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ABSTRACT

Hot box and hot wheel problems on trains are significant threats in any rail operation
because they increase fatigue and wear processes, resulting in failures, costly train stoppages
and even derailments. For this reason, there are many hot box and hot wheel detectors to
monitor those components distributed along the railway, and when they detect overheated
components, a warning is given to alert to the impending failure. However, some situations
such as solar incidence, misalignment, or sensor defect can lead to improper warnings, that
is, warnings that actually do not exhibit the problem. Therefore, this work develops a new
model for the classification of proper and improper warnings in hot box and hot wheel
problems, by the analysis of the temperatures measured in the wheels and bearings of the
train when the warning was given. To this end, the discussion focuses on the use of a meta-
heuristic optimization algorithm into the training phase of an upper and lower singleton
type-2 fuzzy logic system, in order to increase the convergence speed and the accuracy of
this procedure. Thus, the performance of the new model will be based on the real data
set composed of train wheel and bearing temperatures, provided by a Brazilian railway
transportation company, covering several situations of proper and improper warnings.
Additionally, this work presents performance analyses based on well-known data sets
provided by Knowledge Extraction based on Evolutionary Learning Repository, aiming to
evaluate the proposal. For comparison purposes, the results of the proposed classifier will
be compared to well-know deep-learning classifiers as well as the original fuzzy model it is
based on. The performance analysis of the new model is discussed in terms of classification
ratio and convergence speed. The reported results show that the proposal achieved higher

classification ratio and proved to be an appropriate option for the presented problem.

Key-words: Type-2 Fuzzy Logic Systems, Meta-heuristic Optimization, Swarm Intelligence,

Classification.
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1 INTRODUCTION

Among different modes of transportation, the rail transportation offers excellent
energy conservation, environmental protection and reduced travel time (CHONG; SHIN,
2010). Inevitably, it plays a major role in the transportation of goods and passengers,
being an effective solution for connecting urban centers and a low-cost option for industry
transactions. Due to this circumstances, many train components are constantly submitted
to stressing cycles with heavy loads, increasing the probability of failures and reducing the

lifespan of components such as bearings and wheels.

According to (TARAWNEH et al., 2019) and (TARAWNEH et al., 2009), the
increased bearing defects might cause catastrophic failure that can lead to costly train
stoppages and even derailments. In addition, (HAIDARI; TEHRANI, 2015) stated the
importance of the thermal effect on wheels fatigue and the impact of the fatigue on wheel

failure that may cause derailments.

Hot box and hot wheel are indications of these defects, that is why the overheating
of the bearings and wheels can warn of some impending failures. Therefore, monitoring
these components by hot box and hot wheel detection systems is essential to prevent the

aforementioned accidents.

For those reasons, the importance of maintenance and maintenance management
has grown in recent years. So, the railway industries face increasing pressure from customers
and owners to improve safety, capacity, and reliability, while controlling expenses and
tightening the budget (PALO et al., 2014).

In the case of hot bearings or hot wheels detection, the sensor can erroneously
detect overheating of these components due to some situations such as sensor defects,
misalignment, or solar incidence. This incorrect detection leads to unnecessary maintenance

that greatly increases the expenses of the railway industries.

In light of this, the use computational intelligence techniques to distinguish the
real overheating situations from the false ones is a valid way to reduce the unnecessary
maintenance. Thus, the cost and time spent on maintenance is reduced and productivity

is increased without reducing safety of rail operations.

One computational intelligence method that has been extensively used in classifica-
tion problems due to its treatment of uncertainty is the Type-1 fuzzy logic system (FLS)
able to generate interesting results in various sectors of the railway industry, for example
(AGUIAR et al., 2014; AGUIAR et al., 2015; AGUIAR et al., 2017; AGUIAR et al., 2016).

Even though type-1 FLS is capable of handling uncertainty associated with classifi-
cation problems and offers improved performance, it is unfortunately unable to adequately

model and minimize the effect of some kinds of uncertainties, as it is discussed in (Mendel,
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2007). Those uncertainties arise from factors like randomness, imprecision, or other ele-
ments such as ambiguity, noise, distractions, and more. Such uncertainties can stem from
the nature of the problem itself or from challenges in translating specialized knowledge

into the model.

Therefore, a suitable option to better overcome this limitation is the type-2 FLS,
which provides a higher level of imprecision modeling (JOHN; COUPLAND, 2006). The
extra dimension and parameters in type-2 FLS may offer more design freedom and flexibility

than type-1 FLS (ALMARAASHI et al., 2016).

However, the additional freedom provided by type-2 FLS which increases the
ability for modelling uncertainty, also entails a significant increase in complexity of the
fuzzy systems and their operations (WAGNER; HAGRAS, 2010). As stated in (LIANG;
MENDEL, 2000b), a downside of the type-2 FLS is that they are computationally intensive

because of their type-reducer, and the same is associated with their training phase.

Therefore, the limited hardware resources availability and the real-time constraint
can act as restrictions for the proper functioning of type-2 FLS. Consequently, for a limited
number of epochs, it is hard to achieve a training with reduced computational complexity,

high accuracy, and high convergence speed with type-2 FLS.

As a result, an important asset is a training phase with high accuracy and conver-
gence speed which may result in less utilization of the hardware resource and, accordingly,
may enable almost real-time training of the classification technique when new patterns

need to be covered.

In order to deal with the limitation of type-1 FLS and the computation complexity
of type-2 FLS, a previous work proposed the use of the algorithm Adam, acronym for
adaptive moment estimation, presented by (KINGMA; BA, 2014), for the training phase
of an upper and lower singleton type-2 fuzzy logic system (ULST2-FLS), introduced by
(AGUIAR et al., 2018). The combination of the stochastic optimization strategy provided
by Adam with ULST2-FLS created the algorithm Adam ULST2-FLS, which was presented
in (FONSECA; AGUIAR, 2022).

The concept of set-membership (SM) (AGUIAR et al., 2017; CLARKE; LAMARE,
2011; SALMENTO et al., 2017; SALMENTO; AGUIAR; RIBEIRO, 2015; WANG; DE-
LAMARE, 2013; DINIZ, 2002; ABADI; ESKANDARI, 2013) derived from adaptive filter
theory (HAYKIN, 1996),and the use of the mean square error (MSE) combined with SM
(AGUIAR et al., 2020) were also proposed in (FONSECA; AGUIAR, 2022). Those models
achieved great results with fast convergence speed during training phase and fewer use of

hardware resources.

As a sequence of (FONSECA; AGUIAR, 2022), this work proposes the utilization
of a meta-heuristic method for the training phase of ULST2-FLS. There are plenty of
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reasons for working with meta-heuristic optimization techniques. For example, they are
easy to understand, because they are generally inspired by simple concepts. And they are
also very flexible and can be applied to different problems without any special changes in
the structure of the algorithm. Another advantage is their hybridization property, that is
they can combined with other optimization techniques to create hybrid algorithms that
leverage the strengths of multiple approaches for improved performance. Moreover, the

meta-heuristic methods are able to avoid stagnation in local solutions.

Therefore the chosen method was the algorithm Grey Wolf Optimizer, presented by
(MIRJALILI; MIRJALILIL; LEWIS, 2014). GWO is a Swarm Intelligence (SI) optimization
algorithm inspired by grey wolves, which mimicks the leadership hierarchy and hunting
mechanism of these animals in nature. According to (MIRJALILI; MIRJALILI; LEWIS,
2014), this algorithm is an efficient method that provides competitive results when compared
to other methods such as particle swarm optimization (PSO), gravitational search algorithm
(GSA), differential evolution (DE), and evolutionary programming (ES). It also showed
high local optima avoidance and it is simple to implement, computationally efficient, with
fewer parameters to adjust. These characteristics make it an attractive method to be
applied to the training phase of a type-2 FLS for increasing its accuracy and convergence
speed. Furthermore, GWO presents great results when combined with other algorithms
(DAVIRAN; GHEZELBASH; MAGHSOUDI, 2023) as well as with fuzzy controllers
(BOJAN-DRAGOS et al., 2021).

For the purpose of testing the proposal performance, it is applied to classify data sets
of binary classification problem provided by Knowledge Extraction based on Evolutionary

Learning (KEEL) Repository (ALCAL&-FDEZ et al., 2010).

Additionally, the proposed method is applied to a data set consisting of temperature
measurements on train wheels and bearings collected by hot box and hot wheel detection
systems in order to classify the authenticity of hot box and hot wheels detection and identify
false indications to reduce unneeded maintenance. This data set was provided by a Brazilian

company of the railway sector, named MRS Logistica S.A. (https://www.mrs.com.br/).

Therefore, the main contributions of this work can be summarized as follows:

o The introduction of GWO ULST2-FLS, a Type-2 Fuzzy Logic System trained by the
ST algorithm optimization GWO (MIRJALILI; MIRJALILI; LEWIS, 2014) in order
to obtain a training phase with increased accuracy and convergence speed, requiring

less hardware resource utilization.

o Performance analysis of GWO ULST2-FLS in terms of convergence speed, accuracy,
MSE, Cohen’s kappa and F-score by using data sets of binary classification problem
provided by Knowledge Extraction based on Evolutionary Learning (KEEL) Repos-
itory (ALCALA&-FDEZ et al., 2010). By the means of this performance analysis,
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there is a comparison between the proposed model and the previous techniques
ULST2-FLS (AGUIAR et al., 2018), Adam ULST2-FLS, SM Adam ULST2-FLS and
MSE ULST2-FLS (FONSECA; AGUIAR, 2022) and three deep learning methods
used for binary classification: Scalable Tree Boosting System (XGBoost) (CHEN;
GUESTRIN, 2016), Convolutional Neural Network (CNN) (KIM, 2017) and Long
Short-term Memory (LSTM) Network (PALUSZEK; THOMAS, 2020).

o Performance analysis of GWO ULST2-FLS in terms of convergence speed, accuracy,
MSE, Cohen’s kappa and F-score by using a data set composed of temperature
measurements on trains wheels and bearings provided by MRS Logistica S.A., to
discern real hot box and hot wheels problems from the incorrect indications. By
the means of this performance analysis, there is a comparison between the proposed
models and the prior methods ULST2-FLS (AGUIAR et al., 2018), Adam ULST2-
FLS, SM Adam ULST2-FLS and MSE ULST2-FLS (FONSECA; AGUIAR, 2022) and
three deep learning methods used for binary classification: Scalable Tree Boosting
System (XGBoost) (CHEN; GUESTRIN, 2016), Convolutional Neural Network
(CNN) (KIM, 2017) and Long Short-term Memory (LSTM) Network (PALUSZEK;
THOMAS, 2020).

And the major conclusions are:

e The use of the SI optimization GWO (MIRJALILI; MIRJALILI; LEWIS, 2014)
contribute to increase convergence speed and classification rate of the training phase

compared to the former approaches.

o The proposal is suitable for the problem addressed in this work, due to the fact that
it achieved higher classification ratios during the test phase compared to the original

models and the other deep learning classifiers.

This work is organised as follows: Section 2 addresses the problem formulation.
Section 3 aims to discuss the concept of GWO combined with the ULST2-FLS. Section 4

presents the results of computer simulations. Finally, Section 5 states the main conclusions.

Publications
This section presents the publications by the author during this work.

The paper published in journal is:

« FONSECA, L. D.; AGUIAR, E. P. Stochastic optimization combined with type-

2 fuzzy logic system for the classification of trends in hot boxes and hot wheels.
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International Journal of Fuzzy Systems, v. 24, 08 2022. DOI:10.1007/s40815-022-
01326-8.

The conference paper is:

LIMA, J.; MEDEIROS, A.; AGUIAR, E. P.; SILVEIRA, D.; FONSECA, L. D;
GUERRA, T.; JR., V.; DANTAS, Y. Sistemas Fuzzy aplicados ao Handover em Redes
LTE com Falhas de Cobertura. In: XXXVII Simpésio Brasileiro de Telecomunicagoes
e Processamento de Sinais, 2019, Petropolis. Anais de XXXVII Simposio Brasileiro

de Telecomunicagoes e Processamento de Sinais, 2019.
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2 PROBLEM FORMULATION

Hot wheels and hot boxes are significant threats in any railway operation. The
overheating of wheels can increase the fatigue and wear processes that might result in
dangerous situations and failure. At the same time, a hot box, due to bearing defects, can
cause fractures in axle journals and bearing failure which might costly train stoppages

and even derailments.

According to United States Federal Railroad Administration (FRA) (FRA, c), from
2010 to 2016, there were 119 train derailments due to overheated bearings in the U.S. and
Canada. One example is a train derailment accident caused by the catastrophic failure of
a roller bearing and subsequent burning axle journal that occurred in 2013 near Sudbury,
Ontario in Canada. Six cars with 12 car bodies and 20 containers derailed and struck
the railway bridge. This bridge collapsed due to the impact and seven containers, some

carrying dangerous goods, fell into the river, as shown in Figure 1 (T'SB, 2013).

Figure 1 — Collapsed south end of the railway bridge (T'SB, 2013).

In addition, as reported by the FRA (FRA, b; FRA, a), the North American railroad
industry spends more than US$800 million annually on wheel removals. Approximately
20% of this expense is due to bearing failures and more than 60% to wheel failures, resulting
in US$160 million and US$480 million annually, respectively. These failures are mostly
caused by the effects of their overheating which is the main factor that can alert you to

the impending failure.

Between 1997 and 2019, according to the Brazilian ANTF (National Association of
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Railway Carriers) (ANTF, ), the volume of goods transported by railroads increased by
95%. In order to significantly expand the rolling stock fleet, about US$600 million was
invested in 2019. Thus, the number of locomotives on the railroads was raised from 1,154
in 1997 to 3,405 in 2019, representing an increase of 195%. In addition, the number of
wagons increased from 43,816 to 115,434, resulting in an increment of 163%. These data
demonstrate the growing number of rail transport, which, as a result, tends to increase
defects.

Figure 2 — Hot box detection and hot wheel detection systems (VOESTALPINE..., ).

Therefore, for the purpose of predicting and preventing the failures mentioned
above, bearing and wheels health monitoring systems were implemented by the railroad
industry. These health monitoring systems are mainly the hot box detector (HBD) and
the hot wheel detector (HWD), which are shown in Figure 2 (VOESTALPINE. .., ). The
upper part of the figure shows a picture of HBD and HWD in a railway and the bottom
part represents a schematic drawing showing how temperature measurements are taken.
The main difference in the detectors on the real picture from the detectors on the drawing
is the doubled sensors presented on the drawing which are showing different points of

temperature measurement on the bearings and wheels of the train.

For illustrating how important is this issue, according to the Association of American
Railroads (AAR) (AAR, 2015) more than 6,000 HBDs have been installed by the North
American railroads. They are placed in order to reduce the risk of bearing failures due to

overheating, and this results in the presence of one HBD system every approximately 25
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miles on the Class I freight rail networks (BRAREN; KENNELLY; EIDE, 2009). When
HBD and HWD determine that bearings and wheels temperatures are exceeding the
temperature threshold, a warning is given to indicate potential issues. As a safety measure,

the components are removed from service for later disassembly and inspection.

Although those detectors are widely used and have been able to prevent accidents
from happening, the system is not flawless. Many variables, such as sensor defect, solar
incidence or longitudinal misalignment, can affect the temperature measurements. For
this reason, a HBD, for example, may greatly over-predict bearing temperature, leading to
a significant number of warnings for bearings that do not have discernible defects. These

bearings are then classified as “non-verified”.

Non-verified bearing removals cause rail line interruptions and congestion of the
rail network, due to the unnecessary train stoppages and delays, in addition to the use
of unneeded maintenance time, parts and supplies. These unnecessary expenses are
demonstrated by the investigation of Amsted Rail, which reveal that, from 2001 to 2007,
almost 40% of bearing removals were “non-verified” bearings (TARAWNEH et al., 2018).

Under this perspective, distinguishing the components that indeed present defects

from the “non-verified” ones is highly necessary in order to:

o reduce the number of unnecessary maintenance;
o reduce the number of unneeded train stoppage and delays;

« reduce the replacement of defect-free components, thereby reducing expenses with

unnecessary new parts and supplies;

 increase the productivity of rail operations, once interruptions and congestion of the

rail network are reduced.

In consideration of the scenario previously exposed in this section, this work aims
to classify the warning signals of components that truly presents hot box or hot wheels
problems (proper warnings) and the warning signs of components that do not present

discernible defects (improper warnings).

Figure 3 illustrates the steps taken to accomplish this goal. The input matrix I
consists of a list of temperature measurements on the right and left wheels and bearings
of the train when a warning have been triggered. Then this data is treated by the feature
extraction where the characteristics used for the classification are selected. The extracted
features K are the mean, the median, the standard deviation, the minimum value and
the maximum value of the measured temperatures and they are the input features for

the classifier. At last, in the Classification block, the classification technique discussed in
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this work is applied to obtain the output vector s, consequently identifying the proper or

improper warnings.

Figure 3 — Block diagram of the scheme for classification of events.
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3 THE PROPOSAL: GREY WOLF OPTIMIZER COMBINED WITH
ULST2-FLS

In this chapter, the background of ULST2-FLS (AGUIAR et al., 2018), Adam
ULST2-FLS, SM Adam ULST2-FLS and MSE ULST2-FLS (FONSECA; AGUIAR, 2022)
is first discussed. Then, the proposed method GWO ULST2-FLS is provided, including

its inspiration and mathematical model.

3.1 The upper and lower singleton type-2 fuzzy logic system

Type-1 FLSs provide improved performance, however they unfortunately are unable
to adequatly handle some uncertainties associated with the classification problem, in
particular the uncertainties present in the measurements that activate the FLS or in the
data that is used to tune the parameters of an FLS (MENDEL, 2001). So, in order to
better handle the uncertainties, type-2 FLSs can be used and according to (MENDEL;
JOHN; LIU, 2006), they have the potential to provide better performance than a type-1
FLS (e.g., (HAGRAS, 2004; LIANG; MENDEL, 2000a; LIANG; MENDEL, 2000c; LIANG;
MENDEL, 2001; LIANG; KARNIK; MENDEL, 2000; MELIN; CASTILLO, 2004; OZEN;
GARIBALDI, 2003; WU; TAN, 2004; WU; MENDEL, 2003)).

Figure 4 (AGUIAR et al., 2020) shows the components of a T1 and T2 FLSs.
Both systems are composed of the same elements: the fuzzifier, the fuzzy rule base, the
fuzzy inference engine and the output processor. So their rules are the same and the
difference is only the models used for the membership functions. Take for example a
gaussian function, type 1 membership function would be a simple gaussian, where as the
type 2 membership function would present a footprint of uncertainty limited by the upper

membership function and the lower membership function. The footprint of uncertainty
can be seen in Figure 5 (ABIYEV, 2014).

Another major difference is the nature of the output processor, in which the T2 FLS
presents a type-reducer before the defuzzifier while T1 FLS only presents the defuzzifier.
The type-reducer operation converts the output type-2 membership function in its output

type-1 membership function.

The proposed classifier are type-2 singleton FLS classifier based on the classifier
ULST2-FLS introduced in (AGUIAR et al., 2018). They use singleton fuzzification,
max-product composition, product implication, height type-reduction and make use of

Gaussian primary membership function with uncertain mean.

Assuming the Gaussian membership functions with a fixed standard deviation o, and
an uncertain mean situated in m € [my, mo|, which is shown in Figure 5 (ABIYEV, 2014).

The upper membership function and lower membership function are given, respectively,
by:
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Figure 4 — (a) Components of a FLS, and (b) nature of the output processor for T1 and T2 FLSs

(AGUIAR et al., 2020).
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Figure 5 — Type 2 membership function with uncertainty in the mean (ABIYEV, 2014).
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The ULST2-FLS presents the type reducer using the following structure:

fs2(X) = [YUp(X)> YLow(X)] (33)

where fs2(x) is determined by two final outputs Yy,(x) and Y., (x) , expressed by:

S 0 Ty ﬁF,g(xk)

Y, —
uplre) S Ty ﬁFli(xk)

(3.4)

and M P
et 0 1Ty B (z1)

Ef\il Hlf:l lei (xk)

where 6, is the weight associated with the Ith rule, [ = 1,.., M, and x}, is the kth input,
k=1,..,P.

Yiow(Tx) = (3.5)

The defuzzification of ULST2-FLS is given by:

_ Yup(%) + Yiow(x)

falx) = T (36)

For a set of input—output pairs (X(Q) : y(Q)), where ¢ indicates the gth iteration used
for training the ULST2-FLS. This classifier follows with the problem of minimizing the

cost function below:

3 (W) = ; (fi2 (x@) = y@r, (3.7)

in which w(? represents the vector of parameters for ULST2-FLS, defined by:

W =m0 (@), s M1 (0), coes Mt (), ooy e (@),
Mop (@) oy Mapy (@), -y Mapnt (@), .., Mot (), (38)
opi(q), s UF})(q), s aFlM(q), . Jng(q),

01(q), .. O ()]

and the gradient VJ(w(@) of eq. (3.7) is expressed by:
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W@ 0J(w'?) 0J (w?) 0J(wl) 0J (w'?)
vI(w?) = [amwl(q) O (@) Ot (@) Oy ()
OJ (w'®) O0J (w®) 0J (w@) OJ (w'®)
am2F1( ) am2F1 (@) 87”21?11‘4(Q)’m7 amQF})”(Q)’

(3.9)
0J(w(@) 0 (w(@) 8J(W(q ) 0 (w(@)
dop(q) " Oopy(q) " Oopu(q)’ " Oopu(q)’
0J(w?@) I (w?)
00:(q) "~ 90um(q)
Accordingly, the parameters are updated by the following equations:
0J(w(@)
1) = —Qy———— 1
mlF,é (q + ) mlF]i <Q) «Q amlFli (q) (3 O)
5J(W(q))
= — Qg ——= A1
mQFIi (q + 1) mQFIi (q) a amQFli (Q) (3 )
(a+1) = opy(0) — 0, o) .12
O-F]é q - O-F]i q % 80'Fl (q) .
0J(wl)
O(g+1)=0/(q) —as—F—— 3.13

in which a; is the step size, and the first-order derivative of J(w(?) with respect to the
parameters mlF’i(q), mQFé(q), UF,§<Q) and 6;(q) are described in (AGUIAR et al., 2018).

3.2 Adam and SM combined with upper and lower singleton type-2 fuzzy logic system

The difference in the training phase between the traditional ULST2-FLS and the
method Adam ULST2-FLS is that the latter is based on estimates of first and second
moment of the first-order gradients. So the following calculations are based on the work
presented by (KINGMA; BA, 2014). They start calculating u and v that are vectors

composed respectively by:

u@ :[umlpl1 (q), ..., Ui, (q), ..., U, pas (q), s U, pps (q),

Um2F11 (Q)a ST UWQF}D (Q)7 0 UszlM (C]), T umZszDu (Q)’ (314)

uO'Fl (Q)v "‘7,U’O'F113 (Q)v "'7uUF1]\J (Q)7 "”uO'Fg[(Q)7
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and

v(@ — [vmlFll (q), -y Lo (q), .., Vi, pa (q), .., U s (q),

Um2F11 (Q)v ) vm2F113 (Q)y Y Um2F1M (q)’ o UmQFg[ (Q)7 (315)

Vo 1 (@) -y Vo (q), - Vo (q), .., Vo (q),

1

Vo, (Q), e Uy (Q)}
These vectors are initiated as vectors of zeros and then are calculated respectively by:
ul™ = a4 (1 5y) - VI(w?) (3.16)
and
2
Vit = 8, . v@) 4 (1 — 3,) - {VJ(W(Q))] (3.17)

where 3, and (B, are values that control the exponential decay rates for the moment
estimates and /3y, 52 € [0,1).

From the estimates of first and second moment, it is possible to compute bias-

corrected estimates of first and second moments, u and v, expressed by:

~ ~ ~

al? _[umlFll (q), oy U, g (q), ey U (q), o Ty g (q),

aszll (q)7 M amZFllD (q)? M am2F11\4 (q)? M am2FgI (q)) <3 18)
,ZA’LO'Fll (q>7 M aUFIl) (q)7 M aUFI]M (q)7 ) T/ZUFI];/I (q>7
Tty (), -+ o, (9)]
and
@ — {T’mwf (q), -y ﬁmlp}) (q), .., @mlFlM (q), ..., @nwgf (q),
i)\m2F11 (q)7 e i)\m2F113 (q)7 ) @mZFIIM (Q)7 R i}\mQFgf (Q)7 (3 19)
6O'F‘ll (q)7 ) @O'F; <Q)7 M Q/}UFlj\J (q)7 ) /l/;O'Fé\/[ (q>7
0,(9), - Ton ()]
These vectors are obtained by the following equations:
(9)
S(gt+l) u 3.90
v 1 —(By)att (3:20)
and “
gty — V" 3.21
M S AT @21)

At last, the equations used to update the parameters in Adam ULST2-FLS are
(FONSECA; AGUIAR, 2022):
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myp(q+1) = myp(q) — as : (3.22)

Mapi (¢ + 1) = mypi(q) — as—— (3.23)

F
op(g+1)=0p(q) — as : (3.24)

u9l(q + 1)

\/Uel (g+1)+e

in which «y is the stepsize and € is a small number to prevent the denominator from being

9(q+1)—91

(3.25)

Zero.

In addition to the new parameters update method, the concept of set-membership
was added, creating the SM Adam ULST2-FLS. This technique was proposed based on the
sucess obtain in the use of the ser-membership concept that achieved great results with fast
convergence speed during training phase with fewer use of hardware resources (AGUIAR et
al., 2017; CLARKE; LAMARE, 2011; SALMENTO et al., 2017; SALMENTO; AGUIAR;
RIBEIRO, 2015; WANG; DELAMARE, 2013; DINIZ, 2002; ABADI; ESKANDARI, 2013).
Thus, the values §; and [, are replaced respectively by variable exponential decay rates
p1(q) and pa(q), defined by:

error(q) . B
pi(q) + ——— TR if error > 7%
pi(g+1) = (3.26)
error(q) A
wi(q) — T otherwise
and
error(q) _
pa(q) + 1077 of error > 7%
po(g+1) = (3.27)
error(q) .
p2(q) — TR otherwise

where error(q) = | fso (X(Q)) —y@] and 7 is the upper bound constraint.

Finally the last modification in the original classifier ULST2-FLS was using the
mean square error instead of the error modulus to calculate the variable exponential decay

rates, resulting in MSE Adam ULST2-FLS. The utilization of mean square error has
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consistently enhanced both accuracy and convergence speed in prior studies (AGUIAR et
al., 2020), thus prompting its proposal in this context. So, u1(q) and us(q) are calculated
2

by the Egs. (3.26) and (3.27) replacing error(q) with MSE(q) = 1 [fsQ (X(q)) - y(‘I)] :

3.3 GWO ULST2-FLS

A new method to update the parameters is proposed in this work, using the SI
algorithm GWO (MIRJALILI; MIRJALILIL; LEWIS, 2014). It is an efficient method based
on the leadership hierarchy and hunting mechanism of grey wolves. This model is simple to
implement, has little memory requirement and presents computationally efficiency. These
characteristics, along with the fact that it doesn’t require the computation of the gradient,

make GWO a great alternative for the above mentioned methods.

The key features of the algorithm are saving the best solutions obtained so far
over the course of iteration, using random parameters for exploration which avoids local
stagnation, locating quickly the probable best solutions, smoothly transitioning between

exploration and exploitation, and presents minimal parameters to adjust.

Grey Wolf Optimizer is inspired by the social hierarchy and hunting behavior of
grey wolves. Grey wolves live in packs with a strict dominant hierarchy consisting of alpha,
beta, delta, and omega wolves, as shown in Figure 6 (MIRJALILI; MIRJALILI; LEWIS,
2014). The alpha, despite not necessarily being the strongest, leads the pack, while betas
support decision-making and discipline. Deltas take other roles of some importance and
include scouts, sentinels, elders, hunters, and caretakers. At last the omegas, although
they are at the lowest hierarchical level, play a crucial role as scapegoats and babysitters,

maintaining pack harmony.

@
' N
AR
e

Figure 6 — Hierarchy of grey wolfs in which dominance decreases from top to down (MIRJALILI;
MIRJALILI; LEWIS, 2014).

The GWO algorithm mathematically models this social hierarchy and hunting

behavior to perform optimization. It divides candidate solutions into alphas, betas, deltas,
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and omegas, with the search guided by their positions. The fittest solution is considered the
alpha («). The beta () and delta () are the second and third best solutions respectively.
And the rest of candidate solutions are assumed omegas (w). The optimization process is

guided by «, 8 and §) solutions. Meanwhile the w solutions follow the other three.

Aside from the social structure of wolves, collective hunting is another fascinating
characteristics among grey wolves that are replicated by GWO. The hunting typically
progresses through the following phases: tracking, chasing, and approaching the prey;
followed by a phase of pursuing, encircling, and harassing the prey until it stops mov-

ing; culminating in a direct attack on the prey. These phases can be seen in Figure 7
(MIRJALILI; MIRJALILI; LEWIS, 2014).

Figure 7 — Hunting behavior of grey wolves: (A) chasing, approaching, and tracking prey; (B-D)
pursuing, harassing, and encircling; (E) stationary situation and attack (MIRJALILI;
MIRJALILI; LEWIS, 2014).

Encircling prey is simulated by adjusting positions based on the location of the prey.
The proposed equations to mathematically model this encircling behavior are (MIRJALILI;
MIRJALILI; LEWIS, 2014):

D = |C-X,(t) — X(t)] (3.28)

X(t+1) =X,(t) — A-D (3.29)
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where ¢ indicates the current iteration, A and C are coeficient vectors, X,(t) is the

position vector of the prey, and X(¢) indicates the position vector of a grey wolf.

The vectors A and C are calculated as follows (MIRJALILI; MIRJALILI; LEWIS,
2014):

A=2.-r—a (3.30)

C=2-1, (3.31)

where components of the vector a are linearly decreased from 2 to 0 over the course of

iterations and r; and ry are random vectors in [0, 1].

Grey wolves possess the ability to recognize the location of the prey and encircle
them. Typically, the alpha leads the hunt, although the beta and delta may also participate
in hunting occasionally. However, in an abstract search space, there is no prior knowledge
of the optimal prey location. Then, in order to mathematically replicate grey wolf
hunting behavior, it is assumed that the alpha, beta, and delta have superior knowledge
about potential prey locations. Consequently, the three best solutions obtained thus far
represents wolves «, f and ¢ and they are saved for the next iteration. Meanwhile, the
other search agents, the w wolves, have their positions updated based on the positions
of the leading search agents. This behavior is mathematically proposed by the following
formulas (MIRJALILI; MIRJALILI; LEWIS, 2014):

D,=|C;-X,—X|, Dy =|Cy- X3 —X]|, Ds =|C5 - X5 — X| (3.32)

X, =X~ A (D), Xo=X5— Ay (Dg), Xs=X; —Ag-(Ds)  (3.33)

X+ X+ Xy
- . ,

X(t+1) (3.34)

As previously stated, grey wolves conclude their hunt by attacking the prey when
it stops moving. The mathematical approach of this phenomenon is the decrease of the
value a. It is important to note that the variability of A is also decreasing by a. Moreover
A is a component that favors exploration by mathematically modeling the divergence
between the wolves «, 3, and ¢ to search for the prey. Finally the coefficient C also helps
the exploration factor, showing a more random behavior throughout optimization, which

avoids local optima.

In the context of ULST2-FLS, each vector of parameters w,, in a population of

n vectors of parameters will be sorted into alpha, beta, delta or omegas. Therefore the
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vectors which provided the three best solutions are the «, 8 and 9, which continue in the
search for the next iteration. On the other hand, the rest of the vectors of parameters
will be updated guided by the other three. The following equations are adaptations from
Equations (3.32) and (3.33) that represent the case of ULST2-FLS:

D,=|C; -wos—Ww|, Dg=|Cy-wg—w|, Dy =|C3-ws — W (3.35)

Wi = W, — A1 . (Da), Wo = W/B — A.2 . (Dﬁ), W3 = W5 — A3 . (Dg) (336)
Lastly, the equation used to update the parameters in GWO ULST2-FLS is:

wit+1)= T ‘? W (3.37)

Algorithm 1 reproduces the GWO ULST2-FLS training process.
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Algorithm 1 Training algorithm for GWO ULST2-FLS

1: Inputs:
2: N: Number of samples;
3: tmar: Maximum number of iterations;
4: m: Number of wolves
5: (x(@ ;@) Set of input-output pairs;
6:
7: Output:
8: accuracy: Accuracy of GWO ULST2-FLS;
9:
10: procedure GWO ULST2-FLS TRAINING
11: Initialize the grey wolf population w; (1 =1, 2, ..., n)
12: fort=1,... t,. do
13: for:=1....,ndo
14: forq=1,...,N do
15: Evaluate Yy, (x) and Y., (x), according to Egs. (3.4) and (3.5);
16: Calculate Eq. (3.6);
17: if fo(x() >0 then
18: fs?(x(q)) = 1a
19: else
20: fer(x@) = —1;
21: end if
22: end for
23: wol f.accuracy(i) = (number of correct classifications) /N
24: end for
25: Calculate a, r{, ro, A and C
26: Update wolves «,  and 9:
27: w,, = the greater accuracy wol f
28: wg = the second greater accuracy wol f
29: ws = the third greater accuracy wol f
30: D,=|C;-w,—w|, Dg=|Cy-ws —w|, Dy =|C3-w; — w|
31: w; =w, — A - (D,), wo=ws — Ay (Dg), wyg =ws — As - (Dy)
32: Update parameters:
33: W(t—i‘l) = <W1—|—W2+W3>/3
34: end for
35: accuracy = accuracy of the wolf «

36: end procedure
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4 Experimental Results

In order to analyze the performance of the proposed classifier, this section is
divided in two different subsections. The first approaches the classifier effectiveness in
three different benchmarks. Meanwhile, the second include the performance analyses in

the hot box and hot wheels problem.

4.1 Benchmarks

The data sets chosen for the performance analyses were Appendicitis, Haberman,
and Sonar provided by Knowledge Extraction based on Evolutionary Learning (KEEL)
Repository (ALCALA-FDEZ et al., 2010). Table 1 presents information about the number
of samples and the input features of them. All data sets must be associated with binary
classification problems and they were chosen to represent a variety of number of samples

and input features.

A prior study established that utilizing four rules optimally balances performance
evaluation (AGUIAR et al., 2018). Utilizing more than four rules does not enhance
performance but rather incurs higher computational costs. Consequently the classifier
presented in this paper is composed of four rules, two rules for the class that has the
presence of the event and other two rules for the class that does not have the presence of

the event.

These rules helps the initialization process. The first rule of each class is heuristically
created using the uncertain mean and the standard deviation from the training data set
inputs of the respective class. In order to obtain the uncertain mean, two variations of the

mean are generated heuristically by:

mlpzmpl —Umpl (41)

and

Mmop = mpl + Umpl (42)

in which the value U € R|0 < U < 1.

Table 1 — Details of data sets

Data sets Number of Samples Input Features
Appendicitis! 106 7
Haberman! 306 3
Sonar! 208 60

!Data sets provided by Knowledge Extraction based on
Evolutionary Learning (KEEL) Repository (ALCAL4-
FDEZ et al., 2010).
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Summarizing, the following equation demonstrates the process of creation of the

first rule.

rule; = {If x is Fll(mlpll,sz117O-F11) and... and (43)
T, 1S F;(mlpg,mng, apg), then Y;'} '
In (4.3), rule} presents the parameters of the membership functions associated
with the first rule from tth class.

As for the creation of the second rule, a modified version of the first rule is generated.
Essentially, it was heuristically adopted that the parameter uncertain mean (mean-1 and
mean-2) are scaled by a value A,, € R| —1 < A,, < 1 and the parameter standard

deviation is scaled by a value A, € R. Therefore,

rule?
)
= {If z1is F{ (Ammapz, —Ammape, A;0p2) and...
)
and x, is F, (Ammlpg, —AmeFPQ, Aaapg),

then Y} (4.4)

describes the second rule. For this work, it was adopted Y;! = 1, Y2 = —1, U = 0.3,
A, = 0.3 and A, = 1.5. Figure 8 illustrates the procedure for creating and initializing

rules in order to clarify this issue.

All numerical simulations have been carried out in Python 3.8.8 environment
running in an Intel Core i7-5500U 2.40 GHz CPU. The operation system was a Windows
10 64 bits. All data sets have been presented for each classifier 33 times and, each time,
seventy percent of the data set was randomly separated for the training phase and the

thirty percent left was used for the test phase.

The maximum value of iterations assumed for the training phase was 100, because
the improvement in accuracy was low for more iterations, and it did not compensate for the
computational load that a greater number of epochs required. Therefore, there was no need
of adopting a stopping criterion based on error. After evaluating performance, the number
of wolves were heuristically adopted as ten as a greater number did not improved the
classification efficiency. The performance metrics used for the numerical results analyses

were accuracy, mean squared error (MSE), Cohen’s kappa coefficient and F-score.

Although this work focuses on improvement of the training phase in the type-2
FLS, for an investigative purpose, it is important to present performance comparison
with others non-fuzzy classifiers. For this reason, the datasets were also applied in binary

classifiers based on different machine learning techniques, such as a gradient boosting:
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Figure 8 — Procedure of rule initialization applied for training T2FLS.

the Scalable Tree Boosting System (XGBoost) (CHEN; GUESTRIN, 2016); and two
deep learning methods: Convolutional Neural Network (CNN) (KIM, 2017) and Long
Short-term Memory (LSTM) Network (PALUSZEK; THOMAS, 2020). This decision
enhaces performance analysis because the eficiency of the proposal is compared not only

with its predecessors but also with classifiers from diverse research lines.

4.1.1 Initialization analysis

Table 2 presents the initial and the optimized values of MBF parameters, that
is, the values before and after the training phase using the GWO ULST2-FLS for all
the rules and for the Appendicitis data set. The comparison between these values reveal
that the initial values undergo a lot of changes during the training phase, but it is also
noticeable that the chosen procedure to initialize the parameters can result in a acceptable

initialization.
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Table 2 — Values of the mean and standard deviation for the initial and optimized MBFs for
Appendicitis data set using GWO ULST2-FLS.

Initial MBF Optimized MBF
My gl Mot OF! Yy My g My pl O Ft Yy
rule; 0.1169 0.2171 0.4416 1 -0.0507 0.2472  0.9368 1

rule? 0.3036 0.5639 1.2583 1 0.6065 0.8807 0.9133 1
rulel 0.4169 05171 0.6624 -1 -0.1416  -0.0061 3.1916 -1
rules 0.0036 0.2639 1.8874 -1 -0.1047 0.6290 1.9105 -1

4.1.2 Classification rate analysis

Results obtained by the proposal, the four original fuzzy classifiers and the two

deep learning methods are presented in Table 3.

Starting with the analysis of the fuzzy classifiers, it is possible to notice that the
algorithm with GWO yielded competitive results in the trainig phase for all the metrics.
Meanwhile, in the test phase, the proposal presented greater values of accuracy and kappa

coefficient for almost all data sets.

In relation to the comparison of the fuzzy and non-fuzzy classifiers, by analysing
the results, it is noticeable that the proposed classifier obtained greater mean accuracy in
both training and testing phases. Additionally, they achieved lower values of MSE and
better results for Kappa and F-score for most of the data-set when compared to the deep

learning classifiers.

4.1.3 Convergence speed analysis

Figs. 9-11 show the convergence speed from the five different fuzzy classifiers for
all the data sets. It is possible to notice that the proposed GWO ULST2-FLS classifier
offers compatible results to the previous techniques in terms of accuracy. A limitation of
the presented technique is that the mean square error during the training phase does not
significantly decrease with the epochs. This might occur because, in each iteration, the
best candidate solution changes significantly. Although this increases accuracy in each
iteration, it does not reduce the MSE.

4.1.4 Statistical analysis

Statistical analysis was performed as in (AMARAL; RIBEIRO; AGUIAR, 2019).

Therefore the two-sample t-test was applied for the test accuracy metric in order to



Table 3 — Performance comparison in terms of the mean and standard deviation.

Data Set Method Training Test Training Test MSE Training Test Kappa Training Test Fscore
accuracy % accuracy % MSE Kappa Fscore

Appendicitis ULST2-FLS 90.25 (£2.21) 83.14 (£5.06)  0.31 (£0.07)  0.54 (£0.17)  0.65 (£0.08)  0.41 (£0.17)  0.94 (£0.01)  0.90 (£0.03)
Adam ULST2-FLS 93.20 (£2.47) 83.14 (£4.20)  0.22 (£0.07)  0.58 (£0.16)  0.77 (£0.09)  0.43 (£0.16)  0.96 (£0.02)  0.90 (£0.03)
SM Adam ULST2-FLS  94.27 (£2.44) 84.66 (£5.81)  0.20 (+0.08)  0.58 (+0.21)  0.80 (+0.08) 0.47 (+£0.18)  0.97 (£+0.01) 0.91 (+0.04)
MSE Adam ULST2-FLS 93.86 (+2.37) 85.32 (£4.97)  0.22 (£0.06)  0.51 (+£0.19)  0.78 (£0.09)  0.47 (£0.18)  0.96 (£0.01)  0.91 (£+0.03)
GWO ULST2-FLS 90.75 (£2.37) 86.27 (+4.62) 0.81 (£0.10)  0.82 (+£0.12)  0.56 (£0.24)  0.49 (£0.18) 0.61 (£0.25)  0.55 (£0.17)
XGBoost 91.56 (£1.70) 84.47 (£6.08)  0.08 (+0.02) 0.16 (£0.06) 0.69 (+0.07)  0.48 (£0.17)  0.74 (£0.06)  0.57 (+0.16)
CNN 79.81 (£2.19) 81.06 (£5.06)  0.81 (£0.09)  0.76 (+£0.20)  0.00 (£0.00)  0.00 (£0.00)  0.89 (£0.01)  0.89 (40.03)
LSTM 80.38 (£3.06) 79.73 (£7.08)  0.78 (£0.12)  0.81 (£0.28)  0.00 (£0.00)  0.00 (£0.00)  0.89 (£0.02)  0.89 (£0.04)

Haberman ULST2-FLS 74.92 (£1.93) 73.52 (£4.66)  0.71 (£0.04)  0.75 (£0.10)  0.17 (£0.09)  0.10 (£0.08)  0.85 (£0.01)  0.84 (£0.02)
Adam ULST2-FLS 76.05 (£1.61) 74.44 (£3.45)  0.67 (£0.04)  0.76 (£0.10)  0.26 (£0.07)  0.17 (£0.07)  0.85 (£0.01)  0.83 (£0.03)
SM Adam ULST2-FLS  76.28 (£1.73) 73.39 (£4.33)  0.67 (£0.04)  0.76 (+£0.10)  0.26 (£0.07)  0.17 (£0.07)  0.85 (£0.01)  0.83 (0.03)
MSE Adam ULST2-FLS 75.55 (£1.63) 75.49 (£3.53) 0.69 (+£0.03)  0.71 (£0.08)  0.24 (£0.06)  0.21 (£0.08)  0.85 (+£0.01)  0.85 (+£0.02)
GWO ULST2-FLS 75.79 (£2.43) 74.37 (£3.88)  0.91 (£0.08)  0.97 (£0.02)  0.14 (£0.14)  0.14 (£0.12)  0.23 (£0.20)  0.23 (£0.17)
XGBoost 78.42 (£1.66) 73.06 (+£4.23)  0.22 (+0.02) 0.27 (£0.04) 0.37 (£0.09) 0.23 (+0.11) 0.50 (£0.11)  0.39 (+0.12)
CNN 73.29 (£1.72) 73.62 (£4.57) 1.07 (£0.07)  1.06 (£0.18)  0.01 (£0.02)  0.01 (£0.03)  0.85 (£0.01)  0.85 (+0.03)
LSTM 78.70 (£1.65) 73.22 (£3.40)  0.85 (£0.07)  1.07 (£0.14)  0.33 (£0.06)  0.20 (£0.01)  0.87 (+0.01) 0.83 (+0.02)

Sonar ULST2-FLS 86.16 (£14.88) 70.19 (£9.45) 0.36 (£0.30)  0.86 (£0.15)  0.72 (£0.29)  0.40 (£0.17)  0.87 (£0.14)  0.74 (£0.11)
Adam ULST2-FLS 98.30 (+3.44) 73.51 (£6.48)  0.05 (£0.10)  0.93 (+£0.24)  0.97 (£0.07)  0.46 (£0.14)  0.98 (£0.04)  0.78 (+0.05)
SM Adam ULST2-FLS  97.26 (+8.40) 74.54 (£10.54) 0.08 (+£0.19)  0.86 (£0.25)  0.94 (£0.18)  0.49 (£0.17)  0.99 (£0.03) 0.79 (+0.07)
MSE Adam ULST2-FLS 98.90 (£1.04) 73.87 (£4.48)  0.04 (£0.04) 0.97 (£0.16)  0.98 (+0.02) 0.47 (£0.09) 0.99 (£0.01) 0.76 (£0.05)
GWO ULST2-FLS 98.46 (£1.09) 76.67 (£3.38) 0.95 (£0.12)  0.89 (£0.04)  0.42 (£0.30)  0.52 (£0.07) 0.60 (+£0.32)  0.72 (£0.06)
XGBoost 88.65 (£2.09) 73.35 (£6.65) 0.11 (£0.02)  0.27 (£0.07) 0.77 (£0.04)  0.46 (£0.13)  0.88 (+0.02)  0.71 (£0.06)
CNN 78.52 (£3.63) 74.29 (£4.05) 0.86 (£0.15)  1.03 (£0.16)  0.56 (£0.08)  0.48 (£0.09)  0.81 (£0.03)  0.77 (£0.04)
LSTM 80.84 (£2.61) 73.22 (£5.74) 0.77 (£0.10)  1.07 (£0.23)  0.61 (£0.05)  0.46 (£0.11)  0.83 (£0.02)  0.76 (£0.05)

€e
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Figure 9 — Convergence speed for Appendicitis data set. (a) Accuracy. (b) MSE.
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Figure 10 — Convergence speed for Haberman data set. (a) Accuracy. (b) MSE.

evaluate the results in Table 3. Considering two sets of samples G; and G,, the two-sample
t-test allows us to infer assumptions from two independent data samples and to verify
their statistical validity. This statistical test is expressed as:

Gi1— Gy

T= (4.5)
_91 _G2
Lg, T ILg,

where G, Gs, 0g, and 0, are the means and standard deviations values of the samples
belonging to G; and Gs, respectively. Also, Lg, = #{G1} and Lg, = #{G>}, in which #
denotes the Cardinality operator. The degree of freedom is defined as Lg, + Lg, — 2. In

addition to the determination of 7, it becomes important to infer the hypothesis, which
are given by:
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Figure 11 — Convergence speed for Sonar data set. (a) Accuracy. (b) MSE.

Hoigiz

o (4.6)
Hi: G 75

S §

Given a significance level «, usually around 0.05, the p-value is calculated from 7
and represents the lowest value of « to reject the null hypothesis (Hg). Thus, values of the
p-value below o means that the null hypothesis is not true (MOORE; KIRKLAND, 2007).

The sets of samples G; and Gy of Eq. (4.5) are the test accuracy metric obtained
for the 33 execution times, where G; refers to GWO ULST2-FLS and G, can denote
ULST2-FLS, Adam ULST2-FLS, SM Adam ULST2-FLS, MSE Adam ULST2-FLS, and
non-fuzzy classifiers XGBoost, CNN and LSTM, as listed in Table 4. The degree of
freedom presented in these statistical tests is 64, which is relatively high, so there is no

need to verify the normality of error distributions (MOORE; KIRKLAND, 2007).

Table 4 presents the results of the two-sample t-test performed for the test accuracy
metric in Table 3. The rejection of the null hypothesis are indicated by the letters ‘W’ and
‘L’ representing respectively the wins and the losses of the method tested. Meanwhile the
acceptance of the null hypothesis is described by ‘E’ which means equality of the tested
methods.

The results show that GWO ULST2-FLS certainly presented greater results than
the other methods in most data sets. Specifically, the proposed method demonstrates
statistically superior performance when compared to ULST2-FLS and Adam ULST2-FLS
on the Appendicitis and Sonar datasets. In Haberman data set, the performances of all
classifiers were statistically similar. Analyzing the comparison to the non-fuzzy methods,

it can be noted that the proposal offered greater test accuracy results in most cases.



36

Table 4 — Statistical analyses performed by two-sample t-test for the test accuracy metric.

Data set (o G p-value  Lower Upper Ho
boundary boundary
Appendicitis GWO ULST2-FLS ULST2-FLS 0.01 0.01 0.06 W
GWO ULST2-FLS Adam ULST2-FLS 0.01 0.01 0.05 W
GWO ULST2-FLS SM Adam ULST2-FLS  0.22 -0.01 0.04 E
GWO ULST2-FLS MSE Adam ULST2-FLS 0.43 -0.01 0.03 E
GWO ULST2-FLS XGBoost 0.18 -0.04 0.01 E
GWO ULST2-FLS CNN 0.00 0.03 0.08 W
GWO ULST2-FLS LSTM 0.00 0.04 0.09 W
Haberman GWO ULST2-FLS ULST2-FLS 0.42 -0.01 0.03 E
GWO ULST2-FLS Adam ULST2-FLS 0.94 -0.02 0.02 E
GWO ULST2-FLS SM Adam ULST2-FLS  0.33 -0.01 0.03 E
GWO ULST2-FLS MSE Adam ULST2-FLS 0.22 -0.03 0.01 E
GWO ULST2-FLS XGBoost 0.20 -0.01 0.03 E
GWO ULST2-FLS CNN 0.47 -0.01 0.03 E
GWO ULST2-FLS LSTM 0.20 -0.01 0.03 E
Sonar GWO ULST2-FLS ULST2-FLS 0.00 0.03 0.10 W
GWO ULST2-FLS Adam ULST2-FLS 0.02 0.01 0.06 W
GWO ULST2-FLS SM Adam ULST2-FLS  0.27 -0.02 0.06 E
GWO ULST2-FLS MSE Adam ULST2-FLS 0.11 -0.01 0.06 E
GWO ULST2-FLS XGBoost 0.01 0.01 0.06 W
GWO ULST2-FLS CNN 0.01 0.01 0.04 W
GWO ULST2-FLS LSTM 0.00 0.01 0.06 W

4.2 Hot box and hot wheels

In this subsection, the hot box and hot wheels problem will be addressed using the

classifiers to differentiate the proper warnings from the improper ones. Proper warnings

are the ones that really indicate hot box or hot wheels problems on trains. Whereas

improper warnings can be given when an external factor, such as sensor defect, solar

incidence or longitudinal misalignment, affects the temperature measurement and do not

indicate real hot box and hot wheels problems.

The data set used in this classification was provided by MRS Logistica S.A. It

is diverse enough to represent the complexity of the problem, which means that the

continuous update of the proposed models is not required.

This data set consists of a list of temperature measurements on the right and left
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wheels and bearings of the train when a warning have been triggered. They were collected
by various hot box and hot wheels detectors controlled by MRS Logistica S.A. and are
labeled as proper or improper warnings by a specialist from the company. There are data

for 209 different triggered warning, which leads to a diversity of cases.

These data were treated by the extraction of some characteristics used for the
classification, which were the mean, the median, the standard deviation, the minimum
value and the maximum value of these measured temperatures. As a result, the final data

set is composed of 209 number of samples, each one with 20 input features.

Likewise the classifiers are composed of four rules, two rules for the each class. The
first rule for each class were heuristically created in the same way described in Eq. 4.3
and the second rule for each class was generated by a modification in the first one as it is

expressed by Eq. (4.4). For this problem, the same parameter were adopted.

In the same way, the data set have been presented for each classifier 33 times,
each time, seventy percent of the data set was randomly divided for the training phase
and thirty percent for the test phase. As previously adopted, the maximum number of
iterations set for the training phase was 100, as the improvement in accuracy beyond
this point was minimal and did not justify the increased computational load required by
additional epochs. Therefore, it was unnecessary to adopt a stopping criterion based on

error.

The performance metrics used for the numerical results analyses were accuracy,

mean squared error (MSE), Cohen’s kappa coefficient and F-score as well.

The dataset were also applied in binary classifiers based on different machine
learning techniques, such as a gradient boosting: the Scalable Tree Boosting System
(XGBoost) (CHEN; GUESTRIN, 2016); and two deep learning methods: Convolutional
Neural Network (CNN) (KIM, 2017) and Long Short-term Memory (LSTM) Network
(PALUSZEK; THOMAS, 2020).

4.2.1 Classification rate analysis

Table 5 presents the results of the classification rate obtained by the proposed
classifier GWO ULST2-FLS and by the original classifiers ULST2-FLS, Adam ULST2-FLS,
SM Adam ULST2-FLS, MSE Adam ULST2-FLS and the deep learning classifiers CNN
and LSTM. Observing this table, it is possible to see that the proposal achieved greater
values of accuracy during the test phases compared to the other fuzzy and non-fuzzy
methods. Additionally, the proposed method provided better results for Kappa coefficient

during test phase and F-score during training and test phases.



Table 5 — Performance comparison in terms of the mean and standard deviation for HB and HW problem.

Method Training Test Training Test MSE Training Test Kappa Training Test Fscore
accuracy % accuracy % MSE Kappa Fscore
ULST2-FLS 86.63 (£1.95)  86.49 (£3.26)  0.35 (£0.04)  0.38 (£0.06)  0.10 (£0.16) 0.08 (£0.14)  0.34 (£0.13)  0.33 (£0.10)
Adam ULST2-FLS 92.14 (£3.41)  88.30 (£4.58)  0.22 (£0.06)  0.34 (£0.10)  0.60 (£0.24) 0.39 (£0.27)  0.69 (£0.14)  0.50 (£0.18)
SM Adam ULST2-FLS  91.41 (£3.96)  88.30 (+£4.58)  0.23 (£0.06)  0.36 (+0.10)  0.51 (£0.30) 0.37 (£0.26)  0.66 (£0.19)  0.52 (£0.19)
MSE Adam ULST2-FLS 91.25 (£3.37)  89.02 (£3.41)  0.23 (£0.06)  0.34 (£0.09)  0.53 (£0.26) 0.38 (£0.24)  0.60 (£0.22)  0.49 (£0.18)
GWO ULST2-FLS 91.45 (£1.77) 92.06 (+3.48) 0.85(£0.16)  0.81 (£0.18)  0.28 (+0.23) 0.54 (+£0.18) 0.72 (£0.39)  0.96 (£0.02)
XGBoost 96.28 (+1.23) 90.67 (£3.62) 0.04 (£0.01) 0.09 (£0.04) 0.84 (£0.05) 0.54 (£0.17) 0.98 (+0.01) 0.95 (£0.02)
CNN 87.13 (£2.49)  86.45 (£3.51)  0.51 (£0.10)  0.54 (£0.14)  0.24 (£0.14) 0.17 (£0.16)  0.31 (£0.14)  0.29 (£0.14)
LSTM 89.54 (£2.77)  88.01 (£3.93)  0.42 (£0.11)  0.48 (£0.16)  0.39 (0.23) 0.27 (£0.22)  0.48 (£0.19)  0.36 (£0.19)

8¢
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Figure 12 — Convergence speed for HB and HW data set. (a) Accuracy. (b) MSE.

4.2.2 Convergence speed analysis

Fig. 12 shows the convergence speed of the classifiers. Analysing the mean of
accuracy for each epoch, it can be noted that the proposed classifier presented great
convergence speed when compared to the other classifiers. This outcome is very important
for industrial application, which requires real-time application and a low cost method.
Therefore, the proposals, which offered a classification with higher accuracy and convergence
speed, are better for the examined application compared to the original classifier. However,

it presents the same limitation in terms of mean square error (MSE) during the training

phase.

4.2.3 Statistical analysis

The statistical test were performed in the same way in described in 4.1.4. The
sets of samples G; and G, of Eq. (4.5) are the test accuracy metric obtained for the 33
execution times, where G; refers to GWO ULST2-FLS and G, can denote ULST2-FLS,
Adam ULST2-FLS, SM Adam ULST2-FLS, MSE Adam ULST2-FLS, XGBoost, CNN
and LSTM as listed in Table 6. Also, the degree of freedom presented in these statistical
tests is 64, which is relatively high, so there is no need to verify the normality of error
distributions (MOORE; KIRKLAND, 2007).

Table 6 presents the results of the two-sample t-test performed for the test accuracy
metric in Table 5. Likewise, the rejection of the null hypothesis are indicated by the
letters ‘W’ and ‘L’ representing respectively the wins and the losses of the method tested.
Meanwhile the acceptance of the null hypothesis is described by ‘E’ which means equality
of the tested methods.

The results show that GWO ULST2-FLS presented superior performance than all
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Table 6 — Statistical analyses performed by two-sample t-test for the test accuracy metric for

HB and HW problem.

(& G p-value Lower boundary Upper boundary Hg
GWO ULST2-FLS ULST2-FLS 0.00 0.04 0.07 W
GWO ULST2-FLS Adam ULST2-FLS 0.00 0.02 0.06 W
GWO ULST2-FLS SM Adam ULST2-FLS  0.00 0.02 0.06 W
GWO ULST2-FLS MSE Adam ULST2-FLS 0.00 0.01 0.05 W
GWO ULST2-FLS XGBoost 0.12 0.00 0.03 E

GWO ULST2-FLS CNN 0.00 0.04 0.07 W
GWO ULST2-FLS LSTM 0.00 0.02 0.06 W

the other fuzzy classifier and superior than most non-fuzzy classifiers. This conclusion

proves that the proposal can lead to better results than most other classifiers that are

based on different research approaches, demonstrating compatibility for handling the hot

box and hot wheels problem.
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5 CONCLUSIONS

This work has introduced a Type-2 Fuzzy Logic System trained by the Swarm
Intelligence algorithm Grey Wolf Optimizer to enhace the method and obtain greater

accuracy in classification problems and convergence speed during the training phase.

As regards the comparison of the fuzzy classifiers, the GWO ULST2-FLS offered
competitive training results for all data sets presented in the work. Moreover, the proposal
have achieved greater classification rate during testing phase when compared to the original
classifier. In addition, the proposed method offered competitive values of Cohen’s Kappa
and F-Score metrics. Combining all of these factors, it is possible to notice that GWO
ULST2-FLS is a more attractive method for training ULST2-FLS and is more likely
to obtain higher accuracy for most binary classification problems. In relation to the
comparison between the proposal and the deep learning methods, the proposed method
presented better values of all the studied metrics in most applications, indicating that the

proposal is also a great alternative even out of the fuzzy area.

For these reasons, the presented model proved to be an appropriate option in all
analyzed situations and feasible for industrial application, especially in the question of
warning classification in hot box and hot wheel problems, which requires high accuracy

for almost real-time application, as it is demanded for most industrial application.

Future works will be focused on extending the concepts of GWO ULST2-FLS to
upper and lower non-singleton type-2 FLS for handling the presence of uncertainty in the

measured data set.
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