the Purkinje-Ventricular-Junctions. Therefore,
we believe the results presented in this work are an essential step towards a better understanding
of Purkinje fibers and provide a valuable tool to study the role of patient-specific models and their

impact, for instance, in the simulations of cardiac arrhythmias.
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3 Materials and methods

3.1 Generation of Purkinje Networks

The Constructive Optimization (CO), a method developed to generate Purkinje networks
[76] in tri-dimensional domains following the minimization of a cost function that computes the
total length of the network, is the foundation to develop the PN models of this work. The method
uses as input a given cloud of points representing the surface to be covered, an initial root position,
and a prescribed cost function that will be minimized. Then, the method tries to generate a
tree that homogeneously places branches that satisfy a set of restrictions and, at the same time,

minimizes the user-specified cost function.

The main structure of our novel method is shown in Algorithm 1. To generate the PN, the
input data of the method is the following: set of points S with distal locations for the terminal
branches, proximal location of the root branch z,,,,;, which must be within the endocardium surface
Q)s. In addition, set S can contain the locations of the active PVJs and an extra cloud of passive

points that homogeneously cover €.

Algorithm 1: Shocker main program.
Data: S, zproq, [initial PN].

Result: Purkinje network generated within the set of points S.

=

Spy Sa  PreProcessing(S, Tproz) ;
term < RootPlacement(Sy, la, Tprox, [initial PNJ) ;
while (not pass one time through S,) do

N

w

4 New passive branch < Generate Terminal(S,, N, CF,, la, kterm) ;
5 Advance to next passive point in .S, ;

6 Kterm < Kterm + 1 ;

7 if (kierm % Lyate == 0) then

8 ‘ New active branches < AttemptPV.JConnection(Sy, Nu, CF,, Lerror; la, kterm) ;
9 end
10 end

11 PostProcessing(Sa, Nao, CF,, Lerror, la, kterm) ;

12 Compute metrics and save network topology to a file ;

Another feature that the method provides to the user is passing a given PN configuration
as the initial topology of the tree. It can be advantageous in two scenarios. Firstly, well-known
structures of the Purkinje system, like the Left-Bundle-Branch (LBB) and Right-Bundle-Branch
(RBB), can be constructed beforehand using different techniques and be supplied as the initial
network in order to provide better guidance of the regions that the PN certainly will occupy

based on physiological observations. The second advantage of this feature is extending an already
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constructed PN by including different branches on its topology. For instance, these PNs could come
as the output of another method already available in the literature. Thus, the user could want to
increase its endocardium coverage or connect additional PVJs points, which is a feature that the

available methods to generate PN in the literature currently do not have implemented.

Moreover, the PN is represented with a graph data structure, where the nodes represent
points over the surface, and the edges, segments that link two points. Based on this type of data
structure, each segment have access to its parent and left/right offsprings. Besides, a terminal
segment is defined as a segment with no offspring, and a branch is a set of segments between
bifurcations. For more details related to the geometrical concepts and data structures used by the

Shocker method please refer to Appendix C.

Initially, before growing the PN, a PreProcessing step must be executed over the surface
points that will be covered as highlighted in line 1. Given the endocardium surface (), we extract
all the points and store them in a set S. Secondly, a procedure that reorders the indexes of the
points in S is executed and is illustrated in Figure 23A. This operation considers the initial root
position, ,.., passed as an input parameter to reorder the points in S to such a degree that
points that are close to the initial root position will be renumbered at the early indexes of the
set. To reorder the points, a sphere centered at the given root position and with an initial radius
ro = 0.01lmm grows in intervals of r;,. = 0.05mm until all the points in the set S are covered. At
each iteration, the points within the growing sphere have their indexes renumbered consecutively.
In addition, the amount of passive points that the method will use is filtered by 1% of the total
number of passive points inside S. We randomly select passive points inside S until the prescribed
quantity is achieved. Ultimately, the result of this process is a new set .S, which is the passive
cloud of points that the method mainly utilizes. The main advantage of performing this reordering
over the points in S is that the growth of the PN will start near the region of the root and slowly

cover the other regions of the endocardium.

The points in S, are considered passive PVJs, but the user can also provide an input set of
active PVJs points with their corresponding Local Activation Time (LAT) inside the set S. This
active points set, S,, contains all the points that the PN must connect with a given LAT. If the S,
set is supplied, we pre-process the PV Js by sorting them concerning their LAT. This distinction
between passive and active PV Js sets is essential since it will guide the execution of the main logic
of the method. A detailed explanation regarding the PreProcessing and subsequently subroutines

are given in the Appendix section A.1.

After this initial step, the method constructs the root branch in line 2 given the initial
root position z,,,, and the characteristic length ;. A distal location e, is selected from the set
S, and must attend some geometrical restrictions. After selecting a feasible position, a geodesic

pathway, which connects xp,o; tO Zterm, is constructed over €2;. Alternatively, the user can also
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provide an initial root structure that can be used to initialize the method. For more information

about the RootPlacement and associated subroutines, please refer to the Appendix section A.2.

To generate a new terminal branch in the network, a distal location x.,,, can be selected
in two different scenarios. In case the new terminal branch is considered passive, we randomly
select a point from the set S,. On the other hand, if the new terminal branch is an active PVJ
we retrieve Ty, from the set S,. The prospective location Ze., is only connected to the PN if

satisfies a distance criterion.

The distance criterion consists of checking whether the distance d..; of a new candidate
terminal location xye., exceeds an adaptive threshold (diesn). This threshold is dynamically
decreased when the number of terminal branches increases during the process of PN generation.
The same 3D formulation utilized in Ulysses, J. N. et al. [76] was applied in the present work.

Before adding a new terminal branch, the threshold distance dy,.., is initially given by:

l
dthresh - L ) (31)
term

where k.., is the current number of terminals in the PN and [, is the characteristic length of the

domain given in micrometers. In Figure 23B it is illustrated how the threshold distance dy,..s, varies
as the number of terminals in the PN, k..., increases considering l; = 10mm. It is important to
notice that as the network grows the threshold distance decreases as more terminals are connected
to the tree. This behaviour leads to longer branches in the early iterations of the method, as the
PN tries to cover as much as the domain. Consequently, shorter branches start to appear during
the last iterations. All the steps for computing the distance criterion for a given x4, location are

described in details in Appendix section A.3.

After the root is placed, the method enters in the main loop in line 3. At each iteration,
a point Ty, from S, is selected and a new passive branch is generated to the PN by calling the
Generate Terminal subroutine in line 4. This procedure is repeated until the last passive point in
S, is reached. To generate a new passive branch, the point x;..,, must first attend the distance
criterion, then it is temporarily connected to the nearest IV, segments in the current PN by a
geodesic pathway. The calculus of the N, nearest segments is done by calculating the distance
between the middle point of all segments in the current network to ie.,,. Next, we sort the
segments by their Euclidean distance and filter only the closest IV, segments to Zie,y,. After this
step, we decide how to connect 2., to one of the N, neighboring segments. This choice is based
on the minimization of the passive cost function C'F}, that relates the total length of the network

accordingly to equation (3.2):

CE,= Y I (3.2)
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where [, is the length of segment k and N, is the total number of segments in the model. The

subroutine associated to the evaluation of a given cost function is explained in Appendix section
A4

Finally, the candidate connection with the lowest value of C'F}, and whose connection does
not generate a collision to other segments in the tree is adopted and made permanent, as illustrated
in Figures 23C and 23D. In case all feasible segments cause collisions, we sort a different ., from
S, and recheck the distance criterion. After a suitable passive branch is included to the tree we
advance to the next passive point in 5, and increase the number of terminal branches ke, in the
PN by one, as lines 5 and 6 show. A more detailed explanation regarding the GenerateTerminal
and associated subroutines to generate a new passive branch to the tree are described in Appendix

section A.5.

During the main loop we attempt to connect the active PVJs present in S, when k.., is
divisible by a connection rate parameter L,.., as presented in line 7 with a calling to the Attempt-
PV.JConnection subroutine. In this scenario, we try to sequentially connect all the unconnected
PVJs inside the set S, using the same technique previously described for the passive case. For
each active PVJ, xpy;, inside S, we use the nearest N, segments sorted by an approximation of
their LAT error alongside the active cost function C'F,, which calculates the LAT error of a given

segment using the cable equation. The active cost function is shown in Eq. (3.3).

CF, = |LAT(s) — T(PV.J)|, (3.3)

where s is a terminal segment linked to an active PVJ, LAT(s) is a function that returns the LAT
of a given segment s using the cable equation, and T'(PV J) is the known value for the LAT of the
PVJ. More details regarding the cable equation can be found in the Appendix B.

The cable equation is commonly used to evaluate the electrical flow in neurons and cardiac
cells [35]. In this assumption, the potential depends only on the length variable so that the cable can
be viewed as one-dimensional, just like a Purkinje fiber. The cell is considered a cylindrical piece
of the membrane with a certain length, diameter, internal conductivity, and membrane capacitance.

The conduction velocity (CV') across the cable is given by

Gd
_ 4
cV iCory (3.4)

where G is the internal conductivity, C'y is the membrane capacitance, 74 is a time constant, and d

is the diameter of the cable. The cable properties of a Purkinje fiber can be measured and typical
values are given in the work from Schoenberg, M. et al. [61], G = 7.9mQ/em, C; = 3.4uF/cm?,
7t = 0.1ms. The diameter of a Purkinje fiber is reported to vary between 50pm to 300pm with a
propagation velocity ranging from 1m/s to 4m/s [19, 61, 56].
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In Figure 22 it is highlighted how the LAT computation of a segment in the tree is done
using the cable equation. As can be seen in the figure, for each segment that is in the pathway
between the target segment and the root node, which is illustrated by the red arrows, the cable
equation is applied. To access the segments within the pathway, the parent pointer from the graph
data structure of the PN is utilized.

@

AN

Figure 22 — Illustration of the LAT computation using the cable equation for a given segment in the
tree. The cable equation is applied in each segment that is in the pathway linking the target
segment until the root node using the parent pointer from the graph data structure that
represents the PN, as depicted by the red arrows.

When the active cost function C'F, is calculated for a given segment, the connection is only
accepted if the new branch has an absolute LAT error between the best candidate branch found
during the evaluation phase and the reference LAT value of the target active PVJ is less or equal to
Lerror. Otherwise, the PVJ returns to set S, and the entire branch is pruned. Moreover, whenever

a PVJ is connected to the PN, the procedure is repeated until there are no updates to the tree.

Similarly to the passive case, the selection of the N, best segments is done by passing
through all the segments and computing an approximation of the LAT error to xpy s reference
value. This approximation is calculated by the sum of the current LAT of a given segment s; and
the LAT given by the line that links the middle position z,; of segment s; to zpy ;. After this, the
geodesic paths are computed for the N, segments and the LAT error is recalculated. The whole
procedure of connecting an active PVJ, xpy;, is illustrated in Figures 23E and 23F. A detailed

explanation about the connection of the active PVJs is presented in Appendix A.6.

Finally, after we reach the end of S,, a PostProcessing step is applied and illustrated in
Figures 23G and 23H. Any remaining active PVJs that were not connected in the main section of

the method are handled in this step. Firstly, we prune all passive segments of the tree. A segment
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is considered passive if it is not directly part of a pathway that links an active PVJ to the root.
Next, the LAT error tolerance constraint is dropped by setting Le,.,, = oo, and we attempt to
connect all unconnected PVJs in S, using the pruned tree with the NV, best segments considering
the LAT error. However, after this procedure some PVJs still could not be connected due to the
distance criterion. This scenario could happen if xpy s is already close to the current tree. In this
particular case, we drop the distance criterion for these PVJs and attempt to connect the point
with a feasible segment which returns the minimum LAT error using a geodesic pathway. If there
are no geodesic pathway possible for zpy 7, we consider the 5 closest segments by distance to zpy
and force its connection to the one that returns the minimum LAT error using a straight line,
regardless of any restriction. The whole PostProcessing subroutine is available in the Appendix

section A.7.

After this step, all the active PVJs that the user specified are connected and the geometric
and electric metrics are computed in this topology, which is referred to as minimum network. More

information and details regarding all the steps of the Shocker method are supplied in the Appendix
A.
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Figure 23 — Summary of the Shocker method. In panels (A) and (B), the Pre-processing step is highlighted
showing how the passive points are renumbered and the effect of the distance criterion in the
dinresn evolution, as more terminals are added to the PN, respectively. Next in panels (C)
and (D), an example connection for a passive terminal, Z;epm,, is depicted, while in panels (E)
and (F), a connection considering an active PVJ, zpy s, is illustrated. Finally in panels (G)
and (H), the Post-processing step is shown illustrating the pruning of the passive branches
and connection of the remaining active PVJs.
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3.2 Biventricular meshes

In order to evaluate the robustness of our method for PN generation, four different meshes
were selected. The first one considers a simplified mesh that captures the main structures of the
biventricular system which is depicted in Figure 24A. Secondly, a canine mesh is the target of the
study as can be seen in Figure 24B. Lastly, two human patient-specific meshes are used as the final

experiment to evaluate our model as shown in Figures 24C and 24D.

(A)

Figure 24 — Biventricular meshes used during the experiments of the present work. In panel (A), the
simplified mesh alongside the corresponding reference PN (black) and their active PVJs points
(red). In panel (B), the canine mesh from Liu, B. R. et al. [42] is highlighted with the gold
standard PN (black) and their active PVJs points (red). In panel (C), the patient-specific
mesh from Lopez-Perez, A. et al. [43] is depicted with their active PVJs points (red). In panel
(D), the patient-specific mesh from Camps, J. et al. [12] is illustrated with their active PVJs
points (red). The left ventricle is colored red in all the upper panels, while the right ventricle
is blue.

The first mesh is a biventricular mesh constructed by taking the differences between
three ellipsoids, one for the Left ventricle (LV) and Right ventricle (RV) endocardium and one
for the epicardium. The main idea consists of subtracting and cutting their surfaces along the
base plane, as can be visualized in Figure 24A. Fiber orientation and transmural distance of
the mesh were calculated using the Laplace-Dirichlet Rule-Based (LDRB) algorithm [5] from
the open-source library available at https://github.com/finsberg/ldrb. In addition, a
simplified PN was generated using a fractal method [16], which is publicly available at https:
//github.com/fsahli/fractal-tree. This simplified PN was considered as our reference for
comparisons. The branches of the reference PN activate the endocardium at the early region sites
of the LV and RV as reported in the literature [16, 18]. For instance, these regions are close to

the apex in the left and right ventricles and the posterior-basal region of the left ventricle. The
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root locations from both ventricles and the His-bundle were manually selected and constructed to
provide a septum activation pattern similar to what is observed physiologically [18]. Furthermore,
all the terminals of the reference PN are considered active PVJs, representing a total of 43 and 20
PVJs in the LV and RV, respectively. More details regarding the construction and configuration of
the Simplified mesh are available in Appendix D.

A biventricular canine mesh which had its histological PN reconstructed from two-dimensional
photographs [42] and later processed into a graph representation [76] was considered as our reference
for comparison as can be visualized in Figure 24B. The canine mesh was kindly provided by professor
Elizabeth Cherry and it was first used on the study [42] and later, in collaboration with our research
group, in the following study [76]. In the previous work proposed by Ulysses, J. N. et al., [76] only
the LV was considered in the experiments. In the present work, both ventricles are used to better
evaluate the new proposed method. Similar to what was done in the simplified mesh, the fiber
orientation and transmural distance of the mesh were calculated using the LDRB algorithm [5].
Furthermore, since only the reference PNs of the LV and RV were available, we manually built
the His-bundle structure by linking the root points from the networks of the two ventricles. The
provided data has a total of 130 and 98 PVJs over the LV and RV, respectively. In addition, these

PVJs are the source of stimulation for the biventricular tissue.

Furthermore, two different human patient-specific biventricular meshes were utilized in
this work to further evaluate our novel method in a more realistic scenario. The first human
patient-specific mesh was kindly provided by professor Rafael Sebastian and the mesh has already
been utilized in some works in the literature [43, 48] and is illustrated by Figure 24C. Alongside
the mesh, the locations and LAT from the active PVJs are estimated using electroanatomical
maps (EAM), and contact-mapping catheter systems (CARTO3 ™ Webster BioSense Inc.) [4, 20].
Counting 31 and 16 active PVJs points in the LV and RV surfaces, respectively. For this particular
mesh, fiber orientation and transmurality are already available. By the term transmurality, we
consider the different phenotypes of the cells across the ventricular wall, which are the epicardium,
mid-myocardium and endocardium cells. Furthermore, the mesh originally contains a large ischemic
and fibrotic region around the anterior LV and septum areas, which was not considered during the
experiments in this study. Regarding the EAM points, a set of points located in healthy regions of
the LV and RV were selected for validation.

The second human patient-specific mesh depicted in Figure 24D is utilized to investigate
how different Purkinje networks can affect the ECG readings. The mesh was kindly provided by
professor Blanca Rodriguez’s team and it was first introduced in the work of Camps, J. et al. [12].
Alongside the mesh, the locations and LAT of 6 active PV Js, also referred to as root nodes, were
estimated in order to approximate the available clinical ECG of the patient. There are 3 active
PVJs in each of the ventricles. Together with the PVJs, a minimal Purkinje tree constructed using
the method from Miralles, F. B. [4], which activates the PVJs approximately at the required LAT,
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is used to evaluate the ability of our method to extend an already constructed Purkinje network by
including extra branches on its structure. Similarly to the previous mesh, fiber orientation and
transmurality are already available. The subject is considered to be healthy and no fibrotic or

ischemic regions are present in the mesh.

An essential aspect of the experiments using the patient-specific meshes is that we do not
have a reference PN for comparison; only the early activation sites, some EAM points in the

endocardium and a clinical ECG are available.

3.3 Purkinje-Ventricular-Junctions

To model the Purkinje-Ventricular-Junctions (PVJs) sites, an additional current, T4, was
included on the tissue cells that are coupled to the terminal cells from the PN as described in the

following equation:
) Npv s (Vpurk o V;tiss)
Ipvy =) R ; (3.5)
i=0 PV J

where VP%* is the transmembrane potential of the terminal Purkinje cells, V;'*** is the transmem-
brane potential of the ventricular cells 7 attached to the PC, Rpy ; is a fixed-resistance and Npy ; is
the maximum number of VCs that are inside the PVJ site [10]. This additional current is included
on the right hand side of the associate linear system of the ventricular domain only for the VCs

related to the coupling.

Similarly, for the PCs a current, I24% coming from the VCs that are coupled to the terminal
PC, is included on the right hand side of the associate linear system of the Purkinje domain only

for the PC related to the coupling and is given by the following equation:

N .
purk PVJ (‘/itzss _ Vpurk)
Ipyy = Z R
i=0 PVJ

) (3-6)

In Figure 25, we illustrate how the Purkinje coupling was implemented.
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Figure 25 — Illustration of the Purkinje coupling model. The terminal PCs are linked to the nearest
Npyj VCs by a fixed resistance Rpy sy and an additional current Ipy s is computed following
equations (3.5) and (3.6) for only the Purkinje and ventricular cells that are related to the
coupling.

The parameters Rpyy; and Npy; must be properly calibrated in order to reproduce a
physiological value for the anterograde characteristic delay that occur at the PVJ sites, which is
between 3ms to bms [79]. Within this context, a tuning experiment was made using monodomain
simulations to evaluated how the delay is affected by these two parameters and is illustrated
in Figure 26. The idea of the experiment is to couple a single 10cm Purkinje cable to a small

ventricular mass given by a cuboid volume, where the PCs and VCs are modeled by the Trovato2020
and ToRORd-dynCI-2020, respectively.

Regarding the parameters of the monodomain model, the surface-to-volume ratio is set
to B = 0.14um™', tissue capacitance is equal to C,, = 100pF/u*. A total simulation time of
tmaz = 100ms was used and a time discretization dt = 0.02ms to solve the associated PDE. For
the ODEs system related to the Purkinje and ventricular cellular models, a RL scheme with a fixed
timestep of dt = 0.01 was utilized. In addition, VCs are all considered to be endocardium and
no fiber orientation is set in the cuboid mesh. A space discretization of 400um was used for the
ventricular cuboid, while for the Purkinje this value was set to 100um. The conductivities from the
ventricular domain are anisotropic with o; = 0.755/m, o, = 0.2255/m and o,, = 0.11255/m, in the
longitudinal, transverse and normal direction, respectively, resulting on CV approximately close to
physiological values given by Durrer et al. [18]. For the Purkinje domain the conductivity was set to
Opurk = 2.5675/m with a CV approximately equal to 2m/s. The stimulus protocol is a single pulse
coming from the opposite side of the PVJ coupling with the following parameters: I,,,, = 40pA/pF,
duration = 1ms, N.s = 25. There are a total of 1000 Purkinje cells and 15625 ventricular cells

which are solved in under half a minute using a high performance GPU monodomain solver [59].

Applying different combinations of Rpy s, and Npy; we measured the PVJ delay by taking
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the difference between the mean LAT of the tissue cells and the LAT of the PC associated to the
PVJ coupling. In Table 1 we show the results of this experiment.

(Revs,Npys) 40 45 50 55 60

300 2.43 2.15 1.7 1.69 1.35
400 539 297 231 1.8 1.75
500 block block 2.84 238 2.17
600 block block 3.91 2.85 2.51
700 block block block 3.6 3.1
800 block block block 4.61 3.5
900 block block block block 4.21

(R}

Table 1 — Results of the PVJ calibration experiments show how the anterograde PVJ delay (in milliseconds)
varies for different values of Rpyy and Npy ;. When the Purkinje fiber could not stimulate the
VCs, we define the PVJ delay to oo and use the tag "block" in the table.

Based on these results, the Purkinje coupling parameters were set to Rpy; = 700k
and Npy; = 60, generating a PVJ delay of approximately 3 ms in the anterograde direction,
which is within the acceptable range [79]. In Figure 26, we show the Purkinje cable stimulating
the ventricular tissue cuboid and the resultant AP associated to the PVJ site highlighting the
characteristic delay that occur when using Rpy; = 900k$2 and Npy; = 60 as the configuration for
the PVJ coupling.

Action potential - PY) coupling - Cells within Py site
201 —— Purkinje :....,1'4.21rrs

—— Tissue !
| |

Purkinje = Trovato2020 k‘

- Tissue = ToORORd_dyncl_2020

Transmembrane potential (mV)

) 3 10 15 0 55 o
Time (ms)

Figure 26 — Experiment to calibrate the Purkinje-Ventricular-Junction delay in the anterograde direction.
A single 10cm Purkinje fiber stimulates one of the faces of a tissue block (1cm?). The PVJ
delay in the anterograde direction is measured by the difference between the LAT of the
VCs and PC related to the coupling. The PCs are modeled using the Trovato2020 human
Purkinje model [74] and the VCs using the ToRORd-dynCI-2020 human ventricular model
[73]. The action potential traces from both the Purkinje and one of the ventricular cells of
the coupling are depicted alongside the PVJ delay when Rpy; = 9002 and Npy; = 60 in
the right panel. A characteristic delay of approximately 4ms is observed when using this
particular configuration.
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3.4 Sensitivity analysis of the input parameters

To evaluate the robustness of our method we performed a sensitivity analysis over the input
parameters of the model. Our baseline simulation considered the generation of 10 LV trees using
the same seeds over the Simplified mesh with the following parameter set: N, = 80, N, = 80,
Lygte = 25, lg = 10mm, Lepror = 2ms. The choice regarding the baseline parameters were made

initially to achieve a reasonable approximation for the LAT at the active PV ] sites.

In addition, the Root Mean Square Error (RMSE) and Relative Root Mean Square Error
(RRMSE) between the LAT from the active PVJ sites of the reference points and the generated

networks are calculated as follows:

N (- . \2 1/2 N (- N2 1/2
RMSE = | Z=m W) RRMSE = [Z=t0 )7} - 3q)
N PDARRITH

where y; is the reference value, y; is the approximated one, and N is the number of samples.

For the sensitivity analysis experiment, the RMSE error at the PVJ sites and the total
execution time to generate the PNs are utilized to compare the different parameter combinations
as illustrated by Table 2.

Parameters Values RMSE (ms) Total execution time (min)

N 20 0.95 + 0.31 1.81 & 0.30
P 400 0.95 + 0.31 5.80 & 0.54

N 20 1.20 &+ 0.42 1.55 + 0.12

a 400 0.86 + 0.22 6.68 + 1.75

Lo, 10 0.95 + 0.33 2.85  0.55
rate 40 0.91 + 0.32 2.36 + 0.17

L Smm  1.10 + 0.66 3.39 £ 0.34
15mm  1.18 + 0.43 1.69 & 0.15

. Ims  0.90 &+ 0.33 2.54 £ 0.32
5ms  1.30 £ 1.06 2.56 + 0.32
Baseline - 0.95 + 0.31 2.50 & 0.31

Table 2 — Sensitivity analysis of the input parameters considering the baseline configuration as: N, = 80,
Ny = 80, Lygte = 25, lg = 10mm, Lerror = 2ms. For each configuration, 10 networks were
generated using the same seed. The mean and standard deviation of the RMSE (milliseconds)
at the PVJ sites and the total execution time (minutes) to generate the networks are depicted.

Based on the results of Table 2 we notice that the N, parameter does not affect the accuracy
of the trees at the expense of increasing the total time. The main reason behind this behaviour is
because more segments are being evaluated by the passive cost function C'F}, and more geodesic

pathways are generated in this process, which increases significantly the total execution time
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of the method. In addition, the results demonstrate that we could achieve the same result in
less computation time by decreasing N,. In the passive scenario, the branches are connected by
minimizing the total length of the tree following cost function (3.2), and since we already sorted the
segments in the tree by their Euclidean distance to @iern,, the first N, segments are already good
candidates to build a geodesic pathway that will generate reasonable evaluations by the passive

cost function.

Analyzing the other parameters, we could verify that the L,.;. parameter does not affect
substantially the solution either by electrical accuracy or computation time. Furthermore, for
the Le.or parameter the precision of the trees can be improved by decreasing its value without
increasing the computation time. On the other hand, depending on the value of the [; parameter

we can decrease the accuracy of the PNs.

In terms of electrical accuracy the N, parameter is the most sensible as can be verified in
Table 2. Variations on its value can not only affect drastically the RMSE but also execution time.
Differently to what happened with the [V, parameter, we need to evaluate more segments using the
active cost function C'F, to improve the trees electrically. In this regard, the N, parameter should

be carefully adjusted in order to generate more precise PNs in a reasonable amount of time.

As a result of this initial analysis, we perform a new set of simulations varying the N,
parameter in order to find the optimal value regarding electrical accuracy and total computation
time for this particular scenario. Our baseline configuration for this second analysis considers:
N, =20, N, = 80, Lygte = 25, lg = 10mm, Leyror = 2ms and the results are shown in Table 3.

Parameters Values RMSE (ms) Total execution time (min)

80 0.95 £ 0.31 1.78 + 0.28

120 0.88 £ 0.30 2.39 £ 0.41

160 0.88 £ 0.27 2.89 + 0.60

200 0.86 £ 0.22 3.39 + 0.79

N, 240 0.86 4+ 0.22 3.79 + 1.00
280 0.86 4+ 0.22 4.33 £ 1.17

320 0.86 £ 0.22 4.86 4+ 1.38

360 0.86 £ 0.22 5.45 £ 1.55

400 0.86 £+ 0.22 5.99 £ 1.75

Baseline - 0.95 + 0.31 1.78 £+ 0.28

Table 3 — Sensitivity analysis of the N, input parameter considering the baseline configuration. For
each configuration, 10 networks were generated using the same seed. The mean and standard
deviation of the RMSE (milliseconds) at the PVJ sites and the total execution time (minutes)
to generate the networks are depicted.

From the results of Table 3 we could verify that when N, surpasses the value 120 the RMSE

converges to a value of approximately 0.88ms. Within this context, we can conclude that it is not
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necessary to keep increasing this parameter to improve the electrical accuracy of the PNs. This
reinforces the conclusion that, although not entirely accurate, sorting the feasible segments using

an approximation of their LAT error, can in fact help the method to find feasible segments.
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4 Results: Matching the Purkinje-Ventricular-Junctions Local Activation Time

The proposed method in this work was evaluated using initially three different biventricular
meshes with an increasing level of complexity. In this section, different Purkinje networks are
generated for the Simplified, Canine and Patient-specific meshes. For the Patient-specific scenario,
the mesh from Lopez-Perez, A. et al (2019) [43] was utilized.

A total of 200 PNs were generated for each mesh, counting 100 PNs for the LV and the
remaining ones for the RV. The RMSE error was calculated for each PN by comparing the LAT
given at the reference active PVJ sites. Using the previous results, the PNs samples were sorted by
their RMSE error, and the best 10 PNs for each ventricular region were filtered and considered in
our comparison set. The parameters of the performed simulations were fixed to N, = 20, L, = 25,
Lerror = 2ms and d = 69um giving a CV of approximately 2m/s when using the cable equation
(3.4) with Purkinje parameters. For the Simplified and Canine meshes, l; = 10mm and N, was
set to 120 for both ventricles. Finally for the Patient-specific mesh l; = 30mm and N, was set
to 200 for both ventricles. The choice regarding the [; parameter was made considering that the
Patient-specific mesh has a larger volume than the Simplified and Canine meshes, while for the N,

parameter the increase of value is justified to improve the accuracy of the generated PNs.

All the simulations were performed without any restriction regarding the bifurcation angle
and segment length. During early tests, there was an increase in computation time and the
generation of unfeasible solutions that could not connect all PVJs within the required geometrical
constraints of angle and length. The usage of geodesic pathways to maintain the PNs within the
endocardium surface is justified due to the high geometrical complexity of the patient-specific
mesh from Lopez-Perez, A. et al (2019) [43], especially near the regions of the papillary muscles.
If we use the strategy of our previous work [76] some branches will not be entirely within the
endocardium surface, given the idea of false tendons, which was not our desired objective to the
generated PNs by the model. For that reason, to increase the performance of the method due
to the geodesic pathway computation, which was identified as the bottleneck of the model, we

decreased the number of triangles of the endocardium surfaces, but sustaining its topology.

In addition, the geometrical and electrical features of all the PNs were computed considering
only the minimum networks (after the Post-processing procedure). Consequently, all the terminals

of the resultant PNs are connected to active PVJs.

To properly evaluate the geometrical features of our PN models, the mean and standard
deviation of the branch size and angle of the bifurcations are computed together with the total
number of branches and bifurcations. More information regarding the geometrical concepts of the

method are described in the Appendix C.

To assess the electrical accuracy of our model, the minimum/maximum LAT from the active
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PV sites are computed alongside the maximum absolute error observed in these points in the
generated PN. Secondly, the RMSE and RRMSE values at active PVJ points are computed. Finally,
the percentage of the active PVJs within a specific range of error (i.e., 2ms and 5ms) is another

measurement considered, given by the values ¢ < 2ms and ¢ < bms.

The computational resources utilized to generated all the PNs in this section was a machine
equipped with a processor Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz (12 cores), a total of 16
gigabytes (GB) of memory RAM and a GPU NVIDIA GeForce GTX 1660 Ti with 6 gigabytes
(GB) of RAM. The generation process was done in parallel by dividing the 100 PNs in 10 groups of
10 PNs. For each network within these groups, a CPU core was allocated and the procedure was

done synchronously one group at time.

4.1 Geometrical metrics

In the following sections the geometrical results from the 10 best PNs regarding the three
biventricular meshes are presented. To evaluate the PNs geometrically the branch size (millimeters),
bifurcation angle (°) and the total number of branches and angles in the trees are calculated

considering the mean and standard deviation of its values.

4.1.1 Simplified mesh

In Table 4 the geometrical results for the Simplified mesh are illustrated. As can be seen
in this table, the values in terms of branch size demonstrate that the RV trees have a longer size
when compared to the LV ones. When the average and standard deviation values are compared
to the reference PN, we can noticed that the values of branch size for the 10 best networks can
vary depending on the endocardium region where trees were generated. For the bifurcation angle
measurement in this mesh, we could verify that the average values from both biventricular regions
were close to the reference values and that the angles for the RV trees have more acute shape.
Finally, for the total number of branches and bifurcations in the trees the values were exactly the
same as the reference ones, which was already expected since all the generated PNs have the same
number of terminals as the reference. This can also be verified by the fact that all the active PVJs

are connected to the minimum network.



LV Branch size (mm) Angle(°) #Branches #Angles
Reference 293 £1.71 52.02 £+ 3.95 85 42
PKO 4.16 £ 4.04 42.54 + 28.67 85 42
PK1 4.71 + 4.64 46.33 + 32.45 85 42
PK2 4.00 £+ 4.05 50.71 £+ 32.72 85 42
PK3 4.49 £ 4.30 53.57 £ 31.39 85 42
PK4 4.15 £ 3.59 49.64 £+ 34.94 85 42
PK5 4.38 &£ 4.22 50.23 £ 34.02 85 42
PK6 4.80 + 4.73 52.51 £ 30.30 85 42
PK7 4.47 + 3.92 41.02 £ 32.46 85 42
PKS8 4.57 £4.10 49.02 £ 32.55 85 42
PK9 4.27 £4.29 59.57 £ 41.34 85 42
RV Branch size (mm) Angle(®) #Branches #Angles
Reference 3.41 £ 3.00 34.23 + 0.28 39 19
PKO 6.16 = 6.27 35.32 £ 26.07 39 19
PK1 6.64 £ 7.34 40.41 £ 27.69 39 19
PK2 6.16 £ 6.26 35.29 £ 26.09 39 19
PK3 6.67 £ 6.51 39.04 £ 26.70 39 19
PK4 6.70 £ 7.20 33.86 £+ 28.10 39 19
PK5 6.12 = 5.96 45.90 £ 27.21 39 19
PK6 6.57 £ 7.28 36.47 £ 30.09 39 19
PK7 7.51 £ 8.61 35.54 £ 25.65 39 19
PKS8 7.06 &£ 7.92 34.47 £ 29.19 39 19
PK9 7.05 £ 7.90 35.82 £+ 28.26 39 19

7

Table 4 — Results for the geometric features from the best 10 Purkinje networks of the Simplified mesh.

For this particular mesh, the Reference Purkinje network was generated using the fractal method
by Costabal et al. [16].

4.1.2 Canine mesh

Analyzing the geometrical results for the Canine mesh in Table 5 we noticed that the
average values for the branch size were closer to the reference ones in both biventricular regions
when compared to the previous results from the Simplified mesh. In terms of bifurcation angle, the
values from the generated PNs presented a high variability indicating that the complexity of the
endocardium surface can affect the shape of the angles in the trees. Similarly, to the Simplified
mesh results the values for the total number of branches and bifurcations angles match exactly
the reference values since the minimum networks generated by the Shocker method have the same

number of terminals as the gold standard trees.



LV Branch size (mm) Angle(®) #Branches #Angles
Reference 3.56 £ 3.09 89.48 + 44.47 259 129
PKO 4.07 £ 4.01 54.30 £ 39.14 259 129
PK1 4.24 + 3.79 50.57 £ 39.29 259 129
PK2 4.11 £ 4.24 61.16 + 45.47 259 129
PK3 4.19 £ 4.18 50.65 £ 38.88 259 129
PK4 4.22 £ 4.25 56.21 £ 36.68 259 129
PK5 4.31 &+ 4.43 53.31 £ 41.84 259 129
PK6 3.97 £ 3.83 58.95 + 39.94 259 129
PK7 4.26 £ 3.91 56.69 £ 39.25 259 129
PKS8 4.18 £ 3.79 57.49 + 41.04 259 129
PK9 4.28 £ 4.17 56.23 £ 37.51 259 129
RV Branch size (mm) Angle(®) #Branches #Angles
Reference 3.43 &+ 3.61 76.58 1+ 39.57 195 97
PKO 3.77 £ 4.20 60.00 + 43.87 195 97
PK1 4.06 £ 4.75 55.61 + 44.73 195 97
PK2 3.75 £ 4.74 51.21 £ 38.99 195 97
PK3 4.08 £ 4.86 48.54 + 40.01 195 97
PK4 4.38 £ 6.14 53.63 £ 42.20 195 97
PK5 4.31 + 4.64 58.97 £+ 47.72 195 97
PK6 4.21 £ 5.49 45.15 £ 32.27 195 97
PK7 4.12 + 4.81 51.21 £ 43.23 195 97
PKS8 3.90 £+ 4.39 53.86 £ 41.50 195 97
PK9 4.08 £ 4.82 49.08 £ 39.90 195 97
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Table 5 — Results for the geometric features from the best 10 Purkinje networks of the Canine mesh. In
the case of the Canine mesh, the Reference network was provided from the works [42, 76].

4.1.3 Patient-specific mesh

In Table 6 the results for the patient-specific could not be compared to a reference PN since
only the location and LAT of the active PVJs sites were available. However, important topological
observations can be made from the generated PNs. In terms of branch size, the LV and RV trees
for this particular mesh present the highest values. This can be justified due to the fact that the
Patient-specific mesh have the largest endocardium volume when it is compared to the Simplified

and Canine meshes leading to prolonged branches in either biventricular regions.



LV Branch size (mm) Angle(®) #Branches #Angles
PKO 16.10 &= 17.05 54.35 £ 32.09 63 31
PK1 18.55 £ 19.90 45.82 £ 30.01 63 31
PK2 17.20 £ 13.53 51.62 £ 32.52 63 31
PK3 15.90 £ 15.54 59.75 £ 33.06 63 31
PK4  17.08 £19.74  58.29 £ 40.93 63 31
PK5 15.20 £ 17.38 59.11 + 40.69 63 31
PK6 15.65 + 16.87 53.76 £ 33.22 63 31
PK7 16.04 £ 16.50 60.20 = 41.07 63 31
PKS8 16.15 £ 16.38 49.70 £ 32.23 63 31
PK9 1696 +£19.91  59.88 + 35.55 63 31
RV Branch size (mm) Angle(?) #DBranches #Angles
PKO 18.53 £ 15.86 65.50 £ 48.63 33 16
PK1 17.92 £+ 15.23 65.50 £ 47.24 33 16
PK2 19.57 + 16.93 64.89 £ 43.16 33 16
PK3 18.30 £ 16.52 55.73 £ 45.12 33 16
PK4 19.25 £ 17.46 45.75 £ 33.48 33 16
PK5 17.38 £ 12.80 64.60 £ 48.96 33 16
PK6 19.85 + 15.40 62.86 £+ 42.40 33 16
PK7 19.65 £ 13.65 58.54 + 41.07 33 16
PK8 17.52 £ 14.42 63.71 £ 43.60 33 16
PK9 19.00 = 18.00 59.51 £+ 45.24 33 16
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Table 6 — Results for the geometric features from the best 10 Purkinje networks of the Patient-specific
mesh.

4.2 Electrical metrics

In the next sections the electrical results from the 10 best PNs of the three biventricular
meshes are depicted. To evaluate the PNs electrically the minimum and maximum LAT (millisec-
onds), maximum LAT error (milliseconds), RMSE (milliseconds), RRMSE (%), € < 2ms (%) and

e < bms (%) are evaluated at the active PVJ sites in the trees.

4.2.1 Simplified mesh

In Table 7 the electrical results for the Simplified mesh are illustrated. As can be seen in the
table, the generated PNs presented a minimum and maximum LAT close to the reference values in
both biventricular regions. When the maximum LAT error is analyzed the trees presented a good
accuracy with errors below 3ms. This observation is also sustained by RMSE error results below
1ms and almost the majority of the active PVJs being connected within a LAT error tolerance

below 2ms.
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LV minLAT (ms) maxLAT (ms) maxError (ms) RMSE (ms) RRMSE (%) e¢<2ms (%) ¢<bms (%)
Reference 11.83 18.25 - - - - -
PKO 11.84 19.04 1.01 0.28 1.84 100.00 100.00
PK1 12.14 19.05 0.80 0.33 2.16 100.00 100.00
PK2 11.82 19.45 1.20 0.37 2.43 100.00 100.00
PK3 11.82 19.39 1.13 0.37 2.40 100.00 100.00
PK4 11.85 19.03 1.54 0.40 2.59 100.00 100.00
PK5 11.78 19.30 1.72 0.42 2.76 100.00 100.00
PK6 11.85 19.32 1.87 0.45 2.92 100.00 100.00
PK7 11.82 19.06 2.55 0.46 3.01 97.67 100.00
PKS8 11.79 19.07 2.69 0.47 3.07 97.67 100.00
PK9 11.85 19.19 2.47 0.48 3.13 97.67 100.00
RV minLAT (ms) maxLAT (ms) maxError (ms) RMSE (ms) RRMSE (%) e<2ms (%) ¢<bms (%)
Reference 14.68 17.50 - - - - -
PKO 14.27 17.75 1.08 0.37 2.28 100.00 100.00
PK1 14.19 17.73 1.10 0.37 2.27 100.00 100.00
PK2 14.27 17.75 1.08 0.37 2.28 100.00 100.00
PK3 14.21 17.77 1.10 0.38 2.34 100.00 100.00
PK4 14.23 17.79 1.10 0.38 2.33 100.00 100.00
PK5 14.25 17.75 1.11 0.38 2.36 100.00 100.00
PK6 14.20 17.80 1.11 0.39 2.42 100.00 100.00
PK7 14.28 17.80 1.18 0.41 2.52 100.00 100.00
PKS8 14.28 17.81 1.18 0.41 2.54 100.00 100.00
PK9 14.28 17.80 1.18 0.41 2.53 100.00 100.00

Table 7 — Results for the electric features from the best 10 Purkinje networks of the Simplified mesh. For
this particular mesh, the Reference Purkinje network was generated using the fractal method by
Costabal et al.

4.2.2 Canine mesh

In Table 8 the electrical results for the Canine mesh are highlighted. Based on these results,
for the minimum and maximum LAT, the generated PNs demonstrate a good accuracy with values
close to the reference ones in both biventricular regions. In terms of maximum LAT error, we
noticed that the LV trees have the highest values when compared to the RV trees which can be
justified due to the fact that are more active PVJs in the LV region of this mesh than the RV.
Analyzing the RMSE, RRMSE, € < 2ms and € < 5ms metrics the PNs from both regions presented

good accuracy with errors equivalent to the results from the Simplified mesh.
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LV minLAT (ms) maxLAT (ms) maxError (ms) RMSE (ms) RRMSE (%) e¢<2ms (%) ¢<bms (%)
Reference 9.86 40.16 - - - - -
PKO 10.10 38.96 4.22 0.64 2.49 97.69 100.00
PK1 9.90 40.35 3.74 0.65 2.54 98.46 100.00
PK2 7.94 40.33 4.31 0.68 2.67 97.69 100.00
PK3 9.93 38.70 4.39 0.74 2.90 96.92 100.00
PK4 9.49 40.09 4.80 0.74 2.90 98.46 100.00
PK5 9.68 40.19 4.37 0.74 2.91 96.92 100.00
PK6 9.44 40.29 4.71 0.74 2.90 97.69 100.00
PK7 9.63 40.38 5.07 0.76 2.99 97.69 99.23
PKS8 9.85 40.44 4.98 0.77 3.00 98.46 100.00
PK9 9.72 40.16 4.38 0.80 3.13 96.92 100.00
RV minLAT (ms) maxLAT (ms) maxError (ms) RMSE (ms) RRMSE (%) e<2ms (%) ¢<bms (%)
Reference 9.76 53.93 - - - - -
PKO 10.44 53.88 1.59 0.51 1.41 100.00 100.00
PK1 10.04 53.92 2.31 0.54 1.48 98.98 100.00
PK2 10.08 53.84 1.94 0.59 1.63 100.00 100.00
PK3 9.79 53.92 2.10 0.60 1.64 98.98 100.00
PK4 9.81 54.11 2.26 0.63 1.71 95.92 100.00
PK5 10.09 53.93 1.93 0.64 1.75 100.00 100.00
PK6 9.79 53.89 2.01 0.64 1.76 97.96 100.00
PK7 9.79 53.92 1.94 0.67 1.84 100.00 100.00
PKS8 10.54 53.89 2.27 0.67 1.83 97.96 100.00
PK9 12.06 53.99 2.33 0.68 1.85 96.94 100.00

Table 8 — Results for the electric features from the best 10 Purkinje networks of the Canine mesh. In the
case of the Canine mesh, the Reference network was provided from the works [42, 76].

4.2.3 Patient-specific mesh

In Table 9 the electric results for the Patient-specific mesh are presented. Similarly to the
previous meshes, the generated PNs performed well in terms of minimum and maximum LAT
leading to values close to the reference values. Only in the RV region of the Patient-specific mesh
we found that a particular PVJ could not be connected with a LAT error below 5ms. When
the other electrical measurements are analyzed, we noticed that the LV trees presented a better
approximation to the reference LAT at the active PVJ sites. In addition, an interesting observation
that can be made for the RV trees is that the 10 best networks for this region presented a very
similar LAT even with a very distinctly topology.
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LV minLAT (ms) maxLAT (ms) maxError (ms) RMSE (ms) RRMSE (%) e¢<2ms (%) ¢<bms (%)
Reference 36.13 123.77 - - - - -
PKO 35.55 123.75 3.63 1.16 1.50 90.62 100.00
PK1 35.96 123.76 3.70 1.22 1.59 87.50 100.00
PK2 35.96 123.70 4.02 1.32 1.72 90.62 100.00
PK3 35.55 123.70 3.46 1.36 1.76 87.50 100.00
PK4 35.62 125.55 5.47 1.52 1.97 84.38 96.88
PK5 36.40 123.93 3.53 1.54 2.00 78.12 100.00
PK6 35.70 123.73 4.12 1.54 2.00 84.38 100.00
PK7 35.70 123.05 4.21 1.77 2.29 78.12 100.00
PKS8 36.40 124.01 4.94 1.79 2.32 81.25 100.00
PK9 35.55 125.49 7.40 1.82 2.36 84.38 96.88
RV minLAT (ms) maxLAT (ms) maxError (ms) RMSE (ms) RRMSE (%) e<2ms (%) ¢<bms (%)
Reference 35.71 60.87 - - - - -
PKO 31.05 60.88 6.83 1.79 3.90 94.12 94.12
PK1 31.05 60.78 6.85 1.81 3.95 94.12 94.12
PK2 31.05 61.34 6.84 1.81 3.93 94.12 94.12
PK3 31.05 60.82 6.85 1.81 3.93 94.12 94.12
PK4 31.05 60.77 6.86 1.82 3.96 94.12 94.12
PK5 31.05 60.57 6.83 1.82 3.96 94.12 94.12
PK6 31.05 60.80 6.85 1.82 3.97 94.12 94.12
PK7 31.05 60.92 6.83 1.82 3.97 94.12 94.12
PK8 31.05 60.69 6.83 1.83 3.99 94.12 94.12
PK9 31.05 61.59 6.85 1.83 4.00 94.12 94.12

Table 9 — Results for the electric features from the best 10 Purkinje networks of the Patient-specific mesh.
The LAT values of the Patient-specific mesh were estimated by the CARTO ™ maps.

4.3 Comparison and discussion

The results of Tables 4, 5 and 6 are summarized in the boxplots presented in Figure 27. To
build the boxplots, we consider all the bifurcation angles and branches from the ten PNs generated
for each mesh. Based on the results of this figure, we can verify that for the Simplified mesh
the generated PNs present values approximately close to the mean reference values in terms of

bifurcation angle and branch size for both ventricles.

Analyzing the structure of best/worst PNs generated by the method for the Simplified mesh
in Figure 32A and from the ten best PNs in Figure 33, we can sustain this conclusion. Although,
the method was able to produce very distinct PNs with different pathway combinations leading to
the active PV Js, the branch size of the two networks highlighted in Figure 32A have almost the
same length in both ventricles. Moreover, when the generated PNs are compared to the reference
tree presented in Figure 24A and colored in black, the method was able to correctly replicate some

of the branch pathway patterns used to activate the PVJs.

For the Canine mesh, the geometrical results shown in Figure 27 presented a good approxi-
mation in terms of branch size for both ventricles. For the bifurcation angle our method was able
to sustain the reference value for the RV within the first and third quartile of the boxplot, while
for the LV networks, the majority of the angles had a value lesser than the baseline. In addition, a
high variability is observed in the bifurcation angle feature when compared to the Simplified mesh
results, which could indicate that with a more complex endocardium geometry the method needs

to generate bifurcations in a more wide range of values. Based on this previous observations, we
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can conclude that the method had a better performance for the RV surface of the Canine mesh

than the LV one in terms of geometrical features.

One possible reason behind this difference is the existence of more active PVJs to connect
in the LV, which could lead to longer segments and bifurcations with more acute angles in this
region. An important result that was observed for the Canine mesh, was the ability of the method
to correctly connect the active PVJs located at the posterolateral region of the RV. This is because
for this particular mesh, the root location of the reference network is located in a region of the
septum that requires that the PN network makes a turn around the posterior surface of the RV
to properly connect the active PVJs that are on the opposite side of the septum. The geodesic
pathway not only correctly connect the active PVJs but also keep the PN within the endocardium

surface at this complex and sharp region of the Canine mesh.

Similarly to the Simplified mesh PNs morphology, the structure of the best/worst networks
generated for the Canine mesh, presented in Figure 32B, and the overview picture of the ten best
PNs for this mesh, depicted in Figure 34, demonstrates that the method was able to connect the
active PV Js covering the endocardium surface with different pathway combinations, leading to the
hypothesis that there are several PNs that could activate a set of PVJs with a similar LAT.

On the other hand, the results from the Patient-specific mesh from Lopez-Perez, A. et al
(2019) [43] could not be compared to a reference PN, since only the estimated active PVJs sites
were available. Nevertheless, important observations can be retrieved from the geometrical results
shown in Figure 27. For instance, there is a high variability in the bifurcation angle and branch
size features, which indicates that in order to connect some of the active PVJs, the method tries to
construct longer branches at the same time that the bifurcations have a more wide characteristic.
This observation sustains our previous observation from the Canine mesh, which demonstrate that
the complexity of the mesh is directly related to the variablity of the bifurcation angle. Furthermore,
the volume of the Patient-specific mesh is larger than the two previous meshes, and we increased
the characteristic length [, for this particular mesh. For that reason it is acceptable that the branch

size feature values are increased for both ventricles in this scenario.

An important observation that can be made from Figures 32, 33, 34 and 35 is that the
method produced very different PNs with a similar LAT, illustrating the high uncertainty related to
the problem. At the same time, the results for the Patient-specific mesh shows that for LV surface,
in particular, some active PVJs could only be connected properly by leading the PN to the apex
region first and later growing branches from the apex to the basal area, making the generation of

PNs for this mesh the most challenging one for the method.
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Figure 27 — Geometrical results from both ventricles of the ten best PNs generated for each biventricular
mesh. The boxplot for the bifurcation angle is illustrated in the top panel and the branch size
is in the bottom panel. The red cross denotes the mean reference values for the gold standard
PNs of the Simplified and Canine meshes.

For the electrical results regarding the minimum and maximum LAT developed by the PNs
depicted in Figure 28, we can verify that in general the method was able to match the reference
values in almost all the PNs. The results in Tables 4 and 5 from the Simplified and Canine mesh,
respectively, confirm this conclusion, in which there is not much variability between these features
for each PN. Regarding the results of the Patient-specific mesh shown in Figure 28, we notice a
difference of approximately 5ms in the minimum LAT of the RV. This phenomenon indicates that
the PVJ with the lowest LAT was not connected during the main loop of the method; i.e. this
point was only linked after pruning the inactive branches and dropping the LAT error tolerance in
the Post-processing step. On the other hand, this phenomenon was not observed in the maximum
LAT feature, where almost all PNs were very close to the baseline values in both ventricles. Within
this context, we can conclude by these results that a majority of the PNs generated by the method

could correctly connect the PVJs with the minimum and maximum LAT observed for each mesh.
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Figure 28 — Electrical results from both ventricles of the ten best PNs generated for each biventricular
mesh. The minimum/maximum LAT values were recorded at the active PVJ sites. The
boxplot for the minimum LAT is presented in the top panel, while the maximum LAT is on

the bottom panel. The red cross denotes the mean reference values for all the meshes.

Examining the RMSE and RRMSE results from Figure 29 we observe an increase in the
RMSE error as the mesh complexity elevates, which was already expected. For instance, the
Simplified mesh presented an RMSE error below 0.5ms for both ventricles, the Canine mesh an

error below 1ms for both ventricles and for the Patient-specific mesh an error below 2ms for both

ventricles. In the case of the Patient-specific mesh, the LV networks had a better performance than

the RV networks, with an RMSE error of approximately 1.5ms in the LV compared to 1.9ms in the

RV. In the case of the RRMSE measurement all the meshes presented a good performance with

values below 4% in both ventricles.
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Figure 29 — Electrical results from both ventricles of the ten best PNs generated for each biventricular

mesh. The RMSE and RRMSE error values were recorded at the active PVJ sites.
boxplot for the RMSE is presented in the top panel, while the RRMSE is on the bottom panel.

The

Analyzing the € < 2ms and € < 5ms metrics in Figure 30, the amount of PV Js that were

connected within the LAT error tolerance of 5ms are almost 100% for the LV region in all the

meshes. Now, for the 2ms scenario, we noticed that this value is above 90% in both ventricles for

the Simplified and Canine meshes, while for the Patient-specific mesh this value is approximately
equal to 85% for the LV networks and 95% for the RV networks. Based on these results, we can

conclude that the method was able to generate PNs with electrical accuracy in all the biventricular

domains.
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Figure 30 — Electrical results from both ventricles of the ten best PNs generated for each biventricular
mesh. The € < 2ms and € < 5ms values were recorded at the active PVJ sites. The boxplot
for the € < 2ms is presented in the top panel, while the € < 5ms is on the bottom panel.

In addition to the geometrical and electrical results, we measured important features related
to the performance of the Shocker method in each mesh. The execution time spent on each
section of the program, the percentage of time required for the geodesic pathway calculus and the
percentage of PVJs connected in each step were calculated and presented in Tables 10, 11 and 12.
The Shocker method was divided in four phases; the main loop and three pos-processing procedures,
which correspond to the LAT error tolerance and distance criterion removal (geodesic and straight

line connections).

Analyzing the results from Table 10 we can verify that the main loop is responsible for the
majority of the execution time with a percentage above 90% in the meshes in almost all scenarios.
In particular for the PNs generated in the LV of the Simplified mesh, the percentage is around
79%. This behaviour can be explained due to fact that a certain number of PVJs could not be
connected due to branch collisions to the inactive segments that are still present in tree before the

pruning that occur at the beginning of the pos-processing step. A further reason can be related
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to PVJs being already too close to the tree, which means that only by removing the distance
criterion constrain we could connect these points. These two observations can be confirmed both
in Table 10, by the increase in computation time in the second and the sum between the third and
fourth phases of the method with a percentage close to 7% and 13%, respectively, and in Table 12
where we can verify that almost half of the PVJs were connected during these three phases of the

pos-processing step.

Another observation that can be made from Table 10 is that computation time increases
as the mesh complexity elevates. The mean execution time to generate a PN for the Simplified
mesh was around 2 minutes in both ventricles, for the Canine mesh this time was approximately 3
minutes for the LV and 5 minutes for the RV, while for the Patient-specific mesh is close to 19
minutes for the LV and 7 minutes for the RV. This increase in computation time in the LV trees of
the Patient-specific mesh can be explained by two main factors. Firstly, the Patient-specific mesh
has several physiological features that do not appear in the other two meshes, like the papillary
muscles and a very irregular endocardium surface with tendons which increased the total number
of triangular elements necessary to represent this particularities. The complexity and computation
time of calling the geodesic pathway procedure increases proportionally to the number of elements
of the covered surface. This first observation can be verified in Table 11, where the geodesic
pathway calculus consumes more than half of the total execution time in all the meshes and is
clearly the bottleneck of our method. Secondly, to increase the accuracy of the generated PNs
for the Patient-specific mesh we increase the IV, parameter, which as presented in the Sensitivity

analysis section, is responsible for the major increase in computation time by the method.

Mesh Region Phase 1 Phase II Phase ITI4+1IV Total
(min / %) (min /%) (min / %)  (min / %)
. . LV 1.65 /79.33 0.16 / 7.57 0.27 / 13.06 2.08 / 100

Simplified

RV 2.25 /95.79  0.00 / 0.01 0.10 / 4.16 2.35 / 100
Canine LV 2.87 /94.47 0.03 / 0.95 0.14 / 4.56 3.04 / 100
RV 4.23 /90.94 0.10 / 2.16 0.32 / 6.88 4.65 / 100
Patient-specific LV 17.77 / 92.58 0.35 / 1.81 1.08 / 5.61 19.20 / 100
RV 6.42 / 92.87  0.17 / 2.42 0.33 / 4.70 6.92 / 100

Table 10 — Summary of the mean execution time on each phase of the Shocker method for all the
biventricular meshes considering the time from the 10 best PNs. Phase I is the main loop,
Phase 11 is the first Post-processing subroutine which drops the LAT error tolerance and Phase
IIT+IV are the subsequent procedures that eliminate the distance criterion to connect the
remaining PVJs.
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. Simplified Canine Patient
Region

(%) (%) (%)
LV 81.88 68.78  75.20
RV 76.62 7738 T72.49

Table 11 — Summary of the percentage of the total execution time spent on the geodesic pathway subroutine
for all the biventricular meshes considering the mean execution time from the 10 best PNs.

Mesh Region Phase I Phase II Phase III Phase IV

(%) (%) (%) (%)

Simplified LV 54.19 16.28 23.49 6.05
RV 81.00 0.00 5.50 13.50

Comtine LV 88.00 1.31 423 6.46

RV 67.14 6.53 10.92 15.41

Patient-specific LV 66.13 7.74 17.42 8.71
RV 75.62 7.50 16.88 0.00

Table 12 — Summary of the percentage of active PVJs connected on each phase of the Shocker method for
all the biventricular meshes considering its mean value from the 10 best PNs. Phase I is the
main loop, Phase II is the first pos-processing subroutine which drops the LAT error tolerance,
Phase III is the subsequent procedure that eliminates the distance criterion to connect the
remaining PV Js but which utilizes a geodesic path to link the points and Phase IV is when the
connection of the remaining PV Js after droping the distance criterion occurs using a straight
line.

In Table 12 we analyze the percentage of PVJs connected during all the phases of the
method. When the Phase III and IV are examined we can verified how many PV Js were either
connected by a geodesic pathway or straight lines after the distance criterion removal. From these
results, when considering the Simplified mesh, from the 29.53% PVJs of the LV trees connected
during Phase III and IV, 23.49% are connected using a geodesic pathways, while 6.05% of the
PVJs are linked using a straight lines in Phase IV. For the RV trees, from the total of 19% PV Js
connected during the third and fourth phases; 5.50% of the PVJs are connected via geodesic
and 13.50% using straight lines in the fourth phase. For the Canine mesh, a total 10.69% of the
PVJs located in the LV region are connected after eliminating the distance criterion and from this
percentage 4.23% are linked using geodesic and 6.46% with a straight line. In the RV region the
same percentages from the total of 26.33% PVJs connected after distance criterion is dropped,
10.92% are linked using geodesic and 15.41% with straight lines. Finally, for the Patient-specific
mesh, from the total of 26.13% PVJs connected during Phase III4+I1V in LV trees; 17.42% are
connected by geodesic pathways and 8.71% using straight lines. For the RV trees all the 16.88% of
PVJs connected in the third phase of the method are linked by geodesic pathways. Within this
context, we can conclude that only a small fraction of the PVJs are forced to connect using straight

lines during the last step of the method.
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Regarding total execution time to generate the PNs, the method demonstrated to be very
dependant of the mesh complexity, as can be seen in Figure 31. For instance, in the Simplified
and Canine mesh which had the simplest endocardium surfaces in this study, we could generate a
PN in almost 4 minutes, with the RV trees of the Canine mesh being the most demanding ones in
terms of computation time. Considering the Patient-specific mesh, the values are increased for the
LV networks, with values close to 18 minutes, while for the RV networks is around 7 minutes. As
mentioned before, the differences between execution time over the biventricular surfaces are closely
related to the mesh complexity and to the number of times the program calls the geodesic pathway

function, which is by far the most demanding procedure of the method.
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Figure 31 — Total execution time results from both ventricles of the ten best PNs generated for each
biventricular mesh.
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Figure 32 — Comparison of the PNs morphology generated by the method for each biventricular mesh,
where the Simplified, Canine and Patient-specific meshes are represented in panels (A), (B)
and (C), respectively. The figure depicts the difference between the best (left) and worst
(right) networks regarding their LAT at the PVJ sites for ten PNs of the comparison set.

In general, the method was able to generate PNs with reasonable accuracy in terms of LAT,

in the case that only LAT from the PNs terminals located at the PVJs sites is considered. In
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addition the method was able to generate different PNs morphology with a similar LAT at the
active PV J sites, as can be seen in Figure 32. For that reason, even for the same set of PVJs it is
possible to have multiple PNs that share a LAT close to the given reference values. When the best
and worst PNs are compared in Figure 32, we could notice that the same PVJ site can be activated
within the LAT error tolerance through different pathway combinations. This opens the possibility
to study if a particular set of pathways would be more feasible for a specific mesh geometry leading
to a better solution. Furthermore, based on this observation raises the idea that an uncertainty

quantification study over PNs generation might provide insights on improving such models.
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Figure 33 — Difference between the morphology of the ten best networks generated by the Shocker method
for the Simplified mesh.
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Figure 34 — Difference between the morphology of the ten best networks generated by the Shocker method
for the Canine mesh.
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Figure 35 — Difference between the morphology of the ten best networks generated by the Shocker method
for the Patient-specific mesh.



96

5 Results: Analysis of Purkinje Network Activation with Monodomain Coupled

Simulations

To assess the PNs performance generated by the proposed method in 3D cardiac simulations,
we simulate the activation of the 10 best PNs presented in Figures 33, 34 and 35 using a high-
performance GPU monodomain solver [59]. The computational resource used for these simulations
was a machine equipped with a processor Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz (/4 cores),
a total of 32 gigabytes (GB) of memory RAM and a GPU Nwvidia TITAN Xp with 12 gigabytes
(GB) of RAM.

Regarding the parameters to enable the solution of the monodomain model, the surface-
to-volume ratio is set to 3 = 0.14um ™!, tissue capacitance is equal to C,, = 100pF/u*. A total
simulation time of ¢,,,, = 200ms and a time discretization of dt = 0.02ms was used to solve the
associated PDE. For the ODEs system related to the Purkinje and ventricular cellular models,
a RL scheme with a fixed timestep of dt = 0.01 was utilized. A space discretization of 400um
was used for all the ventricular domains, while for the Purkinje this value was set to 100pm. The
conductivities from the ventricular domain are anisotropic with o, = 0.755/m, o, = 0.2255/m
and o, = 0.11255/m, in the longitudinal, transverse and normal direction, respectively, resulting
on CV approximately close to physiological values given by Durrer et al. [18]. For the Purkinje
domain the conductivity was set to o,y = 2.567.5/m with a CV approximately equals to 2m/s.
The stimulus protocol is a single pulse coming from the His-bundle with the following parameters:
Lomp = 40pA/pF | duration = 2ms, Nees = 25.

The Purkinje coupling parameters were set to Rpy; = 700k and Npy; = 60, generating
a PVJ delay of approximately 3ms in the anterograde direction, which is within the acceptable
range [79]. When there are overlap between two or more PVJ sites, we consider Npy ; equal to the
minimum number of tissue cells that are not already coupled to a Purkinje cell. The values for the

PVJ delay were calibrated using the experiment and methods described in section 3.3.

In addition, regarding the cellular dynamics, the usage of the recent ToRORd-dynCI-2020
model for human VCs [72, 73] and the Trovato2020 model for PCs [74] are justified mainly because
these two cellular models are now considered the latest models in terms of human cellular model
available in the literature, presenting important advances that surpass old models like the classical
TT3 model [75] and the ORd model [50] in numerous aspects. Similarly, the Trovato2020 Purkinje
model provides several features that the old ST model [68] was not able to capture. Moreover,

there was no published work that couples both models in a Purkinje-biventricular simulation.

To properly evaluate the activation time generated by the PNs, the monodomain equation
was solved both for the Purkinje and ventricular domain, instead of the coupled Eikonal model seen
in the previous work from Ulysses, J. N. et al. [76]. This was performed to capture essential features

of propagation from PCs and VCs accurately and at the PV Js sites, such as the characteristic delay
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that happens at these locations [79], giving rise to a more realistic simulation in terms of cardiac

electrophysiology.

5.1 Simplified mesh

In Figure 36 the results of the monodomain simulations for the Simplified mesh are depicted.
Firstly, in Figure 36A, it is illustrated the baseline LAT calculated when the reference PN is coupled
to the biventricular tissue. Secondly, in Figures 36B and 36C, it is shown the LAT obtained when
the best and worst PN generated by the Shocker method are coupled to the biventricular tissue,
respectively. Finally, in Figure 36D and 36E, it is presented the absolute error between the baseline
and approximate LAT given by the PNs, where the results for best PN is on panel D and the worst
PN on panel E.
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Figure 36 — Results for the LAT maps when a coupled monodomain simulation is executed over the
Simplified mesh. First, in the top panel (A), the active PVJs are activated following the LAT
provided by the reference PN. Next, in the middle panels (B) and (C), the LAT maps of
the best and worst PNs generated by our method are depicted, respectively. Finally, in the
bottom panels (D) and (E), the absolute error between the LAT maps from the best and
worst PNs is calculated, respectively.
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5.2 Canine mesh

In Figure 37 the results of the monodomain simulations for the Canine mesh are illustrated.
Initially, in Figure 37A, it is depicted the baseline LAT calculated when the reference PN is
coupled to the biventricular tissue. Next, in Figures 37B and 37C, it is shown the LAT obtained
when the best and worst PNs generated by our method are coupled to the biventricular tissue,
respectively. Lastly, in Figures 37D and 37E, it is presented the absolute error between the baseline
and approximate LAT given by the PNs, where the results for best PN is on the left and the worst
PN on the right side of the panel.
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Figure 37 — Results for the LAT maps when a coupled monodomain simulation is executed over the Canine
mesh. First, in the top panel (A), the active PVJs are activated following the LAT provided
by the reference PN. Next, in the middle panels (B) and (C), the LAT maps of the best
and worst PNs generated by our method are depicted, respectively. Finally, in the bottom
panels (D) and (E), the absolute error between the LAT maps from the best and worst PNs is
calculated, respectively.
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5.3 Patient-specific mesh

In Figure 38 the results of the monodomain simulations for the Patient-specific mesh from
Lopez-Perez, A. et al (2019) [43] are shown. First of all, in Figure 38A, it is illustrated the baseline
LAT calculated when the active PVJ sites estimated using CARTO ™ maps are activated at the
specified times. Subsequently, in Figures 38B and 38C, it is shown the LAT obtained when the best
and worst PNs generated by our method are coupled to the biventricular tissue, respectively. Finally,
in Figures 38D and 38E, it is presented the absolute error between the baseline and approximate
LAT given by the PNs, where the results for best PN is on panel D and the worst PN on panel E.
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Figure 38 — Results for the LAT maps when a coupled monodomain simulation is executed over the Patient
mesh. First, in the top panel (A), the active PVJs are activated following the LAT provided
by the CARTO3 ™ points. Next, in the middle panels (B) and (C), the LAT maps of the best
and worst PNs generated by our method are depicted, respectively. Finally, in the bottom
panels (D) and (E), the absolute error between the LAT maps from the best and worst PNs is
calculated, respectively.
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5.4 Comparison and discussion

From the results of Figure 36, we noticed that both the best and worst PNs of our comparison
set show a feasible LAT map for the Simplified mesh. As can be seen in panel (C) of Figure 36, the
best and worst PNs present a maximum absolute LAT error around 3ms, which is acceptable in
terms of LAT matching. To conclude, in Figure 39, the RMSE and RRMSE values were around
1.4ms and 3.2%, respectively, considering the ten best PNs generated for the Simplified mesh which

indicates that the method is able to generate PNs with electrical accuracy.

Regarding the Canine mesh results presented in Figure 39, we notice an improvement in
the RMSE and RRMSE errors when compared to the Simplified mesh. Based on Figure 39, the
RMSE and RRMSE values were around 1.3ms and 2.5%, respectively, considering the ten best
PNs generated for the Canine mesh. From the LAT and absolute error maps in Figure 37, we can
conclude that the best PN was able to activate the ventricular tissue similar to the reference LAT
in almost all the biventricular tissue, except in a specific region of the RV. On the other hand, the
worst PN could not activate several PVJs at the correct LAT even with a good approximation
when the cable equation was used. This behaviour could be related to the PVJ coupling parameters
used in the monodomain simulation. Mainly, from these results, we can conclude that certain PVJs
must activated with a LAT very close to each other to stimulate these regions. In addition, as
can be seen in these results, the PVJ delay plays an important role in ventricular activation and

depending on certain conditions might be responsible for different LAT.

For the case of the Patient-Specific mesh depicted in Figure 38, we noticed how complex
and variable ventricular activation can be depending on the PN that is coupled to the tissue. From
Figure 39, the RMSE and RRMSE value were around 2.5ms and 3.1%, respectively, considering the
ten best PNs generated for the mesh. Furthermore, the results from the Patient-Specific simulations
show that in specific PVJ sites, the PN deviates from the reference value, especially near the regions
around the papillary muscles of the RV. This behavior indicates that even with RMSE error below
3ms, there are still regions with a lower LAT accuracy due to branches that were forced to connect

during the final steps of the method.
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Figure 39 — Results for the RMSE and RRMSE errors from the LAT maps of the biventricular tissues.
The RMSE and RRMSE errors were calculated for all the tissue cells by taking the difference
between the LAT given by the reference times at the PVJ sites and the LAT generated by the
10 best PNs generated for each mesh.

An important observation that can be made from the previous experiments is that several

factors affect ventricular activation when a PN is coupled to the tissue.

First of all, the relation between the cable equation and the monodomain model presented
in Appendix B was validated by the results, leading to the conclusion that using the cable equation
to approximate the LAT of a given PN is fast and generate good results when coupled to the
ventricular tissue in a monodomain simulation. Secondly, in some simulations of the Canine and
Patient-specific meshes we noticed that some PVJs could not be proper activated at the right time
even by matching the LAT with the cable equation. One of the main reasons for this behaviour is
related to the source-sink mismatch problem that happens at the PVJ locations, where certain
PVJ sites could only be activated in the monodomain simulation by a combination of terminal
branches. This means that for an accurate activation certain groups of active PVJs must be
activated close to their reference time, otherwise delays or blocks in tissue stimulation will appear.
In addition, another possible reason for this issue can be retropropagation coming from the tissue
to the Purkinje.

Another observation that can be made from these results is that certain parameters related
to the monodomain simulation, like tissue conductivity and fiber orientation of the mesh, can
activate regions of the tissue first than the Purkinje terminal. As a result of, reentry points can
appear at these PVJ sites, leading to different LAT values than the ones previous considered in the

generation procedure of the PN.

Within this context we noticed that in regions with more active PVJs the characteristic
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delay of these points decreased, since more terminal branches are depolarizing a particular area of
the tissue, diminishing the source-sink mismatch at these sites. Moreover, the different morphology
of the PNs plays an important role in activation. This is because depending on the region in the
ventricle tissue that Purkinje terminal is coupled it is not possible to achieve the exactly amount of
Npyy cells. This was observed especially near the irregular regions of the Patient-specific mesh
where some active PVJs were very close to each other, which lead to overlaps between the coupled

tissue cells associated to these PV Js sites.

Based on this previous observation, we could conclude that a more robust experiment
for the PVJ coupling presented in section 3.3 can be done to attenuate these differences in the
characteristic delay. The main limitations of the PVJ coupling experiment is that we first consider
a simple cuboid without any type of fiber orientation, which based on the previous results can affect
the delay. Secondly, as the number of coupled cells Npy; vary because of overlapped PV J sites,
the resistance Rpy; parameter should be chosen accordingly to the number of Npy ; connected to
every particular Purkinje terminal, instead of considering it fixed for all the coupled cells. This
way the characteristic delay values observed at certain PVJ sites can be controlled properly and

decrease also the risk of conduction blocks.

In addition, a further improvement that can be made to decrease the difference in LAT is
to adjust the diameter of the Purkinje fiber accordingly to the cable equation as the tree grows.
Most of the necessary tools to implement this new feature are already available in the method.
The relation between the cable equation and monodomain equation can be used to adjust the
conductivity of the Purkinje branches and the resultant LAT at the PVJ sites could be more
precisely calibrated. However, to enable the correct measurements for monodomain simulations it
still be necessary to improve the PVJ coupling experiment by considering different conductivity

values in the Purkinje cable, since this parameter affect the characteristic delay at the PVJ sites.

Regarding the execution time necessary to solve the monodomain model for all the meshes
using the high-performance GPU solver [59] the results of each section are shown in Table 13,
ODE,;, and ODE,,s are the times required to solve the non-linear ODE systems for the Purkinje
and tissue cells, respectively, CG,, and C'Gy;ss are times related to the Conjugate gradient (CG)
resolution of the associated linear system of the diffusion part for the Purkinje and tissue cells,
respectively. Also, the Write section of the table is the time to compute and write the LAT of
the Purkinje network and the biventricular tissue. Finally, the Total part is the global execution
time of the entire simulation. In addition, the times presented in Table 13 are averaged, since they
consider the resolution of the monodomain model for each of the 10 best generated PNs by our
method.



103

Execution times (min / %) Simplified Canine Patient
ODE, 0.68 / 1.90 1.96 / 2.84 1.83 / 1.88
CGpk 0.29 / 0.81 0.42 / 0.61 0.38 / 0.39
ODFEy;ss 14.53 / 40.66 ~ 27.87 / 40.28  41.17 / 42.31
CGliss 6.82 / 19.08 13.07 / 18.89  19.28 / 19.81
Write 10.71 / 29.97  20.67 / 29.88  27.03 / 27.77
Total 35.72 / 100.00 69.18 / 100.00 97.32 / 100.00

Table 13 — Averaged times from the resolution of the monodomain model for the 10 best PNs generated
by our method considering the three biventricular meshes.

As can be verified in Table 13 the most demanding section of the monodomain model
resolution in all the meshes is associated to the non-linear ODE system related to the human VCs
(72, 73] model, which takes approximately 40% of the total execution time. This result can be
justified due to the fact that the discretization of the ventricular domain has much more degrees of
freedom than the Purkinje network. More specifically, for the Simplified, Canine and Patient-specific
meshes utilized there are a total of 1128203, 2155121 and 3156659 ventricular cells, respectively, to
be solved when a space discretization of 400um is utilized. For the Purkinje networks, the number

of cells does not surpass 25000 considering all the generated trees.

5.5 Eletroanatomical map validation

As a final validation experiment, a subset of the original electroanatomical map points used
to estimate the active PVJs in the patient-specific mesh is selected to compare the errors of the
best and worst generated networks. Only EAM points within healthy regions of the endocardial
surface in the LV and RV were considered. The points inside or near the damaged tissue that could
be affected by the fibrosis are eliminated, counting 100 and 47 EAM points selected in the LV and
RV, respectively.

A 3D monodomain simulation is performed considering our method’s best and worst
generated Purkinje networks. Tissue conductivity was decreased by half in order to result in a tissue
LAT close to the ones provided by the EAM points. From Figure 40, the RMSE values were around
6.3ms and 7.2ms, for the best and worst PN in the EAM points located in the LV, respectively.
For the points within the RV, the RMSE is 4.8ms in both PNs. Regarding the RRMSE results, the
values for the LV points were around 11.2% and 12.7% for the best and worst PNs, respectively,
while for the RV the values are between 11.1% in both PNs. Based on these results, we noticed
that the LV networks have the highest errors, indicating the complexity of matching activation
around this region. In addition, another issue that might have caused an increase in the errors in
both biventricular areas is that we do not consider fibrosis and ischemia in the tissue, which are

known mechanisms that can alter the LAT depending on its geometry and characteristics.
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Figure 40 — Overview of the EAM points selected for LAT validation alongside results for the RMSE and
RRMSE errors from the EAM points selected in the patient-specific LV and RV endocardial
surface are shown in panel (A). In panel (B), the RMSE and RRMSE errors were calculated
for all the EAM points by taking the difference between the LAT given by the reference times
and the LAT value from the closest tissue cell generated by a monodomain simulation with
the best and worst PNs. In panels (C) and (D), the LAT error at the EAM points for the
best/worst PNs are illustrated.
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6 Results: Effects of Purkinje Network Variability with Pseudo-ECG Simulations

Based on the previous results that demonstrate that several factors can affect ventricular
activation when a PN is coupled to the tissue, we propose a final experiment to study the effects
of different PVJ density on electrical activation of a patient ventricles and in matching their
corresponding clinical ECG. For this particular experiment, the fourth Patient-specific mesh from
Camps, J. et al (2020) [12] is used. Moreover, this mesh is also referred to as DTI003 in the work
[12].

In addition, this study utilizes an already built minimum geodesic PN that connects the
6 estimated active PVJs (root nodes) of the mesh, which are able to approximate the available
clinical ECG of the patient with a certain accuracy. The position and LAT of the active PVJs are
estimated using an inference technique that uses an efficient sequential Monte Carlo approximate
Bayesian computation-based method, integrated with Eikonal simulations and torso-biventricular
models constructed based on clinical cardiac magnetic resonance (CMR) imaging [12]. Regarding
the minimum geodesic PN, it activates the 6 estimated PV Js simultaneously at 40ms and it was

constructed using the method provided by Barber, F. et al. [4].

6.1 Extra branched Purkinje networks

In the experiment of this chapter we aim to explore the ability of our method to generate
additional branches to an already constructed PN. Two different extra branched PNs are generated
in order to cover the endocardium surface. Thus, these PNs are used to produce new active PVJs
density clouds that activate the ventricular tissue in a manner that tries to sustain the baseline
LAT that is responsible for reproducing the clinical ECG of this subject. The extra branching
procedure considers the inclusion of new passive branches to the initial root passed as an input

parameter to the method, as can be seen in Figure 42.

To further investigate the effects of the PVJ density, a fast endocardium layer is introduced
over the cells that are within a certain endocardium region in the LV and RV, as illustrated by the
transmurality colormap of the mesh depicted in Figure 41. The inclusion of the fast endocardium
layer is justified to reproduce an activation pattern similar to the one given by the clinical ECG.
To achieve a reasonable approximation for the ECG, the VCs that are located within the fast
endocardium layer have their conductivity increased by a factor of 4. To select this particular
value, several monodomain simulations were executed and the Pseudo-ECG was compared to the
clinical data. Moreover, in this experiment, we want to check variability in the patient ECG by
using different PNs and different densities of PVJ clouds.
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Figure 41 — Illustration of the transmurality of the Patient-specific mesh from Camps, J. et al (2020) [12],
where in red the fast endocardium layer is highlighted. In addition, the endocardium cells are
colored in dark blue, the mid-myocardium cells in light blue and the epicardium cells are in
pink.
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Figure 42 — Illustration of the extra branching procedure utilized to grow new passive branches over the
structure of the minimal geodesic PN given by Barber, F. et al. [4]. The minimum geodesic
PN is colored in red, the extra branches generated by our method are in blue and the 6
estimated PV Js are represented as green spheres.

6.2 Pseudo-ECG simulations

Monodomain simulations are executed and the Pseudo-ECG is calculated following the
guidelines presented in section 2.6. Furthermore, in this study, whenever the ECG is calculated
we consider the term D, in equation (2.51) constant and equal to 20. Regarding the baseline

parameters to enable the solution of the monodomain model, the surface-to-volume ratio is set
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to 8 = 0.14pum™!, tissue capacitance is equal to C,, = 100pF/u?. A total simulation time of
tmaez = 200ms and a time discretization of dt = 0.01ms was used to solve the associated PDE. For
the ODEs system related to the Purkinje and ventricular cellular models, a Rush-Larsen scheme
was applied with a fixed timestep of dt = 0.01ms for both the Trovato and ToRORd models. A
space discretization of 400um was used for all the ventricular domains, while for the Purkinje
this value was set to 100um. The conductivities from the ventricular domain are anisotropic with
o, = 0.3755/m, o, = 0.11255/m and o,, = 0.056255/m, in the longitudinal, transverse and normal
direction, respectively, resulting on CV that was able to reproduce the given clinical ECG with
reasonable accuracy. For the Purkinje domain the conductivity was set to o,y = 2.755/m with
a CV approximately equal to 2m/s. Purkinje coupling parameters were set to Rpy; = 500k$2
and Npy; = 60, resulting on a characteristic delay in the range of 2ms. The stimulus protocol
is a single pulse coming from the His-bundle with the following parameters: I, = 40pA/pF,

duration = 2ms, N = 25.

For the Pseudo-ECG computation, the 10 electrodes positions used to compute the 8-leads
ECG are shown alongside the Patient-specific mesh from Camps, J. et al (2020) [12] in Figure
43. In addition, the shape of the 8-lead clinical ECG is shown in Figure 44 after been normalized

following the guidelines presented in section 2.6.
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Figure 43 — Electrode positions used for the 8-lead ECG computation in the Patient-specific mesh from
Camps, J. et al (2020) [12].
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Figure 44 — Clinical 8-lead ECG for the Patient-specific mesh from Camps, J. et al (2020) [12].

For the generation of additional active PV Js, we developed a technique to activate only a
certain percentage of the inactive PVJs (terminals) present in the extra branched PNs in way that
the activation of this new active PVJs do not alter the original clinical ECG. The main idea is to
first compute the LAT both for the PN and the biventricular tissue considering only activation
coming from the 6 estimated root nodes. From this initial result, we analyze the LAT of each
Purkinje terminal cell and their closest tissue cell. If the difference between the tissue LAT, t;s,
and the Purkinje terminal LAT, ¢, is below a certain time threshold, ¢,csn, then we consider
this Purkinje terminal a new active PVJ. In summary, this procedure only activates the Purkinje
terminals that activated almost at the same time as the tissue in the 6 root nodes simulation.
Consequently, if we choose wisely the time threshold #,,¢sn, We can increase the number of active

PVJs in the extra branched PN, minimizing the loss in the accuracy of the baseline LAT.

In the following experiment, we define a low PVJ density cloud over the extra branched
PNs when the time threshold parameter is set to tnresn = 5ms, while a high PVJ density cloud is
defined when t4,,.s, = 10ms. For the first extra branched PN shown in Figure 45 we have a total
of 35 and 62 active PV Js for the low and high PVJ density cloud, respectively. For the second
extra branched PN, these numbers are 58 and 81, respectively. An important observation regarding
these numbers is that the 6 original root nodes are also included within the PVJ clouds, as can be

seen in Figure 45.

In Figure 45 the results for the LAT of the two extra branched PNs are shown. As can be
seen from these results, the PVJ location and density, alongside the proper PN morphology affect
the LAT of the tissue. For instance, in the first extra branched PN we noticed that for the low PVJ
density shown in Figure 45B, the resultant LAT is close to the baseline, given by Figure 45A. On
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the other hand, for the second extra branched PN the inclusion of the new active PVJs results in a
different LAT, with regions of the biventricular tissue being activated sooner than expected. When
the high PVJ density clouds, illustrated in Figure 45, are analyzed, we notice a similar behaviour
with more regions being depolarized early, which is understandable since we increased the time

threshold parameter ti,,csh-
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Figure 45 — Results for the LAT of the two extra branched PNs with different active PVJ density clouds.
In panel (A), both PNs only activate the 6 inferred root nodes, while in panels (B) and

(C) the low and high active PVJ clouds generated for the two PNs using tipesn, = ms and
tinresh = 10ms, respectively, are shown.

Analyzing the computed Pseudo-ECG of the above trees, we noticed from Figure 46 that
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when only the 6 root nodes are activated, both PNs have the same approximation for the ECG with
an averaged Pearson correlation of 0.77. From these results, the worst approximation is observed
for Lead-I with a correlation of 0.18 in both PNs, while the best result is for Lead-II with 0.94 in
both trees. Other leads also presented good approximations, as can be seen in the traces of leads
V4, V5 and V6, with correlation values around 0.92 and 0.93.

In the case of low PVJ density clouds are activated by the PNs, which are shown in Figure
47, we observed an increase in the Pearson correlation of both PNs when compared to the previous
result. This increase is more pronounced in the results from the second PN, with a value of 0.87,
while for the first PN this value is 0.78.

Finally, when the high PVJ density cloud results depicted in Figure 48 are analyzed, we
verified an increase in the Pearson correlation value to 0.81 for the first PN and a decrease of this
metric for the second PN to 0.85. Based on these results, we noticed that maybe activating the
original 6 estimated root nodes plus certain regions of the ventricle at the right time can improve
the clinical ECG matching. In particular, these regions can be located around the anterior wall
of the LV, since the activation of the PVJs near this region increased the Pearson correlation for
Lead-I from 0.18 to 0.44 in the first PN. When the second PN is analyzed, the increase in the

Pearson correlation for Lead-I is even more pronounced from 0.18 to 0.79.

In summary, these results also demonstrate that the problem is a source of uncertainties.
First of all, it is possible to generate Purkinje networks with a very distinct morphology but
that share a common LAT. Alongside with that, the proper Purkinje network can have different
combinations of active PVJs depending on the PVJ density cloud that was used. This observation
can be seen on the ECG results where the Pearson correlation varied accordingly to these two

factors.

In addition, PVJ density may change due to heart size and aging [14]. Another factor that
can alter the total number of active PVJs is ischemia [36]. An increase in the number of PVJs
can lead to more retrograde conduction and allow more escape paths for arrhythmias but can also
decrease tissue heterogeneity. Thus, its actions are both pro-arrhythmic and anti-arrhythmic [11].
Cardiac arrhythmias associated to reentry dynamics coming from the Purkinje can also be impacted
by the PVJ density of the network. This is because a reentry circuit occur due to two factors: 1) a
block in conduction, which can happen depending on the number of active connections between
the Purkinje network and ventricular tissue; 2) a long pathway within the Purkinje network that
can reactive a portion of the tissue [1]. Within this context, both of these factors can be further

explored using the available tools that were developed and used during this work.
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Figure 46 — Results for the 8-lead Pseudo-ECG from both extra branched PNs when only the 6 estimated
root nodes from Camps, J. et al. [12] are activated by the two PNs. The clinical ECG is
highlighted in black, while the Pseudo-ECG approximation is colored in blue.
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Figure 47 — Results for the 8-lead Pseudo-ECG from both extra branched PNs when the low PVJ density
cloud are activated by the two PNs. The clinical ECG is highlighted in black, while the
Pseudo-ECG approximation is colored in blue.
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Figure 48 — Results for the 8-lead Pseudo-ECG from both extra branched PNs when the high PVJ density
cloud are activated by the two PNs. The clinical ECG is highlighted in black, while the
Pseudo-ECG approximation is colored in blue.

In addition, in Figure 49 we can verify the differences that appear in the ECG as not only
the topology of the PN changes but also its PVJ density. Based on this figure and on the previous
ones, we can conclude that both the geometry of the PN and PVJ density cloud that activates
the tissue have an effect in the ECG. These two parameters combined can either made the ECG
approximation more closer to the aspect of the clinical ECG, but also diverge from the reference
depending on the combination of these parameters. For that reason, we can also conclude that

there is a high uncertainty associated to the generation and activation of PNs.
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Figure 49 — Comparison between the 8-lead Pseudo-ECG from both extra branched PNs with different
PVJ density clouds, where in red the ECG calculated using only the 6 root nodes are depicted,
colored in blue is the resultant ECG when a low density PVJ cloud is used, and illustrated by
a green line, is the ECG computed when a high density PVJ cloud is applied to activate the
tissue.
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7 Conclusions and Future works

Prior to this thesis, no models for patient-specific PNs combine geometric and electrical
precision, which are essential for more accurate development of cardiac electrical simulations. In
addition, the recent increase in the development of Cardiac Digital Twins (CDTs) turns the usage of
Purkinje generation methods an essential step towards more realistic simulations. Furthermore, to
study cardiac pathologies, like, for example, arrhythmias, models that consider PNs have substantial

importance since this structure is known to be a source of ventricular fibrillation [24].

In this work, we presented a new method called Shocker for the automatic construction of
the PN to be used in cardiac electrical simulations. The method is an extension of the work from
Ulysses, J. N. et al. [76], which is based on optimization principles and will be available for usage
in a public repository. Our primary contribution to the model is a new cost function that relies
on electrical principles using the classic cable equation and approximates the LAT of a given set
of active PVJs. We demonstrated the capabilities of the proposed method with the generation of
different PNs over four biventricular meshes. In addition, the electrical activity of the best PNs
generated by our method is evaluated on a biventricular Purkinje-coupled monodomain simulation

using the latest human ventricular/Purkinje cellular models and a high-performance GPU solver.

Our results, both in terms of activation times and geometric features, indicate that the
Shocker method can capture key aspects of the PNs (bifurcation angles, branch sizes, and LAT at
the active PVJs sites) while preserving the structure within the endocardial surfaces, especially at
the regions near the papillary muscles. Secondly, the method is flexible and scalable by allowing
PNs generated by other methods to be used as initial roots. As a result, these networks could
extend their branches to attend to the desired objective, such as increasing the PN endocardial

coverage or linking additional PV Js.

The main findings of this study are that very different Purkinje networks can give rise to
similar LAT. From the results of the experiments it is demonstrated that different pathways can
be used to reach an active PVJ site at the specified LAT. Also the usage of the cable equation to
approximate the LAT of a growing Purkinje network is a low-cost and feasible solution to be utilized
instead of the Eikonal model, which is applied in other similar works [48]. Finally, the source-sink
mismatch related to the PVJ coupling and characteristics of the mesh, like fiber orientation and

irregular surfaces, are found to affect the activation of the PVJ sites.

Regarding the main contributions of this work we present a novel method to generate
Patient-specific Purkinje networks over an endocardium surface with geometric and electrical
accuracy. Purkinje-coupled monodomain simulations were performed using the latest models of
human Purkinje and ventricular cells, and GPU-based monodomain solver [59]. Furthermore, several

improvements to the respective solver: 1) Implemention of the Purkinje module; 2) Implementation
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of new cellular models using RL schemes; 3) Help with the development of the Pseudo-ECG module;
4) Several functions and scripts associated to a simulation (AP and ECG traces, APD and error
computation, CV tuning, PVJ generation, mesh parsing, video generation and more). In addition,
it was developed a methodology which permits the generation of several PNs that reproduce the
electroanatomical map and electrocardiogram. The generated PNs differ in their morphology and
quantity of active PVJs. From this tool it is possible to realize uncertainty quantification studies

for different PNs of a patient.

The main limitations of the proposed method are its high computational cost for very
detailed mesh, which based on the results are mainly caused by the geodesic pathway function. To
attenuated this problem more optimized implementations of the geodesic pathway algorithm can
be used in order to reduce the bottleneck of the method. Secondly, the PVJ coupling experiment
was only used to find a reasonable value for the PVJ coupling parameters when the two human
cellular models are coupled. Therefore, a more robust scheme is necessary for a more accurate
choice of the PVJ coupling parameters. Also from the experiments it is observed that the PVJ
characteristic delay plays an important role in the activation and should be accounted in the active

cost, function of the method.

For future works, the applicability and performance of the model can be further improved.
For instance, the usage of additional electrical information, such as ECG readings can, be an
alternative to generate the Purkinje networks. Furthermore, the computational time of the cost
function evaluation step can be executed faster if the calculus is made using parallel programming.
A further improvement to the method is to include an adaptive diameter adjustment in the
segments of the growing tree. Also, we can improve the robustness of the PVJ coupling experiment
considering fiber orientation, different conductivities for the Purkinje cable and more evaluations
for the Rpy; and Npy; parameters. The accuracy of the current RL scheme utilized to solve the
Trovato2020 and ToRORd-dynCl-2020 models can be improved by implementing the high-order
and adaptive schemes [22, 69] in the GPU-based monodomain solver [59]. Finally, the presented
novel methods can be used to study how different PN topology and features are related to the

initiation and maintenance of cardiac arrhythmias.
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APPENDIX A - Shocker method description

A.1 Pre-processing steps

The PreProcessing subroutine, described in Algorithm 2 and illustrated in Figure 50A, is
responsible for filtering a percentage of the points within the input set S and sorting the active
PVJs, returning the passive set of points S, based on the proximal location of the root branch

Tpror and the active points set S,.

Algorithm 2: PreProcessing subroutine.
Data: S, xp,0,, global 79 = 0.01mm, global 7;,. = 0.05mm.

Result: Passive and active cloud of points S, and S,.
174710,
2.5, 0;
3 while (|S,| <|S|) do

4 for i € {0,...,|5]|} do
5 x < Sli];
6 dist ||z — Zproxl| ;
7 if (dist <r)then
8 Append z to S, ;
9 Erase x from S ;
10 end
11 end
12 T4 7T+ Tine ;
13 end

14 S, < Filter 1% percentage of the passive points inside set .S, ;
15 S, « FEztractActivePVJ(S); # Algorithm 3 ;

16 return Sy, S, ;

The FExtractActivePV.J subroutine, presented in Algorithm 3, manages the set S by
extracting the points that are considered active PVJs. In particular, each active PVJ must have an
associated LAT value as a reference for comparison. With this value, we sort the active PVJ points
using the QuickSort algorithm [15].
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Algorithm 3: EztractActivePV.J subroutine.
Data: S.

Result: Active cloud of points S, sorted by their LAT.
1 5, 0;
2 for i € {0,...,|5S|} do

3 if (S[i] is active) then

4 x < S[i] ;

5 lat < S[i|.LAT ;

6 Append the pair (z,lat) to S, ;
7 end

8 end

Apply QuickSort algorithm on S, using lat as comparison parameter ;

©

10 return S, ;

Figure 50 — Illustration of the PreProcessing and ExtractActivePVJ subroutines, where the PreProcessing
function is shown in panel (A) and ExtractActivePVJ is depicted in panel (B). In panel (A),
the remapped and filtered passive points S, are highlighted by white spheres. In addition, the
evolution of the growing sphere used to remap the points in set S is illustrated by the distinct
values of its radius . In panel (B), the passive points set S, is highlighted by white spheres,
while the active points set S, is highlighted by colored spheres using the LAT colormap.
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A.2 Root placement

The RootPlacement subroutine, detailed in Algorithm 4, is responsible for generating or
loading the initial root of the PN. The method starts by constructing the root branch, in which,
given the proximal location .., a distal location x4 is randomly selected from the passive set
S, and must attend the distance criterion. After selecting a feasible position, a geodesic pathway
which connects xp,0; t0 Tgis is constructed. Alternatively, the user can also provide an initial root

structure that can be used to initialize the root of the method.

Algorithm 4: RootPlacement subroutine.
Data: S, l4, Tprog, [initial PN])
Result: Initial state of the Purkinje network.
1 if (initial PN is given) then

2 kierm < Load initial PN topology from file ;
3 else

4 1s_root ok + False ;

5 counter <— 0 ;

6 Athresh < la ;

7 while (is_root_ok == False) do

8 Tgist < SortPoint(S,); # Algorithm 5 ;
9 d < ||Taist — Tpros|| ;

10 if (d >= dpresn, ) then

11 ‘ 1s_root ok = True ;

12 else

13 ‘ counter < counter +1 ;

14 end

15 if ( counter > 8 ) then

16 ‘ Ainresh < dihresh * 0.95 ;

17 end

18 end

19 Geodesic pathway: Build a geodesic path from zp,.o; 10 Zgist ;
20 Kierm < 1 ;

21 end

22 return k.., ;

The subroutine SortPoint presented in Algorithm 4 is responsible for selecting a point
from the passive set S, and is detailed in Algorithm 5. The points from the passive set are
selected sequentially, and to allow variability in the PNs, this selection is made using different gap

values. This gap value is defined as the difference between the previous and current index selected
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in S,. This value is calculated by taking the modulo between a random integer number, computed
using the default rand function from the C++ standard library, and a fixed offset parameter, which
was defined as 4 in this work. To avoid an index out of bounds error, we always apply a modulo
operation between the next index and the total number of passive points in set S,. When the
next td returns to the start of the S, array, the stop criterion flag of the method’s main loop is

activated.

Algorithm 5: SortPoint subroutine.
Data: S, global prev_id

Result: Index of the next point to be selected in the set .S),.
1 k< rand()%4 +1 ;
2 next id < (prev_id + k)%|S,| ;
3 while ( S,[next id] is taken ) do
4 prev_id < next_id ;
5 k< rand()%4 + 1 ;
6 next id < (prev_id + k)%|S,| ;
7 end

8 return S,[next id] ;

A.3 Distance criterion

The subroutine DistanceCriterion in Algorithm 6 controls if all segments in set P, attend

the distance criterion for a given xe.,, position.
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Algorithm 6: DistanceCriterion subroutine.
Data: Lterm, dth’r‘eshu Ps

Result: Return True if all segments in set P; attend the criterion or False otherwise.
for i€ {0,...,|P|} do
2 u 4 x,(7) — zq(i) ;

=

3 V 4 Tperm — 2q(1) ;

4 W 4 Tperm — Tp(7) ;

5 | d; < w.v/||u||*; # scalar product ;
6 if (d; >=0andd; <=1 ) then

7 ‘ derie < ||v X wl||/||u]| # cross product ;
8 else
o | | deie = min{llol], floll}
10 end
11 if (derit < dipresn, ) then
12 ‘ return Fualse ;
13 end
14 end

15 return True ;

A.4 Cost function evaluation

The FEvaluateCostFunction subroutine detailed in Algorithm 7 evaluates a given cost

function C'F" for every element in the feasible segment set F.

Algorithm 7: FvaluateCostFunction subroutine.
Data: zopm, Fs, CF

Result: A list of evaluations F using cost function C'F.

1 B« 0;
2 fori € {0,...,|F,|} do
3 Geodesic pathway: Build geodesic pathway linking x4 from segment s; to xyerm ;

4 e < Evaluate C'F' under this PN topology ;
5 if (No collision is detected) then

6 ‘ Append e the evaluation to F ;
7 end
8 end

9 return F ;
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A.5 Generation of passive terminals

The subroutine Generate Terminal depicted in Algorithm 8 and illustrated in Figure 51,
generates a new passive terminal branch to the PN. The generation proceeds by sorting a point
Tierm from set S, using Algorithm 5. The prospective location .., is accepted if x;e., satisfies
the distance criterion, which is defined by Algorithm 6, otherwise we select a new point from
Sp. In case the above procedure fails 10 times, i.e., deit < dipresn, the threshold distance dipyesn, is

decreased by a factor 0.95. This is repeated until the acceptance of e, .

To generate a new passive terminal branch, after x;..,, has been accepted as a distal end of
a new terminal branch, it is temporarily connected to the nearest N, segments in the model by a
geodesic pathway. Moreover, N, is an input parameter of the method that represents the maximum
number of temporary connections for a new passive terminal location e, The calculus of the IV,
nearest segments is done by calculating the distance between the middle point of all segments in
the current network to ;.. Next, we sort the segments by their Euclidean distance and filter
only the closest NV, segments to Zterm,. This step is defined by the FillFeasibleSegmentsPassive
subroutine in Algorithm 9. After this step, we decide how to connect ., to one of the N,

neighboring segments. This choice is based on the minimization of the passive cost function C'F,,.
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Algorithm 8: GenerateTerminal subroutine.

Data: S,, N, CF,, lq, kierm

Result: New terminal branch added to the Purkinje network.
1 dipresh < 1521/ Kterm ;

2 tosses < 0 ;

3 point_is_ok < False ;
4 P; + Get all segments from the PN ;
5 while (point_is ok == False) do

6 F, <0

7 Tperm — SortPoint(S,); # Algorithm 5 ;

8 # Algorithms 6 and 9 ;

9 if ( DistanceCriterion(Tierm, dinresh, Ps) and FillFeasibleSegmentsPassive(Tierm, Ny,
F;, P;) ) then

10 E, < EvaluateCostFunction(Zierm, Fs, CF,); # Algorithm 7 ;

11 if (|E,| >0 )then

12 ‘ point_1s ok = True ;

13 end

14 else

15 tosses < tosses + 1 ;

16 if (tosses > 10 ) then

17 tosses < 0 ;

18 Ainresh < dinresh * 0.95 ;

19 end

20 end

21 end

22 Geodesic pathway: Build a branch linking x4 from the segment with the best C'F),
evaluation in Ej, to Zierm ;

23 return Ty, ;

The FillFeasibleSegmentsPassive subroutine as presented in Algorithm 9 is responsible
for populating the Fj set for the passive cost function with the nearest N, segments to the ziepm,
position. This is done by passing through all the segments in the current PN and computing the

Euclidean distance between the middle position of each segment, x5/, and xepp,.
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Algorithm 9: FillFeasibleSegmentsPassive subroutine.
Data: zierm, Ny, Fs, Ps
Result: Fill the feasible segments set Fy to connect e, .
for i € {0,...,|Ps|} do

dist < ||Tierm — xa (8] ;

Append (i, dist) to Fy ;

4 end

=

N

w

Apply QuickSort algorithm on F using dist as comparison parameter ;
6 return F;[0: N, ;

[}

(A) (B) (C)

dist
o
Xterm Xterm
Feasible segment Cost function evaluation
s1 2 — Best evaluation
s2 Collision!
s3 4
s4 5

Figure 51 — Hlustration of the GenerateTerminal subroutine. In panel (A), a prospective location for a
new terminal branch, Zierm, is selected after attending the distance criterion. Next, in panel
(B), N, feasible segments are evaluated by the cost function C'F), and ranked in a table. After
the evaluation step, segment 2(s2) is unfeasible for the connection since it generates a collision
in the PN. Segment 1 returns the minimum value for the cost function and is considered the
best evaluation. Finally, in panel (C), a new terminal branch is constructed by linking the
distal position of segment 1, x4, to the location iepm,.

A.6 Generation of active terminals

For the case where ke, is divisible by L., the terminal point is considered to be an
active PVJ. In this scenario, we try to sequentially connect all the unconnected PVJs inside the
set S, using the same technique previously described for the passive case. Although, we use the

nearest NV, segments alongside the cost function given by Eq. (3.3) and an additional constraint is
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imposed to accept the connection. The new branch is only made permanent if the absolute LAT
error between the best candidate branch and the reference LAT value of the target active PVJ
is less or equal to Leyror. Otherwise, the PVJ returns to set S, and the entire branch is pruned.
Moreover, if at least one PVJ is connected to the PN, the procedure is repeated until there are no
updates to the tree. The active PV Js connection step is illustrated in Figure 52 and described in
Algorithms 10 and 11.

The AttemptPV.JConnection subroutine, described in Algorithm 10, attempt to connect
all the remaining active PVJ points from set S, to the current PN. This procedure is repeated until

no new active PVJ can be connected to the structure.

Algorithm 10: AttemptPV.JConnection subroutine.
Data: S(“ Na, CFCL, Lerror; ldy kterm

Result: Try to connect remaining PVJs inside S, with new terminal branches.

1 repeat

2 | forie{0,...,]5]} do

3 xpyy < Sa(i) ;

4 if (xpy, is not connected) then

5 ‘ AttemptGeneratePVJ(xpy s, Noy CF,, Lerrors la, Kterm); # Algorithm 11 ;
6 end

7 end

o]

until (No new PVJ is connected);

The AttemptGeneratePV.J subroutine described in Algorithm 11 and illustrated by Figure
52, respectively, attempt to connect an active PVJ, xpy s, by generating a new terminal branch.
The branch is only made permanent if the absolute LAT error between the best candidate branch
and the reference LAT value of the target active PVJ is less or equal to Leyror. Otherwise, the PVJ

returns to set S, and the entire branch is pruned.
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Algorithm 11: AttemptGeneratePVJ subroutine.
Data: TpvJ, Nm CFaa Lerrora ld; kterm

Result: Try to connect the xpy; within the LAT error tolerance with a new branch.

1 dipresh < \/ 13/ Kterm ;

2 Fy <0

3 P, < Get all segments from the PN ;

4 # Algorithms 6 and 12 ;

5 if ( DistanceCriterion(xpy ., dipresn, Ps) and FillFeasibleSegmentsActive(xpy j, N,, Fs, Ps)
) then

6 E, < EwvaluateCostFunction(zpy, Fs, CF,); # Algorithm 7 ;

7 | if (|E, >0 )then

8 Geodesic pathway: Build a branch linking x4, from the segment with the best C'F,
evaluation in E, to xpy ;
9 if (xpyy is not connected with an error less than Leqor) then
10 ‘ Prune the previous branch with zpy; ;
11 else
12 ‘ Tag xpy; as connected ;
13 end
14 end
15 end

The FillFeasibleSegmentsActive subroutine as presented in Algorithm 12 is responsible
for populating the Fj set for the active cost function with the nearest N, segments to the zpy s
position. This is done by passing through all the segments in the current PN and computing an
approximation of the LAT error to the xpy ; reference value. This approximation is calculated by
the sum of the current LAT of a given segment s; and the LAT given by the line that links the

middle position z); of segment s; to xpy ;.
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Algorithm 12: FillFeasibleSegmentsActive subroutine.

1

2

3

4

5

6

Data: zpy;, N, Iy, Ps

Result: Fill the feasible segments set Fy to connect e, .

for i € {0,...,|Ps|} do

dist < HlL'pVJ —iIZ’M(Sl)H ;

lat < s;.LAT + (dist/s;.cv) ;

error < |rpy ;. LAT — lat| ;
Append (i, error) to F ;

end

7 Apply QuickSort algorithm on F using error as comparison parameter ;

8

return Fi[0: N,]| ;

(A)

(B)

(C)

Xdist
X
XpvJ %pyy
LAT ~25ms
Feasible segment Cost function evaluation

s1 |25-30|=5ms
s2 |25-21|=4ms
s3 Collision!
s4 |25-24|=1ms 3 Best evaluation
s5 |25-27|=2ms

Figure 52 — Illustration of the AttemptGeneratePV.J subroutine. In panel (A), a prospective location for a
new PVJ branch, xpy s, is selected after attending the distance criterion. Next, in panel (B),
N, feasible segments are evaluated by the cost function C'F, and ranked in a table. After the
evaluation step, segment 3(s3) is unfeasible for the connection since it generates a collision
in the PN and segment 4(s4) returns the minimum value for the cost function and is within
the LAT error tolerance of Lo = 2ms, for that reason is considered the best evaluation.
Finally, in panel (C), a new terminal PVJ branch is constructed by linking the distal position
of segment 4, x4, to the location zpy ;.
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A.7 Post-processing steps

In the case there are remaining active PVJs to be connected after the main loop, we apply
a post-processing step described in Algorithm 13. The first step in this procedure is to prune all
passive segments of the tree. A segment is considered to be passive if it is not directly part of a
pathway that links an active PVJ to the root. Next, the LAT error tolerance constraint is dropped
by setting L.,.., = 00, and we attempt to connect all unconnected PVJs in S, using the pruned
tree. The first IV, feasible segments sorted by the LAT error are evaluated using cost function C'F,

and the segment with the best evaluation is connected using a geodesic pathway to xpy ;.

However, after this procedure some PV Js still could not be connected due to the distance
criterion. This scenario could happen if xpy s is already too close to the current tree. In this
particular case, we drop the distance criterion for these PVJs and attempt to connect the point with
a feasible segment which returns the minimum LAT error using a geodesic pathway. If there are no
geodesic pathway possible for xpy s, we consider the 5 closest segments by distance to xpy; and
force its connection to the one that returns the minimum LAT error using a straight line, regardless
of any restriction. After this step, all the active PVJs that the user-specified are connected and
the geometric and electric metrics are computed in this topology, which is referred to as minimum

network.
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Algorithm 13: PostProcessing subroutine.

Data: Sa7 N(u CFaa Lerrora ld7 kteTm

Result: Minimum Purkinje network with all active PVJs connected.

1 Prune passive segments ;
2 Lepror ¢ 00 ;
3 for i € {0,...,]S,|} do
4 xpyy < Sali] ;
5 if (xpy, is not connected) then
6 AttemptGeneratePVJ(xpy s, Ny CF,, Lerror, la, Kterm); # Algorithm 11 ;
7 if (xpyy is not connected) then
8 Remove the distance criterion for xpy; ;
9 F, <« 0;
10 P, < Get all segments from the PN ;
11 FillFeasibleSegmentsActive(xpyy, No, Fs, P;); # Algorithm 12 ;
12 E, < FvaluateCostFunction(xpyy, Fs, CF,); # Algorithm 7 ;
13 if (|E,| >0 )then
14 Geodesic pathway: Build a branch linking x4, from the segment with the
best C'F, evaluation in E, to xpyy ;
15 else
16 F, < Get the 5 closest segment by distance to xpy ;
17 Straight line: Build a branch linking x4 from the segment with the best
CF, evaluation in F; to xpy ;
18 end
19 end
20 end

21 end
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APPENDIX B - Cable equation

An important feature in the electrical conduction is the conduction velocity (CV) of the
stimuli. The conduction velocity in a neuron can be calculated using the cable equation, given by
expression (B.1) and considering that the cell membrane can be modeled as an one-dimensional

cable as schematized in Figure 53.

ov 0 1 oV
Im =Pp (Cmat + Iion) = % (7”1' i re 81}) R (Bl)

where r; and r. define the intracellular and extracellular resistances per unit length, respectively; p

is the cell perimeter, C,, is the membrane capacitance and I;,, is the ionic current and has unit of

current per unit area.

Extracellular
V (x+dx) domain

ion ion Cellular
— — =+  membrane
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Figure 53 — Schematic of the cable model considered with isopotential circuit elements of size dx.

The cable equation is commonly used to evaluate the electrical flow in neurons and cardiac
cells [35]. In this assumption, the potential depends only on the length variable so that the cable can
be viewed as one-dimensional, just like a Purkinje fiber. The cell is considered a cylindrical piece
of the membrane with a certain length, diameter, internal conductivity and membrane capacitance.

The conduction velocity across the cable is given by equation (3.4).
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Furthermore, the monodomain model is directly correlated to the cable equation. Conse-
quently, it is possible to construct a correspondence between the parameters d, o and the resultant
conduction velocity from both models as Figure 54 shows. To calculate this relation, we ran
several monodomain simulations over a 10cm linear cable composed of PCs that were modeled with
Trovato2020 Purkinje cellular model. The LATSs of all the PCs were computed across the cable for
different conductivity values. The conduction velocity of the cable was calculated by taking the
difference between the LAT of the PCs that are 0.25¢m distant from the middle PC of the cable.
Next, we apply equation (3.4) to correlate each CV previously calculated to a diameter and finally

adjust the line that best fits the sample points using the least-squares method, as shown in Figure

o4.

Monodomain mode! - Purkinje fiber Cable equation - Monodomain model
Cable equation - Purkinje fiber Trovato_2020 - Cable 10cm Least Squares - Purkinje fiber
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Figure 54 — Correlation between the cable equation and the monodomain model. The values for the
conduction velocity in both models are shown alongside the fitted line, obtained with the
least-squares method, in which the slope m = 0.0248 and the constant ¢ = 0.0956 of the linear

model.
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APPENDIX C - Geometrical concepts and data structures

To properly evaluate the geometrical features of our PN models, the mean and standard
deviation of the segment length, branch size, and angle of the bifurcations are computed together
with the total number of segments, branches, and bifurcations. A segment in the tree is equivalent
to an edge in their corresponding graph representing the PN, while a branch is a set of segments
between bifurcations. Moreover, the PN is represented with a graph data structure, allowing each
segment node to access its parent and left /right off-springs. In Figure 55, the main geometrical
concepts of the Shocker algorithm are illustrated together with the data structure utilized to store

the nodes and segments of the PN.

root branch

\/ vector<Node*> node_list
branch T 11 11 11
I:l = Segment element

*proximal *distal
’) D = Node element
——p = Segment" pointer
| l l 2 I | i ] ]— ] - ] ] ——p = Node" pointer

/ | vector<Segment*> segment_list
terminal
branch segment (B)

(A)

S

Figure 55 — Illustration showing the different geometrical concepts related to the Shocker method alongside
the data structure used to store the nodes and segments of the PN. In panel (A), the concept
of a segment and branch is highlighted in blue and red, respectively. In addition, the initial
root branch of the PN is colored in black, while an example of a terminal branch is presented
in green. In panel (B), the data structures used to store a PN are illustrated. There are two
arrays, one of the nodes and another of segments which keep track of the current state of the
PN. Each segment has access to its parent and left/right off-springs, which are all pointers to
the segment structure. Moreover, each segment has two pointers to the two nodes that define
the segment. Using these pointers is possible to retrieve the proximal and distal coordinates
of any segment.
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APPENDIX D - Simplified mesh generation

As mentioned before, the simplified biventricular mesh was constructed by taking the

differences between three ellipsoids, one for the LV and RV endocardium and one for the epicardium.

The following equation gives an ellipsoid that is not centered on the domain origin:

(r—c)® | (y—c,)  (2—c)
a? + b2 =+ c?

=1, (D.1)

where ¢, ¢, and c, are the center coordinates.

The LV surface is built by taking the difference between two ellipsoids. The LV epicardium
given by equation (D.3) is subtracted from the LV endocardium given by equation (D.2). Similarly,
the RV surface is built by taking the difference between three ellipsoids. The RV epicardium given
by equation (D.5) is subtracted from the RV endocardium equation (D.4) and the LV surface
previously calculated. Next, the biventricular surface is assembled by joining the LV and RV
surfaces and cutting the base plane defined by x = 0. Finally, the mesh is translated to the origin

and scaled to micrometers. All described operations were done using the FEniCS library [2].

22 2 2
=1 D.2
1.52 * 0.52 i 0.52 7 (D:2)
2 g2 2
St tE=1 (D.3)
z? (y —0.5)? 22
=1 D.4
1452 1252 07 (D-4)
7 (y —05)2 22
— =1 D.5
1.752 i 1.52 12 ’ (D-5)

To build the reference PN for the simplified mesh, we use the fractal method from [16] with
the parameters given by Table 14. Regarding the parameter description from the fractal method by
Costabal et al. [16], the Root and Second node coordinates are utilized to give the initial growth
direction of the first segment. Fascicle angle and length are related to the generation of the first
segment by providing information if there will be a bifurcation after the first segment using a
specified angle. If the Fascicle angle is zero, a linear fascicle segment grows with a designated
length from the distal position of the first segment. The Repulsive parameter regulates the branch
curvature: the larger the repulsion parameter, the more the branches repel each other. The branch
angle controls the mean branch bifurcation angles. The number of iterations configures the number
of growth iterations. After the networks were generated, the structures were translated to the

origin and scaled to micrometers.
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Parameter name LV RV

Length of the first branch (mm) 10 15

Mean length of the branches (mm) 4 4

Number of iterations 5 5

Branch angle (degrees) 26 26

Repulsive parameter 0.1 0.1

Root coordinates (mm) [2.40, 37.15, 26.35]  [2.40, 49.19, 20.02]
Second node coordinates (mm) [4.84, 36.95, 26.43] [11.20, 48.81, 21.99]
Fascicles angle (degrees) 74.48 0

Fascicles length (mm) 10 10

Table 14 — Parameters used for the generation of the reference PN of the Simplified mesh.
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