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RESUMO

O objetivo deste trabalho é estudar, dentro do campo de equações diferenciais

parciais, problemas elípticos onde podemos identiĄcar algum tipo de criticalidade no

comportamento da função não linear presente e, ao Ąnal de cada um dos três problemas

principais apresentados aqui, buscar a existência de soluções estritamente positivas para

os mesmos.

No primeiro capítulo, apresentaremos a leitor uma breve história dos problemas

que buscamos estudar e as noções de crescimento crítico de Sobolev e de Trudinger-Moser,

noções que se diferenciam principalmente pelo operador elíptico considerado, pelos espaços

de funções em que procuramos soluções e, adicionalmente, pelos métodos que empregamos.

São estas características que moldam as principais complicações que tivemos de enfrentar

para a resolução dos problemas postos.

No segundo capítulo, olhamos para o primeiro problema de nosso interesse, a saber

o problema de condição de fronteira mista,










−∆u = λuq−1 + f(u) in Ω,

u > 0 in Ω,

B(u) = 0 on ∂Ω,

(1)

onde B(u) é um operador de fronteira mista de Dirichlet-Newmann, combinando duas

diferentes noções de condição de fronteira. Neste caso, a criticalidade da função f é dada

pelo expoente crítico de Sobolev, 2∗ = 2N
N−2

, onde N é a dimensão do espaço em que Ω se

encontra.

Em seguida, no terceiro capítulo, olhamos para um sistema elíptico acoplado,






















−∆u− ϕu2∗−2 = λ
uγ in Ω,

−∆ϕ = f(u) in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω

(2)

e o fato de ainda considerarmos o operador Laplaciano implica novamente em uma condição

de crescimento crítico de Sobolev, de modo que tomamos f abaixo de uma múltipla da

curva dada por u2∗

. Vemos que este crescimento também está presente na primeira equação,

além da consideração de uma singularidade como parte da não-linearidade.

Por Ąm, no quarto e último capítulo, consideramos enĄm um problema com o

operador elíptico não linear, N-Laplaciano,






















−∆Nu− ϕ
f(u)

u
= λ

uγ in Ω,

−∆Nϕ = f(u) in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω.

(3)



Novamente tratamos um sistema, sendo este bem similar ao primeiro. O operador, porém,

nos força a considerar a condição de criticalidade de Trudinger-Moser, sendo que agora

incorporamos também a função f à primeira equação.

Mais detalhes sobre os problemas tratados, os operadores e suas noções de criticali-

dade serão fornecidos no devido tempo, assim como os métodos de resolução dos mesmos.

Utilizaremos aqui os métodos não-variacionais de Galerkin e da Teoria de Ponto Fixo de

Schauder.

Palavras-chave: Equações Elípticas. Crescimento Crítico. Expoente crítico de

Sobolev. Desigualdade de Trudinger-Moser. Sistema Schrodinger-Poisson. Método de

Galerkin. Teoria do Ponto Fixo de Schauder.



ABSTRACT

The main objective of the present work is to study, within the Ąeld of partial

differential equations, elliptic problems where we can identify some form of criticality

in the behavior of the nonlinear function present and, at the end of each of the three

appointed problems, to prove the existence of strictly positive solutions to such.

In the Ąrst chapter, we present to the reader a brief historical vision of the problems

we seek to study and the notions of critical growth in the sense of Sobolev and in the

sense of Trudinger-Moser, which differ from one another mainly by the considered elliptic

operator, by the function spaces in which we look for solutions and, additionally, by the

methods we employ. This are the factors that summon the main complications we have

encountered while resolving the proposed problems.

In the second chapter, we look at our Ąrst problem considered, namely the mixed

boundary condition problem,










−∆u = λuq−1 + f(u) in Ω,

u > 0 in Ω,

B(u) = 0 on ∂Ω,

(4)

where B(u) is a Dirichlet-Neumann mixed boundary operator, which combines the two

different notions of boundary condition. In this case, the critical behavior of the function

f is given by the Sobolev critical exponent, 2∗ = 2N
N−2

, where N is the dimension of the

space where Ω resides.

Following that, in our tird chapter, we look at an elliptic system highly coupled,






















−∆u− ϕu2∗−2 = λ
uγ in Ω,

−∆ϕ = f(u) in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω

(5)

and the fact that we still treat the Laplacian operator implies once more that the critical

growth condition is given by the Sobolev critical exponent, so that we take f below

(but still able to achieve the growth of) the curve u2∗

. One may notice that this growth

condition is also seen in the Ąrst equation, joined with the presence of a singular term as

part of the nonlinearity.

At last, in the fourth and Ąnal chapter, it is considered a problem with the nonlinear

elliptic operator, the N-Laplacian,






















−∆Nu− ϕ
f(u)

u
= λ

uγ in Ω,

−∆Nϕ = f(u) in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω.

(6)



We see that once more we treat a system, quite similar even to the Ąrst. The operator,

however, forces us to consider the condition of criticality of Trudinger-Moser, whereas we

also incorporate the same function f to the Ąrst equation.

Additional details about the treated problems, their operators and the two notions

of critical growth will be given in time, as will be done for the methods used to solve

them. We will make use, here, of the Galerkin Method and the Schayder Fixed Point

Theorem, both comprising a non variational approach to the resolution of elliptic problems.

Furthermore, the important results of each chapter

Keywords: Elliptic Problems. Critical Growth. Sobolev Critical Exponent.

Trudinger-Moser Inequality. Schrodinger-Poisson System. Galerkin Method. Schauder

Fixed Point Theorem.
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1 INTRODUCTION

1.1 MAIN GOALS

In this work, we seek to obtain existence and positiveness results for three different

classes of elliptic problems, each one of them containing certain elements which hinder the

use of the more common methods, such as variational ones. Our main goal is to show how

we can expand on the results of the current literature with regard to elliptic problems by

considering free nonlinearities obeying critical or supercritical growth, both in the sense of

Sobolev and of Trudinger-Moser, which shall be deĄned later. By free nonlinearity, we

mean restricting our functions only in their growth, keeping their behaviour quite general.

In this context, we have then chosen to apply the non variational Galerkin Method, also

to be introduced ahead, to the resolution of such elliptic problems. The choice of our main

problems were due to the difficulties the literature encountered when treating them, aside

from their external motivation, more apparent in the last two cases, which we shall pass

through brieĆy.

1.2 PRELIMINARY SPACES AND DEFINITIONS

Let us pass brieĆy through some deĄnitions which shall be of great importance

throughout this entire work.

• Ω will, unless explicitly stated otherwise, denote a subset of RN , which will have its

dimension speciĄed when necessary, being a smooth bounded and open set, that is,

a smooth domain.

• Ck(A), for k = 1, 2, 3, · · · and a subset A ⊂ R
N , is the space of functions u : A→ R

for which its derivatives up to order k exist and are continuous.

• C∞(A) is the space of functions u : A→ R for which its derivatives up to any order

exist and are continuous. Functions in C∞(A) are also called smooth functions.

• C∞
0 (A) is the subspace of C∞(A) given by smooth functions which vanish outside

a compact set contained in A. The closure of the set of points in R
N for which

u ∈ C∞
0 (A) does not vanish is called the support of u, denoted by supp u.

• Lp(Ω), for p ∈ [1,+∞), denotes the space of measurable functions for which the p-th

power of its module is integrable,

Lp(Ω) :=

{

u : Ω→ R ;u is measurable and ♣u♣p =
(∫

Ω

♣u♣p dx

)1/p

< +∞

}

We have purposely written the integral above as ♣u♣p because it deĄnes a norm in

Lp(Ω). For the case when p = +∞, we deĄne Lp(Ω) = L∞(Ω) as the space of
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measurable functions for which the quantity

ess sup
x∈Ω
♣u(x)♣ = inf¶C > 0 ; ♣u(x)♣ ≤ C a. e. in Ω♢

is Ąnite. In other words, it is the space of measurable functions which are bounded

almost everywhere.

• Given a function u ∈ Lp(Ω), if there exists a function g ∈ Lp′

(Ω) such that, for all

φ ∈ C∞
0 (Ω), we have

∫

Ω

u
∂φ

∂xi

dx =
∫

Ω

gφ dx,

then we say that g is the weak derivative of u in relation to xi. We write g = ∂u
∂xi

,

since if g is the derivative of u in the classical sense, it will also be a weak derivative.

In the same way, we can generalize this deĄnition for higher order weak derivatives

denoting, for some multi-index α = (α1, · · · , αn) ∈ N
n
0 , Dαu its weak derivative of

order α.1

• W k,p(Ω), for p ∈ [1,+∞) and k ∈ N, is the space of p-integrable functions such that

its weak derivatives of k-th power are also p-integrable.

W k,p(Ω) := ¶u ∈ Lp(Ω) ;Dαu ∈ Lp(Ω) for ♣α♣ ≤ k♢ .

We endow it with the norm

∥u∥W k,p(Ω) =





∑

♣α♣≤k

♣Dαu♣pp





1/p

.

• W k,p
0 (Ω), for p ∈ [1,+∞) and k ∈ N is the closure of C∞

0 (Ω) relative to the W k,p(Ω)

norm.

• Hk(Ω), for k ∈ N, will be the label we give to the crucial space W k,2(Ω). Furthermore,

we write Hk
0 (Ω) for W k,2

0 (Ω), so that, for the most often needed Sobolev space,

W 1,2
0 (Ω), we use H1

0 (Ω).

1.3 CRITICAL EXPONENTS IN ELLIPTIC EQUATIONS

In this Ąrst section, we will study the aspects of an elliptical problem which makes

it critical in its conditions, so that we can, in the following chapters, study some important

cases. Firstly, we shall work with the linear operator −∆, for which the critical growth is

determined by the limit in the exponent of the Sobolev Embedding Theorems (consult the
1 More speciĄcally, Dα should be understood to be a partial derivative in the distributional

sense, requiring thus the study of distribution theory. We shall not deepen in this study, since
this higher formalism is not required, but one can check [1] for more details.



13

Appendix for more details). After that, we will analyze the boundary problem with the

p-Laplacian operator, in which case the criticality is given by the so called Trudinger-Moser

inequality. Both this concepts will be made clear in a moment.

Let us consider Ąrst the following elliptic problem
{

−∆u = f(u), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.1)

Problem (1.1), characterized by the second order linear operator

−∆u = div(∇u) =
N
∑

i=1

∂2u

∂x2
i

and coupled with the Dirichlet boundary condition, requires the use of the Sobolev Space

H1
0 (Ω).

Remark 1.3.1. The most common and accepted approach to problems of this sort is to

divide it in two step: obtaining what is called a weak solution and proving its regularity.

What we mean by a weak solution (the interested and unfamiliar reader can be referred to

[2, 3] for a deeper look in the matter) is a function u ∈ H1
0 (Ω) such that

∫

Ω

∇u∇v dx =
∫

Ω

f(u)v dx , ∀ v ∈ H1
0 (Ω).

Because of our constant use of the term, we shall refer to such a function u as a

solution to Problem (1.1), calling it a classical solution if we are able to prove u ∈ C2(Ω).

We will now analyze the conditions on f that guarantee the existence of solution

to Problem (1.1). Under more strict hypothesis, those which we shall wish to generalize

in the following chapters, this problem can be treated by variational methods. Firstly,

suppose we ask that f satisĄes

(h1) The function f : R −→ R is continuous and bounded.

Given this, the functional associated with Problem (1.1) is

I(u) =
1
2

∫

Ω

♣∇u♣2 dx−

∫

Ω

F (u) dx =
1
2
∥u∥2 −

∫

Ω

F (u) dx , u ∈ H1
0 (Ω), (1.2)

where F (s) =
∫ s

0
f(s)ds is the primitive of f , which we know to be a continuous function.

As it can be easily seen, I deĄned in this way is found to be coercive and bounded

below. This can be proven by use of the best Sobolev constant, which permits us estimate

the norm of a function u in Lq(Ω) by its norm in H1
0 (Ω). With it, and noting that, by

(h1), we have

♣F (s)♣ ≤ a ♣s♣ , ∀s ∈ R,
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we can write, for every u ∈ H1
0 (Ω),

I(u) ≥
1
2
∥u∥2 − C ∥u∥ . (1.3)

With this, we prove the existence of the value m = inf¶I(u) ;u ∈ H1
0 (Ω)♢ and,

therefore, a minimizing sequence ¶un♢n∈N in H1
0 (Ω). We only need to prove then the

existence of a limit u ∈ H1
0 (Ω) for un.

Theorem 1.3.1. If f is a function satisfying (h1), then there exists a solution to Problem

(1.1).

Proof. If ¶un♢n∈N is a minimizing sequence for I, we readily see that it must be bounded

in H1
0 (Ω), since I(un) is bounded. By the Sobolev Embedding Theorems, there exists a

function u∗ ∈ H
1
0 (Ω) and a subsequence of (un) (we shall, with an abuse of notation, still

denote this subsequence by un) such that











un ⇀ u∗ in H1
0 (Ω),

un → u∗ in Lq(Ω), for q ∈ [1, 2∗)

un → u∗ a.e. in Ω.

(1.4)

Now, by the continuity of F , the third conclusion in (1.4) implies F (un) →

F (u∗) a.e. in Ω. Moreover, the second convergence implies also that (un) is bounded in

Lq(Ω) for q ∈ [1, 2∗) and, since ♣F (un)♣ ≤ a ♣un♣, the Dominated Convergence Theorem

(DCT) can be applied to give us
∫

Ω

F (un) dx −→
∫

Ω

F (u) dx.

At last, by the weak lower semi-continuity of the norm,

∥u∥2 ≤ lim inf
n→∞

∥un∥
2 .

Thus, we have

I(u) =
1
2

∫

Ω

♣∇u♣2 dx−

∫

Ω

F (u) dx

≤
1
2

lim inf
n→∞

∫

Ω

♣∇un♣
2 dx− lim

n→∞

∫

Ω

F (un) dx

= lim inf
n→∞

(

1
2

∫

Ω

♣∇un♣
2 dx−

∫

Ω

F (un) dx
)

= lim inf
n→∞

I(un) = m.

(1.5)

With this, we see it can only be I(u) = m = infv∈H1
0 (Ω) I(v). We have obtained,

thus, that u is a global minimum for I, that is, a critical point for this functional.
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Remark 1.3.2. One thing we may want to guarantee is that our attained solution is

different from the trivial solution, that is, the constant function u ≡ 0. In the terms

of Theorem 1.3.1, this cannot be proven, meaning we need additional conditions over

f . If, for example, f behaves as expressed in (h1) only for big enough arguments and is

continuous close to the origin, but such that f(0) ̸= 0, then we obviously obtain that the

trivial function is not a solution to Problem (1.1). Additionally, we may ask (see [4]) that

f also satisĄes the following condition

(h′
1) lim inft→0+

f(t)
t
> λ1,

where λ1 is the Ąrst eigenvalue to the −∆ operator.

Now, if we examine carefully our proof, we see that two factors in the assumptions

were crucial: Ąrst, we needed I to be a coercive and bounded from below, which was given

here by the assumption that f is a bounded function; second, the fact that we were able

to bound the function ♣F (un)♣ by a multiple of ♣un♣ gave us the possibility of using the

DCT to conclude the continuity of the second term of I (and thus the semi-continuity of

I itself). What we can see now is that if the
∫

Ω
F (u) dx were to be bounded by any term

with a growth below the quadratic growth in the norm ∥u∥, then I would still be coercive.

Meanwhile, considering f to be below the so called critical growth, that is,

♣f(s)♣ ≤ a+ b ♣s♣p , ∀ s ∈ R,

p ∈ [0, 2∗ − 1), we shall have

♣F (s)♣ ≤ a1 + b1 ♣s♣
p+1 , ∀ s ∈ R,

and the Sobolev Embedding will again provide ♣F (un)♣ uniformly bounded by a function

w ∈ L1(Ω). The use of the DCT would then still be possible and I would remain weakly

lower semi-continuous.

Therefore, we can only, for the time being, assume

(h2) The function f : R −→ R is continuous and satisĄes:

There exists a, b > 0 such that ♣f(s)♣ ≤ a+ b ♣s♣p , ∀ s ∈ R,

where p ∈ (0, 1).

With this, the two main factors in Theorem 1.3.1 are preserved and it can thus be

proved, in the same spirit, the following.

Theorem 1.3.2. If f is a function satisfying (h2), then there exists a solution to Problem

(1.1).
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Remark 1.3.3. If b is small enough, we are able to allow f to achieve linear growth, that

is, to take p = 1 in (h2), and still obtain the term 1
2
∥u∥2 dominating at inĄnity. More

speciĄcally, we must require b < λ1, where λ1 > 0 is the Ąrst eigenvalue for the Laplacian

operator. See, for example, [4, Theorem 2.1.6].

Remark 1.3.4. Note that the coercive property is a characterization of the behavior of I

at inĄnity, implying that the growth condition for the function f near the origin does not

matter so much. We can, therefore, assume weaker conditions, such as

(h′
1) The function f : R −→ R is continuous and satisĄes:

lim sup
s→±∞

♣f(s)♣
♣s♣

< +∞.

When f is above the linear growth, called superlinear case, we do not have a lower

bound any more and this, obviously, hinders the use of minimization methods. Variations

must be added then to suit each case. In each of then, it is still important how the growth

condition of f is related to the critical Sobolev exponent 2∗ = 2N
N−2

, since it is always used

throughout our proofs the Sobolev Embedding Theorems. As a Ąrst example, we note

that, if the term
∫

Ω
F (u) dx in (1.2) were negative, we do not need to bound it by a power

of the norm ∥u∥ for I to be coercive. A possible condition is this

(h3) The function f : R −→ R is continuous and satisĄes:

There exists a, b > 0 such that ♣f(s)♣ ≤ a+ b ♣s♣2
∗−1 , ∀ s ∈ R.

Moreover,

f(s)s ≤ 0 , ∀ s ∈ R.

With this, it can be proven that F satisĄes

♣F (s)♣ ≤ a1 + b1 ♣s♣
2∗

, ∀ s ∈ R,

and also F (s) ≤ 0, ∀ s ∈ R.

Thus, we can again adapt the proof of Theorem 1.3.1 and obtain

Theorem 1.3.3. If f is a function satisfying (h3), then there exists a solution to Problem

(1.1).

Proof. See [4, Theorem 2.1.11].

The second example is perhaps the most simple one in characterization, but is one

which does possesses serious problems, where f is the power function f(s) = ♣s♣p−2 s, with

p ∈ (2, 2∗). The problem is then
{

−∆u = ♣u♣p−2 u, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.6)
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For this problem, the functional needed is

I(u) =
1
2

∫

Ω

♣∇u♣2 dx−
1
p

∫

Ω

♣u♣p dx =
1
2
∥u∥2 −

1
p
♣u♣pp (1.7)

and we can see directly how the coercitivity is lost for I if we write I(tu),

lim
t→∞

I(tu) = lim
t→∞

(

t2

2
∥u∥2 −

tp

p
♣u♣pp

)

= −∞,

since p > 2.

What can be done to overcome this problem is to constrain the functional I to

a subset of H1
0 (Ω) which recovers this property. Going through the literature (see for

example, [4, 5, 6], and references therein), we Ąnd that possible such subsets are:

1. The sphere of Lp(Ω) in H1
0 (Ω),

Σβ = ¶u ∈ H1
0 (Ω) ; ♣u♣pp = β♢.

With this, the functional I restricted to Σβ becomes

I(u) =
1
2
∥u∥2 −

1
p
β,

which is obviously coercive and bounded below.

If we apply our proof for the attainment of a solution, however, we shall Ąnd a

function that satisĄes the equation for a weak solution for (1.6),
∫

Ω

∇u∇v dx =
∫

Ω

♣u♣p v dx,

only for test functions v ∈ TuΣβ, the tangent space of Σ at u. What is left for us to

do is to prove that such u will satisfy this same equation for any v ∈ H1
0 (Ω).

2. The Nehari Manifold N ⊂ H1
0 (Ω),

N = ¶u ∈ H1
0 (Ω) ; u ̸≡ 0 , I ′(u)u = 0♢.

We can see that condition deĄning this subset is equivalent, given the characterization

of I in (1.7), to the following

∥u∥2 =
∫

Ω

♣∇u♣2 dx =
∫

Ω

♣u♣p dx = ♣u♣pp .

Now, the functional I restricted to N will be

I(u) =
1
2
∥u∥2 −

1
p
∥u∥2 = (

1
2
−

1
p

) ∥u∥2 ,

which is, once more, coercive and bounded below. One more time, we would need

Ąrst to prove that there exists a minimizing function of I restricted to N and, after

that, extend its condition as a weak solution to the entire space H1
0 (Ω).
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Furthermore, we shall treat in this work problems with another type of criticality

in the nonlinearity. This one is related to the Sobolev Embedding Theorems when kp = N .

This case of the embedding is important when we deal with problems containing the

N-Laplacian as the operator. Therefore, let us consider the following elliptic problem
{

−∆Nu = f(u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.8)

where ∆N represents the operator

∆Nu = div (♣∇u♣N−2∇u).

When u is regular enough, we can write it as

∆Nu = ♣∇u♣N−2 ∆u+ (N − 2) ♣∇u♣N−4
N
∑

i,j=1

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj

.

Through another point of view, we can see the N-Laplacian as an operator from W 1,N
0 (Ω)

to its dual, given by

⟨∆Nu, v⟩ = −
∫

Ω

♣∇u♣N−2∇u∇v dx , ∀ u, v ∈ W 1,N
0 (Ω). (1.9)

With this, we can see that, if u is a weak solution to (1.8), we have, using u as the

test function,
∫

Ω

♣∇u♣N dx =
∫

Ω

f(u)u dx,

that means,

∥u∥N
W 1,N

0 (Ω)
−

∫

Ω

f(u)u dx = 0.

Therefore, the functional associated to this problem,

I(u) =
1
2
∥u∥N

W 1,N
0 (Ω)

−

∫

Ω

F (u) dx,

will be coercive and bounded below if f satisĄes the growth condition

♣f(s)♣ ≤ a+ b ♣s♣q , for 0 < q < N − 1.

Furthermore, since the embedding W 1,N
0 (Ω) →֒ Ls(Ω) is compact for every s ∈

[1,+∞), we have no problem extending our proofs involving constrained minimization

for the N-Laplacian case here (see [4]). What is then the critical condition that can be

studied here? The answer comes from N. Trudinger [7] and J. Moser [8]. The Ąrst, using

the power series expansion of the exponential function and some Sobolev estimates, was

able to prove that for any u ∈ W 1,N
0 (Ω), we can bound the integral

∫

Ω

eα♣u♣N
′

dx,
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where N ′ = N
N−1

and α is a positive constant, independent of u.

Following this, Moser was able to improve this result, concluding that there exists

a α = αN such that the above estimate is valid for α ≤ αN and, moreover, is false for

α > αN . More speciĄcally, the exact result achieved was that

sup
∥u∥p

W
1,N
0

(Ω)
≤1

∫

Ω

eα♣u♣N
′

dx

{

≤ c ♣Ω♣ , if α ≤ αN ,

= +∞, if α > αN ,
(1.10)

for some constant c > 0 dependent on N , where αN = Nω
1/(N−1)
N−1 , being ωN−1 the measure

of the unit sphere in R
N . Thus, inequality (1.10) is called the Trudinger-Moser inequality

and the character of α renders αN the name critical Trudinger-Moser growth. This is,

therefore, the growth case which divides the problems in terms of difficulty.

1.4 FURTHER CHAPTERS

Now, we shall present, brieĆy, the problems we shall study in each following chapter.

More context will be given for all of them at the right moment. For now, we only cite

the main characteristics of the problems and the developments achieved up to now by

the current literature. All the main theorems present in this section and proved in the

following chapters were Ątted into articles and submitted to esteemed journals, a fact

which reiterates their importance and contemporaneity.

In the second chapter, we look for solutions to the following class of elliptic nonlinear

problems










−∆u = λuq−1 + f(u), x ∈ Ω,

u > 0, x ∈ Ω,

B(u) = 0, x ∈ ∂Ω.

(1.11)

For this particular problem, we will assume f to be of supercritical growth, in the sense of

Sobolev, and the main difference from the other cases is the assumption of the B operator as

the boundary condition, characterizing what we call a mixed Dirichlet-Neumann boundary

conditions. More precisely, B is deĄned as

B(u) = uχΣ1 +
∂u

∂ν
χΣ2 , (BC)

where both Σ1,Σ2 are smooth (N-1)-dimensional sub-manifolds of ∂Ω with positive measure

and such that Σ1 ∪Σ2 = ∂Ω, Σ1 ∩Σ2 = ∅ and Σ1 ∩Σ2 = Γ is a smooth (N-2)-dimensional

sub-manifold. Here, ν is the outward unitary normal vector to the boundary ∂Ω and χA

is the characteristic function of the set A.

Remark 1.4.1. The nomenclature Şmixed Dirichlet-Neumann boundary conditionsŤ

should be readily understood here, since the equality B(u) = 0 requires that u vanishes at

some part of ∂Ω, namely the sub-manifold Σ1, which constitutes the condition imposed by
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Dirichlet problems, and that the exterior derivative (or normal derivative) vanishes in the

complementary subset of the boundary ∂Ω, condition asked by Neumann problems.

We have seen how results become more scarce when we talk about nonlinearities

above the linear growth, with authors having to substitute the form of a power function

up for some other conditions restricting the behavior of f . One great contribution not

mentioned above was done by the work of Ambrosetti and Rabinowitz [9], where it was

assumed the problem
{

−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.12)

with the nonlinearity f : Ω×R→ R satisfying

(I1) f(x, 0) = 0 , lims→0
f(x,s)

s
= 0

(I2) ♣f(x, s)♣ ≤ a1 + a2♣s♣
p , a1, a2 > 0 , 1 < p < N+2

N−2

together with the following condition

(AR)
There exists r > 0 and θ > 2 such that

0 < θ F (x, s) ≤ f(x, s), for s > r, where F (x, s) =
∫ s

0
f(x, t)dt.

This last condition is known as the Ambrosetti-Rabinowitz (AR) condition and is

crucial to ensuring that the related functional still possesses the compactness required for

the Mountain Pass Theorem, as presented by the authors in the latter paper.

Seen that the (AR) condition is yet a limiting factor to the more general results,

many papers have then tried to drop this assumption using different techniques. In [10]

or [11], for example, the authors used a weaker version of (AR), concerning the growth

condition of F (x, t),

lim
s→∞

F (x, s)
s2

= +∞

to prove the existence of a nontrivial weak solution to problem (1.12) for functions f

satisfying the subcritical growth (I2) and that are almost linear near to the origin, using

again the Mountain Pass Theorem and adding also a parameter λ > 0 multiplying f .

Moreover, we can give more references to supercritical problems which achieved

the goal of generalizing the results beyond the (AR) condition. In [12], it was considered

the following problem










−∆u = λuq(r)−1 + f(r, u), x ∈ B,

u > 0, x ∈ B,

u = 0, x ∈ ∂B,

(1.13)

where B ⊂ R
N is the open unit ball and with f depending on the radial coordinate r = ♣x♣

and satisfying a variable exponent growth

0 ≤ sf(r, s) ≤ a1♣s♣
p(r),
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the function p(r) = 2∗ + αr, α > 0. There, the authors already generalized the problem

treated in [13], for which λ = 0 and where f was simply ♣s♣p(r)−2s. Additionally, in [14],

the authors treated a similar radial problem, considering the whole R
N and again without

the need for the (AR) condition.

On the other hand, another aspect of the problem we can give rise to more general

results is the boundary conditions. Problems with mixed boundary conditions have shown

to be more and more important in recent years, as exempliĄed in [15] and references

therein. The great work done by Peral and Colorado ([16]) treats the subcritical problem

subjected to the mixed Dirichlet-Neumann boundary condition given by (BC).











−∆u = λuq−1 + ur, x ∈ Ω,

u > 0, x ∈ Ω,

B(u) = 0, x ∈ ∂Ω,

(1.14)

where 1 < r < 2∗ − 1, 0 < q < r, λ > 0 and Ω ⊂ R
N is a bounded domain.

Furthermore, still in this paper, the authors not only prove the existence of a

solution to problem (1.14), but also achieve multiplicity for such solutions and a non-

existence result for the problem depending on the parameter λ, as well as on the q

parameter, obtaining different results for the sublinear perturbation case (q < 1) and the

eigenvalue case (q = 1). It is worth citing also the results obtained in estimating the L∞

norm of solutions for (1.14). We observe, however, that the nonlinearity of equation (1.14)

is still quite speciĄc, not achieving the critical growth or considering functions beyond the

polynomial function.

Paper [16], however, was not the Ąrst one to deal with the change in the boundary

conditions. Grossi, in the work [17], proved the existence for a version of problem

(1.14), with q = 1 and assuming the critical growth r = 2∗ − 1. Adimurthi, Pacella

and Yadava, in [18] treat the mixed Dirichlet-Neumann problem (1.14) for the equation

−∆u+ λαu = u2∗−1, where α ∈ C1(Ω), assuming some speciĄc geometric conditions for

the Σ2 component of ∂Ω. We see that the consideration of the critical Sobolev growth

leads to signiĄcant scarcer results.

Nevertheless, following the development of the Ąeld, Ding and Tang, in [15], studied

a Hardy-Sobolev critical singular problem, also with mixed Dirichlet-Neumann boundary

conditions, which generalizes problem (1.14) to the critical Sobolev exponent case and

also achieve other interesting results of multiplicity and non-existence concerning the case

with Hardy terms. We intend to generalize the results even further by treating the case of

a superlinear nonlinearity (and without restraining ourselves to the polynomial function),

while still considering mixed Dirichlet-Neumann conditions at the boundary.

Turning back to Problem (1.11), the mixed boundary condition forces us to abandon
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the Sobolev Space H1
0 (Ω) for a more suitable one, namely

EΣ1(Ω) :=
{

v ∈ H1(Ω); v = 0 on Σ1

}

,

which does provides the correct boundary information for a solution of (1.11). It can be

seen that it preserves the properties of H1
0 (Ω) which are important for our solution, like

the structure of a Hilbert space and the Sobolev Embedding Theorems on Lp(Ω) spaces.

Furthermore, the presence of the mixed operator B compels us to adapt certain results

proper to Dirichlet Boundary conditions only, such as comparison results.

Over the nonlinearity f , we Ąrst assume the basic condition that its image be

positive for a positive argument, namely the sign property:

(H1) It has the sign property, namely:

0 ≤ f(t)t , t ∈ R ;

Furthermore, as we have mentioned, f is made supercritical in terms of Sobolev growth.

With this, we mean that we have

(H2) It has a critical or supercritical growth at inĄnite, in the sense that

lim inf
t→∞

f(t)
tr

=∞ , ∀ r ∈

(

1,
N + 2
N − 2

)

;

We make, however, the following additional assumptions over the growth condition of f

(H3) We assume that there exists a number θ > 0 such that

lim sup
t→∞

f(t)
t2∗−1+θ

<∞ ;

(H4) There exists a sequence (Mn) with Mn →∞ and such that, for every r ∈ (0, N+2
N−1

),

t ∈ [0,Mn] ⇒
f(t)
tr
≤
f(Mn)
(Mn)r

.

This last light condition on the increasing behavior of every f(t)
tr is what helps us

overcome the supercritical growth of f . We prove the existence and positiveness of a weak

solution for (1.11), fact summarized by the following theorem,

Theorem 1.4.1. If f : [0,∞) −→ R is a continuous function satisfying the growth

conditions (H1) - (H4), then there exists γ > 0 and Λ > 0 such that problem (1.11) has a

weak solution uλ ∈ EΣ1(Ω) ∩W 2, 2∗

2∗
−1 (Ω) whenever 0 < θ < γ and 0 < λ < Λ.

Furthermore, we may also prove, for the same problem, a nonexistence result

concerning the range of the parameter λ. Namely that the set of parameters λ for which

(1.11) has a solution is bounded above. More precisely, we prove
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Theorem 1.4.2. If f is a continuous function satisfying the growth conditions (H1) -

(H3), then the set of parameters λ for which problem (1.11) has a solution is bounded from

above.

Both Theorems 1.4.1 and 1.4.2 are present in our submitted and published article

[19], in the journal Complex Variables and Elliptic Equations.

Following that, we devote the third chapter to the resolution of the system, named

Schrodinger-Poisson (SP) type system, given by






















−∆u− ϕu2∗−2 = λ
uγ in Ω,

−∆ϕ = f(u) in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω.

(1.15)

Apart from the evident difference of presenting two equations instead of one, like in (1.11),

this problem differs from the Ąrst by introducing a singularity in one of the nonlinear

terms, while restraining the second one, characterized by the function f , to a subcritical or

critical growth, with no restriction on the behavior of f . This is an important improvement

since the critical growth is a quite important hindering factor to more classical methods

such as variational ones, as we have just seen. We ask that f satisĄes only

0 ≤ f(s)s ≤ L♣s♣2
∗

, L > 0. (1.16)

Problem (1.15) was shown to have a quite rich history in the area of study of

mathematical physics. One of the most general deĄnitions of a Schrödinger-Poisson system

can be expressed by the following coupled equations
{

−∆u+ V (x)u+ k(x)ϕ♣u♣q−2u = f(x, u) in R
3,

−∆ϕ = k(x)♣u♣q in R
3.

(1.17)

Benci and Fortunato [20] introduced the study of such a system to represent the

physical model of a charged particle interacting with an electromagnetic Ąeld, in the

quantum mechanics formulation, when assumed to have a stationary solution (for more

details on the applications of such study, see [21, 22] and references therein). There, it

took the following eigenvalue formulation










−1
2
∆u− ϕu = ωu in Ω,

∆ϕ = 4πu2 in Ω,

ϕ = g on ∂Ω.

(1.18)

The condition ϕ = g represents our setting of the potential in the boundary of a given

subset Ω of R3 and g is assumed to be continuous. In addition, since u represents the
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amplitude of the wave function of the contained particle, it is necessary to impose the

condition of normalization on Ω, namely
∫

Ω

u2 dx = 1.

We cite that the name of such system is due to the presence of a nonlinear stationary

Schrödinger equation, one of the central pieces of quantum mechanics, coupled with a

Poisson equation, which is derived from the Maxwell equations for the electric potential

(for this reason the two equations can also be referred as Schrödinger-Maxwell system).

For this reason, many papers have been interested in Ąnding results about the

existence and multiplicity of solutions to Schrödinger-Poisson type systems, specially when

it includes terms with critical growth, where the methods available become more scanty.

For bounded domains, there was, for a long period, a certain scarcity of results of existence

for systems such as (1.17) and the ones attained still had a certain degree of restriction.

Nonetheless, there has been, more recently, a number of new results advancing the Ąndings

for this type of problem.

In [23], it was considered the system











−∆u = λu+ ϕ♣u♣2
∗−3u in Ω,

−∆ϕ = ♣u♣2
∗−1 in Ω,

u = ϕ = 0 on ∂Ω,

(1.19)

where Ω ⊂ R
N , with N ≥ 3. Despite the choice of a critical exponent in the second

equation, the authors showed that, by using a reduction method, problem (1.19) can

still be treated through variational theory. Not only do they obtain solution for suitable

values of λ, but the also derive some nonexistence results for particular values of the same

parameter. This work already serves as a generalization for [24], where it is consider the

same system (1.19), with Ω = BR and N = 3.

Meanwhile, paper [25] treated the problem of a generalized Schrödinger-Poisson

type system










−∆u+ ϵqϕf(u) = ♣u♣p−1u in Ω,

−∆ϕ = 2qF (u) in Ω,

u = ϕ = 0 on ∂Ω,

(1.20)

where Ω ⊂ R
3 is a bounded domain with smooth boundary, 1 < p < 5, ϵ = ±1, q > 0,

f : R→ R is a continuous function and F (s) =
∫ s

0
f(t)dt denotes its primitive function.

This generalizes various papers preceding it by considering f different from the identity

function. It reproduces, for example, the Ąndings of [20] if p = 1, where the system was

treated as an eigenvalue problem. The existence results, however, depend strongly on the

assumption of small value for the parameter q, meaning that it still restricts more general
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cases. Again the assumptions therein allow the use of variational methods. Moreover, they

were also able to achieve multiplicity and non-existence results for certain cases.

Other papers introduced to this system a singular term in the Ąrst equation and

studied the modiĄcations needed for such a case. In [26], for example, the author studied

the problem






















−∆u+ ηϕu = λu−r in Ω,

−∆ϕ = u2 in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω,

(1.21)

Ąnding different results of existence when varying the domain of the parameter λ and

for η = ±1. The quite speciĄc form of the nonlinearity in the second equation and its

quadratic form allowed for quite promising conclusions. More speciĄcally, it was presented

the following results

Theorem 1.4.3. Assume η = 1. Then system (1.21) has a unique positive solution for

every λ > 0.

Theorem 1.4.4. Assume η = −1. Then there exists a constant Λ = Λ(r,Ω) > 0, such

that for any λ ∈ (0,Λ) system (1.21) has at least two different positive solutions.

Finally, in [27], the authors introduced the critical growth to this system already

containing a singularity, treating the following problem






















−∆u+ ηϕu2∗−2 = λ
uγ in Ω,

−∆ϕ = u2∗−1 in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω,

(1.22)

where η = ±1, γ ∈ (0, 1) is a constant and λ > 0 again a real parameter. They obtained

the same results, obtaining in both cases existence and uniqueness (or multiplicity) based

on variational methods.

It is used here a sequence of auxiliary functions fk called Strauss approximation, in

virtue of W. A. Strauss, which introduced them in [28]. They are important elements to our

work, since they are regular enough - Lipschitz and bounded functions - and approximate

f uniformly in bounded domains.

For problem (1.15), we have achieved the following result, which is part of the

article [29], recently published in the Journal of Mathematical Analysis and Applications.

Theorem 1.4.5. If f : [0,∞) −→ R is a continuous function satisfying the growth

condition (1.16). Then there exists Λ > 0 such that, for every 0 < λ < Λ, Problem (1.15)

has a pair of solutions uλ, ϕλ ∈ H
1
0 (Ω) ∩W 2,p(Ω), with p = 2∗

2∗−1
.
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Finally, the last problem we deal with, treated in Chapter 4, involves the more

general N-Laplacian operator, deĄned in (1.9). We study the following system, again of

Schrodinger-Poisson type,






















−∆Nu− ϕ
f(u)

u
= λ

uγ in Ω,

−∆Nϕ = f(u) in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω.

(1.23)

The main difference to (1.15), apart from - but related to - the N-Laplacian operator, is

that we impose now a exponential growth on f , dictated by the Trudinger-Moser inequality

(1.10). We ask f to satisfy

0 ≤ f(s)s ≤ L♣s♣r+1 exp¶αs
N

N−1♢, L, α > 0, r > N − 1. (1.24)

Also, as we have already seen, the change in operator forces us to work in the

W 1,N
0 (Ω) and some results have again to be adapted to this new frame of work.

It is interesting to see how this condition poses a critical growth in the absence

of the critical exponent in the Sobolev sense, as is the case for R
N , where N = 2. A

good example of this condition being applied to a (SP) system is given by [30], where the

nonlinearity f is present in the Ąrst equation,
{

−∆u+ ϕu = f(u) in Ω,

∆ϕ = 2πu2 in Ω.
(1.25)

There, they treat the Şzero mass case", translated as the condition f(u)
u
→ 0 as u→ 0. As

we said, f is supposed to obey a critical exponential growth, satisfying

(F1) There exists a constant α0 > 0 such that

lim
♣t♣→∞

♣f(t)♣
eαt2 = 0 , ∀ α > α0

and

lim
♣t♣→∞

♣f(t)♣
eαt2 = +∞ , ∀ α ≤ α0.

For the existence of a ground state solution to (1.25), more conditions have to be

assumed, including some which dictate the behavior of f , such as

(F2) There exists l ∈ [0,+∞) such that

lim
t→0

f(t)
♣t♣t

= l;

(F3) For all t ∈ R,
1
3
f(t)t ≥ F (t) =

∫ t

0

f(s) ds ≥ 0;
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We see then that the papers we have mentioned which treats (SP) type systems in

the case N ≥ 3 had to impart a subcritical or critical growth, in the sense of Sobolev, to

the nonlinearity, with results in the critical case already being scarce due to the lack of

compactness of the spaces we encounter, which hinders the use of variational methods.

The case N = 2 and critical exponential growth encounters different but also important

complications, which leads to several additional constraints, as we have just seen. Moreover,

the presence of a singularity produces even more obstacles, now being the possibility of

a blowup at certain points in Ω. The advantages of this work are then better seen in

the conditions imposed over the nonlinearity. For the η = −1 case, we make use of the

non-variational Galerkin Method, which helps us expand the reach of our results to more

general conditions over f , while we can treat growth conditions beyond the critical Sobolev

growth (for that we also depend greatly on the Trudinger-Moser inequality). At the same

time, it brings us no insurmountable difficulties in dealing with the singular term. We

do this while keeping the nonlinearity f quite general in its behavior. Nonetheless, we

could not use the same approach for the case η = 1. For this purpose, we overcome these

difficulties by combining suitable estimates and Schauder Ąxed point theory and we Ąnd

the existence of solutions.

We now state our main results.

Theorem 1.4.6. If η = −1 and f : [0,∞) −→ R is a continuous function satisfying the

growth condition (1.24). Then there exists Λ > 0 such that, for every 0 < λ < Λ, problem

(1.23) has a solution pair uλ, ϕλ ∈ W
1,N
0 (Ω).

Before continuing, we would like to point out a remark that will be useful later one.

Remark 1.4.2. When f is such that

♣f(s)♣ ≤ c1 + c2♣s♣
N−1, ∀ s ∈ R,

then the solution pair uλ, ϕλ obtained in Theorem 1.4.6 will belong to C1,τ (Ω), for some

τ ∈ (0, 1). This follows directly from the considerations in [31] (we may notice that a more

general nonlinearity containing a singularity is used as a prototype).

When η = 1, we consider the limit problem:






















−∆Nu+ ϕur−1 exp¶αuN ′

♢ = λ
uγ in Ω,

−∆Nϕ = ur exp¶αuN ′

♢ in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω.

(1.26)

with α ≥ 0, λ > 0 being again real parameters, as is γ ∈ (0, 1), and recalling that N ′ = N
N−1

.

For this case, our result is as follows.
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Theorem 1.4.7. Let us suppose α > 0 arbitrary and r such that

(γ + rN ′ − 1)
(

1− γ
N − 1

)

> 1.

Then there exists Λ > 0 such that, for every 0 < λ < Λ, problem (P4) has a solution

pair uλ, ϕλ ∈ C
1
0(Ω). If α = 0 the problem (P4) has a unique positive solution for every

0 < λ < Λ.

In resemblance to the Ąrst results, Theorems 1.4.6 and 1.4.7 are both two results

of the article [], submitted to the .
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2 AN EQUATION INVOLVING SUPERCRITICAL SOBOLEV

GROWTH WITH MIXED DIRICHLET-NEUMANN BOUNDARY

CONDITIONS

In this Chapter, we look at our Ąrst elliptic problem resolved by means of the

Galerkin Method. We shall consider, as expressed in Chapter 1, the following elliptic

problem










−∆u = λuq−1 + f(u), x ∈ Ω,

u > 0, x ∈ Ω,

B(u) = 0, x ∈ ∂Ω,

(P1)

where the parameters satisfy 1 < q < 2 and λ > 0. The Ąrst term is thus a sublinear

perturbation and is present to avoid non existence results such as PohozaevŠs. Furthermore,

we will consider here f to be a continuous function satisfying the following conditions:

(H1) It has the sign property, namely:

0 ≤ f(t)t , t ∈ R ;

(H2) It has a critical or supercritical growth at inĄnite, in the sense that

lim inf
t→∞

f(t)
tr

= +∞ , ∀ r ∈ (1, 2∗ − 1] ;

(H3) We assume that there exists a number θ > 0 such that

lim sup
t→∞

f(t)
t2∗−1+θ

< +∞ ;

(H4) At last, we assume that there exists a sequence (Mn) with Mn →∞ and such that,

for every r ∈ (0, 2∗ − 1),

t ∈ [0,Mn] =⇒
f(t)
tr
≤
f(Mn)
(Mn)r

.

Additionally, we also recall from Section 1.4 that the boundary condition is given

by B(u) deĄned as follows

B(u) = uχΣ1 +
∂u

∂ν
χΣ2 . (BC)

Remark 2.0.1. In sum, conditions (H1) - (H4) can all be (loosely) summed up by the

following: We ask f to be positive when its argument is positive (which is what we are

looking for, since we ask u > 0) and of supercritical growth at inĄnity, but we assume that

the behavior of this ŞsupercriticalityŤ be ever growing, at last in supremum.

We present again our main results for the present chapter, for the convenience of

the reader.
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Theorem 2.0.1. If f : [0,∞) −→ R is a continuous function satisfying the growth

conditions (H1) - (H4), then there exists γ > 0 and Λ > 0 such that problem (P1) has a

weak solution uλ ∈ EΣ1(Ω) ∩W 2,p(Ω), p = 2∗

2∗−1
, whenever 0 < θ < γ and 0 < λ < Λ.

Following this existence result, we shall prove a non-existence one, concerning the

nature of the set in which λ must be so that Problem (P1) has a solution. More speciĄcally,

we prove

Theorem 2.0.2. If f is a continuous function satisfying the growth conditions (H1) -

(H3), then the set of parameters λ for which problem (1.11) has a solution is bounded from

above.

As we have pointed out, Theorems 2.0.1 and 2.0.2 comprise a larger number of

functions than those considered in the current literature. For the sake of exempliĄcation,

we would like to mention the following functions which verify conditions (H1) - (H4), but

do not verify, for example, the (AR) condition. They are part of a much greater set of

functions addressed by the results of the present chapter.

i) f(u) =

{

0, if u ≤ 0,

u2∗−1+θ(ln(u))+, if u ≥ 0,

ii) f(u) =

{

0, if u ≤ 0,

u2∗−1+θ sen2(u), if u ≥ 0.

We have also mentioned in Chapter 1 that it is not enough to work with the space

H1(Ω) and is not sufficient to work with H1
0 (Ω) either, since we need our solution to be

zero at some, but not at all, parts of the boundary ∂Ω. The best choice then is to work

with the space EΣ1(Ω) := ¶v ∈ H1(Ω); v = 0 on Σ1♢, which can also be identiĄed as the

closure of C1
c (Ω∪Σ2) with the norm of H1(Ω) (in parallel to the characterization of H1

0 (Ω)

as the closure of C1
c (Ω) with the same norm). Its effectiveness relies on the fact that we

still have the properties that make H1
0 (Ω) suitable to problems with Dirichlet boundary

conditions, such as the continuous embedding (see, for more, [17])

EΣ1(Ω) →֒ Lq(Ω) , q ∈ [1, 2∗] , (2.1)

or the fact that EΣ1(Ω) is a separable Hilbert space, which is a crucial demand because it

implies that this space has an orthonormal basis, allowing us to use the Galerkin Method.

The norm of this space is initially deĄned as the norm on H1(Ω) but, as Σ1,Σ2 are assumed

to be of positive measure, it can be shown (see [32]) that the Poincaré Inequality is satisĄed

in EΣ1 , so that one can use the equivalent norm

∥u∥EΣ1
=
(∫

Ω

♣∇u♣2 dx

)1/2

,
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which we shall denote from now on, throughout this chapter, only by ∥.∥, for convenience.

The ideas that permit us to consider the case of a supercritical nonlinearity were

inspired and adapted from the work due to Alves and de Figueiredo [33] and it was required

a signiĄcant amount of modiĄcations on the results used to adjust the Ąndings to our

studied problem. Since we are looking for positive solutions, we can assume f(s) = 0 if

s ∈ (−∞, 0).

Before the proper beginning to our proof, we Ąrst give a comparison theorem,

which we have adapted from the Dirichlet boundary case (result [34, Lemma 3.3.]) to our

mixed-boundary problem. Consider the problem










−∆u = g(u), in Ω,

u > 0, in Ω,

B(u) = 0, on ∂Ω,

(2.2)

with g(u) ≥ 0 for u > 0. A weak supersolution of a Dirichlet-Neumann boundary problem

such as (2.2) is deĄned as a function u ∈ EΣ1(Ω) such that u > 0 in Ω and such that
∫

Ω

∇u∇ϕ dx ≥

∫

Ω

g(u)ϕ dx

for every test non-negative function ϕ ∈ EΣ1(Ω). A weak subsolution for (2.2) is deĄned

in the same manner with the inequality switched. It is evident that a weak solution is

both a weak supersolution and a weak subsolution.

Theorem 2.0.3. If u, v ∈ EΣ1(Ω) are, respectively, a weak supersolution and a weak

subsolution to problem (2.2), with g satisfying g(s) ≥ 0 for s ≥ 0 and g(s)/s is a decreasing

function, then u ≥ v a.e. in Ω.

Proof. First, let θ(t) be a smooth non-decreasing function such that θ(t) = 0 for t ≤ 0 and

θ(1) = 1 for t ≥ 1. Moreover, for ϵ > 0, set

θϵ(t) = θ

(

t

ϵ

)

.

By hypothesis, we must have
∫

Ω

∇u∇(vθϵ(v − u)) dx ≥
∫

Ω

g(u)vθϵ(v − u) dx,

∫

Ω

∇v∇(uθϵ(v − u)) dx ≤
∫

Ω

g(v)uθϵ(v − u) dx

In addition, we can write
∫

Ω

g(u)vθϵ(v − u) dx−
∫

Ω

g(v)uθϵ(v − u) dx ≤
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≤

∫

Ω

∇u∇(vθϵ(v − u)) dx−
∫

Ω

∇v∇(uθϵ(v − u)) dx =

=
∫

Ω

vθ′
ϵ(v − u)∇u · (∇v −∇u) dx−

∫

Ω

uθ′
ϵ(v − u)∇v · (∇v −∇u) dx =

= −
∫

Ω

vθ′
ϵ(v − u)(∇u−∇v)2 dx+

∫

Ω

(v − u)θ′
ϵ(v − u)∇v · (∇v −∇u) dx ≤

≤

∫

Ω

∇v∇(γϵ(v − w)) dx ≤
∫

Ω

g(v)γϵ(v − u) dx

where γϵ(t) =
∫ t

0
sθ′

ϵ(s)ds. Since 0 ≤ γϵ(t) ≤ ϵ for all t ∈ R and g ∈ L1(Ω), we verify that

∫

Ω

vu

(

g(u)
u
−
g(v)
v

)

θϵ(v − u) dx ≤ ϵ.

Taking the limit ϵ→ 0, we can write
∫

[v>u]

vu

(

g(u)
u
−
g(v)
v

)

dx ≤ 0,

where we have denoted the set ¶x ∈ Ω ; v(x) > u(x)♢ by [v > u]. This, in turn, implies

that the measure of the set [v > u] is zero. Thus, u ≥ v a.e. in Ω and the proof is

complete.

Now, we shall prove a result used directly in our application of the Galerkin Method.

For that, we need Ąrst the famous Brouwer Ąxed point theorem (see, for example, [35,

Theorem 5.2.3.]).

Theorem 2.0.4 (Brouwer). Let f : Br(x) −→ Br(x) be a continuous function deĄned on

Br(x) ⊂ R
m. Then, there exists z ∈ Br(x) such that f(z) = z, that is, z is a Ąxed point

of f .

With it, we can prove the following result, known as the Fundamental Lemma.

Lemma 2.0.1. Let h : Rm −→ R
m be a continuous function such that ⟨h(α), α⟩ ≥ 0 for

every α ∈ R
m with ♣α♣ = R, for some R > 0. Then there exists an element z ∈ BR(0)

such that h(z) = 0.

Proof. If we suppose f(x) ̸= 0 inBr(x), we can then consider the function g : Br(x) −→ R
N

deĄned by

g(x) = −
R

♣f(x)♣
f(x).

It is well-deĄned and continuous in BR(0). Besides, we can see that

♣g(x)♣ =
R

♣f(x)♣
♣f(x)♣ = R.
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By Brouwer Fixed Point Theorem, there exists z ∈ BR(0) such that g(z) = z,

which implies that

R2 = ♣g(z)♣2 = ⟨g(z), g(z)⟩ = ⟨z, g(z)⟩ = −
R

♣f(z)♣
⟨z, f(z)⟩.

Since ⟨z, f(z)⟩ ≥ 0, we obtain

0 < R2 = −
R

♣f(z)♣
⟨z, f(z)⟩ ≤ 0

which is a contradiction. Thus, x0 ∈ Br(x) must be such that f(x0) = 0.

We are now in position to give the proofs of our two main theorems and we do this

in the following sections.

2.1 PROOF OF THEOREM 2.0.1

Our goal is to use the Galerkin Method to prove Theorem 2.0.1. For that, we

will need to deĄne, with the help of the real sequence deĄned in (H4), a sequence of

auxiliary equations that will be important for our purpose. More speciĄcally, for each

k ∈ N, we deĄne the auxiliary truncation functions by choosing r ∈ (1, 2∗ − 1) such that

2∗ − 1− r < θ and we set

fk(t) =











0, t ≤ 0,

f(t), 0 ≤ t ≤Mk

f(Mk)
(Mk)r t

r, t ≥Mk.

(2.3)

Remark 2.1.1. Notice that we deĄne fk to be such that r in its deĄnition is independent

of k. We see that we are really truncating our original function, making it subcritical for

large arguments. Furthermore, in view of conditions (H3), (H4) and the choice of r, we

can prove that, for k big enough, fk satisĄes, for a constant C > 0,

♣fk(v)♣ ≤ C(Mk)2θ♣v♣r. (2.4)

Indeed, for all t > 0, condition (H4) and (2.3) gives

fk(t) ≤
f(Mk)
(Mk)r

tr

and, by (H3), if k is sufficiently large,

f(Mk)
(Mk)r

≤ C(Mk)2∗−1−r+θ ≤ C(Mk)2θ.

For each k ∈ N, let us consider the following auxiliary problem










−∆u = λuq−1 + fk(u) + σω, x ∈ Ω,

u > 0, x ∈ Ω,

B(u) = 0, x ∈ ∂Ω,

(Pk,σ)

where σ > 0 is a real parameter and ω ∈ C∞
0 (Ω) is a positive Ąxed function.
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Remark 2.1.2. Let us see that if u is a solution to (Pk,0) and is such that ♣u♣+∞ ≤Mk,

then we actually obtain that u is a solution to our main problem (1.11). This will be

exactly our approach at the end of this chapter when we seek to recover regularity of our

solution.

To carry out the process of Ąnding the solution to (P1), we must Ąrst look for a

solution to each equation (Pk,σ). For that, let β = ¶e1, e2, . . . , en, . . . ♢ be an orthonormal

basis of EΣ1(Ω) and we deĄne the subspace Vm = [e1, e2, . . . , em] of EΣ1(Ω) as being

generated by the Ąrst m vectors of β and equipped with the norm ∥u∥ =
(∫

Ω
♣∇u♣2 dx

) 1
2

already mentioned. With these conditions, each Vm, being a Ąnite Hilbert Space, is

isomorphic to R
m. That allows us to deĄne the function F : Rm −→ R

m whose coordinate

functions are

Fj(α) =
∫

Ω

∇u∇ej dx−λ

∫

Ω

(u+)q−1ej dx−

∫

Ω

fk(u+)ej dx−σ

∫

Ω

ωej dx, j = 1, 2, . . . ,m,

(2.5)

where u =
∑m

i=1 αiei is the function in Vm related to α = (α1, α2, . . . , αm) through the

isomorphism mentioned above.

To get the desired results, we shall also apply Lemma 2.0.1 to the function F , so

the Ąrst step here is to show that it satisĄes its conditions. Let us Ąrst check continuity.

Proposition 2.1.1. The function F : Rm −→ R
m deĄned in (2.5) is continuous.

Proof. Since we have already mentioned the isomorphism between R
m and Vm, we can

consider a sequence converging vn → v in Vm and it is sufficient to prove that each Fj(vn)

converges to Fj(v). Notice that this is immediate for the Ąrst, second, and last term of

Fj, using the Holder Inequality and the Sobolev Embedding Theorems. What we have to

show is only the continuity of the term
∫

Ω
fk(u+)ej dx, but here we can use the fact that

each fk satisĄes condition (2.4). By that, for any sequence vn, we shall have

♣fk(vn+)ej♣ ≤ Ck♣vn+♣
r♣ej♣ ≤ C1,k♣vn♣

2∗

+ C2,k♣ej♣
2∗

2∗
−r ,

where was used YoungŠs inequality with conjugate exponents 2∗

r
and 2∗

2∗−r
. Thus, if we

have a sequence vn → v in some Vm, we know that ∥vn∥, and therefore ♣vn♣2∗ is bounded,

so that

♣fk(vn+)ej♣ ≤ gk , for some gk ∈ L
1(Ω).

From the fact that this bound does not depend on n, the DCT readily implies that
∫

Ω

fk(vn+)ej dx
n→+∞
−−−−→

∫

Ω

fk(v+)ej dx, (2.6)

proving the continuity of F .

Now, what remains to be done is prove the following proposition.
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Proposition 2.1.2. There exists a real number R > 0 such that, for ♣α♣ = R, we have

⟨F (α), α⟩ ≥ 0.

Proof. By deĄnition, we have

⟨F (α), α⟩ =
m
∑

i=1

Fi(α)αi

=
m
∑

i=1

(∫

Ω

∇u∇ei dx− λ

∫

Ω

(u+)q−1ei dx

−

∫

Ω

fk(u+)ei dx− σ

∫

Ω

ωei dx

)

αi

=
∫

Ω

∇u∇

(

m
∑

i=1

eiαi

)

dx− λ

∫

Ω

(u+)q−1

(

m
∑

i=1

eiαi

)

dx

−

∫

Ω

fk(u+)

(

m
∑

i=1

eiαi

)

dx− σ

∫

Ω

ω

(

m
∑

i=1

eiαi

)

dx

=
∫

Ω

♣∇u♣2 dx− λ

∫

Ω

(u+)q dx−

∫

Ω

fk(u+)u+ dx− σ

∫

Ω

ωu dx.

Again by the Sobolev Embedding Theorems, we can write
∫

Ω

uq
+ dx ≤

∫

Ω

♣u♣q dx ≤ C1 ∥u∥
q and

∫

Ω

ωu dx ≤ C2 ∥u∥ (2.7)

so that

⟨F (α), α⟩ ≥ ∥u∥2 − λC1 ∥u∥
q −

∫

Ω

fk(u)u dx− σC2 ∥u∥ ,

where we remember that 1 < q < 2 < 2∗. By relation (2.4), we can also estimate the term

with the auxiliary functions by
∫

Ω

fk(u)u dx ≤ C(Mk)2θ

∫

Ω

♣u♣r+1 dx ≤ C3 ∥u∥
r+1 . (2.8)

Now, observing the behavior of the function g(t) = t2−λC1t
q−C3t

r+1, it is evident,

since r + 1 > 2, that h(t) = t2 − C3t
r+1 > 0 for every 0 < t < C

1
1−r

3 . Besides that, a quick

study of its derivatives shows us that

R =
(

2
C3 (r + 1)

) 1
r−1

< C
1

1−r

3

is a local maximum and h(R) > 0. Thus, considering λ > 0 and σ∗ > 0 such that

0 < λ < Λ =
R2−q − C3R

r+1−q

C1

, σC2R < R2 − λC1R
q − C3R

r+1,

we have

⟨F (α), α⟩ ≥ ∥u∥2 − λC1 ∥u∥
q − C3 ∥u∥

r+1 − σC2 ∥u∥ > 0

provided ♣α♣ = ∥u∥ = R, as intended.
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Consequently, we have found a sequence of functions vm ∈ Vm, with ∥vm∥ ≤ R,

such that F (vm) = 0, i.e., for each j = 1, 2, ...,m,
∫

Ω

∇vm∇ej dx− λ

∫

Ω

(vm+)q−1ej dx−

∫

Ω

fk(vm+)ej dx− σ

∫

Ω

ωej dx = 0. (2.9)

It is easy to see that, from the linearity of the expressions in the left side of (2.9),

we can expand the result to all Vm, that means
∫

Ω

∇vm∇ϕ dx−λ

∫

Ω

(vm+)q−1ϕ dx−

∫

Ω

fk(vm+)ϕ dx−σ
∫

Ω

ωϕ dx = 0, ∀ ϕ ∈ Vm. (2.10)

What we now have is a sequence (vm)m∈N ∈ EΣ1(Ω) whose norm is bounded by

the constant R. Since EΣ1(Ω) is a Hilbert Space, it is also reĆexive and therefore it is

weakly compact. This means that we can obtain a subsequence, which we will still denote

by (vm), and a function v ∈ EΣ1(Ω), such that

vm ⇀ v in EΣ1(Ω) and vm → v in Ls(Ω), s ∈ [1, 2∗], (2.11)

where the second convergence was obtained by the Sobolev Embedding Theorems.

Now, using (2.4) and the same reasoning we applied to achieve (2.6), we have,

passing the limit m→∞,

λ

∫

Ω

(vm+)q−1ϕl dx −→ λ

∫

Ω

(v+)q−1ϕl dx,

∫

Ω

fk(vm+)ϕl dx −→

∫

Ω

fk(v+)ϕl dx.

Thus, we arrive at
∫

Ω

∇v∇ϕl dx− λ

∫

Ω

(v+)q−1ϕl dx−

∫

Ω

fk(v+)ϕl dx− σ

∫

Ω

ωϕl dx = 0, ∀ ϕ ∈ Vl.

We can notice that this last equation is true for every l ∈ N. By the density of

the spaces Vl in EΣ1(Ω), we can relate to each ϕ ∈ EΣ1(Ω) a sequence (ϕl)l∈N with each

ϕl ∈ Vl and passing the limit l→∞, we achieve
∫

Ω

∇v∇ϕ dx− λ

∫

Ω

(v+)q−1ϕ dx−

∫

Ω

fk(v+)ϕ dx− σ
∫

Ω

ωϕ dx = 0, ∀ ϕ ∈ EΣ1(Ω).

At last, we can show that v(x) ≥ 0 for every x ∈ Ω. This is evident, since, using

v−(x) = max¶0,−v(x)♢ as a test function,

−∥v−∥
2 =

∫

Ω

∇v∇(v−) dx =
∫

Ω

(v+)q−1v− dx+
∫

Ω

fk(v+)v− dx+ σ

∫

Ω

ωv− dx ≥ 0,

showing that v = v+. In particular, this implies that we must have, apart from a null set,

v ≥ 0 in the boundary ∂Ω. Furthermore, to show that v is strictly positive we can use the
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Maximum Principles applied to the set Ω. If we suppose there exists a point x ∈ Ω for

which v(x) = 0, then we would conclude that v must be a constant function. But, this

would imply σω = 0, which is a contradiction. By that, this function must be strictly

positive in Ω, thus being a weak solution to the problem (Pk,σ). To outline the dependence

of the parameter σ, we denote this function by vσ.

Since each vm obtained in (2.9) must be bounded in the EΣ1(Ω) norm by a constant,

so will be each vσ, and since this bound is uniform (that is, does not depend on σ) we can

do the same reasoning as in (2.11) to the sequence of functions vσ to obtain a function in

EΣ1(Ω), which is the weak solution of the problem











−∆u = λuq−1 + fk(u), x ∈ Ω,

u > 0, x ∈ Ω,

B(u) = 0, x ∈ ∂Ω,

(Pk)

and which we will denote by vk, again to reassure its dependence of the index k in the

auxiliary equation.

It is also evident that, taking the limit σ → 0, we get vk ≥ 0 in Ω. More than that,

each solution of (Pk,σ) is evidently a weak supersolution of the problem











−∆u = λuq−1, x ∈ Ω,

u > 0, x ∈ Ω,

B(u) = 0, x ∈ ∂Ω,

(2.12)

which we know to have a classical solution w ∈ EΣ1(Ω) and, therefore, a weak subsolution.

By Theorem 2.0.3, we can assure that vσ ≥ w > 0, which in turn leads to vk ≥ w > 0 in

Ω. It is important to observe that this result does not depend on the index k.

Now, we can proceed with the proof of Theorem 2.0.1, extending the results to the

main problem (P1). First we notice that, for each k ∈ N, taking f1 = λvq−1 + fk(v), we

have

♣f1♣ = ♣λvq−1 + fk(v)♣ ≤ λ♣v♣q−1 + C(Mk)2θ♣v♣r.

Thus, the nonlinearity of each problem (Pk) is bounded in L
2∗

r (Ω). With that, we

conclude that vk ∈ W
2, 2∗

r (Ω) and

∥vk∥
W 2, 2∗

r (Ω)
≤ D1

(

♣f1♣
L

2∗

r (Ω)
+ ♣vk♣

L
2∗

r (Ω)

)

.

Now, since

∥vk∥ ≤ lim inf
m→∞

∥vm∥ ≤ R, (2.13)

we can use the Sobolev Embedding Theorems to prove that

∥vk∥
W 2, 2∗

r (Ω)
≤ D2M

2θ
k .
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What we do next is prove that, for a large k, lim supx∈Ω ♣vk(x)♣ ≤Mk, so that vk

can actually be considered a solution of the main problem (P1). We do this by the method

of Bootstrapping, which proceeds as follows: if 2∗

r
> N

2
, then we have W 2, 2∗

r (Ω) →֒ Cγ(Ω)

and since Ω is bounded,

∥vk∥L∞ ≤ D2M
2θ
k ,

so that, if θ ∈ (0, 1
2
), we can write, provided that Mk is large enough,

∥vk∥L∞ ≤Mk.

If 2∗

r
= N

2
, then W 2, 2∗

r (Ω) →֒ Lt(Ω) for every t ∈ [1,∞). But, this implies that we

can take t > N
2
r such that λvq−1 + fk(v) ∈ L

t
r (Ω) and consequently vk ∈ W

2, t
r (Ω). By the

same argument as above,

∥vk∥W 2, t
r (Ω)
≤ D3

(

♣f ♣
L

t
r (Ω)

+ ♣vk♣L t
r (Ω)

)

and by the estimates on fk,

∥vk∥W 2, t
r (Ω)
≤ D3

(

M
(2θ)(r+1)
k +M2θ

k

)

.

Taking θ ∈ (0, 1
2(1+r)

), we get for Mk large enough

∥vk∥L∞ ≤ ∥vk∥
W 2, 2∗

r (Ω)
≤Mk.

At last, for the case p = 2∗

r
< N

2
, we will apply the former cases in a iterative

process. We note Ąrst that since r ∈
(

1, N+2
N−2

)

, there must existe a ϵ > 0 such that

p = (1 + ϵ)
2N
N + 2

.

By the Sobolev-Morrey Embeddings, we have

W 2,p(Ω) →֒ Ls1(Ω) , s1 =
Np

N − 2p
,

implying that vk ∈ L
s1(Ω) and, thus, λ(vk)q−1 + fk(vk) ∈ L

s1
r (Ω). Consequently, vk ∈

W 2,p1(Ω), where we deĄned p1 = s1

r
.

To see that we have elevated the regularity of vk, we notice that

p1

p
=
s1

2∗
=
(

Np

N − 2p

)(

N − 2
2N

)

=
(1 + ϵ)(N − 2)
N − 2− 4ϵ

> 1 + ϵ.

We can again expect p1 to fall into one of those three cases regarding its relation

with N
2

. The Ąrst two cases will give us the desired result, just as before. If, however, we

have again p1 <
N
2

, we now reason that, by the same arguments as before,

vk ∈ W
2,p2(Ω) , where p2 =

s2

r
, s2 =

Np1

N − 2p1

.
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Again, we see that

p2

p1

=
Np1(N − 2p)
Np(N − 2p1)

> (1 + ϵ)
(

N − 2p
N − 2p1

)

> 1 + ϵ.

We can show that, repeating this argument a Ąnite number of times, we prove that

vk ∈ W
2,p′

(Ω) for some p′ ≥ N
2

and we will obtain one of the two Ąrst cases, proving that

there exist a number γ such that ♣vk♣∞ ≤Mk for some large k, provided θ ∈ (0, γ).

We have then completed the proof of Theorem 2.0.1.

2.2 PROOF OF THEOREM 2.0.2

Assume, by contradiction, that λ∗ = +∞. This means that there exists a sequence

λn → +∞ and solutions un ∈ EΣ1(Ω) ∩W 2, 2∗

2∗
−1 (Ω) to problem (P1), with un > 0 in Ω for

each n.

Fix 0 < ξ < 2∗ − 2 and λ0 > 1. DeĄne the auxiliary function

Pλ(t) =
λ

λ0

tq−1 + t1+ξ, t > 0.

Notice that, for λ big enough,

λtq−1 + f(t) ≥ Pλ(t), for t > 0. (2.14)

Indeed, we begin by noticing that, by condition (H2), there exists t0 > 1 such that

f(t) ≥ t2
∗−1, for t > t0.

With this, we can divide our interval (0,+∞) into three parts.

t ∈ (0, 1): For t ∈ (0, 1), we have tq−1 > t1+ξ, so that if λ is such that λ(1−λ−1
0 ) > 1,

we shall have

λ

(

1−
1
λ0

)

tq−1 + f(t) ≥ tq−1 > t1+ξ.

t ∈ (t0,+∞): Since t0 > 1, for t ∈ (t0,+∞), we have just seen that f(t) ≥ t2
∗−1 >

t1+ξ and therefore we have again the desired inequality.

t ∈ [1, t0]: At last, for t ∈ [1, t0], we can take λ > λ0t1+ξ
0

λ0−1
, meaning we obtain

λ

(

1−
1
λ0

)

tq−1 + f(t) ≥ λ

(

1−
1
λ0

)

≥ t1+ξ
0 ≥ t1+ξ.

With this, we have just shown that choosing λ > max¶ λ0

λ0−1
,

λ0t1+ξ
0

λ0−1
♢, the inequality

in (2.14) is valid for all values of t > 0.



40

Now, let us see that there exists a constant Cλ > 0 such that

λPλ(t) ≥ Cλt, for t > 0. (2.15)

Indeed, let us consider the function

Qλ(t) = Pλ(t)t−1 =
λ

λ0

tq−2 + tξ.

It is evident that Qλ(t)→∞ as t→ 0+, as well as in the limit t→∞. Furthermore,

let t1 be such that Qλ(t1) = Cλ is the minimum value of Qλ, meaning t1 > 0 is the unique

root of
λ

λ0

(q − 2)tq−3 + ξtξ−1 = 0.

This gives us

t1 =
(

λ(2− q)
λ0ξ

) 1
2+ξ−q

, Cλ = λ
ξ

2+ξ−q

[

1
λ0

(

2− q
λ0ξ

)
q−2

2+ξ−q

+
(

2− q
λ0ξ

)
ξ

2+ξ−q

]

.

Notice that t1 increases as λ increases, since q < 2, and the constant Cλ has the same

behavior with respect to λ. Here we are considering λ sufficiently large.

Let σ1 > 0 be the Ąrst eigenvalue of the Laplacian and φ1 > 0 the associated Ąrst

eigenfunction satisfying
{

−∆φ1 = σ1φ1 in Ω

B(φ1) = 0 on ∂Ω.

Since Cλn
→ ∞ as λn → ∞, for each given δ > 0, there is λn0 such that Cλn0

≥ σ1 + δ.

Hence the solution un0 > 0 of (P1) corresponding to λn0 satisĄes
{

−∆un0 ≥ Cλn0
un0 ≥ (σ1 + δ)un0 in Ω

B(un0) = 0 on ∂Ω.

On the other hand, taking ε ∈ (0, 1) small enough we obtain εφ1 < un0 in Ω, this being

possible because un0 ≥ φ1 and ∂φ1/∂ν < 0 on ∂Ω. Furthermore, we have
{

−∆(εφ1) = (εσ1)φ1 ≤ (σ1 + δ)(εφ1) in Ω,

B(φ1) = 0 on ∂Ω,

and hence εφ1 is a sub-solution. By the sub-supersolution method (for a more detailed

discussion of this method for different kinds of boundary condition, see [36]), there is a

solution εφ1 < ζ < un0 in Ω of
{

−∆ζ = (σ1 + δ)ζ in Ω

B(ζ) = 0 on ∂Ω.

We thus have a contradiction to the fact that σ1 is isolated (the fact that σ1 is isolated

for the Dirichlet problem is very well know, but we can obtain the same results for the

Neumann boundary conditions and, most importantly, for the mixed boundary conditions

problem. For that, see, for instance, [16] and the references it cites).

We conclude from this that we must have λ∗ <∞.
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3 SOLUTION FOR A GENERALIZED SCHRÖDINGER-POISSON SYS-

TEM INVOLVING BOTH SINGULAR AND GENERAL NONLINEA-

RITIES

Now, we look at our second problem, discussing the existence of positive solutions

to the following Schrödinger-Poisson system,






















−∆u− ϕu2∗−2 = λ
uγ in Ω,

−∆ϕ = f(u) in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω.

(P2)

where λ > 0 and γ ∈ (0, 1) are real parameters. As we said, we will consider f to be

continuous and satisfying the critical growth condition

0 ≤ f(s)s ≤ L♣s♣2
∗

, L > 0. (3.1)

The presence of a singularity brings obvious complications as to the possibility of a

blow up in certain points in Ω. In addition, there is also the difficulty of treating critical

growth, since such terms cause the lack of compactness of the spaces dealt with and thus

hinder, as we have seen in Chapter 1, the use of variational methods. The use of the

non-variational Galerkin Method helps again avoid this problem with the critical growth

and at the same time brings no insurmountable difficulties to dealing with the singular

term. We do this while still keeping the nonlinearity f in the second equation of (P2) quite

general and not asking additional conditions like, for example, the Ambrosetti-Rabinowitz

growth condition, commonly adopted in elliptic problems.

We restate our main result, already introduced in Chapter 1.

Theorem 3.0.1. If f : [0,∞) −→ R is a continuous function satisfying the growth

condition (3.1). Then there exists Λ > 0 such that, for every 0 < λ < Λ, problem (P2) has

a pair of solutions uλ, ϕλ ∈ H
1
0 (Ω) ∩W 2,p(Ω), with p = 2∗

2∗−1
.

We notice the striking similarity between the conditions for which our result and

Theorems 1.4.4 hold. It is, therefore, safe to say that our Ąndings pose as a generalization

of theirs.

3.1 PRELIMINARY RESULTS AND AUXILIARY SOLUTIONS

Firstly, we present the comparison result due to Ambrosetti, Brezis and Cerami

(for the proof, we refer the reader to [34, Lemma 3.3.]), which will play an important role

in the proof of our main theorem.
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Lemma 3.1.1 (Ambrosetti, Brézis and Cerami). Consider g : R → R a continuous

function satisfying t−1g(t) decreasing for t > 0. If u1, u2 ∈ C2(Ω) are strong sub and

supersolution, respectively, of the problem below











−∆u = g(u), x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(3.2)

meaning that we have











−∆u1 ≤ g(u1), x ∈ Ω,

u1 > 0, x ∈ Ω,

u1 = 0, x ∈ ∂Ω,

(3.3)











−∆u2 ≥ g(u2), x ∈ Ω,

u2 > 0, x ∈ Ω,

u2 = 0, x ∈ ∂Ω.

(3.4)

Then u2 ≥ u1, x ∈ Ω.

In the Ąnal part of the present chapter, we shall also need the following result,

which we shall only enunciate here.

Theorem 3.1.1. Suppose that p ∈ (1,+∞) and that (fn)n∈N is a sequence of functions in

Lp(Ω) such that (♣fn♣p)n∈N is a bounded sequence of numbers. If fn → f a.e. in Ω, then

fn ⇀ f in Lp(Ω).

Proof. See [37, Theorem 13.44].

Let us now turn our attention back to our main problem. Evidently, the singularity

present in the Ąrst equation of (P2) elevates the complexity of the problem in question.

It is what motivates the condition u(x) > 0 for every x ∈ Ω and is one of the principal

reasons we must Ąrst solve a sequence of auxiliary equations. For each k ∈ N, we shall

consider Ąrst the following






















−∆u− ϕu2∗−2 = λ
(u+ 1

k
)γ , x ∈ Ω,

−∆ϕ = fk(u), x ∈ Ω,

u > 0, x ∈ ∂Ω,

u = ϕ = 0, x ∈ ∂Ω,

(Pk)
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where fk is a sequence of auxiliary functions, given by

fk(s) =











































−k[G(−k − 1
k
)−G(−k)], if s ≤ −k

−k[G(s− 1
k
)−G(s)], if − k ≤ s ≤ − 1

k

k2s[G(− 2
k
)−G(− 1

k
)], if − 1

k
≤ s ≤ 0

k2s[G( 2
k
)−G( 1

k
)], if 0 ≤ s ≤ 1

k

k[G(s+ 1
k
)−G(s)], if 1

k
≤ s ≤ k

k[G(k + 1
k
)−G(k)], if s ≥ k,

(3.5)

with G(s) =
∫ s

0
f(ξ)dξ. Here, not only the singularity, but also the allowed growth

condition for f , make it necessary to consider fk instead of f , the former having a much

higher regularity. More speciĄcally, this sequence, for which we reference the reader to

[12] for a good example of its application, has the following properties. The proof of the

Ąrst lemma can be seen in [28].

Lemma 3.1.2. The sequence of auxiliary functions fk : R→ R given above is such that

1. sfk(s) ≥ 0 for s ∈ R, k ∈ N.

2. For all k ∈ N, there exists ck ∈ R such that ♣fk(t)− fk(s)♣ ≤ ck♣t− s♣, for s, t ∈ R.

3. fk −→ f uniformly in any bounded subset of R.

This result will prove to be crucial when we study the regularity of the solutions

we obtain. In addition, we can also state and demonstrate the following lemma about the

estimates of the sequence fk.

Lemma 3.1.3. The sequence of auxiliary functions fk deĄned above satisĄes

1. ∀ k ∈ N, 0 ≤ s fk(s) ≤ L1♣s♣
2∗

, ♣s♣ ≥ 1
k
,

2. ∀ k ∈ N, 0 ≤ s fk(s) ≤ L2♣s♣
2, ♣s♣ ≤ 1

k
,

where L1 and L2 are positive constants independent of k.

Proof. To prove this result, we must divide our considerations into different cases.

First Case: Consider −k ≤ s ≤ − 1
k
.

Using the mean value theorem, there exists ξ ∈ (s− 1
k
, s) such that

fk(s) = k(G(s)−G(s−
1
k

) = −k
d

ds
G(ξ)

1
k

= f(ξ),
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which proves that sfk(s) = sf(ξ) in this interval. Furthermore, since ξ < s and f(ξ) < 0,

we have

sfk(s) ≤ sf(ξ) ≤ ξf(ξ) ≤ L ♣ξ♣2
∗

≤ L

∣

∣

∣

∣

s−
1
k

∣

∣

∣

∣

2∗

≤ L(♣s♣+
1
k

)2∗

≤ L(2 ♣s♣)2∗

≤ 22∗

L ♣s♣2
∗

.

(3.6)

Second Case: Consider 1
k
≤ s ≤ k.

As before, there must exist ξ ∈ (s, s+ 1
k
) such that

fk(s) = k(G(s+
1
k

)−G(s) = k
d

ds
G(ξ)

1
k

= f(ξ),

proving that, again, sfk(s) = sf(ξ) in this interval. Now, given that s < ξ and f(ξ) > 0,

we have

sfk(s) ≤ sf(ξ) ≤ ξf(ξ) ≤ L ♣ξ♣2
∗

≤ L

∣

∣

∣

∣

s+
1
k

∣

∣

∣

∣

2∗

≤ 22∗

L ♣s♣2
∗

.

(3.7)

Third Case: Consider s ≥ k.

In this case, we choose ξ ∈ (k, k + 1
k
) such that

fk(s) = k(G(k +
1
k

)−G(k) = k
d

ds
G(ξ)

1
k

= f(ξ),

obtaining, again, sfk(s) = sf(ξ). Now, we can write

sfk(s) =
s

ξ
ξf(ξ) ≤

♣s♣

♣ξ♣
L ♣ξ♣2

∗

≤ L ♣s♣ ♣ξ♣2
∗−1 .

Since ξ < k + 1
k
≤ s+ 1

k
, we obtain

sfk(s) ≤ L ♣s♣

∣

∣

∣

∣

s+
1
k

∣

∣

∣

∣

2∗−1

≤ L ♣s♣ 22∗−1 ♣s♣2
∗−1

≤ 22∗−1L ♣s♣2
∗

.

(3.8)

Fourth Case: Consider s ≤ −k.

This case is quite similar to the third one. Taking now ξ ∈ (k − 1
k
,−k) such that

fk(s) = k(G(k +
1
k

)−G(k) = k
d

ds
G(ξ)

1
k

= f(ξ),
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we have one more time that sfk(s) = sf(ξ). By the same reasoning as before,

sfk(s) ≤
♣s♣

♣ξ♣
L ♣ξ♣2

∗

≤ L ♣s♣ ♣ξ♣2
∗−1 .

Since ♣ξ♣ < k + 1
k
≤ s+ 1

k
,

sfk(s) ≤ L ♣s♣

∣

∣

∣

∣

s+
1
k

∣

∣

∣

∣

2∗−1

≤ L ♣s♣ 22∗−1 ♣s♣2
∗−1 ≤ 22∗−1L ♣s♣2

∗

. (3.9)

With this, we Ąnally conclude item (i), taking L1 to be 22∗

L. For item (ii), let us

look at the last case.

Fifth Case: Consider ♣s♣ ≤ 1
k
.

With the purpose of not dividing this proof into two more, very similar, cases, let

us consider s ≥ 0, leaving to the reader the evident generalization. There, we have

fk(s) = k2s[G(
2
k

)−G(
1
k

)]

and, again by the mean value theorem, there exists ξ ∈ ( 2
k
, 1

k
) such that

fk(s) = k2s[G(
2
k

)−G(
1
k

)] = k2s
d

ds
G(ξ)

1
k

= ksf(ξ).

Now, we obtain

sfk(s) = ks2f(ξ) ≤ k
♣s♣2

♣ξ♣
L ♣ξ♣2

∗

≤ kL ♣s♣2 ♣ξ♣2
∗−1 .

By the conditions on ξ,

sfk(s) ≤ kL ♣s♣2
∣

∣

∣

∣

2
k

∣

∣

∣

∣

2∗−1

= k−2∗

L22∗−1 ♣s♣2 ≤ L22∗−1 ♣s♣2 . (3.10)

By this, taking L2 to be 22∗−1L, we prove what was desired.

What we intend to do, eventually, is to prove the existence of the sequence (uk, ϕk),

solutions to each (Pk), and subsequently show that we can obtain a pair (uλ, ϕλ), the limit

of a subsequence of (uk, ϕk), which satisĄes the condition for being solutions of the main

problem (P2). We remind that this last fact is characterized by the equalities
∫

Ω

∇u∇ω dx−

∫

Ω

ϕu2∗−2ω dx− λ

∫

Ω

ω

uγ
dx = 0,

∫

Ω

∇ϕ∇ω dx−

∫

Ω

f(u)ω dx = 0, ω ∈ H1
0 (Ω).

Remark 3.1.1. The regularity of each pair (uk, ϕk) is then an important factor to the

Ąnal result, as is their sign in Ω. This is also the reason we must consider Ąrst the auxiliary

functions fk. Their regularity implies quite directly the strong regularity of each solution

ϕk, which in turn does the same for uk, as we shall see ahead. Furthermore, it is also

known that even if each uk is strictly positive, the same might not be true for its limit u.

We will be able, nonetheless, to obtain the existence of an uniform lower bound for uk,

thus being able to achieve this goal.
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Therefore, we shall present in this section the regularity of each pair (uk, ϕk) of

weak solutions to the auxiliary problem (Pk). The existence of the limit (uλ, ϕλ) will be

already assumed and will be proven in further sections.

First, we obtain an estimate to the nonlinearity of the Ąrst auxiliary equation

(taking ϕ as a known function of x) by a subcritical growth in u, which will lead directly

to the regularity of uk. For each k ∈ N, we deĄne

H(u, ϕ) = ϕu2∗−2 +
λ

(u+ 1
k
)γ

and G(u, x) = H(u, ϕ(x)). The equation satisĄed by uk is then −∆u = G(u, x). On the

other hand, we have the following estimate

♣H(u, ϕk)♣ =

∣

∣

∣

∣

ϕku
2∗−2 +

λ

(u+ 1
k
)γ

∣

∣

∣

∣

≤ ♣ϕk♣♣u♣
2∗−2 +

λ

♣u+ 1
k
♣γ
≤ ♣ϕk♣♣u♣

2∗−2 + λkγ.

This is the fundamental inequality we must have to be able to apply standard

bootstrapping arguments and consequently show that uk, ϕk ∈ C
2(Ω) for every k ∈ N. We

do as follows:

We notice Ąrst that each fk is a truncated function, being constant for ♣s♣ ≥ k,

meaning we have fk ∈ L
∞(R), which in turn implies fk(uk) ∈ L∞(Ω) for every k (the fact

that they are not uniformly bound does not hinder our development, since we are Ąxing k).

By the second equation of (Pk) and standard results of regularity (see, for example, [38]),

we obtain ϕk ∈ W
2,r(Ω), for r > 1, and choosing r big enough we can obtain, through the

Sobolev-Morrey Embeddings, ϕk ∈ C
0,α(Ω) for any α ∈ (0, 1]. In particular, ϕk ∈ L

∞(Ω)

and therefore1

♣H(u, ϕk)♣ ≤ ♣ϕk♣∞♣u♣
2∗−2 + λkγ. (3.11)

We have seen that uk satisĄes weakly the equation

−∆u = G(u, x),

where, by inequality (3.11), we have G(uk(·), ·) ∈ Ls(Ω), with s = 2∗

(2∗−2)
. By known

arguments of standard elliptic regularity, we obtain uk ∈ W
2,s(Ω). We wish to show that

we can elevate this regularity to W 2,s′

(Ω) such that 2s′ > N .

If 2s > N , we take s′ = s and there is nothing to be done.

If 2s ≤ N , we notice Ąrst that we can write

s = (1 + ϵ)
2∗

2∗ − 1
= (1 + ϵ)

2N
N + 2

.

1 Here we see the great advantage of dealing with fk Ąrst. With them, the regularity of the
auxiliary functions φk comes quite easily. Its boundness, caused by the boundness of each fk,
is also a crucial step in proving the regularity of uk.
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By the Sobolev-Morrey Embeddings, we can assert that uk ∈ L
p1(Ω), with

p1 =
Ns

N − 2s
,

which in turn leads to G(uk(·), ·) ∈ Ls1(Ω), s1 = p1

(2∗−2)
. This shows that uk ∈ W

2,s1(Ω)

and to see that we elevated the regularity, we write

s1

s
=
p1

2∗
=

Ns

N − 2s
N − 2

2N
=

(1 + ϵ)(N − 2)
N − 2− 4ϵ

> 1 + ϵ.

With this, we can check now the same conditions for s1. If 2s1 ≤ N , we can apply

again this argument of bootstrapping to obtain

u ∈ W 2,s2(Ω) , s2 =
p2

(2∗ − 2)
, p2 =

Ns1

N − 2s1

and we have
s2

s1

=
p1

2∗
=
Ns1(N − 2s)
Ns(N − 2s1)

> (1 + ϵ)
N − 2s
N − 2s1

> 1 + ϵ.

Within a Ąnite number of times, we shall obtain uk ∈ W
2,s′

(Ω), 2s′ > N .

Applying one more time the Sobolev-Morrey Embeddings, we will Ąnally have

uk ∈ C
0,β(Ω) for β ∈ (0, 1). We can equate β and α and this regularity will be then shared

by h(x) = H(u(.), ϕk(.)) and again by the Theory of Regularity, we obtain uk ∈ C
2(Ω).

With that, fk(uk) is continuous up to the closure Ω and thus ϕk will also belong to

C2(Ω) due to the second auxiliary equation. This means that the pair (uk, ϕk) is actually

a strong solution to the problem (Pk). Additionally, the Sobolev-Morrey Embeddings will

also give us the relation between the two norms

∥u∥C0,λ(Ω) ≤ C ∥u∥W 2,s′ (Ω) .

We must, however, pay close attention to the fact that this does not give us a

uniform limitation on the C0,λ(Ω) norm of the sequence uk, since the function h, and

therefore the constant limiting ∥uk∥W 2,s′
(Ω), depend on the value of k.

Moreover, the regularity of the sequence (uk, ϕk) is not the Ąnal goal of this section.

As we have already mentioned, we need a uniform lower bound for uk to assert that its

limit uλ will be strictly positive in the entire domain and for that, we utilize Lemma 3.1.1.

It is easy to see that each uk will be a supersolution of the problem














−∆u = λ
(u+ 1

k
)γ , x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(3.12)
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since

−∆uk = ϕk(uk)2∗−2 +
λ

(uk + 1
k
)γ
≥

λ

(uk + 1
k
)γ

and since we can easily prove, using the same inequality and the Maximum Principles,

that uk > 0 for every k ∈ N. For a subsolution, we can use the eigenfunction φ1 of the

Ąrst eigenvalue of the Laplacian operator −∆. We know it to be smooth, strictly positive,

and bounded in Ω (the unfamiliar reader may look well spread references such as [3] to

convince themselves). Furthermore, for every δ > 0, w = δφ1 is easily seen to be another

solution to the eigenvalue problem with λ1 and it is such that ♣w♣∞ = δ♣φ1♣∞. Thus, taking

δ satisfying

δ ♣φ1♣∞ (δ♣φ1♣∞ + 1)γ ≤
λ

λ1

,

we shall obtain

−∆w = λ1w ≤
λ

(δ♣φ1♣∞ + 1
k
)γ
≤

λ

(w + 1
k
)γ
,

meaning w is the strictly positive subsolution we were looking for.

Applying Lemma 3.1.1 with g(s) = λ
(s+ 1

k
)γ , v1 = w and v2 = uk, we shall have

uk(x) ≥ δφ1(x) > 0 , x ∈ Ω , k ∈ N.

Supposing that there exist a pointwise limit uλ ∈ H
1
0 (Ω) to the sequence (uk) as k →∞,

we then conclude that uλ ≥ δφ1 > 0 a.e. in Ω. This concludes the assertion that (uλ, ϕλ)

is a pair of solutions to problem (P2).

3.2 PROOF OF THEOREM 3.0.1

In this section we Ąnally prove our main result. As mentioned in the last section,

we shall need to Ąrst prove the existence of solution for a sequence of auxiliary problems,

deĄned, for each k ∈ N, to be






















−∆u− ϕu2∗−2 = λ
(u+ 1

k
)γ , x ∈ Ω,

−∆ϕ = fk(u), x ∈ Ω,

u > 0, x ∈ ∂Ω,

u = ϕ = 0, x ∈ ∂Ω,

(Pk)

fk being the auxiliary functions presented in Section 3.1.

To carry out the process of Ąnding the solution to (P2), we must Ąrst look for a

solution to each equation (Pk). For that, we follow a analogous path as the one in the

preceding chapter. Let β = ¶e1, e2, . . . , en, . . . ♢ be now a orthonormal basis of H1
0 (Ω) and

we deĄne again the subspaces Vm = [e1, e2, . . . , em] of H1
0 (Ω) as being generated by the

Ąrst m vectors of β, for each m ∈ N, and equipped with the norm ∥u∥ =
(∫

Ω
♣∇u♣2 dx

) 1
2 ,

the same as the one for the whole space. Again, we can construct an isomorphism from
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Vm to R
m and, therefore, Vm × Vm will be isomorphic2 to R

2m. That allows us to deĄne

the function Φ : R2m −→ R
2m whose coordinate functions are

Φ(ζ, ξ) = (F1(ζ, ξ), ..., Fm(ζ, ξ), G1(ζ, ξ), ..., Gm(ζ, ξ)) ,

Fj(ζ, ξ) =
∫

Ω

∇u∇ej dx−

∫

Ω

ϕ+(u+)2∗−2ej dx− λ

∫

Ω

ej

(u+ + 1
k
)γ
dx,

Gj(ζ, ξ) =
∫

Ω

∇ϕ∇ej dx−

∫

Ω

fk(u+)ej dx, j = 1, 2, . . . ,m,

where u =
∑m

i=1 ζiei and ϕ =
∑m

i=1 ξiei are, respectively, the functions in Vm related to

the elements ζ = (ζ1, ζ2, . . . , ζm) and ξ = (ξ1, ξ2, . . . , ξm) in R
m through the isomorphism

mentioned above.

Once more, we shall apply Lemma 2.0.1 to obtain weak solutions to each (Pk),

so the next step is to show that Φ satisĄes its conditions. The continuity of Φ is quite

straightforward, so what remains to be done is to prove the following proposition.

Proposition 3.2.1. The function Φ : R2m → R
2m deĄned above is continuous.

Proof. This demonstration goes along a similar path from Proposition 2.1.1, from which

we can even readily state the continuity of each component function Gj.3 Now, for Fj,

we need only prove that, if a sequence of pairs ((un, ϕn))n∈N ⊂ Vm × Vm converges in the

H1
0 (Ω)×H1

0 (Ω) norm to (u, ϕ), then
∫

Ω

ϕn+(un+)2∗−2ej dx −→

∫

Ω

ϕ+(u+)2∗−2ej dx (3.13)

and
∫

Ω

ej

(un+ + 1
k
)γ
dx −→

∫

Ω

ej

(u+ + 1
k
)γ
dx. (3.14)

For that, let us see that

∣

∣ϕn+(un+)2∗−2ej

∣

∣ ≤
2∗ − 1

2∗
♣ϕn+♣

2∗

2∗
−1 ♣un+♣

2∗

(

2∗
−2

2∗
−1

)

+
1
2∗
♣ej♣

2∗

and since 2∗ − 1 and 2∗−1
2∗−2

are conjugate exponents in the Holder sense,

∣

∣ϕn+(un+)2∗−2ej

∣

∣ ≤
1
2∗
♣ϕn+♣

2∗

+
2∗ − 2

2∗
♣un+♣

2∗

+
1
2∗
♣ej♣

2∗

.

Now, by the continuous embedding H1
0 (Ω) →֒ L2∗

(Ω), the uniform boundness of ∥un∥

and ∥ϕn∥ implies the same uniform boundness for ♣un♣2∗ and ♣ϕn♣2∗ , that is, the uniform

boundness in L1(Ω) of ♣un♣
2∗

and ♣ϕn♣
2∗

.

2 We can consider here the ŞeuclideanŤ norm in Vm × Vm, where ∥(u, v)∥ =
√

∥u∥2 + ∥v∥2, or
any equivalent norm in this space. We shall stick to this one, for convenience.

3 Notice that the functions fk in Proposition 2.1.1 is completely different from the ones we
consider now. Nevertheless, the important factor in our proofs are the estimates over each
function, which in this case is even stronger than in the last chapter, being bounded in L∞(Ω).
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Meanwhile,
∣

∣

∣

∣

ej

(un+ + 1
k
)γ

∣

∣

∣

∣

≤ kγ ♣ej♣ ,

meaning both sequences are bounded by functions in L1(Ω). Using the DCT, we obtain

(3.13) and (3.14).

Proposition 3.2.2. There exists a real number R > 0 such that, for ∥(ζ, ξ)∥ = R, we

have ⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ 0.

Proof. By deĄnition, we have

⟨Φ(ζ, ξ), (ζ, ξ)⟩ =
m
∑

i=1

Fi(ζ, ξ)ζi +
m
∑

i=1

Gi(ζ, ξ)ξi

=
m
∑

i=1

(∫

Ω

∇u∇ei dx−

∫

Ω

ϕ+(u+)2∗−2ei dx− λ

∫

Ω

ei

(u+ + 1
k
)γ
dx

)

ζi

+
m
∑

i=1

(∫

Ω

∇ϕ∇ei dx−

∫

Ω

fk(u+)ei dx

)

ξi

=
∫

Ω

∇u∇

(

m
∑

i=1

eiζi

)

dx−

∫

Ω

ϕ+(u+)2∗−2

(

m
∑

i=1

eiζi

)

dx

−λ

∫

Ω

(
∑m

i=1 eiζi)
(u+ + 1

k
)γ

dx+
∫

Ω

∇ϕ∇

(

m
∑

i=1

eiξi

)

dx

−

∫

Ω

fk(u+)

(

m
∑

i=1

eiζi

)

dx

=
∫

Ω

♣∇u♣2 dx−

∫

Ω

ϕ+(u+)2∗−1 dx− λ

∫

Ω

u

(u+ + 1
k
)γ
dx

+
∫

Ω

♣∇ϕ♣2 dx−

∫

Ω

fk(u+)ϕ dx.

Thus, we are left with

⟨Φ(ζ, ξ), (ζ, ξ)⟩ = ∥u∥2 + ∥ϕ∥2 −

∫

Ω

ϕ+(u+)2∗−1 dx

− λ

∫

Ω

u

(u+ + 1
k
)γ
dx−

∫

Ω

fk(u+)ϕ dx.
(3.15)

Using the fact that fk satisĄes the conditions from Lemma 3.1.3 and deĄning

Ω+
k := ¶x ∈ Ω ; ♣u+(x)♣ ≥ 1/k♢, (3.16)

Ω−
k := ¶x ∈ Ω ; ♣u+(x)♣ < 1/k♢, (3.17)
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we have (noting that fk(s) is positive when s > 0)
∫

Ω

fk(u+)ϕ dx ≤
∫

Ω+
k

L1 (u+)2∗−1ϕ dx+
∫

Ω−

k

L2 (u+)2ϕ dx

≤

∫

Ω

L1 (u+)2∗−1ϕ dx+
1
k2

(

∫

Ω−

k

L2
2 dx

)1/2

♣ϕ♣2

≤

∫

Ω

L1 (u+)2∗−1ϕ dx+
L′

2

k2
∥ϕ∥ ,

(3.18)

from which we conclude that
∫

Ω

ϕ+(u+)2∗−1 dx+
∫

Ω

ϕfk(u+) dx ≤
∫

Ω

ϕ+

(

(u+)2∗−1 + L1(u+)2∗−1
)

dx

+ L′
2

1
k2
∥ϕ∥

≤ 2L′
1

∫

Ω

ϕ+(u+)2∗−1 dx+
L′

2

k2
∥ϕ∥ ,

(3.19)

where we named L′
1 = max¶L1, 1♢. Now, we will use the Young Inequality, namely

ab ≤
1
p
ap +

1
p′
bp′

,

where p and p′ are conjugated Holder indices, to obtain an estimate of the form
∫

Ω

ϕ+(u+)2∗−1 dx+
∫

Ω

ϕfk(u+) dx ≤ D1 ∥ϕ∥
2∗

+D2 ∥u∥
2∗

+
L2

k2
∥ϕ∥ . (3.20)

For that, we choose p = 2∗

2∗−1
so that p′ = 2∗. With this, we have

♣ϕ♣♣u♣2
∗−1 ≤

1
p′
♣ϕ♣p

′

+
1
p
♣u♣(2

∗−1)p =
1
2∗
♣ϕ♣2

∗

+
2∗ − 1

2∗
♣u♣2

∗

,

so that by the Sobolev Embedding Theorems and inequality (3.19), we obtain estimate

(3.20) as intended. Thus, the scalar product satisĄes

⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ ∥u∥2 + ∥ϕ∥2 −D2 ∥u∥
2∗

−D1 ∥ϕ∥
2∗

−
L2

k2
∥ϕ∥ − λC1(1 + ∥u∥),

which we can rewrite as

⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ ♣♣(ζ, ξ)♣♣2 −D2∥ζ∥
2∗

−D1∥ξ∥
2∗

−
L2

k2
∥ξ∥ − λC1(1 + ∥(ζ, ξ)∥),

where we used

♣♣ζ♣♣ ≤
√

♣♣ζ♣♣2 + ♣♣ξ♣♣2 = ∥(ζ, ξ)∥.

Thus, choosing R such that

R2 − (D1 +D2)R2∗

> 0,
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which is equivalent to

R2∗−2 <
1

D1 +D2

,

we can take

λ < Λ =
R2 − (D1 +D2)R2∗−2

C1(1 + t0)
and k2 >

L2R

R2 − (D1 +D2)R2∗−2 − λC1(1 + t0)

and, for all (ζ, ξ) such that ∥(ζ, ξ)∥ = R, we have

⟨Φ(ζ, ξ), (ζ, ξ)⟩ > 0.

We have then proved the necessary conditions for us to use Lemma 2.0.1, which

gives us a pair of sequences of functions (um, ϕm)m∈N, both composed by elements of each

Vm, satisfying
∫

Ω

∇um∇ej dx−

∫

Ω

ϕm+(um+)2∗−2ej dx− λ

∫

Ω

ej

(um+ + 1
k
)γ
dx = 0,

∫

Ω

∇ϕm∇ej dx−

∫

Ω

fk(um+)ej dx = 0,

for j = 1, 2, ...,m. Because we are dealing with basis elements, we can expand this to the

whole space Vm, so that
∫

Ω

∇um∇ω dx−

∫

Ω

ϕm+(um+)2∗−2ω dx− λ

∫

Ω

ω

(um+ + 1
k
)γ
dx = 0, (3.21)

∫

Ω

∇ϕm∇ω dx−

∫

Ω

f(um+)ω dx = 0, ω ∈ Vm. (3.22)

It is important to notice that both sequences satisfy ∥um∥ , ∥ϕm∥ ≤ R and that

this limiting constant does not depend on the index m. We have obtained then a pair of

sequences with its terms limited, on H1
0 (Ω), by a common constant. By known results,

namely the Sobolev Embedding Theorems, we can extract a pair of subsequences, which

we still denote by (um), (ϕm), and a pair of functions u, ϕ ∈ H1
0 (Ω) such that

um ⇀ u in H1
0 (Ω) and um → u in Ls(Ω),

ϕm ⇀ ϕ in H1
0 (Ω) and ϕm → ϕ in Ls(Ω), s ∈ [1, 2∗).

(3.23)

Thus, letting m→∞ in equations (3.21) and (3.22) and keeping ω in a particular

Ąxed Vl space, we have
∫

Ω

ϕm+(um+)2∗−2ω dx −→

∫

Ω

ϕ+(u+)2∗−2ω dx,

∫

Ω

ω

(um+ + 1
k
)γ
dx −→

∫

Ω

ω

(u+ + 1
k
)γ
dx,
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∫

Ω

fk(um+)ω dx −→
∫

Ω

fk(u+)ω dx,

where the last one can be readily veriĄed by the strong regularity and boundness of each

fk. Using these convergences, we can rewrite
∫

Ω

∇u∇ω dx−

∫

Ω

ϕ+(u+)2∗−2ω dx− λ

∫

Ω

ω

(u+ + 1
k
)γ
dx = 0,

∫

Ω

∇ϕ∇ω dx−

∫

Ω

fk(u+)ω dx = 0, ω ∈ Vl.

Since here l ∈ N is arbitrary, we can pass the limit l→∞ and achieve
∫

Ω

∇u∇ω dx−

∫

Ω

ϕ+(u+)2∗−2ω dx− λ

∫

Ω

ω

(u+ + 1
k
)γ
dx = 0, (3.24)

∫

Ω

∇ϕ∇ω dx−

∫

Ω

fk(u+)ω dx = 0, ω ∈ H1
0 (Ω). (3.25)

Here we used the fact that the Vl spaces are dense in H1
0 (Ω), which permits us to

approximate any test function by elements of Vl.

At last, we can show that u ≥ 0 for every x ∈ Ω. This is evident, since taking

ω = u− = max¶−u, 0♢ in (3.24) leads to

−∥u−∥
2 =

∫

Ω

∇u∇(u−) dx =
∫

Ω

ϕ+(u+)2∗−2(u−) dx+ λ

∫

Ω

u−

(u+ + 1
k
)γ
dx ≥ 0,

showing that u = u+. Furthermore, the same argument for (3.25), together with the fact

that f satisĄes condition (3.1), shows that

−∥ϕ−∥
2 =

∫

Ω

fk(u)ϕ− dx ≥ 0,

which implies that ϕ = ϕ+ and the functions u, ϕ will then be a pair of weak solutions to

(Pk). We will from now on denote them by uk and ϕk, to reassure their dependence on the

parameter k in the auxiliary system.

Now, the Ąnal step to prove Theorem 3.0.1 is to argue that the sequences uk, ϕk

tend to functions which satisfy the conditions of weak solutions to problem (P2). For that,

let us notice that, because of the weak convergences in the space H1
0 (Ω), we have

∥uk∥ ≤ lim inf
m→∞

∥um∥ ≤ R (3.26)

and the same applies to each function ϕk. Again, the limiting constant does not depend

on the index k of the functions of the sequence. That means we are left with new bounded

sequences in H1
0 (Ω) and once more we can affirm that there exists functions uλ, ϕλ ∈ H

1
0 (Ω)

such that, up to a subsequence,

uk ⇀ uλ in H1
0 (Ω) and uk → uλ in Ls(Ω),

ϕk ⇀ ϕλ in H1
0 (Ω) and ϕk → ϕλ in Ls(Ω), s ∈ [1, 2∗).

(3.27)
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We want to show that, letting k →∞, we can assert the following convergences
∫

Ω

ϕk(uk)2∗−2ω dx −→

∫

Ω

ϕλ(uλ)2∗−2ω dx, (3.28)

∫

Ω

fk(uk)ω dx −→
∫

Ω

f(uλ)ω dx. (3.29)

For that, let us show Ąrst that ϕk(uk)2∗−2 and fk(uk) are both bounded sequences

in Lp(Ω), with p = 2∗

2∗−1
. For the latter, it is an easy task because, by condition (3.1),

∫

Ω

♣fk(uk)♣p dx ≤

∫

Ω

♣uk♣
(2∗−1)p dx = ♣uk♣

2∗

L2∗ (Ω) ≤ CR2∗

.

For (3.28) we only need to make use one more time of the Young Inequality. Now,

we can choose q = 2∗ − 1, which gives q′ = 2∗−1
2∗−2

and pq′(2∗ − 2) = 2∗. Therefore,
∫

Ω

∣

∣ϕku
2∗−2
k

∣

∣

p
dx ≤

1
2∗ − 1

∫

Ω

♣ϕk♣
2∗

dx+
2∗ − 2
2∗ − 1

∫

Ω

♣uk♣
2∗

dx

≤
1

2∗ − 1
∥ϕk∥

2∗

+
2∗ − 2
2∗ − 1

∥uk∥
2∗

.

(3.30)

Now, by the Lp(Ω) convergence in (3.27), we have ϕk(uk)2∗−2 → ϕλu
2∗−2
λ a.e. in

Ω. In the same manner, using that f is a continuous function, we have f(uk) → f(u)

a.e. in Ω. By the limitations of
∣

∣ϕku
2∗−2
k

∣

∣

p
and ♣f(uj)♣p, using Theorem 3.1.1, we obtain

ϕk(uk)2∗−2 ⇀ ϕλu
2∗−2
λ and f(uk) ⇀ f(uλ) in Lp(Ω).

On the other hand, being p and 2∗ conjugate indices in the Holder sense, meaning

that 2∗ + p = 2∗p, the integral
∫

Ω
vω dx is Ąnite for v ∈ Lp(Ω), since

∣

∣

∣

∣

∫

Ω

vw dx

∣

∣

∣

∣

= ♣v w♣1 ≤ ♣v♣p ♣w♣2∗ < +∞,

where we used the Holder inequality. Therefore, we can deĄne the functional J(v) =
∫

Ω
vw dx for every function v ∈ H1

0 (Ω). The weak convergences we have just obtained

imply then (3.28) and (3.29).

As for the limit of the sequence accompanying λ, we have the following: By the

developments of Section 3.1, each uk will be limited from below by δφ1 and, by the

Hardy-Sobolev Inequality (see Appendix), we have ω
(φ1)γ ∈ L

1(Ω), which permits us to use

the DCT to conclude that
∫

Ω

ω

(uk + 1
k
)γ
dx −→

∫

Ω

ω

uγ
λ

dx,

since the convergence a.e. of the sequence inside the integral is straightforward. From this,

we Ąnally obtain
∫

Ω

∇uλ∇ω dx−

∫

Ω

ϕλ(uλ)2∗−2ω dx− λ

∫

Ω

ω

uγ
λ

dx = 0,
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∫

Ω

∇ϕλ∇ω dx−

∫

Ω

f(uλ)ω dx = 0, ω ∈ H1
0 (Ω).

The pair (uλ, ϕλ) then satisĄes the equations necessary for being a pair of weak

solutions of the main problem (P2). Since the fact that uλ > 0 was already proven in

Section 3.1, we conclude the assertion that (uλ, ϕλ) is a pair of solutions to problem (P2)

and Theorem 3.0.1 is proven.
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4 GENERALIZED SCHRODINGER-POISSON SYSTEM WITH THE

N-LAPLACIAN OPERATOR AND CRITICAL EXPONENTIAL

GROWTH

Finally, we treat in this chapter our last proposed problem, namely






















−∆Nu− ϕ
f(u)

u
= λ

uγ in Ω,

−∆Nϕ = f(u) in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω.

(P3)

We remind the reader that we are imposing over the function f the following exponential

critical growth

0 ≤ f(s)s ≤ L♣s♣r+1 exp¶αs
N

N−1♢, L, α > 0, r > N − 1, (4.1)

inspired by the Trudinger-Moser inequality (1.10), and that the results we have proven

are the following

Theorem 4.0.1. If f : [0,∞) −→ R is a continuous function satisfying the growth

condition (4.1). Then there exists Λ > 0 such that, for every 0 < λ < Λ, problem (P3) has

a solution pair uλ, ϕλ ∈ W
1,N
0 (Ω).

Meanwhile, treating the alternative problem, where f is of exponential form,






















−∆Nu+ ϕur−1 exp¶αuN ′

♢ = λ
uγ in Ω,

−∆Nϕ = ur exp¶αuN ′

♢ in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω,

(P4)

we have

Theorem 4.0.2. Let us suppose α > 0 arbitrary and r such that

(γ + rN ′ − 1)
(

1− γ
N − 1

)

> 1.

Then there exists Λ > 0 such that, for every 0 < λ < Λ, problem (P4) has a solution

pair uλ, ϕλ ∈ C
1
0(Ω). If α = 0, the problem (P4) has a unique positive solution for every

0 < λ < Λ.

4.1 PRELIMINARY RESULTS

We have seen in both preceding chapters how important the Fundamental Lemma

is to the application of the Galerkin Method. It has, however, an important restriction

which we shall need to remove here. Indeed, we see that in the statement of Lemma 2.0.1,
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the sphere where we Ąnd that ⟨h(α), α⟩ ≥ 0 must be generated by the norm arising from

this inner product, that is, the euclidean norm in R
N . Results analogous to Propositions

2.1.1 and 3.2.2, concerning Problem (P3), nonetheless, will enforce us to use a different

sphere, formed by an alternative norm in the same space.

This improvement was achieved in [39]. In the following hypothesis, ♣ · ♣e =
√

⟨·, ·⟩

is the Euclidean norm on R
N and ♣ · ♣d a general norm.

Lemma 4.1.1. Let h : (RN , ♣ · ♣d) −→ (RN , ♣ · ♣d) be a continuous function such that

⟨h(α), α⟩ ≥ 0 for every α ∈ R
N with ♣α♣d = R, for some R > 0. Then there exists an

element z ∈ Bd
R(0) = ¶x ∈ R

N ; ♣x♣d ≤ R♢ such that h(z) = 0.

Proof. Firstly, we know there must exist a constant c > 0 such that

♣x♣d ≤ c ♣x♣e , for all x ∈ R
N . (4.2)

Now, let us suppose, by contradiction, that F (x) ̸= 0, for all x ∈ Bd
R(0). We deĄne

f : (RN , ♣ · ♣d) −→ (RN , ♣ · ♣d) by

f(x) = −
R

♣h(x)♣d
h(x),

which, in particular, maps continuously Bd
R(0) into itself. By BrouwerŠs Ąxed point theorem,

Theorem 2.0.4, there must exist a z ∈ Bd
R(0) such that f(z) = z, that is, ♣x♣d = R.

Thus, by hypothesis and using (4.2),

0 < R2 ≤ c ⟨z, z⟩ = c ⟨f(z), z⟩ = −c
R

♣h(x)♣d
⟨h(z), z⟩ ≤ 0.

This is a contradiction, which concludes our proof.

It is worthwhile to reassure here the importance of this result. In the methods

seen here and throughout several other papers, we are often dealing with Banach spaces,

such as W 1,N
0 (Ω), where the lack of orthogonality might bring up several problems. The

freedom of choice we have with the norm in Lemma 4.1.1 is an efficient way for avoiding

such problems.

Following this Ąrst result, let us deĄne a property satisĄed by the N-Laplacian

operator which will be important later.

DeĄnition 4.1.1. If X is a reĆexive Banach space and V : X → X∗, we say that V is of

type (S+) if, for every sequence (xn)n∈N ⊂ X satisfying xn ⇀ x and1

lim sup
n→+∞

⟨V (xn), xn − x⟩ ≤ 0,

we obtain xn → x in X.
1 We use here the notation that ⟨w, u⟩ symbolizes the action of a dual vector w ∈ X∗ over some

element u ∈ X. It should be clear the moments we use this notation, that should not be
confused with the exact notion of the inner product over a vector space.
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Now, we can take the map V : W 1,N
0 (Ω)→ (W 1,N

0 (Ω))∗ given by

⟨V (u), v⟩ =
∫

Ω

♣∇u♣N−2∇u∇v dx ∀ u, v ∈ W 1,N
0 (Ω).

It can be shown that V deĄned in this way is in fact of type (S+). In that way, we say

that the −∆N operator has the (S+)-property.

We now dedicate the rest of this section of preliminary results to stating some

regularity theorems, which will be quite important later in this work. First, we cite a

famous result by Ladyzhenskaya and UralŠtseva, present in their great and accomplished

work [40]. Their version contemplates general operators other than the N-Laplacian, but

we shall write here only the particular case for simpliĄcation.

Theorem 4.1.1. Let u ∈ W 1,m(Ω) ∩ Lq(Ω), m ≤ N and q ≥ Nm
N−m

, be a weak solution of

the problem
{

−∆Nu+ a(x, u,∇u) = 0, x ∈ Ω

u = 0, x ∈ ∂Ω,
(4.3)

with a : Ω×R×R
N −→ R satisfying

(sign u)a(x, u, p) ≤ (1 + ♣u♣α1)ϕ2(x) + (1 + ♣u♣α2)ϕ2(x)♣p♣m−ϵ (4.4)

for ϵ, αi, ϕi such that

1. N
N+q
≤ ϵ ≤ m;

2. ϕi ∈ L
ri(Ω), i = 1, 2,

r1 >
N

m
; r2 >

N

ϵ
;

3. 0 ≤ α1 < mN+q
N
− 1− q

r1
,

0 ≤ α2 < ϵN+q
N
− 1− q

r2
.

Suppose further that supx∈∂Ω ♣u(x)♣ = M0 < +∞. Then, maxΩ ♣u♣ is bounded by an

expression in terms of ♣u♣Lq(Ω),M0, ϵ, αi, ♣ϕ♣Lri (Ω).

The next result is due to [41] and gives a strong regularity for a bounded solution

to elliptic problems involving the N-Laplacian.

Theorem 4.1.2. Let α,Λ,M0 be positive constants with α ≤ 1, Φ be a nonnegative

constant and Ω ⊂ R
n be a bounded domain with C1,α boundary. Consider the problem

{

−∆Nu+B(x, u,∇u) = 0, x ∈ Ω

u = ϕ, x ∈ ∂Ω,
(4.5)

with B satisfying

♣B(x, z, p)♣ ≤ Λ(1 + ♣p♣)m+2,
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for all (x, z, p) ∈ ∂Ω× [−M0,M0]×R
n. If ϕ ∈ C1,α(Ω) is such that ♣ϕ♣1+α ≤ Φ and if u

is a bounded weak solution of the Dirichlet problem (4.5), with ♣u♣ ≤M0 in Ω, then there

is a positive constant β = β(α,Λ,m, n) such that u ∈ C1,β(Ω). Moreover,

♣u♣1+β ≤ C(α,Λ,m, n,M0,Φ,Ω).

The last regularity result appears in [42] and will be important to demonstrate the

positiveness of our auxiliary solutions.

Theorem 4.1.3. Consider the differential inequality

−∆Nu+B(x, u,∇u) ≤ 0 (4.6)

in a domain Ω ⊂ R
n. If it holds that

(I1) B(x, z, p) ≥ −κΦ(♣p♣)− f(z),

(I2) f(0) = 0 and f is non-decreasing on some interval (0, δ), δ > 0,

then the Strong Maximum Principle is valid, meaning that for a non-negative classical

solution u of (4.6), if u(x) = 0 for some x ∈ Ω, then u ≡ 0.

Lastly, we present a comparison result for the N-Laplacian operator, which will

be crucial for the proof of the positiveness of the main solution. Recall Ąrst that by a

subsolution of the problem
{

−∆Nv = g(v), x ∈ Ω

v = 0, x ∈ ∂Ω,
(4.7)

we mean v1 ∈ W
1,N
0 (Ω) such that v1 ≥ 0 a.e. on ∂Ω and

∫

Ω

♣∇v1♣
p−1∇v1∇ω dx ≤

∫

Ω

g(v1)ω dx , ∀ ω ∈ W 1,N
0 (Ω) with ω ≥ 0 a.e. in Ω.

Similarly, v2 is a supersolution of (4.7) if v2 ≥ 0 a.e. on ∂Ω and the reverse

inequality above is satisĄed, again for ω ≥ 0 a.e. in Ω. With this, we state the following

lemma, which is again a particular case of a more general result (see [43], where it is

considered a problem with the (p,q)-Laplacian operator).

Theorem 4.1.4. Consider g : R→ R a continuous function satisfying t1−Ng(t) decreasing

for t > 0. If u1, u2 are positive sub and supersolution, respectively, of (4.7), ui ∈

L∞(Ω) ∩ C1,α(Ω) for some α ∈ (0, 1), ∆Nui ∈ L
∞(Ω) and ui/uj ∈ L

∞(Ω) for i, j = 1, 2,

then u2 ≥ u1 in Ω.
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4.2 AUXILIARY PROBLEMS AND REGULARITY OF THE WEAK SOLUTIONS

In the same way as Chapter 3, Problem (P3) possesses a singularity in its Ąrst

equation and, additionally, we now ask that f grows at most exponentially. Like before,

these aspects will force us to solve, Ąrst, a sequence of auxiliary equations in which we

substitute f by more regular (and more importantly, bounded) functions. More speciĄcally,

for each k ∈ N, we shall consider the following system






















−∆Nu− ϕ
fk(u)

(u+ 1
k

)
= λ

(u+ 1
k

)γ , x ∈ Ω,

−∆Nϕ = fk(u), x ∈ Ω,

u > 0, x ∈ ∂Ω,

u = ϕ = 0, x ∈ ∂Ω,

(Pk)

where fk is the same Strauss sequence encountered in (3.5). They are given - we recall -

by

fk(s) =











































−k[G(−k − 1
k
)−G(−k)], if s ≤ −k

−k[G(s− 1
k
)−G(s)], if − k ≤ s ≤ − 1

k

k2s[G(− 2
k
)−G(− 1

k
)], if − 1

k
≤ s ≤ 0

k2s[G( 2
k
)−G( 1

k
)], if 0 ≤ s ≤ 1

k

k[G(s+ 1
k
)−G(s)], if 1

k
≤ s ≤ k

k[G(k + 1
k
)−G(k)], if s ≥ k,

(4.8)

with G(s) =
∫ s

0
f(ξ)dξ. Another fact we can recall from Chapter 3 is Lemma 3.1.2, which

states conclusions of regularity and convergence for fk. Even further, we can adapt our

proof of Lemma 3.1.3, found in the same chapter, now that f satisĄes (4.1). For an outline

of the proof of this adapted result, see [39].

Lemma 4.2.1. The sequence of auxiliary functions fk deĄned above satisĄes

1. ∀ k ∈ N, 0 ≤ s fk(s) ≤ C1♣s♣
r+1 exp¶2N ′

αsN ′

♢, ♣s♣ ≥ 1
k
,

2. ∀ k ∈ N, 0 ≤ s fk(s) ≤ C2♣s♣
2 exp¶2N ′

αsN ′

♢, ♣s♣ ≤ 1
k
,

with C1, C2 being two positive constants independent of the parameter k.

What we intend to do, eventually, is to prove the existence of the sequence (uk, ϕk),

solutions to each (Pk), and subsequently show that we can obtain a pair (uλ, ϕλ), the limit

of a subsequence of (uk, ϕk), which satisĄes the condition for being weak solutions of the

main problem (P3). We remind that this last fact is characterized by the equalities
∫

Ω

♣∇N−2u♣∇u∇ω dx−

∫

Ω

ϕ
f(u)
u

ω dx− λ

∫

Ω

ω

uγ
dx = 0,

∫

Ω

♣∇N−2ϕ♣∇ϕ∇ω dx−

∫

Ω

f(u)ω dx = 0, ω ∈ W 1,N
0 (Ω).
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The regularity of each pair (uk, ϕk) is then a crucial factor to the Ąnal result, as

is their sign in Ω. This is also the reason we must consider Ąrst the auxiliary functions

fk. Their regularity implies quite directly the strong regularity of each solution ϕk, which

in turn does the same for uk, as we shall see ahead. Furthermore, it is known that even

though each uk is strictly positive, the same might not be said for its limit u. We will be

able, nonetheless, to obtain the existence of a uniform lower bound for uk, which easily

translates to a lower bound of its limit.

Therefore, we shall present in this section the regularity of each pair (uk, ϕk) of

weak solutions to the auxiliary problem (Pk). The existence of the limits (uλ, ϕλ), here

only required to be a.e. limits, will be already assumed and we will prove it in further

sections.

Proposition 4.2.1. If (uk, ϕk) is a pair of non-negative weak solutions of the auxiliary

problem (Pk), then it is a pair of classical solutions. Furthermore, there exists a strictly

positive lower bound w ∈ L∞(Ω) for the sequence uk, i. e., w is such that

uk ≥ w > 0 , ∀ k ∈ N.

Proof. Firstly, we must refer to Theorem 4.1.1 to show that ϕk ∈ L
∞(Ω). We notice the

importance, here, of using the auxiliary functions fk instead of f , which does not satisfy

the proper conditions for the application of Theorem 4.1.1. Next, using this, we can also

induce the following estimate for the nonlinearity of the Ąrst equation

∣

∣

∣

∣

ϕk
fk(uk)

(uk + 1
k
)

+
λ

(uk + 1
k
)γ

∣

∣

∣

∣

≤ ♣ϕk♣∞

∣

∣

∣

∣

fk(uk)
uk

∣

∣

∣

∣

+ λkγ ≤ ck♣ϕk♣∞ + λkγ.

Then, the same theorem is again applicable and gives us uk ∈ L
∞(Ω). For both of this

functions, we can now apply Theorem 4.1.2 to ensure that ϕk, uk ∈ C1,β(Ω) for some

β ∈ (0, 1) (the indexes may be different at Ąrst, but we remember we can always consider

the smaller of the two). At last, Theorem 4.1.3 states that we can apply the strong

maximum principles for both equations and thus, together with the results ϕk, uk ≥ 0

and ϕk, uk ̸= 0, which we have already veriĄed, gives us ϕk, uk > 0 in Ω. We have, Ąnally,

obtained that uk, ϕk are classical solutions to (Pk).

Moreover, the regularity of the sequence (uk, ϕk) is not the Ąnal goal of this section.

As we have already mentioned, we need a uniform lower bound for uk to assert that its limit

uλ will be strictly positive in the entire domain and for that, we utilizes Theorem 4.1.4.

It is easy to notice that each uk will be a supersolution of the problem (4.7) considering

g(s) = λ
(s+ 1

k
)γ , since

−∆Nuk = ϕk(uk)2∗−2 +
λ

(uk + 1
k
)γ
≥

λ

(uk + 1
k
)γ
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and we have just proven that uk > 0 in Ω. For a subsolution, we use the eigenfunction

of the Ąrst eigenvalue of the Laplacian operator −∆. We know it to be smooth, strictly

positive, and bounded in Ω. Not only that, but we can also obtain a constant B > 0 such

that ♣∆Nφ1♣ ≤ B in Ω. Furthermore, for every δ > 0, we have

−∆N(δφ1) = −δN−1∆Nφ1 ≤ δN−1B

and if we denote by w = δφ1, then w will be such that ♣w♣∞ = δ♣φ1♣∞. Thus, taking δ

satisfying

δN−1B(δ♣φ1♣∞ + 1)γ ≤ λ,

we shall obtain

−∆Nw = δN−1B ≤
λ

(δ♣φ1♣∞ + 1
k
)γ
≤

λ

(w + 1
k
)γ
,

meaning w is the strictly positive subsolution we were looking for. We only need now

to prove that w and uk satisfy the conditions necessary to apply Theorem 4.1.4. We

have already proved them to be in L∞(Ω) ∩ C1,β(Ω) and this implies quite directly in

∆Nw,∆Nuk ∈ L
∞(Ω).

What is left then for us to verify is that uk/w,w/uk ∈ L
∞(Ω). For any compact

contained in Ω, this fact is evident since both are positive continuous functions. By that,

we need to show now that, when x→ ∂Ω (assuming, of course, x ∈ Ω), we have

max
{

lim sup
x→∂Ω

uk

w
, lim sup

x→∂Ω

w

uk

}

< +∞ (4.9)

and for that, we apply a boundary point lemma. This result can be seen in [42] and

assumes the same conditions as Theorem 4.1.3, so that we have no problems to apply the

result. It then states that using the Hopf boundary point lemma, we obtain
∂uk

∂ν
(x0) < 0 ,

∂w

∂ν
(x0) < 0 , x0 ∈ ∂Ω, (4.10)

where ν is the exterior normal unit vector to ∂Ω. Thus, both expressions in (4.10), together

with lŠHôpitalŠs theorem, imply condition (4.9). Finally, we have achieved all of Theorem

4.1.4 conditions, and using it we obtain that uk ≥ w > 0 for every k ∈ N.

From this, if uk → uλ a.e. in Ω, then we can conclude that uλ > 0 in Ω.

4.3 PROOF OF THEOREM 4.0.1

In this section, we Ąnally prove our main result. As mentioned in the last section,

we shall need to Ąrst prove the existence of solution for a sequence of auxiliary problems,

deĄned, for each k ∈ N, to be






















−∆Nu− ϕ
fk(u)

(u+ 1
k

)
= λ

(u+ 1
k

)γ , x ∈ Ω,

−∆Nϕ = fk(u), x ∈ Ω,

u > 0, x ∈ ∂Ω,

u = ϕ = 0, x ∈ ∂Ω,

(Pk)
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fk being the auxiliary functions presented in Section 4.2.

Only after obtaining proper solutions to (Pk) will we be able to Ąnd a solution

pair to (P3). For that, we shall take the limit of these auxiliary solutions and prove

both the convergence and the affirmation that their limit satisĄes (P3). As is the case

for the application of the Galerkin method, we start by taking a Schauder basis B =

¶e1, e2, . . . , en, . . . ♢ of W 1,N
0 (Ω) and with it we deĄne the subspaces Vm = [e1, e2, . . . , em] of

W 1,N
0 (Ω) spanned by the Ąrst m vectors of B. Let us cite more explicitly the isomorphism

between R
m and Vm. Again we shall work with the Cartesian space Vm × Vm. For some

(ξ, ζ) = (ξ1, · · · , ξm, ζ1, · · · , ζm) ∈ R
2m, the quantity

♣(ξ, ζ)♣m =





∣

∣

∣

∣

∣

m
∑

j=1

ξjej

∣

∣

∣

∣

∣

N

W 1,N
0 (Ω)

+

∣

∣

∣

∣

∣

m
∑

j=1

ζjej

∣

∣

∣

∣

∣

N

W 1,N
0 (Ω)





1/N

is a norm in R
2m, which can be directly sen from the properties of the norm ♣·♣W 1,N

0 (Ω),

and thus equivalent to the euclidean norm in the same space. In this manner, we identify

the spaces Vm × Vm and R
2m, using the equivalence

(ξ, ζ) = (ξ1, · · · , ξm, ζ1, · · · , ζm) ∈ R
2m ←→ (u, ϕ) =

(

m
∑

j=1

ξjej,
m
∑

j=1

ζjej

)

∈ Vm.

We are thus in position to deĄne the function Φ : R2m −→ R
2m whose coordinate

functions are

Φ(ζ, ξ) = (F1(ζ, ξ), ..., Fm(ζ, ξ), G1(ζ, ξ), ..., Gm(ζ, ξ)) ,

Fj(ζ, ξ) =
∫

Ω

♣∇u♣N−2∇u∇ej dx−

∫

Ω

ϕ+
fk(u+)
(u+ 1

k
)
dx− λ

∫

Ω

ej

(u+ + 1
k
)γ
dx,

Gj(ζ, ξ) =
∫

Ω

♣∇ϕ♣N−2∇ϕ∇ej dx−

∫

Ω

f(u+)ej dx,

where j = 1, 2, . . . ,m, u =
∑m

i=1 ζiei and ϕ =
∑m

i=1 ξiei are the functions in Vm related to

the elements ζ = (ζ1, ζ2, . . . , ζm) and ξ = (ξ1, ξ2, . . . , ξm) in R
m through the isomorphism

mentioned above.

To get the desired results, we shall also use Lemma 4.1.1, so our next step is to

show that Φ satisĄes its conditions. The continuity of Φ is quite straightforward, meaning

we only need to prove the following proposition.

Proposition 4.3.1. There exists a real number ρ > 0 and a norm ♣ · ♣d such that, for

♣(ζ, ξ)♣d = ρ, we have ⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ 0.
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Proof. By deĄnition, we have

⟨Φ(ζ, ξ), (ζ, ξ)⟩ =
m
∑

i=1

Fi(ζ, ξ)ζi +
m
∑

i=1

Gi(ζ, ξ)ξi

=
m
∑

i=1

(∫

Ω

♣∇u♣N−2∇u∇ei dx

−

∫

Ω

ϕ+
fk(u+)
(u+ 1

k
)
ej dx− λ

∫

Ω

ej

(u+ + 1
k
)γ
dx

)

ζi

+
m
∑

i=1

(∫

Ω

♣∇ϕ♣N−2∇ϕ∇ei dx−

∫

Ω

fk(u+)ei dx

)

ξi

=
∫

Ω

♣∇u♣N−2∇u∇

(

m
∑

i=1

eiζi

)

dx−

∫

Ω

ϕ+
fk(u+)
(u+ 1

k
)

(

m
∑

i=1

eiζi

)

dx

−λ

∫

Ω

(
∑m

i=1 eiζi)
(u+ + 1

k
)γ

dx+
∫

Ω

♣∇ϕ♣N−2∇ϕ∇

(

m
∑

i=1

eiξi

)

dx

−

∫

Ω

fk(u+)

(

m
∑

i=1

eiζi

)

dx

=
∫

Ω

♣∇u♣N dx−

∫

Ω

ϕ+
fk(u+)u+

(u+ 1
k
)
dx− λ

∫

Ω

u

(u+ + 1
k
)γ
dx

+
∫

Ω

♣∇ϕ♣N dx−

∫

Ω

fk(u+)ϕ dx.

Therefore, we are left with

⟨Φ(ζ, ξ), (ζ, ξ)⟩ = ∥u∥N + ∥ϕ∥N −

∫

Ω

ϕ+
fk(u+)u+

(u+ 1
k
)
dx

− λ

∫

Ω

u

(u+ + 1
k
)γ
dx−

∫

Ω

fk(u+)ϕ dx.
(4.11)

Using the fact that f(s) is positive when s > 0, we have
∫

Ω

ϕ+
fk(u+)u+

(u+ 1
k
)
dx+

∫

Ω

ϕf(u+) dx ≤ 2
∫

Ω

ϕ+f(u+) dx. (4.12)

To obtain an estimate of this term, we Ąrst recall, from (3.16) and (3.17) of Chapter

3, the sets Ω+
k and Ω−

k . With this, we can separate the integral from (4.12) and we shall

have
∫

Ω

fk(u+)ϕ dx =
∫

Ω+
k

fk(u+)ϕ dx+
∫

Ω−

k

fk(u+)ϕ dx.

By Lemma 4.2.1, we have the following
∣

∣

∣

∣

∣

∫

Ω+
k

fk(u+)ϕ dx

∣

∣

∣

∣

∣

≤

∫

Ω+
k

♣u+♣
r♣ϕ♣ exp¶2N ′

αuN ′

♢ dx

≤

[

∫

Ω+
k

♣u+♣
N ′r♣ϕ♣N

′

dx

]1/N ′ [
∫

Ω+
k

exp¶N2N ′

α♣u+♣
N ′

♢ dx

]1/N

,

(4.13)
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where we have used Holder Inequality with the exponents N and N ′ = N
N−1

. Using the

same result for the Ąrst term, we obtain

∫

Ω

♣u+♣
N ′r♣ϕ♣N

′

dx ≤

(∫

Ω

♣u♣N
′(r+1) dx

) r
r+1
(∫

Ω

♣ϕ♣N
′(r+1) dx

) 1
r+1

,

since
r

r + 1
+

1
r + 1

= 1.

Besides that, if ρ ≥ ∥u∥W 1,N
0 (Ω), then

∫

Ω

exp¶N2N ′

α♣u♣N
′

♢ dx ≤

∫

Ω

exp







N2N ′

αρN ′

(

♣u♣

∥u∥W 1,N
0 (Ω)

)N ′






dx

and, for ρ ≤ 1
2

(

αN

Nα

)N ′

, we have, by the Trudinger-Moser Inequality,
∫

Ω

exp¶N2N ′

α♣u♣N
′

♢ dx ≤ L
1
N (N)♣Ω♣

1
N . (4.14)

Therefore, we have just obtained the estimate
∣

∣

∣

∣

∣

∫

Ω+
k

fk(u+) dxϕ

∣

∣

∣

∣

∣

≤ ∥u∥r ∥ϕ∥ (L(N)♣Ω♣)
1
N . (4.15)

This is just half of the solution. Now, we need to estimate the integral of ϕfk(u+)

on Ω−
k and again by using the result of Lemma 4.2.1, we have
∣

∣

∣

∣

∣

∫

Ω−

k

fk(u+)ϕ dx

∣

∣

∣

∣

∣

≤ C2

∫

Ω−

k

♣u+♣
2exp¶2N ′

αuN ′

+ ♢♣ϕ♣ dx

≤
1
k2

[

∫

Ω−

k

♣ϕ♣N
′

dx

]1/N ′ [
∫

Ω−

k

exp¶N2N ′

α♣u+♣
N ′

♢ dx

]1/N

.

(4.16)

Using (4.14) one more time, we have
∣

∣

∣

∣

∣

∫

Ω−

k

fk(u+)ϕ dx

∣

∣

∣

∣

∣

≤
1
k2
∥ϕ∥ (L(N)♣Ω♣)

1
N . (4.17)

Combining (4.15) and (4.17), we Ąnally obtain
∣

∣

∣

∣

∫

Ω

fk(u+)ϕ dx

∣

∣

∣

∣

≤ (∥u∥r ∥ϕ∥+
1
k2
∥ϕ∥) (L(N)♣Ω♣)

1
N ,

which, together with (4.11), implies that

⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ ∥u∥N + ∥ϕ∥N − (∥u∥r ∥ϕ∥+
1
k2
∥ϕ∥) (L(N)♣Ω♣)

1
N − λ

∫

Ω

u

(u+ + 1
k
)γ
dx.



66

The last term can also be estimated by the norm ∥u∥, now by the application of

the Sobolev Embedding Theorems,
∣

∣

∣

∣

∫

Ω

u

(u+ + 1
k
)γ
dx

∣

∣

∣

∣

≤

∫

Ω

u1−γ dx ≤

∫

Ω

(u+ 1) dx ≤ C ∥u∥+ ♣Ω♣,

where we have used 1− γ ∈ (0, 1).

Thus, we obtain

⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ ∥u∥N + ∥ϕ∥N − (∥u∥r ∥ϕ∥+
1
k2
∥ϕ∥) (L(N)♣Ω♣)

1
N − λ(C ∥u∥+ ♣Ω♣).

To complete our proof, we need to Ąnd ρ > 0 such that ⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ 0 for

♣(ζ, ξ)♣d = ρ, ♣ · ♣d being a norm on R
2N . We shall choose here

♣(ζ, ξ)♣Nd = ♣ζ♣Ne + ♣ξ♣Ne ,

where ♣ζ♣e is the Euclidean norm on R
m, which is equal to the norm ∥u∥ of u ∈ Vm image

of ζ ∈ R
N by the isomorphism between the two spaces (and the same reasoning for ♣ξ♣e).

Notice that with this deĄnition, we have

∥u∥ ≤ ♣(ζ, ξ)♣d , ∥ϕ∥ ≤ ♣(ζ, ξ)♣d

and with this, we can rewrite

⟨Φ(ζ, ξ), (ζ, ξ)⟩ ≥ ♣(ζ, ξ)♣Nd − (L(N)♣Ω♣)
1
N ♣(ζ, ξ)♣r+1

d

−
1
k2
∥ϕ∥ (L(N)♣Ω♣)

1
N − λ(C ∥u∥+ ♣Ω♣).

(4.18)

Remembering we still need ρ be small enough so that (4.14) is satisĄed, we take

ρ < min
{

1
2

( αN

αN

)N ′

, (L(N)♣Ω♣)
N−(r+1)

N

}

,

which implies

♣(ζ, ξ)♣Nd − (L(N)♣Ω♣)
1
N ♣(ζ, ξ)♣r+1

d > 0.

Taking k ∈ N and λ > 0 such that

ρN − (L(N)♣Ω♣)
1
N ρr+1 >

(L(N)♣Ω♣)
1
N ρ

k2

and

ρN − (L(N)♣Ω♣)
1
N ρr+1 −

(L(N)♣Ω♣)
1
N ρ

k2
> λ(Cρ+ ♣Ω♣),

we obtain, for all (ζ, ξ) such that ♣(ζ, ξ)♣d = ρ,

⟨Φ(ζ, ξ), (ζ, ξ)⟩ > 0,

as we wanted.
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We then proved the necessity for us to use Lemma 4.1.1, which gives us a pair of

sequences of functions um, ϕm, both composed by elements of each Vm, satisfying
∫

Ω

♣∇um♣
N−2∇um∇ej dx−

∫

Ω

ϕm+
fk(um+)
um+ + 1

k

ej dx− λ

∫

Ω

ej

(um+ + 1
k
)γ
dx = 0,

∫

Ω

♣∇ϕm♣
N−2∇ϕm∇ej dx−

∫

Ω

fk(um+)ej dx = 0

for j = 1, 2, ...,m. Because we are dealing with basis elements, we can expand this to the

whole space Vm, so that
∫

Ω

♣∇um♣
N−2∇um∇ω dx−

∫

Ω

ϕm+
fk(um+)
um+ + 1

k

ω dx− λ

∫

Ω

ω

(um+ + 1
k
)γ
dx = 0, (4.19)

∫

Ω

♣∇ϕm♣
N−2∇ϕm∇ω dx−

∫

Ω

fk(um+)ω dx = 0, ω ∈ Vm. (4.20)

It is important to notice that both sequences satisfy ∥um∥ , ∥ϕm∥ ≤ ρ and that

this limiting constant does not depend on the index m. We have obtained then a pair of

sequences with its terms limited, on W 1,N
0 (Ω), by a common constant. By known results,

namely the Sobolev Embedding Theorems, we can extract a pair of subsequences, which

we still denote by (um), (ϕm), and a pair of functions u, ϕ ∈ W 1,N
0 (Ω) such that

um ⇀ u in W 1,N
0 (Ω) and um → u in Ls(Ω),

ϕm ⇀ ϕ in W 1,N
0 (Ω) and ϕm → ϕ in Ls(Ω), s ∈ [N,∞).

(4.21)

Notice that this should also imply convergence in Ls(Ω), with s ∈ [1, N), since Ω

is of Ąnite measure.

What we show now is that we can actually assert the strong convergences in

W 1,N
0 (Ω),

um → u in W 1,N
0 (Ω) and ϕm → ϕ in W 1,N

0 (Ω). (4.22)

For that, let us Ąrst consider two sequences, provided to us by the fact that

B = ¶e1, e2, · · · , en, · · · ♢ is a Schauder basis, (αn)n∈N ⊂ R and (βn)n∈N ⊂ R such that

u =
∞
∑

i=1

αiei and ϕ =
∞
∑

i=1

αiei (4.23)

and thus

ψn =
n
∑

i=1

αiei → u and θn =
n
∑

i=1

βiei → ϕ in W 1,N
0 (Ω).
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If we use (um − ψm) as a test function in (4.19), we shall have
∫

Ω

♣∇um♣
N−2∇um∇(um − ψm) dx−

∫

Ω

ϕm+
fk(um+)
um+ + 1

k

(um − ψm) dx

− λ

∫

Ω

(um − ψm)
(um+ + 1

k
)γ
dx = 0.

(4.24)

Now, since we are dealing with Lipschitz continuous functions, we have, applying

Lemma 4.2.1,
∣

∣

∣

∣

∫

Ω

ϕm+
fk(um+)
um+ + 1

k

(um − ψm) dx

∣

∣

∣

∣

≤

∫

Ω

♣ϕm+♣
♣fk(um+)♣
♣um+♣

♣um − ψm♣ dx

≤ ck

∫

Ω

♣ϕm+♣♣um − ψm♣ dx

≤ ck♣ϕm+♣
N ′

N ′♣um − ψm♣
N
N .

(4.25)

Besides that, we also have
∣

∣

∣

∣

∫

Ω

(um − ψm)
(um+ + 1

k
)γ
dx

∣

∣

∣

∣

≤ kγ♣um − ψm♣1.

Thus, by the characterization in (4.23), which asserts Ls(Ω) convergence for ψm,

we obtain

lim
m→∞

∫

Ω

♣∇um♣
N−2∇um∇(u− ψm) dx = 0,

which in turn gives us, together with (4.24) and the above estimates,

lim
m→∞

∫

Ω

♣∇um♣
N−2∇um∇(um − u) dx = 0.

With this, we have shown that we are able to apply the (S+)-property of the −∆N

operator (see the paragraph right after DeĄnition 4.1.1) and, by doing so, we Ąnally obtain

the Ąrst claim in (4.22). We shall not repeat our arguments here to not prolong too much

our work, but it is evident that the same development can be applied to show the strong

convergence of ϕm in W 1,N
0 (Ω). The only difference is that for that we would use the

following estimate
∣

∣

∣

∣

∫

Ω

fk(um+)(ϕm − θm) dx

∣

∣

∣

∣

≤ Ck∥um+∥∥ϕm − θm∥.

Now, going back to equations (4.19) and (4.20), we note that we can take ω ∈ Vl

for l ≤ n and because of that, applying the limit m→∞ gives us, by (4.22),
∫

Ω

♣∇u♣N−2∇u∇ω dx−

∫

Ω

ϕ
fk(u)

(u+ 1
k
)
ω dx− λ

∫

Ω

ω

(u+ 1
k
)γ
dx = 0, (4.26)

∫

Ω

♣∇ϕ♣N−2∇ϕ∇ω dx−

∫

Ω

fk(u)ω dx = 0, ω ∈ Vl, (4.27)
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for all l ∈ N. Since the union of all Vl is dense in W 1,N
0 (Ω), we achieve

∫

Ω

♣∇u♣N−2∇u∇ω dx−

∫

Ω

ϕ
fk(u)

(u+ 1
k
)
ω dx− λ

∫

Ω

ω

(u+ 1
k
)γ
dx = 0, (4.28)

∫

Ω

♣∇ϕ♣N−2∇ϕ∇ω dx−

∫

Ω

fk(u)ω dx = 0, ω ∈ W 1,N
0 (Ω). (4.29)

To prove that these are solutions to (Pk), we must show that u ≥ 0 for every x ∈ Ω.

For this, we take ω = u− = max¶−u, 0♢ in (4.28),

−∥u−∥
N =

∫

Ω

♣∇u♣N−2∇u∇(u−) dx

=
∫

Ω

ϕ+
fk(u+)
u+ + 1

k

(u−) dx+ λ

∫

Ω

u−

(u+ + 1
k
)γ
dx ≥ 0,

(4.30)

showing that u = u+. Furthermore, the same argument for (4.29), together with the fact

that f satisĄes condition (4.1), shows that

−∥ϕ−∥
N =

∫

Ω

fk(u+)ϕ− dx ≥ 0

which implies that ϕ = ϕ+ and therefore shows that the functions u, ϕ will constitute a

pair of weak solutions to (Pk). Also, by the developments of Section 4.2, we know that

u, ϕ ∈ W 1,N
0 (Ω) ∩ C1,β(Ω) for some β ∈ (0, 1). We will from now on denote them by uk

and ϕk, to reassure their dependence on the parameter k in the auxiliary system.

Now, the last step to prove Theorem 4.0.1 is to argue that the sequences uk, ϕk

tend to functions which satisfy the conditions of weak solutions to Problem (P3). For that,

let us notice that, because of the weak convergences in the space W 1,N
0 (Ω), we have

∥uk∥ ≤ lim inf
m→∞

∥um∥ ≤ ρ (4.31)

and the same applies to each function ϕk. Again, the limiting constant does not depend

on the index k of the functions of the sequence. That means we are left with new

bounded sequences in W 1,N
0 (Ω) and once more we can affirm that there exist functions

uλ, ϕλ ∈ W
1,N
0 (Ω) such that, up to a subsequence,

uk ⇀ uλ in W 1,N
0 (Ω) and uk → uλ in Ls(Ω),

ϕk ⇀ ϕλ in W 1,N
0 (Ω) and ϕk → ϕλ in Ls(Ω), s ∈ [N,∞).

(4.32)

Once more, we must show, in a manner similar to what we did in Chapter 3 to

prove the convergences (3.28) and (3.29), that we have the following, as k → +∞,
∫

Ω

ϕk
fk(uk)

(uk + 1
k
)
ω dx −→

∫

Ω

ϕ
f(uλ)
uλ

ω dx, (4.33)
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and
∫

Ω

fk(uk)ω dx −→
∫

Ω

f(uλ)ω dx. (4.34)

Since now the test function ω belongs to LN(Ω), we must bound uniformly the

norms
∣

∣

∣ϕk
fk(uk)

(uk+ 1
k

)

∣

∣

∣

N ′

and ♣fk(uk)♣N ′ , where once more N ′ = N
N−1

is the conjugate exponent

to N . What we shall do, however, is to bound its norm in N
2

, so that, given the known

estimate (see the Appendix)

♣h♣N ′ ≤ ♣Ω♣
r ♣h♣N/2 , for h ∈ LN/2(Ω) and r =

1
N ′
−

2
N
,

we will get the desired result.2

Therefore, let us compute
∫

Ω

∣

∣

∣

∣

ϕk
fk(uk)

(uk + 1
k
)

∣

∣

∣

∣

N/2

dx ≤

(

∫

Ω+
k

♣ϕk♣
N/2♣uk♣

N
2

(r−1)exp¶2N ′

(N/2)α♣uk♣
N ′

♢ dx+

+
∫

Ω−

k

♣ϕk♣
N/2 exp¶2N ′

(N/2)α♣uk♣
N ′

♢ dx

)

≤

(∫

Ω

♣ϕk♣
N ♣uk♣

N(r−1) dx

) 1
2
(∫

Ω

exp¶N2N ′

α♣u♣N
′

♢ dx

) 1
2

+

+
(∫

Ω

♣ϕk♣
N dx

) 1
2
(∫

Ω

exp¶N2N ′

α♣u♣N
′

♢ dx

) 1
2

≤ (L(N)♣Ω♣)
1

2N

[

(∫

Ω

♣ϕk♣
Nr dx

) 1
2r
(∫

Ω

♣uk♣
Nr dx

)
r−1
2r

+

+
(∫

Ω

♣ϕk♣
N dx

) 1
2

]

,

(4.35)

where, in the second inequality, we have used (4.14).3 Thus, by the Sobolev Embeddings,

we obtain
∫

Ω

∣

∣

∣

∣

ϕk
fk(uk)

(uk + 1
k
)

∣

∣

∣

∣

N/2

dx ≤ C̃1 ∥ϕk∥
N/2 ∥uk∥

N/2 + C̃2 ∥ϕk∥
N/2 ≤ C̃1ρ

N + C̃2ρ
N/2.

In a similar way, we can write
∫

Ω

♣fk(uk)♣
N
2 dx ≤

(

∫

Ω+
k

♣uk♣
N
2

rexp¶2N ′

(N/2)α♣uk♣
N ′

♢ dx+

+
∫

Ω−

k

♣uk♣
N
2 exp¶2N ′

(N/2)α♣uk♣
N ′

♢ dx

)

≤ (L(N)♣Ω♣)
1

2N

[

(∫

Ω

♣uk♣
Nr dx

) 1
2

+
(∫

Ω

♣uk♣
N dx

) 1
2

]

,

(4.36)

2 Notice that, since N ≥ 3, we shall have N
2 ≥ N ′.

3 It becomes clear now why we have chosen to use the norm in L
N
2 (Ω), rather than in LN ′

(Ω).
With the latter, it would not be possible to use (4.14), as we have just done.
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from which we now obtain
∫

Ω

♣fk(uk)♣
N
2 dx ≤ C̃3 ∥uk∥

Nr
2 + C̃4 ∥uk∥

N
2 ≤ C̃3ρ

Nr
2 + C̃4ρ

N
2 .

Again by the LN(Ω) convergences assured now by (4.32) (and also taking into

account the uniform convergence assured by Lemma 3.1.2), we have ϕk
fk(uk)

(uk+ 1
k

)
→ ϕλ

f(uλ)
uλ

and fk(uk)→ f(uλ) a.e. in Ω. Using Theorem 3.1.1, as we have already done in Chapter

3, we obtain ϕk(uk)2∗−2 ⇀ ϕλu
2∗−2
λ and f(uk) ⇀ f(uλ) in LN ′

(Ω).

We can then deĄne the functional in LN ′

(Ω) which relates, to any v ∈ LN ′

(Ω), the

number
∫

Ω
vω dx, which is well deĄned, since ω ∈ LN(Ω). We can, at last, use the weak

convergences achieved in the last paragraph and show that , which is equivalent to (4.33)

and (4.34).

As for the limit of the sequence accompanying λ, we have the following: By the

developments of Section 4.2, each uk will be limited from below by δφ1 and, by the

Hardy-Sobolev Inequality (see Appendix), we have
ω

(φ1)γ
∈ L1(Ω), for ω ∈ W 1,N

0 (Ω),

which permits us to use the DCT to conclude that
∫

Ω

ω

(uk + 1
k
)γ
dx −→

∫

Ω

ω

uγ
λ

dx,

since the convergence a.e. of the sequence inside the integral is straightforward. From this,

we Ąnally obtain
∫

Ω

♣∇uλ♣
N−2∇uλ∇ω dx−

∫

Ω

ϕλ(uλ)2∗−2ω dx− λ

∫

Ω

ω

uγ
λ

dx = 0,

∫

Ω

♣∇ϕλ♣
N−2∇ϕλ∇ω dx−

∫

Ω

f(uλ)ω dx = 0, ω ∈ H1
0 (Ω).

The pair (uλ, ϕλ) then satisĄes the equations necessary for being a pair of weak

solutions of the main Problem (P3). Since the regularity of this pair of functions, as well

as the fact that uλ > 0, was already proven in Section 4.2, we conclude the assertion that

(uλ, ϕλ) is a solution pair to problem (P3) and Theorem 4.0.1 is proven.

4.4 PROOF OF THEOREM 4.0.2 BY SCHAUDER FIXED POINT THEORY

In this last section, we aim to solve problem (P4). As we have mentioned, this will

be done by way of the Schauder Fixed Point Theorem. For that, let us recall such. For

more details and proof, see [44, Corollary 11.2].

Theorem 4.4.1 (SchauderŠs Fixed Point Theorem). Let E be a Banach space, and let C

be a nonempty closed and convex set in E. Suppose further that F : C → C is a continuous

and compact map, that is, such that F (C) ⊂ K, where K ⊂ C is a compact subset. Then,

F has a Ąxed point.
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We shall need then to deĄne an operator in the appropriate function space such

that a Ąxed point is the solution to our system. The details will become clearer ahead.

First, we introduce some known results from the study of the p-Laplacian and problems

concerning such operator.

Let ϕ0 ∈ W
1,N
0 (Ω) ∩ C1,α(Ω̄) be the solution of the torsion problem

{

−∆Nϕ0 = 1 in Ω

ϕ0 = 0 on ∂Ω.
(4.37)

It follows from [45, 41, 46] that, for v ∈ L∞(Ω), the equation −∆pu = v in Ω with

u = 0 on ∂Ω has a unique weak solution u which belongs to C1,σ(Ω) for some σ ∈ (0, 1) and

that the associated solution operator (−∆p)−1 : L∞(Ω)→ C1(Ω) is positive, continuous

and compact. Moreover, if v ≥ 0 and v ̸≡ 0, then u belongs to the interior of the positive

cone in C1(Ω), that is, u > 0. Hence ∂u/∂η < 0 on ∂Ω and u is bounded from above and

from below by positive multiples of the distance function dist(x, ∂Ω). Here η is the unit

normal vector to ∂Ω pointing outwards. Thus (−∆p)−1 is a strongly positive operator

on C(Ω), i.e., v ∈ P implies (−∆p)−1v ∈ int(P ), where P denotes the cone of positive

functions belonging C(Ω).

In addition, for the p-Laplacian operator, we can state the following comparison

principle, which will be important ahead.

Theorem 4.4.2. If Ω is a bounded domain in R
N and if u, v ∈ W 1,p

loc (Ω) ∩ C(Ω) with

1 < p <∞ satisfy, in the weak sense, −∆pu ≤ −∆pv on Ω and u ≤ v on ∂Ω, then u ≤ v

in Ω.

Proof. First of all, we have, by hypothesis, that
∫

Ω

♣∇u♣p−2∇u∇ω dx ≤

∫

Ω

♣∇v♣p−2∇v∇ω dx,

for every non-negative ω ∈ W 1,p
0 (Ω). Thus, taking ω = max¶u(x) − v(x), 0♢ ∈ W 1,p

0 (Ω),

the following inequality is satisĄed
∫

A

{

♣∇u♣p−2∇u∇(u− v)− ♣∇v♣p−2∇v∇(u− v)
}

dx ≤ 0, (4.38)

where A = ¶x ∈ Ω ; v(x) < u(x)♢.

On the other hand, we affirm that the following inequality holds for all pair of

vectors a, b ∈ R
p (if p > 1)

〈

♣b♣p−2 b− ♣a♣p−2 a, b− a
〉

≥ 0, (4.39)

where the equality is satisĄed if, and only if, a = b.
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Indeed, suppose relation (4.39) is not valid. This would be equivalent to saying

that

♣b♣p − ♣b♣p−2 ⟨b, a⟩+ ♣a♣p − ♣a♣p−2 ⟨b, a⟩ < 0,

where we have just distributed all the included terms. Therefore,

♣b♣p + ♣a♣p < (♣b♣p−2 + ♣a♣p−2)⟨b, a⟩ ≤ (♣b♣p−2 + ♣a♣p−2) ♣b♣ ♣a♣

= (♣b♣p−1 ♣a♣+ ♣a♣p−1 ♣b♣),
(4.40)

which can also be written as

0 < (♣b♣p−1 − ♣a♣p−1)(♣a♣ − ♣b♣),

which is a contradiction if p > 1. For the proof that the equality in (4.39) implies a = b,

one must do the same reasoning we have just conducted, from which it will be found that

0 ≤ (♣b♣p−1 − ♣a♣p−1)(♣a♣ − ♣b♣), this being only satisĄed when ♣a♣ = ♣b♣. One must then

return to (4.39) and concludes the affirmation.

With this, we can return to (4.38), which can only be satisĄed if ∇u = ∇v a.e. in

Ω, since its integrand is always non-negative. This means that u− v must be a constant

in A but, since u = v at ∂A and this is a continuous function, we must have A a null

measure set, so that v ≥ u a.e. in Ω.

Now, it follows from our considerations in Remark 1.4.2 the existence of a solution

U ∈ C1(Ω) to the problem4











−∆Nu = 1
uγ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(4.41)

Let us then deĄne

U∞ = sup
x∈Ω

U(x) , ϕ0,∞ = sup
x∈Ω

ϕ0(x) (4.42)

and consider

Λ = min







1,

(

1

U∞2
1
γ

) 1
1−γ
N−1

+ N−2
γ

,

(

1

2ϕ0,∞U
(rN ′+γ−1)
∞ exp¶αUN ′

∞ N ′♢

) 1

(rN′+γ−1)
1−γ
N−1

−1







.

(4.43)

Furthermore, deĄne at last the operator

Tϵ : (C(Ω))2 −→ (C(Ω))2

(v, ψ) 7−→ Tϵ(v, ψ) := (uϵ, ϕϵ), (4.44)

4 Indeed, Problem (4.41) is nothing but a decoupled version of System P3, where we take f ≡ 0.
Thus, the condition in Remark 1.4.2 is trivially satisĄed.
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where (uϵ, ϕϵ) is the unique weak solution of






















−∆Nu = λ
vγ+ϵ
− ψvr−1 exp¶αvN ′

♢ in Ω,

−∆Nϕ = vr exp¶αvN ′

♢ in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω.

(4.45)

Given the regularity of both v and ψ, we can affirm, by the comments made above,

that Tϵ is indeed well deĄned for every ϵ > 0. Now, if we wish to obtain a solution pair

(u, ϕ) ∈ (C(Ω))2 such that u > 0, we must restrict the domain of Tϵ to a class of functions

with this restriction. For that, we use the solution U to Problem (4.41), together with the

function ϕ0, which will serve as a bound for ϕ. More speciĄcally, we shall consider as the

domain of Tϵ the subset

A =
{

(v, ψ) ∈ (C(Ω))2 : λU ≤ v ≤ k1 and 0 ≤ ψ ≤ k2ϕ0

}

(4.46)

of (C(Ω))2, where the positive constants k1 and k2 are given in the following

Lemma 4.4.1. Consider Λ satisfying (4.43), 0 < λ < Λ and A as deĄned in (4.46).

There exists ϵ∗ > 0 and k1 > 0 such that, if we suppose that k2 > 0 satisĄes

kr
1 exp¶αkN ′

1 ♢ ≤ kN−1
2 (4.47)

and

k2ϕ0,∞k
γ+r−1
1 exp¶αkN ′

1 ♢ <
λ

2
, (4.48)

where we remember r is such that

(γ + rN ′ − 1)
(

1− γ
N − 1

)

> 1, (4.49)

then Tϵ, for 0 < ϵ < ϵ∗, is well deĄned and Tϵ maps A into A.

Proof. First of all, notice that conditions (4.47) and (4.48) are equivalent to

k
r

N−1

1 exp¶
α

N − 1
kN ′

1 ♢ ≤ k2 ≤
λ

2ϕ0,∞k
γ+r−1
1 exp¶αkN ′

1 ♢
,

which is possible if

k
(rN ′+γ−1)
1 exp¶αN ′kN ′

1 ♢ <
λ

2ϕ0,∞

, (4.50)

where we have used 1
N−1

+ 1 = N
N−1

= N ′.

Now, by (4.43), we have λ < 1 and, besides,

λU∞ < λ
1−γ
N−1U∞ <

(

1
2λN−2

) 1
γ

.
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Furthermore, again by (4.43), λ satisĄes

λ(rN ′+γ−1) 1−γ
N−1U (rN ′+γ−1)

∞ exp¶αUN ′

∞ N ′♢ <
λ

2ϕ0,∞

, (4.51)

reminding also that r > 0 satisĄes (4.49). Let us choose k1 > 0 satisfying

λU∞ < λ
1−γ
N−1U∞ = k1 <

(

1
2λN−2

) 1
γ

. (4.52)

With our choice in (4.52) and with condition (4.51), inequality (4.50) will be satisĄed and

we can thus justify the choices in (4.47) and (4.48). Furthermore, from the Ąrst inequality

in (4.52), we obtain that A ̸= ∅.

Moreover, since λ
vγ+ϵ
− ψvr−1 exp¶αvN ′

♢, vr exp¶αvN ′

♢ ∈ L∞(Ω), system (4.45), as

describe before, has an unique solution (uϵ, ϕϵ), showing that the operator Tϵ is indeed

well deĄned. Let (v, ψ) ∈ A, then

−∆Nu =
λ

vγ + ϵ
− ψvr−1 exp¶αvN ′

♢

≥
λ

kγ
1 + ϵ

− ψkr−1
1 exp¶αkN ′

1 ♢

≥
λ

kγ
1 + ϵ

− k2ϕ0,∞k
r−1
1 exp¶αkN ′

1 ♢.

(4.53)

On the other hand, notice that, by (4.48),

λ− k2ϕ0,∞k
γ+r−1
1 exp¶αkN ′

1 ♢ >
λ

2

so that, using (4.52),

λ

kγ
1

− k2ϕ0,∞k
r−1
1 exp¶αkN ′

1 ♢ >
λ

2kγ
1

> λN−1. (4.54)

Now, deĄning the continuous function Gλ : [0,+∞)→ R by

Gλ(ϵ) =
λ

kγ
1 + ϵ

− k2ϕ0,∞k
r−1
1 exp¶αkN ′

1 ♢,

we obtain Gλ(0) = λ
kγ

1
− k2ϕ0,∞k

r−1
1 exp¶αkN ′

1 ♢ >
λ

2kγ
1
> λN−1 and thus, by continuity,

there exists ϵ∗ = ϵ∗(λ) > 0 such that,

Gλ(ϵ) > λN−1 if ϵ ∈ (0, ϵ∗).

By (4.54) and the deĄnition of Gλ(ϵ), we conclude that

−∆Nu = Gλ(ϵ) ≥ λN−1 = −∆N(λϕ0).

By the comparison principle, we obtain

λϕ0 ≤ u. (4.55)
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Now,

−∆Nu =
λ

vγ + ϵ
− ψvr−1 exp¶αvN ′

♢

≤
λ

vγ

≤ λ1−γ 1
Uγ

= −λ1−γ∆NU = −∆N(λ
1−γ
N−1U).

(4.56)

By comparison principle and (4.52), we can write

u ≤ λ
1−γ
N−1U ≤ k1. (4.57)

On the other hand, for ϕ, given as the solution to

−∆Nϕ = vr exp¶αvN ′

♢ ≥ 0

we obtain, again by the comparison principle, that ϕ ≥ 0.

Furthermore,

−∆Nϕ = vr exp¶αvN ′

♢ ≤ kr
1 exp¶αkN ′

1 ♢ ≤ kN−1
2 = −∆N(k2ϕ0),

which implies at last

ϕ ≤ k2ϕ0. (4.58)

Therefore, T maps A into A, thus completing the proof of Lemma 4.4.1.

We are now in the right position to prove, via the Schauder Fixed Point Theorem,

our main result, namely Theorem 4.0.2. Let us start with the existence affirmation. We

have just seen that Lemma 4.4.1 allows us to deĄne the operator Tϵ : A → A given by

(4.44) and its continuity can be seen through standard estimates of the regularity theory

and the strong notion of convergence we have in A. Notice further that A is closed and

convex. Therefore, remains only to prove that the map Tϵ is compact. Indeed, considering

system (4.45) and deĄning

Γ =

(

λ
vγ+ϵ
− ψvr−1 exp¶αvN ′

♢

vr exp¶αvN ′

♢

)

,

we have that Γ belongs to (C(Ω))2, which implies that Γ ∈ (Lp(Ω))2 for any 1 < p <∞.

By using elliptic estimates [38], we get Tϵ(v, ψ) ∈ (W 2,p(Ω))2, for any 1 < p < ∞. The

Sobolev-MorreyŠs Embedding Theorem entails Tϵ(v, ψ) ∈ (C1,ρ(Ω))2, for any 0 < ρ < 1.

Using that C1,ρ(Ω) is compactly embedded in C(Ω), this implies that Tϵ is compact.
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Finally, using Schauder Fixed Point Theorem (Theorem 4.4.1), we get the existence

of a Ąxed point (uϵ, ϕϵ) ∈ (C1,ρ(Ω))2 of Tϵ, that is,






















−∆Nuϵ = λ
uγ

ϵ +ϵ
− ϕϵu

r−1
ϵ exp¶αuN ′

ϵ ♢ in Ω,

−∆Nϕϵ = ur
ϵ exp¶αuN ′

ϵ ♢ in Ω,

uϵ > 0 in Ω,

uϵ = ϕϵ = 0 on ∂Ω.

(4.59)

By compactness results, analogous to what we have done in the previous chapters, we

can extract a convergent subsequences in C1(Ω), which we will continue denoting by (uϵ)

and (ϕϵ), respectively, and (u, ϕ) ∈ (C1(Ω))2 such that (uϵ, ϕϵ)→ (u, ϕ) in the (C1(Ω))2

topology. Since (uϵ, ϕϵ) ∈ A, there exist k1 and k2, independent of ϵ, such that

λU ≤ uϵ ≤ k1 and 0 ≤ ϕϵ ≤ k2ϕ0. (4.60)

By the uniform convergence in weak formulation of (4.59) and (4.60), we get






















−∆Nu+ ϕur−1 exp¶αuN ′

♢ = λ
uγ in Ω,

−∆Nϕ = ur exp¶αuN ′

♢ in Ω,

u > 0 in Ω,

u = ϕ = 0 on ∂Ω.

Therefore, according to our construction, we have a weak solution (u, ϕ) ∈ (C1(Ω))2 and

this completes the proof of the existence.

At last, let us prove uniqueness of solution of system (P4), supposing that α = 0.

Assume that function pairs (u, ϕu) and (v, ϕv) are two different positive solutions of system

(P4). Then, using u− v as the test function in the weak formulation of the problem,
∫

Ω

♣∇u♣N−2(∇u,∇(u− v)) dx+
∫

Ω

ϕuu
r−1(u− v) dx− λ

∫

Ω

u−γ(u− v) dx = 0 (4.61)

∫

Ω

♣∇v♣N−2(∇v,∇(u− v)) dx+
∫

Ω

ϕvv
r−1(u− v) dx− λ

∫

Ω

v−γ(u− v) dx = 0. (4.62)

Subtracting (4.62) from (4.61), one obtains

C∥u− v∥N +
∫

Ω

[

ϕuu
r−1 − ϕvv

r−1
]

(u− v) dx

− λ

∫

Ω

(

u−γ − v−γ
)

(u− v) dx

≤

∫

Ω

(♣∇u♣N−2∇u− ♣∇v♣N−2∇v,∇(u− v)) dx

+
∫

Ω

[

ϕuu
r−1 − ϕvv

r−1
]

(u− v) dx− λ
∫

Ω

(

u−γ − v−γ
)

(u− v) dx

= 0.

(4.63)
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Note that
∫

Ω

[

ϕuu
r−1 − ϕvv

r−1
]

(u− v) dx

=
∫

Ω

ϕuu
r dx+

∫

Ω

ϕvv
r dx−

∫

Ω

ϕuu
r−1v dx−

∫

Ω

ϕvv
r−1u dx.

By the Young inequality, it follows

ur−1v ≤
r − 1
r

ur +
1
r
vr, vr−1u ≤

r − 1
r

vr +
1
r
ur.

From the above information, there holds
∫

Ω

[

ϕuu
r−1 − ϕvv

r−1
]

(u− v) dx

≥
1
r

[∫

Ω

(ϕuu
r + ϕvv

r − ϕuv
r − ϕvu

r) dx
]

=
1
r

∫

Ω

(ϕu − ϕv) (ur − vr) dx.

(4.64)

By the deĄnitions of ϕu, ϕv in (P4), we have






−∆Nϕu + ∆Nϕv = ur − vr, in Ω

ϕu = ϕv = 0, on ∂Ω.

Consequently

C ∥ϕu − ϕv∥
N ≤

∫

Ω

(♣∇ϕu♣
N−2∇ϕu − ♣∇ϕv♣

N−2∇ϕv,∇(ϕu − ϕv)) dx

=
∫

Ω

(ϕu − ϕv) (ur − vr) dx.
(4.65)

Therefore, by (4.64), we deduce that
∫

Ω

[

ϕuu
r−1 − ϕvv

r−1
]

(u− v) dx ≥
C

r
∥ϕu − ϕv∥

N .

Since 0 < γ < 1, we have the following elementary inequality

(

a−γ − b−γ
)

(a− b) ≤ 0.

Thus,
∫

Ω
(u−γ − v−γ) (u− v) dx ≤ 0. Consequently, it follows from (4.62) that

C∥u− v∥N +
C

r
∥ϕu − ϕv∥

N − λ

∫

Ω

(

u−γ − v−γ
)

(u− v) dx ≤ 0.

Consequently, ∥u − v∥N ≤ 0 and ∥ϕu − ϕv∥
N ≤ 0. This leads to ∥u − v∥N = 0 and

∥ϕu − ϕv∥
N = 0, which implies that u(x) = v(x) and ϕu(x) = ϕv(x) in Ω. So the function

pair (u, ϕu) is the unique positive solution of system (P4) when α = 0. The proof is

complete.
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APPENDIX A Ű SOME IMPORTANT RESULTS

Let us see here some results concerning Lp(Ω) spaces and Sobolev spaces which are

used extensively throughout the present work. We begin with a crucial and well known

result for estimating the integral of the product of two functions.

Theorem A.0.1 (Holder Inequality). Let p ∈ (1,+∞) and p′ = p
p−1

its conjugate exponent,

meaning 1
p

+ 1
p′

= 1. Then, if f ∈ Lp(Ω) and g ∈ Lp′

(Ω), fg ∈ L1(Ω) and

♣fg♣1 =
∫

Ω

♣fg♣ dx ≤

(∫

Ω

♣f ♣ dx

)1/p(∫

Ω

♣g♣ dx

)1/p′

= ♣f ♣p ♣g♣p′ .

Proof. See, for example, [2, Theorem 4.6]

From Theorem A.0.1, we can also extract an interesting result concerning the

relation between different Lp(Ω) spaces.

Corollary A.0.1.1. If p ∈ [1,+∞), f ∈ Lp(Ω) and r ∈ [1, p], then f ∈ Lr(Ω) and

♣f ♣r ≤ ♣Ω♣
s ♣f ♣p ,

where s = 1
r
− 1

p
.

Proof. For that, simply use the estimate found in Theorem A.0.1, taking ♣f ♣r ∈ L
p
r (Ω)

and g ≡ 1 ∈ Lt(Ω), where t is the conjugate exponent of p
r
, that is,

t =
p/r

p/r − 1
=

p

p− r
.

Therefore,

∫

Ω

♣f ♣r dx = ♣♣f ♣r g♣1 ≤
(∫

Ω

♣f ♣r
p
r dx

)r/p(∫

Ω

♣g♣t dx

)1/t

=
(∫

Ω

♣f ♣r dx

)r/p(∫

Ω

1 dx
)1/t

,

(A.1)

which implies

♣f ♣r ≤ ♣Ω♣
1/(rt) ♣f ♣p ,

with 1
rt

= 1
r
− 1

p
= s.

Next, we present an estimate concerning functions in the Sobolev Space W 1,p
0 (Ω)

which helps us deal with singular terms in our problems and prove the convergence of

certain integrals. For a example of its importance, see for example [47].
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Theorem A.0.2 (Hardy-Sobolev Inequality). Given u ∈ W 1,p
0 (Ω), p ∈ (1, N ] and τ ∈ [0, 1],

then u
φτ ∈ L

r(Ω), where φ1 is an eigenfunction of (−∆, H1
0 (Ω)) associated with the Ąrst

eigenvalue λ1 > 0 and r > 0 is such that 1
r

= 1
p
− 1−τ

N
. Moreover, there exists C > 0 such

that ∣

∣

∣

∣

u

φτ
1

∣

∣

∣

∣

r

≤ C ♣∇u♣p .

Proof. See [48].

Remark A.0.1. Notice that, in Theorem A.0.2, since r ≥ p > 1 and we consider here Ω

to be a bounded domain, one of the conclusions we can guarantee is that, for p ∈ (1, N ],

u

φτ
∈ L1(Ω) , ∀ u ∈ W 1,p

0 (Ω) , τ ∈ [0, 1]. (A.2)

Now, we shall go through some embedding results which helps us relate norm in

different Sobolev Spaces and Lp(Ω) spaces. These theorems are of most importance when

treating compactness properties of the sets we are deeply interested. First, we begin with

the PoincaréŠs Inequality, which readily implies the equivalence of the norms in W k,p
0 (Ω)

and W k,p(Ω).

Theorem A.0.3 (PoincaréŠs Inequality). Suppose p ∈ [1,+∞) and u ∈ W 1,p
0 (Ω). Then

we have the following estimate

♣u♣p ≤ C ♣∇u♣p ,

with the constant C > 0 depending on p and Ω.

We recall that, given two Banach spaces X, Y , we say that X is continuously

embedded in Y , denoted by X →֒ Y , if

1. X ⊂ Y ;

2. The linear map j : X → Y given by j(x) = x ∈ Y , known as canonical injection,

is a continuous operator. In other words, there exists a constant C > 0 such that

∥x∥Y ≤ C ∥x∥X , for all x ∈ X.

Furthermore, we say that X is compactly embedded in Y if j is also a compact

operator, meaning bounded sets of X are taken into relatively compact sets of Y . The most

used deĄnition of compact operator T , equivalent to the one above, is that every bounded

sequence (xn)n∈N in X has a subsequence (xk)k∈N such that (Txk)k∈N is convergent.

Let us now go through the most important embedding theorems we shall use.

Theorem A.0.4 (Sobolev Embedding Theorems). The following embedding are continuous

• If 1 ≤ p < N , W 1,p(Ω) →֒ Lp∗

(Ω), where 1
p∗

= 1
p
− 1

N
.
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• If p = N , W 1,p(Ω) →֒ Lq(Ω), for q ∈ [p,+∞).

• If p > N , W 1,p(Ω) →֒ L∞(Ω).

In fact, Theorem A.0.4 is a particular, and more convenient, case of the following

Theorem A.0.5 (Sobolev-Morrey Embedding Theorems). Considering k ∈ N and p ≥ 1,

the following embedding are continuous

• If kp < N , W k,p(Ω) →֒ Lq(Ω), where q ∈ [1, p∗] and 1
p∗

= 1
p
− 1

N
.

• If kp = N , W k,p(Ω) →֒ Lq(Ω), for q ∈ [1,+∞).

• If p > N , W k,p(Ω) →֒ Cτ (Ω) for some τ ∈ (0, 1). In addition, if Ω has the

strong Lipschitz properties, then we can actually affirm the continuous embedding

W j+k,p(Ω) →֒ Cj,τ (Ω), j ∈ N.

Proof. Its proof can be seen in [1, Theorem 5.4].

We notice that, given the PoincaréŠs Inequality, the norms in W 1,p(Ω) and W 1,p
0 (Ω)

are equivalent. In addition, seen that the latter is contained in the former, Theorem A.0.4

readily implies that the same embedding results are still valid when we consider W 1,p
0 (Ω).

Furthermore, considering also the embedding Lp1(Ω) →֒ Lp2(Ω) when p1 ≥ p2 given by

Theorem A.0.1, the following corollary can be extracted of Theorem A.0.4

Corollary A.0.5.1. If p ∈ [1, N) and 1
p∗

= 1
p
− 1

N
, then we have the continuous embedding

W 1,p
0 (Ω) →֒ Lq(Ω) , ∀ q ∈ [1, p∗].

In particular, H1
0 (Ω) →֒ Lq(Ω), for all q ∈ [1, 2∗], meaning there exists a constant

C > 0 such that

♣u♣q ≤ C ∥u∥H1
0 (Ω) , ∀ u ∈ H1

0 (Ω).

At last, we give our Ąnal result, exploiting the cases when we obtain compact

embbedings of the Sobolev spaces.

Theorem A.0.6 (Rellich-Kondrachov Embedding Theorems). Let Ω be an open bounded

set in R
N with C1 boundary. Then, the following embeddings are compact

• If 1 ≥ p < N , W 1,p(Ω) →֒ Lq(Ω), for q ∈ [1, p∗), where 1
p∗

= 1
p
− 1

N
.

• If p = N , W 1,p(Ω) →֒ Lq(Ω), for q ∈ [p,+∞).
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• If p > N , W 1,p(Ω) →֒ C(Ω).

Proof. See [2, Theorem 9.16]

The collection of all these results, which we shall refer as the Sobolev Embedding

Theorems, together with some well known results, like the fact that reĆexive spaces are

weakly compact and that Lp(Ω) convergence implies a.e. convergence, let us conclude the

following, which is an argument recurrent in this work,

Given a bounded sequence (un)n∈N in W 1,p
0 (Ω), we obtain a subsequence (which

we denote again by un) such that


















un ⇀ u, in W 1,p
0 (Ω)

un → u, in Lq(Ω) , q ∈ [1, p∗]

un → u, a.e. in Ω.
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