
Universidade Federal de Juiz de Fora

Instituto de ciências Exatas

Bacharelado em Ciência da Computação

Iterative method for edge equalization of
triangular meshes

João Vitor de Sá Hauck
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Resumo

Este trabalho apresenta um método para remalhamento de superf́ıcies triangulares. O

método obtem uma nova superf́ıcie de maneira que qualquer aresta está dentro de um

intervalo predefinido [emin, emax]. A entrada do processo é uma malha de 2-variedade com

geometria e topologia arbitrarias. O algoritmo proposto é iterativo e consegue ajustar

automaticamente a quantidade de vértices e triângulos necessários através das operações

estelares. Um filtro passa-baixa também é aplicado para retirar as altas frequências. O

algoritmo gera uma malha triangular de 2-variedade, com os vértices distribúıdos de ma-

neira quase uniforme sobre a superf́ıcie de entrada. No fim do processo, praticamente

todas as arestas estão dentro do intervalo. A malha dual desta malha triangular é uma

malha trivalente. Este tipo de malha tem muitas aplicações em simulações de nano es-

truturas de carbono.

Palavras-chave: equalização do comprimento de aresta, operações estelares, remalha-

mento.



Abstract

This work presents a method for remeshing triangular surfaces. This method obtains a

new mesh in such a way that any edge is within a predefined interval [emin, emax]. The

input of the process is a 2-manifold mesh with arbitrary geometry and topology. The

proposed algorithm is iterative and is able to automatically adjust the number of vertices

and polygons through stellar operations. A low pass filter is also applied to remove higher

frequencies. This algorithm generates a triangular 2-manifold mesh, with the vertices

spreaded almost uniform over the input surface. At the end of the process, almost all

edges are within the interval. The dual mesh of this triangular mesh is a trivalent mesh

also very uniform. This kind of mesh has many applications in simulations of carbon nano

structures.

Keywords: edge length equalization, stellar operations, remesh.
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1 Introduction

This work aims the production of a method capable of, from a given mesh, generate a

new mesh with edge lengths that are within a minimum and maximum value.

To understand this work it is necessary that some basic concepts are clear. These

concepts are: polygon meshes to represent surfaces, triangular meshes, stellar operations,

the laplacian operator and remeshing. To represent a surface in the computer memory

a discretization is necessary. To achieve this there are several manners. One of the

most used is to represent objects through polygon meshes. Polygon meshes are surfaces

represented by discrete polygons, each polygon representing the surface locally and the

entire surface is represented by all polygons together.

The polygon meshes can be made with different types of polygons, for example

triangles, hexagons, quads, pentagons. In this work we are going to focus only in triangular

meshes due to their great utility and practical use. Other very important mesh in this

work are the trivalent meshes, in which each vertex has exactly three edges. They tend to

form hexagons in low curvature surfaces and have recently attracted attention from the

computer geometry community (M. Nieser et al, 2010). They are important for several

applications, such as the physics simulation of carbon nano structures (Quinelato et al,

2010).

Stellar operations are a classic set of operations in polygon meshes known for

keeping the Euler characteristic unchanged as in equation 1.1

vb − eb + fb = va − ea + fa, (1.1)

where vb is the original number of vertices, eb is the original number of edges, fb is the

original number of faces, va is the new number of vertices, ea is the new number of edges,

and fa is the new number of faces. They are formed basically by the operations of edge

split, vertex split, edge collapse, vertex collapse and edge flip (Oliveira et al, 2012).

The Laplacian operator is a common operator often used as a filter, as it tends to
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remove the higher frequencies. Basically it is an operator that try to reposition the vertex

in the centroid of its neighbors. In this work, we use the laplacian to act not only in the

first neighbors but in the k-neighborhood with a differential weight to each neighborhood

(Oliveira et al, 2012).

According to Mario et al (2010a), remeshing is an operation that generates a new

mesh with greater quality than its original version. The term quality is dependent on the

objective. For example, to minimize memory, the objective can be to reduce the number

of polygons and vertices without losing accuracy. For this work, a quality mesh is the one

that contains all edge lengths in the target interval. This is extremely useful in atomic

simulations where the physically plausible distances between the atoms are known and

limited.

1.1 Problem definition

Given an arbitrary triangular mesh M, composed of edges Ei ∈ M, generate a new

trivalent mesh with the same geometry and topology, but having all edge lengths in the

interval [emin, emax]. In other words, emin ≤ |Ei| ≤ emax ∀ Ei ⊂M.

1.2 Motivation

In this work, we propose a new iterative process to transform a triangular mesh in a

trivalent mesh whose edge lengths are within a predefined interval. The method was

conceived to be used with most 2-manifold models found publicly.

In a previous work (Oliveira et al, 2012),(Oliveira et al, 2013), an iterative method

was developed to force the median and standard-deviation of the mesh to be below expec-

ted thresholds. This works has the drawback of allowing some edges to be much greater

than the overall average. The imposition of a minimum and maximum value for edge

lengths is much more restrictive since the majority of the edges cannot compensate the

extra size of a few outliers. This problem statement constrains even further the space of

possible solutions for the mesh, and is a motivator for this work.
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1.3 Objectives

The main objective of this work is to develop a method to transform a triangular mesh

in a trivalent mesh with all edges within an interval. This method must preserve the

geometry and topology of the surface.

As a secondary objective, the method also try to obtain a hexagonal mesh, in

order to be practical for nano structure simulations. Another objective is to have low me-

mory cost since some input meshes might have hundreds of thousands vertices. Methods

based on linear system solving require large amounts of installed memory to process big

meshes. We propose a iterative method capable of processing the large meshes found

publicly.
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2 Basics Concepts

2.1 Manifolds

A manifold represents a n dimension surface immersed in k, k ≥ n dimension space. In

this kind of surfaces the neighborhood of each point can be reduced to an n dimension

euclidean space (Guillemin and Pollack, 1974).

A surface is orientable if it has two sides. As strange as it can be, there are some

surfaces that do not have two sides. The Möbius strip is a classic example and is depicted

in Figure 2.1.

Figura 2.1: This is an example of non orientable surface (Starostin et al, 2010).

This work will be focused in surfaces that are orientable.

2.2 Euler characteristic

The Euler characteristic is a topological invariant of surfaces. In other words, any two

surfaces that are homeomorphic will have the same Euler characteristic, it does not matter

their size, shape or any other characteristic of the surface.

The geometric methods of this work must preserve the Euler characteristic in

every operation to consequently preserve the topology of the surface.
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2.3 Triangular meshes

A surface could be represented in many manners, a possible discretization with great use

in computer graphics, due this simplicity and versatility are the triangular meshes. This

is a especial kind of mesh where the surface is approximated through triangles, represen-

ted by their distinct and non-collinear three vertices [A,B,C]. Due to the barycentric

parameterization, each point P in a triangle [A,B,C] is represented as an unique linear

combination:

P = αA+ βB + γC, (2.1)

α + β + γ = 1. (2.2)

Triangulation is an efficient way for approaching every point over the surface with

a very simple data structure. Besides the simplicity, this approach has a great power of

representation. Any three distinct and non-collinear points always generate a plan, which

is simpler to deal geometrically.

The vertex valency is the number of incident edges. An equilateral triangle has

internal angles equals to sixty degrees. In a scene of ideal valency for the purposes of

this work, each vertex should have a valency of 360o

60o
= 6. In this work, a vertex with

valency six is called a regular vertex and all other vertex valencies are called irregular

vertex (Oliveira et al, 2012).

In this work, all input meshes will be implicitly orientable and represented by a

triangular mesh.

2.4 Stellar Operations

Stellar Operations are operations that preserve the Euler characteristic of the mesh (Mario

et al, 2010a), they are based on division, remotion or changing edges from the model

however maintaining the sum vertices - edges + faces of the surface as showed in Equation

1.1. Consider the vertices V1, V2, V3 and V4 forming two triangles f1 = (V1, V2, V3) and

f2 = (V1, V3, V4). The vertices adjacent to the edge Ai = V1V3 are V1 and V3, the opposite
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vertices to Ai are V2 and V4. The set of vertices from the triangles adjacent to Ai is

{V1, V2, V3, V4}

2.4.1 Edge flip

This operation flips an edge as depicted in Figure 2.2.

Figura 2.2: Edge Flip (Oliveira et al, 2012).

In this operation the edge Ai is changed by a new edge linking the opposite

vertices of Ai, the Euler characteristic is preserved.

2.4.2 Edge split

There are four vertices involved in a edge split. After the split, a new vertex is created

over the split edge, two new faces will be added in the mesh. The valency of the opposite

vertices will be increased by one as depicted in Figure 2.3.

Figura 2.3: Edge Split (Oliveira et al, 2012).
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2.4.3 Edge collapse

This operation removes an edge from the mesh as depicted in Figure 2.4. There are four

Figura 2.4: Edge collapse (Oliveira et al, 2012).

vertices involved in a collapse. An edge Ai is selected and removed, the faces containing

the edge Ai are removed too. Given the vertices that form the edge ViVj, only one is

maintained and its valency vai becomes vai + vaj − 4.

2.5 Remesh

According to Mario et al (2010a), a remesh is defined as: Given a surface represented

by a mesh M, create a new mesh M′, such that the new mesh satisfy a certain quality

standard and M′ is enough next of M. So remesh is a very important technique when you

a have a certain standard to be achieved by a surface. In this case, the goal is to have

the edges length within a predefined interval. The definition of “enough next” is vague.

It could be topological, geometric or defined by any constraint. In general, the topology

must be preserved while other characteristics might be approximately the same as the

original (Surazhsky et al, 2003).

2.6 Lowpass filtering

A lowpass filter removes high frequencies from the mesh, making it more smooth. There

are several lowpass filters and, in this work, we use a Laplacian filter. More precisely, we

use a modified Laplacian filter which uses more than one ring around the vertices (k-rings)

and is constrained to be in a previously defined tangent plan.
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The classic laplacian filter is defined as:

∇2f =
∂2f

∂2x1
+ ...+

∂2f

∂2xn
.

It is a measure of the dispersion in Rn of a function f . Taubin et al (1995) propose a

discrete approach to the Laplacian operator. The approach is:

L(Vi) =
∑
Vj

wij(Vi − Vj), (2.3)

with Vj in the neighborhood of Vi. In the literature, many weights were proposed for wij.

There are schemes based on cotangent (Alliez et al, 2002) and neighborhood (Oliveira

et al, 2012). The discrete Laplacian is largely used due to its simplicity. Basically, each

vertex is moved to the median of its neighbors. This procedure tends to equalize edges

lengths, minimizing the standard deviation. The Laplacian must be zero to achieve these

properties and the system to solved is given by:

∑
vj

wij(vi − vj) = 0.

In this work, we use an iterative approach that approximately gives the same

results of the Laplacian filter.
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3 Proposed method

The input for the algorithm that uniforms the edges is a tuple (M, emin, emax, k, n, pr, f),

where M is the triangular mesh,emin is the smallest edge length allowed , emax is the

biggest edge length allowed, k the number of rings used at the Laplacian optimization

step, n the number of iterations, pr is the number of iterations before the original mesh

is replaced by the current mesh in order to relax next projections, f is the maximum

degradation for the triangles smallest angle involved in the flip. The loss of the original

geometry is smaller as f is closer to zero.

Algoritmo 1: UniformRemeshing(M, emin, emax, k, n, pr, f)

M′ = Copy(M)

m = emin+emax

2

for i = 1 to n do

if pr > 0 and (imodpr) = 0 then

M = Copy(M′)
end if
mi = MIN(2 · CalculateEdgesAverage(M′), m)

Lp = CreatePriorityList(M′, mi,emin,emax)
StellarOperations(M′, Lp)
CorrectValency(M′)

LowPassFiltering(M′, k)
Projection(M, M′)

end for
return M′

The method works as shown in Algorithm 1. Each step is separately explained

ahead.

3.1 Stellar Transformations with Priority List

The mesh must be transformed according to the target median m = emin+emax

2
. Less faces

and vertices are needed to represent the model as m is higher. For the opposite, a lower

m results in more faces and vertices.

The current edge’s length is the criterion to decide if vertices are added or re-
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moved. An arbitrary input mesh, however, can have regions which should be refined and

others that should be simplified.

This step is based on the modification of long or short edges Aj which are classified

as:

long, if |Aj| > mi + σ,

short, if |Aj| < mi − σ,

where σ = emax−emin

2
and mi is an intermediate target value for the i-th iteration, defined

for the transition between the iteration i and i + 1. This intermediate target value mi

avoids sudden changes on the mesh geometry if m is too different than the original mesh

edge length average.

Edges with lengths within the closed interval [mi − σ, mi + σ] remain unchanged

during this step. Long and short edges are then candidates to be collapsed or split,

respectively. For every edge Ai ∈ M′ considered long, a new vertex is inserted over the

edge, dividing it into two smaller edges by the stellar operation of edge split. Edges

considered too small in respect to mi are removed from the model using edge collapse.

When m is much greater than the current edges average, a strong mesh simplifi-

cation is required. In a extreme example with high m, all edges will be candidates to be

collapsed. Thus, the iteration’s target mi is set to be the minimum between the global

target average m and two times the current edges average of M′i (Algorithm 1). In that

way, the difference between the averages of M′i and M′i+1 changes smoothly and is unlikely

to generate invalid triangles or change the topology of the mesh, due to the collapse of

near long edges. The upper bound of two times the current average per iteration for mi

comes from the fact that the edges progressively tend to be equalized, and doubling the

edges length of a star does not promote a severe local modification.

The order of application of stellar operations is important. We propose to process

the longest and smallest edges first. A priority list Lp is created where the edges Aj, with

higher deviation dj = ||Aj| −mi|, are the most important. The list Lp is the set of edges

{A1, ..., At} ⊂M, with d1 ≥ d2, ..., dt−1 ≥ dt, where Aj ∈ Lp if |Aj| /∈ [mi − σ,mi + σ] ∈ R

(Algorithm 2).

The stellar operations are performed after the set up of the list. The algorithm
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Algoritmo 2: CreatePriorityList(M′,mi, emin, emax)

priorityList
σ = emax−emin

2

foreach Ai ∈M′ do

if |Ai| > mi + σ then

priorityList.Add(Ai)

else if |Ai| < mi − σ then

priorityList.Add(Ai)

end if

end foreach
SortDescent(priorityList)
return priorityList

traverses the list verifying the type of each edge and applies the appropriate operation

(edge split or edge collapse). All the vertices adjacent to an edge that was changed are

marked as visited, if both vertices of the edge were visited than the edge is removed from

the list Lp (Algorithm 3). This imposes a even more smoothly change between M′i and

M′i+1. Note that an edge can be in the list Lp and after an operation that affect one of

its vertices not be long or short .

Algoritmo 3: StellarOperations(M′, Lp)

foreach Ai ∈ Lp do

if BothVertexVisited(Ai) then

continue

else if |Ai| > mi + σ then

EdgeSplit(Ai)

VisitEdgeNeighbors(Ai)

end if
else if |Ai| < mi − σ then

EdgeCollapse(Ai)

VisitEdgeNeighbors(Ai)

end if

end foreach

In this work we developed a method to reposition the output vertices of edge split

and edge collapse operations. It position the vertex over the original edge in a way that
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minimize the equalization: ∑
Vj

ABS(|Vi − Vj| −mi)
2, (3.1)

where Vi is the vertex we want to position and Vj are the vertices connected to Vi.

3.2 Valency optimizer

After the edge adjustments by stellar operations, the valency of the vertices naturally

tends to 6, which is mandatory to obtain uniform distribution in smooth regions. However,

some vertices might have arbitrary valencies. A simple scheme to correct the valencies of

the vertices based on edge flip operations is then applied (Mario et al, 2010a).

Consider the two triangles of Figure 2.2. For each edge of the mesh, the algorithm

performs an edge flip operation and, if the valencies of the involved vertices become near

to 6 and the angle min(αi) is greater than f · min(αi) before the edge flip , the rotated

edge is accepted, otherwise the operation is undone. An overview of the process is shown

on Algorithm 4.

Algoritmo 4: CorrectValency(M′)

foreach Ai ∈M′ do

preMinα = getMinalpha(Ai)

vn = SearchAdjacentVertices(ai)

preDeviation = |valency(V1)− 6| + |valency(V2)− 6| + |valency(V3)− 6|
+ |valency(V4)− 6|
EdgeFlip(Ai)

postMinα = getMinalpha(Ai)

postDeviation = |valency(V1)− 6| + |valency(V2)− 6| +
|valency(V3)− 6| + |valency(V4)− 6|
if ( postDeviation ≥ preDeviation) or (postMinα ≤ f · preMinα) then

UndoEdgeFlip(Ai)

end if

end foreach
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3.3 Lowpass Filtering

After the valency optimizer step, we proceed to the lowpass filtering. In this step, we use

an iterative method to approach the constrained Laplacian. In the classical Laplacian

filter, we add some additional constraints to reduce the geometry loss:

Ni · Ti = 0, ∀Ti ∈M′,

|Ti| = 0 ∀Ti ∈ B,

where Ni is the normal of the current mesh in the vertex Vi and Ti is the unknow displa-

cement of the vertex Vi.

Algoritmo 5: LowPassFiltering(M′, k)

foreach Vi ∈M′ do

kStar=getKStar (Vi,k)
fat=0
foreach Vj ∈ kStar do

V ′i +=
Vj
star

fat+= 1
star

end foreach

V ′i =
V ′
i

fat

Ti=V
′
i -Vi

Ti=Ti -projection (Ti,Ni)
end foreach
foreach Vi ∈M′ do

if Vi 6∈ B then

Vi+=Ti
end if

end foreach

The iterative Algorithm 5 approximate the constrained Laplacian filtering descri-

bed above. It calculates the new vertex position based on the k-neighborhood as proposed

in Oliveira et al (2012). The first step is to compute for each vertex the new position

without the application of the new constraints. This position is defined by the center of

mass of all neighbors vertices weighted by their ring number in such a way that distant

vertices contribute less than near vertices.

The second step is to impose the constraint Ni · Ti = 0 by removing the vector
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corresponding to the projection of Ti in Ni. When all displacements are computed, the

vertices Vi are updated except those on the borders.

3.4 Projection

After the previous steps the new vertices tend to move away from the original mesh. As

proposed in (Oliveira et al, 2013), this problem can be reduced by projecting the mesh

computed in each iteration over the original mesh. However, the projection of a mesh

over another is a complicate problem since the object can have arbitrary topology and

geometry. Even if the mesh to be projected is close to the original, artifacts may appear

due to wrong vertex correspondences. The algorithm works as follows: for each vertex

we compute its nearest projection over some original triangles. These triangles are the

incident over the 30 nearest vertices in the original mesh (Algorithm 6). To justify the

30 nearest vertices, we run several tests where using 30 nearest neighbors the resulting

projection was exactly the same as if we project in all triangles. But this behaviour is

not guaranteed for all cases because it is dependent on the geometry and topology of the

mesh.

Algoritmo 6: Projection(M, M′)

foreach Vi ∈M′ do

Nearest=getNearest (Vi,M,30)
foreach Trianglej ∈ Nearest do

P=projectionVT(Vi,Trianglej)
if |Vi − P | ≤ |Vi −MIN | then

MIN=P
end if

end foreach
Vi=MIN

end foreach

In our implementation of the Algorithm 6, we use a Kd-tree to increase the

performance.



22

4 Results

In this section, the results of this work are shown. The method was implemented using

C++ programming language and compiled using GCC 4.6.3. All tests were run in a Intel

Xeon(R) CPU E31220 @ 3.10GHz x 4 computer that has 8 GBs of RAM. The graphic

card was an AMD Radeon HD 5700 series.

4.1 Edge equalization by simplification

In this first scenario, we were testing the iterative method evolution in time (Table 4.1).

The following tests were run over the fertility model (Figure 4.1). The parameters used

in the tests were n = 100, k = 2, emin = 1.2, emin = 1.8, pr = 0, f = 1
2

and the input mesh

has an original edge length average of 0.75.

Figura 4.1: This is the input fertility model.

The table 4.1 columns are the iteration Iteration, the number of vertices V ertices,
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Iteration Vertices Edges Average Deviation Regular Small Big
1 9354 28080 0.934116 0.150386 72.011973 26702 3
6 3629 10905 1.488004 0.199443 73.215762 889 505
11 3492 10494 1.513421 0.187043 77.348225 623 477
16 3464 10410 1.518211 0.171593 79.907621 458 339
21 3425 10293 1.525191 0.163202 80.350365 369 304
26 3401 10221 1.529626 0.161322 81.770068 360 284
31 3400 10218 1.530237 0.165183 80.970588 377 291
36 3384 10170 1.532931 0.163540 82.092199 381 321
41 3405 10233 1.528674 0.159297 82.085169 362 274
46 3394 10200 1.530222 0.161740 81.644078 382 299
51 3382 10164 1.532950 0.157780 82.820816 340 277
56 3361 10101 1.536691 0.150204 84.141625 272 238
61 3380 10158 1.533097 0.151148 84.171598 300 228
66 3381 10161 1.532640 0.150045 85.241053 267 267
71 3382 10164 1.532510 0.151162 83.973980 300 217
76 3376 10146 1.533919 0.152444 84.360190 299 241
81 3371 10131 1.535301 0.148051 84.307327 270 240
86 3391 10191 1.530824 0.151205 84.370392 304 240
91 3416 10266 1.525567 0.159351 83.313817 393 253
96 3375 10143 1.534117 0.148669 85.214815 276 237

Tabela 4.1: This table shows the iterative method evolution in time. It clearly shows the
refinement in the mesh, with the decreasing number of vertices.

number of Edges, the average edges length Average, the standard deviation of the average

Average, the percent of regular vertices Regular, the number of edges that are smaller

than the interval Small and the number of edges that are bigger than the interval Big.

As depicted in Figure 4.2 the method generates a almost uniform mesh without

losing geometry accuracy. Even the trivalent mesh is close to the original geometry and

almost uniform as depicted in Figure 4.3.

4.2 Edge equalization by refinement

As edge equalization by simplification we run tests for measuring the iterative method

evolution in time (Table 4.2). To be more accuracy, the following results were running

in the same fertility model used in edge equalization by simplification (Figure 4.1).The

parameters used in the tests were n = 100, k = 2, emin = 1.2, emin = 1.8, pr = 0, f = 1
2

and the input mesh has an original edge length average of 2.25.

As depicted in Figure 4.4 the method generates a almost uniform mesh without
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Figura 4.2: The first mesh is the input mesh, the second one is the mesh in the 100th
iteration.

Figura 4.3: The first mesh is the input mesh, the second one is the hexagonal mesh in
the 100th iteration.

losing geometry accuracy. As depicted in Figure 4.5 even the trivalent mesh is close to

the original geometry and almost uniform.
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Iteration Vertices Edges Average Deviation Regular Small Big
1 17539 52635 2.045783 0.327601 67.478191 394 40852
6 32826 98496 1.492026 0.195853 72.156218 7353 4301
11 31479 94455 1.518870 0.164277 78.843038 3833 2717
16 31058 93192 1.526876 0.147635 82.326615 2558 1725
21 30690 92088 1.534388 0.133350 84.874552 1731 1154
26 30491 91491 1.538608 0.124447 86.199206 1225 729
31 30374 91140 1.541098 0.119997 87.041549 991 584
36 30289 90885 1.542784 0.115151 87.817359 740 420
41 30236 90726 1.543908 0.113076 88.176346 634 357
46 30195 90603 1.544772 0.110984 88.491472 522 363
51 30192 90594 1.544682 0.109332 88.665872 491 232
56 30124 90390 1.546264 0.107284 88.965609 351 224
61 30129 90405 1.546056 0.106334 89.146669 326 183
66 30114 90360 1.546384 0.106494 89.144584 328 188
71 30080 90258 1.547069 0.104416 89.507979 238 125
76 30076 90246 1.547142 0.104279 89.559782 214 129
81 30085 90273 1.546890 0.103804 89.566229 208 103
86 30083 90267 1.546922 0.103874 89.572184 209 97
91 30068 90222 1.547238 0.103024 89.696688 159 102
96 30084 90270 1.546902 0.103884 89.612419 204 109

Tabela 4.2: This table shows the iterative method evolution in time. It clearly shows the
refinement in the mesh, with the increasing number of vertices.

Figura 4.4: The first mesh is the input mesh, the second one is the mesh in the 100th
iteration.
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Figura 4.5: The first mesh is the input mesh, the second one is the hexagonal mesh in
the 100th iteration.

Figura 4.6: The first mesh is a simplified output mesh, the second one refined output
mesh.

The edge equalization by refinement is better than by simplification because it

preserve more the original geometry as depicted in Figure(4.6). Due this, the graphics
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were based on edge equalization by refinement.

4.3 Per iteration graphs

The graphics in this section were generated using the following parameters n = 100, k =

2, emin = 1.2, emin = 1.8, pr = 0, f = 1
2

and the input mesh has an original edge length

average of 2.25.

Figura 4.7: The boxes represent the time spent in each iteration.

As this is a refinement the number of edges and vertices increases over the early

iterations, so the time spent increases as well. After a peak the time spent per iteration

stabilizes around nine seconds as depicted in Figure 4.7.

The edge length average quickly converge to a value next to m = emin+emax

2
as

depicted in Figure 4.8. The method changes the mesh so fast that the average oscillates

around the expected average m before converging. Due to these drastic changes, the

standard deviation decreases slowly to its minimum.

As depicted in Figure 4.9, the number o edges lengths out of interval decreases

even more slowly than the standard deviation. this was expected as the imposition of a

minimum and maximum value for edge lengths is much more restrictive since the majority

of the edges cannot compensate the extra size of a few outliers.
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Figura 4.8: The first curve shows the edge length average in per iteration. The second
curve is the standard deviation.

In Figure 4.10, we can see the method adapting the number of vertices in the

model according to the constraints.

In Figure 4.11, we can see that the valency optimizer really makes a good work

as the number of regular vertices slowly rises until it is more than 90%.

As depicted in Figure 4.12, the dual mesh is almost an uniform hexagonal mesh.

There are almost no edges lengths out of the predefined interval. This is very important

due the applications of this kind of mesh in physics.
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Figura 4.9: The red curve shows the number of edges lengths out of the interval per
iteration. The green curve shows the number of small edges. The blue curve shows the
number of big edges.

Figura 4.10: This shows the number of vertices per iteration.

4.4 Flaw case

This method can not do a strong simplification, as this will remove so much vertices, in

such a way that it can not sample the entire surface. In the example (Figure 4.13) the

average edges lengths were five times smaller than the average of the predefined interval.
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Figura 4.11: This shows the percent of regular vertices per iteration.

Figura 4.12: This is the histogram of the hexagonal mesh edges length at 100th iteration.

4.5 Examples

These are other examples of meshes processed using this method. The tests were run

over the Rockarm (Figure 4.14) and Bunny (Figures 4.17,4.15,4.18) models with the same

parameters n = 50, k = 2, emin = 1.2, emin = 1.8, pr = 0, f = 1
2

and the input mesh has

an original edge length average of 2.25.

The method is robust and can be applied even on larges meshes with thousands

of vertices. The Rockarm model (Figure 4.14) has 20776 vertices and after the process
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Figura 4.13: This is a flaw case of the method. The output mesh on the bottom loses
almost the entire original mesh geometry.

Figura 4.14: On the top is the input mesh, on the bottom the mesh after 50 iterations.

the output hexagonal model has 95020 vertices.

The method is powerful enough to handle extremely irregular meshes, as in the
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Figura 4.15: On the top is the input mesh, on the bottom the mesh after 50 iterations.

Figura 4.16: The same model depicted in Figure 4.15, with the ear is in focus.

bunny model depicted in Figures 4.15, 4.16, 4.17 and 4.18, this model has higher frequency

regions as depicted in Figure 4.16 and vertices with extremely high valencies and edges

with lengths much bigger or much smaller than the average as depicted in Figure 4.17.
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Figura 4.17: On the top is the input mesh, on the bottom the mesh after 50 iterations.

Figura 4.18: This is the trivalent bunny after 50 iterations.
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5 Conclusion

This work proposes a low memory cost edge length equalization method. The edge length

is an important mesh quality for physics simulations. Due to this, a method capable of

edge equalization may be very useful as there are many publicly models that could be

used in simulations after processed.

The method will not converge if the predefined interval is too tide. In our tests

a good interval have to be enough spaced in such a way that the stellar operations will

be applied rarely in the later iterations. This is often an interval obtained by fixing an

average m , setting emin = m− 0.2m and setting emin = m+ 0.2m.

When the algorithm diverges, it is possible to see that the number of vertices in

the priority list will continue high over the iterations and the projection will move vertices

too far from their original positions. In that case setting a larger interval might reduce

or solve this problem. Another problem is when the target interval forces the model to

be extremely simplified.

Besides the emin and emax, the method is very sensitive to some parameters. The

k rings can be fixed at k = 2, as our tests suggests that higher k does not improve very

much the algorithm but increases the computational effort.

The frequency of projection per iteration pr is very dependent of the desired

objective because it allows a greater geometry loss, but helps the method to converge in

a more tide interval.

The maximum angle for flipping operations f does not affect the convergence

very much, and a value of f = 0.5 gives good results in most cases. This prevents a great

geometry loss but allows the algorithm to flip edges for improving the vertex valency in

a balanced way.
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5.1 Future works

This method needs a post process to remove few edges that are not within the prede-

fined interval. Another thing to do is the implementation of another lowpass filter, for

comparison with the actual Laplacian filter or even design a combined filter.
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