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ABSTRACT

This thesis presents the analytical study of three systems of partial differential equations
that describe foam flow in porous media. The first two models consider the surfactant
concentration fixed above the critical micellar concentration: the linear kinetic model
and a simplified version of the stochastic bubble population balance model. A significant
difference between these models is the influence of critical water saturation in the first
model. The third system generalizes the second by varying the surfactant concentration
and considering gas mobility that depends on the surfactant concentration. We study
the traveling wave solutions of such systems using phase portrait analysis. All obtained
analytical solutions are confirmed using direct numerical simulations of the system of

partial differential equations. The second model is validated with experimental data.

Keywords: Foam Flow - Porous Media - Traveling Wave - Riemann Problem



RESUMO

Esta tese apresenta o estudo analitico de trés sistemas de equagoes diferenciais parciais que
descrevem o fluxo de espuma em meios porosos. Os dois primeiros modelos consideram a
concentracao de surfactante fixa acima da concentragdo micelar critica: o modelo cinético
linear e uma versao simplificada do modelo estocastico de balango populacional de bolhas.
Uma diferenca significativa entre estes modelos ¢ a influéncia da saturacao critica da agua
no primeiro modelo. O terceiro sistema generaliza o segundo variando a concentracao de
surfactante e considerando a mobilidade do gas que depende da concentragao de surfactante.
Estudamos as soluc¢oes de ondas viajantes de tais sistemas utilizando a andlise de retrato de
fase. Todas as solucgOes analiticas obtidas sao confirmadas utilizando simulagoes numéricas
directas do sistema de equagoes diferenciais parciais. O segundo modelo é validado com

dados experimentais.

Palavras-chave: Fluxo de Espuma - Meios Porosos - Ondas Viajantes - Problema de

Riemann
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close to S} indicated by a black rectangle in the panel (a). Notice
that the pinched part of Region IIT in Region IT remains and increases
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Sy Water saturation.

np Dimensionless foam texture.

ny Dimensional foam texture.

C Dimensionless surfactant concentration.
C, Dimensional surfactant concentration.
Come Critical micelle concentration.

U Total Darcy velocity.

[0) Porosity of the medium.

k Permeability of the medium.

Swe Connate water saturation.

Sor Residual gas saturation.

fu Water fractional flow function.

Aw Mobility of water phase.

Ag Mobility of gas phase.

Krw Gas relative permeability.

krg Water relative permeability.

Nomaz Maximum foam texture

P. Capillary pressure.

o Viscosity of water.

Lg Viscosity of gas.

Superscripts:
“LE” Mean the expression evaluated at conditions of local equilirium.
7 Expression is evaluated at injection conditions (Left state).

“_»

LIST OF SYMBOLS

Expression is evaluated at reservoir conditions (Right state).
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1 INTRODUCTION

Oil Recovery is commonly based on the continuous injection of an auxiliary fluid
through the injection well, displacing oil from the reservoir towards the production well.
This technique reaches its breaking point of efficiency when the injected fluid arrives at
the production well. Various Enhanced Oil Recovery (EOR) techniques aim to improve
reservoir oil production compared to conventional techniques. Enhanced Oil Recovery is
defined as oil recovery by injecting materials not normally present in the reservoir. The
definition of EOR intends to exclude all pressure maintenance processes, but it is not
restricted to a specific phase (primary, secondary, or tertiary) in the reservoir’s production
life. Primary recovery is oil recovery by natural drive mechanisms. Secondary recovery
refers to techniques, such as gas or water injection, whose purpose is mainly to raise or
maintain reservoir pressure. Tertiary recovery is any technique applied after secondary

recovery (6, 49].

Although the gas injection technique is very effective, it has poor sweep efficiency
leaving a significant amount of oil in the reservoir. Gravity override and viscous instability
are among the main mechanisms responsible for poor oil recovery by gas injection. These
phenomena are related to gas density and viscosity. Gravity override refers to the
phenomenon in which gas injected into the reservoir tends to migrate toward the upper
part of the reservoir due to its low density compared to that of oil. Since, the viscosity of
gas is inherently lower than that of most reservoir oils, the mobility of the injected gas is
much higher than that of the displaced oil. Because of this unfavorable mobility ratio, gas
tends to flow through the more permeable rock sections, and the displacement front is
subject to instability when injected gas displaces oil from a reservoir. Front instability

and gravity override lead to viscous fingering, see [68].

Alternating water and gas (WAG) injection is one option to avoid this loss of
efficiency. This method is one of several EOR techniques that seek to reduce the mobility
of the injected fluid and thus have a better oil recovery from the porous medium. Although
this method increases oil recovery, it can also be hindered by effects such as viscous
fingering formation, gravity override, and reservoir heterogeneities (see [35, 77]). There is
a way to increase recovery enhancement further. An alternative is diluting surfactant in
the aqueous phase so that the flow inside the porous medium generates foam by reducing
gas mobility considerably, consequently improving recovery efficiency. This strategy is
known as foam injection. Foam injection addresses all three causes of poor sweep efficiency

mentioned above, [67].

Figure 1 presents a schematic diagram showing the effects of gas injection with

and without foam in the porous medium.

In porous media, foam is a dispersion of the gas phase inside a liquid phase, where
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the liquid (containing surfactant) remains as a continuous phase creating a discontinuity

of the gas phase by thin liquid films called lamellae [36].

Ingjection Production Injection Production

v

(Water+Surfactant) - Alternating - Gas

Gas injection

ISR

Figura 1 — Schematic diagram showing the effects of injection gas with and without foam.

Much research in foam flow through porous media has broadly increased due to
its applications in the complex processes such as oil recovery [67] and soil remediation
[38, 86]. The non-Newtonian properties of flow and its dependence on foam generation
and coalescence turn the development of physical models of foam flow in porous media

into a challenge.

Several models have been developed for a better understanding of the features
of foam flow in porous media [3, 44, 48, 80, 94]. In the literature, there are substantial
experimental and numerical studies of this topic [3, 37, 44, 47, 48, 74, 80, 94]. However,
there are few works addressing the foam flow from the mathematical point of view

3, 46, 56, 69, 78]. It can be explained by the topic’s novelty and the equations’ complexity.

A promising classification of models for foam displacement in porous media is
based on the variable describing the foam texture (bubble density) [57, 91]. Models can be
empiric (called equilibrium models) and mechanistic (based on bubble population balance);

see [35] for more details.

Empiric foam models consider that the foam texture is defined through certain
empirical relations depending on an equilibrium between foam generation and destruc-
tion/coalescence. These models are less complex and more numerically stable [45]. However,
a model that assumes that the foam immediately attains local steady-state as the strong
foam is clearly inadequate in cases where strong foam generation is in doubt [45]. The
empiric model with water and gas was investigated using the method of characteristics in
the context of hyperbolic differential equations in [46]. The empiric foam model with water,
gas, and oil phases was investigated using Conservation Laws Theory in [78]. The authors
used n-dimensional Riemann Problem (RPn), a computer-assisted design package, to
describe all Riemann problems’ possible solutions as a sequence of shocks and rarefactions;
see [78] for details.
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Mechanistic foam models consider foam texture as an independent variable and
have a specific differential equation to describe it. These models have successfully matched
several laboratory experiments [8, 31, 48, 74]. Developing a predictive foam simulator
requires a foam model tracking the change in foam texture, which results from dynamic
mechanisms of in-situ lamellae creation and coalescence [44]. From a mathematical point
of view, mechanistic models describe foam generation and coalescence as a source term

depending linearly on the kinetic parameter [31, 45, 48, 74, 94].

Several experimental investigations point to saturation and foam texture profiles
similar to traveling waves [40, 41, 47, 48, 73, 74]. Ashoori and coauthors deal with the
foam displacement model, searching for the mathematical solution in the form of traveling

waves [2, 3].

This work aims to provide analytical solutions for systems that model foam injection.

We present numerical solutions and experimental data to validate analytical solutions.

The remainder of this thesis is organized as follows: Chapter 2 shows some
fundamental concepts and statements necessary of the foam flow in porous media and the
mathematical models used in this thesis. Chapter 3 presents the mathematical study of a
linear kinetic model called by First-Order-Kinetic model describing foam displacement in
porous media. For this study, we consider the large initial reservoir water saturation and all
possibilities of injection saturation. We observed that the model contains some structural
instabilities; and that the solution for one of the obtained cases presented localized decay
in relative gas mobility. Chapter 4 presents the study of the existence and behavior of
traveling wave solutions to a simplified version of the Stochastic Bubble Population model.
The analytical solutions obtained are validated with experimental data and the complete
model’s numerical solutions. Chapter 5 introduces a foam population balance model with
a separate balance equation for the surfactant concentration in the aqueous phase. We
consider that the Mobility Reduction Factor depends on the surfactant concentration. We
analyze the traveling wave solutions for this model. Finally, In Chapter 6, the discussions

and main contributions of this thesis are presented.
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2 MATHEMATICAL MODELING

In this chapter, we describe some fundamental concepts for understanding the
modeling of foam displacement in a porous medium. Also, we review foam flow models
used in this thesis. For more details, see [1, 7, 49, 66].

2.1 FOAM FLOW IN POROUS MEDIA

The modeling of two-phase flow in a porous medium needs some general concepts:

Porous media: In petroleum reservoir engineering, a naturally occurring porous medium
is a geological formation below the ground surface, composed of a sedimentary rock called

the solid matrix and a void connected space occupied by one or more fluid phases.

Porosity: As the sediments were deposited and the rocks were formed during past
geological times, some developed void spaces became isolated from the other void spaces
by excessive cementation. Thus, many void spaces are interconnected, while some pore
spaces are completely isolated. This fact leads to two distinct types of porosity: Absolute
porosity and Effective porosity. The absolute porosity is defined as the ratio of the total
pore space in the rock and the bulk volume. The effective porosity is the percentage of

interconnected pore space concerning the bulk volume.

The effective porosity ¢ of the medium is the ratio of the interconnected pore

volume to the total volume (bulk volume):

Pore volume

¢ (2.1)

"~ Bulk volume’

Homogeneous/Heterogeneous media: In natural formations the medium properties
change within location in the reservoir (heterogeneous media). In this thesis, we consider a
simplified case, when the formation properties do not change with location (homogeneous
media). This hypothesis is common in the literature and agrees with some laboratory

experiments.

Fluid saturation: A fluid comprises one (single-phase fluid) or many phases (multi-phase
fluid). Phase is a portion of a substance that is chemically uniform, physically distinct,
and (often) mechanically separable. It is common for three phases to coincide, dividing the
pore space, such as water, oil, and gas. However, we considered a two-phase (water and
gas) fluid to facilitate (support) the analytical study made in this thesis. The saturation

of phase o can be defined as

Saturation of phase o Pore volume occupied by the phase « ‘

2.2
Pore volume (2.2)

A medium is saturated if the sum of the saturations of all phases in the system must be

unity.
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Capillary pressure: In a petroleum reservoir, the capillary forces result from the
combined effect of the surface and interfacial tensions of the rock and fluids, the pore size
and geometry, and the wetting characteristics of the system. Any curved surface between
two immiscible fluids tends to contract into the smallest possible area per unit volume.
This is true whether the fluids are oil and water, water and gas (e.g., air), or oil and gas.
When two immiscible fluids are in contact, a discontinuity in pressure exists between both
fluids, which depends on the curvature of the interface separating the fluids. This pressure
difference is called the capillary pressure and is denoted by P.. A fluid displacement,
during the multi-phase flow, is affected by the capillary pressure’s surface forces in co-flow
or counter-flow directions. Denoting the pressure in the wetting fluid by p,, and that in
the nonwetting fluid by p,.,, the capillary pressure can be expressed as P. = Dpw — Puw-
Brooks-Corey and Van Genuchten models describe the capillary pressure as the function
of saturation [11, 24, 79, 83].

Permeability: The permeability is a property of a porous medium that characterizes
the ability of a porous medium to allow fluid flow; it increases with both porosity and
pore size. In fact, the equation which defines permeability k& in terms of the flow rate,
pressure gradient, and fluid viscosity is called Darcy’s law given below by Eq. (2.4). In a
multi-phase flow, the effective permeability k. of phase « is the phase «’s ability to flow in
the medium in the presence of other phases. These can be expressed as fractions of the
single-phase permeability k. The sum of effective permeabilities is not unity. The relative

permeability k.. of « is the ratio between the effective and absolute permeabilities:
kro = ko/k. (2.3)

There are a variety of empirical and theoretical models of water and gas relative permea-
bilities in the literature, [11, 24, 29, 53, 83].

Darcy’s law: Henry Darcy experimentally formulated a relation for predicting flow in
porous media, which will later be named in his honor as Darcy’s law, [25]. Darcy’s law
describes the hydrodynamic behavior of a single-phase flow in a porous medium. Darcy
also introduced the concept of permeability. Considering a homogeneous medium and

disregarding gravitational effects, Darcy’s Law is as follows [23]:

k
u=——Vp, 2.4
. (2.4)

where u is the Darcy velocity, p is the pressure to which the fluid is subjected, k is the

permeability of the medium, and p is the viscosity—a measure of a fluid’s ability to resist
flow—of the fluid.

The Darcy velocity (or superficial velocity), u, is defined as the effective rate of mass
displacement in the porous medium. The actual fluid velocity (or interstitial velocity), v,

occurs only within the pores because that is where the fluid actually moves. By adopting
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the continuum hypothesis, we assume that the fluid moves through the entire volume of

the medium with velocity u. The two velocities are related as follows

u = ¢u. (2.5)

In this thesis, we assume two phase flow (water and gas), which is described by
the extension of Darcy’s Law to multi-phase flows (often called Darcy’s multi-phase Law,

or just Darcy’s Law [23]):

ko
Uy = —— VPa, (2.6)

o
where the subscript « indicate the given expression corresponds to phase o € {w, g} for
water or gas, respectivly. u, is the Darcy velocity, p, is pressure, k, is the permeability,
and i, is the viscosity. Darcy’s velocity of phase « is the portion of the interstitial velocity
of phase a corresponding to the volume fraction that the o phase occupies in the porous
medium, 7.e.:

Uy = QSSO/UOU (27)
where ¢ is the porosity of medium and S, is the saturation of phase a.

Steady-state flow: The steady-state flow is characterized by invariance with the time of
all physical variables. Isotropic medium is a medium whose properties are the same in all
directions. Incompressible fluid is a fluid whose density remains constant for isothermal
pressure changes. For a unidimensional horizontal two phase flow of a homogeneous
incompressible fluid through an isotropic porous medium, the combination of Darcy’s law

and the equation of continuity yields the following equation

Ou, 0 ko Opa’\ Opa
52 = 2 < . (9x> =0 and 5 constant. (2.8)

Here, the fluid viscosity and permeability are considered constant.
Mobility: We define the mobility of phase « (its capacity to move inside the medium),
Ao, relative mobility, A, and total mobility, )\, as follows

Ao =kko/tha, Ma=kkra/pta, and po— Z)\a, (2.9)

where k, and k,, are given in (2.3).

Foam texture: In general, foams with more bubbles, and consequently more lamellae,
are the ones that most reduce the mobility of the gas. Therefore, some foam structures
are more efficient than others. Foams with many lamellae are called strong foam, while
the presence of few lamellae characterizes a weak foam. The foam texture (ny) is then

defined to quantify the number of lamellae or bubbles present per unit area or volume.

Surfactant in enhanced oil recovery: The concept of oil recovery by surfactant flooding

dates back to 1929 when De Groot was granted a patent claiming water-soluble surfactants
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as an aid to EOR. Surfactants are molecules with a hydrophilic structure at one end and
hydrophobic one at the other. These molecules could reduce the interfacial tension between
the brine and residual oil. Using proper surfactant can effectively lower the interfacial
tension resulting in a corresponding increase in the capillary number and facilitating the
formation of stable lamellae. The success of surfactant flooding depends on many factors
such as formulation, cost of surfactants, availability of chemicals, and oil prices in the
market. The solution’s superficial tension drops as the surfactant concentration increases
due to the deposition of these molecules on the aqueous surface. However, when the surface
is saturated with the surfactant, the molecules agglomerate inside the liquid in spherical
conformations called micellae. The point at which this occurs is called the Critical Micelle
Concentration (CMC). Therefore, any surfactant concentration above the CMC does not

present a significant change in surface tension.

Fractional flow: The development of the fractional flow equation is attributed to Leverett
(1941). For two immiscible fluids, water and gas, the fractional flow of water, f,, (or any
immiscible displacing fluid), is defined as:

Aw Aw

b= TN

(2.10)

where ), is total mobility.

Newtonian/non-Newtonian flow: The viscosity of a non-Newtonian fluid varies in
response to the duration and magnitude of the applied shear rate. A Newtonian fluid is
an idealized fluid such that its viscosity only varies in response to changes in temperature

or pressure. In this thesis, we consider the foam as a Newtonian fluid.

2.2 FOAM FLOW MODELS

The foam’s displacement dynamics can be described using mass balance and

bubble-population balance equations, which can be handled similarly.

If adsorption and chemical reactions are neglected, the phases are incompressible,
and the flow is one-dimensional with fixed injection rates; mass balance for fluid flow in

porous media becomes the following equation

9, 9]
a(d)Sa) + o (ua) =0, a=worg. (2.11)

If capillary pressure is taken into account, the velocity of phase « is written

depending on capillary pressure. For example, the water velocity is given by

U = Ufu + fud, VP (2.12)

The foam displacement in a porous medium can be modeled by the following

equations: the conservation of the mass for the water phase (Rapoport-Leas equation) and
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a so-called population-balance equation for foam texture:

9 0 AP, 0S.,\

a(dﬁw) +o (Ufw + fwAgdswax> =0, (2.13)
0 0

57 (95 0) + 5 (ugnp) = @, (2.14)

where np = nys/Nye, is the dimensionless foam texture, where 7,4, is the maximum foam

texture and ny is the dimensional foam texture.

The several foam displacement models proposed over the years are focused on the

gas relative permeability k,.,, water relative permeability k., the modification of the gas

g
mobility Ay, and mainly the net foam generation term ®, that actively models the dynamic

of foam generation and coalescence.

First-Order-Kinetic (FOK) model: This foam model, proposed by [2, 3|, is based on
the well-known steady-state foam behavior in porous media. It considers a large, nearly
constant, reduction in gas mobility at high water saturation and an abrupt weakening
or collapse of foam at a limiting capillary pressure (or, equivalently, at a limiting water
saturation). Foam texture in local-equilibrium (n%F) depends on the water saturation
(Sw):

niE(8,) = tanh(A (S, —S%)) if Sy, > S;, (2.15)

0 it S, <S5,

with constant A. The dynamic foam net generation in (2.14) is given by the first-order
approach to local-equilibrium bubble texture at any saturation, with a time constant 1/K,,

as follows

¢

nmaz

= Sg [Tg - TC]? [Tg - Tc] = KcNimaz (nlL)E<Sw> - nD), (216)

where r, and r. are the generation and coalescence functions, respectively. 7,4, is the
maximum foam texture (reflecting a lower limit to bubble size), see [2, 3, 45].

In this model, the viscosity is considered constant (i.e., the fluid is Newtonian) the

gas mobility reduction modifies the gas relative permeability £, , as follows:

— k?g(sﬂi) — k’?g(s’w)
MRF(np)  18500np + 1’

krg(Sws D) (2.17)

where k)

Factor (MRF) is assumed as 18500 for the strongest foam and MRF as 1 for no foam.
MRF is interpolates as a linear function of foam texture between those two foam extremes,
see [2, 3, 93]

gas relative permeability in the absence of foam. The large Mobility Reduction

Stochastic Bubble Population (SBP) model: The model proposed by Zitha and Du
in [94] is based on foam rheology and stochastic bubble generation ideas. Inspired by [2, 3],
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we seek the mobility reduction factor (MRF) as a linear function and the viscosity constant,
thus obtaining Newtonian flow. So we correlate the gas phase mobility expressions for both
models: FOK [3] and SBP model [37, 94]. One contribution of this thesis is investigate

the Newtonian version of SBP model.

Here, the modification of gas mobility is accomplished in terms of the foam rheology

theory. The net bubble generation is expressed as
b = ¢Sg[Kg(1 — TlD) — Kan], (218)

or, equivalently,

K, (2.19)

®=¢S, (K, + Kq)(np — ="t
¢Sy (Kg+ Ka)(np” —np),  np Kot K,

where K, and K, are the bubble generation and bubble destruction rate coefficients,

respectively.

Therefore, this model simplifies foam description in porous media without signi-
ficantly sacrificing the physics. The SBP model does not contain any arbitrary terms
relative to trapped gas. This model contains only three parameters (K, Ky, and npaz)-
In fact, since bubble and pore volumes are approximately equal near the steady-state, a
rough estimate of 1,4, is the number of pores occupied by gas, i.e., Npae = Sy¢/r®, where
r is the mean pore radius. Hence, we are left with only two parameters to be determined

by fitting the solution of the bubble population’s evolution to experimental data.

2.3 CONSERVATION LAWS

A conservation law states that when there is no production or consumption, the
variation of a quantity conserved in a fixed domain is equal to the inflow minus the outflow
in the domain, see [27, 65]. Let 2 C R be in a fixed region of space through which the fluid
flows; €2 is called the control volume. Applied to this control volume, the fundamental

physical principle that mass is conserved means that

volume across its boundary within the control volume

( Total mass transfer rate out of the control ) B ( Rate of change of mass )

where the vector function S : ¥ C R x R, — R” represents the quantities to be conserved,
such as mass, moment, and energy; ¢ = F(S) denotes the density of the mass flow (or
the mass flow); and the function F': R" — R" is called a flow function, where each of its
components represents the flow of the associated quantity [65]. The conservation law of

mass can be expressed mathematically in integral form:

d
- [ alat)ds = %/QS(J:,t)dV, (2.20)
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Therefore, the mathematical expression for the conservation law of mass in a fixed control

volume (2 is the integral equation

JRINER o

The divergence theorem allows to obtain a differential equation from this integral equation.
Substituting this expression into the mass conservation law, and passing the derivation

operator inside the integral

/Q [gf + diV(F(S))] — 0. (2.22)

Since the conservation law of mass is valid for any arbitrary 2 control volume, the
conservation law can be expressed mathematically as the partial differential equation of
evolution (2.11) or (2.13) that briefly we write as

S, + (F(S)), = 0. (2.23)

Following [65, 82], we consider the Eq. (2.23) as a strictly hyperbolic equation, that
is, each matrix F”(S) has distinct eigenvalues A1 (S) < -+ < A\, (S), thus there exists a base
of R™ composed of eigenvectors {r(S)}}_;, where each pair (Ax(S),7(S)) is an eigenpair
for F'(S). The system’s eigenvalues and eigenvectors are called characteristic velocities
and characteristic vectors of the system, respectively. The term “k-family”, 1 < k < n,

refers to the k-th eigenpair.

A problem involving conservation laws generally has initial conditions and, when
the spatial domain is limited, boundary conditions. Cauchy Problem is a classic type of
Initial Value Problem (IVP) in which

S(x,0) = Sp(x), —00 < & < 00. (2.24)

In this case, Sy is the initial condition for the solution S of the problem. A particular case
of the Cauchy problem widely used in the theory of conservation laws and the development
of numerical methods is the so-called Riemann Problem, in which the initial condition is

of the form

S ifx <0,
Solz) = { St oifz >0, (2.25)

where the constant vectors S~ and S™ are the left and right states, respectively.
As [65], for the IVP (2.23)-(2.25) we define characteristic curve of the k-family as
the parameterized curve (x(t),t) that satisfies the following
' (t) = M (S(z(t),t)), t>0, (2.26)
z(0) = o, (2.27)
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for some xg.

A differentiable solution that satisfy the Eq. (2.23) is called strong (classic) solution.
A generalized solution can be admitted for cases where it is impossible to obtain a robust

solution.

Following [65], we say that S is a weak (generalized) solution of the conservation
law (2.23) and (2.25), if

[ 1800+ FS) duldadt + [~ Sow) o, 0)dz =0, (2.28)

for all ¢ € C°(R x [0, 00)) with compact support.

Generally, the weak solution to a conservation law problem is not unique; using

additional criteria is necessary to find a physically relevant solution.

One way to find a physically relevant solution is to add a small diffusion in the

conservation law (2.23), which results in the so-called viscous form

S5+ (F(S))a = €S

Tx?

(2.29)

where € is a positive constant. Thus, the Eq. (2.23) will be called inviscid equation. In
some cases, it is possible to verify the uniqueness of the viscous profile solution. Then,

uniqueness can be extended to the inviscid form through the limit

S = lim S°. (2.30)

e—0

Finding the solution 5S¢ is not simple; the other method to find a unique solution for the
inviscid equation is using the so-called entropy conditions, explained below.
2.3.1 Shock waves and Hugoniot Locus

The solution of Riemann problem (2.23) and (2.25) consisting only of a shock is
given by

ST ifxr<st
S(x,t) = ’ 2.31
(z.1) {S+ if © > st, (2:81)

where s satisfies the following proposition.

Proposition 2.3.1. A discontinuity between S~ and ST in a solution of the Riemann

problem of a conservation law must satisfy the condition
F(SH)—F(S7)=s(St-5), (2.32)
for some velocity s. This condition is known as Rankine-Hugoniot condition.

The demonstration of this proposition can be found in [65, 75].
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Let S be a fixed state (left or right), the set of states S that can be connected to
S through a discontinuity (that is, $ and S satisfy Eq. (2.32) for some s) is called the
Hugoniot Locus for the state S. This problem results in a system with n equations and
n + 1 unknowns since the velocity s is unknown. For F’ smooth enough, it has been proved
in [52, 75] that the solution set is a family of n curves branches containing S. These
branches accept differentiable settings, and the function s on them is also differentiable.

The analysis that follows considers this particular case.

Let Sy be a parameterization of one of the n-branches of points that satisfy the
Eq. (2.32) such that Sj(0) = S. If s,(€) is the velocity function for each point in this

branch, the Rankine-Hugoniot condition becomes

F(Sk(€)) — F(S) = s1,() (Sk(€) = S). (2.33)

Assuming Sy and s; to depend smoothly on &, we find after differentiating

F'(Sk(€))54(€) = s1(6) (Sk(€) — ) + s1(€) Si(©). (2.34)
When evaluating the derivative of the above expression at the point £ = 0, we obtain
F'(S)(54(0)) = sx(0) 5,(0), (2.35)

such that the eigenvector Tk(g ) is tangent to the curve branch parameterized by Si in
€ = 0, where this branch is associated with the k-family. In addition, s,(0) = Ax(S).

The state S is in the Hugoniot locus of S if the discontinuity satisfies the Rankine-
Hugoniot condition, regardless of whether this discontinuity could exist in an inviscid
solution. We now define an entropy condition that can be applied directly to a discontinuous
weak solution to determine whether the discontinuity should be allowed. The following

definition is necessary to present the entropy conditions proposed in [52].

Definition 2.3.1. The k-th field of characteristic eigenvalues is said genuinely non-linear
[75], if
VA:(S) ri(S) # 0, vS. (2.36)

In other words, a field Ay is genuinely non-linear if the )\, function is monotonous,

increasing or decreasing over any integral curve of the vector field ry.

Definition 2.3.2 (Lax entropy conditions [65]). If the k-th field of characteristic eigenva-
lues is genuinely non-linear Lax’s entropy condition says that a discontinuity between S~

and ST is admissible only if
Ae(S7) > s> M\(ST), (2.37)

where s is the velocity of discontinuity.
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2.3.2 Rarefaction waves

The solution of Riemann problem (2.23) and (2.25) consisting only of a rarefaction

wave is given by

S~ if © S Slt,
S(x,t) =< Gla/t) it &Gt <z <&t, xR, >0, (2.38)
S+ if x > fgt,

for some pair (&1, &) such that & < & (here, S~ = G(&), ST = G(&), & = M\e(S7), and
& = M\ (ST), see [65] for details). The function G characterizes the wave and must be
determined for each type of equation, The function G is determined by the function F

given in Equation (2.23).

An integral curve of ry for a single k-family is a curve which has the property
that the tangent to the curve at any point S lies in the direction r(S). If Sk(§) is a
parameterization (for £ € R) of an integral curve in the k-th family, then the tangent

vector is proportional to r,(Sg(§)) at each point, i.e.

Sk(&) = a(&)ri(Sk(€)), (2.39)
where () is some scalar factor, see [82] for more details.

We suppose F' is smooth enough for the following calculations. By deriving G,
given by (2.38), in time and space and replacing the result in the conservation law (2.23),
we obtain

5 C @ ft) + S F(Gla/1) O /) =0 (2.40)

Rearranging the terms and denoting £ = z/t, we obtain
F(G(£)) G'(€) = £G'(6)- (2.41)

Since the function G is expected to be smooth and connect the two states S~ and
ST, it is assumed that G'(§) # 0, that is, G'(£) is proportional to some eigenvector G'(§).
Since the eigenvectors are linearly independent, G’(£) must be proportional to only one of

the n eigenvectors, so that G(§) lies on the integral curve of r; for a single k-family.

A rarefaction wave between two states S~ and ST is obtained in the same integral
curve of the k-family, whether £ be monotonously increasing between the states. Note
that the relation

£ = M(G(9)) (2.42)
is valid, so that the monotonicity of A; over the integral curve is equivalent to the
monotonicity of the parameter . For cases with genuine non-linearity of the k-field of
eigenvalues, G(&) is a parameterization of the respective integral curve of the eigenvector

rr and for this type of wave, the characteristic curves are
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The details of calculating the expression G(&) are shown in [65, 75, 82].

2.4 BALANCE EQUATION

There is a possibility that mass is created or destroyed through some internal or
external source (e.g., through chemical reactions or nuclear processes, among others).

In this case, the physical principle of conservation of mass needs to be rewritten as follows [9]

Total mass transfer rate out Rate of mass creation Rate of change
of the control volume +| or destruction within | = of mass within
across its boundary the control volume the control volume

Let €2 C R be a region of space fixed through which the fluid flows; €2 is called a
control volume, p is the density of the fluid and ¢ is the density of the mass flow. If F(z,t)
is the rate of mass creation or destruction (the rate has a negative sign if mass destruction

occurs), the conservation law of mass becomes

d
e 1)V / t -_>dS:/F 1)V, 2.44
= | platyav + [ glat)-7tds = [ Fat) (2.44)
and the corresponding differential equation, through the divergence theorem, is given by
d :
/Q ol )V + /Q div(q(z, 1))dS = /Q Fa,1)dV, (2.45)
Since the control volume (2 is arbitrary, the balance equation is obtained
0
o+ div(g) = F. (2.46)

The balance equations are formulated at the microscopic level from classical continuum
mechanics for each phase of the porous medium and are then transformed to the macroscopic

level.

Notice that the foam displacement model studied mathematically in this thesis and

presented in Section 2.2 is composed by a conservation law (2.13) and a balance equation
(2.14).

2.5 THE METHOD OF CHARACTERISTICS AND TRAVELING WAVE

The method of characteristics allows us to solve partial differential equations
(PDEs) as a system of ordinary differential equations (ODEs) along certain curves in the xt
plane. Buckley and Leverett solved the Riemann problem (explained below) for two-phase
flow using the method of characteristics [13]. They gave rise to an ingenious graphical
construction, discovered independently by Oleinik for general scalar conservation laws [61].
In the context of Buckley-Leverett theory, the foam flow is composed of constant states

(where the one on the extreme left corresponds to injection conditions and the one on the
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extreme right to the native reservoir) separated by rarefaction waves and shock waves,

where:

e Rarefaction (spreading) waves are continuous solutions, which are invariant

under the scaling * — ax,t — at for any a > 0.

e Shock (discontinues) waves are solutions corresponding to discontinuities in the
saturation along a fractional-flow curve. There are two rules for shocks. Firstly, there
are algebraic conditions derived from material balances on components involved in
displacement (Rankine-Hugoniot conditions [75]). Secondly, the shock-front profile
must approximate a valid traveling wave solution for the same boundary conditions

(left and right constant states).

e Traveling waves are solutions characterized geometrically as a wave that moves
with a constant velocity maintaining the profile, as shown in Figure 2. These solutions
only depend on the traveling variable & = x — vt, which means that the original
system of PDEs is transformed into a system of ODEs. Traveling wave solutions
appear in nonlinear transport problems involving balance equations [84] and others
physical problems, [16, 18, 33, 84]. Note that the traveling wave not associated with

any shock wave can exist, precisely the foam flow case examined in this thesis.

—d —> ©
jfe— Az = vAt —>

Figura 2 — Schematic representation of a traveling wave that moves with a constant velocity v.

Definition 2.5.1 (Traveling wave solution). A solution S, (z,t), np(x,t) of System (2.13)-
(2.14) is a traveling wave connecting the left state (S, ,np) € R? and the right state
(S:,n}) € R, if there exists a velocity v € R and functions S,,(€) and 7ip(€) such that

Sy(z,t) = Su(€), np(z,t) =np(€), &=z —out, (2.47)
lim S,(&) =SE,  lim np(E) =ns. (2.48)

E—+oo E—+o0



35

Definition 2.5.2. A bounded traveling wave solution that is monotonic, but not constant,
and such that

lim (S,(€),7p(€)) = (Sy,np), (S, np) # (S, np). (2.49)

E—+oo

for some S, np, S, nf, € [0,00) are equilibrium points of the reaction term, is said to

be a wavefront solution from (S, ,np) to (S, n}).

One standard procedure to find traveling wave solutions consists in analyzing the
phase space [76]. In the context of foam dynamics, it was used by Ashoori and colleagues
[2, 3, 4]. We can summarize this procedure as follows. (1) Rewrite the system of PDEs
in traveling wave form w’ = g(w), where w represents the vector (S,,np) and prime
represents the derivative in €. (2) Locate all equilibria in the system (g(wg) = 0) and
classify them according to the sign of the eigenvalues of the Jacobian of the flux at the
equilibrium (Jg(wp)); (3) Show the ODE solutions (also called connection [84]) that
approach both equilibria asymptotically.

Equilibrium points appearing in this thesis are classified according to their ei-
genvalues as follows. For other types of equilibria and corresponding classification, see
(34, 76].

e An equilibrium with two real positive eigenvalues is called a source;
e An equilibrium with two real negative eigenvalues is called a sink;
e An equilibrium with two real eigenvalues of different signs is called a saddle point;

e An equilibrium with two complex conjugate eigenvalues is called a sink or source
(spiral) point depending on whether the sign of the real part of the eigenvalues is

positive or negative;

e An equilibrium with one zero and other nonzero eigenvalues is called a node.

The method for locating connections used in this thesis is performed computationally
and is based on the initial conditions’ smart choice, for more details, see [3, 19]. This
method works well when there are no null eigenvalues, which is the case in this text.
Notice that building a connection between two equilibria asymptotically is not always
possible. Considering connections with direction from the left state (a-limit) to the right
state (w-limit), there is no connection in the following cases: (1) right equilibrium is a

source, (2) left equilibrium is a sink, or (3) left equilibrium is a complex sink.
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3 MATHEMATICAL PROPERTIES OF THE FOAM FLOW IN POROUS
MEDIA

This chapter is a reprint of work published in Computational Geosciences, 2021 by
Springer, [56]. DOI: 10.1007/s10596-020-10020-3.

In the current chapter, we use the model presented by Ashoori et al., [2], where
the kinetic parameter is K.. One form determining the kinetic parameter is analyzing
the length of the entrance region (more specifically, the length it takes to form a foam in
equilibrium) [45], which can be narrow [2] making it challenging to estimate K. correctly.
The kinetic parameters can also be estimated in laboratory experiments focusing on the
transient foam flow in a homogeneous porous medium containing a surfactant solution;
see [74], where it was done for a simpler model. One of the present chapter goals is to
show how small changes of the kinetic parameter can influence mathematical solutions of

the foam flow models and, consequently, impact numerical simulations.

We follow the approach used in [2, 3] and considered the apparent gas viscosity,
proposed in [37, 59], independent of gas velocity to investigate a traveling wave solution
of the same simple mechanistic foam displacement model. Although this simplification
essentially transforms foam displacement into a Newtonian flow, it showed good agreement
with experiments and allowed a mathematically accurate analysis. Also, we obtained the
complete classifications of all possible traveling wave solutions and Riemann problems. In
this sense, the current chapter generalizes one presented in [3], since [3] only obtained
the solution for three points in the foam generation/coalescence kinetic parameter space
S, x K.

The presented classification allowed us to find two types of structural instabilities
that need to be considered in numerical simulations of the foam flow in a porous medium.
One of them can influence the numerical solutions by introducing oscillations. The other
one is responsible for the abrupt decay in the total relative mobility close to the critical
pressure point. Such behavior was already observed in the simulations described in the
literature [30, 68, 72, 81].

This chapter is organized as follows. In Section 3.1, we introduce the mathematical
and physical concepts used in the analysis, describes the foam displacement model and
summarizes the main results found in the literature [2, 3]. In Section 3.2, we begin the
investigation of the model by analyzing the critical points of the vector field associated
to the system of ordinary differential equations that describes the traveling waves. In
Section 3.3, we classify the equilibria found in the previous section. In Section 3.4, the

main results are presented and discussed together with final remarks.
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3.1 MATHEMATICAL FOUNDATIONS AND THE PHYSICAL MODEL

The model is based on the fractional-flow theory used to describe the immiscible
flooding since the ’40s (see [13]) with several applications for EOR techniques [49, 64, 85],
among others. In the context of foam displacements, the fractional-flow theory was first
applied by Zhou et al., [92]. The following standard assumptions are considered in this
chapter: 1D horizontal flow, incompressibility of all phases, immediate attainment of local
steady-state mobilities, Newtonian mobilities, absence of dispersion, absence of viscous
fingering, and small capillary pressure gradients. The water fractional flux function f,, is

given by [13], as defined in Section 2.1. Remembering

Au A = kK and A\, = kkm, (3.1)

fw = 5 w )
Aw + )‘g jn Hg

where A\, and A, are the mobility of water and gas phases, respectively. k denotes the
permeability of the medium, relative permeabilities of water and gas phases are denoted by
Ky and k.4, while corresponding viscosities are given by i, and jiy. The porous medium
is considered to be fully saturated, i.e., S,, + S, = 1, where S,, and S, are water and gas
saturations. In the foam displacement context A\, and f,, depend on the foam texture or

the bubble size ny, defined as the number of lamellae per unit volume of gas-phase [3].

The fractional flow theory describes the physics of the displacements in porous
media in terms of hyperbolic partial differential equations, which can be solved analytically

by the method of characteristics (also known as Conservation Law Theory).

3.1.1 The model

As this chapter relies on existing models, we will summarize the results found in
the works [2, 3]. In this chapter, we study the System (2.13)-(2.14) with (2.16) and use

the parameter values given in [2, 3] and summarized in Table 1.

Tabela 1 — Parameter values for the foam displacement in porous medium [2].

Symbol Parameter Value & unit
Swel] Connate water saturation 0.2

Sgr[-] Residual gas saturation 0.18

e [Pas]  Water viscosity 1-1073
f19[Pas] Gas viscosity in absence of foam 2-107°

k [m?] Permeability of the medium 1-10712

o[- Porosity of the medium 0.25

u[ms™!] Total superficial velocity 2.93-107°
Nmae M™3]  Maximum foam texture 8.10"

Sk Critical water saturation 0.37

Al Foam parameter in the model 400
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The population-balance model for foam displacement in a porous medium is

described by the water mass balance (Rapoport-Leas equation) and the foam texture:

0 9 dP, 9S,\
0 0
a(@ssg nD) + %(Ug 7’LD> = (I), (33)

where ¢ is the porosity, u is the superficial velocity of the mixture (water+gas), P. is the
capillary pressure, u, is the superficial velocity of the gas phase, ny is the dimensional
foam texture, np is the dimensionless foam texture np = ny/Nmay, Where n,q, is the
maximum foam texture. The foam generation source term ®, inspired by a linear kinetic

model [94], is written as

¢

nmax

= Sglrg —rd] = ¢ Ko (1 — Sy) (nLDE(Sw) —np), (3.4)

where 74 and 7. are the generation and coalescence functions, K, is a constant representing
the foam creation rate. The term nkP is the Local-Equilibrium (dimensionless) foam

texture, which is given by

tanh(A(S, — S%)) if S, > Sz,

. (3.5)
0 if S, < S,

nlL)E(Sw) = {

where A is a constant and S}, is the critical water saturation (at which foam collapses).
The gas Mobility Reduction Factor (MRF) [2, 3] due to the presence of foam is a simplified

version of the apparent viscosity considering constant gas velocity
MRF(np) =18500np + 1. (3.6)

The relative permeabilities [2, 3] are

Ky (Sw)
_ rg
g MRF(TLD) ) (37)
0.94 if 0<S, < Sue,
1— 8, — S, \"°
kg (Sw) = QM(wf”> if Spe < Sy <1— S, (3.8)
I 1 - ch - Sgr g
0 if 1-8, <S,<1,
and
0 if 0< Sy < Sue,
Sw—Swe  \
krw(Sw) = 02<wwc> if Sye < Sy <1— S, (3.9)
- ch - Sgr g
0.2 if 1-S8, <S,<1,

where S, is the connate water saturation and Sy, is the residual gas saturation. The

capillary pressure is given by
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0.022 (1 — S,y — Syy)°
(Sw - ch) ’

P, = 15,000 x ¢ =0.0L. (3.10)

The factor (1—Sy,.—Sy-)¢ with very small ¢ guarantees a continuous function at residual gas
saturation, while hardly affecting capillary-pressure values at the other water saturation,
see [3].

The system of PDEs (3.2)-(3.3) was solved as a Riemann problem, i.e., a problem
with the initial conditions in the form of a step function:
S, if =<0, ny if <0,

Sw(z,0) = and np(x,0) =

(3.11)
St if x>0, nt if x> 0.

7

The superscripts “+” and “—” mean the given expression is evaluated at conditions

downstream and upstream of the wave (right and left states), where ny, = nF (S, ) and
nj = np” (S5).
A traveling wave solution of System (3.2)-(3.3) is defined as in Section 2.5.

By abuse of notation, the tildes are dropped from now on. Considering vs = v /u
and substituting the expressions (2.47)-(2.48) into (3.2)-(3.3) results in the following
system of ODEs describing the variation of water saturation and foam texture within the

traveling wave:

dSy, U[fw — VsSy — (fw - UsSw)ﬂ

- _ _fw)\g;% , (3.12)
dnp _ ¢ K. (1~ Su) (nj"(Sw) — np) (3.13)

dg B nmawu(l_fqt_vs(l_s{;))

In this chapter, we are interested in solutions associated to the vector field of (3.12)-(3.13)
connecting the left state to the right state yielding the existence of the traveling wave
solution of System (3.2)-(3.3). We call such a solution by the traveling wave connection
from the left state to the right state. In this chapter, we do not deal with connections in

the opposite direction.

Ashoori and colleagues derive the equations describing the traveling waves ap-
proaching shock waves during a foam displacement without the simplification of foam
equilibrium [3]. Besides, the capillary-pressure gradients were also considered. The authors
investigated the solution structure for the boundary conditions® (S, np) = (0.372,0.664)
and (S, n}) = (0.72,1.0) for three values of the kinetic parameter: K. = 200, K, = 1
and K, = 0.01.

For the cases K. = 200 and K, = 0.01, using the parameter values in Table 1,

the left and the right states were classified as a source and as a saddle, respectively.

I Mathematically, ngE # 1 for any value of 5,,. However, for S, > 0.415 the distance from 1

is below the machine precision. We follow [3] and abuse the notation nk¥(0.72) = 1.
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These cases are represented in the parameter plane S, x K, in Figure 4 with the points
A = (0.372,200) and C' = (0.372,0.01). For the case K. = 1, the left state was classified as
a spiral source (complex eigenvalue with positive real part), the right state was classified as
a saddle. They show that the foam dynamics within the traveling wave lead to oscillations
and stressed that these are not numerical artifacts, but reflections of the model. This case
is represented in the parameter plane S, x K, in Figure 4(b) with the point B = (0.372, 1).

In all cases, there is a valid traveling wave solution.

Notice that the complete analysis of the parameter space S, x K. was not performed.

Although it leads to some new results, as shown in the present chapter.

3.2 EQUILIBRIUM STATES

The focus of the present chapter consists in classifying all traveling wave solutions
for System (3.12)-(3.13). Traveling wave solution always connects equilibria in the sense
of ODEs, see [84]. Thus, in order to do the classification, we fix states (S, ,n,) and
(S, n}), and study the singularities of the vector field associated to the right side of
System (3.12)-(3.13), i.e., all states (Sy,np), such that

0Sw onp fr—fs
875 = O, 675 = 0, where Vs = m (314)
is the Rankine-Hugoniot jump condition [75], which coincides with the traveling wave
velocity in this case. Substituting (3.14) into (3.12)-(3.13) yields
u[fw - UsSw - (fw - UsSw)+]
=0, (3.15)
_f w)‘g ccllg:
¢(1 = Su) (rg —e)
Nmaz U (1 —fd = US(l - S;;))

=0. (3.16)

Equation (3.16) results in S,, = 1 or r, = r.. For the water saturation in the interior
of the definition interval (S,. < S, < 1 —Sy,), only the option r, = r. is valid. Using
Eq. (3.4) it follows that the dynamic foam texture is in local-equilibrium np = nkF(S,,).
Therefore, Equation (3.15) is solely a function of water saturation and its denominator is
not null. Then, the equilibria of the vector field associated to the System (3.12)-(3.13) are

given by the solutions of
fuw(Sw, nEE(Sy)) = 1Sy — (fuw — v5Sw)T =0, (3.17)

where (S;,np) and (S, n}) are the states given by (3.11). By abuse of the notation,
we denoted fLF(S,) = fu(Sw, nEE(S,)) henceforth. Notice that (S, np) and (S, n})
also are singularities of the vector field associated to the System (3.12)-(3.13) and they do
not depend on K,.. The number of equilibria can be two or three depending of the state

(S, ,np). To see this, notice that (3.17) represents the intersection between the curve
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of fractional flow function in local equilibrium (see Figure 3) and the straight line that
passes through the points (S, ,np) and (S, n}) with slope v, = v,(S,,, S;) defined in
Eq. (3.14).

1t
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0.6
fLE
04} £
0.2} _
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w

Figura 3 — Equilibria of System (3.12)-(3.13) belong to the intersection of the curve (Sy, fZ¥(Sy))
(solid red curve) and lines passing through (S, fZ#(S})) with slope vs (dashed black
lines). Depending on the value of S, relative to S, there are two or three equilibria.

Remark 3.2.1. Figure 3 shows the case where S} = 0.72. Notice that there is a point
SP such that (S%, f2) lies on the straight line which passes through the points (S, 0)
and (S, f.F). There are three possibilities:

o If S,c < S, < S, there are three equilibria S, S¢ and S, such that S, < S¢ <
St

o IfS: < S, < Sb thereare three equilibria S, S¢ and S., such that S¢ < S, < S.

e In other cases, there are only two equilibria S, and S .

3.3 CLASSIFICATION OF SOLUTIONS

In this section, we classify the solutions of System (3.2)-(3.3) with initial data
(3.11) for a fixed right state S,/ varying the left state S;, and the foam kinetic rate K. as
plotted in Figure 4. This classification is based on the analysis of traveling wave solutions,
which are solutions of System (3.12)-(3.13) with boundary limits (2.48). The traveling
wave type is determined by eigenvalues of the Jacobian matrices associated to the vector
field in (3.12)-(3.13) in neighborhoods of equilibria (S, ,np) and (S}, n}).

As the system is bidimensional, there are two eigenvalues of the Jacobian matrix.
The notation used here is Ay = A\ (S, np) and Ay = Ao(Sy, np). When the eigenvalues are

real, we assume \; < Ao. In the complex case the real parts are equal: Re(A;) = Re(Aq).
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Figura 4 — Classification of the eigenvalues of the Jacobian matrix associated to the vector field
(3.12)-(3.13) in the semi plane {(Sy, Kc) : Swe < Sp < 1 =8, 0 < K. < oo}
(a) Classification of regions of S, associated to SJ} = 0.72. (b) Zoom of regions
close to S}, on a small box of Figure(a). The dotted line represents the vertical line
Sy =St

In what follows, the superscript (—) and (4) denote the eigenvalues associated with the

left and the right states, respectively.

We begin considering regions I, IT and III. As the analysis inside regions IV and
V depend on the analysis of the Region VI, we first discuss the Region VI and then we
continue with regions I'V and V. The equilibria classification in each region are summarized
in Table 2.

Tabela 2 — Classifications and type of solutions for each region showed in Figure 4.

Region (S,,,np) (SH,n}) Classification of Solutions
I Saddle Source Rarefaction

11 Source Saddle Traveling Wave

II1 Complex Source Saddle Oscillating T. Wave

v Complex Sink Saddle Seq. of Waves (Oscillating)
\% Sink Saddle Seq. of Waves

VI Saddle Saddle Seq. of Waves

To solve PDEs (3.1), we chose the nonlinear Crank-Nicolson implicit finite-difference
scheme combined with Newton’s method to perform numerical simulations, see [50] for

details. This scheme is second-order accurate in space and time. To solve the system of
ODEs (3.12)-(3.13), we use the routine ode/5 of MATLAB.

In each region in Figure 4(a) we analyze the existence of a traveling wave solution,

and, in case there is no such, we present the construction of a Riemann problem solution.



43

3.3.1 Region I

Traveling wave solution. Consider the state S, > S

Figure 4(a). In this case we have A\] < 0, Ay > 0, A\{ > 0, and A\J > 0. Thus the left state

is a saddle, and the right is a source. Considering that in this text, a connection possesses

with S, in Region I, see

a direction, it follows that there is no traveling wave connection from the left state to the

right state. Therefore the solution does not possess a traveling wave.

Riemann problem solution. Notice that the left and right states are in the set
FEEN £,,(Sw, 1). As np = njf = 1 with fractional flux given by the function f,,(S,,1). The
resulting two phases flow is governed by the Buckley-Leverett (BL) equation, see Figure 3.
Therefore the solution corresponds to a rarefaction wave with increasing characteristic
velocity. Figure 5(a) shows the traveling wave connections and the equilibria in the phase

space. Figure 5(b) shows the profile solution for this case.
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0.6 0.7 0.8 0.85
Sw g %1078

Figura 5 — Case (Sj,n}) = (0.72,1), K. = 1, and (S,,np) = (0.81,1.0) corresponding to
Region I, see Figure 4. (a) Solutions of System (3.12)-(3.13) in the phase space.
There is no traveling wave connection from the left state (S;;,np) to right state
(S;,n3). (b) The numerical solution of the Riemann problem (3.2)-(3.3) consists of
a rarefaction wave connecting (S, ,np) to (S, n}).

3.3.2 Region 11

Traveling wave solution. Consider the state S, < S;, with S, in Region II, see
Figure 4. In this case we have A\] > 0, A; > 0, A <0, and \J > 0. It means that the left
state is a source and the right state is a saddle. As we see in Remark 3.2.1 there are two
possibilities: S < S < S} or S, < S?. In the first case, the only equilibria are the left
and right states. In the second case, we have another saddle type equilibrium (S¢, n%),
however S, <S¢ < Sp. Thus, in Region II there exists a traveling wave connection from
the left state to the right state, see Figure 6(a). Therefore, a solution in the form of a

traveling wave is possible with solution profile plotted in Figure 6(b).
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Figura 6 — Case (S;},n}) = (0.72,1), K. = 200, and (S,;,np) = (0.372,0.664) corresponding to
point A in Region II, see Figure 4(a). (a) Solutions of System (3.12)-(3.13) in the
phase space. There is a the traveling wave connection from (S;,np) to (Si,nh).
(b) The numerical solution of the Riemann problem (3.2)-(3.3) consists of a traveling
wave connecting (S ,np) to (S7,n}h).

3.3.3 Region III

Traveling wave solution. Consider the state S, < S}, with S, in Region III, see
Figure 4. In this case we have that A\ and \; are complex conjugated with Re(\]) =
Re(A\y) > 0, meanwhile A\{ < 0 and A\j > 0 are real. It means that the left state is
a complex source, and the right state is a saddle. The traveling wave overshoots and
oscillates around the left state with a decreasing amplitude as the traveling wave passes.
Figure 7 highlights the oscillations around state S,,. As was discussed in [3] the oscillations
within the traveling wave are not numerical artifacts, but reflections of the model. Notice
that in Figure 4(b) there is a thin “pinched” part of Region III inside Region II. We go

into more detail on this phenomenon in Section 3.4.

3.3.4 Region VI

Traveling wave solution. Consider the left state S, < S} in the Region VI, which
satisfies S, < S, < S7, see Figure 4. In this case A\] <0, \; >0, A\{ <0, and \J >0
yielding both left and right states are saddles. As it is known in the context of dynamical
systems, a connection between two saddle-points is structurally unstable, see [34]. This
means that small perturbations in the parameters cause the traveling wave connection
between saddles to break. One possible procedure to find these saddle-saddle connections

in the context of foam displacement is described in [4].

In our case, fixing the right state S; = 0.72, for all K, there is a unique S;;, such
that S,. < S, < S, with a traveling wave connection from (S, ,np) to (S, n}). The
set of all possible states (S;,, K.) form the set C, which is a curve inside {(Sy, K¢) : Swpe <
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Figura 7 — Case (S;,n}) = (0.72,1), K. = 1, and (S,,np) = (0.372,0.664) corresponding to
point B in Region III, see Figure 4(b). (a) Solutions of System (3.12)-(3.13) in the
phase space. There is an oscillating connection from (S, np) to (S, n}). (b) The
numerical solution of the Riemann problem (3.2)-(3.3) consists of an (oscillating)
traveling wave connecting (S, np) to (S, nh).

8"

Sw < S¥, 0 < K, < oo}, see Figure 8. Therefore, given a value of K, the only remaining
possibility for a traveling wave solution for states S, Sy. < S, < S, is that (S, K.)

belongs to the curve C. For the construction of the curve C see Section 3.3.4.1.
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Figura 8 — Zoom on the Region VI from Figure 4(a) corresponding to (S;,n}) = (0.72,1).
The curve C (red) is formed by points (S,,, K.), such that there is a saddle-saddle
connection between (S,,,np,) and (S;;,n7,). Points a (left of C), 8 (on C) and  (right
of C) are in Region VI.

Riemann problem solution. For a given left state in the Region VI | which satisfies
Swe < S, < Sk there are three possibilities for a solution of the original PDE System (3.2)-
(3.3). Consider a fixed value for K. and let SC be the corresponding saturation value such
that (S¢, K,) is on the curve C.

If S, < S¢, there is no possible traveling wave connection between the left and

right states. There is another equilibrium (S¢, n%) between (S, np) and (S;, n},),2 which

2 LE

Point (S¢,n$) stays between (S, ,np) and (S, n}) along the curve np(Sy) = nkF(Sy),
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is a source, and it prevents the direct connection as shown in Figure 9(a). Then, this case’s
solution consists of a rarefaction from (S ,np) until (S¢,n%) with increasing velocity
followed by a traveling wave to (S;7,n},). Figure 9(b) shows the solution profile for the

point « plotted in Figure 8.
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Figura 9 — Case (S}, n}) = (0.72,1), K. = 10, and (S,,;,np) = (0.205,0) corresponding to point
a in Region VI, see Figure 8. (a) Solutions of System (3.12)-(3.13) in the phase space.

There is no connection between (S, np) and (S;,n}5). The point (S5, n$) is also

an equilibrium of (3.12)-(3.13) (b) The numerical solution of the Riemann problem
(3.2)-(3.3) consists of a rarefaction wave connecting (S, np) to (S$,n$), followed
by the traveling wave to (S, n}).

If S, = S¢ there is a direct saddle-saddle traveling wave connection between
(S,,np) and (S, n}f) as detailed above, see Figure 10(a) for the phase space diagram
and Figure 10(b) for the profile solution. Both figures correspond to point 3 plotted in
Figure 8.

If S > S¢, there is no possible traveling wave connection between the left and
right states. In this case there is another equilibrium (S¢,n$,) between (S, ,n,) and
(S;F,n},), which is a source and it prevents the direct connection, see Figure 11(a). The
solution of Riemann problem (3.2)-(3.3), (3.14) for this case consists of a shock from
(S,,np) to (S¢,n%) followed by a traveling wave to (S, n}). Figure 11(b) shows the
profile solution for the point ~ plotted in Figure 8.

3.3.4.1 The curve C

The construction of the set C is done semi-numerically. From Remark 3.2.1, there

are three equilibria in this case.

For S, close to Sy., the phase portrait is similar to one plotted in Figure 9(a). In

particular the unstable manifold of (S, ,n;) grows unbounded (np — +00), while the

where all three points belong.
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Figura 10 — Case (S}, n}) = (0.72,1), K. = 10, and (S,,np) = (0.3375,0) corresponding to

0.25¢

-0.05

point 3 in Region VI, see Figure 8. (a) Solutions of System (3.12)-(3.13) in the phase
space. There is a saddle-saddle connection between (S ,np) and (S, n}) (solid
purple curve). The point (S5, n%) is also an equilibrium of (3.12)-(3.13). (b) The
numerical solution of the Riemann problem (3.2)-(3.3) consists only of a traveling
wave solution connecting (S,,,np) to (Si,nh).
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Figura 11 — Case (S;;,n}) = (0.72,1), K. = 10, and (S,,np) = (0.36995,0) corresponding

to point 7 in Region VI, see Figure 8. (a) Solutions of System (3.12)-(3.13) in
the phase space. There is no connection between (S,,np) and (Sj,n}). The
point (S§,n%) is also an equilibrium of (3.12)-(3.13). (b) The numerical solution of
the Riemann problem (3.2)-(3.3) consists of a shock wave connecting (S,;,np,) to
(S€,n%,) followed by the traveling wave to (S, n},).

stable manifold of (S}, n},) decreases unbounded (np — —o0). Both manifolds are plotted

in purple in Figure 9(a). From left to right the unstable manifold (S, np) stays over the

stable manifold of (S}, n}).

For S,, close to S?, the phase portrait is as one plotted in Figure 11(a). In particular

the unstable manifold of (S, ,np) grows slightly and decays unbounded, while the stable

manifold of (S}, n}) contours (S, np,) decreases unbounded. Both manifolds are plotted
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in purple in Figure 11(a). From left to right the unstable manifold (S, ,np) stays under
the stable manifold of (S}, n}).

Although the rigorous proof of manifolds’ relative positions described above stays
outside of the scope of this chapter, this observation together with the Intermediate Value
Theorem indicates the existence of at least one point S, , where unstable manifold of
(S, np) and stable manifold of (S, n},) intersect. Equivalently, for such (S, ,np) there
exists a traveling wave connection from (S, np) to (S}, n},). Similar proof explained in

detail can be found in [19, 20, 62].

Rigorous uniqueness proof (for example, using Melnikov integral following [19, 20]),
also stays outside this chapter scope. However, the bifurcation described above indicates

that for each K. there is a unique point S,, yielding that the set C is, in fact, a curve.

3.3.5 Region IV

Traveling wave solution. Consider the left state S, in Region IV, which satisfies
St < S, < S, see Figure 4. In this case A\] and A\, are complex conjugate with
Re(A]) = Re()\y) < 0, while AT < 0 and A\J > 0 are real. It follows that the left state is a
complex sink, and the right state is a saddle. Thus, there is no traveling wave connection

from the left to the right state, see Figure 12(a) for the phase portrait.

Riemann problem solution. The solution of (3.2)-(3.3) in Region IV is similar to the
case S¢ < S in Region VI, in the sense that there is an oscillating wave connecting
S¢ < S to the corresponding point (S¢, K.) on the curve C followed by the traveling

wave to (S, n}), see Figure 12(b).
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Figura 12 — Case (S, n},) = (0.72,1) with K, = 0.5, A = 400 and (S,,;,np) = (0.3705,0.197375)
corresponding to Region IV, see Figure 4. (a) Solution of System (3.12)-(3.13) in
the phase space. There is no connection between (S, ,np) and (S;,n}). The point
(S5,,n%) is also an equilibrium of (3.12)-(3.13). (b) The numerical solution of the
Riemann problem (3.2)-(3.3) consists of an oscillating wave (S, np,) to (S$,n$,)

followed by a traveling wave to (S, n}).
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3.3.6 Region V

Traveling wave solution. For S, in Region V the eigenvalues satisfy \| < A\; < 0 and
AT < 0and A\J > 0. It means that the left state is a sink and the right state is a saddle.
As in Region IV, there is no possible traveling wave connection. The phase portrait is
plotted in Figure 13(a).

Riemann problem solution. The solution of (3.2)-(3.3) for this case consists of a
wave (S, ,np) to (S¢,n%) followed by a traveling wave to (S;,nh). It is similar to
one for Region VI, except there are no oscillations. The solution profiles are plotted in
Figure 13(b).
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Figura 13 — Case (S, n},) = (0.72,1), K. = 0.005, A = 200 and (S,;, np,) = (0.3702,0.03997867)
corresponding to Region V|, see Figure 4. (a) Solution of System (3.12)-(3.13) in
the phase space. There is no connection between (S, ,np) and (S}, n}). The point
(S5,,n%) is also an equilibrium of (3.12)-(3.13). (b) The numerical solution of the
Riemann problem (3.2)-(3.3) consists of a wave (S, np,) to (S$,n$,) followed by a
traveling wave to (S;},n},).

3.4 PARTIAL CONCLUSIONS

The presented classification of solutions possesses a potential for practical applica-
tions in investigating the foam flow in porous media. The classification obtained in this
chapter and shown in Figure 4 is similar for different values of parameter A and S;. These
results are presented in appendices A and B. The immediate result from this classification
consists of the presence of two types of instabilities presented next. As far as we know,
neither of them was observed in laboratory experiments, indicating this type of model’s

limitations.

The first one is connected to the value of K. and is due to the “pinched” part of
Region III inside Region II as depicted in Figure 14(a). Notice that the parameter K, is

a parameter that can not be precisely measured. A small variation (error) in the choice of
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this parameter, see points 1), 2) and 3) in Figure 14(a) results in qualitatively different
solutions as shown in Figure 14(b) and (c). Still, we can take parameters in the boundary
between Regions IT and ITI, the complex source of Region III and the source of Regions IT
collapse obtaining the left state as an unstable proper node, see [63]. Notice that the
amplitude of oscillations in Figure 14(c) are very small. However this can significantly

influence numerical methods used to simulate this type of model.
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Figura 14 — Analysis of instabilities for a small variations of the parameter K.. (a) The “pinched”
part of Region III surrounded by Region II. Fixing S, we consider three points
varying K.. (b) Profile solution of np corresponding to points 1) and 3) in Region II.
(¢c) Profile solution of np corresponding to point 2) in Region III.

() | 3

The second type of instability is connected to the value of S,. As shown in
Figure 15(a) a small change in S, can also result in qualitatively different solutions as
showed in Figure 15(b), (c) and (d).

During physically accurate simulations of the drainage process, the water saturation
can approach the critical value (S7) [30]. Thus, water saturation can cross S} many times.
The moment the water saturation enters one of the three regions plotted in Figure 15(a),
the exact solution changes to one of the solution types described in Figure 15(b)-(d). We
believe that this behavior can be visually similar to numerical instabilities or instabilities

caused by the porous medium heterogeneity.

Another application of this classification is a better understanding of the foam flow
behavior in the vicinity of critical saturation point S . In [68], it was observed the localized
and abrupt decay in the total relative mobility close to the shock front. This behavior was
attributed to numerical issues. In [30], this abrupt decay was observed during numerical
simulations. In [71], a similar behavior was observed in coreflood laboratory experiments.
Notice that for S, inside Region VI and close to Region III the mathematical solution

includes a small decay in the saturation before the shock, see Figure 11(b). When one
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Figura 15 — Analysis of instabilities for a small variations of S, on the border between regions
IT, ITT and VI. (a) Zoom near point S,; = S, K, = 145. For a fixed K. we consider
three points varying S, close to S. (b) Numerical solution profile for point 4) in
Region VI. (¢) Numerical solution profile for point 5) in Region III. (d) Numerical
solution profile for point 6) in Region II.

substitutes this solution into the total relative mobility equation, it results in a similar

decay plotted in Figure 16.
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Figura 16 — A decay in the total relative mobility of gas for S, inside Region VT close to S.
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4 ANALYTICAL SOLUTION FOR THE POPULATION-BALANCE MO-
DEL DESCRIBING FOAM DISPLACEMENT

This chapter is a reprint of work published in Transport in Porous Media, 2021 by
Springer. [89]. DOI:10.1007/s11242-021-01589-z

In this chapter, we address the analytical solution of the simplified version of the
mechanistic model model presented in [94]. We follow [2, 3] neglecting the apparent gas

viscosity dependence on gas velocity, allowing us to search for traveling wave solutions.

We aim provide analytical solutions and, consequently, a better physical unders-
tanding of experimental data provided in [73, 74]. These experiments consisted in the
co-injection of surfactant solution and gas into Bentheimer sandstone cores having, respec-
tively, the porosity of about 20 + 1% and permeability of about 2.0 + 2% D. Saturation
maps obtained by CT scanning the core were used to generate the saturation profiles at

specific time intervals.

Considering negligible gas saturation at the initial reservoir conditions, we obtained
analytical solutions for any injected water saturation, similar to the classical Buckley-
Leverett theory, see [13]. We observed that there are two regions (I and II) in the parameter
space, which will be detailed later in this chapter. All injection conditions in the considered
experimental data [73, 74] correspond to Region I (shock region in Buckley-Leverett theory).
They present a traveling wave solution with a good match with the experimental data.
Similarly to rarefactions in Buckley-Leverett theory, analytical solutions in Region II are

wave sequernces.

This chapter is organized as follows. Section 4.1, presents the simplified foam
displacement model used in this chapter. Section 4.2 is focused on the traveling wave
solution, including solution classification based on the equilibria analysis. Section 4.3
presents the comparison of analytical solutions presented in this chapter with experimental

data validating the approach. Finally, in Section 4.4 some conclusions are summarized.

4.1 THE SIMPLIFIED MODEL

In this chapter, we studied bubble population foam model in a porous medium
described by the water mass balance (Rapoport-Leas equation) and the foam texture
balance presented in (2.13)-(2.14) with (2.19), [74]:

9 9 dP, 9S,\
0 0
gba(sg nD) + 8}(1@ 7’LD) = CI), (42)

where ¢ is the porosity, u is the superficial velocity of the mixture (water+gas), P. is the

capillary pressure, u, is the superficial velocity of the gas phase, the dimensionless foam
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texture np is defined as a total foam texture n; divided by a reference foam texture n,q.
(i.e. np = Nnf/Nmaz)-

Using bubble generation and coalescence coefficients K, and Ky, in [94], the foam
generation source term is written as ® = ¢Sy[K,(1 — np) — Kynp]. Notice that it can be
rewritten as

K,
® = ¢S, (Ky+ K,)(nk —np), where nkf = KngKd' (4.3)

In this form, the source term is similar to analogous terms appearing in [3, 48] with
constant equilibrium foam texture. One can notice that the change of behavior for
generation/coalescence depends on K /(K, + K;). Thus, mathematically, both cases
K4y =0 and K, # 0 are equivalent. As in [74], the authors consider K; = 0, we follow
the same assumption, yielding ns¥ = 1. This assumption is even more precise if gas
and a surfactant solution are forced through a porous medium saturated with the same

surfactant solution, practically, Ky = 0.

We consider the medium saturated i.e., S,, +Sy = 1. The total Darcy velocity can
be written as u = u,, +u,. In the context of foam displacements, the fractional-flow theory
was first applied in [92]. The following standard assumptions are considered in this chapter
(69, 70]: 1D horizontal flow, incompressibility of all phases, immediate attainment of local
steady-state mobilities, Newtonian mobilities, absence of dispersion, absence of viscous
fingering, and small capillary pressure gradients. Following [13], the water fractional flow
fw and relative mobilities of water and gas are given in Section (2.1). The water phase

relative permeability k., is given by

0 if 0 < Sw < Swa
Sw - S’wc g
k’rw(Sw) = Chrw (1_5_5> if Spe < Sy <1-— ng (44)
we gr
Chkrw if 1-— Sgr < Sw < 1,

where ¢k, is the end-point relative water permeability, A is a modified pore-size-distribution
parameter, S, is the connate water saturation, and S, is the residual gas saturation.

The gas phase relative permeability k4 is given by

k2 (S,
krg(sw; nD) = rg( )

= MRF(np)’ (4:5)

where, following [3], we include the foam Mobility Reduction Factor M RF = Bna. np + 1

in the relative permeability. The foam free gas relative permeability is

& if 0< Sy < Spes
. (32+2)/A
k?g(sw) = Cgrg (Sw ch >
1- ch - Sgr
0 if 1-9, <S,<1,

if  Sype < Sy <1—38,, (4.6)
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where cgrg is the gas end-point relative permeability. The capillary pressure is given by

>l

Sw - ch)

Pc:pc’°'7'<o5—s

, Peo = 2(0gw /1) cos(h), (4.7)

where p.o is the entry capillary pressure, v is a proportionality coefficient, o, is the

surface tension between water and gas, 6 is the contact angle and, r is effective pore radius.

The form of modeling foam mobility based on [3] is the main difference from the
model used in [73, 74, 94]. Tt is necessary for analytical solutions, which are the focus of

this article.

To fit the M RF' function to experimental data, we need to estimate the parameters

value . We do so by equating the mobilities from [37] and the one used here:

kg B Frg
ug—i—ao(:fﬁ ,Ug (1+ﬁnD nmax)’

(4.8)

where vy = u,/(¢S,) is the approximate foam velocity, a° is the viscosity proportionality

constant, and we consider S; = 1 for this estimate. Then,

ad

8= T (4.9)

The system of PDEs (4.1)-(4.2) was solved as a Riemann problem, i.e., considering

a step function initial conditions:

S, x<0, np, <0,
Sy(z,0) = np(z,0) =

(4.10)
Stz >0, ny, x> 0.

7

The superscripts “+”7 and “—” mean the given expression is evaluated at conditions
downstream (reservoir conditions or the right state) and upstream of the wave (injection

conditions of the left state).

4.2 TRAVELING WAVE SOLUTION

We seek solutions to the System (4.1)-(4.2) in the form of traveling waves, i.e,
solutions that maintain their shape in time and move at constant velocity v. These
solutions only depend on the traveling variable ¢ = x — vt, which means that the original
system of PDEs is transformed into a system of ODEs. Traveling wave solutions commonly

appear in nonlinear transport problems involving balance equations [84].

The traveling wave solution of System (4.13)-(4.14) is illustrated in the Section 2.5.

In this chapter we use the parameters given in Table 3.
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Tabela 3 — Model parameters used in this chapter. “Values 2015” correspond to [74]. For the
parameters whose values were not presented in [73] we repeat the values from the other
experiment summarized in “Values 2013”. Parameter  was fitted using Eq. (4.9).

PV values were fitted as explained in Section 4.3.1.

Symbol Parameter Values 2015 Values 2013
o [ Porosity 0.21 0.21

u [m/s] Total Darcy velocity 1.6156 - 1075  1.6156 - 10=°
Uy [M/s] Water velocity 1.446-107¢  1.446-10°6
ug [m/s] Gas velocity 1.471-107° 1.471-107°
K, [s7Y Bubble generation coefficient 0.1 0.1

Ky [s7Y Bubble coalescence coefficient 0 0

Nmaa [m_?’] Maximum bubble density 2.5-10' 2.5- 10"

k [m?] Absolute permeability 2.5-10712 2.5-10712
Swe [-] Connate water saturation 0.10 0.10

Sgrl-] Residual gas saturation 0 0

Clerw Water end point relative perm. 0.75 0.75

cgrg Foam end point relative perm. 1.0 1.0

oy [Pas] Water viscosity 1.0-1073 1.0-1073

tg [Pas] Gas viscosity 1.8-107° 1.8-1075

A [ Pore-size-distribution parameter 5.0 5.0

B [m?] Non-Newtonian mobility param. 7.8185-10710 7.8185-10710
d [-] Power law viscosity exponent 1/3 1/3

a® [Pas?/3m!9/3]  Viscosity proportionality const. 5.8 - 10716 5.8-10716

v -] Capillary pressure coefficient 0.5 0.5

Ogw [N/m] Gas-water interfacial tension 30.0-1073 30.0-1073

0 [rad] Contact angle 0 0

r [m] Mean pore radius 5-107¢ 5-107¢

D [m] Core diameter 0.038 0.038

L [m] Core length 0.384 0.17

Changing coordinates (z,t) — (£ = x—wt,t) in System (4.1)-(4.2) and considering

the stationary solution yields:

<_fw)‘9;i£:z> dd‘sgv = u[(fw - UsSw) - (fw - UsSw)+]a (4'11)
(~ute.(1= 85 =1+ 1) G2 = ol S)K,(1=mp).  (412)

System (4.11)-(4.12) can be rewritten in a standard form using boundary conditions (4.10)
(see [3] for details):

dSw o u[fw - UsSw - (fw - UsSw>+]

¢ A fur i ; (4.13)
dnp - d(1 — Sy) Ky(1 —np)
d¢ —ufvg(l—SH) — (1 — fH)] (4.14)
where
Vs = /. (4.15)
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Notice that the passage from (4.11)-(4.12) to System (4.13)-(4.14) is only possible if
functions on the right side in (4.13)-(4.14) are well defined for S,. < S, <1 —S,,. For
the numbers presented in Table 3 this is true only if S, # 1 or, equivalently if S, # 0.

We are interested in validating our solutions with experimental data from [73, 74],

where S was considered one. In order to do it, we consider S} = 0.999 in this chapter.

4.2.1 Classification of equilibria

Mathematically, equilibrium is a stationary solution of System (4.13)-(4.14) or,
equivalently, the point (S,,np) for which the right side of System (4.13)-(4.14) is zero.
The traveling wave solutions always connect equilibria in the sense of Eq. (2.48). To
proceed with the analysis and show the existence of such a connection, one has to find

and classify all possible equilibria of System (4.13)-(4.14).

The right side of Equation (4.14) is zero if S,, = 1 or np = 1. As noticed previously,

Sw # 1, otherwise System (4.13)-(4.14) is not well defined. The only valid option is np = 1,

in particular n, = 1, and nj; = 1. Therefore, from equating the expression (4.14) to zero
follows:

fuw(Sw, 1) = veSy — fo + 0S5 =0, v, = Lfﬁ (4.16)

S§ — 5%

As for viscous Buckley-Leverett equation, equilibria of System (4.13)-(4.14) stay

on the line np = 1, and on the curve defined in Eq. (4.16), see Fig. 17 for graphical

representation using parameter values from Table 3. Beside (S, ,np) and (S, n},) can

exist another equilibrium, see Fig. 17, in following possibilities:

o If S, € [Sye, SL[, there are three equilibria S, S¢ and S;, such that S, < S¢ < S

w*

o If S, €]ST, SM] there are three equilibria S, S¢ and S}, such that S¢ < S, < S

w*

e In other cases, there are only two equilibria S, and S .

Equilibrium points appearing in this chapter are classified according to their

eigenvalues as definned in Section 2.5 (see [34, 76] for details).

Notice that building an orbit that connects two equilibria asymptotically is not
always possible. For example, there is no orbit in the following cases: (1) right equilibrium

is a source, or (2) left equilibrium is a sink.

In this section, we classify the traveling wave solutions of System (4.1)-(4.2),
which are solutions of System (4.13)-(4.14) with boundary limits (2.48), for a fixed right
equilibrium S varying the left equilibrium S . Eigenvalues of the Jacobian matrix
associated with the vector field in (4.13)-(4.14) in neighborhoods of equilibria (S, np)

and (S, n}) describe the necessary condition for the existence of the traveling wave.
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Figura 17 — Equilibria of System (4.13)-(4.14) for S = 0.999, K; = 0.1 and ny4; = 250 mm 3.
Point S! indicate the intersection point between the curve of f,, and the tangent
line to f, that passes through (S;, fi). Point S} indicate the intersection between
the curve of f,, and the line connecting (Sye, fuw(Swe)) to (S, fif). (a) The solid
curve represent the water fractional flow in Eq. (4.16). (b) Line np = 1 along which
are the equilibria of System (4.13)-(4.14).

As the system is bidimensional, there are two eigenvalues of the Jacobian matrix.
In what follows, the superscript (—) and (+) denote the eigenvalues associated with the
left and the right equilibria, respectively. We use the following notation: A\f = A\ (SE, n5)
and Ay = \(SE, n5). We assume A\] < Ay and A\ < AJ.

Following the previous explanation, there are two regions: Region I with A\] > 0,
Ay >0, A\ <0, \J > 0 indicated with yellow color in Fig. 18, and Region II with \] < 0,
A; >0, \f <0, \J > 0 indicated with blue color in Fig. 18. The curve separating both
regions, which is important to the proceeding analysis corresponds to A\ = 0, A\; > 0,
AT <0, A >0.

In order to graphically represent these regions we do the following. Following

3 and

3, 56] and using the kinetic foam generation parameter K, we fix 1,4, = 250 mm~
plot regions in the parameter space S, x K, see Fig. 18(a). We also plot them in the
parameter space S, X Na., see Fig. 18(b), allowing to visualize better all experimental

data presented in [73, 74].

4.2.2 Region |

In this section, we investigate a traveling wave solution of System (4.1)-(4.2) for the
injection conditions in Region I. In this case the left equilibrium is a source (A > 0 and
Ay > 0) and the right equilibrium is a saddle (A < 0 and A\J > 0). This case corresponds
to the viscous shock profile in Buckley-Leverett theory, see [75]. In this case, there are
two possibilities: (i) S, € |SM, St or (ii) S, € |ST, SM].
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Figura 18 — Regions’ classification according to the equilibrium type for S = 0.999 and Ky =
0. Points SI (boundary between regions I and II) and S (boundary between
sub-regions with two and three equilibria) are obtained, as explained in Fig. 17.
Simulations presented later in this chapter are represented with point A, F and G
(correspond to Figs. 27 and 28); points B, C and D (correspond to Figs. 29 and 30).
Experimental results correspond to points A and £ (see Section 4.3.2). (a) Space
Sy X Kg and nypez = 250 mm~3. (b) Space S, X Nyaz and K,=0.1.

(i) If S, € |SM S*|, there are only two equilibria (left and right). There is an orbit
connecting the left to right, see Fig. 19(a). Therefore, there is a traveling wave solution of
System (4.1)-(4.2) plotted in Fig. 19(b).

1.00001
1
—85,
1.000005 | ] —np
0.9
(S2,mD) (Siyib)
np 1 <O
L 0.8
v Y
0.999995 ! 0.7
0.99999 : 0.6
0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5
S, x

(a) (b)

Figura 19 — Case S, € ]S, S;f[. Riemann problem solution for (S;;,np) = (0.63,1), (S, n}) =
(0.999,1), K, = 0.1, and nyq, = 250 mm~—>. (a) Orbits of System (4.13)-(4.14) in
phase portrait. There is an orbit connecting (S, np) to (Sg,n}). (b) Solution
profile of (4.1)-(4.2).

(i) If S, € |ST, SM][  there are three equilibria. Besides (S, ,np) and (S;,n})
there exists a saddle equilibrium (S¢,n%), were S¢ € ]Sy, SL[. In this case, there is an
orbit connecting left and right equilibria, see Fig. 20(a). Therefore, there is a traveling

wave solution of System (4.1)-(4.2) as plotted in Fig. 20(b).
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Figura 20 — Case S, € ]ST, SM]. Riemann problem solution for (S,;,np) = (0.45, 1), (S}, nf) =

wr W
(0.999,1), K, = 0.1, and nyqe = 250 mm 3. (a) Orbits of System (4.13)-(4.14) in
phase portrait. There is an orbit connecting (S,,,np) to (S, n}). (b) Solution
profile of (4.1)-(4.2).

4.2.3 Boundary between regions [ and II

Along the line S;; = SI in Fig. 18, there is a bifurcation in the System (4.13)-(4.14)
solution’s topology. When S approaches continuously to ST from Region I to Region II,
the eigenvalue \] tends to zero, and S¢ approaches ST from Region II to Region I, see
Fig. 21. In the other hand, when considering S, approaching S the connection (in the
sense of Eq. (2.48)) between (S, ,np) and (S, n}) persists.

When S, = ST we have only two equilibria (left and right states). In this case,
the left state is a node (A} =0 and A\; > 0) and the right state is a saddle (A < 0 and
A3 > 0). In this case there is a connection joining one of the unstable directions of the
node (S,,,np) to the saddle (S, n}), see Fig. 22(a). Therefore, there is a traveling wave
solution of System (4.1)-(4.2) as plotted in Fig. 22(b).

4.2.4 Region II

In this case, the left state is a saddle (A\] < 0 and A; > 0), and the right state is a
saddle (\f < 0 and A\ > 0). As observed in Section 4.2.1 for S, in Region II, there exist
three equilibria along the line np = nkP = 1 satisfying S, < S¢ < S, see Fig. 18. Thus

there is no direct connection between (S, ,np) and (S;, n}).

From numerical simulations, we observe that the Riemann problem solution, in this
case, is a sequence of two waves: one spreading wave connecting (S,,,np) to (SL,1) and
one traveling wave connecting (S7, 1) to (S, n}), see Fig. 23. Notice that, in the absence
of capilary effects, this region would correspond to rarefaction wave in Buckley-Leverett

theory.
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o S, 5

Figura 21 — Schematic representation of System (4.13)-(4.14) solution’s bifurcation happening
when S, moves between regions I and II (see Fig. 18). Red point represents
the saddle equilibrium S, green point represents the equilibrium (S¢,n%), blue
point represents the saddle equilibrium S,;, and black point represents the node

equilibrium S, = SZ: . The upper plane corresponds to Region I, the middle plane
to the boundary and the lower plane corresponds to Region II.
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Figura 22 — Case S, = SI. Riemann problem solution for (S;,np) = (SL,1), (S},n}) =
(0.999,1), K, = 0.1, and nyqe = 250 mm~3. (a) Orbits of System (4.13)-(4.14) in
phase portrait. There is an orbit connecting (S, ,np) to (S;,n5). (b) Solution
profile of (4.1)-(4.2).

4.3 APPROACH VALIDATION

This section compares our analytical results to numerical and experimental results
presented in [73, 74].
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Figura 23 — Case Sy € |Sue, SL[ in Region II, K, = 0.1, and nynae = 250 mm 3. (a) There is
no direct connection from (S,,np) to (S, n}). (b) Riemann problem solution of
System (4.1)-(4.2) for (Sy,np) = (0.2,1), (Sif,nf) = (0.999, 1).

4.3.1 Experiment description

For the chapter’s self completeness, we present a brief description of the experiment

details here.

Alpha Olefin Sulfonate (AOS) surfactant and nitrogen gas were used to generate
foam inside the core-holder with Bentheimer sandstone core in both experiments. The
sample was encapsulated in a thin layer of low X-ray attenuation Araldite self-hardening
glue. The core-holder itself was made of synthetic material with good mecptionhanical
properties and a low X-ray attenuation. Core flooding experiments used the following

sequence:

1. First, the air was removed from the core using COs;
2. Then, the dry core was saturated by injecting brine;

3. Next, the surfactant solution was injected into the core.

Then N, gas and surfactant solution were injected simultaneously from the bottom of the
core to generate foam in the porous medium varying either the surfactant concentration
or the total superficial velocity. The water saturation values were determined by using an

X-ray CT scan. For further details on the experiment, see [73].

The parameter values corresponding to experimental results from [74] are in Table 3.
The time corresponding to one injected porous volume (PV) was estimated using a given

breakthrough time.

In [73], the parameters describing the fractional flow were not presented. As both

experiments used similar setups, in order to validate our solutions, we consider parameter
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values shown in Table 3. We estimate the PV value using the flow rate considering core
saturation S, = 0.63.

4.3.2 Experimental validation

The system’s apparent viscosity, for experimental data, is obtained using Darcy
law depending on pressure gradient and total system velocity [26, 54]. For theoretical
models, it is more convenient to describe the apparent viscosity as an inverse of the total
system mobility p.,, = k/(A; + Aw), where A\, depends on the foam texture as in Eq.
(8). In order to compare the apparent viscosity for Newtonian (4),,) and non-Newtonian
shear thinning (y,,) we substitute the corresponding mobility reduction factors into the
equation describing gas velocity considering equilibrium conditions (np = nkF) and solve
the resulting inverse problem. The results are plotted in Figure 24. Notice that, in the
literature, this type of graph presents a sharper transition, at some critical foam quality

(fy), due to the different relative permeability functions.
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Figura 24 — The apparent viscosity of the system for three different gas velocities 10™* m/s,
3-10° m/s, and 5-107% m/s.

We now compare the experimentally obtained water saturation profiles with the
analytical solution. Figure 25 shows the comparison for data from [73] corresponding to
the point £ in Fig. 18. The same plot for data from [74] is shown in Fig. 26. This data
corresponds to the point A in Fig. 18.

The analytical solution we seek here is of asymptotic type, i.e., the original problem,
formulated in terms of partial differential equations, needs some time to present a solution
in the form of a traveling wave. On the other hand, the experiment also takes a certain
time to achieve stable front displacement. Thus theoretical and experimental data are
expected to reach an agreement after some transient stage. As can be observed, the

analytical solution is in good agreement with the experimental data for later times despite
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Figura 25 — Water saturation profiles at different times. Experimental data presented in [73]

(dark green) compared to the solution of System (4.1)-(4.2) for Ky = 0.1, 102 = 250
mm~? and S, = 0.63 (blue).
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Figura 26 — Water saturation profiles at different times. Experimental data presented in [74]
(dark green) compared to the solution of System (4.1)-(4.2) for Ky = 0.1, Nz = 250
mm ™2 and S, = 0.43 (blue).

the model’s simplicity. Some key features of the analytical solution are in good agreement
with the experimental data. For example, the experiments exhibit a traveling wave profile,
which is correctly captured by analytical solutions, including a correct velocity. The fact
that we obtain a good match between the model and both experiments evidences the
robustness of the proposed approach. It shows further that, at least in some cases, it is

acceptable to model the foam displacement in porous media assuming Newtonian behavior.
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4.3.3 Numerical validation for different values of n,,,.

As explained in the introduction, the model used in [74] considered the apparent
gas viscosity depending on gas velocity, as proposed in [37]. This model also takes pressure
difference into account and uses complete Darcy’s law. In what follows, we refer to it as
a complete model. The authors [74] used the standard IMPES method (see [5, 21] for
details) to obtain saturation profiles and validate them with experimental data for this

model.

The model presented in Section 4.1 considers constant fluid velocity and a simplified
version of apparent viscosity. In what follows, we call it a simplified model. To solve
the system of PDEs (4.1)-(4.2) numerically, we use the nonlinear Crank-Nicolson implicit
finite-difference scheme combined with Newton’s method; see [50] for details. This scheme

is second-order accurate both in space and time.

Below we compare the numerical solutions obtained by the two methods at the
following times: 0.18 PV = 838.2s, 0.36 PV = 1676.4s, 0.54 PV = 2514.6s and considering
parameter values from Table 3. Figs. 27 and 28 show respectively, the water saturation
and foam texture (or bubble density described as Syny) profiles for different values of

Nmaz- We note that these solutions correspond to the points A, F, and G in Fig. 18.
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Figura 27 — Water saturation profiles for different values of n,,., at different times. Here
(Sw,np)” = (0.43,0) and (Sy,np)T = (0.999, 0). (a) Numerical results using
IMPES and complete model, see [74]. (b) Solution of System (4.1)-(4.2).

The numerical simulation results of both models are in very good qualitative
agreement, evidencing that the simplified model describes the main features of the phy-
sical phenomenon well. Examining the profiles more closely, we observed a few minor
differences that we nevertheless would like to discuss. The simplified model seems to have
a much smaller entrance effect (i.e., a slight decrease in the S,,) than the complete model.
Next, the upstream saturation profiles decrease as the foam propagates while it remains

constant in the case of the simplified model. Finally, saturation and bubble density fronts
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Figura 28 — Bubble density profiles for different values of 7,4, at different times. Here
(Sw,np)” = (0.43,0) and (Sy,np)T = (0.999, 0). (a) Numerical results using
IMPES and complete model, see [74]. (b) Solution of System (4.1)-(4.2).

present smoother profiles due to artificial diffusion, which was added to enable numerical

convergence.

4.3.4 Numerical validation for different values of K,

We now compare the numerical solutions for the complete and simplified models
for different values of the kinetic foam generation parameter K, for n,,,, = 250 mm™—>
and same times as in the previous section. The water saturation profiles and the bubble
densities are plotted in Figs. 29 and 30. We considered left states (S,,np)~ = (0.45, 0),
(Sw,np)” = (0.50, 0), and (S,,np)~ = (0.57, 0) corresponding to points B, C, and D in
Fig. 18.

In addition to the previous section’s remarks, simulations show some notable
differences for both models. Firstly, we note transient behavior, which becomes more
pronounced for small values of K. For the complete model, the traveling front takes more
time to form and also presents a smoothing of the bubble density profile. Remarkably,
the bubble density profiles for the complete model are systematically slower than for the
simplified model. From experimental and numerical validation presented in this chapter,
we conclude that the simplified (Newtonian) model represents well the saturation profiles.
However, it does not seem to represent as well the bubble density distribution. Although
the premise is that the foam displacement is physically better captured by the complete
model based on its non-Newtonian nature, it is unclear which of the two models would
match better the core-flood experiments. This is because, with current techniques, it is

hard to measurement bubble densities.
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Figura 29 — Water saturation profiles for different values of K, at different times. Here 1,4, =
250 and (S, np)*T = (0.999, 0). (a) Numerical results using IMPES and complete
model, see [74]. (b) Solution of System (4.1)-(4.2).
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Figura 30 — Bubble density profiles for different values of K, at different times. Here 1,54, = 250
and (Sy,np)™ = (0.999, 0). (a) Numerical results using IMPES and complete model,
see [74]. (b) Solution of System (4.1)-(4.2).

4.4 PARTIAL CONCLUSIONS

The analysis performed in the present chapter allowed us to obtain solutions in a
broad parameter domain, pointing out the existence of flow profiles different from those

found in the experiments.

Despite this model’s simplicity, in the present chapter, we managed to adjust
the model used to successfully describe the experiments allowing us to find analytical
solutions as traveling waves. Obtained solutions present a change in behavior following
Buckley-Leverett theory. The injection conditions in the examined experimental data
correspond to Region I, where they present a traveling profile. In this region, the analytical
solutions also match well the numerical simulations of the complete model. Analytical

solutions for injection conditions in Region II present a different behavior, which was not
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described earlier. They are a sequence of waves: one spreading wave and one traveling
wave. From the physical point of view, each parameter region corresponds to a different
flow regime. The new results suggest new experiments at lower injected water saturations

for further verification.
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5 FOAM FLOW IN POROUS MEDIA FOR LOW SURFACTANT CON-
CENTRATION

This chapter is a reprint of work under review.

The foam flow in porous media has been widely studied in applications, with main
examples in the oil industry and in the environmental ecology, see [67, 86]. Among other
properties, foam allows controlling the gas mobility improving the sweep efficiency, see
[39, 94]. This effect can be significantly impaired by the surfactant adsorption to the
surrounding matrix impacting the foam generation, and destruction [51, 58, 88]. It also

motivates the investigation of foam dynamics with low surfactant concentration [80].

Above Critical Micelle Concentration (CMC), the surfactant starts forming micelles
and does not significantly affect the foam formation [73]. A common simplification found
in the literature assumes the surfactant concentration of the aqueous phase is almost
constant and sufficiently large (above CMC) not to affect the bubble generation and
destruction rate, see [3, 44, 48, 56, 89, 94]. Hence, no separate material balance equation
on surfactant is needed. Such simplification is unrealistic; there are works stating that the
surfactant’s migration to the interfaces can decrease its concentration in the bulk solution.
Thus, there is less surfactant available for new films (lamellae) formation, even if the
initial concentration is above the CMC, see [10, 42]. In the present chapter, we extend the
models investigated in [74, 89] by considering a separate balance equation to describe the

surfactant concentration in the aqueous phase.

Several experimental investigations point to saturation and foam texture profiles
similar to traveling waves [40, 41, 47, 48, 73, 74] motivating search for analytical solutions
in the form of traveling waves [2, 3, 14, 55, 56, 89]. All these works considered the
simplification of the apparent gas viscosity, originally proposed in [37, 59|, assuming it to
be Newtonian and independent of gas velocity. In the present chapter, we adopted these
ideas and searched traveling wave solutions for the foam displacement model considering

variable surfactant concentration and Newtonian foamed gas mobility.

This chapter is organized as follows. Section 5.1 presents a population balance foam
model considering a separate balance equation to describe the surfactant concentration.
Section 5.2 provides an adimesionalization for the model presented above. Section 5.3
formulated the system of ordinary differential equations describing the traveling wave
solution. Section 5.4 investigates traveling wave solutions validating all analytical estimates

with direct numerical simulations. Finally, in Section 5.5, some conclusions are summarized.

5.1 MATHEMATICAL FOUNDATIONS AND THE PHYSICAL MODEL

To describe the foam flow in a porous medium saturated with water and gas,

we assume a one-dimensional flow with incompressible fluids, immediate attainment of
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local steady-state mobilities, and negligible dispersion. The water mass conservation law
(Rapoport-Leas) (5.1) and foam texture balance (5.2) equations are modeled following [74]
with simplification proposed in [89], i.e., Newtonian mobilities and small pressure gradient
resulting in a constant fluid velocity. Equation (5.3) describing a surfactant concentration

follows [17] neglecting dispersion effects. Summarising, the model reads as

0 0 0 dP. 95, B

ai P5u) + g ) (f“gdsw 3 ) =0 51)
0 0 0 dP. 0S,,

ot (p(1 — Sw)”f) + o (u(l— fw)nf) " or <fw)\gdsw or nf) =Q, (5.2)
o o 0 dP. 0S,, .

Inspired by the direct dependence between bubble generation and injected surfactant,
which must increase until the latter reaches the CMC [28, 87], the foam generation source

term @ [m~3/s] is defined by

Q = o(1 = Su)[Ky (Nmas — ng) s — Kanyl, (5.4)
Cs Qécmc - Cs 62 f Cs < écmca

\IIS — qu(CS) — ( )/( C?TLC) 1 — IR (55)
1 if Cy > Cene,

where K, [s7!] is the bubble generation coefficient, K, [s™!] is the bubble coalescence
coefficient, and Ciyp, [mole/m?| is the critical micelle concentration. In the equations
above, ¢ [-] is the porosity, u [m/s] is the total Darcy velocity, f,, [-] is the water fractional
flow, A, [m?/Pas] is the relative mobility of gas, P, [Pa] is the capillary pressure, 1,
[m~3] is the maximum bubble density and & [mole] is the surfactant amount in one average
lamellae. The following variables depend on space x [m] and time ¢ > 0 [s]: S, [] is
the water saturation, n; [m~?] is the dimensional foam texture and Cy [mole/m?] is the

surfactant concentration.

To complete model (5.1)-(5.3), we use the standard fractional flow theory functions
presented in [12, 21] as it used in Chapter 4. The total Darcy velocity is u = wy, + uy, U, 18
water velocity, and ug4 is gas velocity. The water fractional flow and relative mobilities are
defined in Section (2.1). The water phase relative permeability k., is given in (4.4). The
foam-free gas relative permeability k;gg is given in (4.6). The foamed gas phase relative
permeability £,4 is given by

0
(S ) = S (56)

The foam Mobility Reduction Factor, following the approach in [3], is given by
MRF(n;) = Bng + 1, (5.7)

where § = a®/((vs)? py) is a constant estimated, in Chapter 4, with the approximate foam
velocity vy = u,/(¢S,) and o a viscosity proportionality constant. In this chapter, we

use the capillary pressure is given in (4.7), [74].
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We estimate the parameter value & in Eq. (5.3) as (4-107°[mole]) by using the bubble
surface area (1.26 - 107'm?), bubble thickness (100A) and molar density of surfactant
(250 ml/mole) .

5.1.1 Equilibrium foam texture as function of surfactant concentration

The choice of the function ¥, describing foam texture equilibrium dependence on
surfactant concentration presented in this chapter (see (5.5)) allows the mathematical
analysis presented in the next sections. In this section, we show that it corresponds to

qualitatively the same mobility reduction factor as existing and widely used formulas.

Notice that, the foam generation source term (), defined in (5.4), can be rewritten
as
- Kg Nmazx \Ijs
K,V + Ky
such that n]]?E is the dimensional foam texture in local equilibrium with ¥, given by
Eq. (5.5). The gas mobility A\, depends on the Mobility Reduction Factor M RF as [3, 89
0 0 0
\ = k. kg _ Ag _ A
Y pg MRF  MRF 1+ f8n;’
where )\2 is the gas mobility in the absence of foam. The M RF' on Steady-State is given
by 1+ n]]%E :
In the model implemented in CMG/STARS simulator [22, 43, 60, 93], the gas
mobility A, is modified by multiplying a Mobility Factor M F' obtaining
0
Ag
1+ fmmob Iy’
where fmmob is the maximum mobility-reduction factor. Function F represents the effect

Q = o(1 — Su)(Ky + Ko)(nf” —ny), nf” =nk"(Cy) (5.8)

(5.9)

Ag =Ny MF = (5.10)

of surfactant concentration given by
Cs

Fi = F(C,) = (fmsurf
1 if Cs > fmsurf,

epsur f
) if Cs < fmsurf, (5.11)

where fmsurf is the critical surfactant concentration above which gas mobility is inde-
pendent of the surfactant concentration, and epsurf is a parameter that regulates the

foam strength for surfactant concentrations below fmsurf.

Figure 31 shows that M RF and M F~! functions present an excellent agreement.

5.2 DIMESIONLESS DIFFERENTIAL EQUATIONS

We introduce the following dimensionless dependent and independent variables as
ratios of the dimensional quantities and reference quantities (denoted by stars):
.z ~ 1 Ny

Cs
r=—, t=—, np=—, and (=

— 5.12
x*’ t n* C*’ ( )
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Figura 31 — Comparison between the functions M RF and M F~! corresponding to the popula-
tion balance model proposed in this chapter under LFE conditions and the model
implemented in CMG/STARS simulator.

where C* is the maximum surfactant concentration yielding 0 < C' < 1. The other

reference quantities are defined by
n* =N, =1L, and *="— (5.13)
where L is the core length.

Remark 5.2.1. In order to estimate C*, we use the following parameters [74]: surfactant
density 1.05g/cm?, molecular weight 315 g/mole, and solution concentration 1w/w % =

1g/100g. The molar concentration of surfactant in a solution can be approximated as C*=
33.33 [mole/m?3].

Using (5.12) and (5.13), and omitting the tildes, System (5.1)-(5.3) becomes the
dimensionless System (5.14)-(5.16):

0S, Of, O dP. 0S,\

W + % + % ((wa)\gdsw 8.%) = 0, (5.14)

(1= Sy)np) 01— fu)np) 0 dP. 05, B

9(S,C)  I(f,C) 0 dP. 0S,, B
where 0 = 1/(u L), o= &nye,./C*, and

L L
P = un:im == f(1—5w><Kg (1—HD)\I;—Kan) (517)

We can rewrite @ as

B quﬁ K, W

o (1= 8u) (K, + Ka)(np” —np), np” =

- D7 5.18
u K, U+ K, (5.18)
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such that nkP is the foam texture in local equilibrium with ¥ given by

C(2Cme — C)/(C2..) if C < Cone,

. (5.19)
1 if C > Cone,

\I/:\I/((J):{

where Ce = Cone JC*.
In what follows, we will search for the solution of System (5.14)-(5.16) with a step
function type initial conditions:

(S,,np, C7) if =<0,

(Sw,np, C)(x,0) = (5.20)

(SH,nh,CT) if x> 0.

7

The problem (5.14)-(5.16), (5.20) is known as Riemann problem. The superscripts “—
and “+” mean that the variable is evaluated at conditions upstream (or injection condition)

and downstream (or initial reservoir condition) of the wave, corresponding to left and right

states, respectively.

In the following sections, we present a semi-analytical investigation of the traveling
wave solution of (5.14)-(5.16), (5.20) with parameter values from Table 4.

Tabela 4 — Parameter values used in this chapter. These values are obtained from [74, 89].

Symbol Parameter Values
o [-] Porosity 0.21
u [m/s] Total Darcy velocity 1.6156 - 107
Uy [m/s] Water velocity 1.446 - 1076
ug [m/s] Gas velocity 1.471-107°
& [mole] Surfactant per lamellae 4-107°
K, [s7Y Bubble generation coefficient 0.1
K [s7Y Bubble destruction coefficient 0.05
Nimaz 0] Maximum bubble density 2.5-10M"
C* [mole/m?] Maximum surfactant concentration 33.33
Ceme [mole/m?]  Critical micelle concentration 0.8
k [m?] Absolute permeability 2.5- 10712
Swe [7] Connate water saturation 0.10
Sor [-] Residual gas saturation 0.0
oy [Pas] Water viscosity 1.0-1073
g [Pas] Gas viscosity 1.8-107°
B [m3] Non-Newtonian mobility param. 7.8185-10719
a® [Pas?3m!'93]  Viscosity proportionality const. 5.8-10716

5.3 TRAVELING WAVE FORMULATION

The system of partial differential equations (5.14)-(5.16) admits a traveling wave

solution if, similarly to definition presented in Section 2.5, by considering traveling variable
(xv t) — (§ = x—ut, t) with Sw(§7 t) = gw(x_vta t): nD(ga t) = ﬁD(x_Utv t) and C(§7 t) =

C(z —vt, t) there is a solution for the system of ordinary differential equations (5.22)-(5.24)
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obtained from this transformation, which propagates with a constant velocity v > 0 and

satisfies asymptotic conditions

£Erin (ngﬁD>é)(£) = (Si nD7Ci)
_(dS, dip dCY\ .
SLiOO <§ i df) (&) = (0,0,0).

For a more detailed explanation please see [56, 84]. Applying the traveling wave variables,
System (5.14)-(5.16) is rewritten (omitting the tildes) as

(5.21)

df dP, dSy\
d((1 = Sw)np) | d((1 = fu)np) dP. dS,
— — =0 2
[ df + df 5 5fw gdSw d£ np ) (5 3)
d(5.C)  d(fuC) | \ AP dSu ) _
Integration of Eq. (5.22) results in the following expression
dP. dS, o b et
_ —emw = — ) 2
vSw+fw+5>\gfwdSw i vS, + fo, vSy + fu (5.25)
From (5.25), we obtain the velocity of the traveling wave
P
v = S-S+ (5.26)
nd dP. dS,
_ St -
On the other hand, using (5.25), equations (5.23) and (5.24) can be rewritten as
(—o(1—S,)* u—ﬁﬁ)ﬁ?—wh (5.28)
(—vS} +f+)dC —ad. (5.29)
dg
Furthermore, if we sum Eq. (5.29) to the product of (5.28) and « yields:
an + + dC
a(=v(1 = S,) T+ (1= fu)t)—— i + (—vS, + fu )d§ 0. (5.30)
Then, integrating (5.30) from £ to & — oo, follows that
—a(—v(1 = 8;) + (1= f;)) (np —np) = (=S, + f)) (C = CT). (5.31)

If we integrate (5.30) from £ — —o0 to & — 0o, results in

—a(—v(1 = 8;) + (1= fy))) (np = np) = (-vS5 + f) (C7 = CT). (5.32)
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From (5.27) and (5.29), System (5.22)-(5.24) becomes two ordinary differential equations:

<6/\gfw ) djg v(Sw — S5+ [ — fu (5.33)
(—vSH + f*)cfg —a(L/u)p(1l — Su)[K, (1 —np) ¥ — Kgnp, (5.34)

where np satisfies the expression (5.31) and the traveling wave velocity v is given in (5.26).

In what follows we analyze two cases:

o Assuming —vS;} + f.I # 0, System (5.33)-(5.34) can be rewritten in the standard

form:
¢ dP ’ '
6)\gfw
aC_ —a(L/uw)(1 - Sy (1= p) ¥ — K 536
dg S+ fif ’ '
_ (=vSE+ ) (=0T +
R e s EN (75 30
where the traveling wave velocity v is given in (5.26).
o In the case —vS; + f7 =0, System (5.33)-(5.34) becomes
dSw _ U<Sw_SqJE)+f+ fw (5 38)
df 6)\gfw dP
Kg (1 —nD) \II(C) —Kan == 0, (539)
np = np, (5.40)

where the traveling wave velocity v is given in (5.26).
Proposition 5.3.1. For the case, —vS} + f.5 =0, the solution of System (5.33)-(5.34)

corresponds to constant surfactant concentration.

Proof: In this case, System (5.33)-(5.34) reads as System (5.38)-(5.40). From

(5.40), it follows that np = nf, = nkF(C™T) is a constant. Denoting

dP. dS
T,=— N frr—me —2 41
Equation (5.24) is rewritten as
d(TsC)
=—ad. 42
o (542
As np is constant, it follows that ® = 0. Applying the chain rule yields
dT, d C’
=0. 5.43

Using (5.22) and (5.25), it follows that (d T} / d¢) = 0 and consequently T is constant.
Using (5.43) yields C' is constant.

O
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5.3.1 Equilibria of system of ordinary differential equation

In general, the equilibria of a system of ODEs are points that turn the flux functions
equal to zero [34, 76]. In case —vS; + f.I # 0, the equilibria of System (5.35)-(5.37) are
the points (S,,C) that turn the right side of (5.35) and (5.36) equal to zero.

In this chapter, we fix S = 0.94 corresponding to the drainage case and consider
0 < C < 1. We fix C~ and C* searching for possible values of S,

that (S,,,C™) and (S;},C™) are equilibria of System (5.35)-(5.37). The left equilibrium
(S,,,C™) corresponds to the injection conditions (left state, see (5.20)) and right equilibrium

np, and njh, such

(S;f, C*) corresponds to initial reservoir conditions (right state, see (5.20)). Calculating
the limits £ — 400 of the right side of (5.36), the values S, n3,, and C* are related to
each other:

K, U+

np = (CF) = 4 e
g

UE = 0(C¥). (5.44)

Notice that if C~ # C™, using relation (5.32), the velocity v of the traveling wave

can be rewritten independently of S :

_ a(l = f)(np —np) + [ (C~ = CF)
—a(l=SE)(np —np) + S5 (C- = CF)

v (5.45)

Calculating the limits £ — 400 of the right side of (5.35) an equilibrium (S,,, C~) satisfies

fw(Sq;7C_) = fz;z'_ - U(S{L_ - S_)7 (546)

w

meaning that S, stays on the intersection between f,(S,,C~) and the straight line passing
through point (S;, f.) with slope v from (5.45), see Figure 32. In Eq. (5.46) we abused
of notation indicating f,,(Sy, C) = fu(Sw,n5(C)); this notation will be used henceforth.
Figure 32 also shows f,,(S,,C) for different values of C' as function of S,. Notice that
other equilibria (when they exist) are found at this intersection. Varying C'~ and C'7,
we notice that the velocity of traveling wave v changes yielding different possibilities of
S... Thus we classify the parameter space C~ x Ct, as shown in Figure 33, in regions
with different equilibria quantities and their properties. Also, the quantity and type of
equilibrium points change in the boundaries of regions. Thus, we divide the parameter

space as
C-xCt=RURURUR'URUR UR ULUNUTUD. (5.47)
The boundaries between the regions are:

« Curve £ contains the points (C~, CT) such that v = v, where v* is the slope of the
tangent line to f,,(S,, C~) that passes through the point (S}, fiF) with S}, < S as
shown in Figure 34(a). The tangent point is f,, (S, C™).
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Figura 33 — The parameter space O~ x C™ di-

vided into regions with different
equilibria quantities and their
properties. We used S, = 0.94.

« Curve 91 contains the points (C~, CT) such that v = vV, where v¥ is the slope of
the tangent line to f,(S,, C™) that passes through the point (S, f.F) with S, > S
as shown in Figure 34(b). The tangent point is f,,(S%,C7).

o Curve T contains the points (C'~,C™T) such that v = v7, where v" is the slope of the
tangent line to f, (S, CT) through (S, f.[) given by

T dfw

v

see Figure 35.

o Curve ® contains the points (C~,C™) such that C~ = CT and C~ < Cepe.

S

_fw(swrc_)
_fw(sivac+)
—— fr (S - Sy)

8 & g

w

(a)

(S5, CT),

~dS,

e

7

S f’w(swv C_)
— fw(Suu C+)

7.]“5 71}(‘92;— - Sw)

! al
Sw 8, Sw

(b)

(5.48)

Figura 34 — Intersection between f,,(Sy,C~) and the straight line that passes through point
(S, f) with slope v. The value S! coincides with S,. The purple line passes
through the point (S, f) with slope v. (a) v = v” and S, < SJ. (b) v = vV and
SLo> St
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Figura 35 — Intersection between f,,(Sy,C~) and the straight line that passes through point
(SF, f.F) with slope v. The value S coincides with S,,. The purple line passes
through the point (S;, f.I') with slope v. (a) v =" and C* < C~. (b) v = v" and
ct>cC.

The regions are:

R'={(C7,CT): 0<C <1; CT < Cupe; C~>CT; v>07},
R2={(C~,C"): 0<C~<1; C->CH v<v},
RI={(C~,C"): 0<CT<1; O~ <CF; v<ol}

L 0<Ch<1; C- <O v <w <oV},
L 0<Ct<1; C < Cupe; C~ <O 0N <0},

{( )
{( )
{( )
R ={(C7,C"): 0<CT<1; C-<CT; vF <v<v}, (5.49)
{( )
{( )
{( )i Come <C7 <15 Cope < CT < 1}

Different regions correspond to the different quantities of possible equilibria:

e For regions R, M2, K3, and RO In intersection between f,, (S, C~) and the straight
line that passes through point (S;, f.') with slope v, there are two equilibria in
fuw(Sw, C7). So, we obtain two possibilities for S .

e For regions R*, M5, and T if C~ < CT: In intersection between f,(S,, C~) and the
straight line that passes through point (S}, f') with slope v, there is no equilibrium
in f,(Sw,C7). So, there is no possible S .

e For curves £ N, and T if C~ > C*: In intersection between f,(S,,C~) and the
straight line that passes through point (S, f.r) with slope v, there is one equilibrium

in f,(Sw,C7). So, we obtain only one possibility for S .

e For R” and ©: The point (S,,, C;) is equilibrium for all values of S, € (Sye, 1 —S,).

Notice that, C~ # C* in regions R!, R?, K3, R*, R°, RO, £, N, and T. Thus, in
these regions v is calculated using (5.45) and, according to Proposition 5.3.1, —vS} +f.F # 0.
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On the other side, in R” and D, it is possible to have C~ = C*, and v is calculated using
(5.26).

Remark 5.3.1. Notice that, in general, the straight line with slope v that passes through
(S;, f4) may intersect the two fractional functions at up to six points, including (S}, f.).
However, fixing S = 0.94, we only have up to four equilibrium points. For example,
Figure 36 shows the case (C~,C") € R

The equilibrium points can be classified according to the eigenvalue signs of the
corresponding flux’s Jacobian as a source, a sink, a saddle, or a node; see [34, 76] for
details. In two-dimensional space, a source possesses two eigenvalues with positive real
parts, a sink possesses two eigenvalues with negative real parts, a saddle possesses two
eigenvalues with real parts of different signs, and a node possesses one null eigenvalue and

another different from zero.

More specifically, the Jacobian of the flux associated with the vector field of
System (5.35)-(5.36) is given by
O,NI' DY — NP9, DY  9.NF D — NF §,.DF

(DF)? (DF)?
J 5.50
—a0,® —a 0,0 ’ (5.50)
—vSE+ 1 —vSy + [
where
NE =0 (Sy —SH) + (fi = fu),  DF =6X, fuOsP.. (5.51)
In the points (S,,C~) and (S, CT), the matrix J is rewritten as:
v — 8sfw _anfw dan
. 5)\gfwaspc 5)\gfwaspc
M(£) = 0 e (5.52)
—v S+ ff (SE,0%)
Thus, the eigenvalues in (S,,,C~) are
—a 0. _ v — Os fu
A= 2% D , (5.53)
—u S+ f
vSEH+ fi (5.0 S Ay fuw OsP. (5o
and the eigenvalues in (S}, CT) are
L. —add N v — Osfuw
= = % 5.54)
1 . + + 2 (
vSE A+ fo (5t.04) O Ay fu OsP. (st

Notice that, the eigenvalues associated with left and right states are real.

As it was not possible to obtain the signs in (5.53) and (5.54) analytically, they
were determined numerically. In the next section, we will use this information to determine
the equilibria type for each region. A source (repeller) will be denoted by Pgr, a saddle by
Ps, and a sink (attractor) by Pjy.
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5.4 EXISTENCE OF TRAVELING WAVE CONNECTION

The existence of the traveling wave solution of System (5.14)-(5.16) is directly
related to the existence of the solution of System (5.33)-(5.34), which can be rewritten in

two forms.

o If —uSI+ fF =0, using the Proposition 5.3.1, it follows that np and C' are constants.

Thus, this case exists only in Region R’.

« For the case —uS} + f # 0, we follow [56, 89] and study the phase portrait
corresponding to System (5.35)-(5.37).

After knowing the number and type of equilibrium points in each region, we look
for a traveling wave connection, defined as a solution of System (5.35)-(5.37) connecting

the left equilibrium to the right one in the sense of a— and w— limits as defined in (5.21).

To validate our analytical approximations, we compare them with numerical
simulations of System (5.14)-(5.16) obtained using the nonlinear Crank-Nicolson implicit
finite-difference scheme combined with Newton’s method; see [50] for details. This scheme

is second-order accurate both in space and time.

54.1 Region R! (C~ > CT & v >v7):

In this case, from Eq. (5.46) and calculating the eigenvalues’ sign, there are four
equilibria a source Pg, a sink P4, and two saddles P: and P2, as seen in Figure 36.
Figure 36(a) shows all the equilibria located in the intersection of respective curves of
water fractional flow and the line with slope v that passes through the point (S}, f.F).
Figure 36(b) shows the equilibria located in the phase portrait S, x C, where F} and F}
represent the right sides of (5.35) and (5.36), respectively. In fact, the scheme presented
in Figure 36(b) is valid in all regions (!, /2, 3, and R°) with four equilibria.

In this region, since C~ # C7 it follows that the left equilibrium (S,,C~) is on
Juw(Sw,C™) and the right equilibrium (S}, C*) is on f,(Sw,CT). As we fixed S = 0.94,
P4 corresponds to (S;7,CT). The points Pr and P& satisfy condition (5.46) to be the left

equilibrium.

5.4.1.1 Case (S,,C7) is Pg.

To obtain a traveling wave connecting the left equilibrium Pgr to the right equili-
brium Py, we use ode/d of MATLAB. The source equilibrium Pr possesses two eigenvalues
with a positive real part. Using the stable manifold theorem [34], the two-dimensional
unstable manifold of (5.35)-(5.37) at Pg is tangent to the eigenvectors corresponding to

the eigenvalues with a positive real part. Then, we start integrating from points close to
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Figura 36 — Schematic representation showing the equilibrium points of System (5.35)-(5.37) in
M!. Point Pr represents a source, Ps represents a saddle, and P4 represents a sink.
(a) Intersection between f,,(Sy,C™) and the straight line that passes through point
(S, f.F) with slope v. The equilibrium points are placed on the purple solid line.
(b) Equilibria in phase portrait Sy, x C'. Functions F; and F» represent to right sides
of (5.35) and (5.36).

the left state Pr on this unstable manifold. We integrate until reaching the neighborhood
of the right equilibrium Py4. For more details on this methodology, see [56].

If (S, C7) is Pg, there are infinite traveling wave connection of System (5.35)-(5.37)
connecting the left equilibrium Pg to the right equilibrium Py; see Figure 37(a). From the
mathematical perspective, it happens because the equilibria configuration separates the
phase space into two regions: the inner and outer regions. The border that separates these
two regions is composed of the stable and unstable manifolds of saddle equilibria connecting
them with the other two equilibria; see Figure 37(a). For each point in the internal region
of the phase space, there is a traveling wave connecting (S, C7) to (S, C"), satisfying

the associated dynamic system (5.35)-(5.36), with the same velocity v.

The direct numerical simulation of System (5.14)-(5.16) produces a solution cor-
responding to the traveling wave connection passing close to point P&, see the purple
line in Figure 37(a). Figure 37(b) compares the analytical solution connecting Pr to P&
and then to P4 with the numerical simulation as a function of x. Thus, the system of
partial differential equations points out that only one physically admissible traveling wave

solution exists.

5.4.1.2 Case (S,,C™) is P&.

To obtain a traveling wave connection from the left equilibrium P& to the right equi-
librium P4, we use ode45 of MATLAB. The saddle equilibrium PZ possesses one eigenvalue
with a positive real part. Using the Stable Manifold Theorem [34], the one-dimensional
unstable manifold of (5.35)-(5.37) at Pg is tangent to the eigenvector corresponding to the
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Figura 37 — Solution of System (5.35)-(5.37) for (C—,C*%) € ®! with (S,,C~) = Pr =
(0.92722,0.7), (S;},CT) = P4 = (0.94,0.3), and v = 0.004538 > v7 = 0.003397.
(a) Analytical solution in the phase portrait. The purple line represents the traveling
wave shown in Figure(b). (b) Solution profile. The solid line represents the analytical
solution, and the dashed line corresponds to the numerical result.

eigenvalue with a positive real part. That is why, to obtain the traveling wave connection,
we start integrating from a point close to the left state P& in the direction of the eigenvector
corresponding to the eigenvalue with a positive real part. We integrate until reaching the

neighborhood of the right equilibrium P,4. For more details on this methodology, see [56].

If (S,,C7) is P&, only one solution connects the left equilibrium to the right
equilibrium. Figure 38(a) shows this connection in the phase space S, x C. The purple
line corresponds to the numerical solution of the system of PDEs (5.14)-(5.16), and it
almost coincides with the traveling wave connection. Figure 38(b) shows the agreement of
analytical and numerical solutions as functions of x. As the variations in variables S, and

np are not visible in Figure 38(b), we plot them separately in Figs. 38(c) and 38(d).

54.2 Region R? (C~ > CT & v <v):

Similarly to region PR!, there are four equilibria in the intersection between
f(Sw,C7) and the line with slope v that passes through the point (S;, f.). Since
C~ # C*, it follows that P32 corresponds to (S}, C"). The points Pgr and P& satisfy
conditions (5.46) to be the left equilibrium.

5.4.2.1 Case (S,,C7)is Pr

To obtain a connection from source Pg to saddle P2, we use ode45 of MATLAB, as
in the case 5.4.1.2. The obtained connection corresponds to the analytical solution plotted
in Figure 39(a), for (S,,,C~) = Pr = (0.9356,0.7). The equilibrium points are also plotted

in phase portrait. Figure 39(b) compares the analytical solution and the numerically
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Figura 38 — Solution of System (5.35)-(5.37) for (C—,CT) € W' with (S,,C~) = P& =
(0.94028,0.7), (S;},CT) = P4 = (0.94,0.3), and v = 0.004538 > v™ = 0.003397.
(a) Analytical solution in the phase portrait. The purple line represents the traveling
wave shown in Figure(b). (b) Solution profile. The solid line represents the analytical
solution, and the dashed line corresponds to the numerical result.

obtained solution showing a good agreement. For this case, System (5.35)-(5.37) possesses

a unique traveling wave.
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Figura 39 — Solution of System (5.35)-(5.37) for (C—, CT) € M2 with (S, CT) = P% = (0.94,0.7)
and v = 0.004538 < v™ = 0.003397. (a) Analytical solution in the phase portrait.
The purple line represents the traveling wave. (b) Comparison between analytical
(solid line) and numerical (dashed line) solution profiles.

5.4.2.2 Case (S;,C7)is P}

By using the same methodology as in case 5.4.1.2, the solutions obtained by
integrating System (5.35)-(5.37) starting at a point close to equilibrium P2 for positive
times reaching the neighborhood of P4 and for negative times reaching the neighborhood

of Pg; as seen in Figure 39. The solutions present the same behavior if we start integrating
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at a point close to the right equilibrium P2. From the study of the phase portrait of
System (5.35)-(5.37), the presence of the source Pgr and of the sink P4 prohibit a direct
connection from the left equilibrium to the right one. Then, when (S, ,C™) is P& there is

no traveling wave solution of System (5.14)-(5.16).

5.4.3 Region R3 (C~ < O & v < vb):

This case is analogous to the regions R! and SR%. System (5.35)-(5.37) possesses
four equilibria (Pr, P&, P3, and P,), see Figure 36(b). Since C~ # C*, it follows that
Pg corresponds to (S, CT). The points P2 and P4 satisfy conditions (5.46) to be the

left equilibrium.

Similar to the case 5.4.1.1, the source equilibrium Pk possesses two eigenvalues with
a positive real part. Using the stable manifold theorem [34], the two-dimensional unstable
manifold of (5.35)-(5.37) at Pr is tangent to the eigenspace generated by eigenvectors
corresponding to the eigenvalues with a positive real part. All traveling wave connections
starting at a point in the neighborhood of the right equilibrium Pr move away from Pg.
Thus, there is no traveling wave connection starting in the left equilibrium and reaching the
Pr for both possibilities of (S,,C~) (when the left equilibrium is P% or P4). Therefore,
there is no traveling wave of System (5.14)-(5.16).

54.4 Region R* (C~ < CT & vl <v <o)

For this case, System (5.35)-(5.37) possesses two equilibria; both are on f,,(S,, C").
Since C~ # C7, the right equilibrium correspond to Pg. There is no (S,,, C~) that satisfies

(5.46), see Figure 40(a). Therefore, there is no traveling wave connection.

/

|

_fu)(Swv Ci) | _f'w(Su/>C_)

_fw(SunC+) [ _fw(Suz7O+)

—— fF = v(SF — Su) — fi —v(S§ — Sw)
Sj’ S, S:‘r' S

(a) (b)
Figura 40 — Equilibria in curves of water fractional flow for C~ and C*. The purple line passes
through the point (S, ff) with slope v. (a) Case (C—,CT) € ®R% (b) Case
(C—,Ct) e RO.
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5.4.5 Region R° (C~ < CT & v™ < v <oM):

For this case, System (5.35)-(5.37) possesses only two equilibria; both on f,,(S,, C").
Since C~ # C*, the right equilibrium correspond to Pi. There is no (S, C™) that satisfies
(5.46), see Figure 40(a). Therefore, there is no traveling wave connection.
5.4.6 Region R (C~ < CT & vV < v):

Similarly to region PR3, there are four equilibria in the intersection between
f(Sw,C™) and the line with slope v that passes through the point (S;, f.[). Since
C~ # CT, it follows that saddle P& corresponds to (S, CT). The points P% and Py

satisfy conditions (5.46) to be the left equilibrium.
5.4.6.1 Case (S,,C) is P2

By using the same methodology as in case 5.4.2.2, from the study of the phase
portrait of System (5.35)-(5.37), the presence of the source Pr and of the sink P4 prohibit
a direct connection from the left equilibrium to the right one. Then, when (S,,C~) is P32
there is no traveling wave connection of System (5.14)-(5.16).

5.4.6.2 Case (S,,C7)is Py

Similarly to region 3, all traveling wave connections start at a point in the
neighborhood of left equilibrium P4 approach P4 (it is a sink). Thus, there is no traveling
wave connection starting in P4 and reaching the Ps&. Therefore, since we only considered

connections with direction, there is no traveling wave solution of System (5.14)-(5.16).

5.4.7 Region R7 (C7 > Ceppe & CF > Copie):

In this case, using the relation (5.44), it follows that n, = nj,. Then, from (5.32),
S+ fF=00r C~ =CT.
5.4.7.1 Case —vS} + fF =0

From Proposition 5.3.1, np and C' are constant. Therefore, for —vS} + fF =0

and C~ # C*, there is no traveling wave for this case.

5.4.72 Case C~ =C*
In this case, an equilibrium (S, C') of System (5.35)-(5.37) satisfies
fw(Swa C+) = U(Sw - SJ) + fzja (555)

and
np =nE(CY) = K, /(K, + Kg). (5.56)
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Notice that f,(S,, CT) is the same for Ct such that C* > C,,., as seen in Figure 32.
Hence, S, satisfies (5.55), and all equilibria of System (5.35)-(5.37) stay on the same
f(Sw, CT), see Figure 41. In this case, the surfactant concentration does not affect the

foam displacement, and the solution coincides with one presented in [89].

1
0.8 -

0.6 r
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L‘\0.4

0.2

0 "S,e02 _,-"0.4S“Tl, SM0.6 0.8 Slﬂ

w

Figura 41 — Water fractional flow for C' > C,,,. corresponding to R7. The dotted lines pass
through (S}, f;F). Value SI corresponds the intersection point between f, (S, C1)
and the tangent line to f,,(S,, C*) that passes through (S, fif). Value SM cor-
responds the intersection between f,,(Sy, C™) and the line connecting (Sye, fuwe) to
(S{L_, qu;_)a where fie = fw(swca C+)

At the equilibria, np = nkF(C") is constant. Then, as in previous case using
equations (5.41)-(5.43), it follows that C = C" = C~ is constant. Let ST indicate the
intersection point between f,(S,,C") and the tangent line to f,(S,,C") that passes
through (S5, fF). Value SM indicates the intersection between f,(S,, CT) and the line
connecting (Sye, fwe) to (S5, fiF), where fue = fu(Swe, CT). Similarly to the results shown
in the literature (see [32, 89] for details), it follows that the type of solution depends on
S- in relation to ST and SM | see Figure 41. There are five possibilities (for more details,

w

see [89]):

(i) If Sye < S, < SI. In this case, the left and right states of System (5.35)-(5.37)
are saddle points. Besides, there exists a third equilibrium (S¢,C") satisfying
S, <S¢ < SF. Thus there is no direct connection from (S, ,C™) to (S, C*), and
the solution is a sequence of two waves: one spreading wave connecting (S, , C") to
(SL,CT) and one traveling wave connecting (S, CT) to (S}, CT), see Figure 42(a).

(ii) If S, = SL. When S, approaches continuously to SI the eigenvalue A\; tends
to zero and S¢ approaches ST. In this case, there exist two equilibria (left and
right). The left equilibrium (ST, C*) is a node with one positive and other zero
eigenvalues, where the zero eigenvalue possesses one unstable and other stable sides.

The right equilibrium (S}, C*") is a saddle. Here, there is a connection from one
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of the unstable directions of the node (S,,,C") to the saddle (S;,C™"). Therefore,

there is a traveling wave solution, as shown in Figure 42(b).
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Figura 42 — Solution of System (5.35)-(5.37) for (C~,C*) € R" for (S;},C*) = (0.94,0.85). The
solid line represents the analytical solution, and the dashed line corresponds to the
numerical simulation. (a) Case Sy < S, < SL with S, = 0.2. (b) Case S, = ST.

(ii7) If ST < S < SM. System (5.35)-(5.37) possesses three equilibria. The left sate
(S,,,CT") is a source, (S, C") is a saddle and the third equilibrium (S¢,C7) is a
saddle, where S,. < S¢ < SI. There is a connection traveling wave as shown in
Figure 43(a).

(iv) If SM < S < SF. There are only two equilibria: the left and right states, which

are source and saddle. Hence, there exists a traveling wave solution from the left to

the right state as shown in Figure 43(b).
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Figura 43 — Riemann problem solution of System (5.35)-(5.37) in Region R for (S}, C*) =
(0.94,0.85). The solid line represents the analytical solution, and the dashed line
corresponds to the numerical simulation. (a) Case SL < S, < SM with S, = 0.5.
(b) Case SM < S, < S} with S, = 0.6.
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(v) If S < S, < 1. System (5.35)-(5.37) possesses two equilibria. The right equilibrium

is a source, then there is no connection from the left equilibrium to the right one.

5.4.8 Curve £ (v =vl):

In this case, using Eq. (5.46) and eigenvalues signs, there are three equilibria: the
source Pr, the saddle P&, and the non-hyperbolic node equilibrium Py, which possesses
one negative and other zero eigenvalues (the later corresponds to one stable and other
unstable semi-manifolds). This later point appears from the collision of the equilibria P32
and P4 in Region R?® and (differently from Pr and P) it satisfies the condition (5.46).

Since C~ # C7, the right equilibrium (S;},C7") is a source Pgr. Thus, the left
equilibrium corresponds to Py. At the left equilibrium (S,,C~), the value S, = S|
corresponds to the tangent point of f,(S,,C~) that passes through the point (S}, f.1)
with v = v¥. Value v* is the slope of the tangent line to f,(S,, C~) that passes through
the point (S, f.F) with S!, < S as shown in Figure 34(a).

As (S}, CT) is source Pg, similarly to Region SR?, all traveling wave connections
starting at a point in the neighborhood of right equilibrium Pr move away from Pg, see

Figure 44. Then, there is no traveling wave connection from Py to Pg.

=0
F=0
Pr —"— P}

Py

Sw

Figura 44 — Schematic phase portrait for regions £ and 9. Functions F; and F5 represent to
right sides of (5.35) and (5.36), respectively.

54.9 Curve N (v =1v"):

Similarly to curve £, there are three equilibria: the source Pg, the saddle P,
and the non-hyperbolic node equilibrium Py. Since C~ # C™, the right equilibrium
(S, CT) is a source Pi. Point Py appears from the collision of equilibria P% and Py in
Region R® and (differently from Pr and Pl) it satisfies the condition (5.46). At the left
equilibrium (S, C7), the value S, = S! corresponds to the tangent point of f,,(S,, C™)
that passes through the point (S, f;F) with v = vV, Value v¥ is the slope of the tangent
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line to f,(Sw, C™) that passes through the point (S, fF) with S\, > S as shown in
Figure 34(b).
As (S},CT) is saddle P&, similarly to Region RS, it follows that there is no

connection from left equilibrium Py to Pi. The phase portrait is schematically plotted in
Figure 44.

5410 Curve ¥ (v="20"):

Let us study two cases.

5.4.10.1 Case C~ > (C*

Here v = v™ and the equilibria P2 and P4 collapse into a non-hyperbolic node
equilibrium Py. Since C'~ # C*, the right equilibrium (S}, C") corresponds to saddle
Py. The source Pg or the saddle P& satisfy the condition (5.46), thus the left equilibrium

can be the source Pg or the saddle P&, as seen in Figure 45.

o If (S,,C7) is Pgr there is a traveling wave connection from Pr to Py plotted as
a red curve in Figure 45. Then, System (5.14)-(5.16) possesses a traveling wave

solution, see Figure 46.

o If (S,,C7) is P2, there is a traveling wave connection from P& to Py plotted as a

green curve in Figure 45. System (5.14)-(5.16) possesses a traveling wave solution.

Fi=0

0.8 PR F2 =0 Pé

0.6
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0.935 0.94 0.945
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Figura 45 — Phase portrait for (C~,C") € T with C~ > C*. Functions F} and Fj represent to
right sides of (5.35) and (5.36), respectively. The red line represents the traveling
wave from Pr to Py. The green line represents the traveling wave from P§ to

(8> CT).
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Figura 46 — Solution of System (5.35)(5.37) for (C~,C") € ¥ with C~ > C* for (S,,,C7) =
Pr = (0.937126,0.7) and (S, C+) = Py = (0.94,0.219605). The solid line re-
presents the analytical, and the dashed line corresponds to the numerical solution.
(a) Comparison between solution profiles. (b) Zoom of Figure(a) for S,, and np.

5.4.10.2 Case C~ < (T

Here, v = v™ and the equilibria Pr and P& collapse into a non-hyperbolic equilibrium
(or node), which is the right equilibrium (S}, C*). Since C~ # C*, there is no S, that

satisfies (5.46) nor a traveling wave connection.

54.11 Curve ® (C~ =C" < Cupe):

This case is similar to region SR” and presents the same solution type as in [32, 89].
An equilibrium (S,,C) of System (5.35)-(5.37) satisfy (5.46). Therefore, np in local

equilibrium is constant, and it is written as

B Ky CF (2Came — C)
T Ky CF (2 e — CF) + K4 C2

cmce

(5.57)

np

As presented in [32, 89], there exists a value ST that represents the intersection point
between f,(S,,CT) and the tangent line to f,(S,, C") that passes through (S, f.F).
Since f,,(S,, CT) changes as a function of the value of C™ = C~, point S also changes
depending on C* = C~, which defines a curve presented in Figure 47. Therefore, if
S € (Swe, SE(C7)), it possesses no traveling wave, and the solution is a wave sequence.
On the other hand, if S;; € (SZ(C™),S]), there exists a traveling wave.

5.5 PARTIAL CONCLUSIONS

In this chapter, we extended a previously studied model describing the foam flow
in porous media by considering the variable surfactant concentration. We obtained semi-

analytical solutions for this model in the form of traveling waves using phase portrait
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Figura 47 — Case C~ = OT with C~ < C,,.. Value Sg represents the intersection point
between fi,(Sy, CT) and the tangent line to fu,(Sy, CT) that passes through (S;F, f.).
In ST, the type of solution changes from a sequence wave to a traveling wave.
(a) Representation of all values S. depending on C* = C~. (b) Zoom of Figure(a)
close to CT = 0.
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analysis in a drainage scenario. We classify possible traveling wave solutions according to

surfactant concentration at injection and initial conditions.

When surfactant concentrations at both injection and initial conditions are above
the critical micelle concentration (CMC), the only possible traveling wave solutions occur
when these concentrations are equal. As expected, the solution found in this case coincides
with the one found for the simple model considering large surfactant concentrations. When
surfactant concentrations at both injection and initial conditions are below the CMC,
we found traveling wave solutions only in regions where surfactant concentration at the

injection is greater or equal to that at the initial condition.

Our analysis allows obtaining an analytical formula for the traveling foam front,
which is useful in previewing the gas breakthrough time, for example. With this equation,
one can quantify how the decrease in surfactant concentration impacts the foam traveling

wave front velocity.

A mathematically challenging case was found in Region 2! (see Subsection 5.4.1)
where there are infinite possibilities for the traveling wave connecting a source equilibria
to a sink one, all of them with the same wave velocity. Although we do not have a
mathematical explanation, the direct numerical simulations point out that the correct
solution happens when the surfactant variation happens after the water saturation variation

(inflow to outflow direction).

All obtained traveling wave solutions were validated using direct numerical simula-

tions of the system of partial differential equations.
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6 CONCLUSIONS AND DISCUSSIONS

In this thesis, different systems of partial differential equations that describe the
foam displacement in porous media were analytically studied. In modeling, we assumed
the dynamic behavior of foam as Newtonian. For our analysis, we considered a high initial
water saturation (drainage scenario) and varied the injected water saturation. In all cases,
we analyze the phase portrait of the systems of ordinary differential equations obtained
from the systems of partial differential equations through a traveling variable. Traveling

wave solutions were obtained and validated with direct numerical simulations.

The first model, studied in Chapter 3 and called the First Order Kinetic model
(FOK), considers an abrupt weakening or collapse of foam at a limiting water saturation.
The second model, studied in Chapter 4, is a simplification of the Stochastic Bubble
Population model (SBP). We correlate the gas phase mobility expressions for two models
(FOK and SBP models), obtaining the mobility reduction factor as a linear function of
foam texture. Finally, the third model, introduced in Chapter 5, considers a separate
balance equation to describe the surfactant concentration. In this case, the gas mobility is

affected by surfactant concentration.

For the first two investigated models, we fixed the surfactant concentration above
the critical micelle concentration. Both models, studied in this thesis, present identical
solutions for relatively high values of injected water saturation, where the foam texture
in local equilibrium of both models coincides. Besides, if we use in the FOK model, the
same parameters of relatives permeabilities and capillary pressure used in the SBP model,
then it is possible to obtain a region (Region I presented in 4.2.2), where the SBP is a
particular case of FOK model as shown in [32]. The models studied in chapters 4 and 5
possess similar behaviors for all the values of injected water saturation since the surfactant
concentration at the injection and initial conditions are equal. Hence, the solutions of all
three models are similar for high values of injected water saturation and the surfactant
concentration above the critical micelle concentration. Since the model of Chapter 4
was validated with experimental results for relatively high values of water saturation,
highlighting that the velocity of the wave coincides in later times. So, in some cases, the

dynamic foam behavior in porous media can be modeled as Newtonian.

For small values of injected water saturation, the models’ solutions possess different
behaviors. A significant difference between these models is the influence of critical water
saturation in the first model. This influence can induce the presence of two types of
structural instabilities close to this point. Our results suggest the need of experimental
data corresponding to injected water fractional flow (or, equivalently, lower injected water

saturation) to verify the validity of the investigated models.

Finally, from the model studied in Chapter 5, we noticed that the surfactant



92

concentration significantly influences the foam’s behavior. In addition, there exists a
traveling wave solution for the model with surfactant concentration below the critical

micelle.
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APPENDIX A — Variation in parameter A

A.1 Maintaining S, = 0.72. and considering A = 10.

200

160

120

80

40

II I

-------

0 -

5 0374 0378 0382 0.386 0.388
W e
S

()

+ —
g 06 0TgF 1-5,

Figura R; — Classification of the eigenvalues of the Jacobian matrix associated to the vector field

of (3.12)-(3.13) in the semi plane [Sye, 1 — Sgr] x K, for A =10 and S, = 0.72. (a)
As we can see, decreasing A, the size of regions III, IV, and V decrease in K. and
increase in S,,, when compared with the original plot in Fig. 3. (b) Zoom of the
small area close to S} indicated by a black rectangle in the panel (a). Notice that
the pinched part of Region III in Region IT remains and increases in size. (c¢) Zoom
of the small area close to S}, indicated by a black rectangle in the panel (b). The
relative position of regions IV and V do not change.

A.2 Maintaining S} = 0.72. and considering A = 100.
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Figura Rg — Classification of the eigenvalues of the Jacobian matrix associated to the vector field

of (3.12)-(3.13) in the semi plane [Syc, 1 — Sgr] x K. for A = 100 and S}, = 0.72.
(a) As we can see, decreasing A, the size of regions III, IV, and V decrease in K,
and increase in S,,, when compared with the original plot in Fig. 3. (b) Zoom of
the small area close to S} indicated by a black rectangle in the panel (a). Notice
that the pinched part of Region III in Region IT remains and increases in size. (c)
Zoom of the small area close to S} indicated by a black rectangle in the panel (b).
The relative position of regions IV and V do not change.
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A.3 Maintaining S} = 0.72. and considering A = 200.
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Figura R3 — Classification of the eigenvalues of the Jacobian matrix associated to the vector field

of (3.12)-(3.13) in the semi plane [Sye, 1 — Sgr] x K. for A = 200 and S}, = 0.72.
(a) As we can see, decreasing A, the size of regions III, IV, and V decrease in K,
and increase in S,,, when compared with the original plot in Fig. 3. (b) Zoom of
the small area close to S} indicated by a black rectangle in the panel (a). Notice
that the pinched part of Region III in Region IT remains and increases in size. (c)
Zoom of the small area close to S}, indicated by a black rectangle in the panel (b).
The relative position of regions IV and V do not change.

A4 Maintaining S = 0.72. and considering A = 300.
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Figura R4 — Classification of the eigenvalues of the Jacobian matrix associated to the vector field

of (3.12)-(3.13) in the semi plane [Syc, 1 — Syr] x K. for A = 300 and S}, = 0.72.
(a) As we can see, decreasing A, the size of regions III, IV, and V decrease in K,
and increase in S,,, when compared with the original plot in Fig. 3. (b) Zoom of
the small area close to S} indicated by a black rectangle in the panel (a). Notice
that the pinched part of Region III in Region IT remains and increases in size. (c)
Zoom of the small area close to S} indicated by a black rectangle in the panel (b).
The relative position of regions I'V and V do not change.
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Figura R5 — Classification of the eigenvalues of the Jacobian matrix associated to the vector field
of (3.12)-(3.13) in the semi plane [Sye, 1 — Sgr] x K. for A = 500 and S}, = 0.72.
(a) As we can see, increasing A, the size of regions III, IV, and V increase in K,
and decrease in S,,, when compared with the original plot in Fig. 3. (b) Zoom of
the small area close to S} indicated by a black rectangle in the panel (a). Notice
that the pinched part of Region III in Region IT remains and decreases in size. (c)
Zoom of the small area close to S} indicated by a black rectangle in the panel (b).

The relative position of regions IV and V do not change.
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APPENDIX B - Variation in parameter S

B.1 Maintaining A = 400 and considering S = 0.68.
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Figura Rg — Classification of the eigenvalues of the Jacobian matrix associated to the vector field
of (3.12)-(3.13) in the semi plane [Sye, 1 — Sgr] X K. for A = 400 and S, = 0.68.
(a) As we can see, decreasing Sy, the size of regions III, IV, and V increase in K,
and decrease in Sy,, when compared with the original plot in Fig. 3. (b) Zoom of
the small area close to S} indicated by a black rectangle in the panel (a). Notice
that the pinched part of Region III in Region IT remains and decreases in size.

B.2 Maintaining A = 400 and considering S, = 0.55.
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Figura Ry — Classification of the eigenvalues of the Jacobian matrix associated to the vector field
of (3.12)-(3.13) in the semi plane [Sye, 1 — Sgr] X K. for A = 400 and S, = 0.55.
(a) As we can see, decreasing Sy, the size of regions III, IV, and V increase in K,
and decrease in S,,, when compared with the original plot in Fig. 3. (b) Zoom of
the small area close to S} indicated by a black rectangle in the panel (a). Notice
that the pinched part of Region III in Region II remains and decreases in size.
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B.3 Maintaining A = 400 and considering S = 0.47.
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Figura Rg — Classification of the eigenvalues of the Jacobian matrix associated to the vector field
of (3.12)-(3.13) in the semi plane [Sye, 1 — Sgr] x K. for A = 400 and S}, = 0.47.
(a) As we can see, decreasing S,,, the size of regions III, IV, and V increase in K,
and decrease in S,,, when compared with the original plot in Fig. 3. (b) Zoom of
the small area close to S} indicated by a black rectangle in the panel (a). Notice
that the pinched part of Region III in Region IT remains and decreases in size.



