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"Any sufficiently advanced technology is indistinguishable from
magic. "Arthur Clarke



RESUMO

Na industria pecuaria, a producao animal sustentavel ¢ o principal objetivo do
desenvolvimento tecnolégico. Porém, é fundamental manter boas condi¢bes no ambiente
devido a suscetibilidade dos animais a variaveis como temperatura e umidade, que podem
causar doencas, perdas de produgao e desconforto. Assim, os sistemas de producgao pecuéria
requerem monitoramento, controle e mitigacao das condi¢oes indesejadas através de agoes
automatizadas. A principal contribuicao deste estudo é a introdugdo de uma arquitetura
auto-adaptativa denominada e-Livestock para apoiar as decisoes relacionadas a produgao
animal. Foram conduzidos dois estudos de caso, envolvendo a arquitetura e-Livestock,
que foi utilizada no sistema de producao Compost Barn - ambiente e tecnologia onde
ocorre a producao de gado leiteiro. Os resultados demonstraram a utilidade do e-Livestock
para avaliar trés aspectos principais: (i) abstragao de tecnologias disruptivas baseadas em
Internet das Coisas (IoT) e Inteligéncia Artificial, e sua incorpora¢do em uma arquitetura
tnica, especifica para o dominio da pecuédria, (ii) suporte para a reutilizacao e derivagao
de uma arquitetura auto-adaptativa para apoiar o desenvolvimento de uma aplicacao de
apoio a decisao para o subdominio da pecudria e (iii) suporte para estudos empiricos em
uma fazenda inteligente real para facilitar a transferéncia de tecnologia para a industria.
Portanto, a principal contribuicao dessa pesquisa ¢ o desenvolvimento de uma arquitetura
combinando técnicas de machine learning e ontologia para apoiar decisdes mais complexas
ao considerar um grande volume de dados gerados nas fazendas. Os resultados revelaram
que a arquitetura e-Livestock pode apoiar monitoramento, controle, previsao e agoes

automatizadas em um ambiente de producao de leite/Compost Barn.

Palavras-chave: Sistema de Apoio a Decisdo. Internet das Coisas. Arquitetura e-Livestock.

Arquitetura auto-adaptativa.



ABSTRACT

Sustainable animal production is a primary goal of technological development in
the livestock industry. However, it is crucial to master the livestock environment due
to the susceptibility of animals to variables such as temperature and humidity, which
can cause illness, production losses, and discomfort. Thus, livestock production systems
require monitoring, reasoning, and mitigating unwanted conditions with automated actions.
The principal contribution of this study is the introduction of a self-adaptive architecture
named e-Livestock to handle animal production decisions. Two case studies were conducted
involving a system derived from the e-Livestock architecture, encompassing a Compost
Barn production system - an environment and technology where bovine milk production
occurs. The outcomes demonstrate the effectiveness of e-Livestock in three key aspects: (i)
abstraction of disruptive technologies based on the Internet of Things (IoT) and Artificial
Intelligence and their incorporation into a single architecture specific to the livestock
domain, (ii) support for the reuse and derivation of an adaptive self-architecture to
support the engineering of a decision support system for the livestock subdomain, and (iii)
support for empirical studies in a real smart farm to facilitate future technology transfer
to the industry. Therefore, our research’s main contribution is developing an architecture
combining machine learning techniques and ontology to support more complex decisions
when considering a large volume of data generated on farms. The results revealed that the
e-Livestock architecture could support monitoring, reasoning, forecasting, and automated

actions in a milk production/Compost Barn environment.

Keywords: Decision Support System. Internet-of-Things. e-Livestock Architecture. Self-

adaptive Architecture.
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1 INTRODUCTION

This chapter presents the motivation that inspired this study, the main problems
and the research methodologies employed, leading to the development of the solution

proposed.

1.1 CONTEXTUALIZATION

In recent years, the Internet of Things (IoT) has started to connect several devices
and sensors, which has generated opportunities in several sectors, including agriculture
and livestock (Zhai et al., 2020). Wearable 10T devices, for example, can be used to track
the activities of humans and animals. In this sense, IoT in animal health uses biosensors
and software to monitor and maintain animal health records. The large volume of data
generated by these devices can be interpreted by intelligent systems. Subsequently, these

data can support producers and managers in decision-making (Symeonaki et al., 2020).

The use of sensors to monitor crops and soil quality has also been extended to
monitor animal health. In the livestock context, to ensure animal welfare, it is necessary
to monitor, control, and intervene in the environment and make real-time decisions that,
hopefully, can positively impact the animal’s health. However, the continuous monitoring
of animals through sensors has transformed farms and brought new challenges beyond

sensors and IoT devices (Farooq et al., 2019).

Agribusiness is a critical domain where reckless actions or negligent monitoring can
lead to animal deaths, crop failures, financial loss, and even national economic unbalance.
In livestock which involves raising animals for human consumption, inappropriate levels of
certain variables, such as humidity and/or temperature in the production environment
can, for instance, lead to the development of diseases and inflammation in the glands of
animals that may cause a reduction in production or even total loss (Graciano Neto et al.,
2022). To mitigate these risks, agribusiness Production Systems (PS) should use software-
based solutions alongside manual labor to (i) monitor the environment, (ii) self-regulate its
behavior to act on the environment, preserving the ideal conditions to leverage productivity,
(iii) automate actions and (iv) predict not favorable conditions that could harm production,
enabling the system to change the environmental conditions before those conditions
occur. Difficulties such as enriching decisions, developing systems capable of adapting to
uncertainties and dynamic factors, and making production predictions still need to be
explored. With these demands, PS have evolved into smart farms with numerous sensors
and actuators that generate vast amounts of data, requiring processing and reasoning to
prevent negative outcomes such as animal diseases. These sensors and actuators generate
massive data, which demands processing and reasoning to avoid unfortunate situations.

All these requirements and technologies have made PS environments to become highly
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dynamic and complex. It is not unusual that new producers or technologies must be
joined to the PS structure. Then, supporting PS demand an abstraction that satisfies the

requirements posed by the livestock context.

1.2 MOTIVATION

The integration of loT data management in precision livestock farming is becoming
increasingly complex with the emergence of Agriculture 4.0 and the widespread use of
smart applications. This work discusses the role of data integration in precision livestock
farming and how it is impacted by dynamic and adverse factors, such as changing climate
patterns. The work also highlights the complexities of monitoring animal health and

environmental conditions in confined animal systems, such as Compost Barns.

Precision livestock farming involves the collection of data from different contexts,
which is used for decision-making purposes. For example, in a confined animal system such
as a Compost Barn, regular adjustments of the internal temperature are necessary to ensure
maximum comfort for the animals. By integrating data collected from sensors with weather
station data, the internal temperature of the environment can be controlled appropriately,
reducing the impact of sudden temperature changes on milk production. Furthermore,
integrating data with geolocation services can help maintain accurate monitoring of animals
on pasture. Thus, data management and integration play a crucial role in precision livestock

farming.

However, the complexity of precision livestock farming is compounded by the
movement of animals in space and exposure to adverse situations. Compost Barns require
constant monitoring of environmental conditions and animal health, as animals are confined
in a covered shed with a freely accessible communal bedding area. The bedding area is
composed of sawdust or wood shavings, where most of the waste is retained, without
partitions. North American producers introduced this production system, which has been
adopted in Brazil since 2001. The shed has a ventilation system designed to remove heat

produced by the composting of bedding and animal waste (MilkPoint, 2016).

The constant generation of data by sensors increases the complexity of data
management, as sensors are subject to mechanical failures and environmental interference.
Therefore, decision-making processes need to consider multiple dynamic factors that can
impact animal production economically and environmentally. Furthermore, the integration
and management of data in precision livestock farming play a crucial role in optimizing
animal production and maintaining animal health. However, the complexity of confined
animal systems such as Compost Barns and dynamic and adverse factors, make data
management and decision-making processes more challenging. Therefore, it is essential to
consider multiple factors and develop robust data management strategies that consider

the specific needs of different livestock systems.
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Regarding the livestock of dairy cattle, some diseases stand out due to the economic
impact they generate. Mastitis is a disease that typically involves bacterial infection and
leads to inflammation in the udder of a cow, which in turn results in elevated somatic
cell count in the milk. One of the primary reasons for milk disposal is mastitis, which
occurs when animals are undergoing treatment. This is due to the medication’s impact
on the milk, making it unsuitable for consumption. The best way to avoid the impacts
of mastitis is through disease control and prevention. Control can be done through early
treatment, separation of sick animals to prevent contamination of other animals, and
sometimes even the disposal of animals with chronic diseases. Prevention can be achieved
by maintaining environmental conditions, as a well-controlled humidity environment helps
to avoid the proliferation of environmental bacteria, reducing the risks of contamination.

Another important factor is animal hygiene, cleaning the animal before and after milking.

Traditional architectures need to prepare to deal with such a complex domain,
whose context can change rapidly. New animals can arrive at the farm, climate changes
can vary throughout the year, and systems must be able to continue functioning correctly,
supporting producers on their farms. To solve this problem, an architecture is needed to
construct a Decision Support System (DSS) for smart farms. Farmers can suffer significant
losses due to the complexity of decision-making when it comes to mastitis control and
prevention. Failure to effectively manage mastitis can result in reduced production and

even the loss of animals.

Recent secondary studies have been conducted to answer relevant questions about
decision support systems in the precision livestock domain. For example, Villa-Henriksen
et al. (2020) present a review of interoperability standards. This secondary study discusses
the challenges of integrating open data with the various data generated on farms. In Bahlo
et al. (2019), the authors review network, physical device, and application problems and
highlight the role of middleware in data integration. In Zhai et al. (2020), the authors raise
issues related to decision-making and the need for additional elements, such as weather

station data, due to the influence of temperature and humidity on animal production.

In these studies, the authors cover the importance of integrating data, whether
with open databases, weather station services, geolocation services, or even between farms.
Although data integration is discussed for decision-making, the authors need to bring a
general perspective on how to use the data collected on farms, and what software models

and architectures are used in decision support systems.

Other researchers have been working to discover how meteorological data, linked
to intelligent prediction models, could be used in agriculture (Newlands et al., 2019).
Some works are interested in how Artificial Intelligence (Al) systems support the decision-
making process (Gualdi and Cordella, 2021) and how AI improves agricultural productivity
(Lakshmi et al., 2020).
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To address the issues faced in agribusiness, integrating self-adaptive abilities can
enhance smart farm PS using [oT software systems and software engineering methodologies.
This creates a comprehensive vision that includes smart services, smart products (IoT),
Agribusiness 4.0 systems, and self-adaptive software engineering (Weyns, 2020). An
architecture for decision-making, combined with self-adaptation techniques, meets these
requirements by accommodating the necessary software-based modules, including (i) an
Internet of Things (IoT) module for sensing and acting on PS environment, (ii) self-
adaptive characteristics to modulate the environment based on stimuli, (iii) Artificial
Intelligence (Al) techniques to reason about the large amounts of data collected to support
automated actions, and (iv) a complex, flexible and reusable architecture open to receiving
new contributions to the PS. Hence, aiming to tackle the challenge of providing an
architecture that meets the needs of a smart farm, encompassing processing, integration,

and intelligence, we developed an architecture for DSS, called e-Livestock.

Therefore, the research problem addressed in this work is to support automated
monitoring, reasoning, and automated actions in smart farms to enhance
milk production. The e-Livestock architecture was designed to gather new knowledge at
runtime to resolve uncertainties, reason about itself, its context, and goals, and adapt based
on actuators to achieve goals. We conducted a case study in a Compost Barn PS for dairy
cattle to assess the proposed solution. The goal was to analyze the support to monitor the
environment, reason on data, and automate actions from the researcher’s/farmers’ point
of view, in the context of a smart farm system. The research question posed within
the scope of this study is “How can e-Livestock support automated monitoring,

reasoning and actions in smart farms?”

1.3 OBJECTIVES

This work aims to support producers in decision-making, through an approach
that uses intelligence to enrich farm information. This architecture, called e-Livestock,
aims to help rural producers of dairy cattle to understand the situation of animals on the

farm, and thus, favor decision-making through predictions and inferences.

Using Machine Learning (ML) techniques, producers can have a view with predicti-
ons about milk production, while ontologies provide a retrospective view of the production
data. By combining these approaches into one system, presenting both views (predictive
and retrospective), with the support of graphical visualization, producers can make more

enriched decisions.

Therefore, the main contribution of our research is the development of an archi-
tecture combining ML techniques and ontology to support more complex decisions when
considering a large volume of data generated on farms. To support our approach, an

evaluation was carried out in a Compost Barn, a production system related to improving
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the production of confined dairy cattle. This Compost Barn is located at Coronel Pacheco,
Minas Gerais — EMBRAPA, a Brazilian Agricultutral Research Corporation.

The results show that the solution supports farms in animal management and
well-being in the decision-making process. In addition, it was possible to infer past data
using an ontology model, providing agribusiness managers with insights derived from past
data.

To achieve these objectives, the following specific objectives were considered:

» Specify a layered architectural model capable of being maintainable, taking into

account various types of data coming from sensors;

« Develop an architecture capable of supporting decisions in smart farms, through

intelligence with predictions and inferences;

o Specify and implement a knowledge base through an axiomatically rich ontological

model, capable of extracting implicit knowledge about dairy animals;

» Develop a layer responsible for managing the intelligent models and capable of storing

them (ontology and machine learning;

o Implement the proposed architecture with real-world historical data from the farm.

1.4 OUTLINE

This work is divided into six chapters. Chapter 2 presents the concepts involved
in this work. Chapter 3 presents the related works and the systematic mapping of the
literature. Chapter 4 presents the methodology used, called Design Science Research, the
proposed solution to support decision-making in precision livestock, detailing the conceptual
aspects and the implementation of the solution. Chapter 5 presents the evaluation of the
solution, highlighting its planning, execution, and results obtained. Chapter 6 presents the

final remarks, highlighting the contributions of the work, its limitations, and future work.
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2 THEORETICAL FOUNDATION

This chapter introduces the main concepts related to the research area, i.e., decision

support system, Internet of Things (IoT), ontology, and Intelligent Systems (IS).

2.1 INTERNET OF THINGS

The concept of the Internet of Things (IoT) is related to the connection of a
network of "objects"through the Internet without direct human intervention (Yang et al.,
2013). Through geographically distributed sensors, IoT derives real-time information,
comprising many applications, among which the most notable are smart houses, personal
healthcare, intelligent logistics, Industry 4.0, and real-time conditions monitoring. In the
latter context, meteorological data are used as a source of information for climate warning
systems. In this vein, farmers have been using it to make better tactical decisions to avoid
harvest loss, mining companies employ it to monitor soil conditions, and military bases
use it to have prior knowledge of abrupt changes in environmental parameters (Chavan
and Momin, 2017).

Many applications can benefit from the periodically sensed data, which are collected
from wireless sensors that constitute the smart environment. The collected data is often
transmitted to a cloud platform, where many users can access it. IoT has been affecting
the way data is produced and used, provoking the emergence of new software products and
services due to the dynamic environment. The enormous amount of generated sensor data

must be stored, processed, and presented transparently, efficiently, and easily understood.

The application of IoT in agriculture and livestock has advantages due to the
possibility of monitoring and controlling many different parameters in an interoperable,
scalable, and open context, with the increasing use of automated sensors (Villa-Henriksen
et al., 2020). In agribusiness, one of the innovations is its combination with data processing,
allowing greater support in decision-making. One of the objectives of using [oT in livestock
is to increase accuracy in using information for decision-making, as we will discuss in the

following chapters.

2.2 ONTOLOGY

To support the sharing and reuse of knowledge between different systems, it is
necessary to define a common vocabulary for representing this knowledge. In this sense,
Gruber (1995)borrowed the term ontology from philosophy and defined it for computation
as a formal and explicit specification of a shared conceptualization. This conceptualization
is a simplified and abstract view of the world that one wants to represent for some purpose.

In general, an ontology specifies a domain vocabulary, composed of definitions of classes,
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relationships, and functions. Ontologies are used to share a common understanding about
the structure of information between people or software agents; support domain knowledge
reuse; explain assumptions about the domain; separate domain knowledge from operational

knowledge and analyze domain knowledge (Gruber, 1995).
The Ontology-Based Data Access (OBDA) strategy uses ontology as the mediated

schema, from where queries can be posed in the data integration system. In addition,
data sources are described according to the classes and the schema mappings are specified
following the properties that link concepts and instances thereof (individuals) in the
ontology. An example of the application of ontologies in the management of complex
data domains can be found in the omics study (genomics, proteomics, transcriptomics,
metabolomics, etc). In such context, Knowledge Representation (KR) techniques and data
integration methods are essential to process the highly heterogenous datasets to allow
the extraction of comprehensive knowledge from all the fuzzy information necessary to
understand the diverse variables - often presented under different data types - involved
in the complex phenomenon of a disease, for instance (Louie et al. (2007); Zitnik et al.
(2019)).

The Ontology Web Language (OWL) was designed to facilitate the interpretation
of Web content using ontologies by providing additional vocabulary along with formal
semantics, more complete than other languages such as XML, RDF, and RDF Schema
(RDF-S) (McGuinness and Van Harmelen, 2004). The advantage of OWL is that it can be
used when the information contained in documents needs to be processed by applications,
as opposed to situations where the content only needs to be presented to humans. OWL
was developed as a language for building ontologies that provide high-level descriptions
of Web content. These ontologies are created by building class hierarchies that describe
concepts in a domain and relating classes to each other using properties (McGuinness and
Van Harmelen, 2004).

OWL and Semantic Web Rule Language (SWRL) are the main languages of
the Semantic Web. OWL can also represent data as instances of OWL classes — called
individuals — and provides mechanisms for reasoning and manipulating the data. OWL also
provides an axioms language to define how to interpret concepts in an ontology precisely
(O’Connor et al., 2008). SWRL allows users to write rules that can be expressed in terms
of OWL concepts and that can reason about OWL individuals. One of the most powerful
features of SWRL is its ability to support built-ins (Horrocks et al., 2004). Built-ins are
user-defined predicates that can be used in SWRL rules. Several core built-ins for common
math and string operations are defined in the SWRL proposal. SWRL allows new libraries
of built-ins to be defined and used in rules. Users can define built-in libraries to perform a
wide variety of tasks. Such tasks might, for example, include currency conversion, temporal
manipulations, and taxonomy searches. In general, the arguments to these inners must be

OWL DL property values, that is, literals or individuals. However, some built-in libraries
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may also support class or property built-in arguments, although such built-ins should only
be used in OWL Full ontologies (O’Connor et al., 2008).

2.3 DECISION SUPPORT SYSTEM

A Decision Support System is an application that provides support for different
decision-making activities in a specific domain (Belciug and Gorunescu, 2020). DSSs are
used in various domains such as medical diagnosis, engineering project evaluation, business
management, agricultural production, livestock, credit verification, air travel industry,
railway management, and forest management. A DSS can be a system that responds
to a simple query or can model a complex human decision-making process (Belciug and
Gorunescu, 2020).

In a more updated definition, DSS is expected to operate under uncertain conditions
without interruption. Possible causes of uncertainties include changes in the operational
environment, resource availability dynamics, and user objectives variations. Traditionally, it
is the task of system operators to deal with such uncertainties. However, these management
tasks can be complex, error-prone, and costly. In this vein, arises a new concept to deal
with these uncertainties, called self-adaptation. Self-adaptation aims to enable the system
to collect additional data on uncertainties during operation to manage itself based on
high-level goals. As many IoT systems today need to be operational 24 hours a day, seven
days a week, uncertainties must be resolved at runtime. Self-adaptation is about how a
system can mitigate such uncertainties autonomously or with minimal human intervention
(Weyns, 2020).

Self-adaptive systems are a relatively new style of decision support system that can
adjust themselves in response to changing conditions. These systems use machine learning
algorithms and other artificial intelligence techniques to monitor and analyze data from
various sources, including sensors, databases, and other inputs. The self-adaptive system
then adjusts its decision-making algorithms in real-time based on the data it has collected,
allowing it to make more accurate and timely decisions. One of the main advantages of
self-adaptive systems is their ability to respond to unexpected changes in their environment.
For example, a self-adaptive system used in manufacturing might detect a problem with a
machine and automatically adjust its operations to compensate. Similarly, a self-adaptive
system used in transportation might detect a change in traffic patterns and adjust its
route accordingly. These systems are also able to learn from past experiences and use that

knowledge to improve their decision-making processes over time (Weyns, 2020).

A self-adaptive system comprises two distinct parts: the first part interacts with
the environment and is responsible for domain concerns - i.e., the concerns of the users for
whom the system is built; the second part consists of a feedback loop that interacts with the

first part (and monitors its environment) and is responsible for adaptation concerns, i.e.,



23

about domain concerns (Weyns, 2020). Based on the two basic principles of self-adaptation,
a conceptual model for self-adaptive systems can be defined, describing the basic elements
of such systems and the relationship between them. The basic elements are intentionally
kept abstract and general but align with the basic principles of self-adaptation. Figure 1
shows the conceptual model of a self-adaptive system (Weyns, 2020).

Figure 1 - Conceptual model of a self-adaptive system
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The conceptual model of a self-adaptive system typically includes several key
components as Figure 1 shows: Sensing and monitoring: This component is responsible
for gathering information about the system and its environment, such as data on system

performance, user behavior, and changes in the operating environment. Managing System:
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This component processes the data gathered by the sensing and monitoring component
and makes decisions about how to respond to changes in the environment. This may
involve selecting from a range of possible actions, depending on the specific context and
goals of the system. Managed System: This component is responsible for implementing
the decisions made by the managing system, which may involve modifying the behavior
or configuration of the system in response to changing conditions. Feedback Loop: This
component is responsible for evaluating the effectiveness of the system’s responses to
changes in the environment and providing feedback to the managing system, which can

then use this information to improve its future decisions.

2.4 INTELLIGENT SYSTEMS

Intelligent Systems (IS) represent an interdisciplinary research domain that brings
together Artificial Intelligence (AI) and a variety of related domains, such as psychology,
linguistics, and neurology, connected by many interdisciplinary relationships. Nowadays, a
wide variety of ISs have been developed, such as expert systems; fuzzy systems; artificial
neural networks; evolutionary computation (genetic/evolutionary algorithms, genetic pro-
gramming, evolutionary strategies); support vector machines; particle swarm optimization;
ant colony systems; memetic algorithms; ant colony optimization; clustering; Bayesian (le-
arning) model; deep learning; and hybrid models (neuro-genetic, neuro-fuzzy, fuzzy-genetic,

etc), among others (Belciug and Gorunescu, 2020).

Intelligent Decision Support Systems (IDSS) is a DSS that uses (AI) methods.
Researchers are trying to develop computational tools that behave like a human advisor: an
entity that can collect and analyze evidence, that can diagnose after identifying a problem,
and finally suggest certain solutions (Belciug and Gorunescu, 2020). Adding machine
learning into IDSS offers many flexible algorithms that are well suited for analyzing large,
complex datasets. Therefore, the application of such algorithms for herd management
analysis and performance data or computerized decision-making on commercial dairy farms
looks very promising (Pietersma et al., 1998). Machine learning algorithms offer greater
flexibility regarding problems of multicollinearity, missing values, or complex interactions

between variables.

2.5 FINAL REMARKS OF THE CHAPTER

In conclusion, the theoretical foundation chapter has provided a comprehensive
overview of decision support systems, intelligence and ontology. It has explored the history,
and current state of decision support systems, including their key features, components,
and types. Additionally, it has delved into the concept of intelligence, particularly artificial
intelligence, and its integration into decision support systems. This theoretical foundation

will serve as a valuable guide for researchers, practitioners, and decision-makers in the field
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of information systems, helping them to harness the power of decision support systems

and intelligence to enhance organizational decision-making processes.
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3 METHODOLOGY

The following chapter discusses a systematic mapping conducted to support our

conjectures and related works.

3.1 SYSTEMATIC MAPPING

Through this systematic mapping, our focus is to list the techniques and approaches
that are used to support data integration on farms so that Decision Support Systems can

support decisions in the context of precision agriculture and livestock.

This systematic mapping aims to answer four research questions defined below: (i)
How to integrate Decision Support Systems data from IoT devices in precision
agriculture and livestock? Through this question, we seek to investigate the state of
the art on the integration of data generated on farms by IoT devices to support decisions
in precision agriculture and livestock; (ii) RQ2: How semantic data is handled to
integrate Decision Support Systems in precision agriculture and livestock?
With this question, we seek to identify, in the results of RQ1, which semantic integration
techniques are being used to enrich data to take decisions in precision agriculture and
livestock; (iii) RQ3: What intelligent models are used to support Decision
Support Systems in precision agriculture and livestock? Given the increasing use
of computational intelligence, pointed out in secondary works, this question aims to explore
the models, techniques and intelligent algorithms that are being used in smart farming;
(iv) RQ4: How is computing technology applied in precision agriculture and
livestock? Considering that the Internet of Things has been widely used in Agriculture
4.0, as shown by secondary studies, the purpose of this question is to analyze how the
solutions used contribute to the advancement of computing on farms, whether monitoring

through sensors, in the use cell phone, drones or smart devices.

3.1.1 Planning

The methodology used in this work follows the guidelines proposed by Kitchenham
(2004). During the mapping process, the support tool called Parsifal' was used.

According to Kitchenham (2004) recommendations, the research was divided into
three parts, planning, conducting, and reporting. During planning, the need for revision,
the research questions that should be answered, and the protocol to be followed were
identified. After that, the conduction process began, through which we identified and
selected the studies, and performed the backward and forward snowballing techniques,
according to the hybrid search technique (Mourdo et al., 2017). The hybrid search technique

consists of executing the search string in a database that indexes other databases, such

! https://parsif.al/
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as Scopus. Then perform backward and forward snowballing on the articles returned by
the string. After that, extraction and synthesis of the data obtained were performed for

quality analysis, and we present the results.

Search terms were defined considering Population, Intervention, Comparison, Out-
come and Context (PICOC) (Kitchenham and Charters, 2007) to identify keywords,
synonyms and build the search string based on the combination of key terms. Compa-
rison is not relevant in this work since this mapping is an exploratory study. To select
the articles to be analyzed to answer the research questions, some criteria were defined.
Inclusion criteria aimed to add those works that present architectures, data integration
and intelligent models to support decisions in precision agriculture and livestock, and
studies in English. The exclusion criteria adopted were: (i) book chapters; (ii) studies
published only as abstracts; (iii) studies whose version is older than another study already
considered; (iv) articles not in English; (v) works that do not present an abstract; (vi)
keywords are not present in the abstract. More details of the selection process can be seen
in this repository?

The search was carried out in the Scopus electronic database, since it indexes
several other bases, allowing the execution of only one search string (Mourao et al., 2017).
Two primary studies (control articles), i.e., Villa-Henriksen et al. (2020) and Helfer et al.
(2019) were defined. Budgen et al. (2008) suggest control articles used for the accuracy of
the search string in databases of selected data and whether the search retrieve the right
relevant studies. Keywords from these articles were analyzed to find new relevant terms to
include as part of the search string. Experts in Decision Support Systems also participated

in the verification of the search string. The final search string was described as follows:

(“internet of things” OR iot) AND (dss OR “decision support system”)
AND (agriculture OR livestock).

3.1.2 Conduction

The first step in this phase was to execute the search string, considering the selected
sources. Subsequently, the study selection process was carried out, illustrated in Figure 2,

which comprised 4 main stages.

In Step 1, search results from databases were merged into Parsifal, and duplicated
papers were removed, totaling 155 articles. Step 2 involved the analysis of the title and
abstract considering the inclusion/exclusion criteria. Those articles that did not address
Decision Support Systems and IoT were excluded. The Introduction, Theoretical Reference
and Conclusion sections of the articles were read. As a result, 102 articles (65.8%) were
excluded and 53 (34.2%) were included.

2 https://gist.github.com/jjthegomes/a907809e75c9583e975228db77e62866




Figure 2 - Data collection process
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According to the guidelines proposed in (Kitchenham, 2004), researchers should
develop quality checklists to assess individual studies. During Step 3, backward and
forward snowballing (Webster and Watson 2002) were applied to the 53 selected articles

resulting in 1 more article for backward snowballing and 1 for forward snowballing.

In Step 4, the papers were read in full and their quality was assessed using the list
of quality assessment questions, which was customized for the context of this mapping. At
this stage we also perform data extraction, verifying which approach the solutions used
to support Decision Support Systems and their application in precision agriculture or
livestock. This selection was carried out by specialists in the areas of Decision Support
Systems. At the end of step 4, of the 36 articles, 34 (66%) were included. This reduction
in studies can be justified by the following aspects: (i) absence of proposed solutions to
support decision-making; (ii) many studies discussed the relevance of integration in the
context of IoT and decision-making, without introducing a solution for its realization;
and (iii) the quality assessment checklist score. Once the papers were mapped, a deeper
analysis was necessary in order to identify, evaluate and interpret the studies selected to

answer the systematic mapping research questions.

According to the results found in the mapping, it is possible to observe that the
use of semantic web and semantic knowledge bases are being widely used. The application
of these solutions ranges from irrigation of crops and soil fertilization to the care and
management of animals so that they can increase their production. About 14 articles (41%)
selected for mapping address some semantic web technique, be it the use of ontologies to
infer new knowledge and semantic marks for automatic analysis of intelligent algorithms.
The other articles vary their approach in relation to the use of computational intelligence.
Neural networks, Support Vector Machine (SVM), and deep learning are also some of the

techniques used. Table 1 summarizes the mapping findings.
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3.1.3 Results

RQ1: How to integrate Decision Support Systems data from IoT devices in precision
agriculture and livestock? Research conducted in [Visconti et al. (2020), Karim et al.
(2017), Kamath et al. (2019), Suakanto et al. (2016), Khanna and Kaur (2020), Sudha
et al. (2022)] demonstrates the use of a wireless sensor network (WSN) to integrate all
IoT sensors in the field in order to provide the largest data set for the decision support
systems. In Karim et al. (2017) a prototype of a mobile application integrated with the
wireless sensor network is proposed, capable of issuing alerts via SMS so that producers
can quickly make decisions about the situation of the soil. Kamath et al. (2019) describe
the implementation of a wireless sensor network to monitor rice crops with image capture.
The authors integrated the system with RabbitMQ (Kamath et al., 2019), a messaging
service capable of persisting sensor data. In (Suakanto et al., 2016) a conceptual model
and system design are proposed for decision support in smart farming. The work uses
middleware to support the communication and interoperability of smart devices, the
detection and characterization of events in real-time and the collection of events for big
data analysis. Khanna and Kaur (2020) use a wireless sensor network integrated with
cloud servers. In this way, producers can monitor different information from plantations,
such as temperature and soil moisture, and intervene in physical locations to balance the
environment. The research proposed in (Kamilaris et al., 2016) describes the Agri-IoT, an
IoT-based framework capable of integrating various data streams via the Global Sensor
Network (GSN), providing complete semantic processing. In [Ting et al. (2022), Sakthi
and DafniRose (2022)] the authors propose using blockchain for IoT data integration to

ensure security and reliability in the data used for decision-making.

RQ2: How semantic data is handled to integrate Decision Support Systems in
precision agriculture and livestock? The works [Symeonaki et al. (2020), Kamilaris et
al. (2016), Rotondi et al. (2019), Fawzi et al. (2021)] propose the use of a layer that
deals with semantics to interpret data from IoT devices, and Symeonaki et al. (2020) still
aggregates context data such as temperature, pressure, wind speed, humidity, lightning
UV, among other data that can influence the behavior of animals, crops and plantations.
Once these data are taken into account, it is possible that the systems indicate more
appropriate decisions in the management of the farms. Kamilaris et al. (2016) explore how
the semantic integration of information from various sources, such as: sensors, social media,
connected farms, government alerts, regulations, among others, can increase productivity
in smart farming. In (Sowmya et al., 2020) the authors propose the use of semantic web
to enrich the data generated by IoT devices and then apply machine learning algorithms
to optimize soil fertilization. As a result, the evolution from traditional agriculture to
precision agriculture and livestock, connected systems based on semantic knowledge, have
transformed the physical and technological environment of rural properties. Owners,

producers and veterinarians gain a new role in this context: enriching systems through a
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shared knowledge base, in such a way that decisions are increasingly efficient.

RQ3: What intelligent models are used to support Decision Support Systems in
precision agriculture and livestock? The articles [Kakamoukas et al. (2019), Rezk et al.
(2021), Sowmya et al. (2020), Borisenko et al. (2019), Kale et al. (2019), Tripathy et al.
(2021), Balan et al. (2020), Ting et al. (2022), Sudha et al. (2022), Elijah et al. (2022),
Catalano et al. (2022)] presented computational intelligence solutions ranging from SVM
techniques, fuzzy logic, decision tree, Petri nets and neural networks. By collecting data
generated by IoT devices in the field, it is possible to use machine learning techniques to
predict events such as harvesting, irrigation and soil fertilization [Sowmya et al. (2020),
Tripathy et al. (2021), Balan et al. (2020)]. All these works presented cloud computing as
an important component of the solution since the communication between sensors, systems
and repositories takes place through the web. The papers [Mikhaylenko et al. (2019),
Rekha et al. (2017), Yusianto et al. (2020), Loret et al. (2020), Zhang et al. (2017), Sakthi
et al. (2020)] use knowledge bases with specific rules in the field of agriculture. These rules
serve as a basis both for systems to indicate decisions, and for intelligent algorithms to
have the correct parameters to make a reliable prediction. In these studies, it is possible to
notice variations in approach, such as the automation of decisions through the prediction
of events indicated by machine learning algorithms [Kakamoukas et al. (2019), Borisenko
et al. (2019), Kale et al. (2019), Sowmya et al. (2020), Tripathy et al. (2021), Balan et al.
(2020), Anbananthen et al. (2021), Dayalini et al. (2021), El Hachimi et al. (2021), Ting
et al. (2022), Sarma et al. (2022)], to knowledge that can be inferred using the semantic
web [Visconti et al. (2020), Karim et al. (2017), Kamath et al. (2019), Khanna and Kaur
(2020)]. Additionally, layers that deal with semantics are used to refine machine learning
analysis to support Decision Support Systems, making decisions increasingly rich and

reliable.

RQ4: How is computing technology applied in precision livestock? After analyzing
the studies, it was possible to see how computing is present on farms. In (Dabre et al.,
2018) the authors propose two integrated mobile applications, one for the producer and the
other for the seller of agricultural products. In the survey, the producer can monitor and
send his plantation data to the seller, who, in turn, can indicate the best fertilizer, pesticide
and amount of water needed. Some works, such as (Kamilaris et al., 2016), demonstrate
the use of “drones” to collect images of agricultural environments. This can be extended
to locating animals in the pasture, monitoring their movement activities and detecting
sick animals. In this way, “drones” can speed up the decision-making process by providing
information in real-time. In [Vazquez et al. (2021), DAYIOGLU and Turker (2021)] the
authors review the use of AI and highlight the use of robots to automate harvesting
in a sustainable way, that is, avoiding water waste. The creation of a wireless sensor
network also contributes to a system that can manage more than one farm geographically

distributed, being able to indicate different decisions simultaneously according to the data
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collected by the sensors.

3.2 THREATS TO VALIDITY

This mapping aimed to explore issues related to Decision Support Systems in the
context of precision agriculture and livestock. However, some threats to validity can be
highlighted. Regarding the search string, even using a term review process, it is possible
that some term has not been considered for the context of precision agriculture. To

mitigate this threat, we use the snowballing technique.

The use of the Scopus database also poses a threat to validity. Other databases
not indexed by the Scopus database may contain researches relevant to this mapping. To
mitigate this threat, it would be necessary to explore other specific bases, mainly focused
on research in agribusiness. However, the database (Scopus) used in this research offered
a broad overview of the state of the art of research related to Decision Support Systems

focused on Agribusiness with a contribution to advances in computing research.

3.3 DISCUSSION

The related works selected for our research have been identified based on the
systematic mapping. By building upon this mapping, we aim to present an analysis of the
selected works and their connection to our current research, while also identifying any gaps
that they may have left. This analysis will serve to further justify the architecture that

will be outlined in the following chapter, providing a solid foundation for our research.

In article (Kamilaris et al., 2016), a framework called Agri-IoT is proposed. It
features a semantic framework for loT-based smart farming applications, which supports
reasoning over multiple streams of heterogeneous sensor data in real-time. Although this
article describes a framework for intelligent agriculture, it does not address processing
through intelligent algorithms, limiting itself only to extract semantic knowledge from

information and ontologies to describe the relationship between data.

In order to provide decision support, Anbananthen et al. (2021) use hybrid machine
learning technologies that use specialized clustering methods, stacked generalization,
gradient boosting, random forest, and least absolute shrinkage and selection operator
(LASSO) regression. Although the stacked generalization technique, a model that learns
how to combine the best predictions of two or more models trained on the data, is promising,
the article does not provide details of how actions in agriculture can be supported. The
authors only compare the techniques using cross-validation to identify the most accurate
performers for the agricultural dataset. Aiming to support the decision in relation to the
soil, articles (Dayalini et al., 2021), (Sarma et al., 2022), (Sudha et al., 2022) and (Elijah et

al., 2022) vary their approach, but all have in common the use of machine learning. Article
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Dayalini et al. (2021) presents a DSS (Agro-Mate) that helps farmers, through intelligent
predictions with machine learning, to determine soil quality, select the best crop, predict
rice diseases and predict disasters. Similarly, Sarma et al. (2022) presents a system that
has a package of sensors that provides continuous data capture of temperature records, air
and soil humidity and a camera for obtaining infrared (NIR) images of the leaves of the
plant for use with an AI decision support system. Elijah et al. (2022) proposes a decision
support platform (chili-DSP) to detect disease and nutrient deficiency and make prevention
decisions. The platform provides a real-time classification of chili diseases. The work
(Sudha et al., 2022) presents the Smart Soil Nutrition Prediction (SSNP) system, which
adopts sensors to monitor soil conditions. The SSNP aims to support decision-making by

predicting soil nutrients in relation to which crop is most suitable to plant.

Despite using intelligent techniques for classification and prediction in relation to
the soil, whether for planting rice or pepper, all the works cited above (Dayalini et al.
(2021), Sarma et al. (2022), Elijah et al. (2022) and Sudha et al. (2022)) do not explore
aspects related to the flexibility of adding other types of data. Furthermore, the systems
presented are limited to only the specific domain in which they were developed. Such
systems do not address scalability or extensibility to other problems and domains. They
are not prepared to deal with adverse data, or adapt to a change in data, such as the
emergence of new diseases, soils with different conditions, but which may be conducive
to planting, and they are also limited to the training datasets used initially. By using
semantics, algorithm training could be improved and thus provide the best decision-making

in relation to climate data, diseases and other external variables.

The work Catalano et al. (2022) proposes a new approach for detecting anomalies
in intelligent agricultural systems. The authors’ objective is to mitigate weaknesses, inten-
tional and unintentional failures in data and information management in IoT environments.
Although the design of the proposed architecture is based on an algorithmic approach
to machine learning by a multivariate linear regression (MLR) and a long-term memory
neural network (LSTM) algorithm, the authors do not explore the use of other algorithms,
not address the sustainability of the architecture, or use semantics to extract strategic

information from the data that is analyzed by machine learning.

Table 2 compares all related articles considering the architecture proposed in this

work.

3.4 FINAL REMARKS OF THE CHAPTER

This systematic mapping identified, classified and analyzed computational solutions
in Decision Support Systems in precision agriculture and livestock. Initially, 155 articles
were identified by the selected source. They were filtered, resulting in 53 articles. After this

selection, the snowballing technique was performed, adding 2 more new articles, totaling
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55 papers. After the quality analysis, the result totaled 34 articles.

According to the results of this mapping, research opportunities can be observed
from the search for state of the art in DSS in Agriculture 4.0, related to IoT and sematic. By
advancing knowledge on the subject, we identified opportunities and integration techniques
used in the works, demonstrating the importance of using data from IoT sensors to support
decisions. As a result, complex decisions aimed at agribusiness can be enriched with
information existing in other systems used by rural properties. Once the literature mapping
is carried out, we define the problem and requirements for the solution. We aim to answer
the following research question: “How can e-Livestock support automated monitoring,

reasoning, and actions in smart farms?”

To answer the research question, we carried out two implementation cycles under
the Design Science Research (DSR) methodology. In the first cycle, after carrying out the
systematic mapping, we conducted technical interviews with researchers and specialists
from Embrapa Gado de Leite to better understand the application domain. During these
interviews, we collected important animal management, welfare, and health information.
It was also important to understand the whole milking process and the necessary care for
the animal so that the milk has quality. After the interviews, we went to the development

phase of the solution, where we built the e-Livestock architecture artifact.

As stated above, we adopted the Design Science Research (DSR) methodology to
evaluate and guide the proposed architecture. The next chapter details the architecture

design, as well as each DSR cycle starting from the mapping.



Table 1 — Summary of mapping report findings

Studies

Application

Symeonaki et al. (2020)

Borisenko et al. (2019)

Kale et al. (2019)

Balan et al. (2020)

Kamilaris et al. (2016),Rotondi et al.
(2019)

Rezk et al. (2021), Sowmya et al. (2020)

Ting et al. (2022), Sakthi and DafniRose
(2022)

Sowmya et al. (2020), Tripathy et al.
(2021)

Dabre et al. (2018), Yusianto et al.
(2020), Suakanto et al. (2016)

Visconti et al. (2020), Karim et al.
(2017), Kamath et al. (2019), Khanna
and Kaur (2020)

Mikhaylenko et al. (2019), Rekha et al.
(2017), Loret et al. (2020), Zhang et al.
(2017), Sakthi et al. (2020), Fawzi et al.
(2021)

Kakamoukas et al. (2019), Vazquez et al.
(2021), DAYIOGLU and Turker (2021),
Anbananthen et al. (2021), Dayalini et
al. (2021), El Hachimi et al. (2021),
Sarma et al. (2022), Sudha et al. (2022),
Elijah et al. (2022), Catalano et al.
(2022)

Context and Middleware Awareness

Computational Intelligence with Petri
Net

Deep Learning

Computational Intelligence with Neural
Networks
Ontologies and Semantic Web

Computational Intelligence with Deci-
sion Tree

Blockchain

Compute Intelligence with SVM

Statistical Analysis

Semantic Web

Semantic Knowledge Base

Machine Learning

Source: Elaborated by the author (2023).
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Table 2 — Summary of techniques from related works.
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Work ML Semantic Self-adaptive | Flexible Extensible
Agri-IoT - X - X -
DSS with hybrid | X - - X -
ML algorithms

Agro-Mate X - - - -
DSS with NIR X - - X X
Chili-DSP X - - X -
SSNP X - - - -
Anomaly detec- | X - - - -
tion

e-Livestock X X X X X

Source: Elaborated by the author (2023).
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4 ARCHITECTURE DECISION E-LIVESTOCK

The previous chapter presented the main related work through a systematic map-
ping. Based on the results, we identified some gaps in these works regarding the need for
a more detailed analysis of the data coming from sensors. None of the identified works
combined semantic models and Al algorithms for more precise analysis. Therefore, we
developed e-Livestock, an architecture to support data analysis from sensors and other
devices used in precision livestock farming to assist decision-making in agribusiness. The
e-Livestock was used in the Compost Barn infrastructure. The Design Science Research
(DSR) methodology was used in this study. In this chapter, we detail the DSR process

and the construction cycles of the architecture.

4.1 METHODOLOGY

Design Science Research (DSR) is a methodology driven by the continuous im-
provement of a solution by introducing new artifacts and the construction processes of
these artifacts (Simon, 1996). An application domain comprises people, organizations, and
technological systems interacting toward a goal. DSR research usually starts by identifying

and representing opportunities and problems in a real-world application environment.

Thus, the relevance cycle initiates the research with an application context that
not only provides the requirements for the research (e.g., the opportunity/problem to
be addressed) as inputs but also defines acceptance criteria for the final evaluation of
research outcomes. The research output should be returned to the environment for study
and evaluation in the application domain. Domain study of the artifact can be conducted
through appropriate technology transfer methods such as applied research (Cole et al.
(2005); Jérvinen (2007)).

The results of the domain test will determine whether additional iterations of the
relevance cycle are needed in this Design Science project. The new artifact may need
more functionality or inherent qualities (e.g., performance, usability) that may limit its
usefulness in practice. The resulting artifact may indicate a need for new requirements and
even reveal mistaken or incomplete requirements. Another iteration of the relevance cycle
will start with feedback from the research environment and reaffirm research requirements
as discovered from experience. During the relevance cycle, we raise the requirements for
the artifact to achieve its goal. Also, in this cycle, it is necessary to analyze the application
context, the people involved, and the organizational systems. This analysis is done to
ensure that the requirements are in line with the problem to be solved. The design cycle
encompasses the construction of the artifact, the implementation and development process,
and evaluation. We can generate a product, process, or scientific knowledge at the end of

the artifact construction. The rigor cycle is where theoretical grounding occurs, guiding
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the construction of the artifact, whether by methods, theories, or processes available in the
literature. In this cycle, it is verified whether the initial theoretical conjectures are correct
based on the evaluation of the artifact. A three-cycle view in Design Science Research is
presented in Figure 3, where the relevance, design, and rigor cycles mentioned above can

be seen.

Figure 3 - DSR Flow

Environment Design Science Research Knowledge Base
Application Foundations
Domain Build Design «Scientific Theories
*People Artifacts & & Methods
* Organizational Processes * Experience
Systems Relevance cycle Rigor cycle & Expertise
*Requirements = Grounding
* Technical +Field testing = Additions to KB
Systems :
*Problem & Evaluate *Meta-Artifacts
Opportunities (Design Products
& Design
Processes)

Source: Hevener (2007)

In the next section, we define the functional and non-functional requirements that

guided the implementation of the architecture.

4.2 REQUIREMENTS

For the architecture specification, we identified which functional and non-functional
requirements were a priority for its development. Therefore, to meet the needs of a
decision support system for Agriculture 4.0, such as sensor data processing, storage and

visualization, functional and non-functional requirements were derived.

4.2.1 Functional Requirements
FR 001. The architecture must be able to process different sets of Compost Barn
data.

FR 002. The architecture must be able to integrate data from external sources,

such as meteorological services and geolocation, to help enrich the Compost Barn data.
FR 003. The architecture must be able to perform semantic and prediction analysis.

FR 004. The architecture must allow efficient storage of data extracted from the

Compost Barn.

FR 005. The architecture must provide mechanisms for viewing Compost Barn
data in graphs or tables, thus supporting users in interpreting information and making

decisions.
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FR 006. Data must be pre-processed to be sent for intelligent analysis.

4.2.2 Non Functional Requirements

NFR 001 (Dependability). The solution must allow communication with external

data sources.

NFR 002 (Product). The solution must respect the principles of extensibility so

that the architecture accommodates the system’s future growth.

NFR 003 (Product). The solution must respect the principles of flexibility. Fle-
xibility is an attribute that reflects the range of behaviors that the existing architecture
can be configured to address, for example processing animal health, production, and

environmental data.

NFR 004 (Product). The solution must respect the principles of scalability. Scalabi-
lity considers adapting the system to new size and scope specifications, so the architecture

must allow adding new data sources and dynamically performing intelligent processing.

NFR 005 (Sustainability). The solution must consider the sustainability of the
software through the continuous training of the intelligent models (when new datasets
arrive), to keep the insights offered by the system (for example, prediction and estimation

of sick animals) consistent and updated.

NFR 006 (Usability). The system must be user-friendly. In addition, malfunctions
during data visualization can prevent the user from making the most appropriate decision.
In this way, the user would be negatively affected, threatening the main function of the

solution, which is decision-making..

4.3 FIRST CYCLE OF E-LIVESTOCK ARCHITECTURE

The DSR methodology operates in cycles, during which artifacts and processes
are developed, revisited, improved, and evolved. New requirements, problems, and
opportunities for improvement may emerge during each cycle. During the implementation
of the architecture, multiple versions were developed, with new requirements being added
and the solution being improved at the end of each cycle. A systematic mapping was

conducted to establish the conjectures for the first version of the architecture.

Following an analysis of the studies, an architecture based on tiers was developed
to analyze data from sensors and other devices related to precision livestock. Initially,
these tiers collected data from internal and external sources, processed the data, and
presented it in a dashboard. Six tiers were defined for the initial version, including the
processing, integration, external data, data repository, and visualization tiers, which were
developed to meet both functional and non-functional requirements. The first version

of the architecture is illustrated in Figure 4. During the Case Study, we will provide a
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detailed account of the operation of each layer, as well as the manner in which data was

integrated and stored.

Figure 4 - First version of the architecture
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Source: Prepared by the author (2023)

The Sensor Tier is responsible for data generated by sensors, while the Platform
Tier collects and processes different data types according to FR0O01. The integration
tier adds external data to the sensors data, as required by FR002, NFR001, NFR002,
NFRO003, and NFR004, before storing the data (FR004). Finally, the data are presented
in a dashboard with graphs (FR005) to allow producers to visualize and interpret the
data. During the first cycle, the state of the farm was analyzed in terms of total milk
production, the amount of food ingested by the animals, the total number of sick animals
over time, and data on environmental conditions (temperature and humidity), among
other information. The dashboard shown in Figure 5 provided producers with the data
required to make day-to-day decisions based on the Compost-Barn data captured through

SEensors.

Figure 5 - Compost Barn Dashboard

Source: Prepared by the author (2023)

The classification of animals in batches based on their milk production is denoted
by the terms "Lote 1", "Lote 2", and "Lote 3."Notably, the animals in the "Lote 3"exhibit
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the highest milk production, while those in the 'Lote 1"demonstrate comparatively lower
milk yields. However, the need for more detailed analysis arose, such as checking milk
production for the next month or visualizing weather conditions for the week. The data
presented in the dashboard did not allow for such analysis or predictions to be made, such
as milk production forecasts, animal food consumption estimates, or relating mastitis cases
with data from sensors in the environment. Therefore, functional requirements FR003
and FR006, and non-functional requirement NFR006, were identified as necessary and

addressed in the next cycle.

4.4 SECOND CYCLE OF E-LIVESTOCK ARCHITECTURE

The second cycle encompasses the introduction of the Intelligence tier, a new
analysis service that enhances decision-making on farms by providing forecasts for producers.
The FR0O03 and FR006 requirements have been met, allowing for semantic and predictive
analyses, which offer accurate predictions regarding milk production, food consumption,
and animals with mastitis, among other factors. With these insights, producers can plan

for the future with confidence.

The Intelligence tier comprises a semantic model (an ontology) extracting implicit
data knowledge. This knowledge includes relationships between milk production and
animal feeding, weight evolution, and diseases like mastitis. Ontological rules can be
applied to derive missing data that intelligent models may not be able to infer, such as
temperature and humidity records inside the Compost Barn that were not captured by

SEensors.

Furthermore, the Intelligence tier can classify animals as "healthy'or "sick'and
mitigate the risk of epidemics by sorting mastitis-infected animals by lot. These features
are accessible through SWRL rules processed by reasoners. Figure 6 provides an overview

of the architecture, including its respective tiers.

4.5 ARCHITECTURE COMPONENTS

We have created a comprehensive diagram illustrating the various components
and their connections. The architecture is based on the MVC pattern (Deacon, J., 2009),
separating different project parts to minimize dependencies. We can easily meet scalability
and extensibility requirements by ensuring uniformity in software structure. The reduced
code complexity also makes it easier to maintain applications, facilitates documentation
for future work, and allows for the reuse of system modules. The tiers of the architecture

are described in detail below.

Sensor Tier: Collects data generated by sensors deployed on the farm. Sensors

gather information such as temperature and humidity, among others. In addition, the
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Figure 6 - e-Livestock Overview
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sensor tier also handles different data formats generated by internal systems on farms.

These data are sent to the integration tier.

Integration Tier: That tier is responsible for processing the collected data to be
integrated with information from other sources, services, and external APIs, such as context
data, and environmental information (temperature, humidity, and weather forecast). The
main advantage of this tier is that it can aggregate external data to enrich information for
decision-making process. For instance, the REST API allows communication with other
tiers, such as the Intelligence tier. The AI tier communicates with the Integration and
Model tiers by receiving the data already processed. Then, it executes the most suitable
intelligent algorithm for a given dataset. The AI tier sends the results, predictions, or

classifications, to the API, to be persisted.

External Services Tier: it represents external services, databases, historical
bases, and any external data sources that can add value to the data collected by the Sensor
Tier. We can add new sources to the system through the Integration Tier as needed. For
example, by aggregating weather forecast data, it is possible to provide a new perspective
for decision-making. By recording data source, sensor, and data type, it is possible to
track and analyze the context of decisions that used this information. Once the data is
aggregated and stored, it is possible to use the ontology to run inferences in the new data

and retrieve new relationships.
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Model Tier: This tier deals with farm data. By integrating external data, it is
possible to store data generated on the farm and enable the generation of dashboards. By
inferring relations between animal feed and milk production, we can identify the best diet
to increase milk production. The Model tier also stores the models’” metadata, such as
model accuracy, average errors, algorithm type, and input dataset used. Consequently, it
is possible to analyze the results, which can be used to make future decisions. For example,
with the prediction of food consumption, the researcher can estimate the expected cost of
purchasing inputs and plan storage according to the probability of consumption of animals

indicated by the algorithm.

Decision-making Tier: In this tier, the business logic is defined and aggregated
to the Intelligence tier results to present the resulting data in the Visualization tier. For
example, alerts and notifications whether the production is low or many animals are
contaminated with mastitis or other diseases. In these cases, rules are set in this tier.
Besides, all relevant information generated in the previous tiers is organized and prepared

to be viewed by the user.

Visualization Tier: The visualization tier allows the researcher to visualize the
data in real-time through a panel according to a time interval. The researcher can also
analyze and interpret data at different granularities. It allows users to visualize (FR 005)
the results of the Al tier.

The visualization tier comes with a user-friendly graphical interface that displays
aggregated data from the farm and external APIs. The visualization tier can be easily
modified to suit other devices like mobiles and wearable techs. This is possible because we
developed the visualization tier to access data via REST API. Therefore, if the device has
internet access and the appropriate user interface, it is possible to receive the data via
HTTP request and display it.

We developed Figure 7 based on Figure 1, a conceptual model of a self-adaptive
system, in which the eLivestockAPI is the managing system and the intelligence is the

managed system.

For collecting the farm’s external data such as temperature and humidity, we
used the APT of the Instituto Nacional de Meteorologia (INMET). Additionally, we can
connect other weather station APIs, such as Open Weather, if needed. Our architecture’s
low coupling and high cohesion also allow for the addition of other services to support
producers, such as geolocation services. Moreover, the Compost Barn data can be easily
viewed, which is managed by eLivestockController and pre-processed by parsers. These
parsers are present in the integration layer. They are scripts that we developed to handle
and process incoming data to ensure that it is sent in a normalized, organized, and

easy-to-visualized format in the graphs.

The eLivestockController communicates with the eLivestockAPI component (that
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Figure 7 - Component Diagram.
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can be considered as the Managing System), which is responsible for interacting with the
Model tier where the database is stored. This interaction takes place for both reading and
writing. Our architecture allows adding other databases by simply connecting them to the
eLivestockAPI. Furthermore, we have designed our architecture to be flexible, allowing
the connection to other APIs. This flexibility ensures that the system meets the demands

of different contexts.

Finally, the eLivestockAPI also handles requests related to the Intelligence tier,
which we will discuss in depth in the next section. Please refer to Figure 7 for the

component model used in implementing our architecture.

4.6 ARCHITECTURE DEVELOPMENT

We used Python and Javascript language to develop the components. We chose
Python in the parsing and intelligence layer due to the facilities for handling text files,

CSV, and spreadsheets. In addition, it also allows the manipulation of ontologies with
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the OWL2Ready? library and has several other libraries to implement AI models, such as
Scikit-learn*. We developed a RESTful API with Node.js (Javascript) for the integration
control tier and used a NoSQL database in the repository tier, i.e., MongoDB. This non-
relational database was chosen for the flexibility to create new collections and unstructured
data.

The communication between the parsing tier, external services, and the intelligence
tier was made via HT'TP request. Hence, we can concentrate and standardize the requests
in the architecture, regardless of the requested data. Thus, the Visualization tier can be
simplified and focused only on presenting data to users to support decision-making. To
present the dashboards, we developed a mobile application in Javascript, using ReactNative
framework, called eLivestock Monitor. The application is a visualization tool, where the

producer can consult farm data, perform intelligent analysis, and monitor the environment.

In the next section, we detail the intelligence processing in e-Livestock, considering

that this tier is the main contribution of the new architecture version.

4.7 INTELLIGENCE AND DECISION E-LIVESTOCK

Smart farm systems, or Agriculture 4.0 systems, support high connectivity through
connected sensors or IoT devices. In this type of system, we have a scenario composed of
sensors that share information about events, context information, and computer systems
capable of storing, processing, and analyzing data. Moreover, it is possible to connect
sensors, wired or not, and transmit status signals or even data related to the grain
production results or animals’ health, contextual information (such as environmental
conditions), and production process. A smart farm architecture uses these resources to
collect, store, process, analyze data, and adapt the system to the new detected and sensed

conditions.

Monitoring and collecting data from sensors are aggregated, preprocessed, and
stored before being sent to the intelligence tier. To process the information, e-Livestock
uses two techniques: inference processed over an ontology and predictions based on Machine
Learning (ML) algorithms. After preprocessing, it is possible to instantiate the data in
the ontological model and execute the inference mechanisms, processing SWRL rules.
Additionally, it is possible to compose a dataset with the stored data for training and

testing purposes for intelligent ML algorithms.

The Intelligence tier was developed to meet the requirements of flexibility (NFR003),
scalability (NFR004), and sustainability (NFR005). Hence, the architecture must be flexible
and allow the execution of different ML models. In addition, we promote scalability by

allowing new analyses and new sensors to be made and installed. The sustainability of the

3 https://owlready2.readthedocs.io/en/v0.37
4 https://scikit-learn.org/stable




45

architecture takes place through the self-adaptative capability and continuous training
of intelligent models (when new datasets arrive), which allows for keeping the insights
offered by the system (for example, prediction and estimation of sick animals) consistent
and up-to-date. Even if the pattern of the farm changes, considering the adoption of a
new breed of animals, or a new diet with components that have yet to be used, this should
not impact the system’s functioning. The architecture must be able to deal with change

and continue to offer results to support decision-making in this new scenario.

Therefore, to support these demands, we specified self-adaptive capabilities as a
new specialized component, part of the e-Livestock architecture, to support sensor data
analysis in the Agriculture 4.0 scenario. Figure 8 presents the main components of the
e-Livestock self-adaptive architecture, showing the scenario where the devices communicate
and the infrastructure provided for collecting, storing, and processing information. The
e-Livestock architecture solution encompasses two main components: the AS (Actual

System) and the MS (Managing System) as shown in Figura 1.

Figure 8 - e-Livestock self-adaptation main components.
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The AS system is responsible for the system’s day-by-day operation and data
capture. It has two main modules, i.e., “environment” and “knowledge acquisition”. The
first module, “Environment”, connects the sensors to the data network and transmits
sensor data. IoT devices connected to animals and other farm features, such as harvesters,
allow data such as health conditions or grain production efficiency to be computed and

transmitted through existing communication sockets. This module is also responsible for
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real-time capturing the context data from the environment and the closest operators so
that MS can create specific alerts for quick decision-making by the operators. The second
AS module, “Knowledge Acquisition”, has the “Pre-processing” component responsible
for data cleaning and formatting. After pre-processing, the data is processed by machine
learning. The architecture automatically performs clean-up and pre-processing tasks when
the system detects new sensor data. In this model, we have the devices connected to
a broker that acts as a dispatcher for [oT devices and connected sensors, and then the

subsequent data is stored on a server.

The Managing System (MS) encompasses an autonomous agent capable of detecting
environmental changes. When identifying that a sensor failed to read temperature data,
the system can automatically run the ontology reasoner to infer the data and keep the
system updated and cohesive. Another case in which the system adapts to the situation
is when milking data (milk production) is added or imported; the system automatically
performs training and then runs ML algorithms to update the dashboard showing the
(estimated) prediction of milk production based on the new data. In addition to milk
predictions, when registering new animals on the farm, the system instantiates the data in
the ontology. It performs inferences on the data of healthy and sick animals (with mastitis)

to organize the batches and predict milk production for these animals.

We can observe, from Figure 8, that there is an overlay between the IoT components
and the self-adaptive mechanism. The Actual system, which interacts with the environment,
relies on sensors and actuators so that [oT components feed reasoning and self-adaptation
mechanisms. The MS system provides strategic information to support the decision process.
The “Machine Learning” module analyzes animals’ or grain production and environmental
data to estimate the probability of production loss or animal disease, among other critical

events.

The data collected by the sensors are sent to the Ontology module to organize the
data. Based on logical rules, “SWRL Processing” provides information and relationships
that can activate the “Autonomous Agent”. Once sent to the Machine Learning module,
we can more accurately indicate the possibility of production loss or sick animals through
the semantic data extracted from Ontology. The “Autonomous Agent” can trigger alerts
or modify the AC, based on information from the previous two MS modules. Therefore,
the Autonomous Agent can search for the available devices or operators that must receive
the alerts and/or process changes directly on the devices or in the AC functioning, such
as turning on a temperature regulator or sending alerts to the harvesters” operator to
speed up the harvest, for example. As the sensors collect new data, the autonomous agent

continuously monitors the data to process it.

The ML module was designed to give insights based on the farm data set. These

insights are related to milk production, mastitis type classification, and food consumption
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estimation, to name a few. Based on the results from the ML algorithms, we can identify
gaps in the production, check the average consumption per animal and type of food and it
is possible to optimize the amount of adequate feed to be supplied to the animals. We
can contribute to a more sustainable farm as they can prevent food waste. With this
action, farmers can avoid spending unnecessary resources purchasing commodities such
as corn and soybeans, reducing the economic impact on the farm. Figure 9 presents the

component diagram of the Intelligence service.

Figure 9 - Intelligence Tier Component Diagram.
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The Intelligence service includes two modules. The first module, Ontology.owl, uses
Pellet as Reasoner’s algorithm to make inferences and save the results in an OWL file. The
second is Machine Learning Prediction, which exports the trained algorithms in the pkcls
extension. These two modules communicate with the Integration tier through a Python
API called eLivestock-api-ml. This API was developed using the Flask library and received
all requests related to the Intelligence tier from the Integration tier (eLivestockAPI). The
eLivestock-api-ml API can also communicate directly with the database, offering more
performance when instantiating the ontology. You don’t need to go through the Integration
tier when you query data. This communication was possible thanks to the PyMongo®

library.

In the following sections, we detail the “Ontology Model” and “Machine Learning”
modules of the e-Livestock architecture, considering their importance to the e-Livestock

architecture.

> https://pymongo.readthedocs.io/en/stable/
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4.7.1 Decision e-Livestock Ontology

The ontology model was designed to capture the relationships between data for
dairy cattle. The use of ontology helps to understand how data is connected and to generate
better datasets that can be sent to ML algorithms. Through inference mechanisms, we
can fill gaps instead of discarding data during training Al algorithms. Figure 10 illustrates

a partial view of the ontological model.

The entities represent animals, agents are the farmers/researchers/producers, and
activities are any action carried out on the farm. Activities can be described as insemination,
milking, or processing data. With this model, it is possible to identify the data sources
and the interactions that researchers and farmers carry out. As a result, it is possible to

track decisions related to these specific activities.

Figure 10 - DairyCattleOntology main classes and associations.
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To implement the model shown in Figure 10, we used Ontology Web Language
(OWL) 2.0. The ontology model is based on Competency Questions (CQ) to accommodate
dairy cattle production necessities. A CQ is a natural language sentence expressing a
pattern for a question that people/computational applications expect an ontology to
answer (Uschold and Gruninge, 1996). We elaborated on these CQ based on interviews
with researchers and farmers and documents related to the Compost Barn production
system. We used ontological concepts, including their classes, relations, and inference rules
to answer these CQ. The ontology model was developed to help producers make decisions

based on data. The Competency Questions describe what was expected from the ontology



49

to answer in the dairy cattle domain considering the e-LiveStock architecture. Through

this model (Figure 10), we provided the following Competency Question (CQ).

(CQ1) How much was an animal’s production reduced due to inflammation (mastitis)?
(CQ2) Did the average production of an animal drop due to a temperature change?

(CQ3) Did the temperature variation make the animal spend more energy maintaining body

temperature than producing milk?

(CQ4) Did the average mastitis cases grow due to increased humidity, favoring the prolife-

ration of environmental bacteria?

Considering ontology, we used object properties (OWL constructs) to implement
the relationships between classes. To answer CQs and discover new associations between
farm activities and animals, we created SWRL rules (Chen et al., 2021). We built the
specific rules (Figure 11) and executed them (Figure 12) based on information from
Compost Barn, provided by researchers from the EMBRAPA.

Figure 11 - SWRL Rule — Assessing Temperature and Humidity..

humidity_rule.set_as_rule("""Measure(?m), internal_measure_value(?m, ?v), greaterThan(?v, 95)
-> is_alert(?m, 1)""")

temperature_rule.set_as_rule("""Measure(?m), internal_measure_value(?m, ?v), greaterThan(?v, 23.5),
lessThan(?v, 45) —> is_alert(?m, 1)""")

sickcow_rule.set_as_rule("""Cow(?x), is_mastitis(?x, ?7m), equal(?m, 1) —-> SickCow(7x)""")

supercow_rule.set_as_rule("""Cow(?c), DairyMilk(?d), cow_milked(?d, ?cm), dairy_value(?d, ?v)
greaterThan(?v, 3@), is_mastitis(?c, ?m), equal(?m, @), SameAs(?c, ?cm) -> SuperCow(?c)""")

Source: Prepared by the author (2023)

By utilizing the stated model (explicit knowledge) in conjunction with the incorpo-
ration of particular SWRL rules (depicted in Figure 11) and an inference mechanism, our
ontology model deduces the relationships among instances in response to the activities
transpiring on the farm (implicit knowledge). These relationships are new knowledge
from processing SWRL rules and inference engines about ontological instances. The
“humidity rule” infers an alert for humidity, and the “temperature rule” infers an alert for
temperature. The “sick cow rule” looks for animals that have mastitis and classifies them
as sick animals. The “super cow rule” seeks cows with good milk production and ranks

them as super cows.

Figure 12 depicts the outcomes derived from the ruleset as follows: Rule S1 infers

milked animals; Rule S2 looks for animals with mastitis for which the milk has been
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Figure 12 - SWRL Results.
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Name Query
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Source: Prepared by the author (2023)

discarded; Rule S3 looks for milk discards caused by mastitis; Rule S4 seeks milk production.
By mixing the rules and combining their results, we can answer the CQs. To answer
CQ1, we can run Rule S2 to get the animals that mastitis events discard the milk. The
“temperature rule” and Rule S1 can answer CQ2, which returns the list of animals milked
and those days with higher temperatures. A crossing between these two lists can justify
the reason for low production. The “temperature rule” also answers CQ3. Through the
“humidity rule” and Rule S3, we can find those milk discards caused by mastitis (CQ4).

For instance, we need to combine ontology with machine learning to calculate
future milk production according to the month of the year and based on the weight of an
animal. Due to the need for consistent meteorological data throughout the year, ontology
inferences can provide the necessary data to fill these missing columns. Once we fill these
gaps, we can send them to ML algorithms alongside the animal’s weight and then make

the correct milk prediction.

4.7.2 Predictions Based on Machine Learning Algorithms

The machine learning module was created to enable comprehensive data analysis
on farms, providing valuable insights for decision-making. Simply presenting data on
dashboards is not enough to help producers make decisions. Through machine learning,
we can provide milk production projections, identify potential sick animals, and suggest

the most suitable diet to increase milk production.

To implement the machine learning module, we started by using a tool called

Orange Data Mining®, which is an open-source data analysis tool with a diverse range of

6 https://orangedatamining.com/
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classification and regression algorithms. Despite its graphical features and the ability to
export pre-trained algorithms, it did not allow for automated training. This meant that
every time we needed to train the data, we had to manually update the algorithms and

export them for application use.

We decided to develop the machine learning module using Python and Scikit-learn,
which allowed for automated training with a list of algorithms and the selection of the
best-performing one. This library also offers more advanced techniques such as natural
language processing, shrinking sets of plain text items, and managing association rules, as

well as various intelligent algorithms for classification and regression.

The architecture was designed to support a list of ML algorithms, aiming to support
the treatment and manipulation of data for training. Hence, if we need to add a new
feature, we can extract the entire set of data from the database. For example, if it is
necessary to predict the weight of the animals in a herd for the next month, based on their
diet, we can query the list of all animals in the herd in the database, the data referring
to their feeding, the history of weight and sort by date. After extracting and formatting
the data, it is necessary to train the algorithms. It is enough to perform the ML training
with the dataset, which in the end will automatically select the algorithm with the best
precision for the analyzed problem. Different algorithms may present different performance
and accuracy for each problem. However, the architecture will select the one with the
lowest mean absolute error (MAE). The Intelligence tier relates to the storage tier by the

API, so the ML module has access to data through the controllers of the integration tier.

According to the NFR0O02 extensibility requirement, the architecture can accom-
modate new controllers and provide new endpoints for the Intelligence tier to access more
farm data. The original architecture project contains mechanisms that facilitate system
expansion, as creating an endpoint and connecting it to the Intelligence tier is all that is
necessary to provide data access. New intelligent functionalities can be developed, and
the data from the endpoints can be consumed, enabling future system growth. Flexibility
(NFRO003) is an attribute that reflects the range of behaviors that the existing system can
be configured to meet. If producers require insights that the system does not provide,
this functionality can be created to meet the demand. Therefore, training takes place
within the architecture to dynamically provide algorithms with better results and accuracy.
Finally, the NFR004 scalability requirement considers adapting the architecture to new size
and scope specifications. A non-relational database was chosen to meet this requirement
due to the ease of adding and changing fields without causing significant changes to the
application. Therefore, if new predictions are necessary, the architecture is ready to scale,
whether by storing new sets of different data or increasing the list of available intelligent

algorithms.

The construction of the data processing steps by intelligent algorithms begins with



52

the collection of raw data from the farm. First, it is necessary to pre-process this data.
Many datasets enter the system through the reading of spreadsheets, so for each row of
the file, data is processed. There are several methods for handling the preparation and
transformation of the initial data set. All those methods are done automatically. The

methods used in the architecture can be divided into:

1. Data cleaning, which consists of filling in missing values, identifying, or removing

outliers, and resolving inconsistencies;

2. Data integration, it may be necessary to aggregate from other data sources, such as

temperature data, which may cross with meteorological station data;
3. Data transformation is the process of normalization and aggregation, and finally;

4. Data reduction, when representation is reduced in volume, but produces the same or

similar analytical results.

During the process of data cleaning, ontologies can be used to add missing data
through SWRL rules and derivation mechanisms, as presented in Figure 11. Additionally,
the Integration tier aids in this process by aggregating external sources. For the scope
of this project, we used the National Institute of Meteorology API as a supplement
to temperature and humidity data. By enabling the integration of other sources, we
adhere to the principles of dependability (NFR001), flexibility (NFR003), and scalability
(NFRO04) as the architecture can communicate with other systems as required by the
system, thus providing new data for subsequent intelligent algorithm processing. The data
transformation process is critical to normalize data units, such as converting grams to
kilograms or milliliters to liters. Data reduction, on the other hand, involves eliminating

duplicate entries. Once the data is prepared, it is persisted in the database.

Through the Integration tier, we can connect the database tier with the Intelligence
tier. Consequently, the architecture allows the creation of custom queries to retrieve data
from more than one table or collection, thereby generating a dataset to be used by ML
algorithms. Each feature, such as predicting milk production, may require one or more
types of data, such as milk production history and animal weight. Therefore, it is essential

to organize the data first and then send it to the Intelligence tier.

The controllers are responsible for querying the database, sorting, and aggregating
related entities. Omnce organized, this data can be written to a dataset and exported
in CSV, TXT, or XLS formats. With the generated dataset, we can train intelligent

algorithms and test each of them to evaluate their accuracy.

The training process begins in the ML module by ensuring that the dataset is
available and specifying the number of inputs and expected output type. The default
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Figure 13-A - Running list of algorithms.

def run_all_models():
print("Trainning....")
values = { 'start': 1, 'end': 2} # peso
label = 2 # leite
X_train, X_test, y_train, y_test = split_train_data('data/pesoXleite.csv', values, label)

print("RandomForestRegressor: ")
regressor = RandomForestRegressor(n_estimators=200, random_state=0)
run_model(BASE_NAME+"RandomForestRegressor.pkcls", regressor, X_train, y_train, X_test, y_test, "Random Forest")

print("\nNeural Network MLPRegressor: ")
regressor = MLPRegressor(random_state=1, max_iter=500).fit(X_train, y_train)
run_model (BASE_NAME+"MLPRegressor.pkcls", regressor, X_train, y_train, X_test, y_test, "Neural Network")

print("\nKNN KNeighborsRegressor: ")
regressor = KNeighborsRegressor(n_neighbors=2)
run_model (BASE_NAME+"KNeighborsRegressor.pkcls", regressor, X_train, y_train, X_test, y_test, "KNN KNeighbors")

print("\nKNN RadiusNeighborsRegressor: ")
regressor = RadiusNeighborsRegressor(radius=1.0)
run_model (BASE_NAME+"RadiusNeighborsRegressor.pkcls", regressor, X_train, y_train, X_test, y_test, "KNN Radius Neighbors")

print('\nAdaBoostRegressor: ")
regressor = AdaBoostRegressor(random_state=@, n_estimators=100)
run_model (BASE_NAME+"AdaBoostRegressor.pkcls", regressor, X_train, y_train, X_test, y_test, "AdaBoost")

Source: Prepared by the author (2023)

Figure 13-B - Saving results.

def run_model(name, model, X_train, y_train, X_test, y_test, algorithmLabel):
try:
regressor = model.fit(X_train, y_train)
save_model("./models/"+name, regressor)
y_pred = regressor.predict(X_test)
mean, mse, rmse, r2 = getErro(y_test, y_pred)

postObj = {
"name": algorithmLabel
"fileName": name,

"desc": "Predict the animal's milk production based on the weigth",
"type": "peso",
"mse": mse,

"rmse": rmse,
"mae": mean,
"r2': r2;
}
saveData(postObj)
return y_pred, mean, mse, rmse, r2

except NameError:
print(NameError)

Source: Prepared by the author (2023)

parameters were used for each training. The training process starts by testing the entire
dataset for each available algorithm on the list. Metrics such as Mean Absolute Error
(MAE), Mean Squared Error (MSE), and R? are recorded for each algorithm, along with
the algorithm name, prediction type (goal), a brief description, and the path to the trained
algorithm (which will be utilized later by the application). A code snippet in Python for
training an algorithm for predicting milk production based on animal weight is presented

in Figure 13-A, and the Python function encoded to send the statistical results of each
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trained algorithm to the API is shown in Figure 13-B.
The algorithm with the lowest MAE is selected at the end of this process and used

by the application, which in the context of this study is a mobile application. However,
the algorithm remains available for use by any other application that consumes the
architecture’s API. This satisfies the extensibility (NFR002) and scalability (NFR004)
requirements. Figure 14 depicts the data processing stages, from the entry into the

architecture to the selection of the algorithm to be utilized by the application.

Figure 14 - e-Livestock Workflow.
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Source: Prepared by the author (2023)

4.7.3 e-Livestock In Action

An example of the data used during testing and training for a milk production
prediction model can be seen in Figure 15. We used weight (kg), the month in numerical
form, and the milk produced (L). Using this dataset containing milk production for a
whole year, we can train several ML algorithms to identify the most appropriate approach,

the one that provides the best prediction.

Figure 15 - Training data for milk prediction.

AnimalID  Weight  Milk production  Month
1428 650 34.95 2
2414 653 | 21.27 2
2592 493 ! 25.3 2
3122 639 ; 40.55 2
3142 | 639 | 23.5 2
3148 605 | 46.33 2

Source: Prepared by the author (2023)



95

Intelligent processing can be divided into three main stages. The first step involves
receiving a set of data for training purposes to test various intelligent algorithms and
record the accuracy of each. In the second step, the trained algorithms are ready to be
used, and the architecture’s API automatically selects the most suitable one. The third
step aims to promote the sustainability of the architecture by receiving updated data to
be processed. Then, the first and second steps are repeated: training, testing, and defining

the algorithm with the best results. Figure 16 depicts the flow of steps 1, 2, and 3.

Figure 16 - Training, test and result.
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Source: Prepared by the author (2023)

The training focused on predicting milk production on the farm, as it is the
most important asset for dairy farms. Figure 17 shows the training visualization for
milk prediction based on animal weight. After training, we compared the algorithm’s
predictions with milk production data to determine the highest accuracy. Figure 17
presents an example of the results for July, displaying the algorithm’s outcomes, data, and

metadata, such as the average error for each animal.

Given the results, we can store the training metadata, save the model with the best
result, and use it in the architecture. As the Intelligence tier communicates with eLivestock
via API, sends the input data, and the algorithm will respond with predictive data. By
storing the metadata of training and testing of intelligent models, such as information on
average errors, model type, and input data, it is possible to analyze and discover the best
predictive model for a given data set. Using smart models, producers can have predictions
and investigate animals that are not producing as expected, improving the animal’s quality

of life, food, and health. Hence, the producer can prevent diseases and ensure animal
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Figure 17 - Test Results — Milk x Weight.

Neural Network | Random Forest Prod.Leijte Brinco Peso date
1 23.40 3248 [89:87 ] 1069 764 7
2 18.42 37.02 (4840 1428 661 7
3 16.30 35.83 (8878 | 2592 569 7
4 8.1 2673 4877 | 3030 653 7
5 18.30 33.64 (81472 | 3038 658 7
6 18.49 25.05 [60:80 1 3122 663 7
7 17.26 3s.10 4180 3148 629 7
9 16.43 33.23 (8287 3785 594 7
10 19.41 35.29 (39200 3789 685 7
n 21.33 47.00 (8947 " 4076 727 7
12 23.15 3150 (2877 am 760 7
13 23.15 3150 (3840 a7 760 7
14 21.43 a194 3073 4123 729 7
15 21.97 20.67 (4278 | 4136 739 7
16 17.96 3471 (8228 4158 649 7
17 22.57 3420 331200 5078 750 7
18 19.81 30.17 (8437 5108 694 7
19 17 50 2916 ldeen 1 5109 636 7
Model MSE RMSE MAE R2

Neural Network 379.863 19.490 17.503 -3.960
Random Forest 98.621 9.931 7945 -0.288

Source: Prepared by the author (2023)

welfare. A new dataset can also be added through the external services tier to help in the
predictions. Once the smart model is trained and is ready to use, it can request input data
from the API and send the results generated by the model back to the API. The metadata
used by the model is captured during this communication between the ML module and
the API. The next chapter will detail each phase, describing a historical study conducted

on a specific experimental farm.

4.7.4 Ontology and Machine Learning Altogether

Previously, we discussed how ontology could be used to extract semantic knowledge
from data, perform inferences and derive relationships between entities. We also explained
the ML module and how training and prediction are conducted within the architecture.
While these approaches can contribute independently, one of the advantages of the
architecture is the ability to combine both to offer the complete decision support possible,

given the available data.
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Thus, we can extract the data inferred by the ontology model and use SWRL rules
to filter and select a more enriched dataset for ML training. In addition, we can use
ontology to select the best input data to provide consistent predictions that reflect results
closer to the reality of the producer. For instance, if milk production is calculated by
adding up all milkings for the month minus the milk discarded from sick animals, we can
use ontology to extract only healthy animal input data and make a prediction of total

milk production, considering the sick animals that didn’t contribute to the final sum.

Another advantage of using ontology with ML is to derive data from semantic
relationships. This data can identify later events related to the farm environment. For
example, in case temperature and humidity sensors fail for various reasons, either due
to mechanical or electrical failure or even being damaged by the animals, we can derive
missing data by relying on the relation between the external temperature we can collect
through the INMET API, and the temperature data collected by the sensor inside the
farm. This complete dataset can be used to train intelligent algorithms that predict the

weather conditions of that specific farm.

To demonstrate that the architecture can execute both ontology and ML approaches,
we have developed a feature capable of predicting the farm’s milk production for the
month based on the animals’ weights. First, we remove mastitis-contaminated animals
from the herd. To achieve that, we use SWRL rules to define sick animals, super producers,
and "typical"animals, which are not sick and have an average production below 30L of
milk. Then, we separate the weight data of each animal and send it to the ML module to
predict each animal’s milk production. Finally, we summarize all production to reveal the
expected liters of milk for the month to the producer. Figure 18 presents the code snippet

of the main function that extracts data from ontology to send to the ML algorithm.

Figure 18 - Prediction with ontology data.

@app.route('/api/predict/animal/lote/leite', methods=['POST'])

def api_animal_lote_leite():
onto = get_ontology("./new_provcow.owl").load(reload_if_newer = True)
data = ontology.getAnimalsPeso(onto)
listResult = []

for peso in data:
req = [{'Peso': peso}]
df = pd.DataFrame(req)
result = predict.predict_milk(df)
result = {"input": peso, "result": result[e]}
listResult.append(result)

return jsonify(listResult)

Source: Prepared by the author (2023)
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4.8 FINAL REMARKS OF CHAPTER

This chapter presented the architectural project, its requirements, Design Science
cycles (DSR), and detailed architectural design. The Intelligence tier of the architecture

was described, including the use of ontologies and machine learning techniques.

This Intelligence tier was developed in the second cycle of DSR, where we enhan-
ced the architecture by developing the intelligence capability and conducting a second
evaluation. We sought to improve intelligence-based decisions by supporting predictions
and semantic relationships. Questions that cannot be answered with ML alone were
answered through inference algorithms that the ontology allows. ML provides a predictive
view of milk production, while ontologies provide a retrospective view of production data.
Producers can make more informed decisions by combining these approaches into a single
one, presenting both predictive and retrospective views with graphical support, producers

can make more informed decisions.

Machine learning techniques are effective when large datasets are available for
training, and ontology helps the farmer by filling in missing data. Another example of
combining ontology with ML techniques would be detecting a possible mastitis epidemic.
By classifying sick animals through ontology and querying them from the database, we
can use ML to predict the number of potentially sick animals per batch. Hence, combining

both intelligence approaches provide more accurate predictions.

Next, we will present a historical study using real farm data to evaluate the

architecture. The results will also be presented and discussed.
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5 EVALUATION OF ARCHITECTURE E-LIVESTOCK

This chapter describes the evaluation of the e-Livestock architecture. As stated
before, this study was based on the Design Science Research (DSR) methodology. In the
study, we instantiate the e-Livestock architecture in an experimental farm, in partnership
with Embrapa — Gado de Leite, in Coronel Pacheco, MG. The design cycle (build/evaluate)
is the heart of every Design Science research project and where the most intensive work
on DSR is done (Hevener, 2007). The entire research process must be described, and
rigorous methods must be applied in constructing and evaluating the artifact. The rigor
of the research is derived from the effective use of the knowledge base, which is the set of
fundamentals and methodologies necessary for carrying out the research. In each cycle
of the case studies, the execution of the evaluation generated scientific knowledge. This
knowledge helped in the construction of new versions of the services that compose the
e-Livestock architecture. The construction of the artifact is done through an iterative
process. At each iteration, it was evaluated whether the artifact matched the requirements
and whether it solved the problem. Furthermore, the artifact was refined to obtain more
accurate results. It is a typical procedure adopted in design solutions in which the design

activity variates between conceptual and practical activity.

Finally, we analyzed whether the architecture supports decision-making on the farm
through the results obtained. To conduct the study, researchers need to collect the data
generated by sensors on the experimental farm, to monitor production data and analyze
how this data can support decision-making regarding animal production. Therefore, we

conducted historical research using the data collected in 2020 and 2021.

5.1 METHOD

The goal of our research was to analyze the support to monitor the environment,
reason on data, and automate actions from the researcher’s/farmers’ point of view, in
the context of a smart farm system. From the scope, we defined the following research
question RQ: “How can e-Livestock support automated monitoring reasoning and actions

in smart farms?”.

As such, we claim that to be reliable, an instantiation of the e-Livestock architecture
should result in some insights into the environmental conditions under which the e-Livestock
operates, considering both its surrounding environment (such as external and internal
temperature) and animal’s health conditions (such as mastitis and milk production).
According to the DSRM (Design Science Research Methodology), we must follow: Definition
of the problem; Literature Review and Search for existing theories; Suggestions of possible
solutions; Development; Evaluation; Decision on the best solution; Reflection and Learning;

and Communication of results. Considering the DSR methodology, we adapted Figure 19
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to illustrate the evaluation elements in DSR for this work.

Figure 19 - e-Livestock Architecture Assessment DSR Element Map.
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Nota: Adapted Figure.

Based on the theory found in the literature mapping (theoretical framework), we
developed and evaluated an artifact capable of supporting decision-making. The evaluations
aimed to verify the following: i) if the artifact works; ii) if the theoretical conjectures
align with expectations; and iii) if the artifact (architecture) helps in decision-making
on the farm. Based on the evaluation results and the scientific knowledge acquired, we
confronted the theoretical conjectures raised during the literature review. We perform
one more interaction, improve the artifact and re-evaluate it. Finally, we assess whether
the architecture answers the research question (RQ) to improve decision-making on the
farm, considering more complex analyzes supported by machine learning and ontology. To

communicate results, we publish some articles about the cycles through conferences and
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workshops related to computer science and agriculture (Gomes et al. (2021); Gomes et al.
(2021); Gomes et al. (2022)).

Figure 19 shows the e-Livestock Architecture Assessment DSR Element Map. The
theoretical approach of the research (elements on the right side of Figure 19), the artifact
(elements on the left side), and the application context (elements at the top of Figure 19)
are also shown. This separation highlights the correlation between technological-applied

development and scientific-theoretical knowledge.

According to the Theoretical Framework presented in Figure 19, the architectures
presented in works found in the literature need to be prepared to deal with a complex
domain whose context can change quickly. In precision livestock, new sensors can be
installed on the farm; new animals can arrive in the herd, and weather conditions can
change throughout the year. Even so, the systems must continue functioning correctly,
supporting producers in decision-making. Complex decisions, such as mastitis, are usually
costly for the farm; effective control and prevention are necessary to represent a drop in
milk production and even the loss of animals (animals diagnosed with chronic mastitis are
usually discarded from the herd). So, the architecture must allow the construction of a

decision support system for smart farms, considering the adversities of the domain.

We implemented two cycles. In the first cycle, we built the e-Livestock architecture
to monitor the Compost Barn environment and performed a case study to evaluate the
architecture. In the second cycle, we developed an Intelligence tier and conducted the
second case study to answer the research question. The case studies refer to a scenario
where the solution provided decision support and analyzed data from various farm sectors
related to dairy cattle. This scenario assumes that milk production is the focus of the
data. Healthy animals that eat properly have adequate weight and have no disease making

them more efficient in increasing dairy production.

5.2 EVALUATION SCENARIO

A case study was developed to evaluate using the e-LiveStock architecture in a
real-world context (Yin, 2015). The case study was conducted according to the following
steps (Runeson and Martin, 2009): (i) case study design (preparation and planning for
data collection), (ii) execution (collection of evidence), (iii) analysis of collected data,
and (iv) reporting. Our case study scenario consists of data monitoring, collecting, and
processing and then analyzing the data from a production system called Compost Barn,
located at Embrapa — Coronel Pacheco, Brazil. We used data from sensors (6 different

types) collected by researchers from Embrapa between 2020 and 2021.

The environment includes a covered and ample physical space for the cows to
rest. The area is lined with sawdust, scrap wood, and composted manure. This space

has sensors to monitor the temperature and humidity of the environment. The data is
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available on GitHub”

Figure 20-A - Animal with a neck sensor at Compost Barn.

Figures 20-A and 20-B show the interior of the Compost Barn in the experimental
farm at Coronel Pacheco, where we can observe the animals and the sensors used. Conti-
nuous monitoring allows for adjustments in the animals’ living conditions and increases

animal welfare.

5.3 CASE STUDY 1 (FIRST DSR CYCLE)

After analyzing the theoretical conjectures from the literature mapping, we built
a layered architecture. Therefore, we developed an External Services and Integration
tiers to communicate with the architecture. The External Services tier is related to the
architecture’s extensibility since the architecture can extend and consume data from any
external services that communicate via the HT'TP protocol. We developed these tiers
to meet the functional requirements FR0O01 and FR002, where the architecture must be
capable of processing different Compost Barn datasets and integrating external sources’
information, such as weather services and geolocation, of aiding in farm data enrichment.
Requirements FR004 and FR005 refer to the storage and visualization of Compost Barn

data, respectively.

For the non-functional requirements, we have NFR001 and NFRO002, where the
solution must allow communication with external data sources and meet the extensibility
attribute. This way, the architecture can accommodate the system’s future growth, in-
tegrating with other services, adding more sensors and new data sources, and enabling
different visualization types on various devices. Regarding NFR003 and NFR004 requi-
rements, the architecture must respect flexibility and scalability principles, respectively.

Flexibility is an attribute that reflects the range of behaviors that the existing architecture

T https://github.com/jjthegomes/elivestock
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Figure 20-B - Sensors at Compost Barn.

Source: Prepared by the author (2023)

can be configured to meet, such as processing animal health data, milk production, and
environmental data. Scalability considers the system’s adaptation to new size and scope

specifications, allowing for the addition of new data sources.

After instantiating the architecture, we prepared the data, collected, analyzed, and
reported case study 1. Each step is presented below, and the results are discussed at the

end.

5.3.1 Stages of Case Study 1

We conducted Case Study 1 (CS1) in three stages. Firstly, data preparation was
done through pre-processing, where we formatted and removed uncollected or incomplete

data. Secondly, we imported and stored the data so that it could be made available through
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a dashboard. Finally, we constructed a dashboard through which users could visualize
the farm data in graphs and evaluate if the system would assist in decision-making. The
first stage was crucial as it involved working with raw sensor data. For this case study,
the datasets entered the system by reading spreadsheets, and we applied data treatment
for each row of the files. This parsing process takes place at the sensor tier. Various
methods handle preparing and transforming the initial data set (Vassiliadis et al., 2002).
The architecture used the Extraction, Transformation, and Loading methods for this case
study since we had multiple data sources and needed to transform the data into a suitable

format for analysis.

In the second stage, we stored the processed data in the database. Working with
spreadsheets, we performed all pre-processing in memory, and at the end of processing each
file, we sent the data set to the API via HT'TP request. Data integration occurs when it
is necessary to aggregate data from many sources, such as external temperature data from
the farm. Therefore, for this case study, we used the INMET API to provide meteorological
data for the city of Coronel Pacheco, where the farm for this study is located. The INMET
API provides data on maximum and minimum temperature, maximum and minimum
humidity, wind speed and direction, the current season, and other data. Although any API
that provides meteorological data could have been used, we opted for INMET because there
is a meteorological station in the city where the farm for this case study is located. Initially,
we chose OpenWeather, but the accuracy of INMET’s results presented more consistent
and precise data. However, the architecture could handle multiple data sources, allowing
comparison and cross-referencing of data from different APIs. Figure 21 presents internal
data (from sensors) and external data (from the INMET API) for both temperature and
humidity on January 1st, 2022.

Once the data had been organized and stored in the database, we used the
visualization tier to display farm data in dynamic graphs. Furthermore, we created
an interactive dashboard to present the data at various granularities. For this first cycle,
we employed ThingsBoard® as a visualization tool. ThingsBoard is an open-source server
platform that enables the monitoring and control of IoT devices. It is free for personal and
commercial use and can be deployed on any computer. ThingsBoard offers an IoT solution
that is ready-to-use in its server infrastructure. The advantage of ThingsBoard is that it
supports MQTT, CoAP, HTTP, and LwM2M protocols. Additionally, the ThingsBoard
platform is horizontally scalable. Each server node in the cluster is unique, and scalability
is achieved through a consistent hashing load-balancing algorithm among the nodes in the

cluster. The actual performance is contingent upon the device usage scenario.

We collected farm data, processed, stored, and visually presented it. We verified

whether the e-Livestock artifact dealt with the problem of assisting decision-making on

8 https://thingsboard.io/docs/
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Figure 21 - Example of Indoor and Outdoor Temperature and Humidity Data.
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Source: Prepared by the author (2023)

the farm. For this purpose, it was necessary to analyze the information available on the

dashboard from the farmers’ perspective.

5.3.2 Conducting Case Study 1

To evaluate the first DSR cycle, we created a dashboard containing different graphs
representing the farm’s processed data, such as feed consumption, mastitis incidence, and
total consumption (kg) per batch of animals (herd). Figure 22 presents a screenshot of
the dashboard on ThingsBoard, through which it is possible to see in the first pie chart
the different degrees of mastitis and the percentage of animals affected concerning all
animals on the farm. By positioning the mouse over each part of the graph, it is possible
to visualize the precise values of the graph. This analysis allows the producer to visualize
the animals’ health in general. With that information, we devise an action plan to reduce
mastitis and track the effectiveness of the plan as animals recover and fewer animals fall ill.
The opposite would also be valid since noticing that many animals are sick could indicate

a mastitis epidemic and thus allow producers to act before the situation gets worse.

On the right in Figure 22, it is possible to see the bar graph showing each batch’s
total food consumption through the different colors. It was observed that batch 2 had a
much higher consumption than batch 1 and 3. Something unusual, as batch 3 contains

the animals that produce more milk, leads to the conclusion that animals from batch 2
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may be receiving an inappropriate diet. However, the rearing and pre-calving batches had
a lower consumption; something expected considering that they are young animals. At
the bottom of the graph, we present some of the components in the animals’ diet, such as
the consumption of Soy, Cornmeal, and Hay, in pie charts, in which we can observe the
consumption categorized by batch. Each color represents a batch; the percentage refers to
the farm’s total consumption. In this case, we can see that the pre-calving batch does not
consume cornmeal. However, it consumes more hay than the rearing batch, for example.

This fact is because prenatal care animals have a different diet than others.

Figure 22 - ThingsBoard with Evaluation Data — Mastitis and Diet.
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In addition to displaying food consumption and mastitis data, we also created a

-

dashboard to display data on the environmental conditions of the Compost Barn. Figure
23 presents a line graph showing the indoor temperature (blue line) and humidity (green
line). It’s possible to view two cards that show the outside temperature (orange) and
humidity (light blue). To the right of the cards, we have a map showing the geolocation
of the temperature sensors on the farm. By visualizing the sudden drop in humidity on
the graph, producers and researchers could intervene in the environment and investigate
in real-time what was happening. Upon realizing it was a sensor failure, adjusting and
repositioning the sensor in the correct position was quickly possible, causing it to measure
humidity correctly again. Thanks to the dashboard and sensor monitoring, actions could
be taken to improve the environment quickly and efficiently, generating more animal

comfort and, consequently, a better production result.
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In addition to charts, we also set up alarm rules in ThingsBoard. For example,
suppose the temperature reaches a high value, such as 34 degrees Celsius. In that case,
we can trigger an alarm via email and SMS so the producer can immediately intervene
in the environment physically. The same goes for humidity. A high humidity level can
indicate that the shaving bedding, the organic material on which the animals lie, needs
maintenance. This worry arises because high humidity levels can favor the proliferation of
environmental bacteria that cause mastitis. Monitoring temperature and humidity are
essential to maintain animal welfare, as a lack of control in the environment can cause

discomfort, stress, and, consequently, a drop in milk production.

Figure 23 - ThingsBoard with Evaluation Data — Temperature and Humidity.
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Since the Compost Barn production system has internal measuring equipment
installed in the building and exhaust fans to control the temperature, we can support the
decision to turn on/turn off this equipment based on rules to analyze the environment. The
ideal environmental condition is that the internal temperature is 5 degrees less than the
external temperature of the environment. We can turn on more hoods as the temperature
increases to cool the environment. If a temperature exceeds the limit of 34° C, the system
can communicate through the Integration tier with external services and trigger an audible
alarm. Figure 24 partially presents a dataset of internal temperature from the environment,
captured by the farms’ sensors and used in this evaluation. The colors indicate a heat

map: colder blue, normal green, medium yellow, and high orange.

Maintaining a cool environment for dairy cattle is important for several reasons.
One reason is that cows are more comfortable and less stressed when kept in a comfortable
environment, which can improve their overall health and well-being. A cool environment
can also help reduce the risk of heat stress, which can occur when cows are exposed to

high temperatures and humidity. Heat stress can lead to several negative effects on cows,
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Figure 24 - Internal temperature data.
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such as reduced milk production, and increased disease risk. Cows produce more milk
when comfortable and not stressed; a cool environment can help keep cows calm and
relaxed. Overall, maintaining the environment for dairy cattle is important to their health
and well-being and can help optimize milk production and improve farm efficiency and

profitability.

5.3.3 Analyzing Case Study 1

Through case study 1, we verified whether the architecture supports decision-
making in the smart farm based on data monitoring. We could also check if the theoretical
conjectures and requirements were aligned with the solution (artifact). Figure 25 presents
an overview of this first DSR cycle. According to Figure 25, observing the six data
sources used in the case study is possible. The animal dataset contains information
identifying the animal, its batch, and its birthdate. Dairy control data includes milking
carried out throughout each month. The scale sensors that weigh the animals collect the
data from “Casale Vagao”. The indoor environment data is collected from the SMAAI
sensors (temperature and humidity). Feed data contains the amount in kilograms of each
component of the animals’ diet, such as corn, soybeans, cotton, and hay. Animal health
data were made available from an internal Embrapa’s system, whose records indicate the
incidence of mastitis, the type of bacteria, the severity of the disease, and the medication

used.

By integrating different datasets and making them available for visualization, we
verified that the architecture met the extensibility, flexibility, and scalability requirements.

Because as new data arrived in the architecture, it could process different types of data
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Figure 25 - First Cycle DSR Overview.
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and store and make data available to users with satisfactory performance. In addition, we
verified that adding different external services to complement the decision-making process

is possible.

A system can be considered extensible if it can be easily adapted to meet the
constantly changing needs or requirements and can be modified without significant redesign
or rework (Amorim et al., 2013). In this regard, the architecture has demonstrated its
ability to easily extend or modify to add new features, services, and datasets without
major changes. A flexible system can handle various inputs and be used in various ways
without requiring significant modifications (da Silva Amorim et al., 2014). Regarding
flexibility, the architecture can be used in multiple contexts, such as feeding, animal
health, milk production, and environmental conditions. Finally, regarding scalability, the
system has handled increasing amounts of workload or data without experiencing a drop
in performance. A scalable system can maintain its performance as the size or complexity

of the workload or data increases (da Silva Amorim et al., 2014).

The sensor data integrated with environmental context data are presented to the
farmers through graphs and alert notifications, helping in the decision-making. Also,
they have an overview of the environment being monitored. Through the dashboard
interface, triggering alarms based on rules was possible. For example, device “A” performs
a temperature reading of 34° C that exceeds the defined limit. As a result, a “High
temperature” alert is generated. Each alarm’s severity can be defined as Critical, Main,
Secondary, Warning, or Indeterminate (ranked by priority in descending order). Users
could also receive alert notifications via SMS and email. We used the INMET website to
collect the external temperature/humidity at the Compost Barn. By analyzing context

data, such as external temperature and climate forecasts, farmers could make more precise
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adjustments, automating the process of starting exhaust fans. As a result, it was possible

to avoid sudden changes affecting the animals’ production.

Therefore, the e-Livestock architecture could process Compost Barn data adequately.
However, the results cannot be generalized, and additional evaluations can provide more

information on e-Livestock suitability to support decisions on smart farms.

5.3.4 Results of Case Study 1

At the end of this first cycle, it was possible to analyze the production results of the
farm, considering milk production, the amount of food ingested by the animals, the total
number of sick animals over time, and data from environmental conditions (temperature
and humidity). With the dashboard shown in Figures 22 e 23, producers could access
information to assist in the decisions, such as choosing appropriate nutrients for a given
batch. Analyzing the graphs, it was also possible to verify how many mastitis cases were
registered in the month and if the disease increased or decreased. It is possible to monitor
the environmental conditions of the Compost Barn by analyzing the temperature and
humidity collected through the sensors. With those, we open the opportunity to analyze
important variables and evaluate the efficiency of the Compost Barn system, such as
consumption, production, disease, and wellness. Herein, it is important to cross-reference

the information obtained from the sensors to assist in planning future actions.

At the end of the Case Study 1 (CS1), we found that the use of a dashboard
presenting data from the farm is not enough to support decisions, in such a way that only
the analysis of graphs is not enough to draw projections and make predictions for future
farm“s production planning. While charts can visually represent farm data and highlight

trends and patterns, it is also important to consider other factors affecting decision-making.

During CS1, our dashboard could display data on milk production, feed consump-
tion, and animal health, which could consider the farm’s production objectives and goals.
Still, it could not plan feed consumption to adequately prepare agricultural commodities
used in the animal’s diet (such as corn and cotton, for example). To make decisions in
a smart farm, it is usually necessary to consider a wide range of data and information
from various sources and use applications that use intelligent techniques such as ML and
reasoning algorithms to analyze and interpret the data. We also identified that temperature
and humidity sensors sometimes fail, with the lack of energy being the main reason for
data reading failure. Consequently, the chart presents gaps and incomplete data useless
for decision-making. Additionally, adding an Intelligence tier would require a new quality
requirement related to the sustainability of the architecture (NFR005). The sustainability
of the architecture must ensure that the system can continue to operate and meet the
producers’ needs over time so that intelligent algorithms can perform their function accu-

rately. To meet this requirement, the design of the new tier into the architecture should
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be easy to maintain and update.

In accordance with the Design Science Research (DSR) framework, upon scruti-
nizing the initial theoretical propositions, it was discovered that the architectural tier is
appropriate. Nonetheless, there is a need to address the issue of decision support within
the confines of precision dairy farming. At the conclusion of the primary DSR iteration, a
dashboard was developed as an instrumental initial step toward comprehending the data.
However, it is equally imperative to consider other aspects and employ diverse applications
and techniques to facilitate superior decision-making. Furthermore, a noteworthy finding
during this cycle was that farmers tend to favor the use of mobile devices instead of a
web dashboard, such as ThingsBoard. As a result, we have scheduled modifications to the

Visualization tier in the next cycle, intending to provide farm data via a mobile app.

Based on the theoretical framework, we analyzed the papers from the systematic
mapping (Section 3). Then, we raised new conjectures and performed a new cycle to verify
whether using the artifact solves the decision-making problem in livestock and whether
the conjectures are valid. Based on the knowledge acquired in this first cycle, we raised
new conjectures regarding using intelligent techniques to improve decision-making on the
farm. Smart techniques are varied, but recent results suggest that machine learning and

semantic web (ontologies) use are promising.

Machine learning techniques could be used to improve the performance of an
Internet of Things (IoT) system in a precision livestock operation. ML algorithms can be
used to analyze data collected by sensors and other monitoring equipment and identify
patterns and trends that may not be immediately apparent to humans. In this way, the
system uses additional data to resolve uncertainties. This fact can help producers and
researchers make more informed decisions about managing their animals and improving
the farm’s efficiency and sustainability. For example, ML can predict when an animal will
likely get sick or identify animal behavior patterns that might indicate they are under
stress. As a result, we can allow producers to take proactive steps to prevent problems
before they occur and improve the overall well-being of their animals. It can also optimize
food and water systems or identify opportunities to reduce waste and improve resource

efficiency.

On the other hand, ontologies are formalized structures to organize and represent
knowledge about a particular domain. They are often used in the context of artificial
intelligence and semantic web technologies and can be used to help computers better
understand and interpret data. In a precision livestock context, an ontology can be used to
help organize and classify data collected by sensors and other monitoring equipment and
provide a common language for describing and interacting with this data. For example, an
ontology can be used to define the various types of data that are collected on a dairy farm

(e.g., feed intake, water intake, behavior patterns, and health indicators) and specify the
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relationships between these data types. An ontology can also be used to help integrate
data from different sources and systems and allow the development of more sophisticated
machine learning algorithms that can analyze and interpret the data in more complex ways.
Overall, using ontologies in precision livestock can improve the efficiency and effectiveness

of these systems and enable more data-driven decision-making in farm actions.

Intelligent techniques can deliver strategic information that can help in future
decision-making. The analyzes carried out by e-Livestock in the first evaluation cycle
do not allow making these analyzes (predictions) about future farm decisions, such as a
prediction of milk production, an estimate of animal food consumption, or relating cases
of mastitis with the data of the environmental sensors. Thus, based on the identification
of improvements needed and the scientific knowledge generated by the first cycle, a new
tier (Intelligence Tier) was specified in the e-Livestock, to assist in deriving strategic
information to support decisions. In addition, user interviews highlighted the necessity to

develop a mobile application (Visualization Tier) in future architecture versions.

54 CASE STUDY 2 (SECOND DSR CYCLE)

Based on the scientific knowledge generated in the first cycle, we improved the
artifact and made new propositions to evaluate it. The theoretical conjectures include
intelligent analyses supporting machine learning modules and ontologies. To achieve this,
we developed a tier for these analyses to handle uncertainties and maintain the previously
mentioned quality attributes. However, new functional and non-functional requirements
emerged, which we will present throughout this text. We also modified the web dashboard
to suit the producers’ necessities better and created a mobile application compatible with

Android and iOS operating systems.

To build the new version of the artifact, it was necessary to split the development

process into stages:

1. We must create an ontological model for dairy cattle and relate the available Compost

Barn data.

2. Creating semantic rules to execute inferences over the ontology was necessary. After
that, we need to add the machine learning functionality and use the ontology to help

the machine learning module process.

3. Present the predictive data to the user.

The second interaction cycle started with the definition of the ontology model
(Section 4.5.1) and the SWRL rules that can extract implicit knowledge from the data.
Utilizing an ontology as a means of enhancing decision-making in agribusiness involves

employing a standardized and structured method of representing and organizing knowledge
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pertaining to the domain. By doing so, pertinent information can be more readily accessed
and utilized while also fostering a sense of consistency and accuracy within the knowledge

base.

Ontology is important to the decision support system because it uses machine
learning and other techniques to analyze data and make recommendations or predictions.
Using an ontology to represent and organize knowledge can make it easier to train and
evaluate the system and ensure it makes decisions based on a consistent and comprehensive
domain understanding. For each step, it was possible to improve the knowledge that
helped enhance the final version of the architecture. We will present below, in more detail,

each stage of construction of the second cycle of DSR.

5.4.1 Stages of Case Study 2

To develop the ontology, we used Python language and the OWL2Ready library,
which enables us to manipulate data within the ontology. Using the PyMongo library, we
queried the data in the database (which was stored in the first cycle), instantiated the
ontology, and stored it in an OWL file. This way, it would only be necessary to update

the ontology as new data was added to the database.

Once the processed data was instantiated in the ontology, we developed SWRL
rules. As explained earlier in Section 4.7.1, SWRL is a language for expressing rules
in an ontology model. Rules in SWRL are written as if-then statements and can be
used to represent knowledge about a particular domain or subject, such as dairy cattle

management.

These are just a few examples of rules that can be expressed in an ontology model
for dairy cattle using SWRL. The specific rules included in the model will depend on
the needs and goals of the model, as well as the knowledge and experience of the model
creators. Figures 10 and 11 show the SWRL rules.

With the ontology model and inferences completed, we proceeded to the develop-
ment stage of the machine learning module. Developing such a module for dairy cattle is a
complex task that requires expertise in machine learning techniques, software engineering,
and dairy management. Training machine learning models to recognize patterns and
relationships in large amounts of data is a computationally intensive process that demands
sophisticated algorithms and software tools. To acquire the necessary knowledge and
develop the module, we conducted technical interviews with professionals from Embrapa
Gado de Leite, who provided us with technical data on animal management and dairy

production.

To improve the architecture and provide information for decision-making, we
combined data pre-processing, model training, evaluation, and optimization. Since machine

learning models need regular maintenance and updates with new data, we created an
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auto-training function capable of updating trained models with new data. However, the
input data must always have a consistent pattern; otherwise, slight adjustments to the

data are necessary.

We used the Python language and the Scikit-learn library to train and execute
intelligent models, as per the objectives defined, which were to forecast individual milk
production as a function of animal weight and forecast general milk production on the
farm as a function of diet. To achieve these objectives, we organized the data, performed
filtering and standardization, and trained different models. We evaluated the accuracy of
each model and selected the most accurate for each objective. Afterward, we tested the

accuracy of the trained models by crossing the result with a set of real data.

Integrating the trained models with the ontology was done through an integration
tier that played a vital role in the communication between the intelligence tier (ontology
and machine learning) and other parts of the architecture (processing, database, visuali-
zation). We developed an API using Flask library to communicate the intelligence tier
with the integration tier, enabling data from the integration tier to arrive through web
requests, be processed by the intelligence tier, and integrated back into the architecture.
The architecture allows low coupling, allowing for easy integration with other intelligent
techniques in the future. For instance, a farm selling dairy products could use Natural Lan-
guage Processing to verify product acceptance on social networks and develop commercial

strategies to improve sales.

Although the ontology’s inference processing and machine learning models can
work independently, combining both approaches provide complete decision support in
precision farming. Using ontology to structure and classify data collected by sensors and
other monitoring equipment and applying machine learning algorithms to analyze and
interpret that data enables producers and researchers to gain a deeper understanding of
their animals and production. By defining the various data types collected on the farm
and specifying their relationships using an ontology, machine learning algorithms can more
accurately identify patterns and trends in data and make more informed predictions and

recommendations.

We can use our ontology to identify the best input data and provide consistent
and accurate predictions that align with the producer’s reality. For example, let’s consider
milk production as the total milk produced over a month minus the milk discarded from
sick cows. We can use the ontology to extract data from only healthy cows and predict
total milk production, disregarding the sick cows that are not included in the final sum.
Furthermore, ontology allows extracting data derived from semantic relationships and
using them to identify events related to the farm environment. For example, temperature
and humidity sensors may stop working or be damaged. Still, through the relationship

between the external temperature data from the INMET API and the sensor data found
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on the farm, we can generate a complete dataset and use it to train intelligent algorithms
that predict farm-specific weather conditions. Next, we will present the data used for the
second case study (CS2).

5.4.2 Conducting Case Study 2

To assess whether the new artifact, which now contains an intelligence tier, can
offer complete analyzes and thus support decision-making on the farm, we evaluated the
accuracy of the intelligent algorithms and their predictive results. Initially, we chose to look
at individual milk production as there are several advantages to predict milk production
for a single cow. We also performed the prediction of the milk production of the farm

based on the diet of the animals.

Predictive models can help producers optimize their operations, such as allocating
resources more efficiently and prioritizing the most productive cows, optimizing the feed
and care they provide, leading to higher milk production and greater profits. Moreover,
decision-making is improved when predictive models can provide producers with valuable
information, such as identifying low-performing cows (production) and improving their
productivity. This fact would also lead to early warnings, as predictive models can help
producers identify potential issues early on, allowing them to take timely action to prevent
or mitigate the impact of those issues. For example, a model that predicts the milk
production of individual cows can help producers identify cows at risk of developing health

problems, allowing them to take preventive measures to keep them healthy.

To perform the individual production analysis based on the available data, it
was necessary to integrate three different datasets, herd, scale, and milking. The herd
data contains the animal’s data, such as its identifier (earring), date of birth, and batch.
The scale data refer to the animal’s weighing, and finally, the milking data are milk
production data. We generated a dataset containing the relationship between weight and
milk production by crossing the weighing dates with the milking dates and identifying the
animal through its earring in the herd. Figure 26 shows a clipping of the data used in the

training dataset.

We collected data on milk production and cow weight to predict milk production
based on cow weight. We pre-processed the data to clean the data to remove any missing
or invalid values and normalized the set so that all data was on the same scale. We split
the data into a training set and a test set. The training set was used to build the model,
and the test set to evaluate model performance. We tested models like Random Forest,
Neural Network, kNN, and Adaboots. A complete list of available algorithms is in the
official Scikit-learning documentation. With the training of each algorithm, we evaluate
the models with the test data. We use metrics such as Mean Absolute Error (MAE), Mean

Squared Error (MSE) to quantify forecast error. The mean absolute error represents the
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Figure 26 - Fragment of weight dataset.

| Brinco | Peso | Prod. Latte |
1069 | 768! 36.3

1428 | 650 37.8
2195 | 659 38.8
2414 | o647 | 23.4
2592 | 493 ”25.3
3030 | 606 | 37.2
3038 | 671 | 32.4
3063 | 685 36.3
3122 | 639 ”34.5

Source: Prepared by the author (2023)

mean of the absolute difference between the actual and predicted values in the data set. It
measures the mean of the residuals in the data set. The mean squared error represents
the difference between the original and predicted values in the data set. It measures the
variance of the residuals. Root mean square error (RMSE) is used for evaluating the
quality of predictions. It shows how far predictions fall from measured true values using
Euclidean distance. Finally, The metric R2, also known as R-squared or coefficient of
determination, denotes the percentage of data variance explained by the model. The
results range from 0 to 1 and are typically expressed in percentage terms, i.e., ranging
from 0% to 100%. A higher R2 value indicates a more explanatory model concerning the
predicted data. Therefore, we adopted the Mean Absolute Error (MAE) and the Mean
Square Error (MSE), as they are metrics adopted in intelligent systems to measure the

difference between predicted results and actual data evaluations (Wang and Lu, 2018).

Figure 27 illustrates the training results of various algorithms, including the Extra
Tree Regressor, which showed the lowest MAE and MSE and was thus selected for use in

the architecture. The Extra Tree Regressor is a meta-estimator that fits several random
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decision trees (also known as extra trees) on various subsamples of the data and uses the

average to improve predictive accuracy and control overfitting.

In the milk prediction based on weight, we observed an MAE of 6.46, indicating
that predictions generally have an error margin of 6.46L. For instance, if the algorithm
predicts that an animal will produce 2610 each month, upon comparing the collected data
with the predicted data, that animal could have produced anywhere between 20L and 32L,

meaning that there is a margin of error approximately 6L in either direction.

Figure 27 - Error data for training predict milk based on weight dataset.

Algorithm MSE MAE R2 RMSE

Random Forest 69.50008693932122 | 6.503444770754309 0.1372757343567752 8.336671214538883
Neural Network 94.2504797759458 7.648233781085124 -0.1699579026745115 9.7082686291607
KNN KNeighbors 88.39745937961585 | 7.215952732644017 -0.09730270257919194 | 9.401992309059604
KNN Radius Neighbors 77.73230111574121 | 7.025485031707734 0.03508692794318935 8.816592375500935
AdaBoost 79.67775704313276 | 7.1172245134234755 0.010937432450248474 | 8.92623980425872
Bagging Regressor with SVR | 78.96599352655033 | 7.118563476944927 0.019772754594396647 | 8.886281197809932
Extra Trees Regressor 68.99721764546248 | 6.4693334203616555 0.14351799334326498 8.306456383167403

Gradient Boosting

Hist Gradient Boosting

74.16333739876119
75.85523141930933
78.68442217466269

6.8534829026789765
6.92239651356447
7.110448586245102

0.0793894855000904
0.058387525780271066
0.023267979542755723

8.611813827455931
8.709490881751318
8.870424013239878

Epsilon-Support Vector

Source: Prepared by the author (2023)

To predict the farm’s milk production based on animal feed, it was necessary to
extract the kilograms consumed of each food component in the animals’ diet and calculate
the monthly milk production. Diet plays a significant role in milk production for cows.
They need a balanced diet with the right combination of nutrients such as protein, energy,
minerals, and vitamins to produce milk efficiently. If a cow’s diet is deficient in any of
these nutrients, it can reduce milk production. For example, a protein deficiency can lead
to reduced milk production and poor quality. Animals also need sufficient energy, minerals,
and vitamins in their diet to produce quality milk. Lack of these nutrients can lead to
reduced milk production and poor quality. In summary, a cow’s diet significantly affects
her milk production. Providing cows with a balanced diet with the proper nutrients is

essential to support milk production.

The challenge of making this prediction is the dietary variation the animals may
undergo throughout the year due to climate variations, food availability, and even the
animal’s age. However, it was possible to assemble a dataset with enough data to train
the algorithms. Figure 28 shows a fragment of the dataset used to train the models; it is
possible to see that the Concentrate and Food Supplement component is filled with zero,
as they were unavailable, and cotton was also unavailable on 07/28/2022 and 07/29/2022.

Figure 29 shows the result of training some algorithms. For example, we highlight
the Ada Boost that presented lower MAE and lowers MSE and, therefore, was selected to



78

Figure 28 - Fragment of feed dataset.

date Algoddo CONCENTRADO COMPLEMENTO Farinha de Milho Farinha de Soja Feno Silagem de milho LEITE
2021-07-02T06:24:00 58 0 0 120 136 34 978 | 2826
2021-07-04T07:18:00 54 0 0 114 130 32 936 | 2793
2021-07-05T07:36:00 54 0 0 114 130 32 936 | 2939
2021-07-06T07:25:00 54 0 0 114 130 32 936 | 2864
2021-07-03T07:36:00 54 0 0 114 130 32 936 | 3043
2021-07-07T07:32:00 52 0 0 110 126 30 904 | 2879
2021-07-08T07:15:00 52 0 0 110 126 30 904 | 2700
2021-07-28T07:40:00 0 0 0 98 122 30 966 | 2864
2021-07-29T07:06:00 0 0 0 110 138 34 1098 | 2453
2021-07-02T07:19:00 54 0 0 116 112 30 1156 | 2826
2021-07-03T08:14:00 54 0 0 116 112 30 1156 3043
2021-07-04T07:58:00 54 0 0 116 112 30 1156 | 2793
2021-07-07T06:34:00 100 0 0 206 186 52 1238 | 2879
2021-07-09T06:39:00 102 0 0 212 192 52 1278 | 2695
2021-07-15T06:38:00 100 0 0 204 184 52 1232 | 2892
2021-07-29T06:07:00 0 0 0 188 224 56 1492 | 2453

Source: Prepared by the author (2023)

act in the architecture. An AdaBoost regressor is a meta-estimator that starts by fitting a
regressor to the original dataset and then fitting additional copies of the regressor to the
same dataset, but where the instances’ weights are adjusted according to the error of the

current prediction. As such, subsequent regressors focus on hard cases.

An IoT sensor can give accurate readings if properly calibrated or maintained.
Generally, IoT sensors are subject to harsh conditions, and there are several reasons why
an loT sensor may not measure temperature and humidity accurately: Over time, the
accuracy of an IoT sensor may vary due to changes in its internal components or factors
external factors such as temperature and humidity. Other electronic devices or signals in
the environment can interfere with the operation of an IoT sensor. For example, if the
sensor’s batteries are not replaced regularly, this can affect the sensor’s accuracy. Also, in
some cases, an loT sensor can be faulty due to a manufacturing error, which can cause
it to give wrong readings, such as 0 or NULL. We use ontology to fill in these gaps to

mitigate these situations and data losses.

After training the intelligent models and selecting the most suitable model to make
individual and general milk production predictions, we instantiated data in the ontology.
The reasoner was executed considering the SWRL rules. We developed SWRL rules to help
estimate temperature and humidity, as shown in Figure 30. We used an external source,
INMET API, to obtain external temperature and humidity measurements in Coronel
Pacheco. As a result, we can get a pattern by comparing the API data (external) with the

sensor data (internal) and using an SWRL rule to fill in the missing days.

The inference in the ontology also helped to define who are healthy and sick animals.

At this point, we could filter the data considering sick animals and generate only a dataset



Figure 29 - Error data for training predict milk based on diet dataset.
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Algorithm MSE MAE R2 RMSE

Random Forest 27492.709913084716 132.89477835254817 0.058366246733246085 | 165.8092576217767
Neural Network 317190.09730729746 | 451.3662403876782 -9.863858192617341 563.1963221713166
KNN 29121.948232448376 136.88943952802362 0.0025643342088547127 | 170.65154037525818
AdaBoost 27375.001744315967 130.77905901544744 0.062397787643482916 | 165.4539263490473
BaggingRegressor 29672.468311993587 138.27000530733673 -0.016291147494829517 | 172.25698334753685
Extra Trees 27902.83166456203  133.65778647269207 0.04431945086042033 167.04140703598623
Gradient Boosting 27116.331154997508 132.46214275658917 0.07125733472522544 164.67037121169523
Hist Gradient Boosting | 28687.39020841685  134.50081426278044 0.017448079917248505 | 169.37352274903196
Epsilon-Support Vector | 29108.312600679576 136.98336572731688 0.00303135878232208 170.61158401667683

Source: Prepared by the author (2023)

Figure 30 - SWRL rules for infer sensor data.

Measure(?m) ~ external_measure_value(?m, ?v) ~
swrlb:lessThan(?v, 16.0) ~
swrlb:subtract(?r, ?v, 1.98) —> internal_measure_value(?m, ?7r)

Measure(?m) ~ external_measure_value(?m, ?v) ~
swrlb:greaterThan(?v, 88) ~ swrlb:lessThan(?v, 89.0) *
swrlb:add(?r, ?v, 8.64) —-> internal_measure_value(?m, ?r)

Measure(?m) ~ internal_measure_value(?m, ?v) ~
swrlb:greaterThan(?v, 95) —> is_alert(?m, 1)

Measure(?m) ~ internal_measure_value(?m, ?v) ~
swrlb:greaterThan(?v, 23.5) #
swrlb:lessThan(?v, 45) -> is_alert(?m, 1)

Source: Prepared by the author (2023)

containing data from healthy animals (Figure 31 shows the rules used to classify animals
as sick or over-productive). This filter helps to improve the dataset by adding only relevant
data; otherwise, training the ML algorithms could score lower. The previous results took

into consideration only the healthy animals that were filtered through the ontology.

To demonstrate that our architecture can combine ontologies and machine learning
for even greater insights, we developed a feature that predicts a farm’s milk production
based on animal weight for the month. Heavier cows in good body condition produce more
milk than underweight or thin cows. This issue is because cows need a certain amount
of body fat and muscle mass to produce milk efficiently. Although other factors such as

genetics, age, diet, and management practices can also affect a cow’s milk production, we
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performed this analysis based on available farm data.

Figure 31 - SWRL rules for inferring sick and healthy cows.

Cow(?x) ~ is_mastitis(?x, ?m) ~ swrlb:equal(?m, 1) —> SickCow(?x)

v Cow(?c) ~ DairyMilk(?d) ~ cow_milked(?d, ?cm) *
dairy_value(?d, ?v) *~ swrlb:greaterThan(?v, 30) *
is_mastitis(?c, ?m) * swrlb:equal(?m, 0) *
sameAs(?c, ?cm) —> SuperCow(?c)

Source: Prepared by the author (2023)

The first step is to identify and remove infected animals from the herd using SWRL
rules that define sick animals, overproducers, and "normal"animals (those that are not
sick and produce less than 30L of milk on average). We then took weight data from each
animal group and used machine learning to predict their milk production. Finally, we
add up all forecasted production to give the producer an idea of how much milk he can

produce in the next month.

The previously chosen ML algorithm processed this new, improved dataset (contai-
ning further information and relationships between the data, coming from the inference
processing in the ontology). In this study, the Extra Tree Regressor had a more accurate
result for milk prediction based on animal weight, although, for other datasets, new tests
need to be performed to choose the best model. We train and run tests with several

algorithms with different parameters and choose the best based on error metrics.

5.4.3 Analyzing Case Study 2

After conducting Case Study 1, we gained important insights into using the
architecture to support decision-making, which led us to conduct Case Study 2. Despite
the data processing and visualization, producers felt the need for deeper analysis, such as
estimating the farm’s milk production for the next month and analyzing expected milk
production based on animal diets. We also noticed that sensors occasionally fail, and the
internal conditions of the Compost Barn are unknown. Based on scientific knowledge, we
developed a new version of the architecture (CS2) that now includes an intelligent tier
containing machine learning techniques and ontology to meet the need for more specific
analyses. In this new version, the architecture’s integration tier collected and stored data
to generate a dataset containing weight and milk production data, sorted by animal and
month. By processing different ML algorithms, the architecture stored the results to select

the algorithm with the best accuracy. The algorithm with a low absolute mean error,
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considered satisfactory by the farm producers, was selected, and the trained model was

made available.

Both functional requirements, such as FR003, in which the architecture must be
capable of performing semantic analyses and predictions; and FR006, which requires data
to be pre-processed for intelligent processing, were added. They needed to be addressed
in e-Livestock. We also added sustainability-related quality requirements (NFR005) and
improved the system’s usability requirement (NFR006). It was necessary to review three

important requirements: extensibility, flexibility, and scalability.

The architecture’s sustainability (NFR005) was verified through the self-training of
intelligent models, which can be triggered automatically when new datasets arrive, allowing
the insights offered by the system to remain consistent and up-to-date. This requirement
becomes necessary since milk production on a farm can vary throughout the year due to
various factors. Some of the most common factors that can affect milk production include
changes in the diet and feeding habits of animals, changes in climate and environmental
conditions, changes in animal health and well-being, and changes in management practices
used by producers. For example, milk production on a farm may be higher in the spring
and summer months when animals have access to specific diets due to food availability. In
contrast, there is a more limited diet in the winter since commonly used foods such as hay
and silage are stored, and when the weather is colder it is less conducive to milk production.
By keeping machine learning models trained with the most recent data set, producers can
work to optimize milk production based on predictions, ensuring that the architecture
always provides more realistic data. Therefore, the sustainability of the architecture is
ensured through the continuous flow of data training, guaranteeing that the predictions

remain updated. Figure 14 in section 4.7.2 presents the flow and steps of self-training.

We verified whether the architecture also met the requirements of extensibility
(NFR002), flexibility (NFR003), and scalability (NFR004). To maintain extensibility, the
architecture accommodated new controllers and provided new endpoints for the intelligence
module, proving to be consistent and scalable. Regarding flexibility, the architecture
allowed the addition of different intelligent models, requiring only the input of data in the
expected pattern for its operation. Thus, new algorithms can be easily added without a
significant impact on the functioning of the architecture. New predictions can be configured,
meeting new demands that producers may have; by adding new sensors and collecting
different data, the architecture continues to support producers. Finally, as new intelligent
algorithms were added and more resources were demanded, the architecture remained
stable and functional throughout training and evaluating the algorithms, demonstrating
its potential by meeting the quality attributes defined for this work. Furthermore, it is
possible to instantiate this architecture for other domains besides dairy cattle, for example,
using it for the poultry domain, where the sensor data and rules differ. To do so, developing

an ontology with appropriate semantic relationships and training the algorithms based on
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the available farm data is only necessary.

As a result, ML algorithms to the architecture improved strategic information
delivery by making predictive information available. With the milk production predictions,
we can cross the predictions with the actual production, check the results, and analyze if
the production was better, worse, or what was expected according to the farm’s planning.
In addition to this analysis, with the milk forecast, it is also possible to verify if the farm
is reaching its production target, suggesting to the producer changes in the composition of
the foods, adequacy of the environment, and improvement in production. This strategic
information is presented on panels, enabling constant monitoring of the Compost Barn

environment via a mobile application.

By adding the intelligence tier, the architecture became more flexible and delivered
strategic information in addition to that stored in e-Livestock repositories. New strategic
information is critical to improving production decision-making at the Compost Barn. This
e-Livestock support helps, for example, in the decision to increase the supply of nutrients,
replace the composting bed, or open the composting windows in case the temperature
and humidity increase. With continuous monitoring, ontology processing, and machine

learning, the architecture could offer more complete analyzes for producers.

5.4.4 Results of Case Study 2

The field of dairy cattle management is complex and multifaceted, with many
variables and factors that can affect the animals’ health, productivity, and welfare. This
complexity can make it challenging to develop machine learning models that can accurately
capture the relationships and patterns in the data and make reliable predictions or
recommendations. Additionally, machine learning models for dairy cattle may be required
to handle a wide variety of data types and sources, such as sensor data, logs, and other
data types, which can increase the complexity of the model development process. To
mitigate this difficulty, we use ontology. Combining ontology and machine learning can
significantly improve the insights gained from precision livestock systems and enable more

data-driven decision-making in livestock operations.

We could infer relations, missing data, and new instances by integrating the ontology
model with the ML module. Based on these new relationships, we could classify animals
and generate reports. If the animal has mastitis, it is classified as a Sick Cow. If the
animal is healthy and produces more than 30L of milk, it is classified as Supercow. Once
the animals were classified, we could analyze the number of sick animals per batch and
provide the evolution of mastitis at Compost Barn based on the farm’s previous data.
In addition, it is possible to alert the researchers/farmers about the possibility of a new

mastitis epidemic.

As shown in Figure 32, we observed a high humidity level in the Compost Barn
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Figure 32 - Animal Dataset.

Month Sep | Oct Nov | Dec ' Jan | Feb | Mar Apr
Weight | 640 | 624 & 630 | 664 | 671 | 683 | 643 711

Milk : - | 388 | 46 | 451 | 46 | 465 @ 46
Mastitis | true = true - - | - - . )
Umidity = 98 99 88 | 89 | 89 | 85 | 8 85
Temperature| 26.1 | 28.1 | 24 | 224 | 226 | 21.7 | 227 | 248

Source: Prepared by the author (2023)

during September and October, which generated a proliferation of environmental bacteria.
These bacteria caused mastitis in some animals, which needed to be medicated. Due to
the medications, the decision was to discard the milk. We could also detect the sudden
increase in weight of one of the cows and its change to another flock. An analysis of animal
weights’ evolution observed a peak in one of the batches. Using the inferences provided by
the ontological model, we identified that one of the cows in that batch had an insemination
event, causing an increase in weight and, later, the decision to migrate to another batch.
It was possible to estimate the milk production of this animal and monitor whether the

expectation was reached using machine learning algorithms.

It was possible to monitor the farm through graphics from the mobile application.
In the e-Livestock application, producers could follow the evolution of production over
the months, receive notifications about expected production, analyze the total food
consumption of animals by batch, and see health details, such as the weight of each animal.
The used metrics were the following: (i) milk production per batch during the year, (ii)
the weight of each animal month by month, and (iii) the feeding per kg/batch. Figure 33
presents the dashboard of the e-Livestock Mobile Application.

We could analyze the expectations for a specific month by delivering milk production
prediction results. In July, for instance, the overall error was only 6.46 Liters. Each animal
could produce 0.92 Liters of milk above or under the expectation during the week. As a
result, it could provide the opportunity for better planning of milk production over the
months, supporting decisions on the farm. During the development of the graphics, the
producers evaluated both the data and the mobile application, carefully assessing the

information presented therein.

5.5 CONCLUSION FROM CASE STUDIES

Both case studies assessed the capabilities provided by e-Livestock architecture,

which are a) monitoring; b) reasoning; and c) automated actions. From the results obtained
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Figure 33 - Dashboard Mobile Application.
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in both case studies, we performed a triangulation, i.e., a research method used to increase
the validity and reliability of findings in a case study. We performed a few steps to
triangulate Case Study 1 (CS1) and Case Study 2 (CS2), which involved collecting data
from multiple sources, comparing, and integrating the data, interpreting the findings, and

validating these findings to increase the validity and reliability of the results.

In Case Study 1, we verified that the architecture could monitor the farms and use
dashboards through a web application. We collected sensor data related to milk production
during the year, the weight of each animal by month, and feed per kg. We observed this
issue through the data register and the system execution on the dashboard (triangulation).
Additionally, during data processing, producers were able to receive notifications about
the current production, analyze the animals’ total feed consumption per batch, and view
health details such as the weight of each animal. With this data, the previous observation
was confirmed. When carrying out Case Study 2, we checked the research question (RQ)
again, but from the point of view of the intelligent system. We could observe that the
system implementing the architecture could monitor the farms as the sensors generated
new data. The system collected, processed and sent to the dashboards the necessary

information for the producers to decide. As a result, we can confirm that the e-Livestock
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system can support farm monitoring. Again, we observed this by analyzing the records in

the database and observing rural producers running the dashboard (triangulation).

Performing the triangulation to answer the raised RQ, we verified that the archi-
tecture could improve the results through the system. In CS1, we could see the milk
production for a specific month. When conducting CS2, which used intelligence techniques
with ontology and machine learning, we performed a new evaluation with the same data
incrementally. From the point of view of an intelligent system, data is always incremented
constantly. As a result, it was possible to obtain greater accuracy of results by evolving
to an intelligent architecture. Hence, we obtained an error of only 6.46 for July. As in
this case study, the previously established average error was 0.92 L of milk above or below
the expectation during the week; that is, less than 1 L of error. These data proved to be
satisfactory for the producers. Therefore, when using e-Livestock architecture, greater
accuracy was obtained, allowing decisions on rural properties to be more accurate. We
observed this fact by analyzing the database records and the results presented through
the dashboards to rural producers at the time of decisions (triangulation). With the help
of e-Livestock architecture, it would be easier to estimate the farm’s total production and

make accurate decisions.

From the CS2 results, we confront the theoretical conjectures about the use of
ML and ontology raised after CS1, and we analyze whether, after this interaction, the
artifact can support decision-making with a complete analysis of precision livestock. The
area of dairy cattle management is complex and multifaceted, with many variables and
factors affecting the animals’ health, productivity, and welfare. This complexity can make
it challenging to develop ML models that can accurately capture the relationships and
patterns in the data and make reliable predictions or recommendations. Furthermore, ML
models for dairy cattle may be required to handle a wide variety of data types and sources,
such as sensor data, logs, and other types of data, which can increase the complexity of
the development process model. To mitigate this difficulty, we use ontology. Combining
ontology and machine learning can improve the insights gained with precision livestock

systems and enable more data-driven decision-making in livestock operations.

As a result, we could have evidence to answer the raised RQ, “How can e-
Livestock support automated monitoring, reasoning, and actions in smart
farms?”. The e-Livestock supports automated monitoring, reasoning, and actions in

smart farms using ontology inferences combined with machine learning abilities.

Data were displayed in plots and analyzed by the researchers. Once a decision was
made or an unusual event was detected, it was possible to track the reason and the process
generated through the relationships captured by the ontology model. The results of ML
algorithms offered a future insight into production planning and animal management. For

example, based on the estimated production of the farm, managers can see if it is in line
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with the objective outlined in the quarter. They can develop action plans to improve

production through feeding or disease control if production is far below the target.

During the execution of both case studies, we could verify that e-Livestock could
provide implicit information derived from intelligent data analysis. This information,
presented to the researcher/farmer/producer in the dashboard, supports the decision-
making process on farms. In addition to this support, we could track the information
processing that derived the decision support, providing more confidence in the decision
support. We discovered this information by processing inferences over the ontology
instances, generating implicit knowledge from new relationships, i.e., processing the

information semantically and based on ML algorithms.

The overall aim of the assessment was to observe the influence of the deployed
system in the Compost Barn field towards the pursued goals: maximizing animal welfare
and increasing productivity, product quality, and sustainability. Evidence brought allowed
us to conclude that the proposed architecture can satisfy the mentioned attributes by
maximizing animal welfare (making decisions to make the temperature and humidity
close to the ideal thresholds), increasing productivity (a direct result of the architectural
evolution between CS1 and CS2), product quality (by avoiding selling low-quality milk
predicted as contaminated with mastitis) and sustainability (with automatic adjustments

in the exhaust fans, turning them on/off, potentially saving energy).

The sensors installed both in the environment and on the animals’ necks captured
valuable data, which was then analyzed by e-Livestock to provide strategic insights to
support decision-making on farms. By leveraging this data, e-Livestock was able to
estimate the likelihood of production loss or animal disease, among other critical events.
Through careful evaluation of the data collected at the Compost Bar, we were able to
obtain compelling evidence that helped us address our research question. However, these
results cannot be generalized, and new case studies must be conducted in additional

real-world context farms.

Figure 34 presents an overview of the technologies employed and the primary
requirements utilized to address the research question. Moreover, it outlines the specific
problem that each technology resolves. The Intelligence tier was designed to fulfill the
flexibility requirement (NFR003), which is accomplished by dynamically selecting the most
appropriate machine learning algorithm. We achieved extensibility requirement (NFR002)
through ontology models, which extract the relationship between data and inferences. The
architecture can incorporate new controllers and provide new endpoints for the Intelligence
tier to access more farm data, while external services assist with extensibility and scalability
(NFRO04). Finally, the "Autonomous Agent'can trigger alerts or modify the AC based
on intelligence module information. Consequently, the Autonomous Agent can search for

available devices or operators that need to receive alerts and/or process changes directly on
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the devices or in the AC operation. As the sensors collect new data, the autonomous agent

continuously monitors it to process it, thereby supporting the management of uncertainties.

Figure 34 - Relationship Between Technologies and Requirements.

Problem Technology Requirement

Make Predictions «——— I_n ieligence >
Scikit Learning Flexibility
Infer Missing data «—— Shiology
9 OwliReady2
Extensibility
Monitor External Services

Environment Data Node.js API

Deal with Self-adaptive

Uncertainties Autonomous Agent > Scalability

Source: Prepared by the author (2023)

5.6 THREATS TO VALIDITY

This section discusses threats to validity that can affect or limit the results’ validity.
The limitations of this research are related to the intelligence tier. We only executed
the case studies on the Coronel Pacheco Compost Barn system. Other studies could be
conducted to explore the prediction results considering more than one farm. The ontology
model was designed for dairy cattle only. All experiments were conducted for cattle inside

a barn and did not consider free animals.

Construct validity. During the case studies, the data processed was available to
the researchers. All data updates can be tracked and visualized. However, more than
intelligent analysis is needed. Considering different contexts, we can use additional data
analysis to mitigate this threat. Moreover, e-Livestock supports different ML techniques.
However, the dataset and the number of researchers/farmers that analyzed the results
can represent a threat. Additional evaluations need to be conducted to reduce this threat.
Internal validity: During the conduction of the case studies, the data are from specific
sensors from the Compost Barn of Embrapa’s experimental farm. The results are still
preliminary, and although they indicate a valuable outcome, a more detailed study is
needed to present additional findings. However, the features offered by the e-Livestock
architecture can pose a threat. In a more complex context, other data analysis techniques

need to be used, and, as a result, we must reassess the decision support.
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External validity: The case study deals with a dataset associated with a specific
Compost Barn production system experiment. We need to conduct evaluations considering
other agricultural contexts before generalizing our results. However, it is possible to
identify situations where we can obtain similar CS results and the knowledge acquired can

be transferred to similar real-world experiments.

Reliability: We presented details of the execution of the studies, but probably some
information was probably incomplete. We have made documentation available to ensure

the case studies reruns to mitigate this threat.

5.7 FINAL REMARKS OF THE CHAPTER

Considering the difficulties of decision-making in Agriculture 4.0, this work sought
to support decisions in this domain through an architectural approach. For that, the
e-Livestock architecture was proposed. It performs the collection, processing, storage, and
enrichment of data collected by sensors, whether installed on animals or in the environment
in which they are found. Subsequently, two case studies were conducted to evaluate
the proposed solution. Evidence was presented on the feasibility of instantiating this
architecture to support decision-making in the context of precision livestock. Agricultural
decisions must be made considering the diversity of information and devices in different
contexts. Furthermore, context information is often not used in decision-making due to
the complexity of managing a high volume of heterogeneous data. This work presents an
architecture that aims to tackle the problems of collecting, processing, and visualizing
data to support decision-making. Still, it was possible to support decisions with external

information and data from other sources.

ML techniques could improve the use of the IoT system in a precision livestock
operation. Machine processing algorithms were used to analyze data collected by sensors
and other monitoring equipment and identify patterns and trends that may not be
immediately apparent to humans. This analysis can help producers and researchers decide
how to manage their animals and improve the overall efficiency and sustainability of the
farm. On the other hand, ontologies are often used in the context of artificial intelligence
and semantic web technologies that can be used to help computers better understand and
interpret data. In precision livestock, ontology was used to help organize and classify data

collected by sensors.

Our results are relevant since they address problems related to world food pro-
duction. Our approach has the potential to be replicated in food production research
institutions all over the world, besides being a contribution to scientific and livestock
technological solutions. We also intend to reinforce and prioritize quality attributes, such
as flexibility, extensibility, and scalability. New semantic rules can also be defined to

support data enrichment in the ontology and their integration with other domain-specific



89

ontologies to increase the capacity of knowledge extraction. Finally, it would be useful to
conduct new experiments in other livestock subdomains to evaluate the support offered by

e-Livestock architecture in different application subdomains.

We checked that the architecture met the extensibility, flexibility, and scalability
requirements. Aimed to fulfill extensibility, the architecture could accommodate new
controllers and provide new endpoints for the intelligence module, proving consistent and
scalable. Regarding flexibility, the architecture allowed the addition of different intelligent
models, requiring only the input of data in the expected pattern for its operation. Hence,
we could easily add new algorithms without a significant impact on the functioning of the
architecture. Furthermore, as we demanded new intelligent algorithms and more resources,
we observed that the architecture remained stable and functional throughout the training
and evaluation process of the algorithms, showing its potential to meet the elicited quality

attributes.

e-Livestock is an architecture of an ecosystem platform that offers services to
support decision-making in agribusiness. By evaluating the architecture of an agricultural
research corporation, we evidenced that we could monitor the health and well-being of the
animals. This issue was possible by using an intelligent architecture capable of enriching
data to support decisions through the services offered by the platform. As a result, different
partners using e-Livestock can interact and collaborate accordingly, innovating in a highly
competitive market. From this solution, they can also align decisions and change strategies
and relationships with their external stakeholders to create value and new opportunities
for agribusiness. So, using an intelligent architecture goes beyond the solutions proposed
by individual organizations and rural properties that do not aim at attracting partners to

an innovation ecosystem (Bosch, 2016) (Bosch and Olsson, 2018).
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6 CONCLUSION

This work lays out a theoretical framework of key concepts about the Internet of
Things (IoT), the semantic web with ontology, and intelligent decision support systems.
The work begins by introducing the domain of decision support systems in agriculture
4.0 and identifying the challenges related to leveraging sensor data for decision-making
in precision livestock. After that, the work delves into the concepts of ontology and

computational intelligence employed in the proposed solution.

To answer the established research question: “How can e-Livestock support
automated monitoring, reasoning and actions in smart farms?” Given the dif-
ficulties associated with decision-making in Agriculture 4.0, the work seeks to address
this issue by proposing an architectural approach. An architecture of a software-based
production system for milk production, so-named e-Livestock, was developed and deployed
in a Compost Barn environment of a real farm in Brazil. To evaluate the effectiveness
of the proposed architecture, a case study was conducted, and evidence was presented
on its feasibility in supporting decision-making in the realm of precision livestock. The
proposed solution, the e-Livestock architecture, collects, processes, stores, and enriches
data obtained through sensors, which may be installed on animals or in their immediate

environment.

As a contribution of this work, we have published the systematic mapping (Gomes
et al., 2021), the first version of the architecture (Gomes et al., 2021), the ontology model
(Gomes et al., 2021), the second cycle (Gomes et al., 2023), and (Gomes et al., 2022).
In addition to its contributions to decision support, the proposed solution may benefit
research groups working on decision-making platforms. Therefore, the work concludes by

highlighting the value of this work to a broader audience.

o This study presents a systematic literature review that identifies and categorizes the
main works in Agriculture 4.0. As a contribution, this review offers opportunities
for further research by providing a state-of-the-art overview of decision support
systems. By advancing knowledge in this field, we highlight integration techniques
and opportunities utilized in previous studies, demonstrating the importance of
using [oT sensor data to support decision-making. As a result, complex decisions
related to agribusiness can be enriched with information from other systems used on
farms. Additional topics could be explored for future research, especially regarding
integrating loT devices and systems for agribusiness. Furthermore, research on data
provenance should be developed, considering the context of IoT data to enrich and

improve decision-making in agriculture.

o This study also presents a conceptual architecture for handling IoT data in rural

environments. This architecture contributes to the scientific community by providing
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a solution that considers semantics and artificial intelligence to enrich data for

decision-making in this domain

o In addition, this study developed an ontology capable of modeling and extracting
implicit knowledge about dairy cattle. This ontology is accessible via a web service

and enables interoperability with external platforms.

o The integration of the proposed architecture with other platforms, such as INMET,
increased decision support by providing external information to the farm. Further-
more, this integration generated knowledge about using APIs and common data

models for integrating systems, opening opportunities for additional integrations.

o Finally, this study also developed an architecture considering a tier of intelligence
combining semantic inferences and machine learning predictions. To enrich data
and provide better decision support on farms, the study presents the visualization of

predictive results and farm information on a mobile device.

Decisions in agriculture need to be made considering the diversity of information
and devices present in different contexts. Furthermore, context information is often not
used in decision-making due to the complexity of managing a high volume of heterogeneous
data. This work presented an architecture that aimed to tackle the problems of collecting,
processing, and visualizing data to support decision-making. Still, supporting decisions
with external information and data from other sources was possible. Our results are
relevant since they addressed problems related to world food production. Our approach
has the potential to be replicated in food production research institutions over the world,
besides being a contribution to scientific and livestock technological solutions. We also
intend to invest in reinforcing and prioritizing quality attributes, such as data provenance,
interoperability, and reliability (as highlighted by Fernandes et al. (2021); Valle et al.
(2021); Ferreira et al. (2021)). New rules can also be defined to support data enrichment
in the ontology and their integration with other domain-specific ontologies to increase the
capacity of knowledge extraction. Finally, it would be useful to conduct new experiments
in other livestock subdomains to evaluate the support offered by e-Livestock architecture

in different application subdomains.

For future work, we intend to generate other instances of e-Livestock architecture
and associate them with a software ecosystem and explore aspects of collaboration,
communication, and integration between farms to support decisions in these instances.
Combining and processing additional data sources and sensors also can lead to more
accurate results, reduce costs, and maintain agribusiness sustainability. Furthermore, it is
essential to focus on improving the training process, when it comes to machine learning.

This can be achieved by repeating the training of the same algorithm multiple times to
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verify the results. Additionally, it is crucial to develop a clear and well-defined pipeline for

the maintenance and deployment of the model in production.
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