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RESUMO

Múltiplos Ćuxos complexos de Ćuido de sistemas naturais e de engenharia possuem

uma anisotropia inerente cuja modelagem e a simulação precisa de seu comportamento

ainda é um desaĄo. Nosso foco está em investigar a modulação anisotrópica da pressão e

avaliar seu impacto no escoamento do Ćuido. Portanto, os campos tensoriais surgem como

uma ferramenta matemática crucial que possibilita a simulação de efeitos anisotrópicos.

O objetivo deste trabalho é desenvolver um modelo matemático e computacional capaz

de resolver problemas de transporte de Ćuidos anisotrópicos. Nosso modelo proposto

visa modular os termos de pressão e viscosidade usando um campo tensorial simétrico de

segunda ordem positivo-deĄnido que pode variar no espaço e no tempo. Apresentamos

uma nova etapa de projeção anisotrópica projetada para acumular e ajustar a pressão

à medida que o campo tensorial evolui ao longo do tempo. Esta etapa depende de um

esquema de atualização de velocidade que satisfaça a condição de incompressibilidade,

mesmo que o campo tensorial varie no tempo. Além disso, propomos um novo esquema de

advecção anisotrópica de partículas utilizando tensores. O esquema proposto é baseado no

método de ŞExplicit Integration following the Velocity and Acceleration StreamlineŤ (X-

IVAS), e implementado em uma grade estendida Marker-and-Cell (MAC). Apresentamos

uma série de experimentos para avaliar o comportamento do escoamento de Ćuidos sob

várias conĄgurações de campos tensoriais. Esses experimentos são divididos em campos

tensoriais constantes e campos tensoriais variantes no tempo. Além disso, mostramos

um experimento que demonstra como uma força de corpo, baseada no divergente da

conĄguração atual do campo tensorial, pode ser utilizada para inĆuenciar o Ćuxo de Ćuido.

Os resultados experimentais destacam como campos tensoriais anisotrópicos efetivamente

modulam o campo de pressão, inĆuenciando assim o comportamento do Ćuxo de Ćuido.

Tais resultados demonstram a estabilidade numérica do nosso método e uma acurácia

adequada para gerar efeitos visuais. Por Ąm, apresentamos uma discussão geral sobre as

capacidades de nosso método, trabalhos futuros e possíveis aplicações em visualização.

Palavras-chave: 1. Segregação de pressão anisotrópica. 2. Simulação de Ćuidos incom-

pressíveis. 3. Equações de Navier-Stokes. 4. Campos tensoriais variantes no tempo.



ABSTRACT

The inherent anisotropy of multiple complex Ćows of natural and engineered systems

is still a challenge when it comes to accurately modeling and simulating their behavior.

Our focus lies in investigating the anisotropic modulation of pressure and evaluating its

impact on Ćuid Ćow. To this end, tensor Ąelds emerge as a crucial mathematical tool that

enables the simulation of anisotropic effects. The objective of this work is to develop a

mathematical and computational model capable of addressing anisotropic Ćuid transport

problems. Our proposed model aims to modulate the pressure and viscosity terms using

a symmetric positive-deĄnite second-order tensor Ąeld that can vary both spatially and

temporally. We introduce a novel anisotropic projection step designed to accumulate

and adjust pressure as the tensor Ąeld evolves over time. This step relies on a velocity

update scheme that ensures the divergence-free nature of the velocity Ąeld even as the

tensor Ąeld undergoes temporal variations. Additionally, we propose a novel tensor-based

anisotropic particle advection scheme based on the Explicit Integration following the

Velocity and Acceleration Streamline (X-IVAS) method, implemented within an extended

Marker-and-Cell (MAC) grid. We present a series of experiments to evaluate the behavior

of Ćuid Ćow under various conĄgurations of tensor Ąelds. These experiments are divided

into constant tensor Ąelds and time-dependent tensor Ąelds. Furthermore, we showcase an

experiment that demonstrates how a body force, based on the divergence of the current

tensor Ąeld conĄguration, can be utilized to inĆuence Ćuid Ćow. The experimental results

highlight how anisotropic tensor Ąelds modulate the pressure Ąeld, thereby inĆuencing

the behavior of the Ćuid Ćow. These experimental results demonstrate our methodŠs

numerical stability and suitable accuracy for generating visual effects. Finally, we present

an overall discussion of our method capabilities, future works, and possible applications

over visualization.

Keywords: 1. Anisotropic Pressure Segregation. 2. Incompressible Fluid Simulation. 3.

Navier-Stokes Equations. 4. Time-Dependent Tensor Fields.
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1 INTRODUCTION

Navier-Stokes are non-linear partial differential equations that describe the Ćow

behavior of a Ćuid in space [Fefferman, 2000]. It plays a crucial role in many areas

of knowledge in understanding complex Ćuid behavior. However, the solution to these

equations is still an open mathematical challenge, as the existence and smoothness of the

solutions for 3 dimensions have not yet been fully achieved. Thus, most problems related

to these equations require computational methods to Ąnd a solution that satisĄes the

conditions of the problem. The use of numerical methods combined with computational

algorithms in Ćuid simulation problems gave rise to the Computational Fluid Dynamics

(CFD) Ąeld.

Even with signiĄcant advancements in Machine Learning in the last decade, sim-

ulating Ćuids still heavily relies on numerical methods. The numerical methods deliver

unquestionable physical Ądelity to the simulation, but they are not without problems.

The computational costs involved in these methods are well known, and their use has a

numerical error that needs evaluation. Therefore, the Navier-Stokes equations are often

simpliĄed according to the objectives of each problem [Spurk and Aksel, 2007]. These

assumptions and simpliĄcation may introduce several limitations and may not accurately

capture all the details of a physically accurate Ćuid Ćow. However, these limitations are

often acceptable on determined applications, i.e. generating visual effects or simulating

an overly controlled speciĄc scenario. In this work, we assume that the Ćuid density

is constant. Therefore, we are interested in solving the incompressible Navier-Stokes

equations.

As discussed by Bridson [2015], this incompressibility constraint is an important

simpliĄcation for animation purposes. Physically accurate Ćuids indeed change their

volume, e.g. sound wave propagation. However, in the macroscopic context, these

perturbations in the Ćuid volume are so small that they are practically irrelevant for

visualizing the Ćuid Ćow. Therefore, simulating the compressibility of a Ćuid has little to

no contribution to the Ćuid visualization and adds a considerable amount of complexity

and computational costs.

Although it is not a simpliĄcation, in this work we assume that the Ćuid Ćow is

anisotropic. Assuming that the Ćuid Ćow is isotropic makes the Navier-Stokes equations

more amenable to analytical or numerical solutions. The isotropic Ćow assumes that

Ćuid properties, e.g. viscosity, are considered to be uniform in all orientations. However,

in a considerable number of real-world scenarios, the isotropic Ćow assumption cannot

capture the correct Ćuid behavior. Flow through porous media, Ąber suspensions, biological

systems, turbulent Ćows, and Ćow in magnetic or electric Ąelds cannot be correctly captured

by this assumption.
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We are interested in the anisotropic modulation of pressure and evaluating its

effects on Ćuid Ćow. In this sense, tensor Ąelds are an important mathematical tool used

to simulate anisotropic Ćuid Ćow effects. Also, it can emulate surface tension, porous walls,

and Ćuid phase transitions. Applications of this approach can be used for scientiĄc data

visualization and Visual Effects (VFX).

1.1 MOTIVATION

Our primary motivation lies in the exploration of novel visual effects through the

development of a Ćuid simulation model that incorporates an anisotropic medium property

evolving with time, with a particular focus on pressure and its dynamic effects. Simulation

methods such as Particle-in-Cell (PIC) and Fluid-Implicit-Particle (FLIP) have proven

unsuitable for our objectives, especially as P1 Fractional-Step methods (FSM) (Sec. 2.3.1),

where pressure effects are not integrated into the advection step, resulting in an artiĄcial

loss of kinetic energy throughout the simulation.

In that sense, we use tensor Ąelds as a mathematical tool to model anisotropic Ćuid

behavior, seeking to couple them with the incompressible Navier-Stokes equations. This

tensor Ąeld, capable of dynamic evolution, plays a crucial role in shaping the Ćuid Ćow

behavior over time.

The ŞExplicit Integration following the Velocity and Acceleration StreamlineŤ (X-

IVAS) method has proven to be a Ątting solution for our challenges. Unlike previous

methods, X-IVAS, a P2 Fractional-Step method, incorporates pressure in the advection

step by accumulating it throughout the simulation. This accumulated pressure is then

transformed into kinetic energy, mitigating artiĄcial numerical dissipation.

1.2 PROBLEM DEFINITION

This work focuses on two main problems. The Ąrst one is to address the primary

challenge of constructing a mathematical model based on the incompressible Navier-Stokes

equations. This model aims to modulate the viscous and pressure terms by utilizing a

time-dependent tensor Ąeld (Sec. 3.1.1).

The second problem is to adapt the X-IVAS method within its pressure segregation

scheme to obtain anisotropic Ćuid Ćow (Sec. 3.2). The original X-IVAS method assumes

an isotropic Ćuid Ćow, prompting us to propose an adaptation for anisotropic pressure

segregation, thereby achieving anisotropic Ćuid Ćow.

1.3 OBJECTIVES

Our main objective is to develop a mathematical and computational model that

can address anisotropic Ćuid transport based on symmetric second-order positive-deĄnite
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tensor Ąelds. Our model aims to modulate the pressure and viscosity terms through a

tensor Ąeld that can change temporally and spatially.

Our secondary objective is to provide methods to design suitable tensor Ąelds to

modulate Ćuid Ćow. This is important to show how our propositions perform in contrast

with isotropic Ćuid Ćow methods. We also aim to build upon existing models presented in

the works of Renhe [2017], Vieira et al. [2021], and Parreiras [2022], further advancing the

understanding and application of our tensor-based X-IVAS method.

1.4 CONTRIBUTIONS

Our core contributions are:

1. A novel tensor-based pressure correction method. We propose a new anisotropic

projection step to accumulate and adjust pressure as the tensor Ąeld changes in time;

2. A velocity update scheme that guarantees that it remains divergence-free as the

tensor Ąeld varies in time;

3. A tensor-based anisotropic particle advection scheme based on the X-IVAS method

in Marker-and-Cell (MAC) grid;

4. Experimental results show how anisotropic tensor Ąelds can be used to modulate

pressure Ąelds.

1.5 RELATED WORK

The development and improvement of numerical methods and models that can

accurately capture the complexities of anisotropic Ćuid Ćow behavior are not new to the

CFD research topic. Modeling turbulence is one of the main approaches to simulating

anisotropic Ćuid Ćow. Turbulence is a fundamental problem of Ćuid dynamics that remains

a formidable challenge for science. It appears in many physical phenomena and engineering

problems. This topic has been a challenge for over 150 years as discussed by Marston and

Tobias [2023].

A different approach to simulating anisotropic Ćow is through modeling the medium

that the Ćuid is inserted. Fluid may be inserted into a porous medium or interact with

permeable objects. Lenaerts et al. [2008] presented a smoothed-particle hydrodynamics

(SPH) method capable of simulating porosity at a macroscopic scale for animation appli-

cations. This work presented signiĄcant advancements in computational efficiency over

the previous works of Zhu et al. [1999], and Sawley et al. [1999]. Tran-Duc et al. [2016]

showed how SPH can be used to anisotropically diffuse the Ćuid Ćow. They developed a

novel diffusion operator that partially contours the smoothing done by the SPH isotropic

kernel functions.
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The Eulerian approach is also used to simulate porosity. A recent review of this

approach was presented by Guibert et al. [2016]. This review goes way back to the

foundationŠs work of Sanchez-Palencia [1982]. The latter shows the existence of continuous

transitions of Ćuid Ćow through a porous medium using DarcyŠs law [Neuman, 1977],

and BrinkmanŠs model [Durlofsky and Brady, 1987]. All the aforementioned works are

concerned with physical Ądelity and accuracy. However, physical accuracy is not a main

concern of this work as we mainly focus on effects generation and animation.

Recent contributions on anisotropic Ćuid Ćow for animations are presented by

[Renhe et al., 2019, Vieira et al., 2021, Parreiras et al., 2022]. In Renhe et al. [2019],

a symmetric positive-deĄnite second-order tensor Ąeld is coupled to the incompressible

Navier-Stokes equations. This tensor Ąeld rigidly conforms the Ćuid Ćow to behave

according to its anisotropy. The authors proposed an anisotropic pressure correction

scheme and a tensor-velocity term coupled to the advection step. This tensor Ąeld

modulates the velocity and the pressure gradient over the projection step, enforcing the

Ćuid Ćow to the tensor orientation. A centered grid was used to store the Ćuid quantities.

The computation method used to solve this novel numerical scheme was created over the

Stam [1999] contributions. Vieira et al. [2021] took a step further improving this approach

to a 3D domain with custom numerical and computational methods. Finally, Parreiras

et al. [2022]proposed several contributions to this approach. A novel numerical method

was created to account for the multiple degrees of freedom of a 3D domain. A MAC grid

with multiple points of reference was used to greatly improve the numerical accuracy. This

numerical accuracy allows the usage of many different conĄgurations of the tensor Ąeld to

conform or anisotropically inĆuence the Ćuid Ćow.

Advancements in machine learning and neural networks have also made a signiĄcant

impact on CFD research. These advancements offered new horizons to solve Ćuid dynamics

problems. Neural networks have been applied to Ćuid Ćow problems such as turbulence

modeling, Ćow control, and Ćow prediction. This research front allows an efficient and

suitable accurate solution to the governing Partial Differential Equations (PDEs).

Recent studies have utilized neural networks to solve PDEs directly or as a part

of macroscopic CFD simulations. These approaches involve training these networks on

available simulation data or directly learning the governing equations from data. Some

examples of commonly used networks are the Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs). These

approaches have shown promising results in terms of accuracy, efficiency, and generalization

to unseen Ćow scenarios.

Some notable works include the development of Physics-Informed Neural Networks

(PINNs)[Raissi et al., 2019]. This network has direct information about the underlying

governing equations of training data. They are used for solving Ćuid dynamics problems
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related to the equations used in training. There is also the application of CNNs for

solving these PDEs on an image-based training approach without the need for labeled

data [Gao et al., 2021]. One Ąnal example is the usage of GANs for generating realistic

and high-Ądelity Ćow Ąelds [Wu et al., 2020].

These recent advancements in both anisotropic Ćuid Ćow modeling and the appli-

cation of neural networks to CFD hold great potential for advancing our understanding of

complex Ćuid phenomena, improving simulation accuracy, and enabling efficient design

optimization in a wide range of engineering applications.

1.6 OUTLINE

This dissertation is structured as follows: Chapter 2, we describe the theoretical

foundations that contributed to the development of this work; Chapter 3 details the

proposed method and the algorithm used to solve it; Chapter 4 we show the experimental

results and discuss the proposed method capabilities; We conclude summarizing the overall

characteristics and discussing the possible future work.
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2 FUNDAMENTALS

This chapter presents a theoretical introduction to the main concepts that were

used to construct the proposed method. Firstly, an introduction to orientation tensors

and tensor Ąelds. Secondly, an introduction to the Helmholtz Decomposition. Finally, an

overview of the main concepts of numerical and computational methods used in CFD.

2.1 TENSORS

Tensors are mathematical objects that represent a multi-linear relationship between

algebraic objects and mathematical, physical, or statistical quantities. The mathematical

description that involves multiple dimensions and coordinate systems heavily relies on

tensors. They are applied in multiple research areas in mathematics and physics, including

differential geometry, electromagnetism, quantum mechanics, and general relativity.

Tensors are classiĄed by their rank or order k [Kolecki, 2002]. Also, the components

of a tensor depend on the basis vector of the coordinate system that is being considered.

The considered Euclidean space dimension will be denoted by S. The relation between

the tensor order and space dimension is described as Sk. In this work, the R
3 will be the

reference Euclidean space. Therefore, the tensors will assume the form of 3k and could

represent the following mathematical objects:

Table 1 Ű Example of mathematical objects that a tensor can represent ∈ R
3 varying k.

k Components Mathematical Object Characteristic

0 30 = 1 Scalar Describes a magnitude

1 31 = 3 Vector Describes a magnitude and a direction

2 32 = 9 Matrix Describes 3 magnitudes and directions

Source: Created by the author.

2.1.1 Tensor Ąelds

Tensor Ąelds are a generalization of a scalar and a vector Ąeld. Therefore, a tensor

of any given rank is assigned to every point of domain space. As they extend the tensor

applications, they are commonly used to describe physical quantities throughout the space.

Some examples are stress tensor Ąelds in solid mechanics, electromagnetic tensor Ąelds in

electromagnetism, metric tensor Ąelds in general relativity, and the deformation tensor

Ąeld in continuum mechanics.

Our Ąeld is formed by positive deĄnite second-order tensors, also known as orien-

tation tensors [Westin, 1994]. Orientation tensors are commonly applied in the Ąeld of

materials science. This is due to the concise way that these tensors describe and quantify

the orientation of an object or system in 3D spaces. They are used to predict how a
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material will deform under stress, or Ćuid diffusion, or simulate how a wave propagates

throughout an anisotropic medium [Liu et al., 2002, Basser and Pierpaoli, 2011, Spurk and

Aksel, 2007]. At each point of the domain space D ∈ R
3, these tensors are represented by

3 × 3 matrices. The components of these matrices can change from point to point and in

time. An orientation tensor T can be mathematically represented as:

T =
M
∑

i=1

λieie
T

i ,

where ei is a eigenvector related to the ith eigenvalue λ. The tensor T will be oriented by

the directions denoted by each of its eigenvectors and scaled by its eigenvalues.

Our tensors will be geometrically represented as an ellipsoid following Kindlmann

[2004] work. In this way, problems related to asymmetric representation and visual

ambiguity are bypassed. As an ellipsoid, the tensor eigenvalues and eigenvectors will

dictate its scale and orientation respectively. The eigenvalues variation will dictate the

tensor anisotropy and shape as shown in Figure 1. Assuming eigenvalues λ1, λ2, and λ3,

the shape of the tensor will be as follows:

• λ1 ≈ λ2 ≈ λ3 ⇒ Spherical;

• λ1 ≫ λ2 ≈ λ3 ⇒ Linear;

• λ1 ≈ λ2 ≫ λ3 ⇒ Planar.

The spherical tensor is the identity matrix or it is scaled by a scalar. This shape also

simpliĄes the analysis of the tensor Ąeld inĆuence over the Ćuid diffusion or the medium

anisotropy. While the linear and planar tensors have preferred directions, the spherical

tensors have none.

Figure 1 Ű Superquadic tensor glyph shapes with different eigenvalues.

Source: Kindlmann [2004].
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2.1.2 Strain-rate Tensor

The strain-rate tensor is a second-order tensor used to analyze the behavior of

materials under deformation. This tensor denotes the local rates of deformation or strain

experienced by a material. In a tensor Ąeld, it serves as a measure of how fast the material

is stretching, compressing, shearing, or rotating at each point of the domain [Bridson, 2015].

In the context of Ćuid mechanics, the strain-rate tensor is commonly used to construct

the viscous stress tensor τ .

The strain-rate tensor is deĄned by the velocity Ąeld gradient ∇u in a Cartesian

coordinate system. As discussed by Landau and Lifshitz [2013], the velocity Ąeld gradient

can be decomposed as the sum of a symmetric part D, and an anti-symmetric part W as:

∇u = D + W.

Where D and W are the strain-rate and the spin tensor respectively. They are

denoted as:










D = 1
2



∇u + ∇uT
)

,

W = 1
2



∇u − ∇uT
)

.

While the strain-rate tensor is related to the rate of deformation, the spin tensor is

related to the rate of rotation. Considering the partial terms, the D tensor is denoted as:

D =























∂ux

∂x
1
2



∂ux

∂y
+ ∂uy

∂x

)

1
2



∂ux

∂z
+ ∂uz

∂x

)

1
2



∂ux

∂y
+ ∂uy

∂x

)

∂uy

∂y
1
2



∂uy

∂z
+ ∂uz

∂y

)

1
2



∂ux

∂z
+ ∂uz

∂x

)

1
2



∂uy

∂z
+ ∂uz

∂y

)

∂uz

∂z























,

where u is the velocity vector. Any strain tensor can be decomposed into hydrostatic

and deviatoric strains. Considering the strain-rate tensor, we will denote the hydrostatic

and the deviatoric strains as Dhyd and Ddev respectively. The hydrostatic strain is a scalar

quantity that is the strain tensor trace:

Dhyd = tr (D) =
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z
= ∇ · u,

where tr (D) is the trace of D; This strain is closely related to the Ćuid volume change.

It is a convenient approximation when strains are small. It is important to notice that

Dhyd = ∇ · u. Considering the rate of deformation of an incompressible Ćuid, the trace of

D must be:

tr (D) = ∇ · u = 0.

However, if the strain is not small, the volume change is better measured by the

deformation gradient determinant. Therefore, Ddev will be closely related to the Ćuid
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deformation in an incompressible Ćow, considering small strains. Ddev is obtained after

subtracting Dhyd from D. This strain measures all the deformation that changes the shape

of the Ćuid but not its volume.

2.2 HELMHOLTZ DECOMPOSITION

The Helmholtz Decomposition presented by Dassios and Lindell [2002], served as

the main theoretic background for the custom anisotropic decomposition presented in

this work. Throughout this decomposition, it is ensured that the pressure Ąeld can be

reconstructed by solving the following Poisson equation:

∇ · ∇p (x) = ∇ · u (x) ,

where p and u represent vector Ąelds with continuous second derivatives. In the projection

step, the divergence-free velocity Ąeld is obtained by subtracting the pressure Ąeld from

the current velocity Ąeld.

2.2.1 Isotropic Decomposition

Given a continuous vector Ąeld u (x) in D = D ∪ ∂D with D ∈ R
3. Assuming this

vector Ąeld has continuous Ąrst derivatives in D. The Helmholtz decomposition states that

the vector Ąeld u (x) can be reconstructed from its scalar and vector invariants, such that:










u (x) = ∇ϕ (x) + ∇ × a (x) ,

∇ · a (x) = 0,
(2.1)

where ϕ (x) is a scalar Ąeld and a (x) is a vector Ąeld. They are named Şscalar potentialŤ

and Şvector potentialŤ respectively. The ∇ϕ (x) term is irrotational and ∇ × a (x) is

solenoidal and therefore divergence-free. Dassios and Lindell [2002] also state that this

decomposition is unique to the additive gradient of a harmonic function. Therefore,

Equation 2.1 can be rewritten as:

u (x) = [∇ϕ (x) + ∇v (x)] + [∇ × a (x) − ∇v (x)] ,

where ∆v (x) = 0 ∈ D.

2.2.2 Anisotropic Decomposition

Dassios and Lindell [2002] also state that the uniqueness and reconstruction of

the vector Ąeld u (x) are achievable by the anisotropic Helmholtz decomposition. The

anisotropic decomposition couple T and S is symmetric and positive deĄnite dyadic in R
3

to Equation 2.1. The decomposition is described as:










u (x) = ∇Tϕ (x) + ∇S × a (x) ,

∇T · a (x) = (T · ∇) · a = 0,
(2.2)
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where ∇S and ∇T are the S-Gradient and T-gradient terms, respectively. The T-gradient

of ϕ is a T-irrotational Ąeld, and the S-rotation of a is a S-solenoidal Ąeld. Considering

the T-gradient term, it can be written as:

∇T = T · ∇ =











λ1
∇

∇e1

λ2
∇

∇e2

λ3
∇

∇e3











, (2.3)

where λn with 1 ≤ n ≤ 3 is a positive eigenvalue of T that corresponds to an orthogonal

unit eigenvector en. The S-gradient assumes the same form. Therefore, the gradient

operator presented in Equation 2.1 is now medium-dependent. The gradient operator

now depends on the directional characteristics of the anisotropic medium described by its

respective tensor. It is easily seen that if the tensors are equal to the identity matrix, the

∇T or ∇S terms will be equivalent to the original ∇ operator.

Consider the following ST-Poisson equation:

∇S · ∇Tp (x) = ∇S · u (x) , (2.4)

where p (x) is a vector Ąeld with continuous second derivatives. Then, the full anisotropic

Helmholtz decomposition of ∇S · u (x) will assume the form of:

∇S · ∇Tp (x) = ∇S · ∇Tϕ (x) + ∇S · ∇S × a (x) .

Considering the gauge condition ∇S · ∇S × a (x) = 0, the S-solenoidal part of

∇S · u (x) is divergence-free, subject to the eigensystem of S. But we are interested in the

special case of S = I, as proposed by Vieira et al. [2021]. In this work, the anisotropic

Helmholtz decomposition refers to the solution of the T-Poisson problem:

∇ · ∇Tp (x) = ∇ · u (x) , (2.5)

such that u (x) = ∇Tϕ (x) + ∇ × a (x), meaning that the resulting vector Ąeld ∇ × a (x)

is solenoidal in respect to the standard reference system, i.e. is I-solenoidal. The vector

Ąeld ∇ × a (x) should be divergence-free in the standard reference system to easily handle

anisotropic Ćuid simulation.

2.3 FLUID SIMULATION

In this section, we present some important numerical and computational methods

to solve the incompressible Navier-Stokes equations. Considering that, an isotropic acceler-

ation integration scheme is presented. Finally, an anisotropic model of the incompressible

Navier-Stokes and how it is numerically solved.

The Navier-Stokes equations consist of two separate parts: the continuity and the

momentum equations. In this section, the basic conservation principles and laws that
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are utilized to derive the incompressible Navier-Stokes equations will be brieĆy presented.

As discussed by Ferziger et al. [2002], more detailed derivations can be found in various

standard texts on Ćuid mechanics, such as Bird [2006] and WHITE [2010].

The continuity equation is responsible for the mass conservation principle. Consider

the rate of change in an arbitrary volume Ω of a Ćuid body and its boundary surface δΩ.

The conservation principle states that the volume rate of change of Ω is equal to the net

Ćux of mass that crosses δΩ. This rate of change can be computed as:
∫ ∫

δΩ
u · n̂ =

∫ ∫ ∫

Ω
∇ · u,

where n̂ is the normal component. When the control volume is allowed to become

inĄnitesimally small, a differential coordinate-free form of the continuity equation arises.

It is denoted on Ferziger et al. [2002] as:

∂ρ

∂t
+ ∇ · (ρu) = 0.

As the density ρ of an incompressible Ćuid is constant and uniform, the continuity

equation is resumed to:

∇ · u = 0. (2.6)

For an incompressible Ćuid, its velocity Ąeld is divergence-free. The momentum

equation describes the conservation of momentum. This conservation equation is derived

from NewtonŠs second law of motion:

d (mu)

dt
=
∑

f,

where m stands for mass, t is time, u is the velocity and f are the forces acting on the

particle. In this work, the incompressible Navier-Stokes momentum equation follows the

model presented by Ferziger et al. [2002] and it is written as:

ρ



∂u
∂t

+ (u · ∇) u



= −∇p + µ∇ · (∇u) + f, (2.7)

where u is the Ćuid velocity in m/s, t is time in seconds, ρ is the speciĄc mass kg/m3, p is

pressure kg/(m · s2), µ is the viscosity coefficient kg/(m · s), f is the sum of all body and

external forces (kg ·m)/s2. The left-hand side (LHS) is composed of the Ćuid acceleration

plus the velocity contribution to this acceleration, called convective acceleration. On the

right-hand side (RHS), there is the gradient pressure term, the viscous forces, and the

external body forces acting on the Ćuid.

2.3.1 Fractional-Step Method

The Navier-Stokes equations are highly non-linear and require numerical methods to

approximate their solution. As they are difficult to solve as a whole, the Splitting Method
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is used. This method involves splitting the original PDE into simpler subcomponents that

will be solved independently. This approach allows the advection and diffusion steps to be

solved using explicit and implicit numerical methods, respectively. Following the work of

Stam [1999], the incompressible Navier-Stokes equations can be split into the following

steps:

1. Body Forces Step → ∂U
∂t

= F − 1
ρ
∇P;

2. Advection Step → ∂q

∂t
= 0;

3. Diffusion Step → ∂U
∂t

= 1
ρ
∇ ·



µ


∇U + ∇UT
))

;

4. Incompressibility Constraint Step → ∇ · U = 0.

The q term was used to illustrate that we can advect different Ćuid properties, i.e. density,

velocity, and positions. The same is true for the F term used in body forces, as we may

want to apply forces differently than just gravity. Chorin [1967] proposed a numerical

method that uses operator splitting to solve the incompressible Navier-Stokes equations.

This method is called the Pressure-Correction method but is also known as the Projection

or the Fractional-Step method.

The Pressure-Correction method splits its computations into a predictor and a

corrector step. The predictor step will integrate the convective and diffusive terms in time.

In the predictor step, the velocity Ąeld is only an approximation and is not divergence-free.

This approximation is obtained using only the current velocity Ąeld and the available

information on body forces. The current information on the pressure can be used for this

initial approximation, but it is not required [Ferziger et al., 2002]. Without considering

the pressure effects, the approximated velocity Ąeld is obtained through:

U∗ = Un +
∫ n+t

n

1

ρ

[

∇ ·


µ


∇Un + ∇ (Un)T
))

+ Fn


xt
)]

dt,

where U∗ is the velocity Ąeld approximation. Once discretized, this step can be time-

integrated explicitly. At the corrector step, the pressure is computed and used to satisfy

the velocity Ąeld incompressibility condition [Bridson, 2015]. As discussed in Ferziger et al.

[2002], the continuity equation constraint implies that we need to take the divergence

of Equation 2.7. In this sense, at step 4, we need to satisfy the continuity equation by

computing the divergence of the current velocity Ąeld. Therefore, the pressure is obtained

by solving the following Poisson equation:

∇ ·



1

ρ
∇Pn+1



=
1

∆t
∇ · U∗. (2.8)

A numerical method for elliptic equations as a Finite Difference or Finite Volume

Method may be used to solve this equation. The Helmholtz-Hodge Decomposition described
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in Section 2.2 guarantees the uniqueness and reconstruction of the gradient pressure Ąeld.

The divergence-free velocity Ąeld is then obtained from the pressure correction on the

estimated velocity Ąeld:
Un+1 − U∗

∆t
= −

1

ρ
∇Pn+1.

Table 2 Ű Fractional-Step Schemes Labels.

Label Description

P1
The momentum equation does not account for pressure effects. The new

pressure is computed at the corrector step. The new pressure is
obtained from the pressure Poisson equation.

P2
The momentum equation account for the pressure from the previous
iteration. The pressure correction is obtained by solving the Poisson

equation at the corrector step.

P3
Same as P2 but the pressure is extrapolated from the two previous

iterations. Therefore, this scheme is second-order accurate.

Source: Gresho [1990]

[Gresho, 1990] presented a useful set of labels to classify different fractional-step

schemes. Those labels are depicted in Table 2.

2.3.2 Particle-in-Cell Methods

After discussing the discretization of the transport equations terms, we will delve

into the computational methods to solve them. Computational methods provide the means

to simulate and analyze complex Ćuid phenomena that are difficult or impossible to study

analytically or experimentally.

Considering this, the Particle-In-Cell (PIC) and Fluid-Implicit Particle (FLIP)

methods were fundamental for the conception and theoretical development of this work

[Harlow, 1962, Brackbill and Ruppel, 1986]. The fundamental characteristic of these

methods that beneĄts our work is how the transport equation terms are solved. These

methods introduce discrete particles within each grid cell to represent the physical particles

in the system. The integration of the convective terms, or the Şadvection stepŤ is solved

in a particle context. The integration of all other terms of the transport equations is

solved on the grid. Therefore, there is no Ąltering or information loss on the advection

step regardless of the Ćow movement Bridson [2015].

Harlow [1962], proposed PIC be executed in three or four phases as follows:

• Phase 1: The Eulerian Ąeld functions are modiĄed. Therefore, transport is neglected

due to Ćuid motion;

• Phase 2: All particle quantities i.e. density, pressure, and velocities are advected.

This advection follows a Ąnite difference scheme of the transport term of Equation
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2.7. This updated particle information is linear interpolated to the grid. This

interpolation is weighted by the particle position to the center of its neighborŠs grid

cells;

• Phase 3: The transport information on the grid is corrected;

• Phase 4: This is an optional phase in which various diagnostic functions of motion

are computed.

However, this method changed throughout the years. Advancements in pressure correction

methods and advection schemes were fundamental to updating the PIC method. A

recent approach is discussed in Bridson [2015]. Bridson [2015] uses a MAC grid instead

of a cell-centered grid. As proposed by Harlow and Welch [1965], in a MAC grid, the

vector quantities and scalar quantities are stored at the grid faceŠs center and cellŠs center

respectively. Therefore, the PIC method interpolation steps were changed to accommodate

this new grid approach. Consider an x-aligned left cell face, the velocity interpolation is

described as:

Ui− 1

2
,j,k =

∑

p∈N Upk


xp − xi− 1

2
,j,k

)

∑

p∈N k


xp − xi− 1

2
,j,k

) , (2.9)

where N is the set of all the particles inside the cell and its neighbors, U is the grid

velocity that is going to be interpolated, xp is the particle position, and xi+ 1

2
,j,k is the face

center position. The k term is a trilinear hat interpolation kernel function:

k (x, y, z) = h
(

x

∆x

)

∗ h
(

y

∆x

)

∗ h
(

z

∆x

)

,

where

h (r) =























1 − r, if 0 ≤ r ≤ 1,

1 + r, if − 1 ≤ r ≤ 0,

0 , if otherwise.

The other 5 faces are interpolated analogously. Ultimately, the new PIC steps can be

enumerated as:

1. Particle quantities are interpolated to the grid using Equation 2.9;

2. Integrate grid quantities and project the velocity Ąeld. At this projection step, the

divergence-free velocity Ąeld is obtained through Equation 2.8;

3. Interpolate the grid information back to the particles using the reverse procedure of

Equation 2.9;

4. Integrate the particle quantities in time.
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The main problem of this method is numerical dissipation. This numerical dissipation

is due to double interpolations in every time step. This operation adds considerable

smoothing and piles up as the simulation evolves. Due to this problem, Brackbill and

Ruppel [1986] proposed the FLIP method.

The FLIP method modiĄed the way that the particle velocity is updated. In

the second interpolation, the grid information does not overwrite the particle velocity.

The particle velocities receive an increment computed on every iteration, considering the

difference over the previous iteration grid. Considering the enumerated PIC steps, one new

step is added to save the previous grid. This previous iteration grid is used to compute

the increment that will be interpolated to the particles. In this way, the method is almost

free from numerical diffusion. One main drawback of this approach is the noise added to

the Ćow with every information increment through interpolation [Bridson, 2015].

2.3.2.1 X-IVAS: eXplicit Integration following the Velocity and Acceleration Streamlines

Another method to contour the PIC numerical dissipation was Ąrst proposed

by Nigro et al. [2011] and further improved by Idelsohn et al. [2012, 2013, 2014], and

Nadukandi et al. [2017]. They proposed a method that integrates not just velocity in time,

but also an acceleration term. This method is called X-IVAS, and it is classiĄed as a P2

fractional-step method. In the advection step, it performs explicit integration following the

velocity and acceleration streamlines. It provides pressure estimation through integration

in time of the Equation 2.8 solution. It allows for large time steps, i.e. convergence

condition by CourantŰFriedrichsŰLewy (CFL) ≥ 1, with stability and suitable numerical

accuracy.

The explicit integration scheme that follows the velocity and acceleration streamlines

are:










xn+t = xn +
∫ n+t

n Un (xτ ) dτ ,

Un+t
p = Un

p +
∫ n+t

n An (xτ ) dτ ,
(2.10)

where x is the particle position, Un is the velocity Ąeld, and An is the acceleration Ąeld.

The Un
p term denotes a notation simpliĄcation that will be used throughout this work.

This notation describes that the grid and particle position considered for interpolation are

in the same time step. The parenthesis notation that denotes interpolation at the particle

position is replaced by the subscript p in this case.

The acceleration term is denoted as:

An (xτ ) =
1

ρ

[

∇ · στ
p + Fτ

p

]

, (2.11)

where στ is the Cauchy stress tensor, and Fτ
p is the sum of all body and external forces

Ąeld. As proposed by Batchelor and Batchelor [1967], the Cauchy stress tensor accounts
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for the effects of viscosity and has the following form:

στ
p = τ τ

p − Pτ
pI, (2.12)

where τ t
p is a symmetric tensor, and Pt

p is the pressure Ąeld.

The pressure must be separated from the stress tensor, as it will be used to handle

the incompressibility constraint. The symmetric tensor τ is used to model multiple Ćuid

behaviors, e.g. the effects of viscous resistance to changing bulk or Non-Newtonian Ćuids

[Bridson, 2015]. This tensor is referred to as the Şdeviatoric tensorŤ, and is described as:

τ t
p = µ



∇Ut
p +

[

∇Ut
p

]T
}

.

Expanding the Cauchy stress tensor in Equation 2.11, the acceleration term becomes:

An


xt
)

=
1

ρ

[

∇ · τn


xt
)

− ∇Pt
p + Fn



xt
)]

. (2.13)

For the method to remain unconditionally stable, the pressure needs to remain

implicit, as discussed in Nigro et al. [2011]. So, the pressure gradient term of Equation

2.13 is expressed in terms of explicit and implicit terms:

∫ n+1

n

[

∇Pt
p

]

dt =
∫ n+1

n

{

∇Pn


xt
)

+ ∇
[

δP


xt
)]}

dt.

The δP is the implicit pressure term and can be expressed as:

δP


xt
)

= Pt
p − Pn



xt
)

.

As the pressure is expressed by the sum of these two terms, the method becomes

semi-explicit for the pressure-velocity time integration scheme. Therefore, the semi-explicit

velocity integration scheme is divided into two equations that will be solved in different

steps:










Û
n+1

p = Un
p +

∫ n+1
n Â

n
(xt) dt,

Â
n

(xt) = 1
ρ

[∇ · τn (xt) − ∇Pn (xt) + Fn (xt)] ,
(2.14)

and

Un+1
p = Û

n+1

p −
1

ρ

∫ n+1

n
∇
[

δP


xt
)]

dt, (2.15)

where Û
n+1

is the Ąrst velocity Ąeld approximation that will be referred to as the Şadvected

velocityŤ Ąeld. The Â
n

term is the explicit acceleration, and Un+1 is the divergence-free

velocity Ąeld.

The Ąrst step will solve Equation 2.14. A Ąrst approximation of the divergence-free

velocity Ąeld is obtained from the explicit information. The second step will solve the

implicit pressure gradient term to correct the Ąrst velocity Ąeld approximation. Solving

the second equation, the divergence-free velocity Ąeld is obtained.



28

Applying the divergence operator at both sides of Equation 2.15, and considering

the velocity Ąeld divergence-free restriction. The following pressure Poisson equation is

obtained:

∇ · Û
n+1

p = ∇ ·

{

1

ρ
∇
[

δP


xn+1
)]

}

∆t

2
. (2.16)

The divergence-free velocity Ąeld is then obtained by:

Un+1
p = Û

n+1

p −
1

ρ
∇ [δPp]

∆t

2
. (2.17)

Finally, the estimated pressure Ąeld is incremented as:

Pn+1
p = Pn



xn+1
)

+ δP


xn+1
)

. (2.18)

Although this velocity is interpolated directly to the particle, smoothing its infor-

mation, the X-IVAS method accounts for the kinetic energy loss in the projection step on

the next iteration advection step.

2.3.2.2 Anisotropic fluid simulation

We are interested in the complexities of the anisotropic Ćuid Ćow. Our approach

uses tensors to represent the anisotropic properties of the Ćuid. Considering that, an

important method that used the same approach was proposed by Parreiras [2022]. The

work of Parreiras [2022] proposed advancements in Renhe et al. [2019] method. These

works modiĄed the incompressible Navier-Stokes constitutive equations to describe the

relationship between the tensor Ąeld and the Ćuid. The new proposed continuum equations

are:
∂u
∂t

= −(u · ∇)u −
1

ρ
∇Tp+ ν∇ · ∇Tu + (Tu − βu) + f, (2.19)

restricted to:










∇ · u = 0,

∂T
∂t

= 0.
(2.20)

Where ν is the kinematic viscosity (m2/s). It is deĄned as the ratio of the dynamic

viscosity µ over the speciĄc mass of the Ćuid ρ:

ν =
µ

ρ
.

The T-gradient term ∇T is denoted by Equation 2.3. The term β is a scalar

variable. This modiĄed model requires a specialized numerical method that can handle

the new anisotropic properties. The proposed numerical method is a P1 fractional-step

method. They used FLIP as the computational method used to solve this modiĄed

numerical method. Among all the proposed modiĄcations, we will delve into the advection

step, interpolation, and pressure correction steps.
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The advection step was modiĄed to accommodate the new tensor term Tu − βu.

The explicit three-stage third-order Runge-Kutta time integration scheme denoted by

Ralston [1962] was modiĄed to:

k1 = û(xn) + ∆t


T̂(xn)û(xn) − û(xn)
)

, x′ = xn +
1

2
∆tk1,

k2 = û(x′) + ∆t


T̂(x′)û(x′) − û(x′)
)

, x′′ = xn +
3

4
∆tk2,

k3 = û(x′′) + ∆t


T̂(x′′)û(x′′) − û(x′′)
)

,

xn+1 = xn +
2

9
∆tk1 +

3

9
∆tk2 +

4

9
∆tk3, (2.21)

where û(·) and T̂(·) are the velocity and tensor Ąelds interpolated on the current particle

position. This results in the particle velocity being forced to align with the tensor

orientation. Therefore, the particles are transported considering the anisotropic properties

of the tensor Ąeld.

Renhe [2017] proposed a modiĄed projection step that considers the anisotropic

properties of the medium. The pressure is inĆuenced by the proposed T-Laplacian operator.

This modiĄcation implies that the pressure must account for the anisotropic properties of

the medium. The new pressure Poisson equation is denoted by:

∇ · ∇TP (x) = ∇ · U (x) . (2.22)

Therefore, the pressure-correction step anisotropically updates the velocity Ąeld as:

PT(U (x)) = U (x) − ∇TP (x) . (2.23)

Figure 2 Ű Faces and edges normals of a cell.
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Source: Parreiras [2022].

Lastly, Parreiras [2022] proposed an important modiĄcation to the MAC grid. The

cell edges are also used to store vector and tensor quantities as shown in Figure 2. This

modiĄcation results in three signiĄcant contributions:
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• A suitable interpolation accuracy from the grid to the particles and vice-versa. The

12 cell edges are considered on all interpolations. Therefore, there are 19 points of

reference considered for this operation: the cell center, six faces, and twelve edges;

• Non-aligned Tensors can be used without further numerical treatment. Tensors that

have badly conditioned matrices or are not aligned with one of the three Cartesian

coordinate system axes were difficult to solve without considering the cell edges.

• Computational stability due to more numerical precision on the pressure correction

step. Both the velocity correction and the T-Laplacian operator beneĄt over the

edges reference points.

Figure 3 Ű Data Structures Stored on Edges.

Source: Created by the author.

It is worth emphasizing that, in our approach, cell faces contain information in

a single direction. However, cell edges possess the advantage of storing information in

two directions simultaneously, as depicted in Figure 3. As a result, the interpolation of

information from edges signiĄcantly enhances accuracy compared to relying solely on

reference points situated on faces.
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3 PROPOSED METHOD

In this chapter, we introduce our novel contribution, which enables pressure

segregation while considering time-dependent tensor Ąelds. This formal approach addresses

the challenge of incorporating the temporal variations of the tensor Ąeld into the pressure

segregation process, enhancing the Ądelity of the simulations. Next, in Section 3.1, we

present our mathematical model. In Section 3.2, we describe our numerical model and

algorithm implementation. Finally, in Section 3.2.2.2 we discuss a discretization in a

custom MAC grid.

3.1 NAVIER-STOKES EQUATIONS MODULATED BY TENSOR FIELDS

In this work, we introduce a novel approach that utilizes a prediction-correction

anisotropic pressure segregation method. This method is coupled with a time-dependent

positive-deĄnite second-order tensor Ąeld to solve the incompressible Navier-Stokes equa-

tions. The formal mathematical model, which serves as the foundation of our work, is

presented in this section.

Our primary goal is to solve the model proposed by Renhe et al. [2019] that accounts

for the anisotropy of a symmetric positive-deĄnite second-order tensor Ąeld. The ensuing

mathematical formulation is:

ρ
∂u
∂t

+ ρ(u · ∇)u = µ∇ · (T∇u) − T∇p + f, (3.1)

restricted to

∇ · u = 0. (3.2)

The tensor Ąeld plays a crucial role in our Ćuid simulation as it not only inĆuences diffusive

forces but also affects the pressure gradient force.

In this context, our interest lies in the modulation of the surface forces that act

on the Ćuid, which are represented on the right-hand side of Equation 3.1. Modulating

the advection terms on the left-hand side of Equation 3.1 requires a new model. This

modiĄcation requires an alteration to the left-hand side of NewtonŠs Second Law, which

falls beyond the scope of this work. However, previous studies, such as Renhe et al. [2019]

and Parreiras [2022], have utilized tensor Ąelds to modulate these advective forces. The

focus of this work is to modulate the forces originating from pressure and viscous forces

that appear on the right-hand side of Equation 3.1. Additionally, it is possible to model

external forces f based on the tensor Ąeld, as is demonstrated in Chapter 4.

The key point of this work is how to deal with pressure segregation under the

inĆuence of a tensor Ąeld. Local variations in pressure can drive Ćuid motion, causing

the Ćuid to accelerate or decelerate. Consequently, this process is a conversion of kinetic

pressure to kinetic energy (velocity). Conversely, in incompressible Ćuid dynamics, spots
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with a non-null divergence of the velocity can result in the conversion of kinetic energy

into kinetic pressure. Numerically, the conversion of velocity into pressure occurs in the

projection step. The reverse is performed in the advection step, by the pressure gradient

term. Our main interest is how to modulate both conversions through a second-order

positive-deĄnite tensor Ąeld. Of course, a naive approach as simply applying the tensor Ąeld

to the pressure term in the NS equations is not a suitable solution. The conversions must

be carefully performed to avoid the introduction of artifacts in the simulation and keep it

stable. As shown by Renhe et al. [2019], and Parreiras et al. [2022], the tensor-modulated

pressure can be discarded throughout the simulation and still reĆect the inĆuence of the

tensor Ąeld. However, as shown in this work, a properly accumulated anisotropic pressure

estimation can open several possibilities to modulate the Ćuid and simulate local effects.

In summary, this work proposes to use the tensor Ąeld to modulate the exchange

between kinetic pressure and kinetic energy, and vice versa, through a tensor pressure

segregation based on the anisotropic Helmholtz decomposition. In this work, it is admitted

that the tensor Ąeld varies in time, which makes the problem even more challenging. This

circumstance is discussed in the next section.

3.1.1 Anisotropic Helmholtz Projection and Varying Tensor Fields

Let us consider the anisotropic Helmholtz decomposition denoted by Equation

2.2. It shows how a vector Ąeld u (x) can be decomposed as a scalar ϕ (x) and a vector

u′ (x) Ąeld, subject to the tensor Ąeld T (x). Now suppose that the vector Ąeld smoothly

varies in time as u (x, t) = ut, and the tensor Ąeld smoothly varies as T (x, t) = Tt. The

anisotropic Helmholtz decomposition at any time t is deĄned as (Eq. 2.2 with S=I):

ut = ∇Tt
ϕt + ∇ × at,

ut = ∇Tt
ϕt + u

′

t,

u
′

t = ut − ∇Tt
ϕt, (3.3)

where u
′

t is a divergence-free vector Ąeld concerning the standard coordinate system and

is subject to the tensor Ąeld Tt. It can be obtained by solving the T-Poisson equation

(Eq. 2.5):

∇ · ∇Tt
ϕt = ∇ · ut.

Assume that ¶u
′

0,u
′

1, · · · ,u
′

n♢ represents a divergence-free vector Ąeld Ąnite se-

quence until an arbitrary n-th vector Ąeld. Each arbitrary vector Ąeld ut is the addition

of the previous divergence-free vector Ąeld u′
t−1 to an arbitrary vector Ąeld δut as:

ut = u
′

t−1 + δut, (3.4)
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whose anisotropic Helmholtz decomposition is:

∇ · ∇Tt
δϕt = ∇ ·



u
′

t−1 + δut

)

,

∇ · ∇Tt
δϕt = ∇ · δut, (3.5)

where δϕt refers to the decomposition of the incremental vector Ąeld δut. This equation

means that we only need to decompose the increment δut = ut − u′
t−1 to Ąnd the

divergence-free vector Ąeld u′
t = ut − ∇Tt

δϕt in the sequence. Therefore, the equation:

u′

t = u
′

t−1 + [δut − ∇Tt
δϕt] , (3.6)

is sufficient to deĄne the whole sequence, given a divergence-free initial vector Ąeld u′
0

such that u0 = ∇T0
δϕ0 + u′

0.

Now, consider the corresponding scalar Ąeld sequence ¶δϕ0, δϕ1, · · · , δϕn♢ as deĄned

by Equations 3.5 and 3.6. In this work, the main problem is to Ąnd the accumulated scalar

Ąeld:










ϕn = fT0
(δϕ0) + fT1

(δϕ1) + · · · + fTn−1
(δϕn−1) + δϕn,

∇Tn
ϕn is Tn-solenoinal,

(3.7)

i.e., our problem is to Ąnd operators fTt
(·) that transform the intermediary scalar Ąelds

δϕt, that is the solution for the t-th element subject to Tt, into scalar Ąelds fTt
(δϕt) that

are decomposition solutions subject to the last tensor Ąeld Tn.

For example, suppose the tensor Ąelds are constant in t with Ti = T. The solution,

in this case, is straightforward with the identity operator fTt
(δϕt) = δϕt, resulting in

the accumulation ϕn = δϕ0 + δϕ1 + · · · + δϕn and the Tn-irrotational total gradient

∇Tϕn = ∇Tδϕ0 + ∇Tδϕ1 + · · · + ∇Tδϕn. Since all decompositions in the series are subject

to the same tensor Ąeld T, they admit the application of the linear operator T directly

into a simple summation of all incremental scalar Ąeld solutions.

However, if the tensor Ąelds vary along the sequence, the solution of Equation

3.7 is not trivial. Equation 3.6 shows that all elements in the sequence are coupled by

the anisotropic Helmholtz decomposition (Eq. 3.5). Changing one vector Ąeld in the

sequence impacts the subsequent vector Ąelds because any distinct tensor Ąeld gives a

unique divergence-free solution, up to the addition of harmonic scalar Ąelds. Thus, the

requirement that all scalar Ąelds in the sequence have to be in accordance with a speciĄc

tensor Ąeld (Eq. 3.7) results in a divergence-free vector Ąeld sequence that is different

from that Equation 3.6 provides.

In the context of this work, the problem can be incrementally solved for each term

of the sequence, avoiding Ąnding the direct operators fTi
(·) of Equation 3.7. The challenge

is, for any element t, to conform all previous solutions ¶δϕ0, δϕ1, · · · , δϕt−1♢ and the t-th

vector Ąeld ut to the current tensor Ąeld Tt. There is a reason to solve Equation 3.7 with

an incremental approach. The series calculation focuses on Ąnding divergence-free vector
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Ąelds u′
t by subtracting a Tt-irrotational vector Ąeld ∇Tt

δϕt from the arbitrary vector

Ąeld ut. Thus, we only have to guarantee that the incremental addition:

ϕt = gTt−1
(ϕt−1) + δϕt, (3.8)

provides a Tt-irrotational vector Ąeld in the form ∇Tt
ϕt. Of course, this scheme implies

that the previous scalar Ąeld summation ϕt−1 gives a Tt−1-irrotational vector Ąeld in the

form ∇Tt−1
ϕt−1. The operator gTt−1

(·) is responsible for converting the accumulated scalar

Ąeld ϕt−1 into another one that is adjusted by the current tensor Ąeld Tt. Equation 3.8

is easier to handle since it takes into account only two consecutive vector Ąelds of the

sequence. Nevertheless, the last term of the sequence u′
n is divergence-free with respect

to the last tensor Ąeld Tn and the vector Ąeld ∇Tn
ϕn is Tn-irrotational, satisfying both

requirements from Equation 3.7.

The solution is to modify the Poisson equation that projects the arbitrary vector

Ąeld δut (Eq. 3.5). Our solution obtains the accumulated scalar Ąeld ϕt directly from the

decomposition. Also, it conforms to the previous Tt−1-irrotational vector Ąeld ∇Tt−1
ϕt−1 to

the new tensor Ąeld Tt. One of the main contributions of this work is following anisotropic

Helmholtz decomposition that directly deals with the accumulated scalar Ąelds:

∇ · ∇Tt
ϕt = ∇ ·

[

δut + ∇Tt−1
ϕt−1

]

, (3.9)

by adding the Tt-irrotational part of the vector Ąeld ∇Tt−1
ϕt−1 to the Tt-irrotational

decomposition of δut. The resulting divergence-free vector Ąeld is then:

u′

t = u
′

t−1 +
[

δut + ∇Tt−1
ϕt−1 − ∇Tt

ϕt

]

. (3.10)

Indeed, the Tt−1-irrotational vector Ąeld ∇Tt−1
ϕt−1 is not necessarily Tt-irrotational.

Equation 3.9 provides the Tt-irrotational vector Ąeld ∇Tt
ϕt which is the sum of the

Tt-irrotational parts of δut and ∇Tt−1
ϕt−1 vector Ąelds. Also, the resulting accumulation

scalar Ąeld ϕt is the sum of δϕt, which corresponds to the decomposition of δut, to the

previous accumulation ϕt−1 conformed to Tt. Analogously, Equation 3.10 provides the

divergence-free vector Ąeld u′
t which is the sum of the solenoidal parts of both ut and

∇Tt−1
ϕt−1 vector Ąelds. As a consequence, the effect of every arbitrary vector Ąeld δut

added in the sequence is preserved either in the last divergence-free vector Ąeld u′
n or in

the last Tn-irrotational vector Ąeld ∇Tn
ϕn.

Equations 3.9 and 3.10 can be adapted to solve the anisotropic pressure segregation

step in the problem of Ćuid simulation, as shown in the next section.

3.2 TENSOR X-IVAS: X-IVAS WITH TENSOR-BASED PRESSURE SEGREGATION

In this section, we present our numerical model, beginning with our advection

scheme. At this stage, the explicit information of particle position and velocity is integrated
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in time. The description of our semi-implicit advection model is as follows:











xn+t = xn +
∫ n+t

n Un (xτ ) dτ ,

Un+t
p = Un

p + 1
ρ

∫ n+1
n An (xt) + Fn (xt) dt.

(3.11)

Expanding the acceleration Ąeld term A:

An


xt
)

= µ∇ ·
[

Tn∇Un


xt
)]

+ δσ


xt
)

− Tn∇Pn


xt
)

− δP


xt
)

,

where δσ and δP are the implicit viscosity and pressure terms, respectively. Both of these

terms require careful treatment to ensure a fully explicit model. The equations governing

these terms are as follows:

δσ


xt
)

= µ∇ · Tt∇


Ut


xt
)

− Un


xt
))

,

and

δP


xt
)

= Tt∇Pt


xt
)

− Tn∇Pn


xt
)

.

We plug the implicit terms out of the integration scheme and solve them separately. Once

discretized, Equation 3.11 is numerically integrated. A simple integration method like

Forward Euler, which is a Ąrst-order accurate Ąnite difference integrator, can be expressed

as:

qn+1 = qn + ∆tf (qn) ,

where ∆t is the simulation time-step. Here, f (q) represents the derivative of q concerning

time, and q denotes a vector term as position and velocity. However, in our work, we

employ the explicit three-stage third-order Runge-Kutta time integration scheme, which is

considered to best capture the complexities of anisotropic particle movement on both the

velocity and acceleration streamline. This scheme is denoted as:







































k1 = f (qn) ,

k2 = f


qn + 1
2
∆tq1

)

,

k3 = f


qn + 3
4
∆tq2

)

,

qn+1 = qn + 2
9

(∆tk1) + 3
9

(∆tk2) + 4
9

(∆tk3) .

(3.12)

The time integration of the implicit terms is described by the following equation:

∫ n+1

n

[

δσ


xt
)

− δP


xt
)]

dt ≈
∆t

θ

[

δσ


xn+1
)

− δP


xn+1
)]

,

where θ is a scalar that deĄnes the integration scheme that will be used. If θ = 1, the

integration scheme is Forward Euler. If θ = 2, the integration is a Backward Euler. In this

work, we will use a Ąrst-order approximation, θ = 1. Therefore, the implicit term delta

will consider only the ending point of the integration streamline [Bridson, 2015].
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The implicit terms with the Ąrst-order integration scheme will be expressed by the

following equations:

δσ


xn+1
)

= µ∇ ·
[

Tn+1∇Un+1
p − Tn∇Un



xn+1
)]

,

and

δP


xn+1
)

= Tn+1∇Pn+1
p − Tn∇Pn



xn+1
)

. (3.13)

These terms are solved separately and will be referred to as separate terms. The new

velocity integration model will be:

Un+1
p = Un



xn+1
)

+
ˆ̂An


xn+1
)

+
1

ρ

∫ n+1

n
Â

n 

xn+1
)

dt, (3.14)

where
ˆ̂A and Â are the new terms for the implicit and explicit part of the acceleration,

respectively. The acceleration implicit part is:

ˆ̂An


xn+1
)

=
∆t

ρ

[

δσ


xn+1
)

− δP


xn+1
)]

,

and the explicit part is:

Â
n 

xn+1
)

= µ∇ ·
[

Tn∇Un


xn+1
)]

− Tn∇Pn


xn+1
)

+ Fn


xn+1
)

. (3.15)

The velocity integration of Equation 3.14 is divided into three steps. This division is

required to solve the implicit viscosity and pressure terms independently. The Ąrst step

predicts velocity by integrating the explicit acceleration term. In this step, the Runge-

Kutta time integration scheme described by Equation 3.12 is used. This Ąrst velocity

approximation is denoted as:

Û
n+1

p = Un


xn+1
)

+
1

ρ

∫ n+1

n
Â

n 

xn+1
)

dt, (3.16)

where Û
n+1

is the Ąrst velocity approximation term referred to as Şadvected velocityŤ. The

second step will account for the effects of viscosity over the Ąrst velocity approximation.

At this step, we obtain a second velocity approximation as:











[

ρ− ∆t
θ



∇ · µTn+1∇
)]

δσn+1
p = ρ

[

Û
n+1

p − Un (xn+1)
]

,

ˆ̂Un+1
p = Û

n+1

p + δσn+1
p ,

(3.17)

where
ˆ̂U is the viscosity-velocity prediction term.

Finally, the divergence-free velocity Ąeld will be obtained in the third step using

the pressure correction method:

Un+1
p =

ˆ̂Un+1
p −

1

ρ

∆t

θ
δP


xn+1
)

. (3.18)
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Applying the divergence operator at both sides of Equation 3.18, and considering the

divergence-free restriction. The following T-Poisson equation is obtained:

∆t

θ

1

ρ
∇ · δP



xn+1
)

= ∇ ·
ˆ̂Un+1

p . (3.19)

Expanding this T-Poisson equation with Equation 3.13, we have:

∇ ·
[

Tn+1∇Pn+1
p

]

= ∇ ·



θρ

∆t
ˆ̂Un+1

p + Tn∇Pn


xn+1
)

]

, (3.20)

as proposed in Equation 3.9. We were only able to achieve this using the contribution

presented in Section 3.1.1. Finally, the divergence-free velocity Ąeld is obtained as:











Un+1
p =

ˆ̂Un+1
p + 1

ρ
∆t
θ

[

Tn∇Pn (xn+1) − Tn+1∇Pn+1
p

]

,

∇ · Un+1 = 0.
(3.21)

as proposed in Equation 3.10. The accumulation of pressure within the solution of the

Poisson equation is an important aspect, as discussed in Section 3.1.1. Indeed, Equations

3.20 and 3.21 convert kinetic energy into kinetic pressure and vice versa. After each

iteration: 1) the pressure gradient Ąeld Tn+1∇Pn+1 is always Tn+1-irrotational; 2) the

divergence-free velocity Ąeld Un+1
p is I-solenoidal with the inĆuence of Tn+1 that modulated

both the incremental velocity vector Ąeld
ˆ̂Un+1

p and the previous accumulated pressure

Tn∇Pn (xn+1).

3.2.1 Boundary Conditions

In this work, special attention is given to two types of boundaries: the free-surface

boundary and the solid wall boundary. The free-surface boundary represents the interface

between the Ćuid and the surrounding empty space, while the solid wall boundary represents

the interface between the Ćuid and a solid object.

The enforcement of boundary conditions is achieved within the framework of the

MAC grid, similar to a fully Eulerian solver. The evaluation of the interface is based on

the information contained within the neighboring cells. In our case, the boundaries occur

at the faces and edges of each grid cell. The boundary conditions are enforced following

the advection step and before the projection step. This adjustment is applied to the RHS

of Equation 3.20. It directly affects the velocity divergence that is taken into account

during the projection step, consequently modifying the linear system of equations derived

from the T-Poisson equation.

3.2.1.1 Free-surface boundary

Since we are simulating a single-phase Ćuid, the treatment of the boundary is

relatively straightforward. In this scenario, the Ćuid either interacts with a vacuum or
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with another Ćuid of much lower density, whose inĆuence can be considered negligible. In

this work, a Dirichlet boundary condition is employed at this interface, setting both the

pressure and pressure gradient Ąelds to zero.

3.2.1.2 Solid Walls boundary

By considering all reference points associated with the faces and edges of a cell,

diverse Ćuid-solid interface conĄgurations can be observed. Following the approach outlined

in Parreiras [2022], the solid wall boundary condition is applied when a cell is classiĄed

as Ćuid and has at least two neighboring cells that are solid. In accordance with the

no-slip condition, the Ćuid velocity on this interface assumes the velocity of the solid. In

such cases, the quantities (e.g., velocity) associated with the face or edge of the grid cell

intersecting the interface are set to solid velocity with respect to the interfaceŠs normal

direction.

In addition to the right-hand side of Eq. (3.20), the no-slip condition must also be

enforced on the pressure gradient and acceleration Ąelds. This reinforcement takes place

after the projection step and has a direct impact on the particle advection step.

3.2.2 Simulation Steps

In this section, we present the proposed method as an iterative algorithm within a

Ćuid simulation environment. Except for the particle advection step, all other steps are

solved within the grid context. The algorithm is summarized by the following steps:

1. Seed Ćuid particles to the environment;

2. Advect particles with third order Runge-Kutta (Eq. 3.12): xn+1, ûn+1;

3. Interpolate particle advected velocity to grid: ûn+1 ⇒ Û
n+1

;

4. Compute viscosity-velocity (Eq. 3.17):
ˆ̂Un+1;

5. Set no-slip condition to the viscosity-velocity grid:
ˆ̂Un+1 =

ˆ̂Un+1
solid = 0;

6. Compute force Ąeld: Fn+1;

7. Compute tensor Ąeld: Tn+1;

8. Compute projection Ąeld R (RHS of Equation 3.20);

9. Set no-slip condition on projection Ąeld grid: R = Rsolid = 0;

10. Compute divergence-free velocity Ąeld and accumulate pressure (Eq. 3.21): Un+1,Pn+1;

11. Update pressure gradient Ąeld: Tn+1∇Pn+1;
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12. Update acceleration Ąeld: An+1;

13. Update particles velocity (Eq. 3.22): Un+1 ⇒ un+1;

During the Ąrst interaction, the initial velocity vector Ąeld is projected, after the

seeding of particles and before the advection process. This ensures the utilization of a

divergence-free Ąeld during the advection step. Also, the initial pressure is the scalar Ąeld

resulting from the Anisotropic Helmholtz Decomposition. To achieve this, the following

procedures are executed:

1. Initialize the force Ąeld;

2. Initialize the acceleration Ąeld with only the body forces information;

3. Set the no-slip condition at the initial velocity Ąeld;

4. Project the initial vector Ąeld.

3.2.2.1 Particle Velocity Update

In step 12, the grid velocity information is interpolated to the particles. We

propose a new particle velocity update scheme. The new particle velocity update combines

our Tensor X-IVAS method with the FLIP updating scheme, resulting in the following

equation:

un+1 = un+1
p + (1 − α)



ûn+1 − ˜̂un+1
p

)

, (3.22)

where un+1
p is the interpolated divergence-free velocity obtained from the projection in step

9. The ûn+1 term is the Ąrst particle velocity approximation obtained from step 2. ˜̂un+1
p

is the particle velocity approximation before the projection step, without no-slip condition.

The α term is a scalar parameter that can assume a value in the interval of α ∈ [0, 1]. The

particle velocity update will change as α changes. If α = 1, the velocity update will be a

PIC update scheme. If α < 1, the new update term increments the particle velocity. This

results in an advection with even less numerical diffusion.

3.2.2.2 Implementation on an Extended MAC Grid

Our Tensor X-IVAS method is discretized on an extended 3D staggered MAC grid,

which was proposed by Parreiras [2022]. It provides a higher level of accuracy for solving

the anisotropic T-Poisson (Eq. 2.5) problem, coping well with tensors with eigensystem

not aligned with the main axes. In this version, the vector quantities are stored in the

faces and the edges of each voxel cell. The scalar and tensor quantities are stored at the

cell centers. Tensor quantities are interpolated to the faces and edges in the extended

gradient operator needed to solve the T-Poisson (Eq. 2.5).
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The use of the extended MAC grid was a choice that helped a faster development

during our research. The GCG-Group for Computer Graphics, Image and Vision has

worked on the problem of anisotropic Ćuid simulation in Ąnite volumes since 2014. However,

our method can be easily adapted to Ąnite elements, which is the case for most works

based on the X-IVAS method.
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4 EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter, we present qualitative experimental results obtained with the

proposed method. The experiments were divided into two main categories: 1) experiments

with a constant tensor Ąeld; 2) experiments with time-dependent tensor Ąelds. The idea

of this chapter is to present different conĄgurations of tensor Ąelds that show how they

inĆuence the Ćuid Ćow. In this way, we can analyze the result from each case, indicating

how to obtain different Ćow effects with tensor Ąelds.

The Ćuid density ρ, the time step ∆t, and the cell width ∆x remained constant

throughout all experiments. They were assigned values of ρ = 1 (kg/m3), ∆t = 1/60 (s),

and ∆x = 1 (m), respectively. Gravity exerted a force with a magnitude of 10 (m/s2) in

the negative z-axis direction, except in Section 4.2.2, where gravity was directed towards

the center of the domain. Although our method is capable of modulating both viscosity

and pressure terms, to evaluate the impact of pressure modulation on Ćuid Ćow, the

viscosity was set to zero in Sections 4.1 and 4.2. This avoids the interference of non-null

viscosity in the analysis of our methodŠs ability to anisotropically modulate the Ćuid Ćow

pressure terms.

Our domain space was discretized into a grid with a resolution of 60 × 60 × 60

cells. An additional layer of cells, labeled as solids, surrounded the domain space. The

no-slip condition was applied in all experiments, as discussed in Section 3.2.1. Without

loss of generalization, stationary solid walls were considered throughout all simulations.

More detailed descriptions and speciĄc setups of each experiment are provided in the

corresponding sections.

To create the Ąnal rendered experiments, various third-party software tools were

utilized. Firstly, the simulation data was acquired using our OpenGL/C++ Ćuid simulation

environment. Then, we generated the Ćuid simulation meshes using Houdini [SideFX®,

2021], and Paraview [Sandia National Labs and Labs., 2021] software. Finally, we rendered

each experiment using Blender [Foundation, 2021]. We have used Blender default render

engine named ŞCyclesŤ, and a third-party open-source engine named ŞLuxCoreRenderŤ

[LuxCoreRender®, 2018] for rendering. Both these engines are physically-based path-

tracing used for production rendering. Each experiment results in a video with 30 frames

per second (FPS) during 20 seconds.

The experiments were performed on different hardware setups. SpeciĄcally, the

simulation was executed on an Intel Xeon E5-4607 @ 2.20GHz processor with 32GB RAM

DDR3. The mesh generation was performed on an AMD Ryzen 3 3100 @ 3.60GHz processor

with 16GB RAM DDR4 and a NVIDIA GTX 1650S GPU. Finally, the simulations were

rendered using one Intel i5 10400 CPU @ 2.90GHz with 16GB RAM DDR4 and NVIDIA

RTX 3060 GPU, and one Intel i5 10400 CPU @ 2.90GHz with 8GB RAM DDR4 and
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NVIDIA GTX 1660 GPU.

4.1 CONSTANT TENSOR FIELDS

All tensor Ąelds considered for the following experiments are constant in time.

Each section is structured to present the intrinsic characteristics of the tensor Ąeld, initial

conditions, environment setup, and the Ćuid source and position.

4.1.1 Simulation with Axis-Aligned Planar Tensors

In this subsection, the three presented experiments involve different tensor Ąelds.

The Ąrst experiment utilizes an isotropic tensor Ąeld, i.e. the simulation is the same as

the standard X-IVAS method. The second experiment employs a planar tensor Ąeld at

the bottom, limiting the pressure exchange in a plane parallel to the xy-plane. Lastly,

the third experiment incorporates a linear Ąeld at the bottom, enhancing the pressure

exchange. These tensor Ąelds modulate the pressure exchange mainly in the direction of

the z-axis. The experiment with the isotropic tensor Ąeld is used as a reference to analyze

the anisotropic effects of the other two different tensor Ąelds.

Figure 4 Ű Initial setup of the falling cube simulations.

(a) Isotropic tensor Ąeld (b) Planar tensor Ąeld (c) Linear tensor Ąeld

Source: Created by the author.

The Ćuid source is a block of Ćuid with dimensions of 20 × 20 × 20, resulting in

a total of 8.000 voxels. Each voxel starts with 20 particles, leading to a total of 160.000

particles in the simulation. This block of Ćuid is initially at rest (u0 = 0) and is inserted

at the top of the simulation domain. Its height k, goes from grid cell 38 (inclusive) to 58

(exclusive), where k represent the grid z-axis coordinate. Also, this block of Ćuid is slightly

displaced from the center, with i, j ∈ [21, 40], where i, j are the x and y grid coordinates

respectively.
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We apply the particle velocity update presented in Equation 3.22 with α = 1.0,

meaning that the simulation is less turbulent and more dissipative.

Figure 5 Ű Falling cube simulation with the isotropic tensor Ąeld.

(a) Frame 84 (b) Frame 96 (c) Frame 170

(d) Frame 240 (e) Frame 599

Source: Created by the author.

Except for the isotropic tensor Ąeld, the employed tensor Ąeld is composed of six

layers and positioned at the bottom of the domain. All other tensors in the volume are

isotropic. It means that the Ćuid is under the effect of anisotropy only in the bottom

six layers. The main difference between the three simulations lies in the eigenvalues:

λ1 = λ2 = λ3 = 1 for the Ąrst experiment, λ1 = λ2 = 1, λ3 = 0.01 for the second

experiment (planar tensors), and λ1 = λ2 = 1, λ3 = 1.99 for the third experiment (linear

tensors). All eigenvectors are axis-aligned with: e1 and e2 aligned with the xy-axis (planar

tensor), and e3 aligned with the z-axis (linear tensor).

The range of colors shows the pressure magnitude and goes from the lowest values

being represented as dark blue colors and the highest ones being represented as bright

red. These values range from −100 (Pa) to 100 (Pa) The values outside this interval are

clamped and, consequently, dark blue and bright red particles may have values arbitrarily

beyond it.

The experiment with a planar tensor at the bottom with λ3 = 0.01, shows how

we can use the tensor Ąeld to induce pressure over the Ćuid as shown in frame 599 of

Figure 6. This high pressure can be visualized by the red particle colors. This induced
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Figure 6 Ű Falling cube simulation with the planar tensor Ąeld.

(a) Frame 84 (b) Frame 88 (c) Frame 115

(d) Frame 140 (e) Frame 170 (f) Frame 599

Source: Created by the author.

pressure can be used for containing the Ćuid in an arbitrary location. When the block of

Ćuid comes into contact with the bottom of the domain, it rapidly propagates, attempting

to alleviate the pressure in the xy plane, as depicted in frame 92 of Figure 6 and the

experiment video. The Ćuid accumulates at the border of the domain and eventually rises

in the z-axis direction. However, due to insufficient velocity, it forms horizontal columns

of Ćuid, as illustrated in frame 172 of Figure 6. These columns and the Ćuid that reach

the side wall do not reach a high altitude as the isotropic experiment, due to the tensor

Ąeld constraint. The resulting Ćuid columns are directed towards the center of the domain,

as the tensor Ąeld limits pressure exchange in the z-axis direction and favor the xy plane

main axis directions.
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Figure 7 Ű Falling cube simulation with the linear tensor Ąeld.

(a) Frame 84 (b) Frame 99 (c) Frame 170

(d) Frame 300 (e) Frame 599

Source: Created by the author.

On the other side, the experiment with the linear tensor Ąeld with λ3 = 1.99, shows

how we can use the tensor Ąeld to favor the pressure exchange, and consequently facilitate

the Ćuid motion in an arbitrary direction. As depicted by the particle colors in Figure 7,

the pressure of the Ćuid on the bottom of the domain does not achieve a high pressure

as the isotropic or the planar tensor Ąeld experiments. That is due to the fact that the

tensor Ąeld does not limit the pressure exchange in any direction and, more than that,

enhances the exchange on the z-axis direction. This enhancement can be seen in frame

172 of Figure 7, as the Ćuid reached the ceiling of the domain. The experiment with the

isotropic tensor Ąeld and planar tensor does not achieve such altitude.

The graphs depicted in the following Ągures display, for each variation of this

experiment, the integration of the Bernoulli equation (Equation 4.1), the integration of the

Bernoulli equation without pressure energy, and the divergence of velocity. The Bernoulli

equation is a fundamental principle in Ćuid dynamics that describes the conservation of

energy along a streamline in an inviscid, incompressible Ćow. It states that the sum of

the kinetic energy, potential energy, and pressure energy per unit mass remains constant
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along a streamline. The Bernoulli equation can be expressed as:

u2

2
+

p

ρ
+ gh = constant (4.1)

Where p is the pressure at a given point in the Ćuid, ρ is the density of the Ćuid, u

is the velocity of the Ćuid, g is the acceleration due to gravity, and h is the height above a

reference point.

The conservation of energy principle underlying the Bernoulli equation implies that

as Ćuid Ćows along a streamline, the total energy per unit mass remains constant. This

means that if the velocity of the Ćuid increases (increasing kinetic energy), the pressure

must decrease to maintain energy conservation, and vice versa. Similarly, changes in

elevation lead to changes in potential energy, which are compensated for by corresponding

changes in pressure and velocity to ensure energy conservation. Overall, the Bernoulli

equation serves as a powerful tool for analyzing and predicting the behavior of Ćuid Ćow

systems by quantifying the interplay between kinetic, potential, and pressure energies

along streamlines.

It can be observed in Figure 8 that the impact of pressure energy on integration

in the experiment with a planar Ąeld (λ3 = 0.01) is of much greater magnitude than

kinetic energy. Additionally, the magnitude increases by a factor of 10 comparing the

experiment with the planar tensor with the other ones. It can also be observed that the

sum of the systemŠs energy with the planar tensors tends toward the value of pressure

energy, given that it dominates the experiment energies. ItŠs worth noting that the planar

tensors generate an artiĄcial pressure in the Ćuid volume as they limit the exchange with

the z-axis.

The Bernoulli equation holds true, and energy conservation is upheld until the

Ćuid volume collides with the bottom of the domain, which occurs just before iteration

200. From the moment the collision occurs, energy conservation no longer holds. The

sum of kinetic energy, gravitational potential, and pressure remains constant before the

collision, as we can see in Figure 8. After the inelastic collision with the bottom of the

domain, this conservation does not hold.
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Figure 8 Ű Constant Axis-Aligned Tensors Bernoulli Equation Integration

(a) Isotropic (b) λ3 = 0.01

(c) λ3 = 1.99

Source: Created by the author.

The integration of the Bernoulli equation without the pressure energy depicted in

Figure 9, we can observe how velocity is affected in the experiment with planar tensors in

the Ągure. After the collision, the energy increases as pressure relief is extremely limited.

Kinetic energy peaks upon collision with the bottom of the domain and then again when

the Ćuid strikes the domain walls, and then the energy decreases more rapidly with planar

tensors than in other experiments.
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Figure 9 Ű Axis-Aligned Planar Tensors Bernoulli Equation Integration without Pressure

(a) Isotropic (b) λ3 = 0.01

(c) λ3 = 1.99

Source: Created by the author.

Finally, in Figure 10, we can see the impact on the divergence. Once again, the

Ąeld with planar tensors exhibits a different behavior from the other experiments. It is

noticeable that despite the increase in the magnitude of the divergence, the standard

deviation of the mean is lower compared to the other two experiments. The experiment

with linear and isotropic tensors exhibits a similar behavior regarding system energies in

all analyzed cases.
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Figure 10 Ű Axis-Aligned Planar Tensors Speed Divergence

(a) Isotropic (b) λ3 = 0.01

(c) λ3 = 1.99

Source: Created by the author.

4.1.2 Simulation with non Axis-Aligned Planar Tensors

The previous experiments consisted of tensors whose eigenvectors are aligned to

the grid coordinate system. In this section, the simulation exempliĄes a tensor Ąeld with

non-axis-aligned planar tensors representing a surface with variable curvature. The main

goal is to have the effect of a permeable medium. The misaligned tensors allow the Ćuid

to be exchanged through 26-nearest cell neighbors during the anisotropic projection. In

contrast, axis-aligned tensor Ąelds primarily exchange Ćuid through the six faces of a cell.

Our method is mainly focused on the pressure velocity adjustment along the

simulation steps. It needs pressure changes to affect the Ćuid Ćow. Thus, it is not

fully equipped to simulate porous transport. However, in Section 3.1, we presented the

possibility of designing body forces according to the current attributes of the tensor Ąeld.

This can be explored to get permeability effects.

We have devised a body force that is directly proportional to the magnitude of
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Figure 11 Ű Initial setup of the permeable surface simulation.

(a)

Source: Created by the author.

the tensor Ąeld divergence and the velocity of the Ćuid Ćow. This force is integrated into

Equation 3.15. The newly introduced term F , added to the grid in every step, is deĄned

as follows:

Fn


xn+1
)

= Gn


xn+1
)

+ Rn


xn+1
)

,

where G is the gravity force, and R is the novel proposed body force. The relation between

the tensor Ąeld divergence and the Ćuid Ćow velocity is:

du

dt
= −ψT−1 [(u · D) D] , (4.2)

where D = ∇ · T is a vector quantity stored at the grid. Notice that ψ has m2/s unit,

which is the same as the kinematic viscosity ν. Expanding Equation 4.3 by the Euler

method, we obtain:
un+t − un

∆t
= −ψT−1



un+t · D
)

D,

where un+t and un are the next and previous velocities of the particles. As we need the

velocity that is deviated by this tensor force, we rearrange this equation as:

un+t = un
[

I + ψT−1


DDT
)

∆t
]−1

. (4.3)

Notice that the force redirects the Ćuid Ćow in the direction of the vector Ąeld obtained

from the tensor Ąeld divergence. Additionally, the resulting velocity un+t exhibits an

inverse proportionality to the local tensor divergence magnitude. As such, the design

of the tensor Ąeld is crucial to determining the inĆuence of the force on the Ćuid Ćow.

In the scenario where D = 0, the resulting velocity aligns with the current velocity un.

Consequently, we can regulate the magnitude of this force by adjusting the magnitude of

the tensor Ąeld divergence.

Numerically, the deviated velocity of Equation 4.3 is calculated immediately after

the initial approximation of the velocity Ąeld. This force is integrated in time using a
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Forward Euler method. Therefore, it is not coupled to the three-stage third-order Runge-

Kutta used on the advection step. Regarding the discretization of the tensor divergence,

it is stored at the center of the MAC grid cell and computed according to Figure 12.

Only the two adjacent cell neighbors along each axis are taken into consideration. The

calculation proceeds from the positive to the negative direction, as indicated by the black

arrows in Figure 12.

Figure 12 Ű Tensor Ąeld divergence scheme.

(a)

Source: Created by the author.

We present three experiments to demonstrate the use of the proposed tensor force.

Each simulation varies the divergence of the tensor Ąeld. SpeciĄcally, we created three sets

of eigenvalues for each simulation. All conĄgurations employ two layers of planar tensors

with eigenvalues of λ1 = λ2 = 1, while the values of λ3 differ. The Ąrst simulation adopts

λ3 = 0.01, and its progression is illustrated in Figure 13. The second experiment, depicted

in Figure 14, employs λ3 = 10−3. Finally, the third simulation incorporates λ3 set to 10−4,

and its depiction is presented in Figure 15.

To construct the tensor Ąeld, we utilize non-aligned planar tensors generated

through the following parametric parabolic equation:























x = i, i ∈ [6, 54] ,

y = j, j ∈ [6, 54] ,

z = c


i2

a2 + j2

b2

)

+ k, k ∈ [19, 20] .

The terms i, j, and k represent grid coordinates corresponding to the x, y, and z

axis, respectively. The parameters a and b have a value of 20, while c is set to 7 to give

the tensor Ąeld the cloth shape that is shown in Figure 11. The tensor Ąeld is visually

represented by a pinkish color "cloth" texture in the simulation Ągures.
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Figure 13 Ű Permeable surface simulation with λ3 = 10
−2.

(a) Frame 100 (b) Frame 170 (c) Frame 200

(d) Frame 240 (e) Frame 480 (f) Frame 599

Source: Created by the author.

The Ćuid is inserted by a circular shape source with radius 3 of voxel and positioned

at the right side of our domain. It is visually depicted as a metallic pipe in the simulation

Ągures. This font emits a constant stream of particles, with a rate of 50, 000 particles per

second for Ąve seconds. Consequently, a total of 250, 000 particles are inserted into the

simulation. They are initially imparted with an impulse force of 12kN in the y-direction.

Figure 11 illustrates the visual representation of the aforementioned initial setup. The

purpose of this font is to showcase the swirling motion of the Ćuid as it traverses the

surface of the tensor Ąeld with different λ3.

In Figures 13, 14, and 15 we can see how the variation of the λ3 magnitude affects

the tensor Ąeld permeability. In frame 240 of Figure 13, the Ćuid already has transposed

completely the tensor Ąeld. This full transposition does not occur in the other two

experiments. However, we can compare the Ąnal frame of Figures 14, and 15 to visualize

how lower eigenvalues retained a greater volume of Ćuid above the tensor Ąeld.

By comparing Figures 13, 14, and 15, we observe the impact of varying the

magnitude of λ3. This is the eigenvalue assigned to the normal of the planar tensor and,

consequently, it deĄnes the effect of permeability. In Figure 13, at frame 240, the Ćuid has

completely passed through the tensor Ąeld. Conversely, this full transposition does not

occur in the other two experiments. However, we can examine the Ąnal frames of Figures
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Figure 14 Ű Permeable surface simulation with λ3 = 10
−3.

(a) Frame 170 (b) Frame 200 (c) Frame 240

(d) Frame 380 (e) Frame 480 (f) Frame 599

Source: Created by the author.

14 and 15, where a lower eigenvalue resulted in a larger volume of Ćuid retained above the

tensor Ąeld.
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Figure 15 Ű Permeable wall simulation with λ3 = 10
−4.

(a) Frame 200 (b) Frame 240 (c) Frame 380

(d) Frame 480 (e) Frame 599

Source: Created by the author.

In the following Ągures, we observe the impact of varying λ3 on the systemŠs energy

and the velocity divergence for the Ąeld with non-axis-aligned planar tensors. It can be

observed that the Ąeld with lower λ3 retains more Ćuid over the Ąeld. At the peak of

gravitational potential energy, since the Ćuid does not penetrate the Ąeld with the lower

λ3, both energies take longer to decrease than in the Ąeld with the higher λ3. This can

be seen in Figure 16. The potential energy does not reach such large peaks, given that

the Ćuid penetrates the Ąeld and collides with the domain bottom in a more controlled

manner, in the experiment with λ3 = 1−4. In the Ąrst graph, in Figure 16, kinetic energy

reaches its maximum near iteration 600, and by iteration 800, it approaches a value close

to the minimum and remains close to this value throughout the simulation. Meanwhile, in

the simulation with lower λ3, kinetic energy remains more constant, not reaching a peak

like in the Ąrst graph, and only approaches its minimum value near iteration 1000.



55

Figure 16 Ű Non Axis-Aligned Planar Tensors Bernoulli Equation Integration

(a) λ3 = 1
−2 (b) λ3 = 1

−4

Source: Created by the author.

Figure 17 shows how pressure does not interfere as much in this experiment

compared to other energies. This is visible if we compare Figure 17, and Figure 16 as the

behavior of the energy sum remains almost the same.

Figure 17 Ű Non Axis-Aligned Planar Tensors Bernoulli Equation Integration Without Pressure
Energy

(a) λ3 = 1
−2 (b) λ3 = 1

−4

Source: Created by the author.

The same can be said for the velocity divergence in Figure 18; we can perceive

a slight difference between both experiments, but this difference is so subtle that it is

difficult to determine the real impact of the Ąeld or pressure on the divergence.
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Figure 18 Ű Non Axis-Aligned Planar Tensors Divergence

(a) λ3 = 1
−2 (b) λ3 = 1

−4

Source: Created by the author.

4.2 TIME-DEPENDENT TENSOR FIELDS

All tensor Ąelds considered for the following experiments vary in time. In the

previous section, we describe our experiments to present the intrinsic characteristics of

the tensor Ąeld, initial conditions, environment setup, and the Ćuid source and position.

Also, we discuss the overall behavior of each experiment and their variations, to point out

the main characteristics of each one. The Ąrst following experiment denotes an abrupt

change of tensor Ąeld and how it impacts the Ćuid Ćow. The last one, the tensor Ąeld,

varies smoothly in time over every time step.

4.2.1 Simulation with Axis-Aligned Planar & Linear Tensors

The purpose of this experiment is to illustrate the impact of abruptly modifying the

current tensor Ąeld conĄguration on pressure relief. This modiĄcation allows us to redirect

the Ćuid Ćow in an arbitrary direction. In this subsection, we provide two simulations with

distinct values for the α term in Equation 3.22. The Ąrst simulation sets the α term to 1,

whereas the second simulation sets it to 0.15. These variations are intended to highlight

the inĆuence of the proposed update velocity equation on the simulation of Ćuid Ćow and

its numerical dissipation.

In each simulation, multiple planar tensor layers are positioned at the bottom of our

domain (k ∈ [1, 12]). These layers restrict pressure exchange to the xy-plane, akin to the

approach used in Section 4.1.1. However, there are two distinctions regarding the previous

tensor Ąeld. Firstly, we now set a λ3 eigenvalue of 10−3 to the planar tensors, decreasing

pressure exchange in the z direction by a factor of 10. Secondly, the planar tensor layers

have ŞholesŤ Ąlled with isotropic tensors. Throughout the simulation, we present three

variations of the tensor Ąeld conĄguration, each occurring every 200 iterations. Initially,



57

Figure 19 Ű Initial setup of the geyser simulation.

(a)

Source: Created by the author.

the planar layers have a single central hole, allowing the Ćuid to exchange pressure in

the z-axis through it. After 200 iterations, the isotropic tensors on the central hole are

changed to planar tensors, limiting again the pressure exchange to the xy-plane. Finally,

in the last 200 iterations, the planar layers contain Ąve holes: one at its center and four at

each corner. This variation of the tensor Ąeld is illustrated in Figure 20.

Figure 20 Ű Tensor Ąelds employed on the geyser simulation.

(a) Central Hole (b) No Holes (c) Five Holes

Source: Created by the author.

The experiment utilizes a quiescent pool of Ćuid located at the bottom of the

domain (k ∈ [1, 11]). The entire bottom of the domain is occupied by this Ćuid pool,

with an initial quantity of 20 particles per voxel. With the pool having dimensions of

60 × 60 × 11 voxels, a total of 792, 000 particles is present in each simulation. Refer to

Figure 19 for a visual representation of the initial setup employed in this experiment.
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Figure 21 Ű Geyser simulation with α = 1.

(a) Frame 40 (b) Frame 110 (c) Frame 205

(d) Frame 270 (e) Frame 405 (f) Frame 450

(g) Frame 500 (h) Frame 599

Source: Created by the author.

In this experiment, we aim to observe the impact of the pressure relief scheme and

particle velocity update variations on the velocity of Ćuid Ćow. Figures 21 and 22 depict

arrows indicating the particle velocity vectors. These arrows are color-coded based on the

magnitude of the velocity, ranging from 0(m/s) to 30(m/s). Dark blue colors represent

lower values, while bright reddish colors represent higher values.
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Figure 22 Ű Geyser simulation with α = 0.15.

(a) Frame 40 (b) Frame 110 (c) Frame 205

(d) Frame 270 (e) Frame 405 (f) Frame 450

(g) Frame 500 (h) Frame 599

Source: Created by the author.

When comparing Figures 21 and 22, the geyser altitudes and arrow colors demon-

strate the clear impact of the velocity update and the tensor Ąeld variation. The arrow

colors of the Ćuid in the geysers (Figure 22) appear more reddish, indicating that the

pressure relief in this experiment yields a higher acceleration compared to the α = 1

simulation. Consequently, the simulation with α = 1 (Figure 21) achieves a signiĄcantly

lower altitude compared to the α = 0.15 simulation. This is evident comparing both

simulations on frame 110 or frame 500. Frames 205 and 405 demonstrate how the Ćuid

behaves slightly after the tensor Ąeld variation. These frames showcase the rapid Ćow

redirection towards the pressure relief points. An intriguing aspect of the α = 0.15
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simulation is that a single-hole geyser reaches a higher altitude than the one with Ąve

holes. With multiple holes, the ĆuidŠs kinetic energy is distributed, limiting the height

it can reach when compared to a geyser with a single hole. This is not achievable with

α = 1 independently of the number of holes, the simulation does not have enough energy

to attain a higher altitude.

In line with previous experiments, in Figure 23, we observe the impact of varying

the tensor Ąeld on the integration of the Bernoulli equation, the Bernoulli equation without

pressure energy, and the velocity divergence. In the following descriptions, whenever a

hole in the domain is mentioned, we are referring to the sections on the tensor Ąeld that

we Ąlled with isotropic tensors between the planar tensors. We can see in Figure 23 that

closing the central hole in the domain from iteration 400 to 800 signiĄcantly affects the

behavior of system energies and divergence. Filling the central cells of the domain with

planar tensors results in an increase in divergence from a scale of 10−9 to 10−7 with a

notably high standard deviation of the mean. The divergence graph closely mirrors that

of the complete integration of the Bernoulli equation. However, in the graph depicting

integration without pressure, we notice a different behavior on gravitational and kinetic

energies between the phase with Ąve holes in the domain compared to the initial phase with

a single hole at the center. The kinetic energy of the system exhibits a more substantial

initial increase after introducing additional holes in the domain, followed by a subsequent

decline and then an exponential rise, contrasting with an almost linear progression in

the phase with only one hole in the domain. Furthermore, both gravitational potential

energy and kinetic energy experience an uptick with an increased number of holes in the

domain. This arises from the simultaneous movement of a greater volume of Ćuid and the

cumulative energy that occurs when no holes are present in the system. Consequently,

despite achieving greater heights in the initial phase with only one hole, the third phase

with Ąve holes moves a larger volume of Ćuid and nearly reaches the same height as the

initial phase.
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Figure 23 Ű Time Varying Axis-Aligned Planar & Linear Tensors Bernoulli Equation Integrations
and Velocity Divergence

(a) Bernoulli Equation Integration (b) Bernoulli Equation Integration Without Pres-
sure

(c) Velocity Divergence

Source: Created by the author.

4.2.2 Simulation with the Strain-Rate Tensors

This subsection proposes a smooth adjustment to the tensor Ąeld across the entire

Ćuid simulation. The primary objective of this experiment is to demonstrate the utilization

of the tensor Ąeld to inĆuence the pressure of Ćuid Ćow throughout each step of the

simulation. Our focus lies in ensuring that the Ćuid alleviates its pressure in the direction

of deformation, while limiting pressure exchange in other directions. To accomplish this,

we incorporate the strain-rate tensor, as discussed in Section 2.1.2, as a crucial element in

designing the tensor Ąeld for this experiment.

However, a challenge arises when attempting to use the strain-rate tensor, as it

possesses the issue of potential semi-deĄniteness. Our method, outlined in Section 3.1.1,

mandates that our tensor must be positive-deĄnite. However, this limitation can be

resolved by integrating the strain-rate tensor. Consequently, the tensors employed in this
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experiment are described as follows:

T =
M
∑

i=1

eγ(∆tλi)eie
T

i ,

where λi and ei are the i-th eigenvalues and eigenvectors of the strain-rate tensor, re-

spectively. The scalar factor parameter, denoted as γ, is incorporated into the equation

for us to control the tensor inĆuence on each simulation. Analyzing the behavior of the

aforementioned equation, a positive-deĄnite tensor is consistently generated. If λi < 0, the

resulting tensor indicates Ćuid compression along the corresponding axis. If λi = 0, the

tensor will have no impact on the pressure exchange along the referenced axis. Conversely,

if the eigenvalue surpasses 1, the tensor will enhance pressure relief along the i-th axis.

Figure 24 Ű Initial setup of the colliding spheres simulation.

(a)

Source: Created by the author.

In this section, we introduce three variations of the proposed experiment. The Ąrst

simulation serves as a reference, where the standard X-IVAS method is employed. This

Ąrst simulation is denoted over Figure 25. Subsequently, two additional simulations are

conducted with different γ values. The Ąrst simulation utilizes γ = 1, while the second

simulation utilizes γ = 5 as we want to emphasize the tensorŠs impact on the Ćuid Ćow.

These two simulations are described in Figure 26, and Figure 27 respectively.
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Figure 25 Ű Colliding spheres using the isotropic tensor Ąeld.

(a) Frame 36 (b) Frame 72 (c) Frame 180

(d) Frame 252 (e) Frame 350 (f) Frame 550

Source: Created by the author.

The velocity update term, denoted as α, has a Ąxed value of 0.15. Additionally, it

is important to note that the gravity force is directed towards the center of the simulation

domain, with a magnitude of 10(m/s2). The color scheme of the particles depicted in the

Ągures within this subsection follows the same scheme as the previously presented falling

block experiment discussed in Section 4.1.1.
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Figure 26 Ű Colliding spheres using the strain tensor Ąeld with γ = 1.

(a) Frame 36 (b) Frame 72 (c) Frame 180

(d) Frame 252 (e) Frame 350 (f) Frame 550

Source: Created by the author.

The experiment consists of two diagonally opposed spheres of Ćuid, as illustrated

in Figure 24. Each sphere has a radius of 6 voxels, and an initial particle density of 100

particles per voxel. Thus, the total number of particles in this experiment is calculated as

2 × (4π/3) × 63 × 100 = 180, 956 particles. Both spheres possess identical initial velocity

vectors but in opposing directions, represented as u0 = [5, 0, 5] and u1 = [−5, 0,−5].
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Figure 27 Ű Colliding spheres using the strain tensor Ąeld with γ = 5.

(a) Frame 36 (b) Frame 72 (c) Frame 180

(d) Frame 252 (e) Frame 350 (f) Frame 550

Source: Created by the author.

Upon comparing the frames presented in Figure 26 with the reference simulation

depicted in Figure 25, we observe subtle differences. The smooth variation of the tensor

Ąeld has a relatively minimal impact on pressure relief. However, the inĆuence of the

tensor becomes evident in Figure 27. Notable distinctions can be observed, such as

the collision portrayed in frame 72 and the formation of a Ćuid sphere at the center

of the domain. Additionally, the color of the Ćuid following the collision illustrates a

lower-pressure conĄguration. As the Ćuid splashes, it generates a sparser layer of Ćuid,

leading to a broader area of low pressure. This sparsity arises from the generation of high

pressure during the sphere collision. The motion toward the opposing collision direction

is accentuated by the strong inĆuence of the tensor Ąeld (γ = 5), propelling the Ćuid

Ćow in the direction of deformation. Furthermore, gravitational forces pull the Ćuid

towards the domainŠs center, which is intensiĄed by the tensor Ąeld that enhances the

Ćuid pressure exchange in this deforming direction. Consequently, a dense Ćuid sphere

forms, distinguishing it from the other two simulations.

In the following Ągures, we observe the inĆuence of the strain-rate tensor on the

systemŠs energies and the velocity divergence. When using the dimensionless tensor, with

γ = 1, the systemŠs energy remains quite similar to that of the isotropic Ąeld; the difference

is too subtle to highlight a signiĄcant impact on the Ćuid Ćow energies, as we can see in



66

Figure 28. However, with γ = 5, we can discern a smoothing effect on the energies, as if

the Ąeld better preserves the systemŠs energy even with numerous collisions occurring. In

this experiment, gravitational potential energy dictates the graph behavior over the others.

However, due to the numerous collisions, we can also observe the impact that pressure has

on the system as the energy sum tends to have the same behavior as the pressure energy.

Figure 28 Ű Strain-Rate Tensors Bernoulli Equation Integration Speed Divergence

(a) Isotropic (b) γ = 1.0

(c) γ = 5.0

Source: Created by the author.

In Figure 29, we observe how gravitational and kinetic energy are signiĄcantly

smoother compared to Figure 28, showing how pressure inserts some noise in the system.

Additionally, we can observe how the Ąeld with γ = 5 truly inĆuences the experiment and

energy conservation, given that Ćuid Ćow tends to favor energy exchange in the direction

where deformation occurs.
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Figure 29 Ű Strain-Rate Tensors Bernoulli Equation Integration without Pressure

(a) Isotropic (b) γ = 1.0

(c) γ = 5.0

Source: Created by the author.

Interestingly, the same can be said about the Ćuid divergence in Figure 30; while

the isotropic Ąeld and γ = 1 result in numerous collisions and a greater variation in

divergence with each collision, the Ąeld with γ = 5 tends to have a divergence with less

standard deviation of the mean, while also tending to possess a lower magnitude than the

other two graphs.
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Figure 30 Ű Strain-Rate Tensors Bernoulli Equation Integration

(a) Isotropic (b) γ = 1.0

(c) γ = 5.0

Source: Created by the author.

4.3 DISCUSSION

The core parameters of our experiments are presented in Table 3. It includes

the computational time cost for each experiment. The computational cost increases

signiĄcantly when dealing with time-varying tensor Ąelds. The main factor contributing to

this computational cost is the recomputation of the Laplacian mask proposed by Parreiras

[2022]. Such recomputation poses a prohibitive cost for real-time applications. Nevertheless,

if the tensor Ąeld remains static throughout the simulation, the computational time cost

becomes manageable.

Throughout all experiments, and despite introducing a whole new computational

complexity on the computation of the tensor Ąeld, our method yields very low magnitude

errors around 10−12 (maximum) for all divergence-free vector Ąelds. A key contribution

that enabled us to achieve this level of tolerance and low divergence is the discretization

proposed by Parreiras [2022] on an extended MAC grid. For the sake of reproducibility,
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Table 3 Ű Summary of experiments setup and simulation times

Parameter Simulation
Experiment

Grid # particles Tensor ∆t (s) α Sec./frame Total time

Falling Block 1 (Fig. 5) 60
3

160, 000 Isotropic 1/60 1.0 1.91 00:38:10

Falling Block 2 (Fig. 6) 60
3

160, 000 Aligned planar 1/60 1.0 1.79 00:35:50

Falling Block 3 (Fig. 7) 60
3

160, 000 Aligned linear 1/60 1.0 2.16 00:43:08

Cloth λ3 = 10
−2 (Fig. 13) 60

3
250, 000 Non-Aligned planar 1/60 0.15 3.27 01:05:19

Cloth λ3 = 10
−3 (Fig. 13) 60

3
250, 000 Non-Aligned planar 1/60 0.15 3.24 01:04:51

Cloth λ3 = 10
−4 (Fig. 13) 60

3
250, 000 Non-Aligned planar 1/60 0.15 3.06 01:01:17

Geysers 1 (Fig. 21) 60
3

792, 000 Varying aligned planar 1/60 1.0 20.40 06:47:55

Geysers 2 (Fig. 22) 60
3

792, 000 Varying aligned planar 1/60 0.15 20.69 06:53:52

Colliding Spheres (Fig. 25) 60
3

180, 956 Strain 1/60 0.15 1.89 00:37:52

Colliding Spheres γ = 1 (Fig. 26) 60
3

180, 956 Strain 1/60 0.15 6.45 02:09:04

Colliding Spheres γ = 5 (Fig. 27) 60
3

180, 956 Strain 1/60 0.15 6.70 02:13:58

our source code is available in www.gcg.ufjf.br.

The proposed method yielded many appealing results across our experiments.

While we maintained Ąxed grid resolution and time step for comparison purposes, we

observed that plausible results can be generated even with higher time steps and lower

resolutions. Although we presented speciĄc tensor Ąeld conĄgurations and showcased

their impact on Ćuid Ćow, it is important to note that this work does not encompass an

exhaustive enumeration of all potential applications and effects of the proposed method.

The utilization of planar tensors made a signiĄcant contribution to artiĄcially

increasing the pressure over the Ćuid volume, as depicted in Sections 4.1.1, and 4.2.1. Also,

through planar tensors, we were able to generate permeability-like effects, as exempliĄed

in Section 4.1.2. This demonstrates the possibility of either exerting subtle control over

the Ćuid trajectory or retaining the Ćuid to a speciĄc location. However, achieving this

effect required the development of a novel body force (Eq. 4.3). It should be noted that

this force application necessitates a tensor Ąeld comprising at least two surface layers

(two cells in the target direction) to be captured by our divergence computation scheme.

Fields with only one layer would result in a considerably smoother tensor-based force,

with possibly low impact on the Ćuid Ćow. Another important limitation of this force lies

in its sensitivity to the time step. Higher time steps tend to reduce the force inĆuence on

the local Ćuid dynamics. A possible future improvement could involve integrating this

force with the three-step third-order Runge-Kutta scheme.

The utilization of linear tensor Ąelds is valuable when the pressure exchange needs

to occur in speciĄc directions, as shown in Section 4.1.1. They proved quite difficult

to design since they present fewer paths to the Ćuid Ćow to relieve the pressure in the

projection step. However, they are useful when combined with planar tensors to divert

Ćuid in a speciĄc location on a surface with a speciĄc induced pressure. Moreover, linear

tensors appear frequently in the strain tensor simulation with γ = 5, during the Ćuid

collision. As a consequence, the deformations appeared in speciĄc directions thereafter.
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Our method maintains stability over higher time steps, as suggested by the default

X-IVAS method presented in the work of Idelsohn et al. [2012]. As expected, when the

FLIP update is fully used with α ≈ 0, the simulation can present instabilities. This is

a well-known behavior, that happens when the velocity Ąeld does not necessarily have

divergence-free.

The tensor Ąeld modulation over the pressure and viscous terms in our model does

not preserve momentum, as is seen in the geyser experiment. Thus, tensor Ąelds can

increase and decrease local velocities and consequently can represent dynamic medium

attributes. A deeper analysis of the moment and mass conservation is a future work to

improve our propositions.

By analyzing the integration of energies for the geyser (Figure 23), and strain rate

experiment (Figure 28), we observe that in the presence of a strong impact, pressure

exhibits a peak resembling a Dirac delta function. Subsequently, it may generate a zone

with negative pressure, after which the system tends to normalize. This renders the

integration values somewhat counterintuitive in these cases. Therefore, we believe a more

in-depth analysis is necessary to determine whether this phenomenon is physically feasible

or if such an impact could be propagated less immediately within the system.
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5 CONCLUSION

We present a mathematical and computational model that deals with anisotropic

Ćuid transport. The model is based on second-order positive-deĄnite tensor Ąelds that can

change over time. We propose a new numerical solution for anisotropic advection based on

the X-IVAS method. This solution takes into account the inĆuence of tensors on viscous

forces and accumulated pressure gradient.

Additionally, we propose a numerical solution for our novel tensor-based anisotropic

decomposition (Eq. 3.20). This decomposition is designed to accumulate and adjust

pressure as the tensor Ąeld evolves over time as discussed in Section 3.1.1. Unlike previous

literature works [Nigro et al., 2011, Idelsohn et al., 2012, 2013, 2014, Nadukandi et al., 2017],

our contributions were discretized using the extended MAC grid proposed by Parreiras

[2022]. However, our method can be implemented on various discretization schemes, such

as PFEM. Furthermore, we devised a velocity update scheme that guarantees that it

remains divergence-free as the tensor Ąeld varies in time (Eq. 3.21).

In Chapter 4, we conducted various experiments using static and time-dependent

tensor Ąelds. We explored different parameter and tensor Ąeld variations for comparison

purposes. Our results demonstrate that the proposed method succeeds in anisotropic

modulating pressure and viscosity terms. We also present in Section 4.1.2 an experiment

showing the usage of a body force based on the tensor Ąeld conĄguration. This possibility

enables our method to simulate a wider range of effects. However, in this case, we did not

couple the body force with the advection step as in previous works Renhe et al. [2019],

Parreiras et al. [2022]. In future works, we aim to incorporate tensor inĆuence into our

advection scheme, with compromise to numerical accuracy and stability. Designing tensor

Ąelds to modulate Ćuid dynamics is still a challenge. Its inherent multivariate effect locally

in space is not intuitive. Furthermore, in our work, we introduce one more degree of

freedom by allowing the tensor Ąeld to change in time. Consequently, it is necessary to

create mathematical models to design meaningful tensor Ąelds, application-based tensor

Ąelds, and perhaps families of tensor Ąelds with valuable differential properties.

As discussed in Section 4.3, our anisotropic pressure and viscous term modulation

do not preserve momentum. Therefore, future works will delve deeper into the analysis of

momentum and mass conservation. Also, we seek to Ąnd out what properties a tensor

Ąeld needs to enforce conservation.
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