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RESUMO

Na indústria pecuária, a produção animal sustentável é o principal objetivo do

desenvolvimento tecnológico. Porém, é fundamental manter boas condições no ambiente

devido à suscetibilidade dos animais a variáveis como temperatura e umidade, que podem

causar doenças, perdas de produção e desconforto. Assim, os sistemas de produção pecuária

requerem monitoramento, controle e mitigação das condições indesejadas através de ações

automatizadas. A principal contribuição deste estudo é a introdução de uma arquitetura

auto-adaptativa denominada e-Livestock para apoiar as decisões relacionadas à produção

animal. Foram conduzidos dois estudos de caso, envolvendo a arquitetura e-Livestock,

que foi utilizada no sistema de produção Compost Barn - ambiente e tecnologia onde

ocorre a produção de gado leiteiro. Os resultados demonstraram a utilidade do e-Livestock

para avaliar três aspectos principais: (i) abstração de tecnologias disruptivas baseadas em

Internet das Coisas (IoT) e Inteligência ArtiĄcial, e sua incorporação em uma arquitetura

única, especíĄca para o domínio da pecuária, (ii) suporte para a reutilização e derivação

de uma arquitetura auto-adaptativa para apoiar o desenvolvimento de uma aplicação de

apoio à decisão para o subdomínio da pecuária e (iii) suporte para estudos empíricos em

uma fazenda inteligente real para facilitar a transferência de tecnologia para a indústria.

Portanto, a principal contribuição dessa pesquisa é o desenvolvimento de uma arquitetura

combinando técnicas de machine learning e ontologia para apoiar decisões mais complexas

ao considerar um grande volume de dados gerados nas fazendas. Os resultados revelaram

que a arquitetura e-Livestock pode apoiar monitoramento, controle, previsão e ações

automatizadas em um ambiente de produção de leite/Compost Barn.

Palavras-chave: Sistema de Apoio à Decisão. Internet das Coisas. Arquitetura e-Livestock.

Arquitetura auto-adaptativa.



ABSTRACT

Sustainable animal production is a primary goal of technological development in

the livestock industry. However, it is crucial to master the livestock environment due

to the susceptibility of animals to variables such as temperature and humidity, which

can cause illness, production losses, and discomfort. Thus, livestock production systems

require monitoring, reasoning, and mitigating unwanted conditions with automated actions.

The principal contribution of this study is the introduction of a self-adaptive architecture

named e-Livestock to handle animal production decisions. Two case studies were conducted

involving a system derived from the e-Livestock architecture, encompassing a Compost

Barn production system - an environment and technology where bovine milk production

occurs. The outcomes demonstrate the effectiveness of e-Livestock in three key aspects: (i)

abstraction of disruptive technologies based on the Internet of Things (IoT) and ArtiĄcial

Intelligence and their incorporation into a single architecture speciĄc to the livestock

domain, (ii) support for the reuse and derivation of an adaptive self-architecture to

support the engineering of a decision support system for the livestock subdomain, and (iii)

support for empirical studies in a real smart farm to facilitate future technology transfer

to the industry. Therefore, our researchŠs main contribution is developing an architecture

combining machine learning techniques and ontology to support more complex decisions

when considering a large volume of data generated on farms. The results revealed that the

e-Livestock architecture could support monitoring, reasoning, forecasting, and automated

actions in a milk production/Compost Barn environment.

Keywords: Decision Support System. Internet-of-Things. e-Livestock Architecture. Self-

adaptive Architecture.
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1 INTRODUCTION

This chapter presents the motivation that inspired this study, the main problems

and the research methodologies employed, leading to the development of the solution

proposed.

1.1 CONTEXTUALIZATION

In recent years, the Internet of Things (IoT) has started to connect several devices

and sensors, which has generated opportunities in several sectors, including agriculture

and livestock (Zhai et al., 2020). Wearable IoT devices, for example, can be used to track

the activities of humans and animals. In this sense, IoT in animal health uses biosensors

and software to monitor and maintain animal health records. The large volume of data

generated by these devices can be interpreted by intelligent systems. Subsequently, these

data can support producers and managers in decision-making (Symeonaki et al., 2020).

The use of sensors to monitor crops and soil quality has also been extended to

monitor animal health. In the livestock context, to ensure animal welfare, it is necessary

to monitor, control, and intervene in the environment and make real-time decisions that,

hopefully, can positively impact the animalŠs health. However, the continuous monitoring

of animals through sensors has transformed farms and brought new challenges beyond

sensors and IoT devices (Farooq et al., 2019).

Agribusiness is a critical domain where reckless actions or negligent monitoring can

lead to animal deaths, crop failures, Ąnancial loss, and even national economic unbalance.

In livestock which involves raising animals for human consumption, inappropriate levels of

certain variables, such as humidity and/or temperature in the production environment

can, for instance, lead to the development of diseases and inĆammation in the glands of

animals that may cause a reduction in production or even total loss (Graciano Neto et al.,

2022). To mitigate these risks, agribusiness Production Systems (PS) should use software-

based solutions alongside manual labor to (i) monitor the environment, (ii) self-regulate its

behavior to act on the environment, preserving the ideal conditions to leverage productivity,

(iii) automate actions and (iv) predict not favorable conditions that could harm production,

enabling the system to change the environmental conditions before those conditions

occur. Difficulties such as enriching decisions, developing systems capable of adapting to

uncertainties and dynamic factors, and making production predictions still need to be

explored. With these demands, PS have evolved into smart farms with numerous sensors

and actuators that generate vast amounts of data, requiring processing and reasoning to

prevent negative outcomes such as animal diseases. These sensors and actuators generate

massive data, which demands processing and reasoning to avoid unfortunate situations.

All these requirements and technologies have made PS environments to become highly
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dynamic and complex. It is not unusual that new producers or technologies must be

joined to the PS structure. Then, supporting PS demand an abstraction that satisĄes the

requirements posed by the livestock context.

1.2 MOTIVATION

The integration of IoT data management in precision livestock farming is becoming

increasingly complex with the emergence of Agriculture 4.0 and the widespread use of

smart applications. This work discusses the role of data integration in precision livestock

farming and how it is impacted by dynamic and adverse factors, such as changing climate

patterns. The work also highlights the complexities of monitoring animal health and

environmental conditions in conĄned animal systems, such as Compost Barns.

Precision livestock farming involves the collection of data from different contexts,

which is used for decision-making purposes. For example, in a conĄned animal system such

as a Compost Barn, regular adjustments of the internal temperature are necessary to ensure

maximum comfort for the animals. By integrating data collected from sensors with weather

station data, the internal temperature of the environment can be controlled appropriately,

reducing the impact of sudden temperature changes on milk production. Furthermore,

integrating data with geolocation services can help maintain accurate monitoring of animals

on pasture. Thus, data management and integration play a crucial role in precision livestock

farming.

However, the complexity of precision livestock farming is compounded by the

movement of animals in space and exposure to adverse situations. Compost Barns require

constant monitoring of environmental conditions and animal health, as animals are conĄned

in a covered shed with a freely accessible communal bedding area. The bedding area is

composed of sawdust or wood shavings, where most of the waste is retained, without

partitions. North American producers introduced this production system, which has been

adopted in Brazil since 2001. The shed has a ventilation system designed to remove heat

produced by the composting of bedding and animal waste (MilkPoint, 2016).

The constant generation of data by sensors increases the complexity of data

management, as sensors are subject to mechanical failures and environmental interference.

Therefore, decision-making processes need to consider multiple dynamic factors that can

impact animal production economically and environmentally. Furthermore, the integration

and management of data in precision livestock farming play a crucial role in optimizing

animal production and maintaining animal health. However, the complexity of conĄned

animal systems such as Compost Barns and dynamic and adverse factors, make data

management and decision-making processes more challenging. Therefore, it is essential to

consider multiple factors and develop robust data management strategies that consider

the speciĄc needs of different livestock systems.
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Regarding the livestock of dairy cattle, some diseases stand out due to the economic

impact they generate. Mastitis is a disease that typically involves bacterial infection and

leads to inĆammation in the udder of a cow, which in turn results in elevated somatic

cell count in the milk. One of the primary reasons for milk disposal is mastitis, which

occurs when animals are undergoing treatment. This is due to the medicationŠs impact

on the milk, making it unsuitable for consumption. The best way to avoid the impacts

of mastitis is through disease control and prevention. Control can be done through early

treatment, separation of sick animals to prevent contamination of other animals, and

sometimes even the disposal of animals with chronic diseases. Prevention can be achieved

by maintaining environmental conditions, as a well-controlled humidity environment helps

to avoid the proliferation of environmental bacteria, reducing the risks of contamination.

Another important factor is animal hygiene, cleaning the animal before and after milking.

Traditional architectures need to prepare to deal with such a complex domain,

whose context can change rapidly. New animals can arrive at the farm, climate changes

can vary throughout the year, and systems must be able to continue functioning correctly,

supporting producers on their farms. To solve this problem, an architecture is needed to

construct a Decision Support System (DSS) for smart farms. Farmers can suffer signiĄcant

losses due to the complexity of decision-making when it comes to mastitis control and

prevention. Failure to effectively manage mastitis can result in reduced production and

even the loss of animals.

Recent secondary studies have been conducted to answer relevant questions about

decision support systems in the precision livestock domain. For example, Villa-Henriksen

et al. (2020) present a review of interoperability standards. This secondary study discusses

the challenges of integrating open data with the various data generated on farms. In Bahlo

et al. (2019), the authors review network, physical device, and application problems and

highlight the role of middleware in data integration. In Zhai et al. (2020), the authors raise

issues related to decision-making and the need for additional elements, such as weather

station data, due to the inĆuence of temperature and humidity on animal production.

In these studies, the authors cover the importance of integrating data, whether

with open databases, weather station services, geolocation services, or even between farms.

Although data integration is discussed for decision-making, the authors need to bring a

general perspective on how to use the data collected on farms, and what software models

and architectures are used in decision support systems.

Other researchers have been working to discover how meteorological data, linked

to intelligent prediction models, could be used in agriculture (Newlands et al., 2019).

Some works are interested in how ArtiĄcial Intelligence (AI) systems support the decision-

making process (Gualdi and Cordella, 2021) and how AI improves agricultural productivity

(Lakshmi et al., 2020).
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To address the issues faced in agribusiness, integrating self-adaptive abilities can

enhance smart farm PS using IoT software systems and software engineering methodologies.

This creates a comprehensive vision that includes smart services, smart products (IoT),

Agribusiness 4.0 systems, and self-adaptive software engineering (Weyns, 2020). An

architecture for decision-making, combined with self-adaptation techniques, meets these

requirements by accommodating the necessary software-based modules, including (i) an

Internet of Things (IoT) module for sensing and acting on PS environment, (ii) self-

adaptive characteristics to modulate the environment based on stimuli, (iii) ArtiĄcial

Intelligence (AI) techniques to reason about the large amounts of data collected to support

automated actions, and (iv) a complex, Ćexible and reusable architecture open to receiving

new contributions to the PS. Hence, aiming to tackle the challenge of providing an

architecture that meets the needs of a smart farm, encompassing processing, integration,

and intelligence, we developed an architecture for DSS, called e-Livestock.

Therefore, the research problem addressed in this work is to support automated

monitoring, reasoning, and automated actions in smart farms to enhance

milk production. The e-Livestock architecture was designed to gather new knowledge at

runtime to resolve uncertainties, reason about itself, its context, and goals, and adapt based

on actuators to achieve goals. We conducted a case study in a Compost Barn PS for dairy

cattle to assess the proposed solution. The goal was to analyze the support to monitor the

environment, reason on data, and automate actions from the researcher’s/farmers’ point

of view, in the context of a smart farm system. The research question posed within

the scope of this study is “How can e-Livestock support automated monitoring,

reasoning and actions in smart farms?”

1.3 OBJECTIVES

This work aims to support producers in decision-making, through an approach

that uses intelligence to enrich farm information. This architecture, called e-Livestock,

aims to help rural producers of dairy cattle to understand the situation of animals on the

farm, and thus, favor decision-making through predictions and inferences.

Using Machine Learning (ML) techniques, producers can have a view with predicti-

ons about milk production, while ontologies provide a retrospective view of the production

data. By combining these approaches into one system, presenting both views (predictive

and retrospective), with the support of graphical visualization, producers can make more

enriched decisions.

Therefore, the main contribution of our research is the development of an archi-

tecture combining ML techniques and ontology to support more complex decisions when

considering a large volume of data generated on farms. To support our approach, an

evaluation was carried out in a Compost Barn, a production system related to improving
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the production of conĄned dairy cattle. This Compost Barn is located at Coronel Pacheco,

Minas Gerais Ű EMBRAPA, a Brazilian Agricultutral Research Corporation.

The results show that the solution supports farms in animal management and

well-being in the decision-making process. In addition, it was possible to infer past data

using an ontology model, providing agribusiness managers with insights derived from past

data.

To achieve these objectives, the following speciĄc objectives were considered:

• Specify a layered architectural model capable of being maintainable, taking into

account various types of data coming from sensors;

• Develop an architecture capable of supporting decisions in smart farms, through

intelligence with predictions and inferences;

• Specify and implement a knowledge base through an axiomatically rich ontological

model, capable of extracting implicit knowledge about dairy animals;

• Develop a layer responsible for managing the intelligent models and capable of storing

them (ontology and machine learning;

• Implement the proposed architecture with real-world historical data from the farm.

1.4 OUTLINE

This work is divided into six chapters. Chapter 2 presents the concepts involved

in this work. Chapter 3 presents the related works and the systematic mapping of the

literature. Chapter 4 presents the methodology used, called Design Science Research, the

proposed solution to support decision-making in precision livestock, detailing the conceptual

aspects and the implementation of the solution. Chapter 5 presents the evaluation of the

solution, highlighting its planning, execution, and results obtained. Chapter 6 presents the

Ąnal remarks, highlighting the contributions of the work, its limitations, and future work.
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2 THEORETICAL FOUNDATION

This chapter introduces the main concepts related to the research area, i.e., decision

support system, Internet of Things (IoT), ontology, and Intelligent Systems (IS).

2.1 INTERNET OF THINGS

The concept of the Internet of Things (IoT) is related to the connection of a

network of "objects"through the Internet without direct human intervention (Yang et al.,

2013). Through geographically distributed sensors, IoT derives real-time information,

comprising many applications, among which the most notable are smart houses, personal

healthcare, intelligent logistics, Industry 4.0, and real-time conditions monitoring. In the

latter context, meteorological data are used as a source of information for climate warning

systems. In this vein, farmers have been using it to make better tactical decisions to avoid

harvest loss, mining companies employ it to monitor soil conditions, and military bases

use it to have prior knowledge of abrupt changes in environmental parameters (Chavan

and Momin, 2017).

Many applications can beneĄt from the periodically sensed data, which are collected

from wireless sensors that constitute the smart environment. The collected data is often

transmitted to a cloud platform, where many users can access it. IoT has been affecting

the way data is produced and used, provoking the emergence of new software products and

services due to the dynamic environment. The enormous amount of generated sensor data

must be stored, processed, and presented transparently, efficiently, and easily understood.

The application of IoT in agriculture and livestock has advantages due to the

possibility of monitoring and controlling many different parameters in an interoperable,

scalable, and open context, with the increasing use of automated sensors (Villa-Henriksen

et al., 2020). In agribusiness, one of the innovations is its combination with data processing,

allowing greater support in decision-making. One of the objectives of using IoT in livestock

is to increase accuracy in using information for decision-making, as we will discuss in the

following chapters.

2.2 ONTOLOGY

To support the sharing and reuse of knowledge between different systems, it is

necessary to deĄne a common vocabulary for representing this knowledge. In this sense,

Gruber (1995)borrowed the term ontology from philosophy and deĄned it for computation

as a formal and explicit speciĄcation of a shared conceptualization. This conceptualization

is a simpliĄed and abstract view of the world that one wants to represent for some purpose.

In general, an ontology speciĄes a domain vocabulary, composed of deĄnitions of classes,
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relationships, and functions. Ontologies are used to share a common understanding about

the structure of information between people or software agents; support domain knowledge

reuse; explain assumptions about the domain; separate domain knowledge from operational

knowledge and analyze domain knowledge (Gruber, 1995).

The Ontology-Based Data Access (OBDA) strategy uses ontology as the mediated

schema, from where queries can be posed in the data integration system. In addition,

data sources are described according to the classes and the schema mappings are speciĄed

following the properties that link concepts and instances thereof (individuals) in the

ontology. An example of the application of ontologies in the management of complex

data domains can be found in the omics study (genomics, proteomics, transcriptomics,

metabolomics, etc). In such context, Knowledge Representation (KR) techniques and data

integration methods are essential to process the highly heterogenous datasets to allow

the extraction of comprehensive knowledge from all the fuzzy information necessary to

understand the diverse variables - often presented under different data types - involved

in the complex phenomenon of a disease, for instance (Louie et al. (2007); Zitnik et al.

(2019)).

The Ontology Web Language (OWL) was designed to facilitate the interpretation

of Web content using ontologies by providing additional vocabulary along with formal

semantics, more complete than other languages such as XML, RDF, and RDF Schema

(RDF-S) (McGuinness and Van Harmelen, 2004). The advantage of OWL is that it can be

used when the information contained in documents needs to be processed by applications,

as opposed to situations where the content only needs to be presented to humans. OWL

was developed as a language for building ontologies that provide high-level descriptions

of Web content. These ontologies are created by building class hierarchies that describe

concepts in a domain and relating classes to each other using properties (McGuinness and

Van Harmelen, 2004).

OWL and Semantic Web Rule Language (SWRL) are the main languages of

the Semantic Web. OWL can also represent data as instances of OWL classes Ű called

individuals Ű and provides mechanisms for reasoning and manipulating the data. OWL also

provides an axioms language to deĄne how to interpret concepts in an ontology precisely

(OŠConnor et al., 2008). SWRL allows users to write rules that can be expressed in terms

of OWL concepts and that can reason about OWL individuals. One of the most powerful

features of SWRL is its ability to support built-ins (Horrocks et al., 2004). Built-ins are

user-deĄned predicates that can be used in SWRL rules. Several core built-ins for common

math and string operations are deĄned in the SWRL proposal. SWRL allows new libraries

of built-ins to be deĄned and used in rules. Users can deĄne built-in libraries to perform a

wide variety of tasks. Such tasks might, for example, include currency conversion, temporal

manipulations, and taxonomy searches. In general, the arguments to these inners must be

OWL DL property values, that is, literals or individuals. However, some built-in libraries
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may also support class or property built-in arguments, although such built-ins should only

be used in OWL Full ontologies (OŠConnor et al., 2008).

2.3 DECISION SUPPORT SYSTEM

A Decision Support System is an application that provides support for different

decision-making activities in a speciĄc domain (Belciug and Gorunescu, 2020). DSSs are

used in various domains such as medical diagnosis, engineering project evaluation, business

management, agricultural production, livestock, credit veriĄcation, air travel industry,

railway management, and forest management. A DSS can be a system that responds

to a simple query or can model a complex human decision-making process (Belciug and

Gorunescu, 2020).

In a more updated deĄnition, DSS is expected to operate under uncertain conditions

without interruption. Possible causes of uncertainties include changes in the operational

environment, resource availability dynamics, and user objectives variations. Traditionally, it

is the task of system operators to deal with such uncertainties. However, these management

tasks can be complex, error-prone, and costly. In this vein, arises a new concept to deal

with these uncertainties, called self-adaptation. Self-adaptation aims to enable the system

to collect additional data on uncertainties during operation to manage itself based on

high-level goals. As many IoT systems today need to be operational 24 hours a day, seven

days a week, uncertainties must be resolved at runtime. Self-adaptation is about how a

system can mitigate such uncertainties autonomously or with minimal human intervention

(Weyns, 2020).

Self-adaptive systems are a relatively new style of decision support system that can

adjust themselves in response to changing conditions. These systems use machine learning

algorithms and other artiĄcial intelligence techniques to monitor and analyze data from

various sources, including sensors, databases, and other inputs. The self-adaptive system

then adjusts its decision-making algorithms in real-time based on the data it has collected,

allowing it to make more accurate and timely decisions. One of the main advantages of

self-adaptive systems is their ability to respond to unexpected changes in their environment.

For example, a self-adaptive system used in manufacturing might detect a problem with a

machine and automatically adjust its operations to compensate. Similarly, a self-adaptive

system used in transportation might detect a change in traffic patterns and adjust its

route accordingly. These systems are also able to learn from past experiences and use that

knowledge to improve their decision-making processes over time (Weyns, 2020).

A self-adaptive system comprises two distinct parts: the Ąrst part interacts with

the environment and is responsible for domain concerns - i.e., the concerns of the users for

whom the system is built; the second part consists of a feedback loop that interacts with the

Ąrst part (and monitors its environment) and is responsible for adaptation concerns, i.e.,
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about domain concerns (Weyns, 2020). Based on the two basic principles of self-adaptation,

a conceptual model for self-adaptive systems can be deĄned, describing the basic elements

of such systems and the relationship between them. The basic elements are intentionally

kept abstract and general but align with the basic principles of self-adaptation. Figure 1

shows the conceptual model of a self-adaptive system (Weyns, 2020).

Figure 1 - Conceptual model of a self-adaptive system

Source: Weyns (2020).

The conceptual model of a self-adaptive system typically includes several key

components as Figure 1 shows: Sensing and monitoring: This component is responsible

for gathering information about the system and its environment, such as data on system

performance, user behavior, and changes in the operating environment. Managing System:
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This component processes the data gathered by the sensing and monitoring component

and makes decisions about how to respond to changes in the environment. This may

involve selecting from a range of possible actions, depending on the speciĄc context and

goals of the system. Managed System: This component is responsible for implementing

the decisions made by the managing system, which may involve modifying the behavior

or conĄguration of the system in response to changing conditions. Feedback Loop: This

component is responsible for evaluating the effectiveness of the systemŠs responses to

changes in the environment and providing feedback to the managing system, which can

then use this information to improve its future decisions.

2.4 INTELLIGENT SYSTEMS

Intelligent Systems (IS) represent an interdisciplinary research domain that brings

together ArtiĄcial Intelligence (AI) and a variety of related domains, such as psychology,

linguistics, and neurology, connected by many interdisciplinary relationships. Nowadays, a

wide variety of ISs have been developed, such as expert systems; fuzzy systems; artiĄcial

neural networks; evolutionary computation (genetic/evolutionary algorithms, genetic pro-

gramming, evolutionary strategies); support vector machines; particle swarm optimization;

ant colony systems; memetic algorithms; ant colony optimization; clustering; Bayesian (le-

arning) model; deep learning; and hybrid models (neuro-genetic, neuro-fuzzy, fuzzy-genetic,

etc), among others (Belciug and Gorunescu, 2020).

Intelligent Decision Support Systems (IDSS) is a DSS that uses (AI) methods.

Researchers are trying to develop computational tools that behave like a human advisor: an

entity that can collect and analyze evidence, that can diagnose after identifying a problem,

and Ąnally suggest certain solutions (Belciug and Gorunescu, 2020). Adding machine

learning into IDSS offers many Ćexible algorithms that are well suited for analyzing large,

complex datasets. Therefore, the application of such algorithms for herd management

analysis and performance data or computerized decision-making on commercial dairy farms

looks very promising (Pietersma et al., 1998). Machine learning algorithms offer greater

Ćexibility regarding problems of multicollinearity, missing values, or complex interactions

between variables.

2.5 FINAL REMARKS OF THE CHAPTER

In conclusion, the theoretical foundation chapter has provided a comprehensive

overview of decision support systems, intelligence and ontology. It has explored the history,

and current state of decision support systems, including their key features, components,

and types. Additionally, it has delved into the concept of intelligence, particularly artiĄcial

intelligence, and its integration into decision support systems. This theoretical foundation

will serve as a valuable guide for researchers, practitioners, and decision-makers in the Ąeld
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of information systems, helping them to harness the power of decision support systems

and intelligence to enhance organizational decision-making processes.
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3 METHODOLOGY

The following chapter discusses a systematic mapping conducted to support our

conjectures and related works.

3.1 SYSTEMATIC MAPPING

Through this systematic mapping, our focus is to list the techniques and approaches

that are used to support data integration on farms so that Decision Support Systems can

support decisions in the context of precision agriculture and livestock.

This systematic mapping aims to answer four research questions deĄned below: (i)

How to integrate Decision Support Systems data from IoT devices in precision

agriculture and livestock? Through this question, we seek to investigate the state of

the art on the integration of data generated on farms by IoT devices to support decisions

in precision agriculture and livestock; (ii) RQ2: How semantic data is handled to

integrate Decision Support Systems in precision agriculture and livestock?

With this question, we seek to identify, in the results of RQ1, which semantic integration

techniques are being used to enrich data to take decisions in precision agriculture and

livestock; (iii) RQ3: What intelligent models are used to support Decision

Support Systems in precision agriculture and livestock? Given the increasing use

of computational intelligence, pointed out in secondary works, this question aims to explore

the models, techniques and intelligent algorithms that are being used in smart farming;

(iv) RQ4: How is computing technology applied in precision agriculture and

livestock? Considering that the Internet of Things has been widely used in Agriculture

4.0, as shown by secondary studies, the purpose of this question is to analyze how the

solutions used contribute to the advancement of computing on farms, whether monitoring

through sensors, in the use cell phone, drones or smart devices.

3.1.1 Planning

The methodology used in this work follows the guidelines proposed by Kitchenham

(2004). During the mapping process, the support tool called Parsifal1 was used.

According to Kitchenham (2004) recommendations, the research was divided into

three parts, planning, conducting, and reporting. During planning, the need for revision,

the research questions that should be answered, and the protocol to be followed were

identiĄed. After that, the conduction process began, through which we identiĄed and

selected the studies, and performed the backward and forward snowballing techniques,

according to the hybrid search technique (Mourão et al., 2017). The hybrid search technique

consists of executing the search string in a database that indexes other databases, such
1 https://parsif.al/
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as Scopus. Then perform backward and forward snowballing on the articles returned by

the string. After that, extraction and synthesis of the data obtained were performed for

quality analysis, and we present the results.

Search terms were deĄned considering Population, Intervention, Comparison, Out-

come and Context (PICOC) (Kitchenham and Charters, 2007) to identify keywords,

synonyms and build the search string based on the combination of key terms. Compa-

rison is not relevant in this work since this mapping is an exploratory study. To select

the articles to be analyzed to answer the research questions, some criteria were deĄned.

Inclusion criteria aimed to add those works that present architectures, data integration

and intelligent models to support decisions in precision agriculture and livestock, and

studies in English. The exclusion criteria adopted were: (i) book chapters; (ii) studies

published only as abstracts; (iii) studies whose version is older than another study already

considered; (iv) articles not in English; (v) works that do not present an abstract; (vi)

keywords are not present in the abstract. More details of the selection process can be seen

in this repository2

The search was carried out in the Scopus electronic database, since it indexes

several other bases, allowing the execution of only one search string (Mourão et al., 2017).

Two primary studies (control articles), i.e., Villa-Henriksen et al. (2020) and Helfer et al.

(2019) were deĄned. Budgen et al. (2008) suggest control articles used for the accuracy of

the search string in databases of selected data and whether the search retrieve the right

relevant studies. Keywords from these articles were analyzed to Ąnd new relevant terms to

include as part of the search string. Experts in Decision Support Systems also participated

in the veriĄcation of the search string. The Ąnal search string was described as follows:

(Şinternet of thingsŤ OR iot) AND (dss OR Şdecision support systemŤ)

AND (agriculture OR livestock).

3.1.2 Conduction

The Ąrst step in this phase was to execute the search string, considering the selected

sources. Subsequently, the study selection process was carried out, illustrated in Figure 2,

which comprised 4 main stages.

In Step 1, search results from databases were merged into Parsifal, and duplicated

papers were removed, totaling 155 articles. Step 2 involved the analysis of the title and

abstract considering the inclusion/exclusion criteria. Those articles that did not address

Decision Support Systems and IoT were excluded. The Introduction, Theoretical Reference

and Conclusion sections of the articles were read. As a result, 102 articles (65.8%) were

excluded and 53 (34.2%) were included.
2 https://gist.github.com/jjthegomes/a907809e75c9583e975228db77e62866
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Figure 2 - Data collection process

Source: Mourão et al. (2017)

According to the guidelines proposed in (Kitchenham, 2004), researchers should

develop quality checklists to assess individual studies. During Step 3, backward and

forward snowballing (Webster and Watson 2002) were applied to the 53 selected articles

resulting in 1 more article for backward snowballing and 1 for forward snowballing.

In Step 4, the papers were read in full and their quality was assessed using the list

of quality assessment questions, which was customized for the context of this mapping. At

this stage we also perform data extraction, verifying which approach the solutions used

to support Decision Support Systems and their application in precision agriculture or

livestock. This selection was carried out by specialists in the areas of Decision Support

Systems. At the end of step 4, of the 36 articles, 34 (66%) were included. This reduction

in studies can be justiĄed by the following aspects: (i) absence of proposed solutions to

support decision-making; (ii) many studies discussed the relevance of integration in the

context of IoT and decision-making, without introducing a solution for its realization;

and (iii) the quality assessment checklist score. Once the papers were mapped, a deeper

analysis was necessary in order to identify, evaluate and interpret the studies selected to

answer the systematic mapping research questions.

According to the results found in the mapping, it is possible to observe that the

use of semantic web and semantic knowledge bases are being widely used. The application

of these solutions ranges from irrigation of crops and soil fertilization to the care and

management of animals so that they can increase their production. About 14 articles (41%)

selected for mapping address some semantic web technique, be it the use of ontologies to

infer new knowledge and semantic marks for automatic analysis of intelligent algorithms.

The other articles vary their approach in relation to the use of computational intelligence.

Neural networks, Support Vector Machine (SVM), and deep learning are also some of the

techniques used. Table 1 summarizes the mapping Ąndings.
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3.1.3 Results

RQ1: How to integrate Decision Support Systems data from IoT devices in precision

agriculture and livestock? Research conducted in [Visconti et al. (2020), Karim et al.

(2017), Kamath et al. (2019), Suakanto et al. (2016), Khanna and Kaur (2020), Sudha

et al. (2022)] demonstrates the use of a wireless sensor network (WSN) to integrate all

IoT sensors in the Ąeld in order to provide the largest data set for the decision support

systems. In Karim et al. (2017) a prototype of a mobile application integrated with the

wireless sensor network is proposed, capable of issuing alerts via SMS so that producers

can quickly make decisions about the situation of the soil. Kamath et al. (2019) describe

the implementation of a wireless sensor network to monitor rice crops with image capture.

The authors integrated the system with RabbitMQ (Kamath et al., 2019), a messaging

service capable of persisting sensor data. In (Suakanto et al., 2016) a conceptual model

and system design are proposed for decision support in smart farming. The work uses

middleware to support the communication and interoperability of smart devices, the

detection and characterization of events in real-time and the collection of events for big

data analysis. Khanna and Kaur (2020) use a wireless sensor network integrated with

cloud servers. In this way, producers can monitor different information from plantations,

such as temperature and soil moisture, and intervene in physical locations to balance the

environment. The research proposed in (Kamilaris et al., 2016) describes the Agri-IoT, an

IoT-based framework capable of integrating various data streams via the Global Sensor

Network (GSN), providing complete semantic processing. In [Ting et al. (2022), Sakthi

and DafniRose (2022)] the authors propose using blockchain for IoT data integration to

ensure security and reliability in the data used for decision-making.

RQ2: How semantic data is handled to integrate Decision Support Systems in

precision agriculture and livestock? The works [Symeonaki et al. (2020), Kamilaris et

al. (2016), Rotondi et al. (2019), Fawzi et al. (2021)] propose the use of a layer that

deals with semantics to interpret data from IoT devices, and Symeonaki et al. (2020) still

aggregates context data such as temperature, pressure, wind speed, humidity, lightning

UV, among other data that can inĆuence the behavior of animals, crops and plantations.

Once these data are taken into account, it is possible that the systems indicate more

appropriate decisions in the management of the farms. Kamilaris et al. (2016) explore how

the semantic integration of information from various sources, such as: sensors, social media,

connected farms, government alerts, regulations, among others, can increase productivity

in smart farming. In (Sowmya et al., 2020) the authors propose the use of semantic web

to enrich the data generated by IoT devices and then apply machine learning algorithms

to optimize soil fertilization. As a result, the evolution from traditional agriculture to

precision agriculture and livestock, connected systems based on semantic knowledge, have

transformed the physical and technological environment of rural properties. Owners,

producers and veterinarians gain a new role in this context: enriching systems through a
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shared knowledge base, in such a way that decisions are increasingly efficient.

RQ3: What intelligent models are used to support Decision Support Systems in

precision agriculture and livestock? The articles [Kakamoukas et al. (2019), Rezk et al.

(2021), Sowmya et al. (2020), Borisenko et al. (2019), Kale et al. (2019), Tripathy et al.

(2021), Balan et al. (2020), Ting et al. (2022), Sudha et al. (2022), Elijah et al. (2022),

Catalano et al. (2022)] presented computational intelligence solutions ranging from SVM

techniques, fuzzy logic, decision tree, Petri nets and neural networks. By collecting data

generated by IoT devices in the Ąeld, it is possible to use machine learning techniques to

predict events such as harvesting, irrigation and soil fertilization [Sowmya et al. (2020),

Tripathy et al. (2021), Balan et al. (2020)]. All these works presented cloud computing as

an important component of the solution since the communication between sensors, systems

and repositories takes place through the web. The papers [Mikhaylenko et al. (2019),

Rekha et al. (2017), Yusianto et al. (2020), Loret et al. (2020), Zhang et al. (2017), Sakthi

et al. (2020)] use knowledge bases with speciĄc rules in the Ąeld of agriculture. These rules

serve as a basis both for systems to indicate decisions, and for intelligent algorithms to

have the correct parameters to make a reliable prediction. In these studies, it is possible to

notice variations in approach, such as the automation of decisions through the prediction

of events indicated by machine learning algorithms [Kakamoukas et al. (2019), Borisenko

et al. (2019), Kale et al. (2019), Sowmya et al. (2020), Tripathy et al. (2021), Balan et al.

(2020), Anbananthen et al. (2021), Dayalini et al. (2021), El Hachimi et al. (2021), Ting

et al. (2022), Sarma et al. (2022)], to knowledge that can be inferred using the semantic

web [Visconti et al. (2020), Karim et al. (2017), Kamath et al. (2019), Khanna and Kaur

(2020)]. Additionally, layers that deal with semantics are used to reĄne machine learning

analysis to support Decision Support Systems, making decisions increasingly rich and

reliable.

RQ4: How is computing technology applied in precision livestock? After analyzing

the studies, it was possible to see how computing is present on farms. In (Dabre et al.,

2018) the authors propose two integrated mobile applications, one for the producer and the

other for the seller of agricultural products. In the survey, the producer can monitor and

send his plantation data to the seller, who, in turn, can indicate the best fertilizer, pesticide

and amount of water needed. Some works, such as (Kamilaris et al., 2016), demonstrate

the use of ŞdronesŤ to collect images of agricultural environments. This can be extended

to locating animals in the pasture, monitoring their movement activities and detecting

sick animals. In this way, ŞdronesŤ can speed up the decision-making process by providing

information in real-time. In [Vazquez et al. (2021), DAYIOĞLU and Turker (2021)] the

authors review the use of AI and highlight the use of robots to automate harvesting

in a sustainable way, that is, avoiding water waste. The creation of a wireless sensor

network also contributes to a system that can manage more than one farm geographically

distributed, being able to indicate different decisions simultaneously according to the data
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collected by the sensors.

3.2 THREATS TO VALIDITY

This mapping aimed to explore issues related to Decision Support Systems in the

context of precision agriculture and livestock. However, some threats to validity can be

highlighted. Regarding the search string, even using a term review process, it is possible

that some term has not been considered for the context of precision agriculture. To

mitigate this threat, we use the snowballing technique.

The use of the Scopus database also poses a threat to validity. Other databases

not indexed by the Scopus database may contain researches relevant to this mapping. To

mitigate this threat, it would be necessary to explore other speciĄc bases, mainly focused

on research in agribusiness. However, the database (Scopus) used in this research offered

a broad overview of the state of the art of research related to Decision Support Systems

focused on Agribusiness with a contribution to advances in computing research.

3.3 DISCUSSION

The related works selected for our research have been identiĄed based on the

systematic mapping. By building upon this mapping, we aim to present an analysis of the

selected works and their connection to our current research, while also identifying any gaps

that they may have left. This analysis will serve to further justify the architecture that

will be outlined in the following chapter, providing a solid foundation for our research.

In article (Kamilaris et al., 2016), a framework called Agri-IoT is proposed. It

features a semantic framework for IoT-based smart farming applications, which supports

reasoning over multiple streams of heterogeneous sensor data in real-time. Although this

article describes a framework for intelligent agriculture, it does not address processing

through intelligent algorithms, limiting itself only to extract semantic knowledge from

information and ontologies to describe the relationship between data.

In order to provide decision support, Anbananthen et al. (2021) use hybrid machine

learning technologies that use specialized clustering methods, stacked generalization,

gradient boosting, random forest, and least absolute shrinkage and selection operator

(LASSO) regression. Although the stacked generalization technique, a model that learns

how to combine the best predictions of two or more models trained on the data, is promising,

the article does not provide details of how actions in agriculture can be supported. The

authors only compare the techniques using cross-validation to identify the most accurate

performers for the agricultural dataset. Aiming to support the decision in relation to the

soil, articles (Dayalini et al., 2021), (Sarma et al., 2022), (Sudha et al., 2022) and (Elijah et

al., 2022) vary their approach, but all have in common the use of machine learning. Article
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Dayalini et al. (2021) presents a DSS (Agro-Mate) that helps farmers, through intelligent

predictions with machine learning, to determine soil quality, select the best crop, predict

rice diseases and predict disasters. Similarly, Sarma et al. (2022) presents a system that

has a package of sensors that provides continuous data capture of temperature records, air

and soil humidity and a camera for obtaining infrared (NIR) images of the leaves of the

plant for use with an AI decision support system. Elijah et al. (2022) proposes a decision

support platform (chili-DSP) to detect disease and nutrient deĄciency and make prevention

decisions. The platform provides a real-time classiĄcation of chili diseases. The work

(Sudha et al., 2022) presents the Smart Soil Nutrition Prediction (SSNP) system, which

adopts sensors to monitor soil conditions. The SSNP aims to support decision-making by

predicting soil nutrients in relation to which crop is most suitable to plant.

Despite using intelligent techniques for classiĄcation and prediction in relation to

the soil, whether for planting rice or pepper, all the works cited above (Dayalini et al.

(2021), Sarma et al. (2022), Elijah et al. (2022) and Sudha et al. (2022)) do not explore

aspects related to the Ćexibility of adding other types of data. Furthermore, the systems

presented are limited to only the speciĄc domain in which they were developed. Such

systems do not address scalability or extensibility to other problems and domains. They

are not prepared to deal with adverse data, or adapt to a change in data, such as the

emergence of new diseases, soils with different conditions, but which may be conducive

to planting, and they are also limited to the training datasets used initially. By using

semantics, algorithm training could be improved and thus provide the best decision-making

in relation to climate data, diseases and other external variables.

The work Catalano et al. (2022) proposes a new approach for detecting anomalies

in intelligent agricultural systems. The authorsŠ objective is to mitigate weaknesses, inten-

tional and unintentional failures in data and information management in IoT environments.

Although the design of the proposed architecture is based on an algorithmic approach

to machine learning by a multivariate linear regression (MLR) and a long-term memory

neural network (LSTM) algorithm, the authors do not explore the use of other algorithms,

not address the sustainability of the architecture, or use semantics to extract strategic

information from the data that is analyzed by machine learning.

Table 2 compares all related articles considering the architecture proposed in this

work.

3.4 FINAL REMARKS OF THE CHAPTER

This systematic mapping identiĄed, classiĄed and analyzed computational solutions

in Decision Support Systems in precision agriculture and livestock. Initially, 155 articles

were identiĄed by the selected source. They were Ąltered, resulting in 53 articles. After this

selection, the snowballing technique was performed, adding 2 more new articles, totaling
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55 papers. After the quality analysis, the result totaled 34 articles.

According to the results of this mapping, research opportunities can be observed

from the search for state of the art in DSS in Agriculture 4.0, related to IoT and sematic. By

advancing knowledge on the subject, we identiĄed opportunities and integration techniques

used in the works, demonstrating the importance of using data from IoT sensors to support

decisions. As a result, complex decisions aimed at agribusiness can be enriched with

information existing in other systems used by rural properties. Once the literature mapping

is carried out, we deĄne the problem and requirements for the solution. We aim to answer

the following research question: ŞHow can e-Livestock support automated monitoring,

reasoning, and actions in smart farms?Ť

To answer the research question, we carried out two implementation cycles under

the Design Science Research (DSR) methodology. In the Ąrst cycle, after carrying out the

systematic mapping, we conducted technical interviews with researchers and specialists

from Embrapa Gado de Leite to better understand the application domain. During these

interviews, we collected important animal management, welfare, and health information.

It was also important to understand the whole milking process and the necessary care for

the animal so that the milk has quality. After the interviews, we went to the development

phase of the solution, where we built the e-Livestock architecture artifact.

As stated above, we adopted the Design Science Research (DSR) methodology to

evaluate and guide the proposed architecture. The next chapter details the architecture

design, as well as each DSR cycle starting from the mapping.
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Table 1 Ű Summary of mapping report Ąndings

Studies Application

Symeonaki et al. (2020) Context and Middleware Awareness

Borisenko et al. (2019) Computational Intelligence with Petri
Net

Kale et al. (2019) Deep Learning

Balan et al. (2020) Computational Intelligence with Neural
Networks

Kamilaris et al. (2016),Rotondi et al.
(2019)

Ontologies and Semantic Web

Rezk et al. (2021), Sowmya et al. (2020) Computational Intelligence with Deci-
sion Tree

Ting et al. (2022), Sakthi and DafniRose
(2022)

Blockchain

Sowmya et al. (2020), Tripathy et al.
(2021)

Compute Intelligence with SVM

Dabre et al. (2018), Yusianto et al.
(2020), Suakanto et al. (2016)

Statistical Analysis

Visconti et al. (2020), Karim et al.
(2017), Kamath et al. (2019), Khanna
and Kaur (2020)

Semantic Web

Mikhaylenko et al. (2019), Rekha et al.
(2017), Loret et al. (2020), Zhang et al.
(2017), Sakthi et al. (2020), Fawzi et al.
(2021)

Semantic Knowledge Base

Kakamoukas et al. (2019), Vazquez et al.
(2021), DAYIOĞLU and Turker (2021),
Anbananthen et al. (2021), Dayalini et
al. (2021), El Hachimi et al. (2021),
Sarma et al. (2022), Sudha et al. (2022),
Elijah et al. (2022), Catalano et al.
(2022)

Machine Learning

Source: Elaborated by the author (2023).
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Table 2 Ű Summary of techniques from related works.

Work ML Semantic Self-adaptive Flexible Extensible
Agri-IoT - X - X -
DSS with hybrid
ML algorithms

X - - X -

Agro-Mate X - - - -
DSS with NIR X - - X X
Chili-DSP X - - X -
SSNP X - - - -
Anomaly detec-
tion

X - - - -

e-Livestock X X X X X

Source: Elaborated by the author (2023).



36

4 ARCHITECTURE DECISION E-LIVESTOCK

The previous chapter presented the main related work through a systematic map-

ping. Based on the results, we identiĄed some gaps in these works regarding the need for

a more detailed analysis of the data coming from sensors. None of the identiĄed works

combined semantic models and AI algorithms for more precise analysis. Therefore, we

developed e-Livestock, an architecture to support data analysis from sensors and other

devices used in precision livestock farming to assist decision-making in agribusiness. The

e-Livestock was used in the Compost Barn infrastructure. The Design Science Research

(DSR) methodology was used in this study. In this chapter, we detail the DSR process

and the construction cycles of the architecture.

4.1 METHODOLOGY

Design Science Research (DSR) is a methodology driven by the continuous im-

provement of a solution by introducing new artifacts and the construction processes of

these artifacts (Simon, 1996). An application domain comprises people, organizations, and

technological systems interacting toward a goal. DSR research usually starts by identifying

and representing opportunities and problems in a real-world application environment.

Thus, the relevance cycle initiates the research with an application context that

not only provides the requirements for the research (e.g., the opportunity/problem to

be addressed) as inputs but also deĄnes acceptance criteria for the Ąnal evaluation of

research outcomes. The research output should be returned to the environment for study

and evaluation in the application domain. Domain study of the artifact can be conducted

through appropriate technology transfer methods such as applied research (Cole et al.

(2005); Järvinen (2007)).

The results of the domain test will determine whether additional iterations of the

relevance cycle are needed in this Design Science project. The new artifact may need

more functionality or inherent qualities (e.g., performance, usability) that may limit its

usefulness in practice. The resulting artifact may indicate a need for new requirements and

even reveal mistaken or incomplete requirements. Another iteration of the relevance cycle

will start with feedback from the research environment and reaffirm research requirements

as discovered from experience. During the relevance cycle, we raise the requirements for

the artifact to achieve its goal. Also, in this cycle, it is necessary to analyze the application

context, the people involved, and the organizational systems. This analysis is done to

ensure that the requirements are in line with the problem to be solved. The design cycle

encompasses the construction of the artifact, the implementation and development process,

and evaluation. We can generate a product, process, or scientiĄc knowledge at the end of

the artifact construction. The rigor cycle is where theoretical grounding occurs, guiding
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the construction of the artifact, whether by methods, theories, or processes available in the

literature. In this cycle, it is veriĄed whether the initial theoretical conjectures are correct

based on the evaluation of the artifact. A three-cycle view in Design Science Research is

presented in Figure 3, where the relevance, design, and rigor cycles mentioned above can

be seen.

Figure 3 - DSR Flow

Source: Hevener (2007)

In the next section, we deĄne the functional and non-functional requirements that

guided the implementation of the architecture.

4.2 REQUIREMENTS

For the architecture speciĄcation, we identiĄed which functional and non-functional

requirements were a priority for its development. Therefore, to meet the needs of a

decision support system for Agriculture 4.0, such as sensor data processing, storage and

visualization, functional and non-functional requirements were derived.

4.2.1 Functional Requirements

FR 001. The architecture must be able to process different sets of Compost Barn

data.

FR 002. The architecture must be able to integrate data from external sources,

such as meteorological services and geolocation, to help enrich the Compost Barn data.

FR 003. The architecture must be able to perform semantic and prediction analysis.

FR 004. The architecture must allow efficient storage of data extracted from the

Compost Barn.

FR 005. The architecture must provide mechanisms for viewing Compost Barn

data in graphs or tables, thus supporting users in interpreting information and making

decisions.
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FR 006. Data must be pre-processed to be sent for intelligent analysis.

4.2.2 Non Functional Requirements

NFR 001 (Dependability). The solution must allow communication with external

data sources.

NFR 002 (Product). The solution must respect the principles of extensibility so

that the architecture accommodates the systemŠs future growth.

NFR 003 (Product). The solution must respect the principles of Ćexibility. Fle-

xibility is an attribute that reĆects the range of behaviors that the existing architecture

can be conĄgured to address, for example processing animal health, production, and

environmental data.

NFR 004 (Product). The solution must respect the principles of scalability. Scalabi-

lity considers adapting the system to new size and scope speciĄcations, so the architecture

must allow adding new data sources and dynamically performing intelligent processing.

NFR 005 (Sustainability). The solution must consider the sustainability of the

software through the continuous training of the intelligent models (when new datasets

arrive), to keep the insights offered by the system (for example, prediction and estimation

of sick animals) consistent and updated.

NFR 006 (Usability). The system must be user-friendly. In addition, malfunctions

during data visualization can prevent the user from making the most appropriate decision.

In this way, the user would be negatively affected, threatening the main function of the

solution, which is decision-making..

4.3 FIRST CYCLE OF E-LIVESTOCK ARCHITECTURE

The DSR methodology operates in cycles, during which artifacts and processes

are developed, revisited, improved, and evolved. New requirements, problems, and

opportunities for improvement may emerge during each cycle. During the implementation

of the architecture, multiple versions were developed, with new requirements being added

and the solution being improved at the end of each cycle. A systematic mapping was

conducted to establish the conjectures for the Ąrst version of the architecture.

Following an analysis of the studies, an architecture based on tiers was developed

to analyze data from sensors and other devices related to precision livestock. Initially,

these tiers collected data from internal and external sources, processed the data, and

presented it in a dashboard. Six tiers were deĄned for the initial version, including the

processing, integration, external data, data repository, and visualization tiers, which were

developed to meet both functional and non-functional requirements. The Ąrst version

of the architecture is illustrated in Figure 4. During the Case Study, we will provide a
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detailed account of the operation of each layer, as well as the manner in which data was

integrated and stored.

Figure 4 - First version of the architecture

Source: Prepared by the author (2023)

The Sensor Tier is responsible for data generated by sensors, while the Platform

Tier collects and processes different data types according to FR001. The integration

tier adds external data to the sensors data, as required by FR002, NFR001, NFR002,

NFR003, and NFR004, before storing the data (FR004). Finally, the data are presented

in a dashboard with graphs (FR005) to allow producers to visualize and interpret the

data. During the Ąrst cycle, the state of the farm was analyzed in terms of total milk

production, the amount of food ingested by the animals, the total number of sick animals

over time, and data on environmental conditions (temperature and humidity), among

other information. The dashboard shown in Figure 5 provided producers with the data

required to make day-to-day decisions based on the Compost-Barn data captured through

sensors.

Figure 5 - Compost Barn Dashboard

Source: Prepared by the author (2023)

The classiĄcation of animals in batches based on their milk production is denoted

by the terms "Lote 1", "Lote 2", and "Lote 3."Notably, the animals in the "Lote 3"exhibit
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the highest milk production, while those in the "Lote 1"demonstrate comparatively lower

milk yields. However, the need for more detailed analysis arose, such as checking milk

production for the next month or visualizing weather conditions for the week. The data

presented in the dashboard did not allow for such analysis or predictions to be made, such

as milk production forecasts, animal food consumption estimates, or relating mastitis cases

with data from sensors in the environment. Therefore, functional requirements FR003

and FR006, and non-functional requirement NFR006, were identiĄed as necessary and

addressed in the next cycle.

4.4 SECOND CYCLE OF E-LIVESTOCK ARCHITECTURE

The second cycle encompasses the introduction of the Intelligence tier, a new

analysis service that enhances decision-making on farms by providing forecasts for producers.

The FR003 and FR006 requirements have been met, allowing for semantic and predictive

analyses, which offer accurate predictions regarding milk production, food consumption,

and animals with mastitis, among other factors. With these insights, producers can plan

for the future with conĄdence.

The Intelligence tier comprises a semantic model (an ontology) extracting implicit

data knowledge. This knowledge includes relationships between milk production and

animal feeding, weight evolution, and diseases like mastitis. Ontological rules can be

applied to derive missing data that intelligent models may not be able to infer, such as

temperature and humidity records inside the Compost Barn that were not captured by

sensors.

Furthermore, the Intelligence tier can classify animals as "healthy"or "sick"and

mitigate the risk of epidemics by sorting mastitis-infected animals by lot. These features

are accessible through SWRL rules processed by reasoners. Figure 6 provides an overview

of the architecture, including its respective tiers.

4.5 ARCHITECTURE COMPONENTS

We have created a comprehensive diagram illustrating the various components

and their connections. The architecture is based on the MVC pattern (Deacon, J., 2009),

separating different project parts to minimize dependencies. We can easily meet scalability

and extensibility requirements by ensuring uniformity in software structure. The reduced

code complexity also makes it easier to maintain applications, facilitates documentation

for future work, and allows for the reuse of system modules. The tiers of the architecture

are described in detail below.

Sensor Tier: Collects data generated by sensors deployed on the farm. Sensors

gather information such as temperature and humidity, among others. In addition, the
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Figure 6 - e-Livestock Overview

Source: Prepared by the author (2023)

sensor tier also handles different data formats generated by internal systems on farms.

These data are sent to the integration tier.

Integration Tier: That tier is responsible for processing the collected data to be

integrated with information from other sources, services, and external APIs, such as context

data, and environmental information (temperature, humidity, and weather forecast). The

main advantage of this tier is that it can aggregate external data to enrich information for

decision-making process. For instance, the REST API allows communication with other

tiers, such as the Intelligence tier. The AI tier communicates with the Integration and

Model tiers by receiving the data already processed. Then, it executes the most suitable

intelligent algorithm for a given dataset. The AI tier sends the results, predictions, or

classiĄcations, to the API, to be persisted.

External Services Tier: it represents external services, databases, historical

bases, and any external data sources that can add value to the data collected by the Sensor

Tier. We can add new sources to the system through the Integration Tier as needed. For

example, by aggregating weather forecast data, it is possible to provide a new perspective

for decision-making. By recording data source, sensor, and data type, it is possible to

track and analyze the context of decisions that used this information. Once the data is

aggregated and stored, it is possible to use the ontology to run inferences in the new data

and retrieve new relationships.
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Model Tier: This tier deals with farm data. By integrating external data, it is

possible to store data generated on the farm and enable the generation of dashboards. By

inferring relations between animal feed and milk production, we can identify the best diet

to increase milk production. The Model tier also stores the modelsŠ metadata, such as

model accuracy, average errors, algorithm type, and input dataset used. Consequently, it

is possible to analyze the results, which can be used to make future decisions. For example,

with the prediction of food consumption, the researcher can estimate the expected cost of

purchasing inputs and plan storage according to the probability of consumption of animals

indicated by the algorithm.

Decision-making Tier: In this tier, the business logic is deĄned and aggregated

to the Intelligence tier results to present the resulting data in the Visualization tier. For

example, alerts and notiĄcations whether the production is low or many animals are

contaminated with mastitis or other diseases. In these cases, rules are set in this tier.

Besides, all relevant information generated in the previous tiers is organized and prepared

to be viewed by the user.

Visualization Tier: The visualization tier allows the researcher to visualize the

data in real-time through a panel according to a time interval. The researcher can also

analyze and interpret data at different granularities. It allows users to visualize (FR 005)

the results of the AI tier.

The visualization tier comes with a user-friendly graphical interface that displays

aggregated data from the farm and external APIs. The visualization tier can be easily

modiĄed to suit other devices like mobiles and wearable techs. This is possible because we

developed the visualization tier to access data via REST API. Therefore, if the device has

internet access and the appropriate user interface, it is possible to receive the data via

HTTP request and display it.

We developed Figure 7 based on Figure 1, a conceptual model of a self-adaptive

system, in which the eLivestockAPI is the managing system and the intelligence is the

managed system.

For collecting the farmŠs external data such as temperature and humidity, we

used the API of the Instituto Nacional de Meteorologia (INMET). Additionally, we can

connect other weather station APIs, such as Open Weather, if needed. Our architectureŠs

low coupling and high cohesion also allow for the addition of other services to support

producers, such as geolocation services. Moreover, the Compost Barn data can be easily

viewed, which is managed by eLivestockController and pre-processed by parsers. These

parsers are present in the integration layer. They are scripts that we developed to handle

and process incoming data to ensure that it is sent in a normalized, organized, and

easy-to-visualized format in the graphs.

The eLivestockController communicates with the eLivestockAPI component (that
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Figure 7 - Component Diagram.

Source: Prepared by the author (2023)

can be considered as the Managing System), which is responsible for interacting with the

Model tier where the database is stored. This interaction takes place for both reading and

writing. Our architecture allows adding other databases by simply connecting them to the

eLivestockAPI. Furthermore, we have designed our architecture to be Ćexible, allowing

the connection to other APIs. This Ćexibility ensures that the system meets the demands

of different contexts.

Finally, the eLivestockAPI also handles requests related to the Intelligence tier,

which we will discuss in depth in the next section. Please refer to Figure 7 for the

component model used in implementing our architecture.

4.6 ARCHITECTURE DEVELOPMENT

We used Python and Javascript language to develop the components. We chose

Python in the parsing and intelligence layer due to the facilities for handling text Ąles,

CSV, and spreadsheets. In addition, it also allows the manipulation of ontologies with
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the OWL2Ready3 library and has several other libraries to implement AI models, such as

Scikit-learn4. We developed a RESTful API with Node.js (Javascript) for the integration

control tier and used a NoSQL database in the repository tier, i.e., MongoDB. This non-

relational database was chosen for the Ćexibility to create new collections and unstructured

data.

The communication between the parsing tier, external services, and the intelligence

tier was made via HTTP request. Hence, we can concentrate and standardize the requests

in the architecture, regardless of the requested data. Thus, the Visualization tier can be

simpliĄed and focused only on presenting data to users to support decision-making. To

present the dashboards, we developed a mobile application in Javascript, using ReactNative

framework, called eLivestock Monitor. The application is a visualization tool, where the

producer can consult farm data, perform intelligent analysis, and monitor the environment.

In the next section, we detail the intelligence processing in e-Livestock, considering

that this tier is the main contribution of the new architecture version.

4.7 INTELLIGENCE AND DECISION E-LIVESTOCK

Smart farm systems, or Agriculture 4.0 systems, support high connectivity through

connected sensors or IoT devices. In this type of system, we have a scenario composed of

sensors that share information about events, context information, and computer systems

capable of storing, processing, and analyzing data. Moreover, it is possible to connect

sensors, wired or not, and transmit status signals or even data related to the grain

production results or animalsŠ health, contextual information (such as environmental

conditions), and production process. A smart farm architecture uses these resources to

collect, store, process, analyze data, and adapt the system to the new detected and sensed

conditions.

Monitoring and collecting data from sensors are aggregated, preprocessed, and

stored before being sent to the intelligence tier. To process the information, e-Livestock

uses two techniques: inference processed over an ontology and predictions based on Machine

Learning (ML) algorithms. After preprocessing, it is possible to instantiate the data in

the ontological model and execute the inference mechanisms, processing SWRL rules.

Additionally, it is possible to compose a dataset with the stored data for training and

testing purposes for intelligent ML algorithms.

The Intelligence tier was developed to meet the requirements of Ćexibility (NFR003),

scalability (NFR004), and sustainability (NFR005). Hence, the architecture must be Ćexible

and allow the execution of different ML models. In addition, we promote scalability by

allowing new analyses and new sensors to be made and installed. The sustainability of the
3 https://owlready2.readthedocs.io/en/v0.37
4 https://scikit-learn.org/stable
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architecture takes place through the self-adaptative capability and continuous training

of intelligent models (when new datasets arrive), which allows for keeping the insights

offered by the system (for example, prediction and estimation of sick animals) consistent

and up-to-date. Even if the pattern of the farm changes, considering the adoption of a

new breed of animals, or a new diet with components that have yet to be used, this should

not impact the systemŠs functioning. The architecture must be able to deal with change

and continue to offer results to support decision-making in this new scenario.

Therefore, to support these demands, we speciĄed self-adaptive capabilities as a

new specialized component, part of the e-Livestock architecture, to support sensor data

analysis in the Agriculture 4.0 scenario. Figure 8 presents the main components of the

e-Livestock self-adaptive architecture, showing the scenario where the devices communicate

and the infrastructure provided for collecting, storing, and processing information. The

e-Livestock architecture solution encompasses two main components: the AS (Actual

System) and the MS (Managing System) as shown in Figura 1.

Figure 8 - e-Livestock self-adaptation main components.

Source: Prepared by the author (2023)

The AS system is responsible for the systemŠs day-by-day operation and data

capture. It has two main modules, i.e., ŞenvironmentŤ and Şknowledge acquisitionŤ. The

Ąrst module, ŞEnvironmentŤ, connects the sensors to the data network and transmits

sensor data. IoT devices connected to animals and other farm features, such as harvesters,

allow data such as health conditions or grain production efficiency to be computed and

transmitted through existing communication sockets. This module is also responsible for
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real-time capturing the context data from the environment and the closest operators so

that MS can create speciĄc alerts for quick decision-making by the operators. The second

AS module, ŞKnowledge AcquisitionŤ, has the ŞPre-processingŤ component responsible

for data cleaning and formatting. After pre-processing, the data is processed by machine

learning. The architecture automatically performs clean-up and pre-processing tasks when

the system detects new sensor data. In this model, we have the devices connected to

a broker that acts as a dispatcher for IoT devices and connected sensors, and then the

subsequent data is stored on a server.

The Managing System (MS) encompasses an autonomous agent capable of detecting

environmental changes. When identifying that a sensor failed to read temperature data,

the system can automatically run the ontology reasoner to infer the data and keep the

system updated and cohesive. Another case in which the system adapts to the situation

is when milking data (milk production) is added or imported; the system automatically

performs training and then runs ML algorithms to update the dashboard showing the

(estimated) prediction of milk production based on the new data. In addition to milk

predictions, when registering new animals on the farm, the system instantiates the data in

the ontology. It performs inferences on the data of healthy and sick animals (with mastitis)

to organize the batches and predict milk production for these animals.

We can observe, from Figure 8, that there is an overlay between the IoT components

and the self-adaptive mechanism. The Actual system, which interacts with the environment,

relies on sensors and actuators so that IoT components feed reasoning and self-adaptation

mechanisms. The MS system provides strategic information to support the decision process.

The ŞMachine LearningŤ module analyzes animalsŠ or grain production and environmental

data to estimate the probability of production loss or animal disease, among other critical

events.

The data collected by the sensors are sent to the Ontology module to organize the

data. Based on logical rules, ŞSWRL ProcessingŤ provides information and relationships

that can activate the ŞAutonomous AgentŤ. Once sent to the Machine Learning module,

we can more accurately indicate the possibility of production loss or sick animals through

the semantic data extracted from Ontology. The ŞAutonomous AgentŤ can trigger alerts

or modify the AC, based on information from the previous two MS modules. Therefore,

the Autonomous Agent can search for the available devices or operators that must receive

the alerts and/or process changes directly on the devices or in the AC functioning, such

as turning on a temperature regulator or sending alerts to the harvesters´ operator to

speed up the harvest, for example. As the sensors collect new data, the autonomous agent

continuously monitors the data to process it.

The ML module was designed to give insights based on the farm data set. These

insights are related to milk production, mastitis type classiĄcation, and food consumption
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estimation, to name a few. Based on the results from the ML algorithms, we can identify

gaps in the production, check the average consumption per animal and type of food and it

is possible to optimize the amount of adequate feed to be supplied to the animals. We

can contribute to a more sustainable farm as they can prevent food waste. With this

action, farmers can avoid spending unnecessary resources purchasing commodities such

as corn and soybeans, reducing the economic impact on the farm. Figure 9 presents the

component diagram of the Intelligence service.

Figure 9 - Intelligence Tier Component Diagram.

Source: Prepared by the author (2023)

The Intelligence service includes two modules. The Ąrst module, Ontology.owl, uses

Pellet as ReasonerŠs algorithm to make inferences and save the results in an OWL Ąle. The

second is Machine Learning Prediction, which exports the trained algorithms in the pkcls

extension. These two modules communicate with the Integration tier through a Python

API called eLivestock-api-ml. This API was developed using the Flask library and received

all requests related to the Intelligence tier from the Integration tier (eLivestockAPI). The

eLivestock-api-ml API can also communicate directly with the database, offering more

performance when instantiating the ontology. You donŠt need to go through the Integration

tier when you query data. This communication was possible thanks to the PyMongo5

library.

In the following sections, we detail the ŞOntology ModelŤ and ŞMachine LearningŤ

modules of the e-Livestock architecture, considering their importance to the e-Livestock

architecture.
5 https://pymongo.readthedocs.io/en/stable/
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4.7.1 Decision e-Livestock Ontology

The ontology model was designed to capture the relationships between data for

dairy cattle. The use of ontology helps to understand how data is connected and to generate

better datasets that can be sent to ML algorithms. Through inference mechanisms, we

can Ąll gaps instead of discarding data during training AI algorithms. Figure 10 illustrates

a partial view of the ontological model.

The entities represent animals, agents are the farmers/researchers/producers, and

activities are any action carried out on the farm. Activities can be described as insemination,

milking, or processing data. With this model, it is possible to identify the data sources

and the interactions that researchers and farmers carry out. As a result, it is possible to

track decisions related to these speciĄc activities.

Figure 10 - DairyCattleOntology main classes and associations.

Source: Prepared by the author (2023)

To implement the model shown in Figure 10, we used Ontology Web Language

(OWL) 2.0. The ontology model is based on Competency Questions (CQ) to accommodate

dairy cattle production necessities. A CQ is a natural language sentence expressing a

pattern for a question that people/computational applications expect an ontology to

answer (Uschold and Gruninge, 1996). We elaborated on these CQ based on interviews

with researchers and farmers and documents related to the Compost Barn production

system. We used ontological concepts, including their classes, relations, and inference rules

to answer these CQ. The ontology model was developed to help producers make decisions

based on data. The Competency Questions describe what was expected from the ontology
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to answer in the dairy cattle domain considering the e-LiveStock architecture. Through

this model (Figure 10), we provided the following Competency Question (CQ).

(CQ1) How much was an animalŠs production reduced due to inĆammation (mastitis)?

(CQ2) Did the average production of an animal drop due to a temperature change?

(CQ3) Did the temperature variation make the animal spend more energy maintaining body

temperature than producing milk?

(CQ4) Did the average mastitis cases grow due to increased humidity, favoring the prolife-

ration of environmental bacteria?

Considering ontology, we used object properties (OWL constructs) to implement

the relationships between classes. To answer CQs and discover new associations between

farm activities and animals, we created SWRL rules (Chen et al., 2021). We built the

speciĄc rules (Figure 11) and executed them (Figure 12) based on information from

Compost Barn, provided by researchers from the EMBRAPA.

Figure 11 - SWRL Rule Ű Assessing Temperature and Humidity..

Source: Prepared by the author (2023)

By utilizing the stated model (explicit knowledge) in conjunction with the incorpo-

ration of particular SWRL rules (depicted in Figure 11) and an inference mechanism, our

ontology model deduces the relationships among instances in response to the activities

transpiring on the farm (implicit knowledge). These relationships are new knowledge

from processing SWRL rules and inference engines about ontological instances. The

Şhumidity ruleŤ infers an alert for humidity, and the Ştemperature ruleŤ infers an alert for

temperature. The Şsick cow ruleŤ looks for animals that have mastitis and classiĄes them

as sick animals. The Şsuper cow ruleŤ seeks cows with good milk production and ranks

them as super cows.

Figure 12 depicts the outcomes derived from the ruleset as follows: Rule S1 infers

milked animals; Rule S2 looks for animals with mastitis for which the milk has been
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Figure 12 - SWRL Results.

Source: Prepared by the author (2023)

discarded; Rule S3 looks for milk discards caused by mastitis; Rule S4 seeks milk production.

By mixing the rules and combining their results, we can answer the CQs. To answer

CQ1, we can run Rule S2 to get the animals that mastitis events discard the milk. The

Ťtemperature ruleŤ and Rule S1 can answer CQ2, which returns the list of animals milked

and those days with higher temperatures. A crossing between these two lists can justify

the reason for low production. The Ştemperature ruleŤ also answers CQ3. Through the

Şhumidity ruleŤ and Rule S3, we can Ąnd those milk discards caused by mastitis (CQ4).

For instance, we need to combine ontology with machine learning to calculate

future milk production according to the month of the year and based on the weight of an

animal. Due to the need for consistent meteorological data throughout the year, ontology

inferences can provide the necessary data to Ąll these missing columns. Once we Ąll these

gaps, we can send them to ML algorithms alongside the animalŠs weight and then make

the correct milk prediction.

4.7.2 Predictions Based on Machine Learning Algorithms

The machine learning module was created to enable comprehensive data analysis

on farms, providing valuable insights for decision-making. Simply presenting data on

dashboards is not enough to help producers make decisions. Through machine learning,

we can provide milk production projections, identify potential sick animals, and suggest

the most suitable diet to increase milk production.

To implement the machine learning module, we started by using a tool called

Orange Data Mining6, which is an open-source data analysis tool with a diverse range of
6 https://orangedatamining.com/
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classiĄcation and regression algorithms. Despite its graphical features and the ability to

export pre-trained algorithms, it did not allow for automated training. This meant that

every time we needed to train the data, we had to manually update the algorithms and

export them for application use.

We decided to develop the machine learning module using Python and Scikit-learn,

which allowed for automated training with a list of algorithms and the selection of the

best-performing one. This library also offers more advanced techniques such as natural

language processing, shrinking sets of plain text items, and managing association rules, as

well as various intelligent algorithms for classiĄcation and regression.

The architecture was designed to support a list of ML algorithms, aiming to support

the treatment and manipulation of data for training. Hence, if we need to add a new

feature, we can extract the entire set of data from the database. For example, if it is

necessary to predict the weight of the animals in a herd for the next month, based on their

diet, we can query the list of all animals in the herd in the database, the data referring

to their feeding, the history of weight and sort by date. After extracting and formatting

the data, it is necessary to train the algorithms. It is enough to perform the ML training

with the dataset, which in the end will automatically select the algorithm with the best

precision for the analyzed problem. Different algorithms may present different performance

and accuracy for each problem. However, the architecture will select the one with the

lowest mean absolute error (MAE). The Intelligence tier relates to the storage tier by the

API, so the ML module has access to data through the controllers of the integration tier.

According to the NFR002 extensibility requirement, the architecture can accom-

modate new controllers and provide new endpoints for the Intelligence tier to access more

farm data. The original architecture project contains mechanisms that facilitate system

expansion, as creating an endpoint and connecting it to the Intelligence tier is all that is

necessary to provide data access. New intelligent functionalities can be developed, and

the data from the endpoints can be consumed, enabling future system growth. Flexibility

(NFR003) is an attribute that reĆects the range of behaviors that the existing system can

be conĄgured to meet. If producers require insights that the system does not provide,

this functionality can be created to meet the demand. Therefore, training takes place

within the architecture to dynamically provide algorithms with better results and accuracy.

Finally, the NFR004 scalability requirement considers adapting the architecture to new size

and scope speciĄcations. A non-relational database was chosen to meet this requirement

due to the ease of adding and changing Ąelds without causing signiĄcant changes to the

application. Therefore, if new predictions are necessary, the architecture is ready to scale,

whether by storing new sets of different data or increasing the list of available intelligent

algorithms.

The construction of the data processing steps by intelligent algorithms begins with
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the collection of raw data from the farm. First, it is necessary to pre-process this data.

Many datasets enter the system through the reading of spreadsheets, so for each row of

the Ąle, data is processed. There are several methods for handling the preparation and

transformation of the initial data set. All those methods are done automatically. The

methods used in the architecture can be divided into:

1. Data cleaning, which consists of Ąlling in missing values, identifying, or removing

outliers, and resolving inconsistencies;

2. Data integration, it may be necessary to aggregate from other data sources, such as

temperature data, which may cross with meteorological station data;

3. Data transformation is the process of normalization and aggregation, and Ąnally;

4. Data reduction, when representation is reduced in volume, but produces the same or

similar analytical results.

During the process of data cleaning, ontologies can be used to add missing data

through SWRL rules and derivation mechanisms, as presented in Figure 11. Additionally,

the Integration tier aids in this process by aggregating external sources. For the scope

of this project, we used the National Institute of Meteorology API as a supplement

to temperature and humidity data. By enabling the integration of other sources, we

adhere to the principles of dependability (NFR001), Ćexibility (NFR003), and scalability

(NFR004) as the architecture can communicate with other systems as required by the

system, thus providing new data for subsequent intelligent algorithm processing. The data

transformation process is critical to normalize data units, such as converting grams to

kilograms or milliliters to liters. Data reduction, on the other hand, involves eliminating

duplicate entries. Once the data is prepared, it is persisted in the database.

Through the Integration tier, we can connect the database tier with the Intelligence

tier. Consequently, the architecture allows the creation of custom queries to retrieve data

from more than one table or collection, thereby generating a dataset to be used by ML

algorithms. Each feature, such as predicting milk production, may require one or more

types of data, such as milk production history and animal weight. Therefore, it is essential

to organize the data Ąrst and then send it to the Intelligence tier.

The controllers are responsible for querying the database, sorting, and aggregating

related entities. Once organized, this data can be written to a dataset and exported

in CSV, TXT, or XLS formats. With the generated dataset, we can train intelligent

algorithms and test each of them to evaluate their accuracy.

The training process begins in the ML module by ensuring that the dataset is

available and specifying the number of inputs and expected output type. The default
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Figure 13-A - Running list of algorithms.

Source: Prepared by the author (2023)

Figure 13-B - Saving results.

Source: Prepared by the author (2023)

parameters were used for each training. The training process starts by testing the entire

dataset for each available algorithm on the list. Metrics such as Mean Absolute Error

(MAE), Mean Squared Error (MSE), and R2 are recorded for each algorithm, along with

the algorithm name, prediction type (goal), a brief description, and the path to the trained

algorithm (which will be utilized later by the application). A code snippet in Python for

training an algorithm for predicting milk production based on animal weight is presented

in Figure 13-A, and the Python function encoded to send the statistical results of each



54

trained algorithm to the API is shown in Figure 13-B.

The algorithm with the lowest MAE is selected at the end of this process and used

by the application, which in the context of this study is a mobile application. However,

the algorithm remains available for use by any other application that consumes the

architectureŠs API. This satisĄes the extensibility (NFR002) and scalability (NFR004)

requirements. Figure 14 depicts the data processing stages, from the entry into the

architecture to the selection of the algorithm to be utilized by the application.

Figure 14 - e-Livestock WorkĆow.

Source: Prepared by the author (2023)

4.7.3 e-Livestock In Action

An example of the data used during testing and training for a milk production

prediction model can be seen in Figure 15. We used weight (kg), the month in numerical

form, and the milk produced (L). Using this dataset containing milk production for a

whole year, we can train several ML algorithms to identify the most appropriate approach,

the one that provides the best prediction.

Figure 15 - Training data for milk prediction.

Source: Prepared by the author (2023)
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Intelligent processing can be divided into three main stages. The Ąrst step involves

receiving a set of data for training purposes to test various intelligent algorithms and

record the accuracy of each. In the second step, the trained algorithms are ready to be

used, and the architectureŠs API automatically selects the most suitable one. The third

step aims to promote the sustainability of the architecture by receiving updated data to

be processed. Then, the Ąrst and second steps are repeated: training, testing, and deĄning

the algorithm with the best results. Figure 16 depicts the Ćow of steps 1, 2, and 3.

Figure 16 - Training, test and result.

Source: Prepared by the author (2023)

The training focused on predicting milk production on the farm, as it is the

most important asset for dairy farms. Figure 17 shows the training visualization for

milk prediction based on animal weight. After training, we compared the algorithmŠs

predictions with milk production data to determine the highest accuracy. Figure 17

presents an example of the results for July, displaying the algorithmŠs outcomes, data, and

metadata, such as the average error for each animal.

Given the results, we can store the training metadata, save the model with the best

result, and use it in the architecture. As the Intelligence tier communicates with eLivestock

via API, sends the input data, and the algorithm will respond with predictive data. By

storing the metadata of training and testing of intelligent models, such as information on

average errors, model type, and input data, it is possible to analyze and discover the best

predictive model for a given data set. Using smart models, producers can have predictions

and investigate animals that are not producing as expected, improving the animalŠs quality

of life, food, and health. Hence, the producer can prevent diseases and ensure animal
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Figure 17 - Test Results Ű Milk x Weight.

Source: Prepared by the author (2023)

welfare. A new dataset can also be added through the external services tier to help in the

predictions. Once the smart model is trained and is ready to use, it can request input data

from the API and send the results generated by the model back to the API. The metadata

used by the model is captured during this communication between the ML module and

the API. The next chapter will detail each phase, describing a historical study conducted

on a speciĄc experimental farm.

4.7.4 Ontology and Machine Learning Altogether

Previously, we discussed how ontology could be used to extract semantic knowledge

from data, perform inferences and derive relationships between entities. We also explained

the ML module and how training and prediction are conducted within the architecture.

While these approaches can contribute independently, one of the advantages of the

architecture is the ability to combine both to offer the complete decision support possible,

given the available data.
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Thus, we can extract the data inferred by the ontology model and use SWRL rules

to Ąlter and select a more enriched dataset for ML training. In addition, we can use

ontology to select the best input data to provide consistent predictions that reĆect results

closer to the reality of the producer. For instance, if milk production is calculated by

adding up all milkings for the month minus the milk discarded from sick animals, we can

use ontology to extract only healthy animal input data and make a prediction of total

milk production, considering the sick animals that didnŠt contribute to the Ąnal sum.

Another advantage of using ontology with ML is to derive data from semantic

relationships. This data can identify later events related to the farm environment. For

example, in case temperature and humidity sensors fail for various reasons, either due

to mechanical or electrical failure or even being damaged by the animals, we can derive

missing data by relying on the relation between the external temperature we can collect

through the INMET API, and the temperature data collected by the sensor inside the

farm. This complete dataset can be used to train intelligent algorithms that predict the

weather conditions of that speciĄc farm.

To demonstrate that the architecture can execute both ontology and ML approaches,

we have developed a feature capable of predicting the farmŠs milk production for the

month based on the animalsŠ weights. First, we remove mastitis-contaminated animals

from the herd. To achieve that, we use SWRL rules to deĄne sick animals, super producers,

and "typical"animals, which are not sick and have an average production below 30L of

milk. Then, we separate the weight data of each animal and send it to the ML module to

predict each animalŠs milk production. Finally, we summarize all production to reveal the

expected liters of milk for the month to the producer. Figure 18 presents the code snippet

of the main function that extracts data from ontology to send to the ML algorithm.

Figure 18 - Prediction with ontology data.

Source: Prepared by the author (2023)
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4.8 FINAL REMARKS OF CHAPTER

This chapter presented the architectural project, its requirements, Design Science

cycles (DSR), and detailed architectural design. The Intelligence tier of the architecture

was described, including the use of ontologies and machine learning techniques.

This Intelligence tier was developed in the second cycle of DSR, where we enhan-

ced the architecture by developing the intelligence capability and conducting a second

evaluation. We sought to improve intelligence-based decisions by supporting predictions

and semantic relationships. Questions that cannot be answered with ML alone were

answered through inference algorithms that the ontology allows. ML provides a predictive

view of milk production, while ontologies provide a retrospective view of production data.

Producers can make more informed decisions by combining these approaches into a single

one, presenting both predictive and retrospective views with graphical support, producers

can make more informed decisions.

Machine learning techniques are effective when large datasets are available for

training, and ontology helps the farmer by Ąlling in missing data. Another example of

combining ontology with ML techniques would be detecting a possible mastitis epidemic.

By classifying sick animals through ontology and querying them from the database, we

can use ML to predict the number of potentially sick animals per batch. Hence, combining

both intelligence approaches provide more accurate predictions.

Next, we will present a historical study using real farm data to evaluate the

architecture. The results will also be presented and discussed.
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5 EVALUATION OF ARCHITECTURE E-LIVESTOCK

This chapter describes the evaluation of the e-Livestock architecture. As stated

before, this study was based on the Design Science Research (DSR) methodology. In the

study, we instantiate the e-Livestock architecture in an experimental farm, in partnership

with Embrapa Ű Gado de Leite, in Coronel Pacheco, MG. The design cycle (build/evaluate)

is the heart of every Design Science research project and where the most intensive work

on DSR is done (Hevener, 2007). The entire research process must be described, and

rigorous methods must be applied in constructing and evaluating the artifact. The rigor

of the research is derived from the effective use of the knowledge base, which is the set of

fundamentals and methodologies necessary for carrying out the research. In each cycle

of the case studies, the execution of the evaluation generated scientiĄc knowledge. This

knowledge helped in the construction of new versions of the services that compose the

e-Livestock architecture. The construction of the artifact is done through an iterative

process. At each iteration, it was evaluated whether the artifact matched the requirements

and whether it solved the problem. Furthermore, the artifact was reĄned to obtain more

accurate results. It is a typical procedure adopted in design solutions in which the design

activity variates between conceptual and practical activity.

Finally, we analyzed whether the architecture supports decision-making on the farm

through the results obtained. To conduct the study, researchers need to collect the data

generated by sensors on the experimental farm, to monitor production data and analyze

how this data can support decision-making regarding animal production. Therefore, we

conducted historical research using the data collected in 2020 and 2021.

5.1 METHOD

The goal of our research was to analyze the support to monitor the environment,

reason on data, and automate actions from the researcherŠs/farmersŠ point of view, in

the context of a smart farm system. From the scope, we deĄned the following research

question RQ: ŞHow can e-Livestock support automated monitoring reasoning and actions

in smart farms?Ť.

As such, we claim that to be reliable, an instantiation of the e-Livestock architecture

should result in some insights into the environmental conditions under which the e-Livestock

operates, considering both its surrounding environment (such as external and internal

temperature) and animalŠs health conditions (such as mastitis and milk production).

According to the DSRM (Design Science Research Methodology), we must follow: DeĄnition

of the problem; Literature Review and Search for existing theories; Suggestions of possible

solutions; Development; Evaluation; Decision on the best solution; ReĆection and Learning;

and Communication of results. Considering the DSR methodology, we adapted Figure 19
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to illustrate the evaluation elements in DSR for this work.

Figure 19 - e-Livestock Architecture Assessment DSR Element Map.

Source: Pimentel, M et al. (2020)
Nota: Adapted Figure.

Based on the theory found in the literature mapping (theoretical framework), we

developed and evaluated an artifact capable of supporting decision-making. The evaluations

aimed to verify the following: i) if the artifact works; ii) if the theoretical conjectures

align with expectations; and iii) if the artifact (architecture) helps in decision-making

on the farm. Based on the evaluation results and the scientiĄc knowledge acquired, we

confronted the theoretical conjectures raised during the literature review. We perform

one more interaction, improve the artifact and re-evaluate it. Finally, we assess whether

the architecture answers the research question (RQ) to improve decision-making on the

farm, considering more complex analyzes supported by machine learning and ontology. To

communicate results, we publish some articles about the cycles through conferences and
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workshops related to computer science and agriculture (Gomes et al. (2021); Gomes et al.

(2021); Gomes et al. (2022)).

Figure 19 shows the e-Livestock Architecture Assessment DSR Element Map. The

theoretical approach of the research (elements on the right side of Figure 19), the artifact

(elements on the left side), and the application context (elements at the top of Figure 19)

are also shown. This separation highlights the correlation between technological-applied

development and scientiĄc-theoretical knowledge.

According to the Theoretical Framework presented in Figure 19, the architectures

presented in works found in the literature need to be prepared to deal with a complex

domain whose context can change quickly. In precision livestock, new sensors can be

installed on the farm; new animals can arrive in the herd, and weather conditions can

change throughout the year. Even so, the systems must continue functioning correctly,

supporting producers in decision-making. Complex decisions, such as mastitis, are usually

costly for the farm; effective control and prevention are necessary to represent a drop in

milk production and even the loss of animals (animals diagnosed with chronic mastitis are

usually discarded from the herd). So, the architecture must allow the construction of a

decision support system for smart farms, considering the adversities of the domain.

We implemented two cycles. In the Ąrst cycle, we built the e-Livestock architecture

to monitor the Compost Barn environment and performed a case study to evaluate the

architecture. In the second cycle, we developed an Intelligence tier and conducted the

second case study to answer the research question. The case studies refer to a scenario

where the solution provided decision support and analyzed data from various farm sectors

related to dairy cattle. This scenario assumes that milk production is the focus of the

data. Healthy animals that eat properly have adequate weight and have no disease making

them more efficient in increasing dairy production.

5.2 EVALUATION SCENARIO

A case study was developed to evaluate using the e-LiveStock architecture in a

real-world context (Yin, 2015). The case study was conducted according to the following

steps (Runeson and Martin, 2009): (i) case study design (preparation and planning for

data collection), (ii) execution (collection of evidence), (iii) analysis of collected data,

and (iv) reporting. Our case study scenario consists of data monitoring, collecting, and

processing and then analyzing the data from a production system called Compost Barn,

located at Embrapa Ű Coronel Pacheco, Brazil. We used data from sensors (6 different

types) collected by researchers from Embrapa between 2020 and 2021.

The environment includes a covered and ample physical space for the cows to

rest. The area is lined with sawdust, scrap wood, and composted manure. This space

has sensors to monitor the temperature and humidity of the environment. The data is
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available on GitHub7

Figure 20-A - Animal with a neck sensor at Compost Barn.

Source: Prepared by the author (2023)

Figures 20-A and 20-B show the interior of the Compost Barn in the experimental

farm at Coronel Pacheco, where we can observe the animals and the sensors used. Conti-

nuous monitoring allows for adjustments in the animalsŠ living conditions and increases

animal welfare.

5.3 CASE STUDY 1 (FIRST DSR CYCLE)

After analyzing the theoretical conjectures from the literature mapping, we built

a layered architecture. Therefore, we developed an External Services and Integration

tiers to communicate with the architecture. The External Services tier is related to the

architectureŠs extensibility since the architecture can extend and consume data from any

external services that communicate via the HTTP protocol. We developed these tiers

to meet the functional requirements FR001 and FR002, where the architecture must be

capable of processing different Compost Barn datasets and integrating external sourcesŠ

information, such as weather services and geolocation, of aiding in farm data enrichment.

Requirements FR004 and FR005 refer to the storage and visualization of Compost Barn

data, respectively.

For the non-functional requirements, we have NFR001 and NFR002, where the

solution must allow communication with external data sources and meet the extensibility

attribute. This way, the architecture can accommodate the systemŠs future growth, in-

tegrating with other services, adding more sensors and new data sources, and enabling

different visualization types on various devices. Regarding NFR003 and NFR004 requi-

rements, the architecture must respect Ćexibility and scalability principles, respectively.

Flexibility is an attribute that reĆects the range of behaviors that the existing architecture
7 https://github.com/jjthegomes/elivestock
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Figure 20-B - Sensors at Compost Barn.

Source: Prepared by the author (2023)

can be conĄgured to meet, such as processing animal health data, milk production, and

environmental data. Scalability considers the systemŠs adaptation to new size and scope

speciĄcations, allowing for the addition of new data sources.

After instantiating the architecture, we prepared the data, collected, analyzed, and

reported case study 1. Each step is presented below, and the results are discussed at the

end.

5.3.1 Stages of Case Study 1

We conducted Case Study 1 (CS1) in three stages. Firstly, data preparation was

done through pre-processing, where we formatted and removed uncollected or incomplete

data. Secondly, we imported and stored the data so that it could be made available through
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a dashboard. Finally, we constructed a dashboard through which users could visualize

the farm data in graphs and evaluate if the system would assist in decision-making. The

Ąrst stage was crucial as it involved working with raw sensor data. For this case study,

the datasets entered the system by reading spreadsheets, and we applied data treatment

for each row of the Ąles. This parsing process takes place at the sensor tier. Various

methods handle preparing and transforming the initial data set (Vassiliadis et al., 2002).

The architecture used the Extraction, Transformation, and Loading methods for this case

study since we had multiple data sources and needed to transform the data into a suitable

format for analysis.

In the second stage, we stored the processed data in the database. Working with

spreadsheets, we performed all pre-processing in memory, and at the end of processing each

Ąle, we sent the data set to the API via HTTP request. Data integration occurs when it

is necessary to aggregate data from many sources, such as external temperature data from

the farm. Therefore, for this case study, we used the INMET API to provide meteorological

data for the city of Coronel Pacheco, where the farm for this study is located. The INMET

API provides data on maximum and minimum temperature, maximum and minimum

humidity, wind speed and direction, the current season, and other data. Although any API

that provides meteorological data could have been used, we opted for INMET because there

is a meteorological station in the city where the farm for this case study is located. Initially,

we chose OpenWeather, but the accuracy of INMETŠs results presented more consistent

and precise data. However, the architecture could handle multiple data sources, allowing

comparison and cross-referencing of data from different APIs. Figure 21 presents internal

data (from sensors) and external data (from the INMET API) for both temperature and

humidity on January 1st, 2022.

Once the data had been organized and stored in the database, we used the

visualization tier to display farm data in dynamic graphs. Furthermore, we created

an interactive dashboard to present the data at various granularities. For this Ąrst cycle,

we employed ThingsBoard8 as a visualization tool. ThingsBoard is an open-source server

platform that enables the monitoring and control of IoT devices. It is free for personal and

commercial use and can be deployed on any computer. ThingsBoard offers an IoT solution

that is ready-to-use in its server infrastructure. The advantage of ThingsBoard is that it

supports MQTT, CoAP, HTTP, and LwM2M protocols. Additionally, the ThingsBoard

platform is horizontally scalable. Each server node in the cluster is unique, and scalability

is achieved through a consistent hashing load-balancing algorithm among the nodes in the

cluster. The actual performance is contingent upon the device usage scenario.

We collected farm data, processed, stored, and visually presented it. We veriĄed

whether the e-Livestock artifact dealt with the problem of assisting decision-making on
8 https://thingsboard.io/docs/
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Figure 21 - Example of Indoor and Outdoor Temperature and Humidity Data.

Source: Prepared by the author (2023)

the farm. For this purpose, it was necessary to analyze the information available on the

dashboard from the farmersŠ perspective.

5.3.2 Conducting Case Study 1

To evaluate the Ąrst DSR cycle, we created a dashboard containing different graphs

representing the farmŠs processed data, such as feed consumption, mastitis incidence, and

total consumption (kg) per batch of animals (herd). Figure 22 presents a screenshot of

the dashboard on ThingsBoard, through which it is possible to see in the Ąrst pie chart

the different degrees of mastitis and the percentage of animals affected concerning all

animals on the farm. By positioning the mouse over each part of the graph, it is possible

to visualize the precise values of the graph. This analysis allows the producer to visualize

the animalsŠ health in general. With that information, we devise an action plan to reduce

mastitis and track the effectiveness of the plan as animals recover and fewer animals fall ill.

The opposite would also be valid since noticing that many animals are sick could indicate

a mastitis epidemic and thus allow producers to act before the situation gets worse.

On the right in Figure 22, it is possible to see the bar graph showing each batchŠs

total food consumption through the different colors. It was observed that batch 2 had a

much higher consumption than batch 1 and 3. Something unusual, as batch 3 contains

the animals that produce more milk, leads to the conclusion that animals from batch 2
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may be receiving an inappropriate diet. However, the rearing and pre-calving batches had

a lower consumption; something expected considering that they are young animals. At

the bottom of the graph, we present some of the components in the animalsŠ diet, such as

the consumption of Soy, Cornmeal, and Hay, in pie charts, in which we can observe the

consumption categorized by batch. Each color represents a batch; the percentage refers to

the farmŠs total consumption. In this case, we can see that the pre-calving batch does not

consume cornmeal. However, it consumes more hay than the rearing batch, for example.

This fact is because prenatal care animals have a different diet than others.

Figure 22 - ThingsBoard with Evaluation Data Ű Mastitis and Diet.

Source: Prepared by the author (2023)

In addition to displaying food consumption and mastitis data, we also created a

dashboard to display data on the environmental conditions of the Compost Barn. Figure

23 presents a line graph showing the indoor temperature (blue line) and humidity (green

line). ItŠs possible to view two cards that show the outside temperature (orange) and

humidity (light blue). To the right of the cards, we have a map showing the geolocation

of the temperature sensors on the farm. By visualizing the sudden drop in humidity on

the graph, producers and researchers could intervene in the environment and investigate

in real-time what was happening. Upon realizing it was a sensor failure, adjusting and

repositioning the sensor in the correct position was quickly possible, causing it to measure

humidity correctly again. Thanks to the dashboard and sensor monitoring, actions could

be taken to improve the environment quickly and efficiently, generating more animal

comfort and, consequently, a better production result.
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In addition to charts, we also set up alarm rules in ThingsBoard. For example,

suppose the temperature reaches a high value, such as 34 degrees Celsius. In that case,

we can trigger an alarm via email and SMS so the producer can immediately intervene

in the environment physically. The same goes for humidity. A high humidity level can

indicate that the shaving bedding, the organic material on which the animals lie, needs

maintenance. This worry arises because high humidity levels can favor the proliferation of

environmental bacteria that cause mastitis. Monitoring temperature and humidity are

essential to maintain animal welfare, as a lack of control in the environment can cause

discomfort, stress, and, consequently, a drop in milk production.

Figure 23 - ThingsBoard with Evaluation Data Ű Temperature and Humidity.

Source: Prepared by the author (2023)

Since the Compost Barn production system has internal measuring equipment

installed in the building and exhaust fans to control the temperature, we can support the

decision to turn on/turn off this equipment based on rules to analyze the environment. The

ideal environmental condition is that the internal temperature is 5 degrees less than the

external temperature of the environment. We can turn on more hoods as the temperature

increases to cool the environment. If a temperature exceeds the limit of 34º C, the system

can communicate through the Integration tier with external services and trigger an audible

alarm. Figure 24 partially presents a dataset of internal temperature from the environment,

captured by the farmsŠ sensors and used in this evaluation. The colors indicate a heat

map: colder blue, normal green, medium yellow, and high orange.

Maintaining a cool environment for dairy cattle is important for several reasons.

One reason is that cows are more comfortable and less stressed when kept in a comfortable

environment, which can improve their overall health and well-being. A cool environment

can also help reduce the risk of heat stress, which can occur when cows are exposed to

high temperatures and humidity. Heat stress can lead to several negative effects on cows,
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Figure 24 - Internal temperature data.

Source: Prepared by the author (2023)

such as reduced milk production, and increased disease risk. Cows produce more milk

when comfortable and not stressed; a cool environment can help keep cows calm and

relaxed. Overall, maintaining the environment for dairy cattle is important to their health

and well-being and can help optimize milk production and improve farm efficiency and

proĄtability.

5.3.3 Analyzing Case Study 1

Through case study 1, we veriĄed whether the architecture supports decision-

making in the smart farm based on data monitoring. We could also check if the theoretical

conjectures and requirements were aligned with the solution (artifact). Figure 25 presents

an overview of this Ąrst DSR cycle. According to Figure 25, observing the six data

sources used in the case study is possible. The animal dataset contains information

identifying the animal, its batch, and its birthdate. Dairy control data includes milking

carried out throughout each month. The scale sensors that weigh the animals collect the

data from ŞCasale VagãoŤ. The indoor environment data is collected from the SMAAI

sensors (temperature and humidity). Feed data contains the amount in kilograms of each

component of the animalsŠ diet, such as corn, soybeans, cotton, and hay. Animal health

data were made available from an internal EmbrapaŠs system, whose records indicate the

incidence of mastitis, the type of bacteria, the severity of the disease, and the medication

used.

By integrating different datasets and making them available for visualization, we

veriĄed that the architecture met the extensibility, Ćexibility, and scalability requirements.

Because as new data arrived in the architecture, it could process different types of data
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Figure 25 - First Cycle DSR Overview.

Source: Prepared by the author (2023)

and store and make data available to users with satisfactory performance. In addition, we

veriĄed that adding different external services to complement the decision-making process

is possible.

A system can be considered extensible if it can be easily adapted to meet the

constantly changing needs or requirements and can be modiĄed without signiĄcant redesign

or rework (Amorim et al., 2013). In this regard, the architecture has demonstrated its

ability to easily extend or modify to add new features, services, and datasets without

major changes. A Ćexible system can handle various inputs and be used in various ways

without requiring signiĄcant modiĄcations (da Silva Amorim et al., 2014). Regarding

Ćexibility, the architecture can be used in multiple contexts, such as feeding, animal

health, milk production, and environmental conditions. Finally, regarding scalability, the

system has handled increasing amounts of workload or data without experiencing a drop

in performance. A scalable system can maintain its performance as the size or complexity

of the workload or data increases (da Silva Amorim et al., 2014).

The sensor data integrated with environmental context data are presented to the

farmers through graphs and alert notiĄcations, helping in the decision-making. Also,

they have an overview of the environment being monitored. Through the dashboard

interface, triggering alarms based on rules was possible. For example, device ŞAŤ performs

a temperature reading of 34º C that exceeds the deĄned limit. As a result, a ŞHigh

temperatureŤ alert is generated. Each alarmŠs severity can be deĄned as Critical, Main,

Secondary, Warning, or Indeterminate (ranked by priority in descending order). Users

could also receive alert notiĄcations via SMS and email. We used the INMET website to

collect the external temperature/humidity at the Compost Barn. By analyzing context

data, such as external temperature and climate forecasts, farmers could make more precise
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adjustments, automating the process of starting exhaust fans. As a result, it was possible

to avoid sudden changes affecting the animalsŠ production.

Therefore, the e-Livestock architecture could process Compost Barn data adequately.

However, the results cannot be generalized, and additional evaluations can provide more

information on e-Livestock suitability to support decisions on smart farms.

5.3.4 Results of Case Study 1

At the end of this Ąrst cycle, it was possible to analyze the production results of the

farm, considering milk production, the amount of food ingested by the animals, the total

number of sick animals over time, and data from environmental conditions (temperature

and humidity). With the dashboard shown in Figures 22 e 23, producers could access

information to assist in the decisions, such as choosing appropriate nutrients for a given

batch. Analyzing the graphs, it was also possible to verify how many mastitis cases were

registered in the month and if the disease increased or decreased. It is possible to monitor

the environmental conditions of the Compost Barn by analyzing the temperature and

humidity collected through the sensors. With those, we open the opportunity to analyze

important variables and evaluate the efficiency of the Compost Barn system, such as

consumption, production, disease, and wellness. Herein, it is important to cross-reference

the information obtained from the sensors to assist in planning future actions.

At the end of the Case Study 1 (CS1), we found that the use of a dashboard

presenting data from the farm is not enough to support decisions, in such a way that only

the analysis of graphs is not enough to draw projections and make predictions for future

farm´s production planning. While charts can visually represent farm data and highlight

trends and patterns, it is also important to consider other factors affecting decision-making.

During CS1, our dashboard could display data on milk production, feed consump-

tion, and animal health, which could consider the farmŠs production objectives and goals.

Still, it could not plan feed consumption to adequately prepare agricultural commodities

used in the animalŠs diet (such as corn and cotton, for example). To make decisions in

a smart farm, it is usually necessary to consider a wide range of data and information

from various sources and use applications that use intelligent techniques such as ML and

reasoning algorithms to analyze and interpret the data. We also identiĄed that temperature

and humidity sensors sometimes fail, with the lack of energy being the main reason for

data reading failure. Consequently, the chart presents gaps and incomplete data useless

for decision-making. Additionally, adding an Intelligence tier would require a new quality

requirement related to the sustainability of the architecture (NFR005). The sustainability

of the architecture must ensure that the system can continue to operate and meet the

producersŠ needs over time so that intelligent algorithms can perform their function accu-

rately. To meet this requirement, the design of the new tier into the architecture should
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be easy to maintain and update.

In accordance with the Design Science Research (DSR) framework, upon scruti-

nizing the initial theoretical propositions, it was discovered that the architectural tier is

appropriate. Nonetheless, there is a need to address the issue of decision support within

the conĄnes of precision dairy farming. At the conclusion of the primary DSR iteration, a

dashboard was developed as an instrumental initial step toward comprehending the data.

However, it is equally imperative to consider other aspects and employ diverse applications

and techniques to facilitate superior decision-making. Furthermore, a noteworthy Ąnding

during this cycle was that farmers tend to favor the use of mobile devices instead of a

web dashboard, such as ThingsBoard. As a result, we have scheduled modiĄcations to the

Visualization tier in the next cycle, intending to provide farm data via a mobile app.

Based on the theoretical framework, we analyzed the papers from the systematic

mapping (Section 3). Then, we raised new conjectures and performed a new cycle to verify

whether using the artifact solves the decision-making problem in livestock and whether

the conjectures are valid. Based on the knowledge acquired in this Ąrst cycle, we raised

new conjectures regarding using intelligent techniques to improve decision-making on the

farm. Smart techniques are varied, but recent results suggest that machine learning and

semantic web (ontologies) use are promising.

Machine learning techniques could be used to improve the performance of an

Internet of Things (IoT) system in a precision livestock operation. ML algorithms can be

used to analyze data collected by sensors and other monitoring equipment and identify

patterns and trends that may not be immediately apparent to humans. In this way, the

system uses additional data to resolve uncertainties. This fact can help producers and

researchers make more informed decisions about managing their animals and improving

the farmŠs efficiency and sustainability. For example, ML can predict when an animal will

likely get sick or identify animal behavior patterns that might indicate they are under

stress. As a result, we can allow producers to take proactive steps to prevent problems

before they occur and improve the overall well-being of their animals. It can also optimize

food and water systems or identify opportunities to reduce waste and improve resource

efficiency.

On the other hand, ontologies are formalized structures to organize and represent

knowledge about a particular domain. They are often used in the context of artiĄcial

intelligence and semantic web technologies and can be used to help computers better

understand and interpret data. In a precision livestock context, an ontology can be used to

help organize and classify data collected by sensors and other monitoring equipment and

provide a common language for describing and interacting with this data. For example, an

ontology can be used to deĄne the various types of data that are collected on a dairy farm

(e.g., feed intake, water intake, behavior patterns, and health indicators) and specify the
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relationships between these data types. An ontology can also be used to help integrate

data from different sources and systems and allow the development of more sophisticated

machine learning algorithms that can analyze and interpret the data in more complex ways.

Overall, using ontologies in precision livestock can improve the efficiency and effectiveness

of these systems and enable more data-driven decision-making in farm actions.

Intelligent techniques can deliver strategic information that can help in future

decision-making. The analyzes carried out by e-Livestock in the Ąrst evaluation cycle

do not allow making these analyzes (predictions) about future farm decisions, such as a

prediction of milk production, an estimate of animal food consumption, or relating cases

of mastitis with the data of the environmental sensors. Thus, based on the identiĄcation

of improvements needed and the scientiĄc knowledge generated by the Ąrst cycle, a new

tier (Intelligence Tier) was speciĄed in the e-Livestock, to assist in deriving strategic

information to support decisions. In addition, user interviews highlighted the necessity to

develop a mobile application (Visualization Tier) in future architecture versions.

5.4 CASE STUDY 2 (SECOND DSR CYCLE)

Based on the scientiĄc knowledge generated in the Ąrst cycle, we improved the

artifact and made new propositions to evaluate it. The theoretical conjectures include

intelligent analyses supporting machine learning modules and ontologies. To achieve this,

we developed a tier for these analyses to handle uncertainties and maintain the previously

mentioned quality attributes. However, new functional and non-functional requirements

emerged, which we will present throughout this text. We also modiĄed the web dashboard

to suit the producersŠ necessities better and created a mobile application compatible with

Android and iOS operating systems.

To build the new version of the artifact, it was necessary to split the development

process into stages:

1. We must create an ontological model for dairy cattle and relate the available Compost

Barn data.

2. Creating semantic rules to execute inferences over the ontology was necessary. After

that, we need to add the machine learning functionality and use the ontology to help

the machine learning module process.

3. Present the predictive data to the user.

The second interaction cycle started with the deĄnition of the ontology model

(Section 4.5.1) and the SWRL rules that can extract implicit knowledge from the data.

Utilizing an ontology as a means of enhancing decision-making in agribusiness involves

employing a standardized and structured method of representing and organizing knowledge
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pertaining to the domain. By doing so, pertinent information can be more readily accessed

and utilized while also fostering a sense of consistency and accuracy within the knowledge

base.

Ontology is important to the decision support system because it uses machine

learning and other techniques to analyze data and make recommendations or predictions.

Using an ontology to represent and organize knowledge can make it easier to train and

evaluate the system and ensure it makes decisions based on a consistent and comprehensive

domain understanding. For each step, it was possible to improve the knowledge that

helped enhance the Ąnal version of the architecture. We will present below, in more detail,

each stage of construction of the second cycle of DSR.

5.4.1 Stages of Case Study 2

To develop the ontology, we used Python language and the OWL2Ready library,

which enables us to manipulate data within the ontology. Using the PyMongo library, we

queried the data in the database (which was stored in the Ąrst cycle), instantiated the

ontology, and stored it in an OWL Ąle. This way, it would only be necessary to update

the ontology as new data was added to the database.

Once the processed data was instantiated in the ontology, we developed SWRL

rules. As explained earlier in Section 4.7.1, SWRL is a language for expressing rules

in an ontology model. Rules in SWRL are written as if-then statements and can be

used to represent knowledge about a particular domain or subject, such as dairy cattle

management.

These are just a few examples of rules that can be expressed in an ontology model

for dairy cattle using SWRL. The speciĄc rules included in the model will depend on

the needs and goals of the model, as well as the knowledge and experience of the model

creators. Figures 10 and 11 show the SWRL rules.

With the ontology model and inferences completed, we proceeded to the develop-

ment stage of the machine learning module. Developing such a module for dairy cattle is a

complex task that requires expertise in machine learning techniques, software engineering,

and dairy management. Training machine learning models to recognize patterns and

relationships in large amounts of data is a computationally intensive process that demands

sophisticated algorithms and software tools. To acquire the necessary knowledge and

develop the module, we conducted technical interviews with professionals from Embrapa

Gado de Leite, who provided us with technical data on animal management and dairy

production.

To improve the architecture and provide information for decision-making, we

combined data pre-processing, model training, evaluation, and optimization. Since machine

learning models need regular maintenance and updates with new data, we created an
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auto-training function capable of updating trained models with new data. However, the

input data must always have a consistent pattern; otherwise, slight adjustments to the

data are necessary.

We used the Python language and the Scikit-learn library to train and execute

intelligent models, as per the objectives deĄned, which were to forecast individual milk

production as a function of animal weight and forecast general milk production on the

farm as a function of diet. To achieve these objectives, we organized the data, performed

Ąltering and standardization, and trained different models. We evaluated the accuracy of

each model and selected the most accurate for each objective. Afterward, we tested the

accuracy of the trained models by crossing the result with a set of real data.

Integrating the trained models with the ontology was done through an integration

tier that played a vital role in the communication between the intelligence tier (ontology

and machine learning) and other parts of the architecture (processing, database, visuali-

zation). We developed an API using Flask library to communicate the intelligence tier

with the integration tier, enabling data from the integration tier to arrive through web

requests, be processed by the intelligence tier, and integrated back into the architecture.

The architecture allows low coupling, allowing for easy integration with other intelligent

techniques in the future. For instance, a farm selling dairy products could use Natural Lan-

guage Processing to verify product acceptance on social networks and develop commercial

strategies to improve sales.

Although the ontologyŠs inference processing and machine learning models can

work independently, combining both approaches provide complete decision support in

precision farming. Using ontology to structure and classify data collected by sensors and

other monitoring equipment and applying machine learning algorithms to analyze and

interpret that data enables producers and researchers to gain a deeper understanding of

their animals and production. By deĄning the various data types collected on the farm

and specifying their relationships using an ontology, machine learning algorithms can more

accurately identify patterns and trends in data and make more informed predictions and

recommendations.

We can use our ontology to identify the best input data and provide consistent

and accurate predictions that align with the producerŠs reality. For example, letŠs consider

milk production as the total milk produced over a month minus the milk discarded from

sick cows. We can use the ontology to extract data from only healthy cows and predict

total milk production, disregarding the sick cows that are not included in the Ąnal sum.

Furthermore, ontology allows extracting data derived from semantic relationships and

using them to identify events related to the farm environment. For example, temperature

and humidity sensors may stop working or be damaged. Still, through the relationship

between the external temperature data from the INMET API and the sensor data found
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on the farm, we can generate a complete dataset and use it to train intelligent algorithms

that predict farm-speciĄc weather conditions. Next, we will present the data used for the

second case study (CS2).

5.4.2 Conducting Case Study 2

To assess whether the new artifact, which now contains an intelligence tier, can

offer complete analyzes and thus support decision-making on the farm, we evaluated the

accuracy of the intelligent algorithms and their predictive results. Initially, we chose to look

at individual milk production as there are several advantages to predict milk production

for a single cow. We also performed the prediction of the milk production of the farm

based on the diet of the animals.

Predictive models can help producers optimize their operations, such as allocating

resources more efficiently and prioritizing the most productive cows, optimizing the feed

and care they provide, leading to higher milk production and greater proĄts. Moreover,

decision-making is improved when predictive models can provide producers with valuable

information, such as identifying low-performing cows (production) and improving their

productivity. This fact would also lead to early warnings, as predictive models can help

producers identify potential issues early on, allowing them to take timely action to prevent

or mitigate the impact of those issues. For example, a model that predicts the milk

production of individual cows can help producers identify cows at risk of developing health

problems, allowing them to take preventive measures to keep them healthy.

To perform the individual production analysis based on the available data, it

was necessary to integrate three different datasets, herd, scale, and milking. The herd

data contains the animalŠs data, such as its identiĄer (earring), date of birth, and batch.

The scale data refer to the animalŠs weighing, and Ąnally, the milking data are milk

production data. We generated a dataset containing the relationship between weight and

milk production by crossing the weighing dates with the milking dates and identifying the

animal through its earring in the herd. Figure 26 shows a clipping of the data used in the

training dataset.

We collected data on milk production and cow weight to predict milk production

based on cow weight. We pre-processed the data to clean the data to remove any missing

or invalid values and normalized the set so that all data was on the same scale. We split

the data into a training set and a test set. The training set was used to build the model,

and the test set to evaluate model performance. We tested models like Random Forest,

Neural Network, kNN, and Adaboots. A complete list of available algorithms is in the

official Scikit-learning documentation. With the training of each algorithm, we evaluate

the models with the test data. We use metrics such as Mean Absolute Error (MAE), Mean

Squared Error (MSE) to quantify forecast error. The mean absolute error represents the
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Figure 26 - Fragment of weight dataset.

Source: Prepared by the author (2023)

mean of the absolute difference between the actual and predicted values in the data set. It

measures the mean of the residuals in the data set. The mean squared error represents

the difference between the original and predicted values in the data set. It measures the

variance of the residuals. Root mean square error (RMSE) is used for evaluating the

quality of predictions. It shows how far predictions fall from measured true values using

Euclidean distance. Finally, The metric R2, also known as R-squared or coefficient of

determination, denotes the percentage of data variance explained by the model. The

results range from 0 to 1 and are typically expressed in percentage terms, i.e., ranging

from 0% to 100%. A higher R2 value indicates a more explanatory model concerning the

predicted data. Therefore, we adopted the Mean Absolute Error (MAE) and the Mean

Square Error (MSE), as they are metrics adopted in intelligent systems to measure the

difference between predicted results and actual data evaluations (Wang and Lu, 2018).

Figure 27 illustrates the training results of various algorithms, including the Extra

Tree Regressor, which showed the lowest MAE and MSE and was thus selected for use in

the architecture. The Extra Tree Regressor is a meta-estimator that Ąts several random
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decision trees (also known as extra trees) on various subsamples of the data and uses the

average to improve predictive accuracy and control overĄtting.

In the milk prediction based on weight, we observed an MAE of 6.46, indicating

that predictions generally have an error margin of 6.46L. For instance, if the algorithm

predicts that an animal will produce 26L each month, upon comparing the collected data

with the predicted data, that animal could have produced anywhere between 20L and 32L,

meaning that there is a margin of error approximately 6L in either direction.

Figure 27 - Error data for training predict milk based on weight dataset.

Source: Prepared by the author (2023)

To predict the farmŠs milk production based on animal feed, it was necessary to

extract the kilograms consumed of each food component in the animalsŠ diet and calculate

the monthly milk production. Diet plays a signiĄcant role in milk production for cows.

They need a balanced diet with the right combination of nutrients such as protein, energy,

minerals, and vitamins to produce milk efficiently. If a cowŠs diet is deĄcient in any of

these nutrients, it can reduce milk production. For example, a protein deĄciency can lead

to reduced milk production and poor quality. Animals also need sufficient energy, minerals,

and vitamins in their diet to produce quality milk. Lack of these nutrients can lead to

reduced milk production and poor quality. In summary, a cowŠs diet signiĄcantly affects

her milk production. Providing cows with a balanced diet with the proper nutrients is

essential to support milk production.

The challenge of making this prediction is the dietary variation the animals may

undergo throughout the year due to climate variations, food availability, and even the

animalŠs age. However, it was possible to assemble a dataset with enough data to train

the algorithms. Figure 28 shows a fragment of the dataset used to train the models; it is

possible to see that the Concentrate and Food Supplement component is Ąlled with zero,

as they were unavailable, and cotton was also unavailable on 07/28/2022 and 07/29/2022.

Figure 29 shows the result of training some algorithms. For example, we highlight

the Ada Boost that presented lower MAE and lowers MSE and, therefore, was selected to
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Figure 28 - Fragment of feed dataset.

Source: Prepared by the author (2023)

act in the architecture. An AdaBoost regressor is a meta-estimator that starts by Ątting a

regressor to the original dataset and then Ątting additional copies of the regressor to the

same dataset, but where the instancesŠ weights are adjusted according to the error of the

current prediction. As such, subsequent regressors focus on hard cases.

An IoT sensor can give accurate readings if properly calibrated or maintained.

Generally, IoT sensors are subject to harsh conditions, and there are several reasons why

an IoT sensor may not measure temperature and humidity accurately: Over time, the

accuracy of an IoT sensor may vary due to changes in its internal components or factors

external factors such as temperature and humidity. Other electronic devices or signals in

the environment can interfere with the operation of an IoT sensor. For example, if the

sensorŠs batteries are not replaced regularly, this can affect the sensorŠs accuracy. Also, in

some cases, an IoT sensor can be faulty due to a manufacturing error, which can cause

it to give wrong readings, such as 0 or NULL. We use ontology to Ąll in these gaps to

mitigate these situations and data losses.

After training the intelligent models and selecting the most suitable model to make

individual and general milk production predictions, we instantiated data in the ontology.

The reasoner was executed considering the SWRL rules. We developed SWRL rules to help

estimate temperature and humidity, as shown in Figure 30. We used an external source,

INMET API, to obtain external temperature and humidity measurements in Coronel

Pacheco. As a result, we can get a pattern by comparing the API data (external) with the

sensor data (internal) and using an SWRL rule to Ąll in the missing days.

The inference in the ontology also helped to deĄne who are healthy and sick animals.

At this point, we could Ąlter the data considering sick animals and generate only a dataset
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Figure 29 - Error data for training predict milk based on diet dataset.

Source: Prepared by the author (2023)

Figure 30 - SWRL rules for infer sensor data.

Source: Prepared by the author (2023)

containing data from healthy animals (Figure 31 shows the rules used to classify animals

as sick or over-productive). This Ąlter helps to improve the dataset by adding only relevant

data; otherwise, training the ML algorithms could score lower. The previous results took

into consideration only the healthy animals that were Ąltered through the ontology.

To demonstrate that our architecture can combine ontologies and machine learning

for even greater insights, we developed a feature that predicts a farmŠs milk production

based on animal weight for the month. Heavier cows in good body condition produce more

milk than underweight or thin cows. This issue is because cows need a certain amount

of body fat and muscle mass to produce milk efficiently. Although other factors such as

genetics, age, diet, and management practices can also affect a cowŠs milk production, we
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performed this analysis based on available farm data.

Figure 31 - SWRL rules for inferring sick and healthy cows.

Source: Prepared by the author (2023)

The Ąrst step is to identify and remove infected animals from the herd using SWRL

rules that deĄne sick animals, overproducers, and "normal"animals (those that are not

sick and produce less than 30L of milk on average). We then took weight data from each

animal group and used machine learning to predict their milk production. Finally, we

add up all forecasted production to give the producer an idea of how much milk he can

produce in the next month.

The previously chosen ML algorithm processed this new, improved dataset (contai-

ning further information and relationships between the data, coming from the inference

processing in the ontology). In this study, the Extra Tree Regressor had a more accurate

result for milk prediction based on animal weight, although, for other datasets, new tests

need to be performed to choose the best model. We train and run tests with several

algorithms with different parameters and choose the best based on error metrics.

5.4.3 Analyzing Case Study 2

After conducting Case Study 1, we gained important insights into using the

architecture to support decision-making, which led us to conduct Case Study 2. Despite

the data processing and visualization, producers felt the need for deeper analysis, such as

estimating the farmŠs milk production for the next month and analyzing expected milk

production based on animal diets. We also noticed that sensors occasionally fail, and the

internal conditions of the Compost Barn are unknown. Based on scientiĄc knowledge, we

developed a new version of the architecture (CS2) that now includes an intelligent tier

containing machine learning techniques and ontology to meet the need for more speciĄc

analyses. In this new version, the architectureŠs integration tier collected and stored data

to generate a dataset containing weight and milk production data, sorted by animal and

month. By processing different ML algorithms, the architecture stored the results to select

the algorithm with the best accuracy. The algorithm with a low absolute mean error,
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considered satisfactory by the farm producers, was selected, and the trained model was

made available.

Both functional requirements, such as FR003, in which the architecture must be

capable of performing semantic analyses and predictions; and FR006, which requires data

to be pre-processed for intelligent processing, were added. They needed to be addressed

in e-Livestock. We also added sustainability-related quality requirements (NFR005) and

improved the systemŠs usability requirement (NFR006). It was necessary to review three

important requirements: extensibility, Ćexibility, and scalability.

The architectureŠs sustainability (NFR005) was veriĄed through the self-training of

intelligent models, which can be triggered automatically when new datasets arrive, allowing

the insights offered by the system to remain consistent and up-to-date. This requirement

becomes necessary since milk production on a farm can vary throughout the year due to

various factors. Some of the most common factors that can affect milk production include

changes in the diet and feeding habits of animals, changes in climate and environmental

conditions, changes in animal health and well-being, and changes in management practices

used by producers. For example, milk production on a farm may be higher in the spring

and summer months when animals have access to speciĄc diets due to food availability. In

contrast, there is a more limited diet in the winter since commonly used foods such as hay

and silage are stored, and when the weather is colder it is less conducive to milk production.

By keeping machine learning models trained with the most recent data set, producers can

work to optimize milk production based on predictions, ensuring that the architecture

always provides more realistic data. Therefore, the sustainability of the architecture is

ensured through the continuous Ćow of data training, guaranteeing that the predictions

remain updated. Figure 14 in section 4.7.2 presents the Ćow and steps of self-training.

We veriĄed whether the architecture also met the requirements of extensibility

(NFR002), Ćexibility (NFR003), and scalability (NFR004). To maintain extensibility, the

architecture accommodated new controllers and provided new endpoints for the intelligence

module, proving to be consistent and scalable. Regarding Ćexibility, the architecture

allowed the addition of different intelligent models, requiring only the input of data in the

expected pattern for its operation. Thus, new algorithms can be easily added without a

signiĄcant impact on the functioning of the architecture. New predictions can be conĄgured,

meeting new demands that producers may have; by adding new sensors and collecting

different data, the architecture continues to support producers. Finally, as new intelligent

algorithms were added and more resources were demanded, the architecture remained

stable and functional throughout training and evaluating the algorithms, demonstrating

its potential by meeting the quality attributes deĄned for this work. Furthermore, it is

possible to instantiate this architecture for other domains besides dairy cattle, for example,

using it for the poultry domain, where the sensor data and rules differ. To do so, developing

an ontology with appropriate semantic relationships and training the algorithms based on
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the available farm data is only necessary.

As a result, ML algorithms to the architecture improved strategic information

delivery by making predictive information available. With the milk production predictions,

we can cross the predictions with the actual production, check the results, and analyze if

the production was better, worse, or what was expected according to the farmŠs planning.

In addition to this analysis, with the milk forecast, it is also possible to verify if the farm

is reaching its production target, suggesting to the producer changes in the composition of

the foods, adequacy of the environment, and improvement in production. This strategic

information is presented on panels, enabling constant monitoring of the Compost Barn

environment via a mobile application.

By adding the intelligence tier, the architecture became more Ćexible and delivered

strategic information in addition to that stored in e-Livestock repositories. New strategic

information is critical to improving production decision-making at the Compost Barn. This

e-Livestock support helps, for example, in the decision to increase the supply of nutrients,

replace the composting bed, or open the composting windows in case the temperature

and humidity increase. With continuous monitoring, ontology processing, and machine

learning, the architecture could offer more complete analyzes for producers.

5.4.4 Results of Case Study 2

The Ąeld of dairy cattle management is complex and multifaceted, with many

variables and factors that can affect the animalsŠ health, productivity, and welfare. This

complexity can make it challenging to develop machine learning models that can accurately

capture the relationships and patterns in the data and make reliable predictions or

recommendations. Additionally, machine learning models for dairy cattle may be required

to handle a wide variety of data types and sources, such as sensor data, logs, and other

data types, which can increase the complexity of the model development process. To

mitigate this difficulty, we use ontology. Combining ontology and machine learning can

signiĄcantly improve the insights gained from precision livestock systems and enable more

data-driven decision-making in livestock operations.

We could infer relations, missing data, and new instances by integrating the ontology

model with the ML module. Based on these new relationships, we could classify animals

and generate reports. If the animal has mastitis, it is classiĄed as a Sick Cow. If the

animal is healthy and produces more than 30L of milk, it is classiĄed as Supercow. Once

the animals were classiĄed, we could analyze the number of sick animals per batch and

provide the evolution of mastitis at Compost Barn based on the farmŠs previous data.

In addition, it is possible to alert the researchers/farmers about the possibility of a new

mastitis epidemic.

As shown in Figure 32, we observed a high humidity level in the Compost Barn
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Figure 32 - Animal Dataset.

Source: Prepared by the author (2023)

during September and October, which generated a proliferation of environmental bacteria.

These bacteria caused mastitis in some animals, which needed to be medicated. Due to

the medications, the decision was to discard the milk. We could also detect the sudden

increase in weight of one of the cows and its change to another Ćock. An analysis of animal

weightsŠ evolution observed a peak in one of the batches. Using the inferences provided by

the ontological model, we identiĄed that one of the cows in that batch had an insemination

event, causing an increase in weight and, later, the decision to migrate to another batch.

It was possible to estimate the milk production of this animal and monitor whether the

expectation was reached using machine learning algorithms.

It was possible to monitor the farm through graphics from the mobile application.

In the e-Livestock application, producers could follow the evolution of production over

the months, receive notiĄcations about expected production, analyze the total food

consumption of animals by batch, and see health details, such as the weight of each animal.

The used metrics were the following: (i) milk production per batch during the year, (ii)

the weight of each animal month by month, and (iii) the feeding per kg/batch. Figure 33

presents the dashboard of the e-Livestock Mobile Application.

We could analyze the expectations for a speciĄc month by delivering milk production

prediction results. In July, for instance, the overall error was only 6.46 Liters. Each animal

could produce 0.92 Liters of milk above or under the expectation during the week. As a

result, it could provide the opportunity for better planning of milk production over the

months, supporting decisions on the farm. During the development of the graphics, the

producers evaluated both the data and the mobile application, carefully assessing the

information presented therein.

5.5 CONCLUSION FROM CASE STUDIES

Both case studies assessed the capabilities provided by e-Livestock architecture,

which are a) monitoring; b) reasoning; and c) automated actions. From the results obtained
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Figure 33 - Dashboard Mobile Application.

Source: Prepared by the author (2023)

in both case studies, we performed a triangulation, i.e., a research method used to increase

the validity and reliability of Ąndings in a case study. We performed a few steps to

triangulate Case Study 1 (CS1) and Case Study 2 (CS2), which involved collecting data

from multiple sources, comparing, and integrating the data, interpreting the Ąndings, and

validating these Ąndings to increase the validity and reliability of the results.

In Case Study 1, we veriĄed that the architecture could monitor the farms and use

dashboards through a web application. We collected sensor data related to milk production

during the year, the weight of each animal by month, and feed per kg. We observed this

issue through the data register and the system execution on the dashboard (triangulation).

Additionally, during data processing, producers were able to receive notiĄcations about

the current production, analyze the animalsŠ total feed consumption per batch, and view

health details such as the weight of each animal. With this data, the previous observation

was conĄrmed. When carrying out Case Study 2, we checked the research question (RQ)

again, but from the point of view of the intelligent system. We could observe that the

system implementing the architecture could monitor the farms as the sensors generated

new data. The system collected, processed and sent to the dashboards the necessary

information for the producers to decide. As a result, we can conĄrm that the e-Livestock
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system can support farm monitoring. Again, we observed this by analyzing the records in

the database and observing rural producers running the dashboard (triangulation).

Performing the triangulation to answer the raised RQ, we veriĄed that the archi-

tecture could improve the results through the system. In CS1, we could see the milk

production for a speciĄc month. When conducting CS2, which used intelligence techniques

with ontology and machine learning, we performed a new evaluation with the same data

incrementally. From the point of view of an intelligent system, data is always incremented

constantly. As a result, it was possible to obtain greater accuracy of results by evolving

to an intelligent architecture. Hence, we obtained an error of only 6.46 for July. As in

this case study, the previously established average error was 0.92 L of milk above or below

the expectation during the week; that is, less than 1 L of error. These data proved to be

satisfactory for the producers. Therefore, when using e-Livestock architecture, greater

accuracy was obtained, allowing decisions on rural properties to be more accurate. We

observed this fact by analyzing the database records and the results presented through

the dashboards to rural producers at the time of decisions (triangulation). With the help

of e-Livestock architecture, it would be easier to estimate the farmŠs total production and

make accurate decisions.

From the CS2 results, we confront the theoretical conjectures about the use of

ML and ontology raised after CS1, and we analyze whether, after this interaction, the

artifact can support decision-making with a complete analysis of precision livestock. The

area of dairy cattle management is complex and multifaceted, with many variables and

factors affecting the animalsŠ health, productivity, and welfare. This complexity can make

it challenging to develop ML models that can accurately capture the relationships and

patterns in the data and make reliable predictions or recommendations. Furthermore, ML

models for dairy cattle may be required to handle a wide variety of data types and sources,

such as sensor data, logs, and other types of data, which can increase the complexity of

the development process model. To mitigate this difficulty, we use ontology. Combining

ontology and machine learning can improve the insights gained with precision livestock

systems and enable more data-driven decision-making in livestock operations.

As a result, we could have evidence to answer the raised RQ, ŞHow can e-

Livestock support automated monitoring, reasoning, and actions in smart

farms?Ť. The e-Livestock supports automated monitoring, reasoning, and actions in

smart farms using ontology inferences combined with machine learning abilities.

Data were displayed in plots and analyzed by the researchers. Once a decision was

made or an unusual event was detected, it was possible to track the reason and the process

generated through the relationships captured by the ontology model. The results of ML

algorithms offered a future insight into production planning and animal management. For

example, based on the estimated production of the farm, managers can see if it is in line
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with the objective outlined in the quarter. They can develop action plans to improve

production through feeding or disease control if production is far below the target.

During the execution of both case studies, we could verify that e-Livestock could

provide implicit information derived from intelligent data analysis. This information,

presented to the researcher/farmer/producer in the dashboard, supports the decision-

making process on farms. In addition to this support, we could track the information

processing that derived the decision support, providing more conĄdence in the decision

support. We discovered this information by processing inferences over the ontology

instances, generating implicit knowledge from new relationships, i.e., processing the

information semantically and based on ML algorithms.

The overall aim of the assessment was to observe the inĆuence of the deployed

system in the Compost Barn Ąeld towards the pursued goals: maximizing animal welfare

and increasing productivity, product quality, and sustainability. Evidence brought allowed

us to conclude that the proposed architecture can satisfy the mentioned attributes by

maximizing animal welfare (making decisions to make the temperature and humidity

close to the ideal thresholds), increasing productivity (a direct result of the architectural

evolution between CS1 and CS2), product quality (by avoiding selling low-quality milk

predicted as contaminated with mastitis) and sustainability (with automatic adjustments

in the exhaust fans, turning them on/off, potentially saving energy).

The sensors installed both in the environment and on the animalsŠ necks captured

valuable data, which was then analyzed by e-Livestock to provide strategic insights to

support decision-making on farms. By leveraging this data, e-Livestock was able to

estimate the likelihood of production loss or animal disease, among other critical events.

Through careful evaluation of the data collected at the Compost Bar, we were able to

obtain compelling evidence that helped us address our research question. However, these

results cannot be generalized, and new case studies must be conducted in additional

real-world context farms.

Figure 34 presents an overview of the technologies employed and the primary

requirements utilized to address the research question. Moreover, it outlines the speciĄc

problem that each technology resolves. The Intelligence tier was designed to fulĄll the

Ćexibility requirement (NFR003), which is accomplished by dynamically selecting the most

appropriate machine learning algorithm. We achieved extensibility requirement (NFR002)

through ontology models, which extract the relationship between data and inferences. The

architecture can incorporate new controllers and provide new endpoints for the Intelligence

tier to access more farm data, while external services assist with extensibility and scalability

(NFR004). Finally, the "Autonomous Agent"can trigger alerts or modify the AC based

on intelligence module information. Consequently, the Autonomous Agent can search for

available devices or operators that need to receive alerts and/or process changes directly on
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the devices or in the AC operation. As the sensors collect new data, the autonomous agent

continuously monitors it to process it, thereby supporting the management of uncertainties.

Figure 34 - Relationship Between Technologies and Requirements.

Source: Prepared by the author (2023)

5.6 THREATS TO VALIDITY

This section discusses threats to validity that can affect or limit the resultsŠ validity.

The limitations of this research are related to the intelligence tier. We only executed

the case studies on the Coronel Pacheco Compost Barn system. Other studies could be

conducted to explore the prediction results considering more than one farm. The ontology

model was designed for dairy cattle only. All experiments were conducted for cattle inside

a barn and did not consider free animals.

Construct validity. During the case studies, the data processed was available to

the researchers. All data updates can be tracked and visualized. However, more than

intelligent analysis is needed. Considering different contexts, we can use additional data

analysis to mitigate this threat. Moreover, e-Livestock supports different ML techniques.

However, the dataset and the number of researchers/farmers that analyzed the results

can represent a threat. Additional evaluations need to be conducted to reduce this threat.

Internal validity: During the conduction of the case studies, the data are from speciĄc

sensors from the Compost Barn of EmbrapaŠs experimental farm. The results are still

preliminary, and although they indicate a valuable outcome, a more detailed study is

needed to present additional Ąndings. However, the features offered by the e-Livestock

architecture can pose a threat. In a more complex context, other data analysis techniques

need to be used, and, as a result, we must reassess the decision support.
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External validity: The case study deals with a dataset associated with a speciĄc

Compost Barn production system experiment. We need to conduct evaluations considering

other agricultural contexts before generalizing our results. However, it is possible to

identify situations where we can obtain similar CS results and the knowledge acquired can

be transferred to similar real-world experiments.

Reliability: We presented details of the execution of the studies, but probably some

information was probably incomplete. We have made documentation available to ensure

the case studies reruns to mitigate this threat.

5.7 FINAL REMARKS OF THE CHAPTER

Considering the difficulties of decision-making in Agriculture 4.0, this work sought

to support decisions in this domain through an architectural approach. For that, the

e-Livestock architecture was proposed. It performs the collection, processing, storage, and

enrichment of data collected by sensors, whether installed on animals or in the environment

in which they are found. Subsequently, two case studies were conducted to evaluate

the proposed solution. Evidence was presented on the feasibility of instantiating this

architecture to support decision-making in the context of precision livestock. Agricultural

decisions must be made considering the diversity of information and devices in different

contexts. Furthermore, context information is often not used in decision-making due to

the complexity of managing a high volume of heterogeneous data. This work presents an

architecture that aims to tackle the problems of collecting, processing, and visualizing

data to support decision-making. Still, it was possible to support decisions with external

information and data from other sources.

ML techniques could improve the use of the IoT system in a precision livestock

operation. Machine processing algorithms were used to analyze data collected by sensors

and other monitoring equipment and identify patterns and trends that may not be

immediately apparent to humans. This analysis can help producers and researchers decide

how to manage their animals and improve the overall efficiency and sustainability of the

farm. On the other hand, ontologies are often used in the context of artiĄcial intelligence

and semantic web technologies that can be used to help computers better understand and

interpret data. In precision livestock, ontology was used to help organize and classify data

collected by sensors.

Our results are relevant since they address problems related to world food pro-

duction. Our approach has the potential to be replicated in food production research

institutions all over the world, besides being a contribution to scientiĄc and livestock

technological solutions. We also intend to reinforce and prioritize quality attributes, such

as Ćexibility, extensibility, and scalability. New semantic rules can also be deĄned to

support data enrichment in the ontology and their integration with other domain-speciĄc



89

ontologies to increase the capacity of knowledge extraction. Finally, it would be useful to

conduct new experiments in other livestock subdomains to evaluate the support offered by

e-Livestock architecture in different application subdomains.

We checked that the architecture met the extensibility, Ćexibility, and scalability

requirements. Aimed to fulĄll extensibility, the architecture could accommodate new

controllers and provide new endpoints for the intelligence module, proving consistent and

scalable. Regarding Ćexibility, the architecture allowed the addition of different intelligent

models, requiring only the input of data in the expected pattern for its operation. Hence,

we could easily add new algorithms without a signiĄcant impact on the functioning of the

architecture. Furthermore, as we demanded new intelligent algorithms and more resources,

we observed that the architecture remained stable and functional throughout the training

and evaluation process of the algorithms, showing its potential to meet the elicited quality

attributes.

e-Livestock is an architecture of an ecosystem platform that offers services to

support decision-making in agribusiness. By evaluating the architecture of an agricultural

research corporation, we evidenced that we could monitor the health and well-being of the

animals. This issue was possible by using an intelligent architecture capable of enriching

data to support decisions through the services offered by the platform. As a result, different

partners using e-Livestock can interact and collaborate accordingly, innovating in a highly

competitive market. From this solution, they can also align decisions and change strategies

and relationships with their external stakeholders to create value and new opportunities

for agribusiness. So, using an intelligent architecture goes beyond the solutions proposed

by individual organizations and rural properties that do not aim at attracting partners to

an innovation ecosystem (Bosch, 2016) (Bosch and Olsson, 2018).
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6 CONCLUSION

This work lays out a theoretical framework of key concepts about the Internet of

Things (IoT), the semantic web with ontology, and intelligent decision support systems.

The work begins by introducing the domain of decision support systems in agriculture

4.0 and identifying the challenges related to leveraging sensor data for decision-making

in precision livestock. After that, the work delves into the concepts of ontology and

computational intelligence employed in the proposed solution.

To answer the established research question: ŞHow can e-Livestock support

automated monitoring, reasoning and actions in smart farms?Ť Given the dif-

Ąculties associated with decision-making in Agriculture 4.0, the work seeks to address

this issue by proposing an architectural approach. An architecture of a software-based

production system for milk production, so-named e-Livestock, was developed and deployed

in a Compost Barn environment of a real farm in Brazil. To evaluate the effectiveness

of the proposed architecture, a case study was conducted, and evidence was presented

on its feasibility in supporting decision-making in the realm of precision livestock. The

proposed solution, the e-Livestock architecture, collects, processes, stores, and enriches

data obtained through sensors, which may be installed on animals or in their immediate

environment.

As a contribution of this work, we have published the systematic mapping (Gomes

et al., 2021), the Ąrst version of the architecture (Gomes et al., 2021), the ontology model

(Gomes et al., 2021), the second cycle (Gomes et al., 2023), and (Gomes et al., 2022).

In addition to its contributions to decision support, the proposed solution may beneĄt

research groups working on decision-making platforms. Therefore, the work concludes by

highlighting the value of this work to a broader audience.

• This study presents a systematic literature review that identiĄes and categorizes the

main works in Agriculture 4.0. As a contribution, this review offers opportunities

for further research by providing a state-of-the-art overview of decision support

systems. By advancing knowledge in this Ąeld, we highlight integration techniques

and opportunities utilized in previous studies, demonstrating the importance of

using IoT sensor data to support decision-making. As a result, complex decisions

related to agribusiness can be enriched with information from other systems used on

farms. Additional topics could be explored for future research, especially regarding

integrating IoT devices and systems for agribusiness. Furthermore, research on data

provenance should be developed, considering the context of IoT data to enrich and

improve decision-making in agriculture.

• This study also presents a conceptual architecture for handling IoT data in rural

environments. This architecture contributes to the scientiĄc community by providing
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a solution that considers semantics and artiĄcial intelligence to enrich data for

decision-making in this domain

• In addition, this study developed an ontology capable of modeling and extracting

implicit knowledge about dairy cattle. This ontology is accessible via a web service

and enables interoperability with external platforms.

• The integration of the proposed architecture with other platforms, such as INMET,

increased decision support by providing external information to the farm. Further-

more, this integration generated knowledge about using APIs and common data

models for integrating systems, opening opportunities for additional integrations.

• Finally, this study also developed an architecture considering a tier of intelligence

combining semantic inferences and machine learning predictions. To enrich data

and provide better decision support on farms, the study presents the visualization of

predictive results and farm information on a mobile device.

Decisions in agriculture need to be made considering the diversity of information

and devices present in different contexts. Furthermore, context information is often not

used in decision-making due to the complexity of managing a high volume of heterogeneous

data. This work presented an architecture that aimed to tackle the problems of collecting,

processing, and visualizing data to support decision-making. Still, supporting decisions

with external information and data from other sources was possible. Our results are

relevant since they addressed problems related to world food production. Our approach

has the potential to be replicated in food production research institutions over the world,

besides being a contribution to scientiĄc and livestock technological solutions. We also

intend to invest in reinforcing and prioritizing quality attributes, such as data provenance,

interoperability, and reliability (as highlighted by Fernandes et al. (2021); Valle et al.

(2021); Ferreira et al. (2021)). New rules can also be deĄned to support data enrichment

in the ontology and their integration with other domain-speciĄc ontologies to increase the

capacity of knowledge extraction. Finally, it would be useful to conduct new experiments

in other livestock subdomains to evaluate the support offered by e-Livestock architecture

in different application subdomains.

For future work, we intend to generate other instances of e-Livestock architecture

and associate them with a software ecosystem and explore aspects of collaboration,

communication, and integration between farms to support decisions in these instances.

Combining and processing additional data sources and sensors also can lead to more

accurate results, reduce costs, and maintain agribusiness sustainability. Furthermore, it is

essential to focus on improving the training process, when it comes to machine learning.

This can be achieved by repeating the training of the same algorithm multiple times to



92

verify the results. Additionally, it is crucial to develop a clear and well-deĄned pipeline for

the maintenance and deployment of the model in production.
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