UNIVERSIDADE FEDERAL DE JUIZ DE FORA
INSTITUTO DE CIENCIAS EXATAS
PROGRAM OF ACADEMIC MASTER’S DEGREE IN MATHEMATICS

Pedro de Oliveira Emerick

On (non)Lineability and (non)Spaceability in L, spaces

Juiz de Fora

2024



Pedro de Oliveira Emerick

On (non)Lineability and (non)Spaceability in L; spaces

Dissertation presented to the Graduate Pro-
gram in Mathematics from Universidade Fed-
eral de Juiz de Fora, as required to obtain
a Master’s Degree in Mathematics. Area of
concentration: Analysis

Advisor: Prof. Dr. Willian Versolati Franca

Juiz de Fora

2024



Ficha catalografica elaborada através do Modelo Latex do CDC da UFJF

com os dados fornecidos pelo(a) autor(a)

Emerick, Pedro de Oliveira.

On (non)Lineability and (non)Spaceability in L; spaces / Pedro de
Oliveira Emerick. — 2024.

44 f.

Advisor: Willian Versolati Franca

Dissertation (Master degree) — Universidade Federal de Juiz de Fora,
Instituto de Ciéncias Exatas. Program of Academic Master’s Degree in
Mathematics, 2024.

1. Lineability. 2. Spaceability. 3. Sequence spaces. 4. L, spaces L.
Franga, Willian, orient. II. Titulo.




Pedro de Oliveira Emerick

On (non)Lineability and (non)Spaceability in L_1 spaces

Dissertacao apresentada ao Programa de Pds-graduagdao em Matematica da Universidade
Federal de Juiz de Fora como requisito parcial a obtencdo do titulo de Mestre em
Matematica. Area de concentracdo: Matematica Pura

Aprovada em 24 de julho de 2024.

BANCA EXAMINADORA

Prof Dr. Willian Versolati Franga - Orientador

Universidade Federal de Juiz de Fora

Prof Dr. Geraldo Marcio de Azevedo Botelho

Universidade Federal de Uberlandia

Prof Dr. Nelson Dantas Louza Junior

Universidade Federal de Juiz de Fora

Juiz de Fora, 25/07/2024.



Documento assinado eletronicamente por Willian Versolati Franca, Professor(a), em 25/07/2024, as 12:08, conforme horario oficial de Brasilia, com fundamento no § 3¢
do art. 42 do Decreto n? 10.543, de 13 de novembro de 2020.

i
Sel 5
assinatura
eletrbnica

Documento assinado eletronicamente por Nelson Dantas Louza Junior, Professor(a), em 25/07/2024, as 13:38, conforme horario oficial de Brasilia, com fundamento no
§ 32 do art. 42 do Decreto n2 10.543, de 13 de novembro de 2020.

1
Sel o
assinatura
eletrdnica

Documento assinado eletronicamente por Geraldo Marcio de Azevedo Botelho, Usuario Externo, em 25/07/2024, as 15:45, conforme horario oficial de Brasilia, com
fundamento no § 32 do art. 42 do Decreto n2 10.543, de 13 de novembro de 2020.

i
Sel 5
assinatura
eletrbnica




Dedico este trabalho a minha familia, amigos e todos

que me apoiaram.



ACKNOWLEDGEMENTS

Agradeco primeiramente a Deus por ter me dado forcas e oportunidades para
chegar até aqui.

Agradeco aos meus pais, Moisés e Sueli. O amor, apoio e encorajamento de vocés
ao longo da minha vida foram fundamentais. O exemplo e os valores que vocés me
transmitiram moldaram o caminho que percorri até alcangar esta conquista. Este trabalho

também é de voceés.

Agradego a Anna Julia, minha noiva. Seu amor, apoio e incentivos constantes
foram fundamentais para superar os momentos dificeis de minha jornada. Além disso,
compartilhamos nos tltimos 8 anos a paixao pela matematica. Foram incontaveis horas
trabalhando juntos desde o ensino médio, passando pela graduacao e agora no mestrado.

Este trabalho é fruto de nossa parceria, na vida e nos estudos.

Agradecgo a todos os professores que contribuiram para minha formagao, tanto
académica quanto pessoal. Reservo um agradecimento especial a alguns que marcaram
significativamente minha trajetoria: ao professor Rodrigo, meu orientador no PIC Jr; aos
professores Marcelo Salomao, Luiz Colatto e Fabio, do CEFET, que me iniciaram no
mundo da matematica académica; e a professora Cristiane, que me orientou durante toda
a graduacao.

Agradego ao meu orientador, Willian. Os resultados contidos nessa dissertacao
sao fruto de muitos meses de trabalho colaborativo. Agradego em especial por ter me
tratado nao apenas como um aluno, mas como um parceiro de pesquisa. Gragas a isso,

pude crescer como matematico, ganhando maturidade e indepéndencia.

Agradeco também a todos meus amigos, colegas de curso e todos que dividiram
comigo esse percurso. Agradeco a OBMEP e seus programas, que introduziram milhares
de jovens a matemadtica, eu incluso. Agradeco a CAPES pelo financiamento. Um agradeci-
mento especial ao Luan Arjuna, que trabalhou comigo por alguns meses enquanto escrevia

esta dissertacao.

Por fim, como nao poderia faltar, agradeco a todos que nao atrapalharam.



"Uma jornada de mil milhas comeca com um tnico passo."

Lao Tzu.



RESUMO

Na presente dissertacao, apresentaremos métodos para a construgao de conjuntos
que sao lineaveis ou até mesmo espacaveis em determinados espagos de Banach. Nossa
abordagem também nos permitira exibir exemplos de conjuntos que sao lineaveis, mas
nao espagaveis, e conjuntos que nem sequer sao lineaveis. Seja v = (v,) um elemento
de /; com apenas um numero finito de entradas nulas. Neste cenario discutiremos a
lineabilidade (espagabilidade) dos seguintes conjuntos: B(v) (respectivamente Ag(v)) o
conjunto de todos os elementos de ¢, onde o teste da comparacao por limite com relagao a
v é conclusivo (respectivamente inconclusivo); X (v) o conjunto de todos os elementos de
¢, onde o teste da comparagao padrao falha (com relacao a v). Neste contexto provaremos
que o conjunto Ag(v) é c-denso-linedvel mas nao é espagavel. Por outro lado, o conjunto
B(v) u{0} contém apenas subespagos de dimensao 1. Além disso, nossos métodos nos
permitirdo concluir: (1) todo subespago fechado de dimensao infinita de ¢; contém um
elemento de X (v); (2) X(v) é c-denso-lineavel e c-espagédvel. Utilizando os resultados
supracitados, provaremos que o conjunto formado pelos elementos de /; cujo teste da raiz
(respectivamente razao) é inconclusivo é de fato espagdvel. Também provaremos alguns
resultados classicos. Por exemplo, concluiremos que todo subespaco fechado de dimensao
infinita de ¢; contém um elemento com infinitas entradas nulas. Ao final estenderemos
alguns desses resultados para o caso Li(.#'), onde .# é um conjunto ilimitado de um

espago vetorial normado fixo Y, e .# estda munido com a o-algebra de Borel.

Palavras-chave: Lineabilidade. Espacabilidade. Espagos de sequéncias. Espacos L.



ABSTRACT

In the present dissertation, we will provide methods for constructing lineable or
even spaceable sets in certain Banach spaces. Our approach will also allow us to exhibit
examples of sets that are lineable but not spaceable, and sets that are not even lineable.
Let v = (v,) be an element of ¢; with finitely many zero entries. In this setting, we will
discuss the lineability (spaceability) of the following sets: B(v) (resp. Ag(v)) the set of all
elements of ¢; where the limit comparison test with respect to v works (resp. fails); X (v)
the set of all elements of ¢; where the standard comparison test fails (with respect to v).
On this matter, we will prove that the set Ag(v) is ¢-dense-lineable but not spaceable.
Meanwhile, the set B(v) u {0} only contains finite-dimensional subspaces of dimension 1.
Moreover, our methods will allow us to conclude: (1) every infinite-dimensional closed
subspace of ¢; contains an element of X (v); (2) X (v) is c-dense-lineable and c-spaceable.
As an application of our above mentioned findings, we will be able to conclude that the
set formed by all elements of ¢; for whose generated series the root (resp. ratio) test
fails is spaceable. In addition, we will also retrieve some known results. For instance, we
will prove that every infinite-dimensional closed subspace of ¢; contains an element with
infinitely many zeros. At the end, we will extend some of these results to the case L;(.#),
where .# is an unbounded subset of a fixed normed vector space Y, and .Z is equipped

with the Borel o-algebra.

Keywords: Lineability. Spaceability. Sequence spaces. L, spaces.
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1 Introduction

In the last decades, the topic of Lineability has captivated the attention of many
researchers worldwide. This line of investigation deals with the problem of deciding whether
or not a given subset M (of some vector space X) with some sort of pathological behavior
or enjoying a certain special property contains (up to the zero vector in some cases) an
infinite-dimensional (closed) subspace. Problems of this nature have their roots on the
seminal work of Gurariy [1] who proved that the set of continuous nowhere differentiable
functions on the interval [0, 1] contains an infinite-dimensional subspace, in other words,
he showed that this set is lineable. In 1999, Fonf et.al [2] proved that this set is actually

spaceable, that is, it contains an infinite-dimensional closed subspace.

Since Gurariy’s work [1] it has been an enormous number of published results on
this topic. For instance, the reader may see either the papers [3, 4] where the authors
considered certain functions spaces or the references [3, 5, 6, 7, 8, 9] in the context of
sequence spaces just to mention a few. We also recommend to the interested reader to
see the book [10] for a more complete exposition about lineability and some other related
topics (for instance algebrability), and the papers [11, 12, 13] for a more modern treatment
on this subject. In the present thesis, we will proceed in this line of investigation by

presenting new results on this topic. Our work is organized as follows.

In the second chapter, we give a short exposition regarding the cardinality of sets
which turns out to be a standard prerequisite for many results in this field. Moreover, in
order to make the work self-contained, we formally introduce the concepts of lineability,

spaceability and some other related definitions.

Chapter 3 is the bulk of our work. Here, we discuss the (non)lineability (spaceability)
of certain subsets of ¢;. Before outlining our results we are going to establish some
notation. For an arbitrary element = = (z,) € ¢, the sets F(x) = {neN |z, # 0} and
D(z) = (N E(x)) are the support and the kernel of x respectively. Hereafter, we assume
that v = (v,) and d are two fixed elements of ¢, and R, respectively, where D(v) is finite
and 0 < d < co. We will adopt the convention that every limit or supremum of the form

(wy/vy) is taken over E(v). That being said, we will simply write

lim (wp/v,) = lim (w,/v,) and  sup (w,/vy,) = sup(w,/vy,).
nZE(v) neee nek(v) neN

The sets that will be considered in chapter 3 are the following ones: M, R, N = ({1~ M),
S=(l~R), Ag(v), and X (v) where

M = {a = (an) € £y | lim sup |a, |V = 1},

1),

An+1

R= {a = (ap) € E1|7lbl_)r£10 sup

n
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Wn,

Ay(v) = {w = (wy) €t | lim

=d and D(w) is ﬁnite},

and

Wr
=00 .
Un

X(v) = {w = (wy) €41 | sup

neN

Among other results, we prove that:

o Ag(v), A(v) and X (v) are maximal dense-lineable (Theorems 3.2.3 and 3.2.4).
o Ag(v) and A (v) are not spaceable (Theorems 3.4.1 and 3.4.2).

« X(v) is spaceable (Theorem 3.3.3).

e B(v) = Upedeoo Ag(v) is only 1-lineable (Theorem 3.2.1).

o Ag(v), Aw(v) are meager sets and X (v) is residual (Theorems 3.2.5 and 3.2.6).
Applying the results above, we obtain the following (Theorems 3.4.3 and 3.4.4):

e M and R are maximal dense-lineable.
o N and S are maximal dense-lineable.
e« M and R are spaceable.

e« N and S are not spaceable.

e M and R are residual.

e N and S are meager.

The methods employed in this chapter allowed us to recover and generalize some of the
results of G. Aratjo et. al. [3, Theorem 6.2]. We also want to mention that results

involving either nonspaceability or nonlineability are quite scarce in the literature.

In Chapter 4 we replace the set ¢; with Li(.#'), where . is an unbounded set of a
normed vector space Y, where .# is endowed with the Borel o-algebra, and we generalize
some of the results that can be found in Chapter 3. To this end, we introduce the notion of
convergence in measure at infinity in Ly (.#') which can be seen as a suitable generalization
of the notion of limit at infinity for the space ¢; = L1(N) provided that N is equipped with
the counting measure on the power set &?(N). This notion of convergence enabled us to
define the sets Ag(f), Aw(f), and B(f) in the same fashion as the ones in Chapter 3
(provided that such limit is unique - a feature that can not be taken for granted in general).
In this setting, we were able to prove that Ag(f), Aw(f) are c-lineable and B(f) is only

1-lineable. We also present necessary and sufficient conditions to decide when: (1) the
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space Ly (') is infinite-dimensional; (2) to ensure that the limit in measure at infinity is
unique on Ly (#).

Throughout this work, we do expect the reader to have some basic knowledge of
functional analysis, measure theory and topology. Some background in elementary set
theory is also desirable including the notions of cardinal numbers and its arithmetic, since
they can come to be useful for some lineability problems. However, in the present work,
we are not going to make use of any elaborate set-theoretic argument. It may sound as a
surprise, but we do not require the reader to have any previous experience with the theory

of lineability.
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2 Basic definitions and results

This chapter is dedicated to presenting the basic definitions and terminology to be
used as the starting point of our work. At first we will give a brief exposition regarding
cardinal numbers by formally introducing some elementary notions and stating some
known results. In the second part we will proceed on a similar way with the concept of

lineability instead.

2.1 Cardinality

Cardinal numbers and cardinal arithmetic are two necessary tools when it comes
to some lineability problems, and for this reason we have decided to cover the basics on
this topic. This subsection is based on the reference [10] - sections I and II - which is a
recommended source for a broader exposition on the prerequisites for lineability regarding
cardinal numbers. The upcoming proofs will be omitted since they are not necessary for

our purposes and cardinality is not the main focus of the present dissertation.

Definition 2.1.1. Denoting by card(A) the cardinality of a set A, then for non-empty
sets A and B we say:

card(A) < card(B) if there is an injection from A to B.

o card(A) > card(B) if there is a surjection from A to B.

o card(A) = card(B) if there is a bijection from A to B.

o card(A) < card(B) if card(A) < card(B) and there is no bijection from A to B.

o card(A) > card(B) if card(A) > card(B) and there is no bijection from A to B.

Intuitively we may expect that the relation < defined above behaves at some level
as the usual order on N. To begin with, it is quite clear that if card(A) < card(B) and
card(B) < card(C'), then card(A) < card(C') (just compose the injection from A to B with

the injection from B to C'). The next two results also yield what one would usually expect.

Proposition 2.1.1. card(A) < card(B) if and only if card(B) > card(A).

Proof. See [10, Proposition 1.2]. O

Theorem 2.1.1 (Cantor-Bernstein-Schroeder). If card(A) < card(B) and card(A) >
card(B), then card(A) = card(B).

Proof. [10, Theorem 1.3]. O
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We define cardinal number (or simply cardinal) as card(A) for some set A. We
say that a cardinal « is an infinite cardinal when « = card(A) for some infinite set A. If
two sets A and B possess card(A) = card(B) we may say that A and B belong to the
same equivalence class - be careful since the collection of all sets does not constitute a
set in the Z.F.C set theory. In the case that A is a finite set there exists n € N such that
card(A) = card(A,), where A, = {1,2,---,n}. So, we may write card(A) = n. It is also
convenient to define card(@) = 0. On this matter, we write card(N) = X, (read as “aleph

zero”) and card(R) = ¢ (the cardinality of the continuum).

For simplicity, we usually denote cardinal numbers by Greek letters. The next
result establishes that any two cardinals can be compared. The proof of this fact uses the
famous Zorn’s Lemma or one of the equivalent forms like the Axiom of Choice - for any
given family of nonempty sets, their cartesian product is also a nonempty set. The latter

is also equivalent to the existence of a basis for vector spaces.

Theorem 2.1.2. If a, 8 are cardinals, then a < 3 or a > 3.

Proof. [10, Theorem 1.5]. O

Remark 2.1.1. If A is a set, then card(#(A)) > card(A) = o, where &(A) is the power

set of A. In addition, if « is an infinite cardinal, then a > Rq.

When dealing with cardinal numbers, we may see ourselves intrigued on knowing
the cardinality of a union of two sets or even the cardinality of a difference of sets. The
notion of cardinal arithmetic allows us to make these computations. Now, let us define

the operations between cardinals.

Definition 2.1.2. Let «, 3 be cardinal numbers. We set:

o a+f:=card(S), where S = Au B, with a = card(A), f =card(B) and An B =@.
o af:=card(P), where P = A x B, with a = card(A) and 8 = card(B).

o of := card(C), where C is any set of the form C = [];; A;, with card(I) = 8 and
card(A;) = « for all i € I. Equivalently, if card(A) = «, then af = card(AT), with
Al'={f| f is a function from I to A}.

Clearly the notions defined above are independent of the choice of the sets A and
B. In addition, for all cardinal numbers «, 3,7 > 1 one may verify that the following

properties hold:

e a+f=0+q.

c (a+f)+y=a+(B+7).
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e af = fa.

« (aB)y=a(B);

e a(f+7)=af+an.
e (af)T=a7p.

e of = afan,

. ()7 = aB = (a)b.

Remark 2.1.2. The relation < is compatible with the operations between cardinals in the

following sense: If a; < ap and (B < B, then aq + 81 < ag + P2, a1 1 < as By and afl < a§2.

We end this section with a collection of useful results and observations.

Theorem 2.1.3. Let o, be cardinal numbers with 1 < § < a and « infinite. Then

a+f=a.

Proof. [10, Theorem I1.2]. [

Corollary 2.1.1. If o, 3,7 are infinite cardinal numbers with o+ 3 =~ and o <y, then
B=7.

Remark 2.1.3. The corollary above says that, if A, B, C' are infinite sets, and A= Bu(C
where card(B) < card(A), then card(A) = card(C'). This fact has plenty of applications

in lineability.

Theorem 2.1.4. Let o, be cardinal numbers, with 1 < 8 < a and « infinite. Then

af = a.
Proof. [10, Theorem I1.4]. [

Corollary 2.1.2. If 8 is an infinite cardinal, then Rof3 = [3.

The following three results are also of common use.

Proposition 2.1.2. 2% =¢.

Proof. [10, Proposition I1.6]. O

Proposition 2.1.3. ¢® =¢.

Proof. [10, Proposition I1.8]. O

Remark 2.1.4. From the last result it is also possible to prove that if A is a set with
card(A) = ¢, then the set of sequences of elements of A has cardinality ¢. In particular,

the set of all real or complex sequences has cardinality c.
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2.2 Lineability, dense-lineability and spaceability

We start this subsection by recalling some definitions and results in the context of

vector spaces.

Definition 2.2.1. A topological vector space X = (X, 7) is a vector space X over the field
K (K=R or K =C) endowed with a topology 7 in a way that the scalar multiplication
and the sum of vectors are continuous operations. Here, we understand tacitly that K is

equipped with the usual topology.

Definition 2.2.2. Let X be a vector space over a field K. A subset # c X is called a
Hamel base (or simply a basis), if £ is linearly independent and span(%#) = X.

Remark 2.2.1. As a consequence of Zorn’s Lemma we know that every vector space

contains a basis. See [14, 4.1-7].

The following interesting result concerning basis holds:

Theorem 2.2.1. Any two Hamel basis of a vector space X have the same cardinality.
Proof. [10, Theorem II1.4]. O

Due to the last theorem, for a given vector space X over a field K, we may define
dim(X') = dimg (X') as the cardinality of any Hamel basis of X. We then have the following

result:

Proposition 2.2.1. Let X be a vector space over R or C. Then card(X) = cdim(X) =
max{c,dim(X)}.

Proof. [15, Lemma 9.5.1]. O

In the case that X is a real or complex Banach space, the following proposition
establishes a lower bound for dim(X) in the case that dim(X) is infinite.

Proposition 2.2.2. If X is an infinite-dimensional Banach space, then dim(X) > c.
Proof. [10, Proposition II1.5]. O

Now, we are in position to introduce the definition of lineability, spaceability and

their variations.

Definition 2.2.3. Let X be a topological vector space, let M be a subset of X and let «

be a cardinal number.

e M is said to be a-lineable if M u {0} contains a vector space of dimension «. We

say that M is maximal lineable when « = dim(X).
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e M is said to be a-spaceable if M U {0} contains a closed vector space of dimension

«. We say that M is maximal spaceable when a = dim(X).

« M is said to be a-dense-lineable if M U{0} contains a dense vector space of dimension

a. We say that M is maximal dense-lineable when « = dim(X).

It is standard to call the set M as lineable, spaceable, or dense-lineable when o > R
on each corresponding definition. We also want to point out that the definition concerning

lineability remains valid without a topology on X.

The next example shows that there may not exist a maximum cardinal a such that

M is a-lineable.

Example 2.2.1. Let X be an infinite-dimensional vector space and let {e, | n € N} be
a linearly independent set. Let j; < k1 < Jo < kg < j3 < -+ < kpy, < Jmy1 < -+ be natural
numbers with k,, — j,, = m for each m € N, and let M := U, span{e; | jm <@ < kp}. By
construction, the set M is n-lineable for all n € N. Now, we prove that M is not Ry-lineable.
If Y is a linear subspace contained in M, then Y c span{e; | j,, <i < k,,} for some m ¢ N
(that is, Y is finite-dimensional). Indeed, let us suppose that = € span{e; | j,, <i <k} nY
and y € span{e; | j; <1 <k} nY with m # [ and x,y nonzero. Since (x+y) €Y c M
then (x +y) € span{e; | j. < i < k,} for some r € N. Therefore, z + y = z for some
z € span{e; | j, < i < k,}. Hence, x +y -z = 0 is a nontrivial linear combination of

{e, | n € N} resulting in 0, which is a contradiction.

Remark 2.2.2. Here we are going to remark on some easy-to-check and illustrative facts

(M c X).

o If M is not a dense subset of X, then M cannot be dense-lineable. Moreover, if X
is nonseparable and M is at most Rg-lineable, then M is not dense-lineable. More
generally, if the least cardinality of a dense subset of X is d(X), then a necessary
condition for M to be dense-lineable is that M is d(X)-lineable.

o If X is a Banach space and M is not c¢-lineable, then M is not spaceable, since
any infinite-dimensional Banach space has dimension at least ¢. Conversely, every

spaceable subset M of a Banach space is at least c-lineable.

o We should not fool ourselves by thinking that the maximal lineability of a given
set M implies that X \ M is too small to be lineable. For instance, let X be a
vector space with basis {e, | n € N} and N = ;2 N; where each N; is infinite and
N;n N, =g for i # j. We define X := span{e; | i € N;} for each i e N. Then, each X;
is maximal lineable and U,.; X; ¢ (X ~ X;) u{0}. In sumary, X; is maximal lineable,
meanwhile there are infinitely many linearly independent subspaces of maximal
dimension in (X \ X;)u{0}.
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In order to illustrate the theory, we close this section with a relatively simple
construction that can be found in [7, Theorem 2.1]. For our purposes, let K to be either
C or R. The symbol C'S(K) represents the vector space (over K) formed by all scalar
sequences in K whose associated series converges. We say that a series is conditionally
convergent when Y>> |x,| = co but (z,) € CS(K). Let M be the set of all sequences
of C'S(K) whose associated series is conditionally convergent. Observe that M is not a
vector space. We will prove that M is ¢-lineable. Before providing such proof, we need the

following technical lemma.

Lemma 2.2.1. There exists a family {A, | o € I} of infinite subsets of N such that
card(I) = ¢ and A, N Ag is a finite set whenever a, 5 € I and o # 5.

Proof. Let {q, | n € N} be the set Qn[0,1], and let I be the set of all irrationals numbers
on the interval [0,1]. Since card(Qn [0, 1]) = Rq, then card(/) = ¢. From the density of
Qn[0,1]in [0,1], for each « € I, we may choose a subsequence (gy, ) of {¢, | n € N} fulfilling
the condition limy_,« ¢n, = @. So, we may define A, = {ny | k € N}. By construction, each

A, is infinite and A, n Az is always finite whenever a # 3. O

A family {A, | a € I'} as described in the last lemma is called almost disjoint. Such
families are used in numerous proofs involving lineability problems, especially the ones

considered in sequence spaces.

Theorem 2.2.2. The set M is c-lineable in C'S(K).

Proof. Let us fix any conditionally convergent series Y2 a; such that a; # 0 for all ¢ € N.
Let {A, | @ € I} be an almost disjoint family as described in Lemma 2.2.1. Now, fix a € [
and consider A, = {m; <mg <ms3<...<my <mgy1 <...}. Thus, we define z(®) = (x%a)”EN)
given by 2% = a; if n = my, and 0 otherwise. Note that #(®) € M for each a € I. Let
E =span{z(® | a e I'}. Now, let Ay, A\, be nonzero scalars and {ay, -, o, } ¢ I. We will
prove that z = \jz(®) + .-+ X\, z(@) € M. Indeed, since {A, | a € I} is almost disjoint,
we may find a set A ¢ A,, such that A, \ A is finite and An (A, U--UA,,) = @.
Then Y042 = Yjen Alxgal) is conditionally convergent. Hence, z € M. The latter implies
E ¢ M u{0}. In particular, since z # 0 we may derive the linear independence of

{x(®) | a e I'}. Consequently M is c-lineable. O
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3 Lineability in sequence spaces

In the present chapter, we understand that the reader is familiar with all the
standard notations related to the classical sequence spaces. In addition, we refer the reader
to the introduction to recall the definition of the sets that will be our main object of
investigation in this chapter, namely, M, R, N = ({; N\ M), S = ({1~ R), Ay(v), and X (v)

(for 0 <d < oo and v = (v,,) € ¢; with finitely many nonzero entries).

3.1 An overview of the main conclusions and a preliminary result

Let M, R, N=({1~M),S=(l1\R), Ag(v), and X (v) as in the above paragraph.
Now, let us exploit the meaning of the above mentioned sets. To begin with, the set M
(resp. R) can be viewed as the set of sequences in ¢; for whose generated series the root
(resp. ratio) test fails. In the same fashion, the remaining sets can be seen - with respect
to the element v - as: B(v) = Upcgeoo Aq(v) is the set of all elements of ¢; for which the
limit comparison test works; X (v) is the set where the standard comparison test fails -
note that A (v) c X(v). Note that the set Ag(v) may be tricky, once it only contains the
elements w = (w, ) where the limit comparison test fails and D(w) = {n € N|w, # 0} is
finite.

In [3, Theorem 6.2] G. Aratjo et. al. showed that the sets M and R are maximal
dense-lineable - meaning that M (resp. R) contains an infinite-dimensional dense subspace
whose dimension is exactly equal to dim(¢;) = ¢. Motivated by the latter result, we decided
to investigate the (maximal) lineability (spaceability) of the sets B(v), X (v) and Ay(v).
The reader may now ask a somewhat natural question: Are the sets Ay(v) (resp. X (v))
non-empty? For d € (0,00), it is quite clear that dv € A4(v). The next proposition

guarantees the non-voidness of A (v).

Proposition 3.1.1. The set Ao (v) is non-empty. In particular, X (v) is non-empty.

Proof. Let construct an element w = (w,) € A (v) as follows. First, for each k € N,

[ee]
n=ng

generality that ny_; < ng for each k € N. Second, we set w,, = 2¥v,, if ny <n < ng,1, and

we choose ny € N satisfying > |vn| < 1/2%F. Besides, we may assume without loss of
w, = v, otherwise. By construction, we have D(w) finite and |w,/v,| = 2 whenever
ng <n <ngyp. Therefore, lim, o [wy,/v,| = c0. Now, the proof boils down to showing that

that (w,) € ¢1. Indeed, on the one hand, we have

oo ni—1 oo Ngi1—1
Z |wy| = Z |wy| + Z Z |wy-
n=1 n=1 k=1 n=ny

On the other hand,

Ngy1-1 Ng+1—1 oo
> |wn|:2k[ > |vn|]<2kl > |vn|]<1/2k.

n=ng n=ng n=ng
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Therefore, (w,) € ¢1. For the second part, it suffices to note that A (v) c X (v). O

For expository reasons, the proof of the fact that Ag(v) is also non-empty will be
presented in the next section (Proposition 3.2.1). Now, we are finally in the position to

outline our main results. The chapter is organized as follows.

In Section 3.2, we will prove that the following two sets are c-dense-lineable:
As(v) (Theorem 3.2.3) and Ap(v) (Theorem 3.2.4). In particular, By(v) = Upcgeco Aa(v)
is c-dense-lineable. However, we will see that the set B(v) = Upcgcoo Ag(v) only contains
finite-dimensional subspaces of dimension 1 (Theorem 3.2.1). At the end we will show
that the sets A (v), B(v) and By(v) are all meager sets.

In Section 3.3, we will show that every infinite-dimensional closed subspace of ¢,
contains an element of X (v) (Theorem 3.3.2). Besides, we will see that X (v) is c-spaceable
(Theorem 3.3.3). Employing the same methods of Theorem 3.3.2, we will be able to
show that every infinite-dimensional closed subspace of ¢; contains a nonzero element
with infinitely many zero entries (Theorem 3.3.1) - this last result was first proved in [5,
Corollary 3.4].

Section 3.4 is dedicated to applications of the results obtained in Section 3.3. More
precisely, we will verify that the sets A (v) and By(v) are not spaceable - Theorems 3.4.1
and 3.4.2. In addition, we will prove that M and R are spaceable (Theorems 3.4.3 and
3.4.4), and we also recover the result proved in [3, Theorem 6.2] regarding the maximal
density lineability of M and R. From the same theorems we will be able to infer that NV

and S are not spaceable.

3.2 The sets B(v) and Ag(v)

In this chapter, all vector spaces are real, even though we are aware that our
proofs would work on the complex number setting also in its present form or with a
slight modification (some would only affect the real quantifier). When some non-trivial
adaptation is required, as in Theorem 3.2.1 and Theorem 3.3.2, we will include a comment
right after the proof. At last, but not less important, we should disclose that Theorem
3.2.1 may be of some independent interest. The reason why we may say this is because, to
some experts in this field, the real challenge nowadays is to find interesting sets that are

not lineable at all. Please see also Remark 3.2.3.

3.2.1 The non-lineability of B(v)

Theorem 3.2.1. The set B(v) is not lineable. More precisely, B(v) u{0} only contains
finite-dimensional subspaces of dimension 1. In particular, Aq(v) is non-lineable for all
0<d< 0.
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Proof. Let z = (2,), y = (yn) € B(v), d = lim,,_o |2, /0| and b = lim,, o0 |y /Vn|- We may
assume without loss of generality that (z,/v,) contains a subsequence (z,, [v,,) which

converges to d. If (yn, /vn,) converges to b, then

bz, —d
lim 22 =~ W =0.

k}—)OO

Un,

So, (bz—dy) ¢ B(v). On the other hand, if (y,, /v,,) - or at least a subsequence - converges

to (=b), then

lim —bzn’“ + Ay, =0.

k}—)OO

Un,,

Therefore, B(v) is not lineable.
[l

Remark 3.2.1. The complex case follows from an application of the classical Bolzano-

Weierstrass Theorem.

Remark 3.2.2. One may think that the assumption on the convergence of the sequence
(|wy/v,]) is somewhat a “too strong” condition. In order to clear the air, we should mention
that with a slight modification of the arguments used in the last proof, one may prove that
the set {w = (w,) € ¢; | 0 < liminf |w,/v,| < limsup |w,/v,| < oo and D(w) finite} u {0}

only contains finite-dimensional subspaces of dimension 1.

Remark 3.2.3. There are very few known interesting examples of non-lineable sets. In
[16] Gurariy proved that the set of continuous R-valued functions on [0,1] that attain
its maximum at one (and only one) point is only 2-lineable. This result was generalized
by Gonzilez et. al in [17] in the following way: the set of continuous R-valued functions
on R that attains its maximum in exactly m points is also only 2-lineable for any m > 1.
In [18] Aron and Hajek proved that for every infinite-dimensional real separable Banach
space X and for every odd number n, n > 3, there is a polynomial P : X — R which
is n-homogeneous and for which P~1(0) is not lineable. Subsets that are not spaceable
are also rare. An example of such set was given in Gurariy [1] - the set of everywhere

differentiable functions on [0,1].

3.2.2 Lineability of Ag(v)

Now, our goal is to show that Ag(v) is c-lineable. To this end, we will need an

auxiliary result.

Proposition 3.2.1. The set Ag(v) is non-empty. Furthermore, for a given w in Ag(v),
the set L = {w* = (wk) | k € N} is a linearly independent subset of Ag(v).

Proof. For each k € N, let ny, be as in the proof of Proposition 3.1.1, and let us set w = (w,,)

where w,, = 27"|uv,| if ny <n < ngy; and w, = v, otherwise. A direct inspection reveals that
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w € Ag(v). Next, for each k € N, we set w* = (wF). Let L = {wk |k e N} c Ag(v). We claim
that L is a linearly independent set. Indeed, let A\,..., A, € R - not all zeros - satisfying

ﬁi,leUn” =0.
j=1

Since, w € {1, we may find, for each 7 =1,2,3,...,m,, entries W, of w pairwise distinct.
If we set
. my N
M = [w%mi]_ and 8= [3;]7",

1,j=1
then we may conclude that the system M = 0 admits a non-trivial solution. The latter
contradicts the fact that the Vandermonde matrix M is invertible. So, the set L is linearly

independent.

]

With an adaptation of the last proof, we may verify the following:

Theorem 3.2.2. Ay(v) is c-lineable. In particular, By(v) is c-lineable.

Proof. Let w = (wy,) € Ag(v), where w, >0 for all n € N. Let D = {w® = (w®) |a € (1,2)} c
Ap(v) - here we understand that w® € R. The proof boils down to showing the set D is
linearly independent. Indeed, let A{,..., A\, € R with

5ilkj107ﬁ =0.
j=1

Let aj € Qn (1,2) with |y; — ay| < 0, where 0 = (1/4)minicicjer-{|7; — 7|} Since w € 41, we
may find, for each j =1,2,3,...,r, entries w,, of w pairwise distinct. By the choice of ¢,

we may infer that the s are pairwise distinct. So, the matrix

P T
J
[w"i ]ijzl

is invertible. For each j € {1,...,r}, let a;x be sequence contained in Q n (1,2) which

converges to ;. Therefore, we see that the matrix

],

J

wy ]
Milij=1

is also invertible. Consequently A\; =0 for all j=1,...,r. O

3.2.3 Lineability of A (v)

We start this section with a technical lemma which will play a major role in the

construction of a c¢-dense linear subspace contained in A (v) u{0}.

Lemma 3.2.1. Let L be a subset of As(v) fulfilling the following condition:

(1) If v = (zn),y = (yn) € L, then either v € A (y) or y € Aw(x).
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Then L is a linearly independent subset of As(v) and span(L) c A (v)u{0}.

Proof. First of all, notice that if z € A, (y) and y € A (2), then x € A (2). Indeed, we

have
yn

Zn

Zn

lim

n—oo

= lim |—

n—oo

lim

n—oo

= 0Q.

Yn

Next, let () = (2), 2@ = (2), -, 20" = (2{™) be arbitrary elements in L,
and let aq, -+, i, be non-zero real numbers. Based on the first paragraph, we may assume

without loss of generality that x() € A, (2(!)) when i < j. Hence,

. Qo ac,(l ) 4 ozgx( ) -+ ozma;flm)
lim =
n—o0 Un
m 1
. 0413351)+04$£z) “+a a:%) wg)
lim = 00,
n—oo aﬁf) Up,

1) _

since lim,, o x(j)/iL‘ =0 for all 1< j <m, and lim,,_, |x(1)/vn| = o0. From the latter, we

may conclude simultaneously that a;z() + ayz® + -+ + a,, 2™ € A, (v,) and ozlx( )
Oég.ISl) -+ amx% ™ £ provided that ay,---, a,, are non-zero scalars. Therefore, L is a

linearly independent subset of A, (v). In particular, span(L) c A (v)u{0}. O

Theorem 3.2.3. A, (v) is c-dense-lineable. In particular, X (v) is c-dense-lineable.

Proof. Let « be in (0,2). For each k € N, let n; be as in the proof of Proposition 3.1.1.
After repeating the same arguments presented in the proof of Proposition 3.1.1, we may
conclude that the sequence z(® = (2{*) € Ay (v), where z*) = 2¢Fv, if ny < 1 < gy
and z$ = v, otherwise. In additon, if o, 3 € (0,2) and o > 3, then lim, e |x(a)/x(ﬁ)| =
limy, oo 2(2A% = co. Hence, if we set L = {z(® | « € (0,2)}, we see that L satisfies
the condition (7) in Lemma 3.2.1. Therefore, span(L) is a subset of A, (v)u {0} and
dimspan(L) = card(L) = c.

At this point, as the reader may have noticed, we already have established the
c-lineability of A (v). Now, let us see how we can modify the set L in order to obtain
a dense subspace of ¢; contained in A (v). Indeed, fix r = (71,79, -, 7,,0,0, ) € coo(Q)
and choose M, = {y*®) | k € N} to be a countable subset of L. For each k € N, we take
ny € N such that ny >m and 3,7, |y7(1k)| < 1/k NOW we set z(#) = (z(k)) where 2" = r,, if

®) =0 if m < n <ng and 287 = y{¥ if n > ny,. By construction, z®) e Ay ()

1<n<m, 2z,
(resp. 7 € Ae(2(M)) if and only if y*) € A, (x) (resp. = € A (y®)). Consequently, the
set N, = {z(®) | k € N} also satisfies the condition (i) in Lemma 3.2.1. On the other hand,

from the inequality
1

k)

k
yM <

ECEEDY

n=nj,

one may infer that limj_. 2(*) =r. So, r € N,..
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Next, for each s € c¢oo(Q) we choose M, to be a countable subset of L with
M;n M = @ whenever t,s € coo(Q) and ¢ # s. Repeating the previous construction, for

cach s € cyo(Q), we obtain a set N, where s € N, and which also satisfies the condition (7)

in Lemma 3.2.1. Set
L/:(L\( U M)) U N
recoo(Q) recoo(Q)

Then, card(L') = ¢. By Lemma 3.2.1, L’ is a linearly independent set and span(L') c
As(v)u{0}. Since, r € N, c span(L’) for each r € coo(Q), we see that ¢; = span(L’). Thus,
A (v) is c-dense-lineable. O

After revisiting Theorem 3.2.2 under the light of the methods employed in the

proof of the last theorem, we see that it now admits the following form:
Theorem 3.2.4. Ay(v) is c-dense-lineable. In particular, By(v) is c-dense-lineable.

Remark 3.2.4. It is folklore that dim ¢; = ¢. For this reason, one may replace the quantifier
“c-dense-lineable” with “maximal dense-lineable” in all the results presented in the last

two sections.

3.2.4 Topological classification

Let (X, 7) be a topological space. A subset Y of X is called a meager subset of X
if Y can be written as a countable union of nowhere dense subsets of X - a set is nowhere
dense if its closure has an empty interior. The main purpose of this section is to prove that

the sets Ae(v), B(v) and By(v) are all meager sets. We start with a couple of lemmas.

Lemma 3.2.2. For each r > 0 and k € N, the set WF(v) = {w = (w,) € {1 | Jwy,| >
rlvn| for all n > k} is closed and has empty interior. In particular, U, WE(v) is a

keN
meager set.

Proof. Let (2(0);ey € WE(v) be such that lim;.., 2() = (z,). Then, for each n > k and
for all [ € N, we have the inequality |z”| > r[v,|. Consequently, |z,| > 7|v,| for all n > k.
Hence, z € Wk(v). For the second part, let w = (w,,) € WF(v) and € > 0. We choose ng > k
satisfying |w,| < € and |v,| > 0 for all n > ny. Next, we set ¢ = ((,) with ¢, = w, if n #ng
and zero otherwise. On the one hand, |(,,| =0 < r|v,,|. So, ¢ ¢ W}¥(v). On the other hand,

I = w]|| = Jwy,| < €. Therefore, w does not lie in the interior of Wk (v). O

Lemma 3.2.3. For each r > 0 and k € N, the set UF(v) = {w = (wy,) € {1 | |wy,] <
rlvn|  for all n > k} is closed and has empty interior. In particular, U, UF(v) is a

keN
meager set.

Proof. The first part follows the same steps as in the previous lemma. Now, let w € UF(v)
and € > 0. Let ng € N be such that ng > k and r|v,,| < €/2. Set ¢ = (¢,) where (, = w, if
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n # ng and €/2 otherwise. So, |(y,| > 7|vn,| and
||C - w“ = Kno B wn0| s |Cno| + |wno| = 6/2 + T|U7L0| <E€.

Therefore, ¢ ¢ UF(v) and ||¢ — w|| < €. The latter allows us to conclude that the interior of
Uk (v) is empty. 0

Theorem 3.2.5. A, (v) and B(v) are meager sets.

Proof. Let w € A (v) U B(v). So, there exist r € Q* and k € N such that |w, /v,| > r for all
n > k. Hence, w e WF(v). Then, A (v), B(v) € Uregr WE(v). O
keN

Theorem 3.2.6. By(v) is a meager set and X (v) is residual. In particular, ({1 ~ X (v))

1S a meager set.

Proof. Let w e ({1~ X (v))u Ag(v) for d < co. Then, there exist r € Q* and k € N such that
|wy, [vy| < 7 for all n > k. Thus, w € UF(v). Hence, ({1~ X (v)), Bo(v) € Ureg+ ken UE(v) is a

meager set. Finally, since (¢; ~ X (v)) is meager, it follows that X (v) is a residual set. [

3.3 The set X(v)

Theorem 3.3.1 below, which states that every infinite-dimensional closed subspace
of 1 has a nonzero element with infinitely many zeros, was originally proved in [5, Corollary
3.4]. Nevertheless, we have decided to present a new proof - based on the original one -
which in our humble opinion is more direct. This simplification will allow us to generalize
this outstanding result in the following way: Every infinite-dimensional closed subspace of
¢y contains an element of X (v) (Theorem 3.3.2). At the end we will also show that X (v)

is maximal spaceable (Theorem 3.3.3).

Theorem 3.3.1. FEvery infinite-dimensional closed subspace of {1 has a non-zero element

with infinitely many zeros.

Proof. Let W be an infinite-dimensional closed subspace of ¢; and let ¢ = ((,,) be an
element of W. Call D({) ={n e N |, =0} and E(¢) = {n e N| (, # 0}. If D(C) is
infinite for some non-zero vector ¢ € W then the proof is over. Let us fix 21 = (2{") e W,
and we may assume without loss of generality that D(z(1)) is finite. For each natural
number m, one may see that the subspace Y, = {w = (w,) € W | w, = 0 if n < m} is
also infinite-dimensional. Now, let us choose m; € N such that .77, . 12 < 1/2 and
ESIFT) (L)et y(M be an element of Y, with |[yM]|| = 1. Nexg, let us take k; > m; such that
1

1)| < |yk1 |
2

2
‘215:1 ,and we set 2(2) = z(1) 4 (1) = 2(1) 4 (—y(l)%) . In particular, z,fj) =0 and
Yr,

12 — 2| = [lz®]| < 1/2, and 22 = 2D % 0.
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For the next step, we may suppose that D(z(?)) is finite, otherwise, we are done.

2P| < 1/22 and my > ky > my. As in the

(o]

Now, we choose my such that 0 < 77 .4

previous paragraph, we take y® in Y,,, with |[|[y®|| = 1 and we set 2(3) = 2(2) + () =

(2) (2)
z
2(2) 4+ (— ’z;)y@)), where ko > my and 0 < |z$)| < % Hence, z,fff) = zg’) = 0 and
Yo
123 = 2| = [|2®@]| < 1/22, and 28 = 282 = 2{) # 0. So, inductively, we construct the
sequences (y®); and (2(); such that
N0
20 20 = 0] = |-y | <12,
ky

where y( €Y, (with [jy®| = 1) and z,g) =0 for each j =1,2,...,(l - 1) provided that
D(z®) is a finite set for each [ € N. In addition, 27(7?1 = 27(7111) #+ 0 for all [ e N. It is conspicuous
to see that (2(V); is a Cauchy sequence contained in W, therefore converges to an element
d = (6,) € W, since W is closed. By construction, d,,, = zfnll) #0 and d;, =0 for all [ e N.

The proof is now complete. O]

Theorem 3.3.2. Fvery infinite-dimensional closed subspace of ¢y contains an element
z e X (v).

Proof. Let W be an infinite-dimensional closed subspace of ¢;. For each m € N| let Y, be
as in the proof of Theorem 3.3.1. Choose m; € N and y() €Y, where Y07 |v,| < 1/22
and |lyM|| = 1. Next, let us take k; > m; with ]y,(;)\ > 22|y, |, and set () = (1/2) -y and
2 =z Clearly, ||zMW|| = 1/2 and |z,$)| > 2|vg, |-

The element 2(2) will be constructed in the following way. Pick ms > k; and
y® €Y,,, where ¥ [v,| < 1/2% and |ly®|| = 1. As before, we choose ky > msy such that

n=mo+1
|y,(€§)| > 24u,|, and we set (2 = (1/22) -y and 2(®) = 23 + ()| Here, we may assume

(2)
k

without loss of generality that the entries z; ” and z,g) have the same sign - if this is not

the case, replace x() with —z(?). That being said, we have ||2(2) — z(|| = ||z(?]|| = 1/22, and
|z,i§)| > |x,(i)| > 22|vg,|. In addition, since msy > k1, we also have |z,§)| = |z,$)| > 2|vg, |-

Proceeding by induction, we may find a sequence (2("); in W and an increasing

sequence (k) in N fulfilling the following two conditions:

(i) ||z® = 2D = [|®|| = 1/2!. In particular, (2!); is a Cauchy sequence. Therefore,

there exists z € W such that z = lim z®.

l—)OO

(ii) For each fixed s € N, we have |z,§?| > 25|y, | for all 1 > s. Hence, |2x,| > 2°|vy,| for each

s€N. Thus, z € X(v).

Then, we conclude that z € (W n X (v)). The proof is now complete. O
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Remark 3.3.1. The last proof contains an argument where we use the fact that we are

considering real numbers (when we assume that ZL‘I(;) and Zlii) have the same sign). For the

complex case, we can adapt this step by assuming x,(;) and z,gi) have the same argument,
otherwise, we can multiply (2 by e for a suitable , preserving the norm of x(2). Then

2)|: 1

we have |Z,£1 |z,gl)| > 2|vk, |, as we wanted. The same process can be made inductively to

construct (z();.

We close this section with the following result.

Theorem 3.3.3. X (v) is mazimal spaceable.

Proof. Let (Ni)ken be a partition of N where each Ny is an infinite set. Now, we fix an
element w € A, (v). Next, we set w*) = (wy(f)) where v = w, if n € Ny and w =0
otherwise. Clearly w(*) € X (v) for each k € N. We claim that W = span({w® | k € N}) is
a subspace in X (v)u{0} and W c X (v)u{0}. Indeed, let ay,---, a, € R and ky, -, ky, € N.
We may assume that aq # 0. So,

(kl) (k2) + (k'm)

|a1wn + QioWp ot QG Why
sup 2
neD(v) |Un|
(k1) (k2) (km)
|O‘1wn + oW+ Wy, " vy w,)|
sup = Sup =
ne(Ni, nD(v)) [Vn] ne(Ng; nD(v)) [0n]

Thus, ajwy, +-+ +apwy,, € X(v) and {w®) | k € N} is a linearly independent set. Thus, W
is an infinite-dimensional subspace in X (v)u{0}. It remains to show that W c X (v)u{0}.
But first, let us observe that the condition x in W implies that x,, = apw, for each n € Ny,

where oy, € R depends on k.

Finally, let us suppose that x # 0 is the limit of a sequence (y')y ¢ W. Let
m € N be such that x,, # 0, and k£ € N be such that m € N,. Note that y,g? = oz,(f)wm, and

limy_, 0 Oz,(cl)wm = Z,,. In particular, w,, # 0. So, a =lim;_, Oz,(cl) = T /Wy, # 0. Let us recall

that for each n € N., we have yfll) = oz,(cl)wn. Hence, z, = lim;_ Ozlgl)wn = aw,, for each

n € Ni. Thus, ] oo,

x allw
Therefore, z € X (v). Then, W c X(v) u{0}. As the minimum dimension for an infinite-
dimensional Banach space is ¢, then W has maximal dimension, which completes our

proof. O]

3.4 Applications

3.4.1 Immediate applications

As applications of Theorem 3.3.1 and Theorem 3.3.2 we may derive, respectively,

the next two results.
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Theorem 3.4.1. The set A (v) is not spaceable.
Theorem 3.4.2. The set By(v) is not spaceable.

Remark 3.4.1. Theorem 3.3.2 guarantees the non-spaceability of By(v) even if we decide
to remove the finiteness condition on the kernel D(w) - for w € Ag(v) - that appeared in
the definition of the set Ay(v).

3.4.2 Applications to other subsets of ¢;

We recommend the reader to see the introduction to remember the meaning of the
sets M, N, R and S.

Theorem 3.4.3. The following assertions hold:

(i) M is maximal dense-lineable.
(i1) N is mazximal dense-lineable.
(iii) M is spaceable.

(iv) N is not spaceable.

(v) M is residual.

(vi) N is meager.

Proof. Let v = (v,) € M where lim,, o [v,|'/* =1 and v,, > 0 for all n € N. For this given
element, we consider the set X (v). Now, we fix an element w = (w,) € X(v). In the
sequence, we will show that w € M. Indeed, since w € £y, then limsup,, ., |w,|"/* < 1. For a
given € > 0 there exists mg € N such that |v,|'/* > (1 -¢) for all n > mg. On the other hand,
since w € X (v), there exists ng > mg such that |[wy,| > [Ung|- SO, [Wng 170 > v, |70 > 1 - €.
Therefore, limsup,,_, ., |w,|"/" = 1. Thus, X (v) ¢ M. Since X (v) is maximal dense-lineable
(Theorem 3.2.3), maximal spaceable (Theorem 3.3.3) and residual (Theorem 3.2.6), we
have (i), (iii) and (v). Next, by Theorem 3.3.2, for a given infinite-dimensional closed
subspace W of {1, we have W n X (v) # @, and because X (v) c M, we see that W ¢ N.

Therefore, N is not spaceable, which proves (iv).

Now, we fix v = (v,) € N, where v, >0 for all n € N. Let us consider the set Ay(v).
We will prove (ii). If w = (w,) € Ag(v), then |w,| < |v,| for all n > ng. The latter implies
that limsup,, . [w,|'" < limsup,,_,. [v.|'/" < 1, that is, w € N. Then, Ag(v) ¢ N. From
the fact that Ap(v) is maximal dense-lineable (Theorem 3.2.4), we may infer that N is

also maximal dense-lineable, and this completes the proof of (ii).

Part (vi) follows from the observation that N = (¢;\M), and M is residual (by

(v))- B



28

By similar arguments, we may prove:

Theorem 3.4.4. The following assertions hold:

(i) R is mazimal dense-lineable.
(i1) S is maximal dense-lineable.
(i1i) R is spaceable.

(iv) S is not spaceable;

(v) R is residual.

(vi) S is meager.

Proof. As in [3], we adopt the conventions 0/0 = 0 and a/0 = oo for every a € (0,00). We

recall that, for a strictly positive sequence (a,), it is always true the following estimate

liminf 2L < lim inf ar™ <limsupay™ < limsup ot (3.1)

n—oo  q, n—>co0

n—o0 n—o0 (07

Now, let us fix (v,) € £; with lim,, e [v,|"/* = 1 and v, > 0 for all n. As in the last theorem,
we have X (v) c M. Given w = (w,) € X(v) we have two possibilities: D(w) (the kernel
of w) is infinite or D(w) is finite. In the case that D(w) = {n € N|w, # 0} is infinite, we
see that the set {n € N|w,,1; # 0 and w, = 0} is also infinite. Thus, by our convention,
lim sup |wy,1/w,| = oo, that is, w € R. In the second case, we can apply (3.1) in order to
conclude that limsup,,_, . [Wys1/w,| > limsup,, o, |w,|'™ = 1. So, w € R. Hence, X (v) c R.
Consequently, R is maximal dense-lineable, spaceable, and residual. By Theorem 3.3.2,
every infinite-dimensional closed subspace W of ¢; intercepts X (v). Since X (v) c R, S is

not spaceable. A direct consequence of R being residual is that S is meager.

At last let us prove (ii). For the element w = (w,) = (1/2") € S, we have that
(we) € S for all e (1,2). Given oy < - < g € (1,2) and Ay, -+, \x non-zero scalars, we

have . .
! MWL+ At A 27(an g ) o-(nrDay
im = lim _
n—oo Alwgl 4o 4+ )\kw%k n—oo )\12*11041 4o 4 )\sznak

i A12790 4o N 21 -ag)-ak
11m
n—>00 )\1 4ot /\an(al—ak)

=27 <« 1.

Therefore, span({(w?) | @ € (1,2)}) is contained in S. It is also easy to see that the
elements of this set are non-trivial in the sense that they have infinite support. Now, we
use the same technique employed in the proof of Theorem 3.2.3 to conclude that S is

maximal dense-lineable. L]
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4 Lineability in measurable function spaces

Let (#,</,1) be a measure space, where u is a positive measure. We write
Lo(A) = Lo(AM , <, 1) to represent the set of all measurable functions f : .# — R. It
is well-known that L,(.#) = L,(M, o ) = {f € Lo(A) | [ ,|fIPdp < 00} (1 < p < o0)
and Leo( M) = Loo( M, o 1) = {f € Lo(A) | |f(t)] < C ae. where C =C(f) >0}
are Banach spaces when equipped respectively with the norms ||f||, = [, |f[Pdp and
llgllco = Inf{C' >0 |g(¢t)|<C a.e.} (feL,(A) and g€ Lo.(#).) In addition, for each set
A€ of, the symbol x4 denotes the characteristic function on A, that is, xa(¢t) =1if t € A
and zero otherwise - note that x4 € Lo(#).

In the previous chapter, for the measure space (N, #(N), ) with p being the
counting measure and & (N) as the power set of N, we have considered questions regarding
the lineability (spaceability) of certain subsets of ¢; = L1(N, Z(N), ). Now, we will
extend some of these results for a more general measure space (#, </, ). However, in
order to make everything work out we need to overcome some technicalities such as (in
the ¢; setting the three questions below can be easily answered - note that for the third

one, we have dimg ¢ = ¢):

o How can we consider the notion of limit at infinity?
o How can we guarantee the existence of a strictly positive function f e Li(.#)?

o When is L,(M) infinite-dimensional? What is dimg(L,(.#))?

In Section 4.1, we introduce the notion of convergence in measure at infinity - for
a very large class of sets .# - and we also provide necessary and sufficient conditions
in order to guarantee the uniqueness of such limits (which we can not take for granted).
In Section 4.2 we provide some characterizations of when L,(.#) is infinite-dimensional
(Theorem 4.2.1 and Corollary 4.2.1) in terms of .# and p. Besides that, we provide a
formula to compute dimg(L,(.#)) whenever L,(.#) is infinite-dimensional (Theorem
4.2.2). In Section 4.3, we completely characterize measure spaces (., 7, ) that admit
p-integrable strictly positive functions (Theorem 4.3.1). We also show in Theorem 4.3.2
that the problems that were considered in the last chapter for the space ¢; can also be
well-posed for Ly (., </, ) whenever (<, 1) belongs to a certain class of measure
spaces (which happens to be a very large class). As in the last chapter, we deal with real

vector spaces, but the results can be adapted to the complex case.

4.1 Convergence in measure at infinity and the main problem

In this section, we understand that (.#,<7, ) is a measure space, where .# =

(A, +,||-]|) is an unbounded subset of a fixed real normed vector space Y = (Y, +,] - ),
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</ is the Borel o-algebra in .# (< is the o-algebra generated by the open sets of .#
when .# is endowed with the subspace topology induced by the normed space Y') and p

is an arbitrary positive measure. In addition, from now on, we will adopt the convention:

Be(t)={z et | |z-t|| < ¢}, and Be(t)e = {z e | ||z—t]| > C).

4.1.1 Convergence in measure at infinity and U L P,,-measures

We start with a preliminary result that will be the starting point of our investigation.

Proposition 4.1.1. Let f € Li(.#). Then, for all €,6 >0, there exists { >0 where the set
Ac (€)= Ac(Q) ={t e Bc(0)¢| |f(t)| > €} has measure less than 6.

Proof. Fix € >0. Set Ac ={y e .# | |f(y)| > €}, and let A.(¢) be as in the statement.
Clearly, Ac(¢) = Acn B¢(0)c. For each n € N, we consider f,, = xg,(0)|f]- Now, fix § >0,
and let us suppose that p(A.(¢)) > for all ¢ > 0. Hence,

d —f - d =f od =f d
S dn= [ o= | (fixsaordu= [ il

- d f d
/;R(OM fldn+ [ |fld
> e p(Ac(n)) > eo.

The latter inequality contradicts the Monotone Convergence Theorem. The proof is now

complete. O

The last result motivates us to introduce the following definition:

Definition 4.1.1. Let f e Lo(.#'). We say that f converges in measure to a real number
d at infinity if for all €,0 > 0 there exists ¢ > 0 such that the set C¢ (¢) = Ce(¢) = {s €

B:(0)¢| |f(s)—d|> e} has measure less than d. In this case we will write
- tlim f(t)=d.

In the case that d = co, we require that for all N,d > 0 there exists ( > 0 where the set
Dy (¢) =Dn(C) ={s € Bc(0)| f(s)<N} has measure less than 6. The case d = —o0 is

defined in the same fashion.

At this stage a question presents itself: Is the limit in measure at infinity unique?

The answer to this question is negative in general as we can see in the next example.

Example 4.1.1. In this paragraph, .# =Y = R is considered with the usual topology
induced by the absolute value, and p is the Lebesgue measure on the Borel o-algebra 7.
The function f:R — R defined as f(t) = e=*” for all t € .# is integrable with respect to the
measure . Hence, the map v: &/ —» RuU {oo} with v(E) = [, f du for each E € o/ defines

a finite measure on the o-algebra o7. In particular, lim; ., ¥(B;(0)¢) = 0. Moreover, any
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constant function lies in Li(.#,<7,v). Now, let g be a constant function. We claim that
- tlljg g(t) = d for all d e R. Indeed, let €,6 > 0. We choose ¢ such that v(B:(0)°) < d.
Therefore, the set C4(¢) = {s € Bc(0)¢| |g(s) —d| > €} has measure less than ¢, since
Ce4(C) c B¢(0)c. This concludes the proof of our claim.

The last example gives us a taste of how pathological is the behavior of the
convergence in measure at infinity. That being said, we see ourselves compelled to

introduce the following definition.

Definition 4.1.2. We say that the measure p possesses the Uniqueness Limit Property
at infinity (for short p is a UL P.-measure) when every measurable function f admits at

most one limit in measure at infinity.

The next result characterizes U L P, -measures.

Theorem 4.1.1. p is a ULPy-measure if and only if u(B¢(0)¢) = oo for all ¢ > 0.

Proof. Let us suppose that u is a UL Py-measure with p(B:(0)¢) = L < oo for some ¢ > 0.
Consequently the function xp__ 1y € L1(.4), where B, (t) = {z € A | { <[z~ t|| <~}, for
all v> (. By the Monotone Convergence Theorem,

(B (0)) = B0y Ldp = f% XB(o)-dp = lim f% X Becon(0) A1

The latter yields lim,_e p1(Bs(0)¢) = 0. After repeating the same arguments presented in
the example of the previous section, we may conclude that p is not a ULP,,-measure, a

contradiction.

Conversely, let us assume that ;1(B¢(0)¢) = oo for all ¢ >0. Let dy,ds € R be with
- 1tlim f(t) =d; and p- tlim f(t) = dy. From the definition of convergence in measure at
infinity, for each €, > 0 there exists ¢ > 0 such that

p({s € Be(0) | [f(s) = du| > € or [f(s) - da| > €}) <0.

So,
1(Q={seB(0)°| |f(s)—di| <eand [f(s) - do| < €}) = o0.
We may derive from the equality above that the set () is not empty. After choosing

€ < |dy — ds|/2 and taking any s € Q we see that d; = dy. The verification of the cases where

dy = o0 or dy = oo are analogous. O

Definition 4.1.3. Let u be a ULP,-measure. The set Lo .(.#) is defined as Lo (.4 ) :=
{feLo(A)|p-lim, o f(t) exists and is a real number}.

We close this section with a result that can be obtained after revisiting the proof

of Proposition 4.1.1.
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Corollary 4.1.1. Let pu be a ULPy-measure. Let f e Ly .(#) and €,6 >0. Then, there
exists ¢ >0 such that u(Ce £(¢)) = {s € Bc(0)| [f(s)—d|>€}) <0, and u(F. () ={s e
Bc(0)e| |f(s)—d|<€}) =00, where u—tlirllo f(t) =d. In particular, there exists ¢ >0 where
the set {s € B:(0)°||f(s)—d| <€} is not empty.

Remark 4.1.1. The result above explains from a different perspective why there is no
uniqueness of the p- tllglo f(t) for finite measures. The main problem is that when the
measure £ is finite, the set {s € B:(0)¢| |f(s)—d| < ¢} may happen to be small (in the
measure theory sense) or even empty (with ¢ being large enough) even in the case when
{se€B:(0)¢]| |f(s)—d|> e} is also a small set for different values of d.

4.1.2 The main problem

For a fixed function f € Li(.#) with |f(t)| > 0 for all ¢ € .# we consider the sets:

. Ad(f)={g€L1(=///)|M-}£@o|%|=d} where 0 < d < co.

« B(f)= U Af)
0<d<oo
The set B(f) can be seen as the set of functions in L;(.#) that are controlled at
infinity (in measure) by the function f. Indeed, let g € B(f), and 0 < ¢ < oo such
that u—}ir?o | g(t)/f(t) | = c. By definition, for fixed €, > 0 there exists ¢ > 0 such that
p(Cegp(C) ={seBc(0)| | |(g/f)(s)|-c|>e€})<0o. From the latter, we may derive the

abovementioned control. More precisely,
(c=|f®)|<lg(t)] < (c+e)|f(t)| for all t e Bc(0)° with ¢ ¢ Ceg/¢(C).

In the present chapter, we are interested in the investigation of the (maximal)
lineability of the sets Ag(f), Aw(f) and B(f). However, at first we need to make sure
that the sets are well-defined. In broad terms, this problem only makes sense once we may
assure that the space Li(.#) is infinite-dimensional and that it also contains a strictly
positive function f. For this reason, we have to digress from these problems regarding
lineability, and we need to focus temporarily our attention to the following two questions:
(1) When does Li(.#') contain a strictly positive function? (2) When is L;(.#) infinite-
dimensional? In the next two sections, we will proceed in order to answer the above

questions for arbitrary measure spaces (4, </, ).

4.2 The space L,(A, o, 1)

In this section (., </, ) is an arbitrary measure space. The measure p defines

an equivalence relation on 7 in the following way

A~B < u(A~B)=u(B~A)=0.
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As usual, under the light of the above relation, we write
A={Beo/ |A~B}and o ={A| Aeco/}.

Remark 4.2.1. If A~ B, then u(A) = u(AnB) +pu(An B¢) = u(An B) (resp. u(B) =
uw(BnA)). Hence, u(A) = u(B).

Now, let us recall a couple of definitions according to [19]. A measurable set A € o7

is called an atom when satisfies the following two conditions:

e u(A)>0.

e FcA(Fed)and u(F) < u(A) = u(F)=0.

We shall say that u is purely atomic (or simply atomic) if every measurable set of positive

measure A of &/ contains an atom.

We close this section with the following:

Proposition 4.2.1. Let A, B € o/ with A~ B. If A is an atom, then B is also an atom.
Proof. Let F € of where F c B and u(F') < u(B). Observe that
WFNnA)<u(BnA®) =u(B~A)=0, since A~ B.
Then, u(F) = u(F nA). On the other hand, by Remark 4.2.1 we have u(A) = u(B). Thus,
p(FnA)=p(F) <p(B) = p(A).

Hence, u(F) = u(FnA) =0, since A is an atom. The proof is now complete.
0

4.2.1 Necessary and sufficient conditions for L,(.#, </, ;1) to be infinite-dimensional

In order to discuss lineability in L,(.#') spaces (1 <p < oo) we do need to impose
that the space L,(.#) has infinite dimension. At first, we will establish necessary and
sufficient conditions for the space L,(.#) to be finite dimensional. At the end we will
provide a formula to compute dimg (L,(.#)) in the case that L,(.#) is infinite dimensional.

We start with the following result:

Theorem 4.2.1. The following assertions are equivalent.
(i) L,(A) is finite-dimensional.
(it) The set {u(E) | E € o} is finite.

(iti) M = Ey 9 FEyu---uE,, where each E; is an atom.
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(iv) The measure i is atomic, and there exist measurable sets Ey, ..., E, fulfilling the
following condition: For every atom A € o/ with finite measure, there exists i €

{1,...,n} such that A ~ Ej.

Corollary 4.2.1. The space L,(#) is infinite-dimensional if and only if there exists a
sequence (E,) c o of pairwise disjoint sets such that 0 < u(E,) < oo for all n € N.

Proof. The converse follows from the fact that the set {xg, | n € N} is a linearly independent
subset of L,(.#). For the forward direction see Remark 4.2.2. O

The proof of the above theorem will rely on the following three technical lemmas.

Lemma 4.2.1. Let us suppose that i is a finite measure. If A is an atom, then
Ly(A) =span(x.z) ={A x.n | A €R}.

Proof. Let f e L,(#). For each a € R, we set A, ={te . # | f(t) > a} and B, = {t €
A f(t) <a}. We define S={aeR|u(A,) =u(A#)} and R={aeR | u(By) = u(A)}.
For each a € R, we have A, U B, =.#. If a ¢ SUR, then u(A,),u(B.) < u(4). Hence,
w(Ay) = u(By) =0, since 4 is an atom. So, u(M) =0, a contradiction. Thus, R=Su R.

Now we claim that the sets S and R are nonempty. Let us suppose that R = @.
Consequently, for each n € N, u(B,) = 0. From the fact that .#Z = U2, B, and (B,)
is an increasing sequence of measurable sets, we have u(#) = lim,,_o p(B,) = 0 which
is not possible. So, R # @. In the same fashion, one may check that S # @. Next,
let v e Sand e R If > 3, then # = AyuwBsu{t e # | < f(t) < a}. Thus,
p( A ) > pu(As) +p(Bg) = 2u(A') a contradiction. Hence, a < 3 for all v € S and 3 € R. So,
sup S < ( for all § € R. Therefore, sup S < inf R. If there exists € R with sup S < d <inf R,
then the condition R = S'u R yields that either 6 € S or § € R. In any case we achieve
a contradiction. Set v = supS = inf R. For each n € N, one may find ~, € R where
Y < Y < v+ 1/n. Using that B, = N;2, B,, and that (B,,) is a decreasing sequence
of measurable sets, we may conclude that pu(B,) = lim, e (B, ) = u(A). So, v € R.
Similarly, one may verify that v € S.

Finally, we may notice that pu(.#Z ~ A,) = p({t € A4 | f(t) < ~}) = 0, since
w(Ay) = (M) and A = A, o (M~ A,). Therefore, u( M) = (B,) = p(By~ (A N A,)) =
u({te.# | f(t) =~}). Hence, f =7 x4 a.e. Then L,(.#) is a linear space with basis
{x.n}-

O

Lemma 4.2.2. Let y1 be an infinite measure. If A is an atom, then L,(.#) = {0}.

Proof. For each E € o7, we have either p(E) =0 or co. So, a step function h = Y71 \;xx,
(with A\; > 0) lies in L, () if and only if u(E;) = 0 whenever \; > 0. More precisely,
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h e L,(.#) if and only if h = 0 a.e. Since every non-negative measurable function f
in Lo(.#) can be a approximated by a non-decreasing sequence of non-negative step
functions, we may conclude that f itself lies in L,(.#) if and only if f =0 a.e. (we are

also using the Monotone Convergence Theorem).

]

Lemma 4.2.3. Let E€ of. Then o/ ={F € & | F c E} is a 0-algebra in E and pg defined
by pe(F) = p(F) for all F € Ag is a measure on «/p. Furthermore, if f € Lo(M , <, 1)
(7’68]). f € Lp(%aﬂmu)): then f|E € LO(E7%E7ME') (7“68[). f|E € LP(E7%E7ME))

Proof. The details are left to the reader. O]

Proof. (of Theorem 4.2.1)

(i7i) = (iv) : Let A = Ey W Ey u---u E,, where each F; is an atom. If E € A is
such that p(£) >0, then, the condition u(E) = Y7, u(E n Ej) implies that (£ n E;) >0
for some i € {1,...,n}. Besides that, since (F'n E;) c E; and E; is an atom, we see that
w(EnE;) = p(E;). In particular (E'n E;) is an atom in E. Hence, p is an atomic measure.
For the second part, let E € .o/ be an atom with finite measure. By the same argument
presented earlier, we may infer that u(E;) = u(E n E;) = u(E) for some i € {1,...,n}.
Therefore, we have the equality 0 = (u(E) - p(En E;)) = p(E N E;) = p(E; N E), or
equivalently, £ ~ E;.

(iv) = (#ii): Let us assume that p is atomic, and let Fy, ..., F, be as in (iv). Due
to Proposition 4.2.1 and Remark 4.2.1 we may assume without loss of generality that F;
is an atom of finite measure for each j € {1,...,n}, where E, + E, for p,q € {1,...,n} with
p # ¢. Now, we claim that that u(E,n E,) =0 for distinct p,q € {1,...,n}. Indeed, if this
is not the case, then 0 < u(E, N E,) = u(E,) = u(E,). So, u(E, \ E,) =0, that is, E, ~ E,,
a contradiction. Next, set .
Ep =EpN (]Ul(Ep nE;)).
#p
It is clear that u(E,) = u(E,), otherwise, u(E,) = 0. In particular, (@) = u(E, ~ E,) =
0=u(E,) - w(E,) = u(E, \ E,), that is, E, ~ E,. Hence, we may assume that all the E,
(j €{1,...,n}) are pairwise disjoint atoms of positive measure. Set F' = .Z ~ (v_ E,).
If G is a measurable subset contained in F' with 0 < u(G) < oo, then - since p is atomic
- we may assume without loss of generality that G ~ E; for some i € {1,...,n}. So, we
arrive at the contradiction 0 = u(FE; N~ G) = u(E;) > 0 (we have used that E; is an atom
and (E;nG) c (E;nF) =g). Thus, either u(F) =0 or u(F) = co. If u(F) = oo, then
M = F v (0 E;) provides the desired decomposition. Otherwise, if y(F7) = 0, we replace
the atom F) with the atom (£ U F), and we take .# = (F'U Ey) (W], E;). The proof is

now complete.
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(i1) = (dv): If p is not an atomic measure, then there is a set £ € &7 (u(E) > 0)
where E does not contain atoms. Hence, there exists a measurable set E; contained in F
with 0 < pu(E7) < p(E) < co. Once again, since E; is not an atom, there exists a measurable
set Fy with Fy c Fy and 0 < u(FEs) < p(Er). Inductively, we can construct a decreasing
sequence (E,) with 0 < u(E,.1) < u(E,) for all n € N. Thus, {u(FE) | E € &/} is an infinite
set, a contradiction. Hence, u is atomic. Now, let us suppose that for each n € N there is
an atom F, with finite measure, where E, + E,, if n #+ m. As in the previous paragraph,
we may assume without loss of generality that the atoms E,, are pairwise disjoint. By
setting F, = Iy E,, we have u(F,,1) > pu(F,) for all n € N. The latter contradicts the
hypothesis.

(i1i) = (ii): Let A = By v Eyw---u E, be a partition of .#Z in atoms. For a fixed
E e o7, we see that u(E) = p(EnEy)+---+ u(En E,). Since each term has only two
possible outcomes, namely, u(E n E;) =0 or u(E n E;) = u(E;), we may infer that the set
{(E) | E € &} is finite.

(iii) = (i): Let A = EywEyu---wE, be a partition of 4 in atoms. Fix f € L,(.Z).
g, € Ly(E;, g, jug,) for each i € {1,2,...,n}. On the one hand,
if u(E;) < oo, then by Lemma 4.2.1, f|g, = v:xg, for some 7; € R. On the other hand, if
w(E;) = oo, then f|g, =0 by Lemma 4.2.2. Therefore, f(t) =v1xg, (t) + +YuXg, (). In
addition, span(xg,, ..., Xg,) 2 Lp(A#). Then, L,(.#) is finite-dimensional.

By Lemma 4.2.3 we have f

(i) = (iv): As we have seen in the proof of (i) = (iv), if p is not an atomic
measure then there exists a decreasing sequence of measurable sets (F,) satisfying 0 <
W(En1) < u(E,) < oo for all n e N. Set F,, = E, ~ E,;1. The sequence (F),) is pairwise
disjoint with 0 < p(F,) < oo for all n € N. Similarly, if .#Z contains a sequence (G,)
of atoms with finite measure, we may assume (based on previous discussions) that this
sequence is also pairwise disjoint. So, if (iv) does not hold, we may find a sequence (F,)
of pairwise disjoint sets such that 0 < u(F,) < oo. Clearly, the set {xr, | n € N} is a linearly
independent subset of L,(.#), a contradiction. O

Remark 4.2.2. The forward direction in Corollary 4.2.1 follows from the fact that L,(.#)
being infinite-dimensional implies that (iv) is false, and consequently, as we have seen in

the proof of (i) = (iv), there exists the desired sequence (E,,).

We close this section with a result that will be very useful for our purposes.

Theorem 4.2.2. Let us suppose that dimg(L,(.#)) = co. Then dimg(L,(.#)) = card(S)%o
where S ={E € o | f(E) < c0}.
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Proof. First of all, note that the condition dimg(L,(.#)) = co implies, by Corollary 4.2.1,
that card(S) > ®o. Hence, card(S)® > ¢. Second, we may notice that xg = xr a.e. if
and only if F ~ F. Consequently, we may assure the existence of at least card(.S) linearly
independent functions on L,(.#). Hence, card(S) > dimg(L,(#)). Now, we recall
that, since L,(.#) is a Banach space, then dimg(L,(.#)) > ¢. Therefore, card(L,(.#)) =
dimg (L, (A)) > card(S).

On the other hand, it is known that in the case that X is an infinite-dimensional
Banach space, we have the equality card(X) = d(X)®, where d(X) is the cardinality of
the smallest dense subset of X (see [20, Lemma 2.8]). In particular, since L,(.#') is also
a Banach space, we have card(L,(.#)) = d(L,(.#))*. By cardinal arithmetic, and the
estimate d(L,(.#))% = card(L,(.#4)) > card(S), we get

card(S)%° < d(L,(A)) ™0 = d(L,(A )™ = card(L,(A)) = dimg(L,(4)).

Next, let us recall that span(D) = L,(.#), where D = {xg | E € S}. We claim that
card(L, (4 )) < card(S)™. Indeed, since each element of L,(.#') is the limit of a sequence
in span(D), one may find an injective map from L,(.#) into [span(D)]*0 = the set of all
sequences of elements of span(D). At last, note that card(span(D)) = max{c,card(S)}.
Thus, dimg(L,(#)) = card(L,(#)) < card([span(D)]*°) = card(S)*. The proof is now

complete due to the above inequality. O

Remark 4.2.3. In the event that card(S) < ¢, the theorem above allows us to conclude that
either dimg(L,(.#)) = ¢ or dimg(L,(.#)) < co. In particular, since it is well known that
the Borel o-algebra in R has cardinality ¢, we may conclude that either dimg(L,(R)) =¢
or dimg(L,(R)) < oo (here we consider R with the Borel o-algebra) despite of the chosen

measure. The same applies to any other measure space whose sigma-algebra has ¢ sets.

4.3 The existence of a strictly positive function on L,(.#') for 1 <p < oo

Theorem 4.3.1. Let (A, </, jv) be an arbitrary measure space. Then L,(.A4') contains

strictly positive functions if and only if u is o-finite.

Proof. Let us suppose that f € L,(.#) is strictly positive. Clearly, .# can be written as
a union of measurable sets in the following way: .# = U2 {t € .4 ||f(t)| > n~Y/P}. Since
feL,(A), we have u({t e A ||f(t)| >n '/P}) < oo for all n € N. Therefore, p is o-finite.

Conversely, let us suppose that .# = U,y M, with u(M,) =m, < co. Let us set

f= ZAHXMM where 0 < (\,)Pm,, < 27" if m,, >0, and \,, = 1 when m,, = 0. By construction
neN
feL,(A) and it is also strictly positive. The proof is now complete. O
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We finish this discussion on prerequisites for the problem to be well-posed with the
following result which states that L,(.#) is actually infinite-dimensional whenever p is

simultaneously o-finite and a UL P,,-measure.

Theorem 4.3.2. Let (M, </, 1) be a measure space, where # is an unbounded subset of
a real normed vector space Y = (Y, +,||-||), let & be the Borel o-algebra in 4, and let p
be an arbitrary measure. Assume that p is simultaneously o-finite and a U LP,,-measure.
Then, L,(A) is infinite-dimensional. Moreover, L,(B¢(0)¢) is infinite-dimensional for
all >0 - Be(0)¢ is the measure space induced by (M, <7, 11).

Proof. Let us suppose, by contradiction, that L,(.#) is finite-dimensional. In this case,
by Theorem 4.2.1, we have .# = E; v---u E,, where Ey,..., E, are atoms. Since p is
o-finite, we may conclude that u(FE;) < oo for each ¢ € {1,...,n}. Hence, p is a finite
measure. The latter contradicts the characterization of U L P,-measures that was provided
in Proposition 4.1.1. For the last part, we may apply the same arguments to the set
B¢(0)¢, since pu(B¢(0)¢) = oo. O

4.4 The sets Ao(f), Ae(f) and B(f)

Henceforth, (.#,</, 1) is a measure space, where .# = (. ,+,|| - ||) is a fixed
unbounded subset of a real normed vector space Y = (Y, +,]| - ||), </ is the Borel o-algebra
in .# and p is an arbitrary U PL.-measure which is also o-finite. In addition, we fix a

strictly positive function f € Lq(.#).

4.4.1 B(f) is non-lineable
We remind the reader that p(B(0)¢) = oo for all ¢ > 0.

Proposition 4.4.1. Let g: .# — R be a function. Let us suppose that ,u—tlim g(t) =d>0.
Then, there exists ¢ >0 such that the set Z,(¢) = {s € B:(0)¢| g(s) =0} has finite measure.

Proof. Let 0 < € < d and 0 > 0. Since u—ltlim g(t) = d > 0, there is ¢ > 0 such that
Ceg(€) ={s€B:(0)¢||g(s) —d| > €} has measure less than §. From the condition 0 < € < d,
we see that Z,(() c Cc4(¢). Therefore, Z,(¢) has a finite measure. O

Corollary 4.4.1. Let g:.# — R be a function. Let us suppose that p-}ir({lo lg(t)] =d > 0.
Then, for each ¢ > 0, either P,(¢) or N,(¢) has infinite measure, where Py(¢) = {s €
B:(0)¢ | g(s) >0} and Ny(C) = {s € B:(0)° | g(s) < 0}. Moreover, if there exists (o > 0
such that p(P,(¢)) < oo for each ¢ > (o, then (Ny(C)) = oo for all ¢ > (. In particular,
p(Ny(C)) = oo for all ¢ >0.

Proof. By the previous proposition, there exists ¢; > 0 such that pu(Z,(¢1)) < co. Let
us suppose that for some ¢; > 0 we have p(P;(¢2)) < oo and pu(Ny(¢2)) < oo. Now,
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we set ¢ = max{(y,Ga}. Then, p(Bc(0)%) = pu(Z4(C)) + p(Fy(Q)) + p(Ng(Q)) < o0, since
Z,(C) € Zy(¢1), Py(C) € Py(¢2) and N,(¢) c Ny(¢2). The latter contradicts the hypothesis

that u is a ULP,, measure. O]

Corollary 4.4.2. Let g,h: .# — R be two functions. Suppose that - tlim lg(t)| =d and
,u-tlim |h(t)| = ¢, where d,c > 0. In addition, assume that P,(¢) has infinite measure for
each ¢ > 0. Then, either (P,(¢) n Py(C)) or (P,(¢) n Niw(C)) has infinite measure for each
¢>0.

Proof. Let (o > 0 be such that ;(Z,(p)) < oo. Now, for any ¢ > (o, the equality (P, (()) =

1(Fy () N Pu(€)) +p(Fy(¢) N Nw(Q)) + pu(Fy(¢) 1 Z1(C)) implies that either (Fy(¢)nFu(¢))
or (P,(¢) n N,(¢)) has infinite measure. This completes the proof. O

Remark 4.4.1. Under the light of Corollary 4.4.1, we may assume without loss of generality
that p(P;(¢)) = oo for all ¢ > 0. Thus, the relation P,(¢) = (Pn(¢) n Py(¢)) w (Nn(¢) n

P,(€)) w(Z,(¢) n Py(()) tells us that either pu(Pr(¢) N Py(¢)) = oo or pu(NL({) N FPy(C)) =
oo for each ¢ > 0. Thus, by the same spirit of Corollary 4.4.1, we may assume that

p(Pr(¢) N Py(¢)) = oo for all ¢ > 0.

Proposition 4.4.2. The set B(f)u {0} only contains finite-dimensional subspaces of

dimension 1. In particular, B(f) is not lineable.

Proof. Fix g,h € B(f). Now, let 0 < ¢,d < oo be such that u—tlirglo lg(t)/f(t)| = ¢ and
u—}ir(r)lo | h(t)/f(t) | = d. We may assume without loss of generality that the u(P(¢)) =
P(Py(€) N Pryp(C)) = oo for all ¢ > 0. We claim that (dg — ch) ¢ B(f). Indeed, sup-
pose otherwise, that is, (dg — ch) € B(f). Consequently, there exists b > 0 such that
p—}lrglo | (dg(t) —ch(t))/f(t) | = b. Thus, for given €,d > 0, there is (5 > 0 such that the
measure of the set {s e B:(0)¢| |(dg(s) —ch(s))/f(s)|—b| > €} is less than ¢ for all { > (p.

Now, let us fix 0 < € < b/2. There is (; > (o such that { > ¢; implies that

u({s € Bc(0) [g(s)/f(s)] - c| > €/2d}) < and

u({s € Be(0) [|h(s)/f(s)| = d| > €[2¢}) < 6.
Next, consider the set R(¢) = F(¢)n P(¢), where

F(Q) = {s € B(0)° [lg(s)/f ()l - el < e/2d} n{s € Bc(0)[ [h(s)/f(s)] - d] < €f2c}.
Observe that
p(EF(Q)) = ul{s € Bo(0)[1g(s)/f(s)|=cl > e/2d}uis € Bc(0) [ [h(s)/f(s)=d] > €[2c}) < 26.
Hence, pu(R(()) = oo, since P(C) = (P(¢) n F(¢)) v (P(¢) n F(¢))-
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Finally, if s € R(({), we have

do(s)=ch(s)] |06 ) 1 e | )]
o =[5 -y et e s 5 - g o] se<on
Therefore, R(() c {s e B:(0)¢]| |(dg(s) —ch(s))/f(s)|—b| > €} for all ¢ > ;. This leads us
to a contradiction. O

4.4.2 The set Ao(f)
Proposition 4.4.3. The set Aq(f) is c-lineable.

Proof. For each o > 1 we consider the function g, (t) = f(¢)/(1+|Jt||). Since, |g.(t)| < |f(2)]
for all t € .4, we may infer that g, € Li(.#) for all a > 1. It is straightforward to verify
that g, € Ag(f). The set {g, | @ > 1} is linearly independent. Indeed, let Ay,..., Ay be real

numbers such that i
Z Angan = 0
n=1

The equality above yields

S(t) = Z)\ W =0 a.e on M.

We may assume without loss of generality that a; < a; if i < j. We set P(t) = [Th_; (1+]¢]]).
From the relation (P-.S) =0, we may infer after rearranging the terms from the highest
to the smallest degree that
R(t) = )‘IH(||75||+1)&"+Z)\ H lt]|+1)* =0 a.e on .
n=2

=1
[ESD)

Hence, if A; # 0, then limy_. |R(t)| = co. In particular, for some ¢ >0, R(t) # 0 for all
t € B¢(0)c. The condition u(B:(0)¢) = oo contradicts the fact that R(t) =0 a.e on .Z.
Recursively, we may conclude that A, =0 for all n=1,... k. Clearly, span({g, |a>1}) c
Ao(f). The proof is now complete. ]

4.4.3 The case d = o0
Proposition 4.4.4. The set Ao (f) is non-empty.

Proof. For each k € N, let ng € N be such that

fldp < 1/2%.
ank(O)cl dp <1

We may assume without loss of generality that n; < n; if i < j. Let us set g(t) = 2¥|f(t)|
if ny < ||t|| < ngy1 and g(t) = |f(t)| for 0 < ||¢|| < n1. Thus, ,u—tlim | g()]f(t) |= oo. Besides
that,

9(@) =1f DX Bon, 0 + 20 25 F (D) XBa, oy, 0)-
k=1
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Hence,
ng:/“ Fldu(t) + /‘ 2| fldu
AJ| | Bo,ny (0) | | ( ) kzzzl By, npiq | |
< [ [l + 3 2(1/22%) < oo
M k=1
Therefore, g € L1(.#). The proof is now complete. ]

Our goal at this point it is to show that A (f) is c-lineable. We start by providing
a sufficient condition for a subset L (satisfying certain conditions) of A.(f) to be a basis

of a linear subspace contained in A (f)u{0}.

Lemma 4.4.1. Let L be a subset of A (f) fulfilling the following condition:

(i) If g,h € L, then either g € Aw(h) or he Ax(9).

(it) Every function g € L is strictly positive.
Then L is a linearly independent subset of Aw(f) and span(L) c As(f)u{0}.

Proof. We start by claiming if g € A (h) and h € A (k), then g € A (k). Indeed, let
us fix N,§ > 0. Since M-tlirglo | g(t)/h(t) |= o0 and u—tlirglo | h(t)/Ek(t) |= oo, there is ¢ > 0
such that the sets D g ,(C) = {t € Bc(0)e | |g(¢)/h(t)] < V/N} and D 5 mi(€) =
{t € B(0)e | |h(t)/k(t)] < V' N} have measure less than §/2. Hence, the inclusion {t e
Be(0)° 1g(t) k(D) < N} € Dy ()0 D 513 (C) vields p(Dijys () < 6 holds. Then,
pelim | g(8)/k(1) |= o0

Now, let us fix g1, 92,*, g, € L and non-zero scalars aq,---,a,, € R. Based on the
first paragraph, we may assume without loss of generality that g; € A (g;) when i < j.
The proof boils down to showing that h = 191 + -+ + angn € Ao (f). To this end, we first
note that

a1g1 (t) +oet angn(t) 04191 (t) -t angn(t) ‘ )1 t)

f (t) gl(t) f(®)
B PRS- 10 e A ON | LGN
91(1) g1() ] £(2)
Next, let §, N > 0 be arbitrary. For each i =2,---,n, we set J; = &. If the
2|C¥Z|(TL - 1)
inequality |g;(¢)/g1(t)| < J; holds for each i =2,---,n, then
W20 m®] e +m4%@‘
“qi(t) gi(t) 91(t) 1(1)
!

sl Ja + o] Ty = (n = 1) loa] __ o |/2.

2(n-1)
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Hence, under these conditions, we obtain

RO A0

91 (1) “oi(t)

In addition, if we assume that |g;(t)/f(t)| > 2N /|ay|, we have

Qg + Qg > |aq/2.

a1 gr(t) + -+ angn(t)
f(t) ‘ -

From the latter, by choosing Ny = 2N/|a;| and N; = 1/J; for each i = 2,---,n, it
follows that

D juy11(€) € Dy ga1£1(€) U Divg g1 /0 (€) U+ U DI, g4 /g, (€)-

The condition ,u—tlim | 91(t)/gi(t) |= oo for each i =2,---,n and u—tlim | g1(t)/f(t) |= oo guar-

antee the existence of an element ¢ > 0 such that

(D, 1g,/71(€)) < d/n and p( Dy, jg,76:(C)) <d/n

foreach i = 2,---,n. Therefore, (D n/s(¢)) < 6. Thus, by definition, ,u-tlim [ h(t)]f(t) |= oo.
Hence, h # 0. So, we may conclude that L is linearly independent and span(L) c
Ao (f)u{0} as desired. O

Proposition 4.4.5. The set Ao (f) is c-lineable.

Proof. Let a be in (0,2). For each k € N, let n; as in the proof of Proposition 4.4.4.
After repeating the same arguments presented in the proof of Proposition 4.4.4, we
may conclude that the function g, € A (f), where g, (t) = 29¢|f ()| if ny < ||t|] < npsr
and g,(t) = |f(t)] when 0 < ||t]| < ny. In additon, if o, € (0,2) and « > 3, then
u—}irglo | ga(t)/g5(t) |= 0o. Hence, if we set L = {g, | a €(0,2)}, we see that L satisfies the
conditions (i) and (i¢) in Lemma 4.4.1. Therefore, span(L) is a subset of A (f)u {0}
and dimg span(L) = card(L) =c. O
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