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RESUMO

A detecgao e predicao de eventos desempenham um papel crucial em diversos
dominios, especialmente em sistemas de alerta precoce, onde a identificagao de eventos
criticos com antecedéncia pode prevenir desastres e mitigar riscos. Esta pesquisa aborda o
problema da integracao de dados de sensores heterogéneos, comum em areas como gestao de
desastres e cidades inteligentes, onde dados brutos podem nao fornecer contexto suficiente
para uma tomada de decisao eficaz. Para resolver esse desafio, propomos um framework
que combina uma abordagem baseada em ontologia para integrar e contextualizar os
dados de sensores com técnicas de aprendizado profundo para a predicao de eventos.
O framework utiliza um modelo de Ontologia de Rede de Sensores Seménticos (SSN)
estendido para estruturar e enriquecer os dados com informagdes seménticas e de contexto.
Em seguida, aplicamos modelos de redes neurais recorrentes de memoria de longo prazo
(LSTM) para realizar a predi¢ao de eventos com base nos dados integrados. Um estudo de
caso foi realizado no dominio hidroldgico, utilizando dados reais de sensores hidrométricos e
hidrologicos para prever eventos criticos como enchentes. Os resultados demonstraram que
a combinagao da integracao semantica com técnicas de IA melhora a acuracia das predigoes
e permite a identificacao antecipada de eventos criticos que poderiam ser perdidos com

dados isolados.



ABSTRACT

Event detection and prediction play a crucial role in various domains, particularly
in early warning systems where identifying critical events in advance can prevent disasters
and mitigate risks. This research addresses the problem of integrating heterogeneous sensor
data, which is common in fields such as disaster management and smart cities, where
raw data may not provide sufficient context for effective decision-making. To address this
challenge, we propose a framework that combines an ontology-based approach to integrate
and contextualize sensor data with deep learning techniques for event prediction. The
framework utilizes an extended Semantic Sensor Network (SSN) ontology to structure
and enrich the data with semantic and contextual information. Then, Long Short-Term
Memory (LSTM) neural networks are applied to predict events based on the integrated data.
A case study was conducted in the hydrological domain, using real-world hydrometric and
hydrological sensor data to predict critical events such as floods. The results demonstrate
that combining semantic integration with Al techniques improves prediction accuracy and
enables the early detection of critical events that might be missed when using isolated
data.

Keywords: Data Integration; Sensors; Ontology; Deep Learning; Event Prediction.
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1 Introduction

For event detection and prediction, contextualized data is a crucial element (26).
In the Internet of Things (IoT) and big data era, multiple and heterogeneous data sources
are common, and integrating them is an important task for establishing data context (73).
Concerning sensor data sources, the integration of data for event prediction has garnered
the attention of numerous researchers, who have proposed solutions and applications
across various fields, including digital health, smart cities, logistics and supply chain,

environmental risk, and disaster prevention (40, 50, 75, 14).

Event prediction involves detecting events of interest based on data patterns
and contextual information. It involves leveraging advanced inference algorithms and
Artificial Intelligence (AI) techniques to analyze historical data, identify trends, and
predict future occurrences. In the context of sensor data sources, event prediction aims
to foresee specific events or anomalies, allowing for proactive decision-making and timely

responses. Numerous approaches to address this concern can be found in the literature
(39, 74, 70, 48, 46, 65).

Zhao (2021) presents a comprehensive survey that reviews the most common
methods for handling event prediction using sensor data. The study provides detailed
insights into various approaches and highlights their respective strengths and weaknesses.
The limitation and challenge observed in many existing studies is the absence of solutions
that effectively consider data from diverse, integrated, and contextualized sources before
applying intelligent methods (81). As a result, event predictions are often confined to
a single data source, leading to incomplete insights and hindering the holistic view of
predictions (53).

Furthermore, event prediction systems can enhance their ability to detect events by
considering a network of integrated sensor data (4). As highlighted by (47, 67, 20, 19, 14,
51), the predicted events may exhibit correlations and mutual influences. In Zhao(2021),

authors further assert the existence of intricate dependencies among events.

1.1 Proposal

Drawing upon the key insights, limitations, challenges, and suggested avenues
identified in a Secondary Study conducted to comprehend the state-of-the-art and identify
gaps and paths in semantic data integration, event detection, and prediction the following

research question was formulated:

RQ — Can the framework semantically integrate data from multiple data sources to

detect and predict events of interest from these data?

In order to answer this research question, this work proposes a framework to
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process, integrate, contextualize data, and also to detect, correlate, and predict events
from multiple data sources. Ultimately, we aim to identify events of interest based on
correlated events detected in integrated data, which might remain undetected or experience

delayed detection when using a single data source.

To accomplish this, we utilized a Local Concept Schema (LCS) in conjunction with
a Global Conceptual Schema (GCS), structured as an ontology, and integrated AI models.
This methodology enabled us to consolidate data from diverse sources. Our system was
designed to detect individual events based on data from specific sources and identify events
by analyzing context across multiple data sources. By employing ontological terms and
rules, we were able to extract semantic meanings and propose a unified context for the

detected events.

The methodological process encompassed five main steps:

o A Secondary Study was conducted to comprehend the state-of-the-art and identify

gaps and paths in semantic data integration, event detection, and prediction.

« An ontology model was developed for data integration, context building, and event

detection.
o An artificial intelligence model was implemented for event prediction.

e An evaluation phase was conducted to assess the effectiveness of the proposed

framework in integrating, detecting, and predicting events of interest.

The framework comprising the ontology and Al models was applied and assessed
using real data from hydrometric and hydrological sensor stations. We define the ontology
as a standardized representation for integrating data from diverse sources. The ontology
also established context among these sources and detected events of interest. An Al
model based on the integrated data predict events on these sources. As a result, we
initially contextualized and integrated data from these sensors, subsequently detecting
and predicting flood events. The contexts were constructed based on the ontology model,
while the predictions relied on the AI model. Shared contexts were identified based on
location and flow direction among these stations, illustrating that events occurring at one

station can influence events at another station.

Developing a framework is justified in our proposal as, in computer science, a
framework is defined as a structured environment that provides reusable components
and standardized guidelines for software development(35). It serves as a foundational
structure, enabling developers to build applications more efficiently by abstracting common
functionalities, promoting code reuse, and enforcing architectural patterns that seek

consistency and scalability. By offering these predefined solutions, a framework simplifies
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the development process, allowing developers to focus on specific aspects of the application

while relying on the framework for core functionalities.

Figure 1 highlights the challenges of developing our work along with the proposed
analytics process. These challenges are addressed during the present study. First, we
model each reading from the sensor as a unique data instance. Syntactic information is
derived from a variety of data collected by hydrometric and hydrological sensors, which
are then structured into a common representation using ontology. Ontologies, as logical
models, explicitly define the meaning (semantics) and relationships between concepts.
Our objective is to identify each data source and represent the associated data using a

canonical ontology model, facilitating the seamless integration of new and diverse sensors.

-

Data Syntactic Semantic Al Result System
Modeling Information Information Modelling Analysis Architecture
Application
Data acquisition Different types of Model validation Development
q sensors Context building Selection of Al Lifecycle
’ model Metrics choice
SR:;Z(;?:O” of Different observed Performance Software
features issues Parameters tuning Model evaluation Development

Process

\ /

Figure 1 — Research challenges.

Semantic information enables the extraction of meaning from data. When com-
bined with syntactic information, semantic-based methodologies empower the framework
to explore the context of analysis comprehensively, extracting insights from semantic
structures. To achieve this, we have enhanced the ontology model with contextual rules to
define the relationships among stations and sensor data, categorizing each data instance
based on predefined threshold values. This allows the detection of events of interest within

the observed domain, such as flood events.

Al modeling entails selecting the most suitable model based on the characteristics
of the analyzed data. Factors such as the nature and quantity of the data and statistical
characteristics like seasonality are considered. Once the optimal model is identified,
adjustments to its parameters are necessary to mitigate biases, enhance computational

performance, and improve the accuracy of predictions.

Following the implementation and fine-tuning of the model, efforts are directed
towards result analysis to validate the obtained results. This involves utilizing metrics
that best align with the model and the problem being studied, ensuring the robustness of

the conclusions drawn.

Finally, throughout the entire implementation life cycle, we address questions

regarding the software development process and software implementation cycle. This is
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aimed at selecting the better choice system and architectural design to effectively handle
the data and achieve the desired solution behavior once we have a high-throughput data

flow.

In summary, the solution makes the following contributions: (i) allows the integra-
tion of data from different sensors, (ii) provides the abstraction of sensor data structure,
allowing add new data sources, (iii) relates events from different sensors, (iv) detect events
of interest based on ontology definitions, (v) predict events of interest based on context

and Al patterns recognition.

This dissertation is organized as follows: Chapter 2 presents concepts about data
integration, event prediction, and related work. Chapter 3 introduces the architecture
of the proposed solution, including explaining each step involved in the approach, and
describes the data, ontology, and Al models used in this study. Chapter 4 delves into the
pre-processing layer, result analysis, Al model definition, implementation, and experimental
results. Chapter 5 presents the result analysis, including semantic integration performance,
AT model performance, and the impact of context rules. Finally, Chapter 6 presents

conclusions and future works.

The development of this work resulted in two published papers (4)(5) and ongoing

submissions.

All code and data used in this work can be accessed at Bitbucket project! and
Bitbucket Project?.

! https://bitbucket.org/JeffersonAmara/obiwan/src/main/
2 https://bitbucket.org/Jefferson Amara/ontology-based-integration-system/src/master/
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2  Background and Related Works

Considering the research area of this dissertation, a secondary study was carried out,
to assess how the literature discusses the topic. We conducted a search considering scientific
articles that discuss processes for semantic sensor data integration, event detection, and
event prediction. We combined searches in digital libraries and then processed snowballing
forward (SF). For this, the searches were carried out in the Scopus digital library and

Google Scholar®.

We searched also for related papers dealing with flood event prediction once our
feasibility study relied on data from hydrometric and hydrological stations. Therefore, the
secondary study aimed to identify specific studies to help understand the state-of-art (37).

2.1 Data Integration and Event Prediction

Data integration is critical in managing the diversity and abundance of available
information. It offers a strategic approach to unify disparate sources, improve data quality,
enrich context, and facilitate Big Data analysis. This integration not only supports informed
decision-making but also enhances the effectiveness of Al systems (42). Data integration
contributes to data accuracy by providing a holistic view, empowering organizations and

individuals to extract meaningful insights from the extensive data (73).

However, this process of data integration is not without its challenges. The data
landscape presents obstacles such as managing source diversity (databases, applications,
cloud, social networks, and IoT), handling massive data volumes, adapting to various data

formats, and ensuring real-time integration for decision-making (53).

In this complex data landscape, ontologies emerge as a potential solution (6). In
computer science, an ontology is defined as a formal representation of a set of concepts
within a domain and the relationships between those concepts (28). Additionally, an
ontology is considered a logical theory that describes the intended meaning of a formal
vocabulary. This description forms the ontology’s commitment to a particular conceptual-
ization of the world. The intended models of a logical language using such a vocabulary
are constrained by this ontological commitment, which means that an ontology indirectly

reflects this commitment by approximating these intended models.

Practically speaking, an ontology includes a vocabulary, which is a set of terms
describing the domain, concepts, which are entities or classes within the domain, relation-
ships, which are the associations between the concepts, and axioms, which are rules that
define the usage boundaries of the terms and the logic governing the relationships between
them (29).

1

https://scholar.google.com/
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This structure allows the creation of ontology-based information systems, where
systems are designed and operate according to the concepts and relationships defined in
the ontology, facilitating information integration, knowledge reuse, and interoperability

between different systems (58).

Ontologies also aid in defining semantic relationships between disparate datasets,
contributing to standardization and semantic clarity. They address the challenge of

heterogeneity by harmonizing data with diverse structures and meanings (50).

A highlighted example of data heterogeneity is data produced by sensors. A
sensor is a device that detects and responds to some type of input from the physical
environment. The specific input could be light, heat, motion, moisture, pressure, or any
other environmental phenomenon. The output is generally a signal that is converted to
a readable display or transmitted for further processing (59, 52). In sensor data, which
includes information captured by IoT devices and environmental sensors, ontologies play a

crucial role in overcoming the diversity in formats, structures, and contexts.

Sensor data integration goes beyond physical unification; it involves semantic
harmonization to ensure a consistent understanding of the data (40). Applying ontologies
in sensor data integration allows for creating semantic structures defining and relating
underlying concepts (75, 6). The World Wide Web Consortium (W3C) and Open Geospa-
tial Consortium (OGC) propose the Semantic Sensor Network (SSN) as an ontology

standardization for sensor data, formalizing the representation of terms and concepts (15).

The SSN ontology is used to represent and describe sensors, their observables, the
observations they make, and the entities involved in a sensor network environment. It is
part of a group of ontologies aimed at the Semantic Web. It is designed to be modular and
flexible, allowing detailed representation of various aspects of sensors and their operations.
It includes several main components: the sensor device, which encompasses information
about the sensor’s capabilities, functionality, and physical characteristics; the observation,
which represents the act of measuring or observing a phenomenon, including details about
what is being observed, when, and how the observation was made; the entity, which refers
to the object or event being observed by the sensor; the property, which is the characteristic
or attribute of the observed phenomenon, such as temperature, humidity, or pressure; and
the measurement system, which includes the methods and processes used to carry out the

measurements(15).

The SSN ontology utilizes standards from the Semantic Web, such as RDF (Re-
source Description Framework) and OWL (Web Ontology Language), to define a common
vocabulary that can be used to describe sensors and their observations in an interoperable
manner. The main components of the ontology include the sensor, which is a device
performing observations (e.g., a digital thermometer); the observation, which is an instance

of a sensor collecting data (e.g., a temperature reading at a specific time); the observable
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property, which is the characteristic of the phenomenon being measured (e.g., air tem-
perature); the result, which is the value or set of values obtained from the observation

(e.g., 25°C). Figure 2 shows the overview of the SSN classes and properties based on the

Observation perspective.
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Figure 2 — SSN classes and properties. Source:(15)

Examples of the SSN ontology’s application include environmental monitoring,
where temperature and humidity sensors can be described using SSN to monitor environ-
mental conditions in a forest; smart cities, where sensors in urban infrastructure (such
as traffic cameras and pollution sensors) can be described and integrated using the SSN
ontology to improve city management; and healthcare, where medical devices like glucose

monitors can be represented using SSN to track and analyze patient health data (57, 30).

This standardization offers several advantages, including interoperability, which
allows the integration of sensor data from different manufacturers and systems, facilitating
the exchange and use of information; reusability, where ontology components can be
reused in different applications and domains; and semantic richness, providing detailed
and semantic descriptions of sensors and their observations, enhancing the understanding

and analysis of the collected data(62).

To achieve an ontology representation, getting data from various sensor types and
data sources, an effective approach is to use a Local Conceptual Schema (LCS). The LCS
is a set of rules that define the mapping from data sources to a final representation and
is useful for handling the lexical and syntactic aspects of data integration, providing an
intermediate layer that facilitates the translation between raw sensor data representation

and the ontological representation (60).
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Using an LCS helps to deal with data heterogeneity, source autonomy, and the
need to reconcile different data schemas, offering a common framework that standardizes
data semantics regardless of their origin (17, 43). This approach is particularly useful
in environments where data is collected from multiple sensors with varied formats and

communication protocols.

Figure 3 schematically illustrates the process. Multiple data sources provide input
to a wrapper component. The wrapper consults the mapping rules defined in each
corresponding LCS and transforms the data into a Global Conceptual Schema (GCS).
This GCS can be implemented using an ontological representation, seeking a unified and

coherent view of the integrated data.

Global
Conceptual
Schema

Wrapper }

LCS 1 LCS 2 LCSn

Data Data Data
source 1 source 2 | . source n

Figure 3 — LCS mapping schema.

By using an LCS, the system can manage the complexity of integrating heteroge-
neous data sources, ensuring that the data is both accurate and semantically meaningful
when represented in the GCS. This facilitates better data interoperability and consistency

across the system, addressing the core challenges of data integration(60).

A natural aspect of sensor data integration is the incorporation of Artificial In-
telligence, particularly predictive capabilities. When combined with ontologies that
semantically structure sensor data, advanced machine learning algorithms enable mean-
ingful predictions(14). Recurrent Neural Networks (RNNs), in particular, are designed
to process sequential data such as time series, where current data depends on previous

information(78).

RNNs are a class of neural networks suitable for sequential data as they have
internal loops that allow information persistence. Unlike feedforward neural networks,

RNNSs can use their internal state (memory) to process sequences of inputs, making them
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ideal for tasks such as time series prediction, automatic translation, and speech recognition
(49).

The basic architecture of an RNN consists of layers of neurons where the output of
one layer is fed back as input to the same layer at the next time step. Mathematically, for
a sequence of input x = (z1, xa, ..., x7), the RNN updates its hidden state h; using the
formula:

hy = tanh(Wy,xp + Wiphe—q + bp)

where W}, and Wy, are weight matrices, by, is the bias, and tanh is the hyperbolic tangent

activation function (49).

LSTM networks, a variant of RNNs, were designed to overcome the limitations of
traditional RNNs, such as the vanishing and exploding gradient problems. These problems
occur during the training of deep neural networks when gradients used for updating weights
either become too small (vanishing) or too large (exploding), leading to inefficient learning
or numerical instability. LSTMs introduce memory cells that can maintain information for
long periods and are controlled by three types of gates: input gate, forget gate, and output
gate. The input gate regulates the amount of new information added to the cell state, the
forget gate controls the retention of existing information, and the output gate determines
the extent to which the cell state influences the output (31). These mechanisms enable
LSTMs to preserve and utilize relevant information over extended sequences, effectively

mitigating the vanishing and exploding gradient issues.

Figure 4 illustrates the internal architecture of an LSTM cell. It has three main
gates: the forget gate (f;), the input gate (i;), and the output gate (o;), all controlled
by sigmoid functions. The forget gate determines how much of the previous cell state
(¢;—1) should be retained. The input gate regulates the extent to which new information
(x¢) will be stored in the cell state (¢;), processed through a tanh function to generate
candidate values (g;). The output gate controls how much of the internal cell state (¢;) is
used to compute the cell output (h;), also passing through a tanh function to normalize
the values. These operations allow the LSTM cell to retain relevant information over long
periods, addressing the limitations of traditional RNNs (31). The updates are given by the

equations next, where o is the sigmoid function and ® denotes element-wise multiplication:
iy = 0 (Wigs + Winhi 1 + b;)

fi = o(Wraxy + Wephy_y + by)
or = o(Wopwy + Wophy—1 + b,)
g¢ = tanh(Wy,a, + Wyphi—1 + by)
a=fHO0a 1+ O

hy = o; @ tanh(c;)
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Figure 4 — LSTM cell model.

The main hyperparameters of an LSTM network include the number of LSTM
layers, the number of units in each layer, the learning rate, the batch size, and the number
of training epochs. Fine-tuning these hyperparameters is crucial to optimize the model’s
performance. Techniques such as grid search and random search are commonly used to

explore different combinations of hyperparameters (8).

To prevent overfitting, a condition where a machine learning model learns the
training data too well, capturing noise and specific patterns rather than generalizing to
new data, regularization techniques such as dropout are often employed. Dropout works
by randomly deactivating a fraction of neurons during training, preventing the model from
becoming overly fitted to the training data. Additionally, L2 regularization, which adds
a penalty proportional to the square of the magnitude of the weight coefficients to the
loss function, is a common practice. This helps to keep the weights small and the model

simpler, thereby promoting better generalization (71).

This predictive capability enhances operational efficiency and allows for imple-
menting preventive measures in response to anticipated events. The synergy between
semantically integrated data sources, facilitated by ontologies, and the predictive capabili-
ties of Al, exemplified using LSTM networks for sensor data, presents a powerful approach
to navigating the challenges of the current Data Era. This combination promotes a unified
understanding of diverse data, empowering organizations and individuals to make informed

decisions and proactively respond to future events.

Several compelling reasons drive the decision to evaluate the framework using data
from hydrometric and hydrological stations. Hydrological data provide a rich and complex
dataset characterized by time-series observations, environmental variables, and spatial

dependencies, making it ideal for testing the robustness and versatility of our framework.

Hydrological data encompass various attributes such as water levels, flow rates,

and precipitation measurements. This complexity requires data integration and predictive
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capabilities, which our framework aims to address. According to research, data-driven
hydrological models, especially those incorporating machine learning techniques, are
increasingly being utilized to handle these complexities and provide accurate predictions
(42, 55).

Accurate forecasting and event detection related to water levels and precipitation
can significantly contribute to disaster prevention and management, such as flood warnings
and water resource management(13, 10). This underscores the practical utility of our

framework.

2.2 Related Work

We selected five studies relying on these topics. Two of them bring directions,
patterns, and ongoing strategies on event prediction methods (26, 81). One focuses on
edge technologies for disaster management (1). Finally, another two of them propose

solutions for sensor network Al-based disaster detection (3, 46).

Hydrological stations typically have extensive historical records, providing a reliable
basis for evaluating the performance and accuracy of predictive models. Studies have
shown that the availability of long-term data enhances the development and validation
of predictive models, ensuring they are robust and reliable (42). Also, hydrometric and
hydrological data often involve challenges such as missing values, noise, and temporal
correlations. Addressing these issues is crucial for accurate modeling and prediction.
Research indicates that advanced machine learning techniques, such as LSTM networks
and hybrid models, are effective in managing these complexities, thereby validating the

need for robust frameworks like ours (42, 55).

By focusing on hydrometric and hydrological data, we aim to showcase the frame-
work’s ability to deliver meaningful insights and actionable predictions, highlighting
its potential applications in various environmental and engineering fields. This choice
underscores the framework’s relevance and adaptability to domains where precise data

integration and forecasting are crucial.

In Gmati et al. (2019), the study identifies the main mature and classical approaches
to event prediction, presenting a comprehensive taxonomy that transcends specific applica-
tion domains. This interdisciplinary perspective enables a deeper understanding of event
prediction challenges and facilitates the development of new techniques. Our proposal
aligns with the category of quantitative inferential approaches described by Gmati et al.,

utilizing LSTM networks to analyze sensor data and predict events.

Quantitative inferential approaches, as discussed by Gmati et al. (2019), are effective
in extracting patterns from historical data using machine learning algorithms. However,

they face challenges such as considering complex data interactions, addressing temporal
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dynamics, and depending on high-quality historical data. Our work addresses these issues
by integrating data from multiple sources via an extended ontology, providing a richer
and more contextualized analysis. This approach overcomes the truncated data view and

improves prediction accuracy by capturing temporal dynamics and long-term dependencies
with LSTM.

In Zhao (2021), the author systematically reviews technologies, applications, and
evaluations in event prediction in the big data era. They emphasize that predicting multiple
aspects of events often requires joint prediction of heterogeneous yet correlated outputs
and highlight the importance of addressing complex dependencies among predictions.
Unlike isolated tasks in machine learning, event prediction involves scenarios where
events can be interrelated and influence one another and need methods to capture these

interdependencies.

Our research effectively applies established strategies to manage these complexities,
as highlighted by Zhao (2021). The use of an extended ontology is useful for integrating
data from various sources, handling correlations, and understanding the interplay between
different events. For example, combining hydrometric and hydrological data can predict
floods, where rainfall in one region affects river levels elsewhere, triggering subsequent

events.

In Li et al. (2021), the author presents a study on flood prediction modeling using
LSTM. The article suggests that the synchronized sequential input and output (SSIO)
architecture is more adept at capturing long-term dependencies than the sequential input
and single output (SISO) architecture. This advantage is particularly noted in scenarios
requiring fine temporal resolution and precise modeling of extended rainfall-runoff processes.
However, the study primarily focuses on the architectural comparison and optimization
of LSTM networks for a specific hydrological dataset, with limited exploration of the
broader applicability of their proposed solution to alternative historical datasets and data

integration.

In Al Qundus et al. (2022), the authors address the detection of flood-induced
disasters by building a wireless sensor network and a decision model based on a Support
Vector Machine (SVM). The network-based decision model observes changes in weather
conditions compared to historical information at a specific location. The main limitations
of the solution include the reliance on relative values to determine disaster detection
thresholds, which may not be applicable in different locations and may require the
collection of new data for each specific location. The authors suggest that future research
could concentrate on devising methods to establish disaster detection thresholds that
are more widely applicable and less reliant on specific historical data from a particular

location.

Nearing et al. (2024) explores the use of LSTM networks for predicting extreme
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floods in ungauged watersheds on a global scale. Their research demonstrates the potential
of artificial intelligence to enhance the reliability of flood forecasts, extend lead times,
and provide accurate warnings across more than 80 countries. This global approach
leverages vast public datasets, allowing for widespread applicability and a comprehensive

understanding of hydrological patterns across diverse geographic regions.

In contrast, our project also utilizes LSTM networks but is designed with a specific
focus on localized prediction. We aim to develop a generic framework adaptable to various
application domains by modifying ontology definitions and context rules to fit different
types of sensor data. This framework is not limited to flood predictions; it is intended
for the detection and prediction of generic events across multiple domains. While our
study includes a feasibility evaluation within the hydrological and hydrometric domain,
this does not confine the framework’s applicability to these areas alone. The framework’s
flexibility allows it to be adapted for various applications, providing tailored predictions
that are highly accurate and context-specific, catering to the unique characteristics and

requirements of different areas.

While Nearing et al. (2024) emphasizes broad, global predictions using extensive
datasets, our project focuses on integrating local data sources to refine predictions and
provide more precise and actionable insights at the local level. This localization enables
us to address specific challenges and nuances that may not be captured by a global model,
offering a more detailed and relevant forecast for the targeted area. Thus, while both
studies employ LSTM networks, our work distinguishes itself through its emphasis on
adaptability and precision in localized contexts, as opposed to the wide-reaching scope
of global flood prediction. Moreover, the versatile nature of our framework inted to
ensure that it can be applied beyond the hydrological domain, supporting a wide range of

applications in various fields.

Table 1 provides a comprehensive summary of the limitations identified in these

studies related to event prediction.
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Table 1 — Identified limitations of related works

Study Limitations of related works

Gmati Identified Limitations: Difficulty in holistically considering complex interactions
et al.(2019) within the data. Challenges in addressing temporal dynamics. Dependence on
high-quality historical data. Generalization across different domains can be difficult.

Zhao(2021) Identified Limitations: Need for joint prediction of heterogeneous yet correlated
outputs. Complexity in managing interdependencies among prediction outputs.
Difficulty in continuously updating models to reflect real-time data changes.

Li Identified Limitations: Limited focus on specific LSTM architectures and their

et al.(2021) optimization for a particular hydrological dataset. Lack of exploration of broader
applicability beyond specific dataset limitations. Emphasis on architectural com-
parison rather than practical deployment.

Al Qun- Identified Limitations: Dependence on relative values for disaster detection

dus thresholds, making generalization across locations difficult. Requirement for specific
et al.(2022) historical data collection for new locations. Potential limitations in scalability and
adaptability.

Nearing Identified Limitations: Global focus may overlook local nuances and precision

et al.(2024) in specific areas. Relies on extensive public datasets, which might not capture local
specifics adequately. Challenges in providing actionable insights for localized flood
predictions.

The forward snowballing technique was applied with the aim of identifying relevant
publications that cited the key studies previously identified in the initial search. This
approach is effective for discovering subsequent research that has contributed to the
development of the field of study and ensuring that the literature review is comprehensive
and up-to-date (80). Table 2 shows the seminal portfolio, containing the base and starting

point to the forward snowballing.

Table 2 — Seminal Portfolio: Starting point

Year Authors Title Journal

2019 Gmati et al. (2019) A taxonomy of event prediction methods Advances and Trends in Artificial Intelligence
2021 Zhao (2021) Event prediction in the big data era: A systematic survey ACM Computing Surveys (CSUR)

2021 Li et al. (2021) Exploring the best sequence LSTM modeling architecture for flood prediction Neural Computing and Applications
2022 Al Qundus et al. (2022) Wireless sensor network for Al-based flood disaster detection Annals of Operations Research

2024  Nearing et al. (2024) Global prediction of extreme floods in ungauged watersheds Nature

The criteria for selecting key studies, derived from the base research, included:

o Filter 1 (F1) - Terms in Title or Abstract: "sensor', "data integration',
"ontology", "event prediction", "artificial intelligence". These terms were combined

using OR logical operator.

"sensor" OR "integracdo de dados" OR "ontologia" OR
"previsdo de eventos" OR "predigdo de eventos" OR

"inteligéncia artificial" OR "data integration" OR
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"ontology" OR "event prediction" OR "artificial intelligence"

o Filter 2 (F2) - Languages: Portuguese or English.

« Filter 3 (F3) - Scientific relevance assessment: Journals classified in Quartile
1 (Q1) - CiteScore?.

« Filter 4 (F4) - Content: Sensor, data integration, ontology, event prediction, and

artificial intelligence. These terms were combined using the AND logical operator.

("sensor" AND "integragdo de dados" AND "ontologia" AND
"previsdo de eventos" AND "predigdo de eventos" AND
"inteligéncia artificial") OR

("sensor" AND "data integration" AND "ontology" AND

"event prediction" AND "artificial intelligence")

To enrich the searches for relevant related works, it was observed that the term
"ontology" overly restricted the returned results. In cases where Filter 4 returns zero
relevant works, a new filter (-ontology) was applied, which consists of removing the term
"ontology" from the search string of Filter 4. The Google Scholar® and Scopus? tools were
used to identify articles that cited the key studies. For each key study, a search was
conducted to identify all publications that cited it. The results were filtered to include
only peer-reviewed articles published in scientific journals. The included articles were
read and analyzed in detail to identify the main contributions, methodologies employed,
and the results found. Special focus was given to how these subsequent studies expanded,

challenged, or confirmed the findings of the key studies.

The quantitative synthesis of the results was organized in Table 3 to facilitate
the visualization and comparison of information and summarize the results obtained in
the application of snowballing for each base after the application of each filter in each

iteration.

Table 3 — Forward snowballing: Quantitative synthesis

Iteration 1 Iteration 2 Iteration 3

F1 F2 F3 F4 -ontology Cited By F1 F2 F3 F4 -ontology Cited By F1 F2 F3 F4 -ontology

Seminal Portfolio Cited By

Gmati et al. (2019) 9 8§ 8 4 1 - - - - - - - - - - - -
Zhao (2021) 127 8 83 46 7 - 18 m 11 7 3 - 6 4 4 3 3
Li et al. (2021) 51 24 24 17 - 12 180 118 116 66 2 - 19 18 18 9
Al Qundus et al. (2022) 72 44 43 21 - 19 287 202 202 92 6 - 31 31 31 21
Nearing et al. (2024) 22 12 12 7 - 7 14 3 3 1 - 2 - - - -

2 https://www.elsevier.com /products/scopus/metrics/citescore

https://scholar.google.com/

4 https://www.scopus.com/home.uri
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After completing the snowballing iterations, a total of 62 articles were identified.
Duplicates were removed, resulting in a refined list. From this list, the 12 most relevant and
closely related articles to our research theme were selected. The selection criteria prioritized
articles that addressed data integration and event prediction, specifically validated within
the fields of hydrological and disaster predictions. Additionally, the articles with the
highest CiteScore among them were chosen. A summary of these selected works is provided
in Table 14 in the Appendix.

These articles discuss sensor data integration, event detection, and prediction
methodologies. The works collectively highlight the importance of integrating heteroge-

neous data sources and utilizing advanced algorithms to enhance predictive accuracy.

The research in (7) emphasizes the need for a unified approach to event prediction
across various domains, underscoring the challenges of handling diverse datasets and the
necessity for cross-disciplinary methodologies. Similarly, (2) demonstrates the application
of various Al models for predicting hydrological events, showcasing the effectiveness of

different techniques in managing complex data environments.

In (34), the authors explore the optimization of LSTM parameters for flood forecast-
ing using genetic algorithms. This study provides insights into enhancing the performance
of predictive models through parameter optimization. Another significant contribution,
(41), offers a review of recent advances in flood modeling approaches, categorizing and

evaluating various techniques, and discussing their strengths and weaknesses.

The study (56) compares four machine learning models for flood prediction, high-
lighting the potential of ensemble and deep learning techniques in improving prediction
accuracy. Similarly, (66) develops an integrated LSTM model for daily flow discharge

prediction, demonstrating the applicability of deep learning in water management.

In (76), the authors provide an overview of deep learning applications in hydrology
and water resources, emphasizing the potential of these techniques. The real-time flood
forecasting capabilities explored in (77) and (45) further illustrate the practical implications

of advanced neural network frameworks in critical environmental monitoring.

The work (24) discusses the role of explainable Al in disaster risk management,
highlighting the importance of transparency and interpretability in Al applications. Mean-
while, (64) develops a multivariate LSTM network for water level forecasting, showcasing

the model’s superior accuracy compared to traditional methods.

Lastly, (68) provides an in-depth discussion on hydrological forecasting tech-
niques, including traditional methods and modern technologies like remote sensing and
GIS(Geographic Information System). This study underscores the integration of these

methods to enhance forecast accuracy and reliability.

Our solution proposes a framework that builds upon these foundational works by
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integrating an ontology-based approach with AI for sensor data integration and event
prediction. Unlike the reviewed studies, which often focus on specific applications or
algorithms, the proposed framework generalizes across multiple domains through an
extended ontology, allowing for more comprehensive data contextualization and integration.
This methodology not only overcomes the limitations of isolated data sources but also
facilitates the inclusion of new sensor types and datasets, thereby enhancing the flexibility

and adaptability of the system.

Common among these studies and our proposal is the use of artificial intelligence for
predictive analytics. However, a key distinction is the our proposal’s emphasis on semantic
integration via ontologies, which provides a structured and standardized representation of
data, enabling more accurate and contextually relevant predictions. This semantic layer is
less prominent in the other works, which tend to focus more on the technical optimization

of prediction algorithms.

The works reviewed share certain limitations, such as the dependency on high-
quality historical data and the challenges associated with ensuring data consistency and
accuracy. Our solution addresses these issues through the use of an ontology, which
standardizes data representation and supports interoperability across different systems and
datasets. This approach not only improves data quality but also facilitates the seamless

integration of heterogeneous data sources.

Therefore, the proposed framework complements existing research by offering a
more holistic and versatile solution for sensor data integration and event prediction. By
combining ontological models with Al, this proposal advances the current state-of-the-art
and provides an option for future research across various application domains. This
integrated approach addresses the gaps identified in the literature and presents a scalable

solution capable of adapting to diverse predictive needs.

The application of the forward snowballing technique allowed the identification of
a comprehensive set of publications that significantly contributed to the understanding
of the domain. This approach intend to ensure that the literature review was not only

exhaustive but also incorporated the most recent and relevant developments.

As a result, we introduce a framework that extends the reviewed approaches,
intending to advance abstraction in data integration and contextualized Al prediction.
The objective is to enhance the detection and prediction of events of interest. In this
regard, we propose an ontology extended from SSN to facilitate the abstraction of the
data integration step. The presented ontology serves to standardize and integrate data by

employing a canonical semantic representation for sensor data.



33

2.2.1 Final Considerations of the Chapter

In this chapter, we reviewed the key concepts and related work on semantic data
integration and event prediction based on sensor data, with a focus on the use of ontologies
and artificial intelligence. We discussed the challenges and opportunities in handling
heterogeneous data and building Al-based prediction systems. Furthermore, we presented
an overview of relevant works in the field and the main methodological approaches currently

available.

This theoretical background provided an essential foundation for the development
of our proposed solution, which aims to integrate sensor data using an ontology-based
framework. In the next chapter, we will describe the proposed solution in detail, discussing
its architecture and the methods employed for integrating data and predicting critical

events.
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3  Proposed Solution

This chapter presents the proposed framework and the solution model for sensor
data integration and critical event detection and prediction. In this scope, we consider a
‘critical event’, all the observations made by a specific sensor in a hydrometric station that
is classified as a flood. The framework input is data from multiple sensors from the same
domain, in this case, hydrological and hydrometric stations and sensors. The framework
integrates data from multiple sensors, correlates context, and predicts future events based
on the integrated data. The output is the events detected. The following section outlines

the key aspects of our approach.

The Figure 5 represents the structured layers of the proposed framework, each
addressing specific challenges related to sensor data integration, preprocessing, event
detection, and prediction. The decision to structure the framework in these distinct layers
was driven by the need to meet certain critical quality attributes.These quality attributes
are essential for ensuring that the framework can handle the complexities and requirements
of real-time sensor data environments. Revisiting these attributes aids in understanding
how each layer of the framework contributes to meeting these needs. The most relevant

attributes for our solution, as discussed in detail in subsection 3.1.6, include:

e Scalability: The ability to efficiently handle an increasing number of data sources

without significant degradation in performance.

+ Real-Time Processing: Ensuring timely analysis of sensor data for immediate

event detection and response.

o Data Quality and Integrity: Implementing mechanisms to handle errors, noise,

and missing data from heterogeneous sensor sources.

o Flexibility and Adaptability: Allowing the framework to easily accommodate

new types of sensors and data sources.

« Heterogeneity of Data Sources: The need to standardize and integrate data

from multiple sensors with varied formats and protocols.

With these attributes in mind, Figure 5 was developed to illustrate how the
framework meets these challenges through a modular architecture, with specific layers
dedicated to tasks such as data acquisition, cleansing, ontology-based contextualization,

and Al-based prediction.

The framework is structured and implemented through distinct layers, providing

an insight into the data flow, layer composition, and component interactions. We first
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describe each layer and the development process in this section. Section 4 evaluates the

framework in real-world sensor data from hydrometric and hydrological stations.

In this work, the data preprocessing and enrichment were carried out, as stated
before, with an ontology model extended from SSN, which can extract syntactic, semantic,
and context knowledge from sensor data. This model considers pre-defined context to

define sensor relationships and helps detect events based on the sensor network.

Long Short-Term Memory (LSTM) is applied for event prediction. LSTM is
a Recurrent Neural Network architecture widely used in Deep Learning. It captures

long-term dependencies, making it ideal for sequence prediction tasks.
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Figure 5 — Framework Overview.

3.1 Data Layer

The Data Layer is a key component in systems that integrate sensor data for event
detection and prediction. This layer is designed to be generic and adaptable, allowing it
to be utilized across various sensor data domains. It is responsible for the acquisition,
storage, initial processing, and management of data collected by sensors in real time. The
effectiveness of this layer is critical to the overall performance and reliability of the system.
Typical challenges and problems in this scope include handling heterogeneous data sources,
ensuring data quality, and providing timely processing and integration. Next subsections
explain in details Data Layer functioning and the challenges that this layer has to deal
with.

3.1.1 Data Acquisition

Data acquisition is the entry point for any sensor data integration system. Sensors

of various types and manufacturers capture raw data and transmit it to the central system.
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Examples include temperature, humidity, pressure, water flow, and air quality sensors. In
the context of a smart city, sensors monitor traffic, air quality, and energy consumption,
while in an industrial environment, sensors monitor machinery for predictive maintenance

to prevent failures and optimize productivity.

3.1.2 Data Cleansing

Data cleansing is a decisive step to ensure that the data used in analyses is accurate
and reliable. This process involves removing noise by identifying and eliminating data that
does not represent valid information, such as readings outside the physical limits of the
sensors. Error correction adjusts incorrect or anomalous values based on predefined rules
or statistical methods. Handling missing data involves techniques such as imputing values
or removing incomplete records. Consistency checks verify and correct discrepancies and
inconsistencies in data from different sources. For instance, in an air quality monitoring
system, anomalous readings due to temporary sensor failures can be identified and corrected

or removed.

3.1.3 Data Preprocessing

Data preprocessing transforms raw data into a usable format. This step includes
normalization, which adjusts different units of measure to a common format, and aggrega-
tion, which consolidates data from multiple sensors into a single dataset. For example, in
a network of hydrometric sensors, data on water level and precipitation can be normalized
to a common scale and aggregated to provide an overview of the current state of a river.
Preprocessing also involves creating a canonical data model to standardize and harmonize

data from various sources, facilitating integration and analysis.

3.1.4 Data Storage

Preprocessed data needs to be stored efficiently to allow for quick access and
subsequent analysis. Storage solutions must be capable of handling large volumes of data
while ensuring fast retrieval and scalability(33). Relational databases are suitable for
structured data with well-defined relationships, NoSQL databases for semi-structured or
unstructured data such as sensor logs, and data lakes for storing vast amounts of raw
data in its original format, allowing for flexible analysis. In an environmental monitoring
scenario, data from various sensors can be stored in a data lake for detailed future analyses
(16).

3.1.5 Stream Processing

Real-time processing (streaming) is essential for immediate event detection in

sensor systems. Stream processing enables the system to capture, process, and analyze
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data as it is received, ensuring timely responses to critical events. For example, in a traffic
monitoring system, stream processing can detect congestion in real time and alert drivers

to avoid certain routes.

3.1.6 Quality Attributes

Heterogeneity of Data Sources: Integrating data from diverse sensors with
different formats and communication protocols is a significant challenge. A robust data
acquisition and preprocessing framework is required to standardize and harmonize this
data.

Data Quality and Integrity: Ensuring the accuracy, consistency, and complete-
ness of data is crucial. This includes implementing thorough data cleansing processes to

remove noise, correct errors, and handle missing data.

Scalability: The system must be able to scale to handle increasing volumes of
data as more sensors are added or as the frequency of data collection increases. Efficient

data storage and processing mechanisms are essential to maintain performance.

Real-Time Processing: Timely processing of data is critical, especially for appli-
cations requiring immediate response, such as disaster prevention or real-time monitoring
systems. Stream processing technologies must be employed to ensure low-latency data

handling.
Flexibility and Adaptability: The Data Layer must be designed to be flexible

and adaptable to different domains and applications. This includes the ability to integrate

new types of sensors and data sources without significant reconfiguration.

3.2 Preprocessing Layer

The Preprocessing Layer receives sensor data (Figure 6(a)) from the Data Layer
and is tasked with establishing a canonical representation of this information. The LCS
wrapper components construct this representation based on a Local Concept Schema (LCS),
defining the transformation rules for converting sensor data into a canonical model, as
shown in (Figure 6(b)).
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Figure 6 — Sensor data representation and LCS mapping rules.
(a) Raw Data (b) Equivalent LCS Mapping

The primary purpose of the canonical model is to address data heterogeneity,
ensuring that information from different sources is consistently interpreted and used. This
is particularly important in environments where data is collected from multiple sensors

with varied formats and communication protocols.

The model is defined using Local Conceptual Schemas (LCS) mapped to a Global
Conceptual Schema (GCS) (61). An intermediary component called a wrapper carries out
this process, applying mapping rules defined in each LCS to transform the data from the

sources into a unified format.

The GCS represents a unified ontological schema of the integrated data, ensuring
a coherent view of the data. The wrapper is an intermediary component that processes
data from various sources according to the rules defined in the LCS. It ensures consistent
interpretation and translation of data into the GCS. The LCS consists of specific mapping
rules for each data source, facilitating scalability and flexibility by allowing new data
sources to be integrated without affecting the existing setup. The data sources are the
multiple data providers connected to the system, each linked to the wrapper through its
specific LCS.

Figure 6(a) shows an example of sensor data, including information such as 1D,
PARAM, Date, and Value. Figure 6(b) presents the transformation of sensor data into the
canonical format using elements like ‘FeatureOfInterest’, ‘Result’, ‘ObservableProperty’,

and ‘Platform’ to describe the data in a standardized manner.

‘FeatureOfInterest’ identifies the object of interest, such as ‘Riverbed’” or ‘Rain’.
‘Result’” describes the measurement result, including the result type and measured value.
‘ObservableProperty’ is the observable property associated with the result, such as ‘Precip-
itation” or ‘PARAM". ‘Platform’ indicates the platform or station where the measurement

was taken.
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The canonical model facilitates data interoperability by providing a common frame-
work for different sources. It ensures data consistency, enabling consistent interpretation.
The model’s flexibility allows for the easy integration of new data sources without impact-
ing the existing system. Its modularity enables scalability through the addition of new
LCSs.

This canonical model is essential for managing the complexity and diversity of
data in integrated sensor systems, allowing for more efficient and accurate analysis and

utilization of the collected data.

3.3 Ontology Layer

Based on LCS definitions performed by the Preprocessing Layer, the Ontology
Layer is responsible for processing those results and modeling them into an ontology

representation.

We extended a simplified version of the SSN Ontology using the Methontology (23),
an accepted methodology that defines the ontology development process. The methodology
includes four phases: (i) Specification, (ii) Conceptualisation, (iii) Formalisation, and (iv)

Evaluation. Next, we describe each phase.

3.3.1 Specification

The specification is considered an essential step in system development. Therefore,
this step established the Ontology Requirement Specification Document (ORSD). The
ORSD allows us to identify the ontology’s knowledge and define the requirements the
ontology must cover. In this document, we describe the ontology’s: (i) purpose, (ii) scope,
(iii) implementation language, and (iv) intended End-Users. The ORSD is shown in Table
4.

Table 4 — Ontology Requirements Specification Document for SSN

Ontology Requirements Specification Document Description

Purpose Identify the correct type of sensor network and provide a standardized way to
represent sensor descriptions, measurements, and observations.
To facilitate interoperability among sensor networks and applications.
To allow defining context to relate one sensor to another. To detect critical events
based on pre-defined limit thresholds.

Scope The ontology focuses on integrating sensor data based on context into a sensor
network. The level of granularity is directly related to the competency questions
that are defined in Subsection 3.3.4.

Implementation Language The ontology is specified in the OWL 2 language (Web Ontology Language) using
the Protégé ontology tool and Owlready2, a module that can manage ontologies in
Python.

End Users User 1 — Sensor Network Engineers;

User 2 — Application Developers;
User 3 — Decision-makers.

Sudrez-Figueroa et al. (2009) present guidelines based on using the Competency

Questions (CQ) and the existing methodologies to build ontologies. Competency Questions
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specification is vital since it allows us to determine its scope and validate the ontology
(38). Therefore the verification step is done with the ontology responding correctly to the
CQ (9). The CQs designed to aid in the validation activity are shown in Table 5 and are

answered in Chapter 5 within the Research Questions.

Table 5 — Main Competency Questions

Competency Questions (CQ) Description
CcQ1 What are the platforms in the same location context?
CcQ2 What are the platforms in the same flow direction context?
CcQ3 What are the critical events detected when observation results trespass the platform
threshold?

3.3.2 Conceptualization

The conceptualization phase focuses on organizing and structuring the semantic
meaning of data. Therefore, we developed a taxonomy! to categorize the knowledge in the
context addressed. Once our solution uses a feasibility study based on flood detection and
prediction, we extend the SSN base ontology to contain a more specific data representation.
Table 6 presents the main classes of the simplified version of SSN Ontology, and Figure 7

shows the extended classes, derived data properties, and object properties.

From the FeatureOflnterest class, the Rain and Riverbed classes were extended
to represent the two main features of the hydrometric and hydrological domain. The
Observation class was extended to include CriticalEvent and Event, to represent the only
types of events classified. ‘Event’ refers to observations not classified as flood events,
while ‘CriticalEvent’ refers to flood events. Additionally, new classes were extended
from Platform, with HydrologicalStation and HydrometricStation representing different
types of monitoring stations. The ObservableProperty class was expanded to include
FlowVelocity, PrecipitationLevel, and WaterLevel, which are specific observable properties.
In terms of sensors, specific subclasses were defined under the Sensor class, including
FlowVelocitySensor, PrecipitationSensor, and WaterLevelSensor, which are responsible for

measuring their respective observable properties.

Finally, in Figure 8, we represent the taxonomy model of the simplified extended

ontology with the main classes and their respective relationships.

L A Taxonomy is a hierarchical structure representing the formal organization of classes or

types of objects within a domain.
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Class

Description

Tnstantiated by

CriticalEvent
Event
FeatureOfInterest
Flow Velocity
FlowVelocitySensor

HydrometricStation
ObservableProperty
Observation
Platform
PrecipitationLevel
PrecipitationSensor
Property
Rain
Result
Riverbed

WaterLevelSensor

Ts that can have significant impacts, in this case, floods for hydrometric stations and high precipitation for hydrological stations
events.

Represents critical ev
Refers to any non-criti
An entity (real-world object, process
Repres the velocity of flow, ty Ly
Specific sensors used to measure the water flow velocit;

Stations that monitor hydrological parameters, in this case, precipitation

Specifically, stations that measure and record data on the characteristics of water bodies, like water levels and flow.

Properties that can be observed or measured, such as temperature, humidity, water level, etc.

Data collected by sensors about a particular observable property at a specific time.

Infrastructure or devices that support and house sensors, like buoys, satellites, or ground stations.

Measures of the amount of precipitation, such as rain or snow, in a given area.

1sed to measure the amount of precipitation.

3 eristic or attribute that can be observed, such as temperature, pressure, humidity, etc

Specifically, observations or events related to rain.

The outcome or data generated from an observation.

Riverbeds are often an object of interest for hydrometric studies and measurements.

Devices that detect and measure physi mical, or biological properties and send data for analysis.

Set of interrelated components, including platforms, that work together to monitor and record environmental or system data.
Water level in a body of water, such as a river or reservoir.

Sensors specifically designed to measure the water level.

or event) that is being sensed. A feature is an abstraction of real-world phenomena.
lly in a hydrometric context, such as water flow in a river.

Or's an

Automatic process extraction
Automatic process
Predefined in ontology
Automatic process extraction
Automatic process extraction
Automatic process extraction
Automatic process extraction
Predefined in ontology
Automatic process extraction
Predefined in ontology
Automatic process extraction
Automatic process extraction
Predefined in ontology
Predefined in ontology
Automatic process extraction
Predefined in ontology
Predefined in ontology
Predefined in ontology
Automatic process extraction
Automatic process extraction

xtraction

3.3.3 Formalization

The formalization phase is when we convert the conceptual model (taxonomy) into

a computable model. We used the Protégé 2, a tool that uses the Ontology Web Language

(OWL)? to define an ontology by specifying its classes, properties, and semantic rules.

In OWL, classes are interpreted as a set of individuals or objects. For example, all

classes are subclasses of the class Thing, which represents a set of all individuals. Figure

7(a) shows the classes defined in the ontology. Properties in OWL represent relationships

between individuals. There are two types of properties: object property and data property.

An object property links an object, such as an individual, to another object, while data

properties link objects to a data type, such as Integer, String, or Date values. Table 7

shows the properties defined in the ontology, including their type, domain, and range.

Table 7 — Properties in the extended SSN Ontology

Property Type Domain Range
hasFeatureOfInterest ObjectProperty  Observation FeatureOfInterest
hasPrecipitationValue ObjectProperty  Observation Result
hasProperty ObjectProperty  FeatureOfInterest ObservableProperty
hasResult ObjectProperty Observation Result
hasWaterLevel Value ObjectProperty Observation Result
hosts ObjectProperty Platform Sensor
isFeatureOfInterest Of ObjectProperty  FeatureOfInterest Observation
isHostedBy ObjectProperty  Sensor Platform
isObservedBy ObjectProperty  ObservableProperty  Sensor
isPropertyOf ObjectProperty ~ ObservableProperty  FeatureOfInterest
isResultOf ObjectProperty Result Observation
madeBySensor ObjectProperty Observation Sensor
madeObservation ObjectProperty  Sensor Observation
observedProperty ObjectProperty Observation ObservableProperty
observes ObjectProperty  Sensor ObservableProperty
isInFlowDirectionContextFor ~ ObjectProperty ~Observation FeatureOfInterest
isInLocationContextOf ObjectProperty  Observation FeatureOfInterest
hasName DataProperty System xsd:string
resultTime DataProperty ~ Observation time:Instant
thresholdFlow Velocity DataProperty ObservableProperty  xsd:float
thresholdPrecipitation DataProperty ObservableProperty xsd:float
threshold WaterLevel DataProperty ObservableProperty xsd:float
valueOfFlow Velocity DataProperty ~ Result xsd:float
valueOfPrecipitation DataProperty Result xsd:float
valueOfWaterLevel DataProperty ~ Result xsd:float

Table 8 shows the Semantic Web Rule Language (SWRL) rules created to infer

implicit relationships. SWRL is a language for the Semantic Web used to express semantic

2 https://protege.stanford.edu/
3 https://www.w3.org/ TR /owl-features/
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rules and logic. The rules from 1 to 14 define the context rules based on flow direction
and location context. Rules 15 and 16 define the occurrence of critical events in the

hydrological domain (high precipitation level) and hydrometric domain (high water level).

In the ontology layer, rule-based event detection is defined by considering predefined
thresholds for each data source. This allows the classification of observations as critical
events when they surpass these thresholds. The results of this threshold-based event
detection are then directly forwarded to the alert layer. So, for example, if an observation
from a hydrometric sensor has a measured value result of 10 meters, and the threshold
for the station where that sensor is based is 8 meters, that observation is classified as a
critical event. Otherwise, it is an event. Defining context is a crucial step, as the Al input

layer relies on it.

Table 8 — SWRL Rules

Rules
Antecedent Consequent

A hasName(? pL "05BHO015") A hasName(?p2, "05BH010") — isInFlowDirectionContextFor(?p1, 7p2
A hasName , "05BJ004") A hasName(? p2 "05BJ010") — isInFlowDirectionContextFor(?p1, ?p2
A hasName(?p1, "05BJ010") A hasName(?p2, "'05BH010") — isInFlowDirectionContextFor(?p1, ?p2
A hasName(?p1, "05BJ010") A hasName(?p2, "05BJ008") — isInFlowDirectionContextFor(?p1, 7p2

(p (

(?p (

(

Platform(?pl) A Platform(?p
Platform(?p1) A Platform
Platform(7pl) A Platform

2
2
2
Platform(?pl) A Platform(?p2

(p1) ("p2)
(?p1) (p2)
(?p1) ("p2)
(?p1) ("p2)
Platform(?p1) A Platform(?p2) A hasName(?pl, "05BJ008"
Platform(?pl) A Platform(?p2) A hasName(?pl, "05BJ008"
Platform(?pl) A Platform(?p2) A hasName(?pl, "05BJ001") A hasName(? p2, "05BH004") — isInFlowDirectionContextFor(?pl, 7p2
(*p1) (?p2)
(?p1) ("p2)
(?p1) ("p2)
(?p1) (?p2)
(7p1) (7p2)
(?p1) (7p2)
(*p2)

(’p
(7p
(’p
2 (*p
(7p
(
Platform(?pl) A Platform(?p2) A hasName(?pl, "05BM015") A hasName(?p2, "05BH004") — isInFlowDirectionContextFor(?p1, ?p2
(7
(’p
(
(7p
(’p
(

A hasName

A hasName(?p2, "05BM904") — isInFlowDirectionContextFor(?p1, 7p2

0~ O U= W N =
NN NI NI NI NI

)
)
)
)
2, "05BJ001") — isInFlowDirectionContextFor(?p1, ?p2)
)
)
)

9  Platform(?pl) A Platform(?p2) A hasName pl, "CopUpper") A hasName(7p2, "05BH010") — isInLocationContextOf(?p1, 7p2
10 Platform(7pl) A Platform(?p2) A hasName
11  Platform(?pl) A Platform(?p2) A hasName
12 Platform(?pl) A Platform(7p!
13 Platform(7pl) A Platform(?
14 Platform(?pl) A Platform(?
Observation(?0) A
PrecipitationSensor(?s) A
Platform(?p) A

Result(?r) A

hosts(?p,?s) A
madeBySensor(?0, 7s) A
hasResult(?0, 7r) A
valueOfPrecipitation(?r, ?vop) A
thresholdPrecipitation(?p, 7tp) A
swrlb:greater Than(?vop, ?tp)
Observation(?0) A
WaterLevelSensor(?s) A
Platform(?p) A

Result(?r) A

hosts(?p,?s) A
madeBySensor(?0, 7s) A
hasResult(?o, 7r) A
valueOfWaterLevel(?r, 7vowl) A
thresholdWaterLevel(?p, ?twl) A
swrlb:greaterThan(?vowl, ?twl)

1, "CSBA") A hasName(?p2, "05BH010") — isInLocationContextOf(?pl, ?p2
, "CSBA") A hasName(?p2, "05BH015") — isInLocationContextOf(?p1, ?p2
A hasName
A hasName
A hasName

1, "ElbowAuto") A hasName(?p2, "05BJ004") — isInLocationContextOf(?p1, 7p2

)
( )
7pl ( )
1, "CICS") A hasName(?p2, "05BH004") — isInLocationContextOf(?p1, ?7p2)

( )

7pl, "ElbowRanger") A hasName(?7p2, '05BJ004") — isInLocationContextOf(?p1, 7p2)

2
2
2

— CriticalEvent(?0)

16 — CriticalEvent(?0)

3.3.4 Evaluation

The evaluation activity is carried out during all phases in the traditional Methon-
tology Framework (23). In our work, we considered this activity as another phase in
the proposed methodology, consisting of carrying out the following tasks: verification
and validation. According to the ORSD, the verification step consists of carrying out a
technical judgment of the ontology by verifying its correctness and validating it. The

correctness of the ontology is verified using the Pellet plugin reasoner on Protégé, a piece
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of software able to infer logical consequences from a set of asserted facts or axioms. The

validation is a step to ensure that the ontology fulfills its purpose.

Figure 9 shows a sample of context inference made based on context rules. Object
property assertions show that ‘05BJ004_ Station’ hosts the sensor ‘05BJ004 Sensor’ and
is contextually linked in flow direction with ‘O5BH004_Station’ and ‘05BJ010_ Station’.
This implies that ‘05BJ004 Station’ may influence ‘05BJ010 Station’.

Individuals: 0= mE X
" X

& 05BH004_Sensor

@ 05BH004_Sstation

& 05BH010_Sensor Description: 05BJOCZ] 1= W= § Property assertions: 05BJ004_Station

@ 05BH010_Sstation

. 05BH015_Sensor Types Object property assertions
@ 05BH015_Station Platform M hosts 05B.J004_Sensor
@ 05BJ001_Sensor HydrometricStation B isinFlowDirectionContextFor 05BH004_Station

@ 05BJ001_Station

& 05BJ004_Sensor i

Same Individual As
. 05BJ008_Sensor Data property assertions

& 05BJ008_Station Different Individuals mmhasName "05BJ004™
& 05BJ010_Sensor
& 058J010_Station

& 05BM015_Sensor
@ 058M015_Station
. 053M904_Sensor Negative data property assertions
@ 058M904_Station

& cics_sensor

@ cics_station

& CopUpper_Sensor

&b ranlinnar Statinn

B is|nFlowDirectionContextFor 05BJ010_Station

Negative object property assertions

Figure 9 — Context inference example

3.4 Al Layer

The AI Layer stands out as a central component, employing artificial intelligence
techniques for advanced data analysis and event prediction. Leveraging a Long Short-Term
Memory neural network, a recurrent neural network type, this layer establishes connections
between sensor data in the same context. The primary goal is to enhance the system’s

predictive capabilities based on the combined information from these sensors.

The LSTM neural network stands out in handling sequential and time-series
data, making it an effective choice for analyzing sensor readings over time. Trained on
historical sensor data, the network learns intricate patterns and dependencies among

various environmental factors.

Our solution employs a context-aware input selection, where the LSTM model
processes sensor data based on the identified context. We adapt the standard LSTM
model to handle this context-dependent input selection. This means that, for a given
context detected by the ontology model (such as isInFlowDirectionContextFor or
isInLocationContextFor), the observations from the sensors involved in the detected

context are transformed into a feature vector that serves as input to the input layer of the
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LSTM model.

For example, consider a scenario with hydrometric stations. The ontology model
detects that 05BJ004 Station is in flow direction context for 05BJ010_Station. This

context is crucial for flood prediction. The observations from these stations might include:

e 05BJ004 Station: Water level = 3.1 meters, Flow rate = 25.4 cubic meters per

second, IsCriticalEvent = 1

e 05BJ010_Station: Water level = 61 meters, Flow rate = 22.1 cubic meters per

second, IsCriticalEvent = 0

The output of the ontology might look like the Figure 10.

Figure 10 — Ontology assertions example

In terms of implementation, this output is deserialized and converted to a JSON

representation, as shown next:
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"station": "05BJ004_Station",

"waterLevel": 3.1,

"flowRate": 25.4,

"isCriticalEvent": 1,
"isInFlowDirectionContextFor": "05BJ010_Station"

s

{
"station": "05BJ010_Station",
"waterLevel": 61,
"flowRate": 22.1,
"isCriticalEvent": O

}

Before being used as input for the LSTM model, the combined feature vector is
normalized (except for the boolean values, which remain 0 or 1). Assuming min-max

normalization, the normalized feature vector input to the LSTM model would be:

[ 31-20 254-200 61 —-2.0 22.1-20.0
~ 1100.0 —2.07 30.0 —20.0" 7 100.0 — 2.0" 30.0 — 20.0’

This normalization intends to ensures that all input features are on a similar scale.

Ty

The normalized feature vector would be:

x; = [0.0112,0.54,1,0.6020, 0.21, 0]

This feature vector captures the relevant context-aware information, including the
boolean values, allowing the LSTM model to make more accurate predictions regarding
potential flood events. The LSTM model processes this input to predict whether a critical
event, such as a flood, is likely to occur based on the historical patterns and current

observations.

For prediction, the LSTM model outputs a probability. This probability is compared
to a threshold (0.6). If the probability is greater than or equal to the threshold, the event

is classified as critical (1), otherwise as non-critical (0).

The hyperparameters were chosen to optimize the prediction of flood events based
on water level and precipitation sensor data. The number of LSTM units was set to 64.
This value strikes a balance between capturing complex temporal patterns in the data and
maintaining computational efficiency, without quickly leading to overfitting. A dropout
rate of 0.2 was used to mitigate overfitting by randomly dropping 20% of the neurons
during training, promoting generalization. The number of hidden layers was set to two,
providing a balance between representational capacity and computational efficiency. Two

layers allow for the capture of more complex and abstract temporal patterns in the data
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without making the model overly complex or difficult to train. The activation function for
the output layer is ‘sigmoid’, which is suitable for binary classification tasks like this, as it

converts the output into a probability between 0 and 1.

For training, the model was set to run for 10 epochs. This number of epochs
allows for sufficient training iterations to learn the data patterns without overextending
the training time or causing overfitting. The batch size was set to 256, a commonly used
value that balances the trade-off between gradient estimation quality and computational
efficiency, especially when utilizing GPU (Graphics Processing Unit) resources. The
validation split was set to 0.2, meaning that 20% of the data is reserved for validation
while 80% is used for training. This more conservative split intend to ensure that a larger
portion of the data is available for training. It also provides a sufficiently large validation

set to evaluate the model’s performance.

During the walk-forward validation process, a window size of 100 was chosen. This
window size is large enough to capture relevant temporal dependencies in the data but not
so large that it becomes computationally expensive. The step size of 1 intend to ensure
a detailed and continuous evaluation of the model’s performance over time, though it
increases computational demands. Overall, these hyperparameter choices are grounded
in empirical evidence during our development, experimentation and common practices,
aiming to balance training efficacy, computational efficiency, and model generalization
capabilities.

The model utilized, consists of two LSTM layers with 64 hidden units in each layer.
The output of the first LSTM layer (h,gl)) serves as the input to the second LSTM layer.
The superscripts denote each LSTM layer’s parameters (weights and biases). The input
at each time step (z;) is processed by the first layer, and the hidden states (hﬁ”) become
the input to the second layer. The final hidden state (h§2)) output is passed through an

additional output layer for binary classification.

Layer 1 Layer 2
i) = oWz, + 0 + WP+ 0 i = a(WPRY + 0 + WP hE, + b))
= oWiPe+ 0 + WO 6y 5 = oWPh® 40 + WP, b))
ot = a(W}o z + b“) - W(l)ht |+ b“)) oY) = a(WRY + b(z) + W2 R+ o)
g§ ) = tanh (W )z, + ) + WiV RD, + o) g§2) = tanh(W. B b2+ WERD, 4 b))
=M odh +i o g = /P 0 d? +i? 0 g”

h(l) o ® tanh(ct ) h§2) =o? ® tanh(c§2))

In the first LSTM layer (Layer 1), igl), ) , and ot represent the input gate, forget

gate, and output gate at time step t. These gates, calculated using sigmoid activation,
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regulate the flow of information. The candidate cell state gil), determined by the hyperbolic
tangent activation function, signifies new information that could be stored in the cell state.
The updated cell state cgl) considers the forget and input gates, along with the candidate
cell state and the previous cell state (c§1_>1), denoted by ® for element-wise multiplication.
The updated hidden state hil) is a function of the output gate and the hyperbolic tangent
of the updated cell state.

The second LSTM layer (Layer 2) is analogous, with its own gates and states
functioning similarly to those in the first layer. The final hidden state (h?)) is then passed
through an additional layer designed for binary classification. The model’s output is a
real number between 0 and 1, representing the probability that a given event is a Critical

Event.

For classification purposes, this probability is converted to discrete values: events
with probabilities greater than or equal to a threshold are classified as Critical Events (1),
and those below the threshold are classified as non-critical events (0). During testing, it
was observed that some events near the boundary between critical and non-critical water
level values were misclassified. To address this, a threshold of 0.6 was found to be the most
effective for improving performance in these edge cases, resulting in a better distinction

between critical and non-critical events.

To split and create the input sets for training, testing, and validating the model,
we used the Walk-Forward Validation (WFV) technique. WFV is a time-series cross
validation method useful for time-ordered data where temporal sequence matters. It
provides a realistic evaluation of how well a model will generalize to future unseen data(32).
Algorithm 1 defines the steps of the WFV algorithm, and Figure 11 illustrates the intuition
behind the algorithm steps.

Algorithm 1 Walk-Forward Cross-Validation

Input: data, model, window__size, horizon, metric

Output: evaluation__scores

Initialization: starting index = 0

evaluation__scores = []

while starting_index + window__size + horizon < length(data) do
training_data = datafstarting _index : starting_index + window__size]
testing_data = data[starting_index + window__size : starting_index + window__size + horizon]
model. fit(training__data)
predictions = model.predict(testing_data)
score = metric(testing__data, predictions)
evaluation__scores.append(score)
starting__index = starting inder + 1

end while

return evaluation scores

—_
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Figure 11 — Walk Forward Validation intuition diagram.

WFYV repeatedly trains and tests the model on different subsets of the time series
data, moving forward one step at a time. At the beginning of the algorithm, an empty list
evaluation_ scores is set up to store the evaluation results, and a variable starting index
representing the starting point of the sliding window over the time series data is initialized
to 0.

The algorithm enters a loop that continues until the sliding window cannot move
any further along the time series data. Within the loop, we split the data into two
parts: training data and testing data. The training set consists of a fixed number of
consecutive data points determined by the window__size parameter, while the testing set
contains the data points immediately following the training set, up to a specified forecast
horizon. The LSTM model model is trained on the training data using the model. fit()
function. After training, the trained model is used to make predictions on the testing data

using the model.predict() function.

The performance of the model’s predictions is evaluated using a specified evaluation
metric, (in this case, precision, recall, and fI-score) comparing the predicted values with
the actual values in the testing set. The obtained evaluation score is then appended to

the evaluation scores list.

Finally, the starting index is moved forward by one step to slide the window
along the time series data. Once the loop completes, the algorithm evaluates the model’s
performance at each step of the walk-forward cross-validation process. It returns the list of
evaluation scores evaluation__scores, providing insight into how well the model performs

over different time periods within the dataset.

3.5 Alert Layer

The Alert Layer can be activated in two ways. Firstly, it activates when the

ontology detects a Critical Event. This can occur if the measured value at a sensor station
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exceeds its defined threshold or if a Critical Event is detected at a station that has a context
rule indicating its influence on another station. Secondly, the Alert Layer is activated
when the Al layer predicts the occurrence of a Critical Event at a sensor station. These
mechanisms ensure that alerts are both contextually relevant and based on predictive

analytics, enhancing the reliability and responsiveness of the monitoring system.

3.6  Solution Model

We define the elements of our framework as follows:

S ={s0, 81, ..., 8, } the set of Sensors in the domain of interest;

Os, = {00, 01,...,0,} the set of Observations performed by each sensor s;;
A, =A{ap,a1,...,a,} the set of Attributes associated to each observation o;
€s, = {€0,€1,...,&.} the set of Critical Events associated to a sensor s;;

A sensor is defined as: s; = {{0g, 01, ..., 0, }, {€0, €1, ..., &, } }, such that p,r > 0.
As defined with the previous sets, each measure detected by a sensor is an Observation,
and each sensor has its own set of Critical Events.

An Observation o , Vo € Oy, is given by:

ok = {(a0,Vay ), (a1,04,), - - ., (a1,74,)} such that v,, € R

An Critical Event ¢, , Ve, € €, is given by:

&r = { (a0, Viay, Vfag)s (@1, Viay, Vfar), - - -, (g, Via,, Vfa,)} such that vi,, ,vf,, € R
For example, a given hydrometric sensor can have Observations such as:

0o ={(date, 2013-06-10), (water_level, 2.60), (flow_rate, 20.2)}

o1 ={(date, 2013-06-10), (water_level, 2.85), (flow_rate, 21.7)}

0o ={(date, 2013-06-21), (water_level, 22.10), (flow_ rate, 21.0)}
And some Critical Events defined as:

go ={(water_level, 0, 3),(flow_rate, 0, 15)}

g1 ={(water_level, 3, 4), (flow_rate, 15, 30)}

g9 ={(water_level, 4, 100)}

Considering vi and vf the initial and final attribute values that limit the classifica-
tion of a critical event, and given o = {(ao,va), (a1,%a,);- -, (aq,Vq,)}, and &, =

{(a07 Vg, 'Ufao)a (ala Vlgy Ufa1>7

.o, (ag, vig,,vfa,)}, is said to be equivalence between oy and ¢, (o = &,) when:
dM C o | M = ¢,, wich means
V(ag, Via,, v fa,) € € Iag, Va,) € 0k | Via, < Va, < V[,

That means that, in the ontology layer, an observation is classified as a critical
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event if the values of all attributes in a defined critical event are detected in an observation.
For example, the observation o, is classified as a critical event €5 just because its attribute

water _level has a value greater than 4 and less than 100.

After the context rules are applied, all observations grouped by context are sent to
the AI Layer. In the Al Layer, each feature of the observation is used as input to the Al
model. The AI model then outputs the probability that this contextualized input means a
critical event for the target station. This process intends to ensure that predictions are
informed by both the raw data and its relevant contextual information, leading to more

accurate and reliable assessments of potential critical events.

It’s worth reinforcing that critical events detected directly by threshold rules are
directly forwarded to the alert layer. Meanwhile, Observations that do not violate the

Threshold Rules feed the context that serves as input for the prediction model.

In Figure 12, the system processes data from two sensors at a given moment, labeled
as time "t." The sensor at Station A, responsible for monitoring precipitation, records a
rainfall of 10 mm. Meanwhile, the sensor at Station B, which tracks water levels, registers
a reading of 8.5. These raw data points are converted into observations, capturing the
sensor information, results, timestamp, and station details. When these observations are
processed by the system, no critical event is detected in either location. This means that,
although the system has received data, neither Station A nor Station B is experiencing
an event that exceeds the predefined thresholds for a critical situation. Furthermore, the
system does not predict any upcoming critical event at this moment, as the probability
generated by the model (0.2) remains too low to trigger any further actions. As a result,
no alert is activated, since neither a detection of an ongoing event nor a prediction of a

future event is warranted.

observation_237

station_A_precipitation_sensor . o
madeBySensor(station_A_precipitation_sensor)

hasResult(result_237)

result_237:ResultTime: “2024-08-10T00:00:00""xds:dateTime
result_237:ResultValue: 10.0f

Platform: hasStation(station_A) ...

“date™: 2024-08-10
K “precip. (mm)™: 10
))) > “station name”: station_A

l

observation_237

station_B_water_level_sensor

" madeBySensor(station_B_water_level_sensor)
reading_date": 10/08/2024 hasResult(result_237)

. ))) — ‘,;:#Z,,:_ BsiZtion B result_237:ResultTime: “2024-08-10T00:00:00""xds:dateTime
: - result_237:ResultValue: 8.50f
: Platform: hasStation(station_B) ...

l

— [0.2] —> 0 — [None critical event predicted]

' — x=[10,08.50 —>

Figure 12 — Example of Observations with No Critical Event Detection or Prediction.
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In Figure 13, the system processes new data from the same two sensors, this time
at a later moment, called time "t-+1." At this point, the sensor at Station A shows a
dramatic increase in rainfall, recording 120 mm, which is above the threshold for a critical
event. As a result, the system detects that a critical event is actively occurring at Station
A, meaning that the situation has already escalated into a hazardous event. In parallel,
the water level sensor at Station B shows an increase to 9.5. Based on the data from both
stations, the system applies its prediction model, which calculates a high probability (0.8)
that a critical event is likely to occur at Station B in the near future. Therefore, while
Station A is already experiencing a critical event, Station B is not yet in a critical state,
but there is a strong indication that it could soon be affected. Consequently, an alert is
triggered, reflecting both the detection of the current critical event at Station A and the
prediction of a possible upcoming critical event at Station B. This distinction between
detection (an event already happening) and prediction (an event anticipated based on

current data) is a key aspect of the system’s functionality.

observation_238:

station_A_precipitation_sensor f . o \
“date™ 2024-08-11 madeBySensor(station_A_precipitation_sensor)
. reci‘ (mm)’: 120 hasResult(result_238)
))) —_— ugta“o’;‘ ik ctnfio & — » | result_238:ResultTime: “2024-08-11T00:00:00"xds:dateTime
. = result_238:ResultValue: 120.0f
. Platform: hasStation(station_A) ...
\ ey J
observation_238
station_B_water_level_sensor deByS (stati B ter | | ) \
i i g madeBySensor(station_B_water_level_sensor,
reading_date™: 11/08/2024 hasRes):JIt(resull 238)_ - - =
))) — “:llzlrlr}]i".'i.tition B — result_238:ResultTime: “2024-08-11T00:00:00""xds:dateTime
. - result_238:ResultValue: 9.50f
Platform: hasStation(station_B) ...
Ne - J

[Critical event detected]
v

— [0.8] —> 1 — [Critical event predicted] — [Alert]

Y— x=[120,1,9.50]—>

Figure 13 — Example of Critical Event Detection and Prediction.

Once our proposal details are clarified, we can revisit the related works mentioned
in Table 1 and update it with our proposed approaches for addressing the highlighted

limitations of those works, as shown in Table 9.
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Table 9 — Identified limitations of related works and our proposal’s applied approaches

Study

Limitations and approaches

Gmati

Identified Limitations: Difficulty in holistically considering complex interactions

et al.(2019) within the data. Challenges in addressing temporal dynamics. Dependence on

high-quality historical data. Generalization across different domains can be difficult.
Proposal’s approach: The use of an extended ontology allows for a more compre-
hensive integration of diverse data sources, facilitating a richer contextual analysis.
LSTM networks capture temporal dynamics and long-term dependencies, improv-
ing predictive accuracy. The framework is designed to generalize across different
domains by adapting ontology definitions and context rules.

Zhao(2021) Identified Limitations: Need for joint prediction of heterogeneous yet correlated

outputs. Complexity in managing interdependencies among prediction outputs.
Difficulty in continuously updating models to reflect real-time data changes.
Proposal’s approach: The extended ontology facilitates the integration of data
from various sources, enabling the joint prediction of related events. The framework
supports continuous model updates, allowing for real-time data integration and
adaptation to new conditions.

Li

Identified Limitations: Limited focus on specific LSTM architectures and their

et al.(2021) optimization for a particular hydrological dataset. Lack of exploration of broader

applicability beyond specific dataset limitations. Emphasis on architectural com-
parison rather than practical deployment.

Proposal’s approach: The dissertation develops a flexible framework capable
of adapting to different data types and domains, not restricted to hydrological
data. The framework allows for practical deployment in various real-world scenarios,
beyond just architectural optimization.

Al Qun-
dus

Identified Limitations: Dependence on relative values for disaster detection
thresholds, making generalization across locations difficult. Requirement for specific

et al.(2022) historical data collection for new locations. Potential limitations in scalability and

adaptability.

Proposal’s approach: The framework includes adaptive mechanisms for setting
thresholds based on diverse data inputs, facilitating broader applicability. It
minimizes dependence on specific historical data by utilizing a more generalized
approach to data integration and analysis.

Nearing

Identified Limitations: Global focus may overlook local nuances and precision

et al.(2024) in specific areas. Relies on extensive public datasets, which might not capture local

specifics adequately. Challenges in providing actionable insights for localized flood
predictions.

Proposal’s approach: Emphasizes localized data integration to enhance precision
in predictions, addressing specific local challenges. The flexible framework supports
various applications, offering context-specific predictions and insights across different
domains, not limited to hydrology.

3.6.1 Final Considerations of the Chapter

In this chapter, we presented the proposed framework for sensor data integration

and critical event detection and prediction. We outlined the key components of the

framework, including the data, preprocessing, ontology, and Al layers, and explained how
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each layer contributes to the integration and processing of sensor data. The framework’s
ability to abstract, contextualize, and predict events from heterogeneous data sources was
highlighted, demonstrating its potential for addressing the challenges of data diversity and

real-time event prediction.

The architecture and processes defined in this chapter establish the foundation for
the evaluation phase, which will be discussed in the following chapter. There, we will
assess the performance of the proposed framework using real-world data and analyze its

effectiveness in detecting and predicting critical events.
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4  Feasibility Study

This chapter describes a feasibility study using real use case scenarios. The
framework was utilized to integrate data and detect and predict events from sensor-
produced data. In this feasibility study, the scope is defined within hydrological and
hydrometric monitoring stations. The goal of a feasibility study is to assess whether a

technology performs as claimed and is worth further development and investment (18).

This evaluation followed the GQM (Goal - Question - Metric) model (11), which
determines that the study’s objectives should be defined, followed by the research questions
and metrics for evaluating the research questions. The scope of this evaluation and the
Goal are described as follows: “To analyze the framework for the purpose of semantic
data integration and event prediction in relation to sensors data under the point of
view of decision-makers in the context of data from hydrological and hydrometric

sensors”.

The framework was evaluated considering both semantic data integration and event
prediction. Based on the evaluation Goal and on the ontology’s competence questions,
one Research Question (RQ) was stated, and two secondary research questions (SRQ)
were derived. The first secondary research question (SRQ1) is important to measure the
capacity of semantically integrating data from multiple sources. The second secondary
research question (SRQ2) investigates whether the decision-making system is achieving its

goals by detecting and predicting events of interest.

(i) RQ — Can the framework semantically integrate data from multiple data sources to

detect and predict events of interest from these data?
— SRQ1 — Does using the proposed framework and implemented ontology model
allow the integration of sensor data and add new data sources?

— SRQ2 - Are the events of interest correctly detected and predicted?

Three metrics were used to answer the research questions. The metrics M1 and
M2 aim to answer SRQ1, and M3 to answer SRQ2. The metrics are:

M1: The data representation of multiple and different sensors standardized as a

semantic canonical representation.
M2: Number and diversity of sensor data sources integrated.

M3: AI model performance (precision, recall, and fl-score).
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4.1 Data description

We obtained sensor data from hydrological and hydrometric domains. The data from
hydrometric stations are available at https://wateroffice.ec.gc.ca/, and data from hydro-
logical stations are available at https://acis.alberta.ca/acis/. Both are public data sources
made available by the Government of Canada and Alberta. We also use data to validate
event detection. The data is from a public data source available at https://www.gdacs.org/
and is made available by the Global Flood Detection System (GFDS)!, which monitors

floods worldwide using near-real-time satellite data.

The feasibility study considered data from seven hydrological stations (Jumping-
pound Ranger, Elbow Ranger, Elbow Auto, Priddis, Calgary Springbank, Cop Upper, and
Calgary International Airport), which monitor precipitation levels, and eight hydromet-
ric stations (05BH004, 05BH010, 05BH015, 05BJ001, 05BJ004, 05BJ008, 05BJ010, and
05BM904), which monitor the water level of the riverbed to which they are associated.
Figure 14 shows a map with the considered stations. The data is from 2005 to 2023. Table
10 shows the summary of the station’s data, with the total number of observations and

depicted atypical events.

The levels of precipitation considered “high” can vary depending on the region
and specific context, such as local climate conditions and historical precipitation patterns.
Generally, precipitation is categorized as follows: Light Rain: less than 10 mm per day;
Moderate Rain: 10 mm to 35 mm per day; Heavy Rain: 35 mm to 50 mm per day;
Very Heavy Rain: 50 mm to 100 mm per day; Extreme Rain: more than 100 mm per
day. These categories are based on general meteorological guidelines and widely accepted

standards by the scientific community and meteorological organizations, including the

World Meteorological Organization (WMO) (79).
For water level classification, the Global Flood Detection System (GFDS), developed

by the Joint Research Centre of the European Commission in collaboration with the
Dartmouth Flood Observatory, classifies flood events by analyzing water surface metrics
from satellite data. The system uses data from various Earth observation satellites to

provide near-real-time information on flood signals, magnitude, and time series for around
10,000 observation sites worldwide (36, 25).

Both the sources and criteria cited above were used to label the data as precipitation-

critical events and water-level-critical events (flood).

L https://www.copernicus.eu/en/global-flood-detection-system-data-products-specification
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Table 10 — Station’s Observations Summary
Hydrological Stations Hydrometric Stations
Station Total Observations High Precipitation Observations | Station Total Observations High Water Level Observations
PriddisObservatory 6575 30 05BH004 6385 177
CICS 6575 34 05BJ001 6320 285
CSBA 6575 7 05BH010 6557 3
CopUpper 6575 36 05BM904 3798 0
ElbowRangerStation 6575 65 05BJ008 5993 1
JumpingpoundRangerStation 6575 40 05BJ004 6324 145
ElbowAuto 6575 41 05BHO015 6130 346
05BJ010 6030 708

Table 10 provides detailed data on the total number of observations and the in-
stances of high precipitation and high-water levels recorded at hydrological and hydrometric
stations.

For the hydrological stations, each station has consistently recorded a total of 6,575
observations. This means there is no absence of data on the observed period. The number
of high precipitation observations varies across these stations. For example, CSBA had 7
high precipitation events observations, and Elbow Ranger Station reported the highest
number of high precipitation observations with 65. This variability suggests differing
levels of precipitation intensity or frequency at these locations, possibly influenced by local
climatic conditions.

In contrast, the hydrometric stations exhibit variation in both the total number
of observations and the count of high-water level events. Station 05BM904 had the
lowest total observations at 3798 and did not record any high-water level events. Station
05BJ010 recorded the highest number of high-water level events at 708, indicating a higher
susceptibility to flooding.
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This summary indicates that the frequency of high precipitation varies for hydrolog-
ical stations, suggesting localized weather patterns. Hydrometric stations show significant
differences, reflecting diverse conditions and potential flood risks across different locations.
These variations highlight the importance of tailored monitoring and response strategies

to address specific regional and environmental conditions effectively.

Comparing Table 10 with Figure 15, it is evident that not all outliers are classified
as Critical Events. For instance, in the case of station 05BJ008, Table 10 indicates only
one critical event (a high-water level observation). However, Figure 15 shows a significant
number of outliers for this station. This discrepancy highlights that outliers in the data

do not necessarily correspond to Critical Events.

Analyzing the data behavior and its distribution over time, as displayed in the
histograms in Figure 16, it is noticeable that the data obtained for station 05BJ010 exhibit
a peculiar behavior. This behavior is characterized by two distinct clusters of frequency
counts: one around the lower measured values and another around the higher measured
values, with a significant gap in between. Upon examining the historical series through the
graph in Figure 17, this peculiar behavior is confirmed. Delving deeper into the sensor data
records associated with this station, the cause of this behavior could not be determined
based on the obtained data. However, there is a disclaimer in the data repository ? stating
as a remark: "DATUM CHANGE OCCURRED ON APRIL 27, 2018. GAUGE WAS
RELOCATED ON APRIL 27, 2018.". With this information in mind, we partitioned
the data for this station, with the first partition from April 13, 2005, to April 26, 2018,
and the second partition from April 27, 2018, to March 31, 2023. The boxplot in Figure
18 presents a visual partitioning of data for station 05BJ010, divided into two distinct
periods: before and after the relocation of the gauge on April 27, 2018. This division helps
account for potential shifts in measurement data caused by the relocation and a change in
the datum, ensuring a more accurate interpretation of the sensor readings. By separating
the data into these periods, the analysis captures any variations or anomalies that could
have resulted from the gauge’s move, providing clearer insights into water level behavior
over time. Figure 19 depicts the historical data for station 05BJ010, illustrating the two
partitions in the data. The data series is divided between the periods before and after the
gauge relocation on April 27, 2018. This split highlights any changes in the data collection
process and ensures that potential discrepancies, due to the gauge change, are considered
during the analysis. This approach helps in understanding trends and differences in water

level measurements across these two significant periods.

2 Disponivel em: https://wateroffice.ec.gc.ca/report/remarks_e.html?type=h20Arc

&stn=05BJ010&dataType=Daily&parameterType=Flow&first_year=1979&last_year=202
2&mode=Graph&page=historical&year=2022&start_year=1850&end_year=2024
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Figure 16 — Histogram of Measured Values by station.
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Figure 18 — Boxplot partitions for station 05BJ010.

Figure 20 presents a heatmap representing the occurrence of rainfall classified as

heavy or above, based on the data from the observed hydrological stations. This heatmap

allows visualization of daily rainfall patterns, highlighting the days and locations with

the highest rainfall accumulations. The Elbow Ranger Station stands out significantly.

This suggests that this station experiences more frequent and intense rainfall compared to

other stations.

Finaly, Figure 21 displays a heatmap illustrating the occurrence of elevated water

levels at the monitored hydrometric stations. The station 05BJ010 is particularly note-

worthy. It has the highest number of high-water level events. This indicates a higher

susceptibility to flooding at this station observed consistently over the monitoring period.
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Figure 20 — Heatmap of Daily Rainfall Accumulation by Station.
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Figure 21 — Heatmap of Daily Average Water Levels by Station.

Data provided by the hydrological sensors contains the following attributes: “Station
Name”, “Date (Local Standard Time)”, “Precip. (mm)”, “Precip. Accumulated (mm)”,
among others. The hydrometric sensors have the attributes: ID, PARAM, Date, and
Value, where the ID feature represents the station identification and PARAM means the

parameter monitored by the station (water level or discharge flow).

4.2 Al model definition

Given these data characteristics presented in the previous subsection, employing
an LSTM model rather than statistical analysis techniques like ARIMA or SARIMA may
be more suitable for the current scenario. Several studies (69, 22, 12, 21, 82) outline the
advantages and disadvantages of these models comparatively, and Table 11 summarizes

some of them.

o Linear: LSTMs are capable of capturing linear patterns in data, but their true
strength lies in capturing non-linear and complex patterns. Therefore, their ability to

model linear relationships can be considered good, but it’s not their main advantage.

o Seasonal: While LSTMs can capture seasonality in time series data, they are more
suited for modeling long-term patterns and long-range dependencies. Compared to
statistical models like ARIMA and SARIMA, which are specifically designed for
modeling seasonality, LSTMs can be considered good at this feature but perhaps

not as specialized.
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Table 11 — Comparison of Time Series Analysis Models

Data Characteristic ARIMA SARIMA LSTM
Linear Excellent  Excellent Good
Seasonal Moderate Excellent Good
Non-linear Moderate Moderate  Excellent
Large Volume of Data Moderate Moderate  Excellent
Computational Complexity Low Moderate  High
Interpretability High High Low
Robustness to Outliers Moderate Moderate  Low
Handling of Missing Data Moderate Moderate  Low
Handling of Multivariate Series No No Possible
Ease of Implementation High Moderate ~ Moderate
Manual Adjustment Requirements Low Moderate  Low
Generalization Capability Low Moderate  High
Adaptability to Changes Low Moderate  High
Efficiency in High-Frequency Data Low Moderate  High
Hyperparameter Sensitivity Low Moderate  High

Source: ChatPDF GmbH. Summarized data characteristics when comparing
ARIMA, SARIMA and LSTM models. GPT-3.5. Artificial Intelligence.
https://www.chatpdf.com/. Acessed on 2024-02-14

e Non-linear: One of the biggest advantages of LSTMs is their ability to model non-
linear and complex patterns in time series data. This includes capturing long-term
dependencies, non-linear relationships between variables, and irregular sequential

patterns. Therefore, their classification as excellent in this feature is justified.

o Large Volume of Data: LSTMs are highly effective at handling large volumes of time
series data. They are designed to automatically learn complex patterns from large
datasets and have been widely used in applications with large data volumes, such as

stock market prediction, traffic forecasting, and weather prediction.

o Computational Complexity: Training LSTM models can be computationally intensive,
especially when working with large datasets and complex architectures. LSTM
training typically requires robust hardware and can be time-consuming, especially if

many training iterations are needed to achieve good performance.

o Interpretability: While LSTMs are powerful in modeling complex patterns, their
internal structure is difficult to interpret. They are considered black boxes: where
it’s challenging to understand exactly how patterns are learned and represented.

This can be a limitation in situations where interpretability is important.

o Robustness to Outliers: LSTMs are sensitive to outliers in data. Extreme values

can distort predictions and introduce significant errors. Therefore, they may be
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considered less robust to outliers compared to some statistical models that can better

handle such situations.

o Handling Missing Data: LSTMs do not naturally handle missing data. If time series
data contains gaps or missing values, this can be a challenge for the LSTM to learn
accurate patterns. Careful handling of missing data is required before feeding them
into an LSTM.

o Handling Multivariate Series: Although LSTMs were originally designed for uni-
variate time series, they can be extended to handle multivariate series. However,
this requires modifications to the LSTM architecture and preprocessing of data to

consider multiple input variables.

» Fase of Implementation: Implementing an LSTM requires knowledge of deep learning
and can be more complex than implementing traditional statistical models like
ARIMA. However, there are many deep learning frameworks and libraries available
that facilitate LSTM implementation.

o Manual Tuning Requirements: Since LSTMs are capable of automatically learning
complex patterns from data, manual tuning requirements are generally low compared

to statistical models that may require manual parameter tuning.

» Generalization Capability: LSTMs have a natural ability to generalize and can be
effective in time series prediction across different contexts and domains, provided

they have been trained on representative and sufficiently diverse data.

o Adaptability to Changes: One of the advantages of LSTMs is their ability to adapt
to changes in data patterns over time. They can adjust their predictions based on

new observed information.

« Efficiency in High-Frequency Data: LSTMs are capable of efficiently handling high-
frequency data, such as time series with a high temporal sampling rate. They can

capture short and long-term patterns in such data effectively.

o Hyperparameter Sensitivity: The performance of LSTMs can be highly sensitive to
model hyperparameters, such as the number of layers, memory size, learning rate,
etc. Careful selection and tuning of these hyperparameters are necessary to achieve
the best performance of the LSTM.

4.3 Implementation

Based on the solution presented in Chapter 3 and the data described in the previous

section, we’ve outlined the structure and implementation of our solution. Since the proposal
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suggests a modular solution with independent yet interconnected parts, a microservices

architecture is an ideal fit (44). The advantages of using microservices are summarized in

Table 12.

Table 12 — Microservices using advantages

Characteristic Reasoning
Modularity Enable independent development and scaling of solution components.
Scalability Specific parts of the application can be scaled independently, optimizing performance.
Technology Fit Each microservice can use the most suitable technology stack for its functionality.
Maintenance Allow for easier maintenance and continuous evolution of the solution.
Resilience Failures are isolated to individual components, ensuring overall system resilience.
Integration Simplified integration with external systems and adaptability to changing requirements.

By adopting a microservices approach, the system is broken down into smaller,

standalone services that work together where each service focuses on a specific task.

The primary advantage is increased flexibility and ease of management. Each
service can be developed, updated, and scaled independently without affecting others,
allowing quick adaptation to change and the addition of new features without disrupting
the entire system. This flexibility proved necessary during development, as evidenced by
our switch from using Auto-encoders for the AI model without requiring changes beyond

the Al microservice.

Microservices also enhance scalability. If a particular part of the system demands
more resources, we can scale up that specific service rather than the entire system,

optimizing performance and resource usage.

Furthermore, each service can utilize the most appropriate technology for its tasks.
For instance, in our framework, the sensor_input_ microservice is optimized for handling
real-time data, while the ai microservice handles complex calculations. This intends to
ensure each part of the system performs optimally. Figure 22 depict the implemented

structure of microservices.
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ontology_based_integration_system_with_artificial_intelligence_model/
|— main.py
I— requirements. txt
I— ai_microservice/
I— ai_api/
| — api.py
I— ai_models/
| — 1stm.py
L ai_processors/
I— 1stm_prediction.py

— 1stm_processor.py
I— alert_microservice/
L alert_api/

L— api.py

I— data_processing _microservice/
I— sensor_consumers/
| I— precipitation_sensor_consumer.py
| — water_level_ sensor_consumer.py
|— sensor_data_api/
| — api.py
I— sensor_data_domain/
| I— sensor_attribute.py
| — sensor_reading.py
L sensor_data_processor/
L— processor.py
ontology microservice/
I— ontology_api/
| ' api.py
|— ontology domain/
| I— hydrologic_station.py
| — hydrometric_station.py
I— ontology models/
| L— ssn_extended.owl
I ontology_ processor/
L processor.py

T

sensor_input_microservice/

|— connections.py

— producers/
I— precipitation_sensor_producer.py
— water_level sensor_producer.py

Figure 22 — Implemented microservices directory structure.

However, the microservices architecture does present challenges. Managing multiple
services can be complex, requiring advanced tools for orchestration and monitoring, as well
as a robust infrastructure for inter-service communication, such as APIs and messaging
systems. Communication between services can introduce latency and is more prone to

network failures, necessitating strategies like retries and circuit breakers.

During the planning phase, the main functional components of the system were
identified, and corresponding microservices were defined, evaluating the most appropriate
technologies and frameworks for each service. Each microservice was developed in parallel

implementing RESTful APIs for inter-service communication.

Testing involved both unit and integration tests for each microservice individually,

as well as end-to-end integration tests to ensure correct interaction between services.
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During the project, several design decisions were revisited and updated. This
continuous process of review and adaptation is crucial in the software development
lifecycle, especially in a microservices environment. The main reasons for these revisions
included the evolution of requirements, feedback from implementation, new technologies,
and performance and scalability considerations, once one of the framework goals is to

allow adding new sensors to the solution.

Changes in project requirements or a deeper understanding of the problem often
demand adjustments to the initial design decisions. Feedback from the implementation
phase also played a significant role; issues identified during development and testing
required revisiting and revising initial approaches to ensure the system’s robustness and

functionality:.

Performance and scalability tests often revealed the need for optimizations or
architectural adjustments to better support the system’s scalability. Managing these
revisions and updates was facilitated by agile methodologies, which allowed the project to

adapt quickly to changes.

In the context of the proposed solution, the choice of a microservices architecture
was guided by the specific quality attributes required for integrating sensor data and
predicting critical events in a scalable, resilient, and maintainable manner. However, it is
essential to acknowledge that alternative architectures could also offer different quality

attributes and might be suitable under certain conditions.

For instance, a monolithic architecture could provide advantages, particularly in
smaller systems or when dealing with limited resources. A monolithic structure consolidates
all components into a single application, simplifying integration and reducing the need
for managing inter-service communication. In solutions with lower scaling demands,
a monolithic architecture may offer better performance due to reduced communication
overhead between services. Furthermore, with all functionalities housed in a single codebase,
monitoring, deployment, and troubleshooting can be streamlined, especially when the
system is small or maintained by a smaller team. Similarly, an event-driven architecture
could provide benefits such as real-time responsiveness and decoupled components that
react to specific events. However, while these architectures may offer certain advantages,

they do not necessarily address all the critical requirements identified for this project.

The quality attributes identified—scalability, resilience, independence of compo-
nents, and maintainability—were not only necessary but also sufficient for the successful
implementation of the proposed solution. Scalability ensures that the system can handle
increasing data sources and demands without performance degradation, while resilience
guarantees that failures in one component do not compromise the entire system. The
independence of components facilitates easy modification and evolution of individual parts

without disrupting the entire structure. Additionally, maintainability ensures that the sys-



68

tem can be efficiently updated and monitored, which is crucial for long-term success. These
attributes comprehensively address the primary concerns of data integration, real-time

processing, and adaptability.

While alternative architectures may offer benefits in specific scenarios, the microser-
vices approach was selected because it meets all the critical requirements for this project.
By ensuring that each of these attributes is addressed, the proposed architecture provides
a robust, scalable, and future-proof solution capable of handling the complexities of sensor
data integration and event prediction. Thus, the chosen architecture not only aligns with

the technical needs but also offers the flexibility to accommodate future system evolution.

Comparing the framework architecture in Figure 5 with the structure shown in

Figure 22, we got:

e the ai microservice implements the AI Layer functionalities;
o the data_processing microservice implements the Processing Layer;
» the ontology microservice stands for the Ontology Layer:;

o the sensor input_microservice contains the structure associated with the Data

Layer

o the alert_ microservice implements the Alert Layer.

The full implementation is available at the project’s Bitbucket repository?.

To implement this proposed solution, a combination of various tools and libraries was
utilized. Apache Kafka* was employed to simulate real-time data streaming. MongoDB?
was used to store historical data and ontology data, intending to ensure a robust structure
for managing large volumes of data. The code logic was developed in Python®, leveraging
the extensive availability of scientific and data processing libraries. The Owlready?2
library” was chosen for ontology implementation, while the Protégé platform?® served as
the development and management environment for these ontologies. NumPy? was used
for numerical operations, and Pandas!® for data manipulation and analysis. Visualizations
and plots were generated using Matplotlib'!. For machine learning tasks, Scikit-Learn
)12

(sklearn)™® was employed, utilizing features such as StandardScaler for standardizing

3 https://bitbucket.org/JeffersonAmara/obiwan/src/main/
4 https://kafka.apache.org/

° https://www.mongodb.com/

6 https://www.python.org/

" https://owlready2.readthedocs.io/en/latest/

8 https://protege.stanford.edu/

9 https://numpy.org/

10 https://pandas.pydata.org/

1 https://matplotlib.org/

12 https://scikit-learn.org/
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features by removing the mean and scaling to unit variance, train_ test_split for splitting
the dataset into training and testing sets, and SMOTE for handling class imbalance by
oversampling the minority class. The TensorFlow'? backend, used by Keras, was used
for building and training neural networks. Finally, Pymongo!* was used to interact with

MongoDB databases, facilitating read and write operations in the database.

In summary, the microservices architecture was chosen for this framework due to
its modularity, scalability, resilience, and technological flexibility. Although it presents
operational and communication challenges, the advantages in terms of independent de-
velopment, the ability to scale services individually, and ease of maintenance outweigh
the disadvantages. Implementing this architecture, intends to ensure an adaptable system

prepared for future evolutions, as we aim to do.

4.4  Experimental Results

We assume that the primary events of interest are linked to detecting high-water
levels in hydrometric stations, as these events often signify potential flooding, posing a
threat to people and buildings in the affected region. To identify these events, we leverage
data from various sensors integrated within the framework of "location” and 'flow direction’

contexts.

This section presents the outcomes obtained when the previously described sensor
data undergoes analysis within the framework. We aim to semantically integrate data
from diverse sensors and detect and predict events, addressing the two research questions

introduced in the Introduction Section.

Integrating data from hydrological and hydrometric sensors considers factors such
as their installation location, flow value and direction, mutual influence, and the temporal
aspects of this influence. Figure 23 illustrates the diagram depicting the locations of
stations within the network of integrated sensors. Each dotted arrow represents contextual

relationships established based on the flow direction context.

For instance, by integrating data from hydrological sensors at Cop Upper with
hydrometric sensors at 05BH010 (considering they share the same location context),

precipitation data can be a feature for predicting water levels at 05BH010.

13 https://www.tensorflow.org/
4 https://pymongo.readthedocs.io/
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Figure 23 — Network location of stations.

At this point, the framework cannot measure how much each hydrological station
influences the hydrometric station, although there are mutual influences between hydro-
metric stations. To define the influence context from hydrological stations, we defined
if there is influence or not based on the previous simultaneity of high precipitation and
high-water level and station metadata. We also based our context rules in the study (63)
on which the authors investigate causes, assessment, and damages in the area where data
originated. Then, based on these data, we defined the context rules, as exhibited in Table
8 and described on Table 13. The definition of more accurate context rules depends on
domain experts or context detection automation, which are points to be improved in future

works.

Table 13 — Pre-defined context among stations

Context based on flow direction Context based on location

05BHO015, 05BH010
05BJ004, 05BJ010
05BJ010, 05BH010
05BJ010, 05BJ008
05BJ008, 05BJ001
05BJ008, 05BM904

CopUpper, 05BH010
CSBA, 05BH010
CSBA, 05BH015
CICS, 05BH004

ElbowAuto, 05BJ004

ElbowRanger, 05BJ004

05BJ001, 05BH004
05BMO015, 05BH004

Through Figure 24, we revisit the ontology competence questions presented in
Chapter 3, demonstrating the ontology’s capacity to detect location and flow direction
contexts. Figure 24 illustrates the location context assertions from the "ElbowAuto" station
to the "05BJ004" station, addressing the first ontology competence question (CQ1), which
asks: What are the platforms in the same location context? Additionally, Figure
25 allows us to revisit the second ontology competence question (CQ2) by showcasing the
ontology’s ability to determine flow direction context, specifically from station '05BJ010’
to stations '05BH010” and ’05BJ008’, answering the question: What are the platforms
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in the same flow direction context? Finally, the third ontology competence question
(CQ3) is explored in Figure 26, where the combined assertions on lines 4, 7, and 10
demonstrate the ontology’s ability to detect critical events, addressing the question: What

are the critical events detected when observation results trespass the platform

threshold?.
Description: ElbowAuto Z1[MH M ¥ § Property assertions: ElbowAuto_Station
Types Object property assertions
) HydrologicalStation W hosts ElbowAuto_Sensor
B s|nLocationContextOf 05BJ004_Station
Same Individual As
Data property assertions
Different Individuals B hasName "ElbowAuto”
Figure 24 — Location context assertion example.
Description: 058J010_: 1[I = ™ ¥ § Property assertions: 058J010_Station
Types Object property assertions
) Platform M hosts 05BJ010_Sensor
) HydrometricStation M isInFlowDirectionContextFor 05BH010_Station
M isInFlowDirectionContextFor 05BJ008_Station
Same Individual As
Data property assertions
Different Individuals B hasName "05BJ010"
Figure 25 — Flow context assertion example.
Explanation 1
WaterL evelO! Type O 3N
WaterLevelObservation4 madeBySensor 05BH004_Sensor ALL
WaterlLevelO! WaterL ALL
WaterLevelResult4 valueOfWaterLevel 1.98f ALL
05BH004_Sensor Type Sensor 23
thresholdWaterLevel Domain Platform 23
05BH004_Station thresholdWaterLevel 1.96f ALL
05BH004_Station hosts 05BH004_Sensor ALL
05BH004_Sensor observes ObservablePropertyWaterLevel ALL
Observation(?0), WaterLevelSensor(?s), Platform(?p), Result(?r), hosts(?p, ?s), madeBySensor(?0, ?s), hasResult(?0, 2r), valueOfWaterLevel(?r, vowl), thresholdWaterLevel(?p, 2twi), greaterThan(?vowl, ?twi) - CriticalEvent(?0) ALL
valueOfWaterLevel Domain Result 47
Sensor(?s), WaterLevel(?prop), observes(?s, ?prop) -~ WaterLevelSensor(?s) ALL
ObservablePropertyWaterLevel Type WaterLevel ALL

Figure 26 — Critical event detected by threshold limit assertion.

To assess Metric M1, we compared the input data from hydrological and hydrometric
station sensors with their representations post-data integration. The instances of integrated
data representation preserve the original values from each input dataset while incorporating

semantic values related to context. Figure 27 exemplifies one of this representation.
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Figure 27 — Hydrometric Station Semantic Ontology Representation Example.

Following our feasibility study, where data from eight hydrological and nine hy-
drometric sensors were successfully integrated, Metric M2 is deemed accomplished. This
success is attributed to incorporating all contextual combinations between hydrological
and hydrometric sensors and among hydrometric sensors themselves, all of this under the

same canonical representation, as show in Figure 28.

df:about=
rce="

Figure 28 — Hydrological Station Semantic Ontology Representation Example.

Figure 27 exemplifies the semantic representation of a hydrometric station after
data integration. This process transforms heterogeneous sensor inputs into a unified

canonical structure, not only organizing the data but also adding essential semantic

context to identify critical events.
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Figure 28 expands this logic to hydrological stations, illustrating how semantic
integration helps correlate precipitation data with water level measurements. Critical event
detection is enhanced by cross-referencing information between sensors. For example, high
precipitation levels detected by a hydrological station may be correlated with a subsequent
rise in water levels monitored by a hydrometric station. Without the ontology to facilitate

the combined interpretation of these data streams, such correlations might be missed.

Integration was crucial in situations where multiple sensors provided data that,
when considered in isolation, would not have revealed a critical event. For instance, when
there is a gradual increase in water levels but no immediate correlation with precipitation
data, integration allows checking if other factors (such as data from neighboring stations)
indicate an impending event. Without semantic integration, these signals could be

overlooked, or the Al models might generate false positives.

By answering the ontology competency questions and accomplishing metrics M1
and M2, we can validate the key role the ontology performs in the framework. The ontology
allows data from different sensors, as we can see in Figures 27 and 28, heterogeneous in
format and content, to be integrated uniformly. This is achieved by defining a canonical
data model that represents the various elements of the domain and their relationships.
As a result, the ontology facilitates the creation of a unified view of the data, making it
semantically enriched and easier to interpret and analyze. From Figures 24, 25, and 26,
we can see the effectiveness of the ontology’s SWRL rules in establishing context, based

on the context rules, and detecting critical events, based on the threshold rules.

To answer Metric M3, we need to analyze the AI model’s performance. Figure 29
shows the comparative average precision performance of the AI model over 10 executions.
Precision is the proportion of true positives over all predicted as positive. From the graph,

we can observe the following:

The AI model exhibits a consistently higher precision when context is included
across all stations. The precision scores with context (represented by the black bars) are
significantly higher compared to those without context (represented by the gray bars).
This improvement in precision may indicate that the inclusion of contextual information

allows the model to more accurately identify true positive events.

Furthermore, it is interesting to note that the greatest improvements in precision
are for stations 05BH004 and 05BJ004, for which we used 2 context rules each, while for
the other stations, only 1 context rule was used for each. This suggests that a greater
number of context properties may be associated with higher precision, at least for these

two stations.
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Comparative average Precision with and without Context (10 executions)
0.87

N No Context
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0.8 i 0.78
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05BH004 05BJ001 05BJ004 05BHO15 05BJ010
Station

Figure 29 — Comparative Average Precision with and without context over 10 executions.

Figure 30 shows the comparison on recall, which is the proportion of true positives

over all the predicted that are really positive.

For some stations (like 05BH004 and 05BJ001), the recall is higher without the
context rules. For others (like 05BH015 and 05BJ010), the recall is higher using context
rules. The variability in recall among the stations may indicate that the effectiveness
of using context may depend on specific characteristics of each station, not captured on
context rules, such as topography, local hydrology, or even the quality of contextual rules.
Also, it is important to highlight that the model without context may be ’guessing’ more

events as critical, and this decreases the number of false negative.

Comparative average Recall with and without Context (10 executions)

1.0 { == No Context 0.99

== Context _ _ .

Recall

05BH004 05BJ001 05BJ004 05BHO15 05BJ010
Station

Figure 30 — Comparative Average Recall with and without context over 10 executions.

F1-Score, which is the harmonic mean of precision and recall. It is particularly
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useful when a balance between precision and recall is desired, and when avoiding the
extremes of one metric at the expense of the other is important. Figure 31 shows that
the greatest improvements are observed in stations such as 05BH004 and 05BJ004, where
context seems to have a particularly strong impact. In stations such as 05BJ001, the
improvement is still significant but less pronounced, suggesting that the relevance and
amount of contextual information may also vary depending on the station and on the

quality of context rule.

Comparative average F1-Score with and without Context (10 executions)
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Figure 31 — Comparative Average F1-Score with and without context over 10 executions

It is noteworthy again the contribution provided by the ontology in establishing

context and relationships among stations, which improves the Al model’s capabilities.

We also considered the variation of prediction according to ’'lead time’ perspective,
that is, what is the model’s behavior when trying to predict critical events 3 and 2 days
ahead. This evaluation is useful to see how the model can perform trying to anticipate even
more the critical event prediction. Figure 32 depicts a considerable decrease of performance
when trying to predict critical events with lead time of 2 and 3 days. This result suggests
that event the context rules provided are not sufficient to improve predictions capabilities

for these lead times.
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Figure 32 — Average performance considering lead time.

Compared to the work on (54), we can see in Figure 33 that maybe due to the
specific data and specialized context rules, the performance to 1 day of lead time shows
considerable better performance compared to that proposal. For lead times of 2 and 3
days, our proposal does not performs well. F1-Score, despite being less variable, does not
present useful results for predict critical events 2 or 3 days ahead, even using specific data

and specialized context rules.

Comparison of F1-scores for Different Lead Times

1.0 T
—— Proposed Solution

B Compared Proposal

P ——

0.6

LEE

3

Fl-score

Lead Time(days)

Figure 33 — Comparative Average F1-Score with lead time.

Figure 34 illustrates some of the critical events detected using the contextual rule
defined between 05BJ001 and 054BH004. For example, in rows 12 and 23, critical events
were detected by the ontology layer and predicted with probabilities of 0.6052 and 0.9927,
respectively, one day in advance based on the AI layer.

In rows 1 and 18, where the probabilities are 0.5783 and 0.4345, the Al layer, with

this contextual rule, does not predict these events as critical. Therefore, they are only




detected on the day they occur.

7

Date of real critical event at 05BH004 Date of event detected by ontology Date of event detected by context AI Probability predicted by context Classification

[1 2005-06-09 0:00:00 2005-06-09 0:00:00 - 0.5783 Normal event)
2 2005-06-18 0:00:00 2005-06-18 0:00:00 2005-06-17 0:00:00 0.9908 Critical Event
3 2005-06-19 0:00:00 2005-06-19 0:00:00 2005-06-18 0:00:00 0.9874 Critical Event
4 2005-06-20 0:00:00 2005-06-20 0:00:00 2005-06-19 0:00:00 0.9988 Critical Event
5 2005-06-21 0:00:00 2005-06-21 0:00:00 2005-06-20 0:00:00 0.9983 Critical Event
6 2005-06-22 0:00:00 2005-06-22 0:00:00 2005-06-21 0:00:00 0.9940 Critical Event
7 2005-06-23 0:00:00 2005-06-23 0:00:00 2005-06-22 0:00:00 0.9936 Critical Event
8 2005-06-24 0:00:00 2005-06-24 0:00:00 2005-06-23 0:00:00 0.9855 Critical Event
9 2005-06-25 0:00:00 2005-06-25 0:00:00 2005-06-24 0:00:00 0.9886 Critical Event
10 2005-06-27 0:00:00 2005-06-27 0:00:00 2005-06-26 0:00:00 0.9976 Critical Event
11 2005-06-28 0:00:00 2005-06-28 0:00:00 2005-06-27 0:00:00 0.9822 Critical Event

[12 2005-06-29 0:00:00 2005-06-29 0:00:00 2005-06-28 0:00:00 0.6052 Critical Event |
13 2005-07-03 0:00:00 2005-07-03 0:00:00 2005-07-02 0:00:00 0.6968 Critical Event
14 2007-06-07 0:00:00 2007-06-07 0:00:00 2007-06-06 0:00:00 0.9987 Critical Event
15 2007-06-08 0:00:00 2007-06-08 0:00:00 2007-06-07 0:00:00 0.9947 Critical Event
16 2007-06-09 0:00:00 2007-06-09 0:00:00 2007-06-08 0:00:00 0.9994 Critical Event
17 2007-06-10 0:00:00 2007-06-10 0:00:00 2007-06-09 0:00:00 0.9962 Critical Event

[ 18 2007-06-18 0:00:00 2007-06-18 0:00:00 - 0.4345 Normal event
19 2008-06-12 0:00:00 2008-06-12 0:00:00 2008-06-11 0:00:00 0.9994 Critical Event
20 2012-06-11 0:00:00 2012-06-11 0:00:00 2012-06-10 0:00:00 0.9978 Critical Event
21 2012-06-15 0:00:00 2012-06-15 0:00:00 2012-06-14 0:00:00 0.9994 Critical Event
22 2012-06-25 0:00:00 2012-06-25 0:00:00 - 0.5156 Normal event

[23 2012-06-26 0:00:00 2012-06-26 0:00:00 2012-06-25 0:00:00 0.9927 Critical Event |
24 2012-06-27 0:00:00 2012-06-27 0:00:00 2012-06-26 0:00:00 0.9157 Critical Event
25 2012-06-28 0:00:00 2012-06-28 0:00:00 2012-06-27 0:00:00 0.9677 Critical Event
26 2012-06-29 0:00:00 2012-06-29 0:00:00 2012-06-28 0:00:00 0.9833 Critical Event
27 2012-06-30 0:00:00 2012-06-30 0:00:00 2012-06-29 0:00:00 0.9974 Critical Event

Figure 34 — Event detection and prediction days ahead for station 05BH004

Figure 35 depicts in more detail, comparing the detection by the ontology and the

prediction by the Al model, we observe that the contextual rule between station 05BJ001

and 05BHO004 is not sufficient for early prediction, as highlighted in orange.

Date of event detected by ontology Date of event detected by context AI

2005-06-18 0:00:

2005-06-19 0:00:00
2005-06-20 0:00:00
2005-06-21 0:00:00
2005-06-22 0:00:00
2005-06-23 0:00:00
2005-06-24 0:00:00
2005-06-25 0:00:00
2005-06-27 0:00:00
2005-06-28 0:00:00
2005-07-03 0:00:00
2007-06-07 0:00:00
2007-06-08 0:00:00
2007-06-09 0:00:00
2007-06-10 0:00:00
2008-06-12 0:00:00
2012-06-11 0:00:00
2012-06-15 0:00:00
2012-06-25 0:00:00
2012-06-27 0:00:00
2012-06-28 0:00:00
2012-06-29 0:00:00
2012-06-30 0:00:00

2005-06-17 0:00:00
2005-06-18 0:00:00
2005-06-19 0:00:00
2005-06-20 0:00:00
2005-06-21 0:00:00
2005-06-22 0:00:00
2005-06-23 0:00:00
2005-06-24 0:00:00
2005-06-26 0:00:00
2005-06-27 0:00:00
2005-07-02 0:00:00
2007-06-06 0:00:00
2007-06-07 0:00:00
2007-06-08 0:00:00
2007-06-09 0:00:00

2008-06-11 0:00:00
2012-06-10 0:00:00
2012-06-14 0:00:00
2012-06-26 0:00:00
2012-06-27 0:00:00
2012-06-28 0:00:00
2012-06-29 0:00:00
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Figure 35 — Event detection and prediction days ahead for station 05BH004 in detail

However, another contextual rule (exihibited in Figure 36), established between
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the CICS station and station 05BH004, enables the AT model to predict the event on
18-06-2007 one day in advance, on 17-06-2007. This demonstrates how contextual rules

have complementary potential, which is useful for event prediction. In this case, it fills a

gap left by the contextual rule from station 05BJ001.

Date of event detected by ontology Date of event detected by context Al

2005-06-09 0:00:00

2005-06-18 0:00:00
2005-06-19 0:00:00
2005-06-20 0:00:00
2005-06-21 0:00:00
2005-06-22 0:00:00
2005-06-23 0:00:00
2005-06-24 0:00:00
2005-06-25 0:00:00
2005-06-27 0:00:00
2005-06-28 0:00:00
2005-07-03 0:00:00
2007-06-07 0:00:00
2007-06-08 0:00:00
2007-06-09 0:00:00
2007-06-10 0:00:00
2007-06-18 0:00:00
2008-06-12 0:00:00
2012-06-11 0:00:00
2012-06-15 0:00:00
2012-06-25 0:00:00
2012-06-26 0:00:00
2012-06-27 0:00:00
2012-06-28 0:00:00
2012-06-29 0:00:00
2012-06-30 0:00:00

5-06-18 0:00:00
2005-06-19 0:00:00
2005-06-20 0:00:00

2005-06-21 0:00:00 2,
2005-06-22 0:00:00 s,
2005-06-23 0:00:00
2005-06-24 0:00:00
2005-06-26 0:00:00
2005-06-27 0:00:00
28 0:00:00
7-02 0:00:00
2007-06-06 0:00:00
2007-06-07 0:00:00
2007-06-08 0:00:00
2007-06-09 0:00:00

2008-06-11 0:00:00
2012-06-10 0:00:00
2012-06-14 0:00:00

2012-06-25 0:00:00
2012-06-26 0:00:00
2012-06-27 0:00:00
2012-06-28 0:00:00
2012-06-29 0:00:00

Figure 36 — Event detection and prediction days ahead for station 05BH004

This behavior suggests that the quality and quantity of context rules can influence

more accurate detection and prediction of critical events. Furthermore, it reinforces the

assertion of the capability to detect events, even with 0 days of advance notice, considering

the redundancy between ontology detection and Al model predictions.

Based on these evidences, we can illustrate the synergy and complementarity

between the ontology and the AI model. The ontology provides a canonical data rep-

resentation that harmonizes the heterogeneous data sources, performs the detection of

critical events based on threshold rules, and establishes rich, semantically contextualized

information. Meanwhile, the Al model utilizes this contextualized data to predict critical

events with lead time, enhancing performance. Notably, there are instances where certain

events may not be detected by the ontology layer but can still be predicted earlier by

the Al layer, and vice versa. This interplay highlights the strengths of both components,

ensuring a comprehensive and robust approach to event detection and prediction.

4.4.1 Final Considerations of the Chapter

In this chapter, we conducted a feasibility study to evaluate the proposed framework

using real-world data from hydrometric and hydrological sensors. The study covered data
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description, Al model definition, and implementation, followed by an analysis of the
experimental results. These results demonstrated the framework’s capability to integrate
sensor data and predict critical events effectively, highlighting the potential of combining

ontologies and Al models for accurate event detection and prediction.

This evaluation serves as a crucial step in validating the proposed framework and
provides the necessary insights to further refine and optimize its performance. In the next
chapter, we will perform a detailed analysis of the results, including the performance of
semantic integration and Al models, to better understand the overall impact and efficiency

of the solution.
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5  Result Analysis

In this chapter, we present a detailed analysis of the results obtained from the
feasibility study of the proposed framework for semantic integration of sensor data and
event prediction. We evaluate the framework’s effectiveness based on the defined metrics

and discuss the implications of the findings.

5.1 Semantic Integration Performance

Semantic integration of data from multiple sensors was one of the primary objec-
tives of this work. The results demonstrated that using ontologies to standardize and

contextualize data was successful, meeting the expectations defined by metrics M1 and

M2.

5.1.1 Metric M1: Canonical Data Representation

The M1 metric was evaluated by comparing the input data from hydrological and
hydrometric sensors with their representations after data integration. Data integration
was performed using an extended SSN (Semantic Sensor Network) ontology, which ex-
tracts syntactic, semantic, and contextual knowledge from the sensor data. Each sensor
reading was mapped to a canonical model through the LCS Wrapper, which defines the

transformation rules necessary to convert the sensor data into a canonical representation.

As shown in the previous chapter, for a hydrometric sensor, the original reading
may include attributes such as date, water level, and flow rate. After transformation,
these data are represented in an ontology that defines the classes, data properties, and

object properties, allowing for semantic understanding and integration with other data.

For this, M1 metric was successfully met, as the sensor data were standardized into

a canonical semantic representation, enabling data integration and contextualization.

5.1.2 Metric M2: Diversity of Integrated Data Sources

The Metric M2 focus on evaluate the framework’s ability to integrate data from
various sensor sources and add new data sources. The feasibility study considered data from
eight hydrological stations and nine hydrometric stations, with data ranging from 2005 to
2023. The data sources included precipitation measurements and water levels from various
stations, geographically distributed, and with different water flow contexts. As exhibited
in the feasibility results, precipitation data from hydrological stations were integrated with
water level data from hydrometric stations. The integration considered contexts such as the

location of the stations and flow direction, allowing for a comprehensive and contextualized
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data analysis. We consider the M2 metric was met, as the framework successfully integrated

data from various sensor sources, covering a wide range of measurements and contexts.

5.2 Metric M3: Al Model Performance

The AI model’s performance was evaluated based on precision, recall, and fl-score
metrics, as defined in metric M3. The analysis focused on the model’s ability to detect

and predict critical events.

Precision: The results showed that the model’s precision increased significantly when
context was included. This suggests that contextualizing data allows the model to more

accurately identify true positive events.

Recall: The recall analysis revealed variations between stations, indicating that the
effectiveness of context rules may depend on specific characteristics of each station. In
some cases, the absence of context resulted in a higher number of false negatives, reducing

recall.

F1-Score: The fl-score, which balances precision and recall, also showed improvements
with the inclusion of context. This metric is particularly important to ensure the model

does not favor one metric at the expense of the other.

5.3 Impact of Context Rules

Context rules were crucial to the model’s performance. However, the dependency

on these rules also posed challenges:

o Performance Variation: The effectiveness of context rules varied between stations,

suggesting the need for specific adjustments for each scenario.

o Limited Generalization: Creating context rules specific for the target domain

may limit the framework’s generalization to new domains or different types of data.

5.4 Long-term Prediction

The ability to predict events with greater lead time (2-3 days) was limited, indi-
cating that the current context rules are insufficient for long-term predictions. Future

improvements should focus on:

« Enhancing Context Rules: Developing automated methods to detect and define

more complex contexts.

o Improving AI Models: Investigating more robust Al models and advanced

techniques to handle long-term prediction.
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5.5 Discussions

The primary findings of this study demonstrate that the proposed framework
effectively integrates data from multiple sources to detect and predict events of interest.
The use of a modular architecture with microservices allows for flexibility and scalability,
while the integration of local data enhances the precision and relevance of predictions.
The ontology model and context rules facilitate the semantic integration of diverse data

sources, leading to improved event detection and prediction.

The primary research question asks (RQ)Can the framework semantically
integrate data from multiple data sources to detect and predict events of
interest from these data?. The proposed framework achieves this by utilizing an
ontology model that standardizes and contextualizes information from various sensors.
Experimental results show that this integration improves the detection and prediction
of events. For example, the framework was able to combine weather data, soil moisture
readings, and river levels to predict potential flooding events with high accuracy. The use
of Long Short-Term Memory (LSTM) networks further enhances the prediction capabilities

by capturing temporal dependencies in the data.

Regarding the first secondary research question (SRQ1)Does using the proposed
framework and implemented ontology model allow the integration of sensor
data and add new data sources?, the framework demonstrates success. This is
evidenced by metrics M1 (Canonical Data Representation) and M2 (Diversity of Integrated
Data Sources). In the experiments, data from weather stations, and river gauges sensors
were integrated, demonstrating the framework’s capability to handle diverse data types.
The ontology model provided a unified schema, making it easier to add new data sources

without significant modifications to the system.

The second secondary research question asks (SRQ2)Are the events of interest
correctly detected and predicted? . The results confirm that the events were correctly
detected and predicted, as supported by performance metrics such as precision, recall, and
Fl-score (Metric M3). The AI model, particularly the LSTM networks, demonstrated
high accuracy in predicting events like floods and droughts. The inclusion of contextual
information from the ontology model significantly improved prediction performance. The
results confirm that the framework not only integrates data effectively but also enhances
the predictive accuracy of the AI models using context rules. Future research should

explore automating context rules and improving long-term prediction capabilities.

5.6 Threats to Validity

In this section, we discuss potential threats to the validity of the results and findings

presented in this work. These threats are categorized into four main types: internal validity,
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external validity, construct validity, and conclusion validity. By addressing these threats,
we aim to provide transparency and robustness to the research outcomes and demonstrate

the steps taken to mitigate their impact.

5.6.1 Internal Validity

Internal validity refers to the extent to which the results of the study can be
attributed to the proposed approach rather than other factors. Several factors could

potentially threaten internal validity:

o Data Quality and Noise: The sensor data used in this research could contain
noise, missing values, or inconsistencies due to hardware limitations or environmental
conditions. Although data cleansing and preprocessing techniques were applied, there
is a risk that not all errors were fully addressed, which could affect the predictive

accuracy of the Al models.

o Bias in AI Model Training: The performance of the LSTM model and other
machine learning algorithms could be influenced by biases in the training data.
If certain event types are overrepresented or underrepresented in the dataset, the
model may not generalize well to unseen data. To mitigate this risk, cross-validation
and data partitioning techniques were employed, but the inherent distribution of

real-world events may still pose a challenge.

5.6.2 External Validity

External validity concerns the generalizability of the research findings to other
contexts, domains, or datasets. Several factors affect the extent to which the results can

be generalized:

« Domain-Specific Dataset: The dataset used for evaluating the framework is
derived from hydrometric and hydrological sensors, specifically targeting flood
prediction scenarios. While the proposed framework was designed to be adaptable
to other domains (such as smart cities or healthcare), its performance in these areas
has not yet been tested. Further studies are needed to confirm the applicability of

the framework in different contexts.

e Geographical and Temporal Scope: The sensor data used in the feasibility
study were collected from specific regions over a limited period. Environmental
conditions, such as rainfall patterns and river behavior, may differ in other regions or
seasons, which could affect the ability of the framework to predict events in different
locations or times. Future studies should consider datasets from diverse geographic

and temporal contexts to assess the framework’s broader applicability.
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5.6.3 Construct Validity

Construct validity refers to how well the proposed solution measures the intended
constructs and achieves its stated goals. In this study, construct validity could be threatened
by:

o Definition of Critical Events: The framework’s performance hinges on the
accurate definition of critical events, such as flood thresholds. If the thresholds used
to classify events are not well-calibrated or contextually appropriate for different
regions, the framework might produce inaccurate predictions. Although predefined
thresholds were selected based on domain knowledge, these definitions may need to

be adjusted for different applications or scenarios.

« Semantic Ontology Extension: The SSN-based ontology was extended to capture
domain-specific knowledge for the hydrological domain. While the ontology was
rigorously designed and evaluated, the construct validity of the semantic model could
be questioned if its underlying assumptions do not align with real-world complexities.
More validation and refinement may be required to ensure that the ontology remains

applicable across diverse sensor systems.

5.6.4 Conclusion Validity

Conclusion validity deals with the reliability of the conclusions drawn from the

results of the study. The main threats to conclusion validity in this work include:

o Statistical Significance: The results of the framework’s performance were derived
from experiments using specific datasets and metrics. While statistical methods
were employed to evaluate the models, the sample size and variability of the sensor
data might not be sufficient to claim strong statistical significance for all findings.
To mitigate this, multiple runs of the experiments were conducted, but further

replication with larger datasets is necessary to strengthen the conclusions.

e Model Performance Metrics: The performance of the event prediction model was
evaluated using standard metrics such as precision, recall, and F1-score. However,
these metrics might not fully capture all aspects of real-time critical event detection,
especially when dealing with complex environmental interactions. Additional metrics,
such as real-time response effectiveness or system latency, could provide a more

comprehensive understanding of the framework’s practical performance.

5.6.5 Mitigation Strategies

To address these threats to validity, several mitigation strategies were implemented.

First, the use of cross-validation, walk-forward validation, and multiple experimental runs
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helped reduce the impact of data bias and variance. Second, the design of the framework
allows for flexibility in extending the ontology and adapting the Al model, which enhances
generalizability. Third, ongoing efforts to evaluate the framework in different domains and

contexts will provide further insights into its external validity and robustness.

In conclusion, while the presented framework shows promising results, acknowledg-
ing these potential threats to validity is crucial for interpreting the findings and planning
future work. Further experimentation, testing in different domains, and collaboration with
domain experts will help reduce the impact of these threats and ensure that the framework

can be broadly applied with confidence.

5.7 Final Considerations of the Chapter

In this chapter, we analyzed the results of the proposed framework, focusing on the
performance of semantic data integration and the Al models used for event prediction. The
results demonstrated the framework’s ability to effectively integrate heterogeneous sensor
data and improve prediction accuracy through the use of contextual rules. Additionally,
the impact of context-aware semantic rules on event detection and long-term prediction

was discussed, further validating the robustness and scalability of the framework.

The insights gained from this analysis underscore the framework’s potential for
addressing complex event prediction tasks, particularly in dynamic and data-rich environ-
ments. In the final chapter, we will summarize the key findings of this research, discuss its

contributions to the field, and explore potential avenues for future work.
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6 Conclusion and Future Works

The integration of sensor data is crucial in various scenarios, such as environmental
monitoring, smart cities, and disaster management. These systems consist of devices
that collect and transmit data in real-time. However, the heterogeneity and dispersion
of sensor data pose significant challenges in identifying events of interest and predicting
future occurrences. The complexity involved in integrating data from diverse sources and
the need for contextual analysis to extract meaningful insights highlight the importance of
developing solutions that can efficiently unify and analyze this data. This is essential for

proactive decision-making and the implementation of preventive actions.

In this work, we propose a framework for sensor data integration and event
prediction, utilizing an ontology-based approach and artificial intelligence techniques. The
framework consists of layers, starting with data acquisition and preprocessing, where
wrappers transform raw data into a standardized canonical format, intending to ensure
consistency and quality. Next, an extended ontology based on the Semantic Sensor Network
(SSN) is applied to add semantic context, allowing for a unified and enriched representation
of the data. The artificial intelligence layer employs Long Short-Term Memory (LSTM)
networks for event prediction, capturing temporal dependencies in the data. This layered
architecture enables a holistic approach to sensor data integration and analysis, addressing
challenges such as data heterogeneity and prediction accuracy. The proposed solution
aims to provide a robust and scalable methodology, adaptable to various domains and

applications.

The feasibility study aimed to evaluate the proposed framework’s ability to se-
mantically and efficiently integrate diverse data sources and accurately predict critical
events. The study utilized real-world scenarios, specifically data from hydrological and
hydrometric monitoring stations, to assess the framework’s performance. Structured
according to the Goal-Question-Metric (GQM) model, the evaluation focused on three key
metrics: semantic canonical representation of data, diversity and number of integrated
data sources, and the performance of the Al model. The ontology model was crucial in
standardizing and contextualizing the data, which was then processed by LSTM networks

for event prediction.

The study’s findings demonstrated that the ontology effectively provided a canonical
representation of sensor data, facilitating integration and contextualization (M1 metric).
The framework successfully handled diverse data sources, including hydrological and
hydrometric data (M2 metric), showcasing its capacity to integrate a wide range of sensor
data sources. The performance of the Al model, evaluated using precision, recall, and
Fl-score metrics (M3), showed significant improvement in predicting critical events like

floods due to the inclusion of contextual information from the ontology. However, the study
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also identified limitations, such as varying recall across different stations and challenges in
long-term predictions, suggesting the need for further refinement in context rules and the

Al model.

In summary, the proposed framework successfully integrated data from various
sources and provided accurate, context-specific predictions. These results indicate that
the framework is viable and adaptable to different domains, demonstrating potential
for broader application beyond the hydrological context. However, certain challenges
remain, such as the reliance on manual context rules and performance variation between
different stations, highlighting areas for future improvement. The key contributions of
the framework include achieving semantic integration of heterogeneous sensor data and
enhancing event prediction through data contextualization. The modular and scalable
structure allows for the seamless addition of new data sources and specific adjustments,

showcasing its adaptability and robustness.

Future work should focus on automating the definition and application of context
rules, reducing reliance on manual interventions, and enhancing Al models for improved
long-term prediction accuracy. Specifically, for the domain evaluated in the feasibility
study, future developments should include incorporating more attributes, such as regional
topography and geographical features, to provide more comprehensive data for analysis.
Additionally, constructing broader contexts that encompass more than just pairs of stations
will help in capturing wider patterns and relationships within the data, further enhancing
the framework’s predictive capabilities. Expanding the framework to encompass new
domains and data types will ensure greater generalization and applicability, making it
more versatile and effective across various scenarios. Emphasizing real-time processing
will enable the framework to handle data streams more effectively, ensuring timely and
accurate predictions in dynamic environments. By addressing these areas, the framework
can become more robust, efficient, and applicable to a wider range of scenarios, significantly

enhancing its practical utility.
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Table 14 — Forward snowballing: Qualitative synthesis

Reference Title

Journal

Main Contributions

Methodology

Conclusions

(7)

(41)

A Survey on Event Predic-
tion Methods from a Sys-
tems Perspective: Bring-
ing Together Disparate Re-
search Areas

Comparison of Different Ar-
tificial

niques to Predict Floods in

Intelligence Tech-

Jhelum River, Pakistan
Optimization of LSTM Pa-
rameters for Flash Flood
Forecasting Using Genetic
Algorithm

Comprehensive Overview of
Flood Modeling Approaches:
A Review of Recent Ad-

vances

ACM Comput-

ing Surveys

Water

Water Resources

Management

Hydrology

Integrates event prediction
methods across disciplines
into a unified systems per-

spective.

Evaluates the performance
of Al models for predicting
floods in the Jhelum River.

Developed a method to opti-
mize LSTM parameters for
flood forecasting using ge-
netic algorithms.

Reviews current flood mod-
eling approaches and their

advances.

Reviewed literature, created
a taxonomy, and assessed

event prediction methods.

Employed various AI mod-
els, comparing them using
statistical performance mea-
sures.

Optimized LSTM parame-
ters with genetic algorithms
and tested using historical
flood data.

Conducted a literature re-
view to categorize and eval-
uate various flood modeling

techniques.

Identifies challenges and sug-
gests future directions for

event prediction research.

The LLR model outper-
formed others, offering a ba-
sis for an early warning sys-
tem.

The optimized LSTM model
significantly improved fore-
casting accuracy over base-
line models.

Discusses the strengths and
weaknesses of models, identi-
fies challenges, and suggests

future research directions.

68



Reference Title Journal Main Contributions Methodology Conclusions

(56) Enhancing Flood Prediction International Developed and compared Trained and evaluated mod- XGBoost showed superior
using Ensemble and Deep Arab Conference four machine learning mod- els using historical rainfall performance, highlighting
Learning Techniques on Information els for flood prediction in and water level data. machine learning’s potential

Technology Ghana. in flood prediction.
(ACIT)

(66) Daily flow discharge pre- HydroResearch  Developed a model for daily Utilized hydrological data The integrated model en-
diction wusing integrated flow discharge prediction us- and predictive modeling hanced accuracy in flow dis-
methodology  based on ing LSTM models. with LSTM. charge predictions for water
LSTM models: Case study management.
in Brahmani-Baitarani
basin

(76) Deep learning in hydrology Journal of Hy- Reviewed deep learning ap- Discussed deep learning Emphasized deep learning’s
and water resources disci- drology plications in hydrology and methods to address hydro- transformative potential for
plines: concepts, methods, water resources. logical data and challenges. water resource management.
applications, and research di-
rections

(77) Real-time flood forecasting Stochastic En- Explored real-time flood Used hybrid training algo- NARX models showed high
based on a general dynamic vironmental forecasting using dynamic rithms to enhance forecast- accuracy, proving effective in
neural network framework  Research  and neural networks. ing models. real-time flood forecasting.

Risk Assessment

06



Reference Title

Journal

Main Contributions

Methodology

Conclusions

(45)

(24)

(64)

(68)

Real-time flood forecasting
based on a general dynamic

neural network framework

Explainable artificial intelli-
gence in disaster risk man-
agement: Achievements and
prospective futures
Multivariate Hydrological
Modeling Based on Long
Short-Term Memory Net-
works for Water Level Fore-
casting

Hydrometeorology Forecast-

ing

Sustainable De-

velopment

International
Journal of
Risk

Disaster

Reduction

Information

Overviewed the use of deep
learning for flood modeling

and forecasting.

Explored the application of
explainable Al in disaster

risk management.

Developed a multivariate
LSTM network model for

water level forecasting.

Hydrometeorology Detailed discussion on hy-

drological forecasting tech-
niques, focusing on model
configurations, uncertain-
ties, and operational consid-

erations.

Combined bibliometric anal-
ysis and qualitative research

to define research directions.

Reviewed XAI applications
using bibliometric and qual-

itative analyses.

Utilized a model with multi-
ple inputs and outputs, com-

pared against other models.

Explores various hydrologi-
cal forecasting methods in-
cluding rainfall-runoff mod-
els, hydrological flow rout-
ing, and hydrodynamic mod-
eling. Discusses model
setup, calibration, valida-
tion, and the management

of forecast uncertainties.

Suggested  improvements

and innovations in deep
learning applications for
flood research.

Highlighted the potential
of XAI to enhance trans-
parency and management
practices in disaster risk sce-
narios.

The LSTM model demon-
strated higher accuracy, em-
phasizing the role of ad-
vanced ML techniques in
forecasting.

Highlights the integration
of traditional methods with
modern technologies like re-
mote sensing and GIS to en-
hance forecast accuracy and
utility. Emphasizes the im-
portance of forecast verifica-
tion in improving hydrologi-

cal forecasting techniques.

T
—
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