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RESUMO

O aquecimento global e as alteracdes climaticas tém sido temas de grande interesse nos
ultimos anos, por estarem relacionados com as emissdes de gases de efeito estufa (GEE). O
setor agricola sofre as consequéncias dessas mudangas. Por outro lado, ele ¢ um dos principais
emissores globais de GEE. A agricultura ¢ um setor complexo nos seus aspectos ambientais,
sociais e econdmicos. E necessario propor novas solugdes que proporcionem uma agricultura
mais sustentdvel. No ambiente agricola, um passo importante ¢ a geragdo de inventarios de
GEE. O conhecimento gerado pelos inventarios possibilita a identificagdao de problemas e a
busca por solugdes que visem aumentar o sequestro de carbono e reduzir as emissdes. Um
balango de carbono positivo permite a geracdo de créditos de carbono com potencial retorno
econdmico. Dados publicos e dados coletados em propriedades rurais, quando disponiveis,
podem contribuir para a geracdo dos inventarios € a promog¢ao de praticas agricolas mais
sustentaveis. Este estudo apresenta uma proposta de arquitetura contendo um modelo
ontolégico, chamado CarbOnto, com o objetivo de integrar sintatica e semanticamente
conjuntos de dados heterogéneos relacionados a agropecuaria. Utilizando técnicas de
aprendizado de maquina a partir dos dados integrados, geramos conhecimento para apoio a
tomada de decisdo dos proprietarios rurais, oferecendo alternativas para o uso da terra com foco

no balango positivo de GEE, que contribui para a geracao de créditos de carbono.

Palavras-chave: balanco de carbono; inventarios agricolas; inventarios de GEE; dados agricolas

integrados; aprendizado de maquina, ontologia.



ABSTRACT

Global warming and climate change have been topics of great interest in recent years,
as it is related to greenhouse gas (GHG) emissions. The agricultural sector suffers the
consequences of these changes. However, it is also one of the top global emitters of GHG.
Agricultural is a complex sector in its environmental, social, and economic aspects. There is a
need to propose new solutions that provide more sustainable agriculture. In the farm
environment, an important step is the generation of GHG inventories. Based on the knowledge
generated by inventories, problems can be identified, and solutions can be searched for that aim
to increase carbon sequestration and reduce emissions. A positive carbon balance enables the
generation of carbon credits with potential economic return. Public datasets and datasets
collected on rural properties, when available, can contribute to the generation of inventories
and the promotion of more sustainable agricultural practices. This study presents an
architectural proposal containing an ontological model called CarbOnto, with the objective of
syntactically and semantically integrating sets of heterogeneous data related to agriculture.
Using machine learning techniques from integrated datasets, we generate knowledge to support
rural owners' decision-making. We offer alternatives for using land with a focus on positive

GHG balance, which contributes to the generation of carbon credits.

Keywords: carbon balance; farm inventories; GHG inventories; integrated farm data; machine

learning.
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1 INTRODUCTION

This chapter contextualizes the study and presents the main motivations, problems, and

objectives we intend to achieve, leading to the development of the proposed solution.

1.1 CONTEXTUALIZATION

Greenhouse Gas (GHG) emissions and their potential impacts on the climate change
process is a topic that has attracted increasing attention from society. According to the
International Panel on Climate Change (IPCC, 2021), a body linked to the United Nations, each
of the last four decades has been successively hotter than any other that preceded it. It is
estimated that temperatures will continue to rise throughout the 21st century if actions to contain
the problem are not adopted on a large scale (IPCC REPORT, 2022).

Increasing global average temperatures could lead to significant changes, resulting in
more frequent extreme weather events (UNFCCC, 2015). Among the most vulnerable activities
are those that depend most on natural resources, the most obvious case being agricultural
production (Garcia et al.,2022). In addition to the impacts, agriculture has been an important
emitter of GHGs, largely responsible for global warming (Garcia et al., 2022). On the other
hand, the sector stands out for its potential in reducing and removing emissions (SEEG, 2021).

Among the alternatives for accelerating the climate transition, the carbon market has
gained increasing attention in recent years. International expectations are that this market
should grow significantly in the coming years (Vargas et al., 2022). Countries like Brazil have
a competitive advantage in generating carbon credits from nature-based solutions. Nature-based
solutions aim to protect and manage productive areas sustainably and restore ecosystems,
involving forest conservation activities and sustainable management of soils and pastures,
among others.

Carbon inventories are essential for monitoring and understanding trends in carbon
emissions and removals over time and evaluating the impact of climate change mitigation
policies and measures. Furthermore, they provide a solid basis for developing emission
reduction strategies, pursuing more sustainable agriculture, and generating economic benefits

through carbon credits.
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1.2 MOTIVATION

Due to the importance of agricultural activities for food systems, this sector is a
fundamental part of the GHG emission mitigation strategy. Land use and land use change
(LUC), caused by the conversion of native habitats to farmland, is considered the second largest
source of greenhouse gas emissions on the planet, representing approximately 23% of the total
(IPCC, 2021; Fankhauser et al., 2022). The agricultural sector is complex, with a significant
diversity of production systems directly related to many environmental, social, and economic
aspects (Plano ABC, 2012). There are challenges in finding solutions that balance food
production with sustainable development.

Countries with large agricultural production, such as Brazil, have the potential to
generate carbon credits from nature-based solutions. However, there are challenges, such as
promoting good low-carbon agricultural practices and developing methodologies accepted on
the international market. These methodologies need to be financially feasible for rural
producers and, in addition, ensure that the offer of credits connects with buyers' desires. The
methodologies must calibrate emission factors for the country's soils and production systems
(Vargas et al., 2022).

Emission reduction projects must be Measured, Reported, and Verified (MRV) to obtain
international credibility (Handbook MRV, 2014). An MRV system is a set of processes,
procedures, tools, and technologies that facilitate measurement, reporting, and verification
activities. Project costs can be high, making it unfeasible for small and medium-sized rural
producers to enter the carbon market. Furthermore, establishing a carbon market can be
complex process, with environmental, social, economic, technological, and political challenges.

The starting point for entering the carbon market is the GHG inventories of rural
properties. Inventories must account for the property's carbon balance, generating estimates
based on reliable and traceable data on GHG emission sources and stocks.

Integrating syntactic and semantic datasets in agricultural fields can contribute to the
generation of inventories on rural properties and knowledge. This knowledge will provide
decision support in the search for more socio-ecologically sustainable agriculture and the

generation of carbon credits.
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1.3 OBJECTIVES

This work presents an architecture proposal called CarboFarm for the syntactic and
semantic integration of agricultural data. The objective is to generate greenhouse gas
inventories on farms. The integrated data support the generation of knowledge to support rural
landowners' decision-making and the generation of carbon credits. To conduct our research, we
use the Design Science Research (DSR) methodology (Hevner, 2004). DSR proposes the
research conduction in cycles. In our work, the conducted two cycles of DSR to develop
CarboFarm.

The architecture allows data integration from heterogeneous sources, including datasets,
deforestation monitoring alerts, and sensor data. CarboFarm aims to provide information or be
integrated to MRV systems and decision support applications for rural landowners.

This dissertation’s main contribution is exploring the data extraction, integration, and
analysis services. An ontological model allows syntactic and semantic integration, contributing
to data standardization, sharing, and interoperability. These are crucial requirements for an
MRYV system (Kim and Baumann, 2022).

The analysis of historical data through machine learning techniques allows efficient
processing of large volumes of data. It aims to identify patterns, trends, and insights that can be
useful for decision-making. This provides knowledge to choose the best conditions of soil use
and cultivation techniques.

To support our approach, we carried out a case study integrating datasets of GHG
emissions and stocks on Brazilian rural properties. The data comes from open sources and
allows the calculation of carbon balance related to the use and land cover of rural properties, in
addition to generating knowledge to support decision-making.

To achieve these results, the following objectives were considered:

(1) Syntactically and semantically integrate heterogeneous data sets related to

emission sources and GHG stocks on farms;

(i1) Using integrated data to generate agricultural GHG inventories;

(ii1))  Using integrated data to generate knowledge to support decision-making and

generate carbon credits.

1.4 RESEARCH QUESTIONS

Therefore, the Main Research Question (RQ) addressed in this work is:
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RQ: “How does integrating data from GHG emissions and stocks support the generation of

agricultural inventories?”

To help to answer the RQ, the following Secondary Research Questions (SRQ) were
proposed:

SRQ1: “How does integrating data from emissions and GHG stock sources support more

sustainable farm production?”

SRQ2: “Can knowledge be extracted for generating carbon credits from integrating data on

emission sources and GHG stocks?”

1.5OUTLINE

This work is divided into nine chapters. Chapter 2 presents a theoretical approach to the
main concepts involved in this research. Chapter 3 describes the CarboFarm architecture,
proposed in layers, which aims to integrate agricultural data to generate GHG inventories and
knowledge. Chapter 4 presents the CarbOnto ontological model built for syntactic and semantic
data integration. Chapter 5 presents a case study with data from Brazilian farms, detailing the
integration process with the CarbOnto ontological model. Chapter 6 presents the details of the
analysis layer that, based on the integrated data, uses machine learning techniques to generate
knowledge to support decision-making and generate carbon credits. Chapter 7 describes the
data visualization layer, presenting an application for accessing the integrated data and the
knowledge generated. Chapter 8 presents the evaluation of the work. Finally, Chapter 9

concludes with contributions, limitations, and future work.
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2 THEORETICAL FOUNDATION

This chapter details the main concepts discussed in this dissertation. Section 2.1
discusses concepts related to Carbon Control. The subsections address the issue of global
warming and its relationship with agriculture, MRV systems intended for recording and
monitoring GHG emission mitigation projects, and the main concepts of the carbon credit
market. Section 2.2 presents works related to the topics of our proposed solution, involving
subjects such as GHG emissions, semantic data integration, the use of artificial intelligence

techniques for data analysis, and decision support systems for rural landowners.

2.1 CARBON CONTROL

2.1.1 Global Warming and Agriculture

Global warming has attracted many attention in recent years. It is believed to be linked
to changes in weather patterns, and a consequent temperature rise. According to the
Intergovernmental Panel on Climate Change (IPCC) of the United Nations (UN), such changes
are intrinsically associated with human activities, such as the increase in greenhouse gas (GHG)
emissions (UNFCCC, 2015; Letcher, 2021; IPCC, 2021).

The Kyoto Protocol !, an international agreement established at the 3rd Conference of
the Parties to the United Nations Framework Convention on Climate Change (UNFCCC), held
in Japan in 1997, was the first international protocol to define flexibility mechanisms to assist
countries in achieving their climate reduction targets. GHG emissions (Tsukada et al., 2024).
The Clean Development Mechanism (CDM) plays a crucial role among these mechanisms. The
CDM allows countries to finance or develop GHG reduction projects outside their territory,
negotiating in international markets. To achieve this, emission reductions must be certified,
bringing objective, measurable, and long-term benefits (Riignitz et al. 2009).

The Paris Agreement?, signed in 2015 during the 21st Conference of the Parties (COP),
it established measures to reduce GHG emissions in response to the threats of climate change.
Signatory governments committed to taking mitigation measures to keep the average global
temperature change below 2°C compared to pre-industrial levels and to efforts to limit the

increase to 1.5°C (UNFCCC, 2015). However, projections indicate that global warming of

!https://unfcce.int/kyoto_protocol
2 https://unfccc.int/documents/9064
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1.5°C to 2°C will be exceeded during the 21st century unless drastic reductions occur in the
coming decades in emissions of carbon dioxide (CO-) and other gases related to the greenhouse
effect. With more significant global warming, it is projected that each region will be subject
more frequently to simultaneous and multiple changes in climate impact agents, producing
unpredictable effects for people and ecosystems (Campagnolla and Macedo, 2022).

Extreme weather events, such as heat waves, droughts, winds, and heavy rains, influence
agricultural production. When intensified, the impacts on the agricultural sector could generate
an increase in water needs for irrigation, an increase in the spread of diseases and pests in
animals and crops, and a decrease in production. These effects directly affect societies and their
life support activities, particularly food production (Kummu et al., 2021), highlighting the
severity of the issue.

On the other hand, the agricultural sector is one of the leading global emitters of GHG
and, therefore, will have to make a great effort to achieve global warming mitigation goals.
Land use and land use change (LUC), caused by the conversion of native habitats into
agricultural land, is considered the second largest source of greenhouse gas emissions on the
planet, representing approximately 23% of the total (IPCC, 2021; Fankhauser et al., 2022).

The agricultural sector is a complex sector with a significant diversity of production
systems directly related to environmental, social, and economic aspects (Plano ABC, 2012).
Agricultural practices require a substantial amount of energy due to the use of machinery.
Agriculture is pivotal in the climate change narrative, contributing GHG emissions while
offering potential mitigation solutions (Kamyab et al., 2024). Regarding the use of land and
livestock, it is necessary to find solutions that balance food production with sustainable
development. Increasing production, increasing energy use efficiency, and reducing emissions

related to agricultural production should be the target results (Ozlu, 2022).

2.1.2 MRV Systems

Reductions in GHG emissions aim to promote sustainability and its effects on climate
change mitigation. For countries wishing to obtain recognition for their efforts, it is imperative
to Measure, Report, and Verify (MRV) their emissions.

An MRYV system consists of processes, procedures, tools, and technologies that aim to
quantify emissions through measurements or estimates (measurement), the presentation and
transmission of measured and monitored data (reporting), and the assessment of the quality and

reliability of reported data (verification). These characteristics mean that MRV systems can be
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used to evaluate the effectiveness of GHG emission reduction policies (Handbook MRV, 2014;
Monzoni, 2015).

MRYV systems have generic characteristics and adapt to more specific local policies,
focusing on sectors with the most significant potential for mitigating emissions (Observatorio
ABC, 2020). Among the public MRV systems, initiatives from blocs such as the European
Union and countries such as Australia and New Zealand stand out. These solutions include
various economic sectors, such as transport, industry, and agriculture. The most significant
focus in the European Union is the transport sector, which has the most potential for mitigating
emissions. In Australia, the MRV system deals with specific projects and is not very broad in
terms of monitoring and integrating information sources. New Zealand has a broad MRV
system covers several sectors, including agriculture. Like Brazil, New Zealand has many
emissions linked to agribusiness. All of these cases have in common the fact that the MRV
system was implemented together with a carbon market to establish the rules for issuing credits
for trading (Perosa et al., 2019).

In Brazil, EMBRAPA (Brazilian Agricultural Research Corporation) coordinates the
development of an MRV system within the LCA Plan (Low Carbon Agriculture) scope.
Regarding international experiences, the greater complexity of the Brazilian system can be seen,
given the diversity and breadth of production systems, the heterogeneity of soils and climates
found, as well as the precision and reliability of the information reported. These challenges are
for a broad and economically viable MRV for Brazilian agriculture (Observatorio ABC 2020;
Perosa et al., 2019).

2.1.3 Carbon Market

The term carbon market is commonly used to express two types of trading of
environmental assets related to greenhouse gas (GHG) emissions: (1) the “GHG Emission
Right” referring to an emissions trading system, and (2) the “GHG Emission Reduction
Certificate”, referring to a compensation mechanism. Both types of trading are called carbon
markets, in which the term “GHG emissions” has been simplified to “carbon” (ICC, 2021). The
carbon market gained notoriety after signing the Kyoto Protocol in 1997 and its effective
implementation in 2005 (Vargas et al., 2021).

There are two types of carbon markets: regulated and voluntary, which have specific

participants, scope, regulations, and rules.
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The regulated market is linked to a regulatory framework establishing a maximum GHG
emission limit. Agents who emit below this limit can negotiate their emission rights with those
who emit above it. The basis of regulation at an international level was the regulatory
framework of the Kyoto Protocol. As of 2015, the so-called Nationally Determined
Contributions (NDC) came into force, linked to the Paris Agreement, in which each country
signatory established its reduction targets.

The voluntary market comprises a compensation mechanism without regulatory ties,
with no defined maximum emission limits. However, they comply with the organizations'
methodologies that implement the projects. This ensures that the credits generated are sold
between companies and meet a voluntary corporate socio-environmental goal (ICC, 2021;
Vargas et al., 2022). The market operates under the rules and standards stipulated by
independent international mechanisms. These mechanisms are managed by non-governmental
organizations, which seek to give credibility and reliability to the projects developed and the
carbon credits generated through certifications (Prolo ef al., 2021).

The importance of regulation in Brazil lies in the technical bottleneck in the voluntary
market due to the absence of centralized regulation. Those who fulfill this role are project and
credit certifiers. They determine which methodologies can be accepted for preparing projects.
Consequently, without a general rule, there is a concentration in a few certification bodies,
resulting in difficulties registering new methodologies (Vargas, 2024).

The negotiations use the carbon credit as a reference for standardization purposes. Each
credit corresponds to one ton of carbon dioxide equivalent (tCOze) and represents all

greenhouse gases in a single unit of measurement.

2.1.3.1 Brazilian Carbon Market Perspectives

In 2015, Brazil informed its NDC of the Paris Agreement. In 2023, this NDC was
updated with the commitment to reduce GHG emissions by 48% by 2025 and 53.1% by 2030,
based on levels recorded in 2005 - a reduction to 1.32 GtCOze in 2025 and 1.20 GtCOze in
2030, respectively. Furthermore, Brazil reiterated its long-term objective of achieving climate
neutrality by 2050 (NDC Brazil, 2023).

Brazil, however, still does not have a regulated market. The law project 412/2022
(SBCE, 2022) is being processed in the National Congress. It establishes the country's regulated
carbon market. Implementing this market is challenging and requires a collaborative approach.

The diagram in Figure 1 displays the perspectives that, in the context of this study, we consider
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relevant for implementing the regulated market in Brazil from the perspective of generating
carbon credits from agricultural solutions. The following subsections discuss each dimension

presented in Figure 1.

Figure 1: Diagram of the perspectives of the Brazilian Carbon Market.

N
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Source: Prepared by the author (2024).

2.1.3.2 Environmental Perspective

The carbon credits market can be considered a mechanism that seeks to solve
environmental problems using economic, political, technological, and social tools.

Considering the environmental aspect, nature-based solutions are characterized as
actions that aim to protect, sustainably manage, and restore natural or modified ecosystems that
relate to society's challenges effectively and adaptatively, simultaneously simultaneously
generating benefits for human beings and biodiversity (WRI Brasil, 2020).

Regarding agriculture, the sector stands out for its considerable participation in total
GHG emissions in the country and its potential to reduce and remove emissions (Garcia ef al.,
2022). Agricultural activity was responsible for 75% of all Brazilian climate pollution in 2022,
adding emissions from deforestation and other land use changes (Tsai ef al., 2023).
Low-carbon agriculture strategies and livestock intensification practices can promote increased
productivity per hectare and have the potential to significantly contribute to Brazil meeting its
reduction targets and generating credits for the international carbon market (Vargas et al., 2022;
WRI Brasil, 2020). Rural activity can generate two types of credits: REDD+ (Reducing

Emissions from Deforestation and Forest Degradation), from the conservation or restoration of
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native vegetation, and AFOLU (Agriculture, Forestry, and Other Land Use), from changes in
coverage and land use.

Understanding the dynamics of GHG emissions in the agricultural sector is crucial
because it significantly impacts climate change mitigation (Kamyab at al., 2024). In this way,
agricultural activity is expected to no longer be attributed as one of the causes of climate

problems. It will begin to play a greater role in solving these problems.

2.1.3.3 Social Perspective

The social perspective analyzes work networks, social demands, trust relationships,
associations, and community organizations in places impacted by carbon credit projects
(Vargas et al., 2022). Here, we highlight the greater attention paid to smallholder farmers, also
defined as small farmers or family farmers, following the creation of the Federal Government's
National Program for Strengthening Family Agriculture (Pronaf, 2023). For this audience,
different strategies are needed concerning large producers or companies in the agribusiness
segment.

According to the last Agricultural Census in 2017 (IBGE, 2017), Brazil had 5.07 million
agricultural establishments, occupying 351 million hectares; of these, 3.90 million were family
members (76.8%), occupying 80.9 million hectares (23.0%). Physical production data (tons)
showed that family farming accounts, on average, for 22% of vegetable production (temporary
and permanent crops, plant extraction, and horticulture) — almost 70 million tons — and for 64%
of dairy production — almost 20 billion liters per year. However, if the main commodities
(herbaceous cotton, corn grain, and soybean grain) are removed, the share reaches 42% (IBGE,
2017).

The Agricultural Census also revealed that 53% of family establishments have an area
smaller than 10 hectares and that the complexity and heterogeneity found in family production
can be observed in socioeconomic indicators, from land distribution, property size, access to
technology, type of land use, productivity, and insertion in markets. This agrarian structure
poses enormous challenges for the preparation and execution of any public policy (IBGE, 2017;
Garcia et al., 2022).

Smallholder farmers encounter distinct obstacles in implementing mitigation practices.
They often encounter restrictions on access to financial capital and technology, resulting in

limited resources. This limitation makes it difficult to implement projects to reduce emissions.
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They encounter a shortage of resources and opportunities to acquire information and knowledge
about climate-smart agricultural practices (Kamyab et al., 2024).

The interplay between climate change and feedback loops might result in economic and
social vulnerabilities within agricultural communities. The potential decline in agricultural
yields and animal production has the potential to significantly impact both food security and
the financial well-being of farmers. In light of this situation, populations may pursue alternative
means of sustenance or undertake relocation, which might result in alterations in land utilization
and environmental consequences (Kamyab et al., 2024).

The law project 412/2022, currently being processed in the national congress,
determines the guarantee of the rights of traditional and indigenous communities in the
commercialization of carbon credits, conditioned on environmental safeguards and the consent
of the communities, which must be obtained via prior, free consultation. and informed.
Numerous reports of violations exist without regulations in negotiating credits with these

communities (OC, 2023).

2.1.3.4 Technological Perspective

The advancement of the carbon market is associated with the advancement of
knowledge, enabling access to methodologies and new technologies for measuring and
monitoring credit-generating activities.

Progress made in satellite and remote sensing technologies has provided unparalleled
opportunities for agricultural emissions surveillance. Satellite-derived sensors can identify
changes in land use, crop vitality, and vegetation cover and provide meaningful data on
emissions sources, patterns, and possible pathways for mitigation. The advent of the Internet of
Things (IoT) has facilitated the emergence of a new era in precision agriculture, as it facilitates
the implementation of sensor networks in agricultural fields. The sensors collect data on various
aspects, including soil conditions, GHG concentrations, weather patterns, and crop
development. When combined with data analytics and artificial intelligence, IoT-based
monitoring systems enable farmers to make data-driven decisions, reducing emissions and
increasing production. Progress in data integration and modeling techniques has increased the
ability to simulate and predict the consequences of measures taken to reduce agricultural
emissions. Integrated models incorporating many elements, such as climate, land use, and
socioeconomic variables, allows for a more complete assessment of mitigation strategies

(Kamyab et al., 2024).
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The reliability of a carbon inventory depends on the robustness of the monitoring and
verification system. Due to their high costs, advanced emission reduction technologies and
precision agricultural instruments can represent a significant financial cost for many farmers.
(Kamyab et al., 2024). Existing methodologies generally present a high financial cost, resulting
in a barrier to entry for small producers. For agriculture to be a sector with high representation
in the carbon market, it is essential to make measurement more accessible and scalable (Vargas
et al., 2022). Adopting digital technology is fundamental for MRV and certification processes
to optimize them and reduce efforts and implementation deadlines, which tend to be longer with
the evolution of technical requirements and methodological complexity (ICC, 2021). Training
is essential for farmers to acquire the skills and knowledge necessary to use emerging
technologies properly (Kamyab et al., 2024). Technological advancement goes hand in hand
with the development of new methodologies.

It is necessary to develop metrics and parameters compatible with potentially significant
gains in emission reduction. This requires investment in research and development. A robust
scientific and technological construction is essential to avoid projects with low quality and
certification standards that do not have international acceptance. Furthermore, it is desirable to
create a national technological infrastructure to record methodologies and carbon credits

generated in the country (Vargas et al., 2022).

2.1.3.5 Economic Perspective

The carbon market works through financial compensation between credit generators
and consumers. Anyone who exceeds the emission limit needs to reduce their emissions or
buy credits offered on the market.

Brazil has opportunities to increase credit generation based on potential and competitive
advantages, especially related to nature-based solutions (ICC, 2021). These solutions include
forest conservation activities, reforestation, and sustainable management of soils and pastures,
among others. However, the high cost of developing, implementing, and monitoring projects
can be a barrier to entry (Vargas et al., 2022).

Compared to projects to reduce deforestation and reforestation, projects in agriculture
have, proportionally, higher costs of preparation and implementation and greater difficulty in
monitoring. Given the high costs, the scale of the project is fundamental in determining its

financial viability. To be viable, properties need to be large enough to spread fixed costs. The
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estimated minimum size is 10 thousand hectares (Vargas et al., 2022), which directly implies
the social issue of being a barrier to entry for smallholder farmers.

The economic-financial issue presents several challenges for the agricultural sector.
However, overcoming the challenges could yield benefits beyond the return generated from the
sale of credits. Products originating from projects with some socio-environmental counterpart
tend to be more accepted and valued by consumers (CCCMG, 2021). The acquisition of carbon
credits by companies makes it possible to promote sustainability discourse. Business sectors
use emissions offsets to better position themselves regarding socio-environmental
responsibility. In front of their customers and investors, companies relate their images to
environmental conservation and directly related activities, such as the socioeconomic
development of communities living in forest areas (Vargas et al., 2022). In developed countries’
markets, there is a growing concern about the origin of food items and their relationship with
environmental and social issues, such as deforestation and slave labor, in addition to a tendency
to demand information regarding the emission of greenhouse gases in the production of food
(Campagnolla et al., 2022).

Implementing effective incentive frameworks is essential to encouraging farmers'
involvement in climate mitigation initiatives. Financial incentives, such as subsidies, grants,
and carbon credit programs, can encourage the adoption of emissions-reduction technologies

and practices that facilitate carbon sequestration (Kamyab et al., 2024).

2.1.3.6 Political Perspective

The effects perceived by the concentration of GHGs in the atmosphere have increased
awareness and encouraged public policies intending to reduce emissions. The law project (LP)
412/2022, which deals with creating a Brazilian Emissions Trading System (SBCE, 2022), is
being processed in the National Congress. This LP regulates the carbon market in Brazil.

The LP divides participants into two levels: companies or individuals that emit more
than 10,000 tons of COz equivalent (tCOze) ® per year must report their emissions but will not
have a reduction target. Emitters that dump more than 25,000 tCOze annually into the
atmosphere will be forced to reduce (OC, 2023).

3 Carbon equivalent is a unit of measurement that represents greenhouse gases (GHG) in the form of
carbon dioxide (COy).
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The regulated carbon market works through emission limits and the trading of emission
licenses generated by those who reduce more than they need. In the Brazilian case, the
“National Allocation Plan” will define the “Brazilian Emissions Quotas (CBEs)”, that is, the
amount of CO» equivalent of each market participant. Quotas can be purchased by those who
do not reach their emission targets (OC, 2023). In addition to the CBEs, there is another asset,
the “Certificate of Verified Emission Reduction or Removal (CRVE)”, which can be traded
internationally, so that countries can meet the goals of the Paris Agreement.

Creating a regulated carbon market means having emissions trading supervised by the
government based on established metrics and rules. The regulation promotes the integrity of
carbon credits by ensuring that emission reduction projects are verified and validated. Unlike
the voluntary carbon market, which does not require state control.

In the carbon world, rigorous and standardized measurement is necessary, as is the
demarcation of specific and individualized baselines in each project and third-party inspection
of the methodology. The scope, assignments, and limits are defined from the beginning, and all
of this is done following standards set by regulation (Vargas, 2024).

However, the LP 412/2022, as it stands, can be considered generalist, as it covers several
sectors of the economy without distinction, without establishing a specific scope. Laws or
norms derived from this PL will be necessary for further detail.

An important and sensitive point for this study is the exclusion of agribusiness. That is,
agricultural activities were excluded from the obligations in the SBCE. This exclusion means
that the agricultural sector is outside the regulated carbon market under the current terms of LP
412/2022. In this way, carbon credits generated in this sector can only be traded on the voluntary
market.

Experts disagree about removing agribusiness from regulation. Some agree with the
group of congressmen linked to agribusiness that inclusion would be premature due to the
sector's complexity and the need for more reliable methodologies and metrics for the Brazilian
context. Others believe an excellent opportunity to reduce emissions in a sector crucial to the
country's economy is being missed. They justify their speech with the claim that emissions are
currently measured reliably and that, in addition, it would be possible to define methodologies
and generate the necessary metrics. They believe the LP could have a restrictive clause, defining
market entry only based on established monitoring systems. They mention that exclusion occurs
for political and not from technical reasons (OC, 2023).

The non-inclusion of agriculture and livestock activities is a barrier to the entry of small

producers into the carbon market due to the costs involved and the difficulty in obtaining
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government support defined by law. Consequently, there are social and economic implications,
considering that the commercialization of carbon credits could represent an important source
of income for these producers. Improving living conditions tends to increase interest in staying
in the countryside, which, in turn, tends to impact the environmental perspective directly in the

better land use with more sustainable production techniques.

2.1.4 GHG Emissions Methodology

There are few methodologies suitable for the Brazilian production (Perosa et al., 2019).
Although it is a sector with great potential for reducing emissions, existing methodologies need
better applicability in tropical cultivation systems, as they use emission factors calibrated for
production systems and soil types in other countries. However, the problem of limiting
methodologies is not particularly Brazilian. Other countries also face it, and ongoing initiatives
exist to develop them. Countries such as the United States, Australia, and Canada have been
the leading developers of methodologies for the agricultural sector. These initiatives aim, above
all, to enable the commercialization of carbon credits through the development of measurement,
reporting, and verification (MRV) protocols (Vargas et al., 2022).

The Intergovernmental Panel on Climate Change (IPCC, 2021), a United Nations body
that deals with issues related to climate change, develops methodological reports that provide
guidelines for the preparation of national GHG inventories. Within these guidelines, the
concepts of “tiers” were established, representing the level of methodological complexity
adopted in country inventories. Typically, three levels are provided. “Tier 17 is recommended
when country-specific emissions data are unavailable. The IPCC suggests providing default
data for estimates in these situations. “Tier 2” is recommended for situations where specific
emissions data or more refined empirical estimates are available for the country with some
detail on the activities involved. “Tier 3” refers to the use of methodological procedures
developed specifically by the country, including modeling and greater detail of inventory
measures (Hiraishi et al., 2014).

The GHG Protocol (GHG Protocol, 2014) divides emissions into three scopes, classified
according to the degree of responsibility or control over the sources of emissions. “Scope 17
includes direct emissions from sources on or controlled by rural properties. Sources are
classified as mechanical, which consume fuel or electrical energy (tractors, trucks, for
example); non-mechanical, which emit GHGs through biochemical processes (enteric

fermentation of cattle and soil liming, for example); and changes in land use and cover. “Scope
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2” includes indirect emissions from acquiring electrical and thermal energy purchased and
consumed by the property. “Scope 3” includes all other indirect emissions not reported in
“Scope 2”, which occur in sources that do not belong or are not controlled by the rural property,
such as gases generated in transporting and storing produced items.

Countries must adopt Measurement, Reporting, and Verification (MRV) systems.
Measurement is necessary to identify emissions trends and determine where to focus efforts. At
the same time, communication and verification are essential to ensure transparency, good

governance, accountability, and credibility of results (Singh ef al., 2016).

2.2 RELATED WORK

The agricultural industry is an integral part of food security. Although providing food
for the entire world population is essential, it is a substantial source of GHG emissions. On the
other hand, agricultural activities have the potential to sequester GHG through sound land use
management practices (Xia et al., 2023; Magazzino et al., 2024; SaberiKamarposhti et al,
2024; Kamyab et al., 2024).

To verify how the literature addresses the subject, we conducted an ad hoc review of
scientific articles discussing GHG emissions. We combined searches in digital libraries
(Scopus) and Google Scholar, using the term “GHG Emission” combined with the following
terms: "Semantic Data Integration" "Artificial Intelligence", "Decision Support System" and
"GHG Inventories". We applied the snowballing technique for the articles initially identified as

of interest. The following subsections present the articles analyzed.

2.2.1 Agricultural GHG Emission

Kamyab et al. (2024) investigate the climate impact of agriculture, analyzing emissions
from different sources, the potential for carbon sequestration, and the consequences of
agricultural emissions on the climate and ecosystems. The study identifies sources of GHG
emissions. Related more specifically to soil treatment, Jiang et al. (2023) report the experiment
using Cadmium to reduce CH4 emissions in rice fields. Khan ef al. (2022) propose using
agricultural residues to improve soil fertility and mitigate emissions. The study uses biochar, a
solid carbonaceous product that is manufactured by the thermal decomposition of organic
materials (such as straw, wood, plant residues, and manure), indicating that it would be an

appropriate management strategy aiding in reducing GHG emissions and improving the
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physiochemical properties of affected soils. Tahir et al. (2022) report an experiment on applying
Filter Cake Press Mud (FCP) to the soil. FCP is an organic residue from sugar cane plants. The
results indicated an improvement of up to 3.5 times in the increase of organic carbon in the soil.
Hu et al. (2023) observed the addition of mineral nitrogen fertilizer to Danish (sandy loam) and
Irish (clay loam) soils, with a significant reduction in N>O and CO; emissions. Although these
studies (Khan et al, 2022; Jiang et al., 2023; Tahir et al, 2022; Hu et al., 2023;
SaberiKamarposhti et al., 2024; Kamyab et al., 2024) address the climate impact and mitigation
strategies for agricultural sources, they do not focus on accounting for GHG emissions to
generate GHG inventories.

Harris et al. (2021) integrate data to map annual forest-related GHG emissions and
removals worldwide, using IPCC guidelines as a methodological framework. The Social
Carbon Project (2023) developed a methodology for controlling carbon in areas of native
vegetation located on private properties, aimed explicitly at afforestation and reforestation
projects. The MapBiomas Project (2023), using machine learning and regression techniques,
maps soil organic carbon stocks in Brazil, covering the period from 1985 to 2021. These studies
and projects (Harris et al., 2021; Social Carbon, 2023; MapBiomas, 2023) have developed
methodologies to calculate GHG emissions but focus on something other than agricultural

inventories, as 1S our case.

2.2.2 Semantic Data Integration

A semantic model can contribute assertively to the generation of GHG inventories. We
consider using an ontological model, which allows people or software agents to share a common
understanding of the information structure, reusing and analyzing domain knowledge (Staab et
al., 2010; Nougues et al., 2023). It also allows the definition of a common vocabulary for
information sharing (Gruber, 1993). These are essential requirements for the construction of
GHG inventories. Below, we will present studies that propose using ontology to address issues
related to GHG emissions or land use.

The Soil Mission Support Document (Nougues et al., 2023) was developed to support
the European Commission in the “Mission Board of Horizon Europe” project. The document
aims to be a reference for creating land management ontologies, implementing a common
language for sharing information. However, it does not present ontological models or go into

implementation details.
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Davarpanah et al. (2023) developed the Climate System Ontology (CSO) that design
variables and interactive processes between the components of the climate system. The
ontology identifies the result of climate change when related components change their
attributes. For example, the result of warming of the atmosphere can be caused by the
concentration of greenhouse gases, an increase in temperature, and anthropogenic activities. In
this case, the ontology formalizes concepts pre-established by the IPCC guidelines,
transforming natural language into a language based on logic and processable by machines. The
CSO ontology is generic and does not have terms related to GHG inventories on farms to
promote.

Kim and Baumann (2022) suggest using ontologies to create smart contracts in
agricultural systems' measurement, reporting, and verification (MRV). The goal is to support
smart contracts on different blockchain platforms, providing standardization and sharing of
concepts between MRV systems. The proposal for this ontology does not address more specific
issues related to GHG emissions, such as the standardization of domain terms. Furthermore, it
is a theoretical proposal that does not go into the details of the models or implementations.

Konys (2018) proposes an ontology of sustainability assessment based on a
comprehensive and multidimensional view, including social, environmental, economic,
ecological, cultural, and institutional aspects. Di et al. (2022) and Zhu et al. (2013) propose
ontologies related to the life cycle of products with a focus on controlling GHG emissions.
Carbon emissions in the input artifacts are transferred to the final components. The proposals
aim to record emissions data in the life cycle of products to build a labeling model according to
these emissions.

Hou et al. (2015), Zhang et al. (2018) and Lu et al. (2024) address the engineering
domain, focusing on sustainable construction. Its ontology proposals help engineers reduce
environmental impact and design more environmentally friendly structural components. Lu et
al. (2024) developed the Carbon Emission Management Ontology (CEMO), which integrates
data from multiple sources. The terminology provides a unified semantic basis, enabling
knowledge generation and interpretability of emissions data in construction engineering. These
works address essential theoretical aspects of a semantic data integration model, such as
standardized, structured, and domain-specific terminology, but with a different focus from our
study.

Daouadji et al. (2010) present an ontology proposal focused on reducing indirect GHG
emissions from information technology devices, improving energy efficiency, and

concentrating on the semantics of energy-related resources and their properties. At the same
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time, Zhou et al. (2017) propose an ontology for the ideal cutting tool configuration used in
machining processes from the perspective of reducing carbon waste emissions and energy
savings.

Riafo et al. (2023) present an agricultural domain ontology to identify the best crops
according to soil characteristics in Colombia. The ontology deals with soil variables, such as
nutrients, acidity and humidity, geographic area, temperature, and climatic conditions. The
construction process included specifications and recommendations proposed by the Colombian
government. The objective of the ontology is to support farmers in the decision-making process
of the best-performing types of crops that can be planted depending on the area or the main
characteristics that define it. This ontology relates to land use issues without considering GHG
emissions, as we do in our study.

Some studies use or reference ontologies (Daouadji ef al., 2010; Zhu et al., 2013; Hou
etal, 2015; Zhou et al., 2017; Konys, 2018; Zhang et al., 2018; Di et al., 2022; Davarpanah et
al., 2023; Riafio et al., 2023; Lu et al., 2024) address aspects related to sustainability focusing
on different domains. However, we found no studies that propose ontologies related to climate

issues encompassing farm GHG emissions.

2.2.3 Artificial Intelligence

Understanding the complex relationship between agriculture and GHG emissions is
essential for developing mitigation strategies. Technological advances using Al techniques can
significantly contribute to ongoing efforts to combat climate change (SaberiKamarposhti et al.,
2024; Kamyab et al., 2024). Al-powered emissions monitoring systems can collect, process,
and evaluate large amounts of data from diverse sources in the agricultural sector, identifying
patterns, correlations, and trends that would be difficult for humans to discern (Boyce, 2023).
Al-powered algorithms are indispensable for deciphering complex data sets, identifying
emissions patterns (SaberiKamarposhti et al., 2024), as well as generating knowledge to support
farmers' decisions to reduce emissions and increase productivity (Kamyab et al., 2024).

SaberiKamarposhti et al. (2024) analyze GHG emissions and removals in agriculture,
highlighting challenges and opportunities for the sector's sustainability. The study addresses
soil management practices as a source of carbon sequestration. It highlights the advancement
of technological solutions, such as artificial intelligence (Al), as a driving force in the search

for more sustainable agriculture.
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Model accuracy and data quality continue to be the subject of research and development.
This technology allows stakeholders, including producers, to reduce emissions without
sacrificing productivity. However, a crucial aspect is considering the accessibility and
economic viability of Al-powered systems for smallholder farmers. (SaberiKamarposhti et al.,

2024).

2.2.4 Decision Support System

Arulnathan ef al. (2020) present a systematic review of decision-support tools focusing
on sustainability in agriculture. The study reviewed 19 applications, characterizing and
identifying trends in the methodological choices made by developers. They all included GHG
emissions estimates to resolve specific local issues, with limited scopes. Among the tools
evaluated, Ofoot* stands out. The Ofoot tool is presented as a system for calculating estimates
of greenhouse gas emissions on organic farms (Carlson et al., 2017). It consists of an application
that generates inventories related to emissions from equipment, infrastructure, and consumable
materials used on the farm. Due to the parameterization of the estimation models, the software
is limited to cultivating organic food in the region known as the Pacific Northwest in North
America. The proposal for inventories of these tools is similar to ours. However, the focus is
on addressing local problems and not comprehensively, as proposed in our study, involving
everything from data extraction and integration to generating knowledge to support decision-
making.

Thumba et al. (2022) present a review of studies on decision support systems for
mitigating GHG emissions in livestock farming. The scope of these studies is limited to
livestock farming on rural properties, not accounting for other sources of emissions, such as our

proposal.

2.2.5 Comparison of Related Works

Analyzing the literature, we found studies related to the topics of our work. However,
none of them presents a solution that involves theoretical and practical approaches, like
software applications, related to semantic data integration, artificial intelligence, and decision
support systems in the field of Agricultural GHG emissions. In addition, only some studies

mention agricultural GHG inventories. Table 1 describes the comparison, where each column

* https://ofoot.cafltar.org
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represents a key topic of interest, and each row represents one of the related articles presented

previously. Our work is presented in the last row, showing we have addressed all the topics of

interest.

Table 1: Comparison of related works

Related works Emission Integration Intelligence System Invs:nto-
Theory | App | Theory App Theory | App res
Arulnathan ef al. (2020) X X X
Boyce (2023) X X
Davarpanah ef al. (2023) X X X
Di et al. (2022) X X
Daouadji ef al. (2010) X X
Harris et al., (2021) X
Hou et al. (2015) X X
Hu et al. (2023) X
Carlson et al, (2017) X X X X
Jiang et al. (2023) X
Kamyab et al. (2024) X X
Kim and Baumann (2022) X X
Konys (2018) X X
Luet al. (2024) X X
MapBiomas (2023) X
Nougues et al., (2023) X
Riafio et al. (2023) X X
SaberiKamarposhti ef al. (2024) X X
Social Carbon Project (2023) X
Tahir et al. (2022) X
Thumba et al. (2022) X X
Zhang et al. (2018) X X
Zhou et al. (2017) X X
Zhu et al. (2013) X X
Ours X X X X X X X X

Source: Prepared by the author (2024)

Our study proposes a global and transparent solution that, by addressing gaps found in

the agricultural GHG emissions domain, can generate more comprehensive inventories for

farms, provided that the datasets are available. Furthermore, with the results obtained, we hope

to verify, at a macro level, the collective impact of climate policies related to agriculture.

2.3 FINAL REMARKS OF THE CHAPTER

There are many challenges in building systems that generate GHG inventories for rural

properties. In addition to the numerous variables and limited data availability, systems must

enable transparency, availability, and traceability so that inventories are reliable. Agricultural
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inventories allow us to know the GHG balance of rural properties and enable the generation of
carbon credits. The carbon market has stood out in recent years as one of the forms of economic
return in the search for more sustainable agriculture, being an incentive mechanism, especially
for small rural producers. However, the generation and commercialization of carbon credits
involve other challenges besides technological ones. It is necessary to consider environmental,
economic, social, and political perspectives. A comprehensive solution requires expertise from
many areas of knowledge. From a technological perspective, a software architecture needs to
integrate data, generate knowledge, and provide decision support for rural producers. The
literature review showed us the lack of studies that address these issues in an integrated manner.
Furthermore, we did not find any studies that promote the semantic integration and analysis of
agricultural data to generate GHG inventories. The next chapter will present our proposed

solution, i.e., the CarboFarm architecture.
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3 CARBOFARM ARCHITECTURE

The previous chapter discussed concepts related to the carbon market, including an
overview of a methodology for generating greenhouse gas inventories on rural properties.
Based on these concepts and the carbon market perspectives, this chapter presents an
architecture proposal called CarboFarm for data integration and analysis of data related to the
carbon market. CarboFarm aims to integrate and analyze data to generate greenhouse gas
inventories on farms and, through these, generate knowledge for decision-making by rural
producers. The following subsections present the methodology for specifying the architecture
and its evolution cycles. Chapters 4, 5, 6 and 7 details the CarboFarm architectural layers,

focusing on carbon market related data, integrated from multiple sources.

3.1 METHODOLOGY

One of the first steps to conduct this study, along with the literature review phase, was
the conduction of an exploratory study. With this exploratory study, it was possible to improve
the understanding of the context surrounding GHG inventories and the generation of carbon
credits on rural properties, in addition to enabling the identification of opportunities and
challenges in developing an architecture to support GHG inventories. Considering the gaps
identified in the literature and the exploratory study, the CarboFarm architecture was developed
using the DSR (Design Science Research) approach (Hevner et al., 2004), carrying out two
development cycles to meet the specified requirements. The literature review was discussed in
Chapter 2. Section 3.1.1 details the exploratory study. Section 3.1.2 presents the DSR
methodology.

3.1.1 Exploratory Study

We conducted this exploratory study to investigate the Carbon Market domain, aiming

to better understand the challenges and gaps this work could contribute to.

3.1.1.1 Scenario

GHG emissions contribute to global warming. A change of a few degrees in the planet's

average temperature is expected, as well as profound changes in the physical behavior of the
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system as a whole are expected. A hotter planet can be the default consequence of extreme
weather events (UNFCCC, 2015). Agricultural activities are considered vulnerable in this
scenario because they depend on natural resources. While the agricultural sector has been
considered a significant emitter of GHG (Garcia et al., 2022), it has specific potential for
reducing and removing emissions (SEEG, 2021). However, there are challenges to controlling
emissions, mainly related to their accuracy and verifications so they can be reported
consistently. MRV systems (MRV Manual, 2014) selected processes and technologies that can
assist in the measurement, reporting, and verification activities.

The costs of implementing MRV systems tend to be high, making them difficult for
small and medium-sized farmers to use. Solutions that facilitate their access must be provided,
mainly using tools that enable the generation of GHG inventories on rural properties. Thus,
farmers can know the current status of their property and, from that point on, adopt mitigation
measures for emissions within it. Traceability is a key factor in the reliability and acceptance
of GHG inventories. With the generation of carbon credits, socio-ecological sustainability and

economic return for rural producers can be achieved.

3.1.1.2 Requirements

During the literature review, we did not find any scientific studies with methodologies
for generating agricultural GHG inventories. Considering this situation, we sought to
understand how GHG inventories are currently prepared. We found some inventory reports
issued by private companies with different methodologies, sometimes without details and
standardization of terms and calculations of gas emissions. The reports were prepared for farms
belonging to large business groups with the aim of demonstrating the sustainable production of
their agricultural products®. Appendix B contains a document with the basic structure of an
agricultural GHG inventory report according to our proposal.

Based on the literature review and the GHG reports, which do not detail obtaining and
analyzing data, we identified the opportunity to propose a solution to integrate data and generate
inventories and knowledge for rural properties. In this way, we identified the functional and
non-functional requirements as a first step towards the development of CarboFarm.

e The functional requirements are:

3 https://centraldesustentabilidade.suzano.com.br/infograficos/pt/
https://www.imaflora.org/public/media/biblioteca/relatorio_daterra_port_final 2.pdf
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FRO1: The architecture must be capable of integrating different datasets related to
emission sources and GHG stocks on farms.

FRO2: The architecture must be able to integrate context data as a way to enrich the
dataset.

FRO3: The architecture must be capable of performing semantic analysis on the
integrated datasets.

FRO4: The architecture must be capable of totalizing the integrated values of GHG
stocks and emissions.

FROS5: The architecture must be capable of recording and storing provenance data from
all application layers.

FROG6: The architecture must be able to use cloud computing resources.

e The non-functional requirements are:

NFRO1: The architecture must be capable of dealing with heterogeneous datasets
(interoperability and scalability).

NFRO02: The architecture must be capable of processing and storing large volumes of
data (scalability and performance).

NFRO03: Collected and processed data must be protected to prevent unauthorized access
(security).

NFRO04: The architecture must be scalable to handle the increase in datasets and other
devices that generate data (scalability and reliability).

NFRO5: The architecture must ensure the traceability of all integrated data, providing a
reliable system that maintains data integrity (traceability and reliability).

NFRO06: The architecture must meet the proposed methodology for generating GHG
inventories (compliance).

NFRO7: The solution must be capable of using computational resources efficiently,
providing its use on different devices, including mobile computing (efficiency and
performance).

NFROS8: The solution must provide clear and intuitive views of data representativeness
(usability).

NFRO09: The solution must be flexible to offer ways of accessing integrated data for
other applications (flexibility and interoperability).

Based on the functional and non-functional requirements, the first DSR cycle was

executed, as presented in the following subsection.
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3.1.1.3 Proposed solution

Figure 2 presents the first initial version of the CarboFarm architecture considering: (i)
the literature review; (ii) the exploratory study, where we analyzed how agricultural GHG
reports are currently generated; (iii) concepts and perspectives related to the carbon market;
and, (iv) the functional and non-functional requirements defined.

The purpose of this architecture is to provide support for the integration of
heterogeneous data on GHG emission sources and stocks to develop applications for: (i) MRV
systems; and, (ii) decision support applications for farmers.

Considering the Intergovernmental Panel on Climate Change (IPCC, 2021), discussed
in Chapter 2, our proposal is related to “Tier 3”, namely creating a methodology for use in any
region or country with available farm datasets. In this study, we use datasets from Brazilian

farms.

Figure 2: First architecture proposal overview
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The architecture was divided into four modules:

(i) Data Source: The architecture provides the integration of data from heterogeneous
sources. The integrated data is divided into two groups: storage and monitoring. The
stored data such as location, size, and use of resources that emit or store GHG, are
obtained from datasets related to rural properties. The monitoring data is related to

monitor the mitigation actions. Monitoring data can be obtained by sensors, such as
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soil and animal sensors, and land use change monitoring alerts. These alerts are sent

<

by services connected to satellites. Each data source must have its “wrapper,” a
component for connecting, retrieving, and converting data source into a compatible
format for integration. A new wrapper must be defined for each data source added to
the architecture.

(i) Data Integration: The data extracted from each database must be integrated using a
canonical model. This model must enable syntactic and semantic data integration to
generate GHG inventories and knowledge for rural landowners' decision-making. In
this first version of the architecture, we specify a taxonomy as a canonical model and
integration of the dataset in a static way. This taxonomy encompasses the main
concepts related to the domain and allows specific searches over the sources. However,
it does not provide new connections or allow query expansions considering new
knowledge.

(iii) Provenance: GHG stock and emission estimates are calculated and consolidated to
generate the GHG inventory. This retrieval and integration process must be traceable.
The provenance layer is responsible for capturing the history of data since its origin,
enabling traceability. Considering the need for reliability and compliance requirements
in an agricultural inventory process to meet objectives such as generating and
certifying carbon credits, it is important to know the chain of custody of the data that
generates information and supports the entire process.

(iv) Application: The application layer plays a key role in facilitating interactions with

users, through a dashboard, or other systems, through an API.

3.1.1.4 Discussions

The architecture specified in the exploratory study confirms the feasibility of developing
an architecture to support farm carbon emission control. Therefore, some insights could be
derived from this architectural proposal.

In the Integration layer, it will be necessary to address the diversity of views in this
domain, which is associated with the variety of representations of entities and their properties.
The canonical model for data integration must represent domain knowledge in a standardized
way to facilitate interoperability between applications. Besides, as new datasets are integrated

into the architecture, new knowledge can be generated, providing insights for decision support.
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We consider that the use of an ontological model can meet these needs. Ontologies have
been used considerably in different areas to represent domain knowledge and integrate data,
organizing it in a logical and structured way (Kang et al., 2020). In agriculture, ontologies are
tools that help make knowledge available effectively and organized. We can group knowledge
through a series of key concepts and standardize the language to support its use by farmers
(Riafio et al., 2023).

Considering the viability of this first model of architecture and the need for

modifications to make it more robust, we will use the DSR methodology to improve it.

3.1.2 Design Science Research

In the following subsections, we present the DSR (Design Science Research) cycles
conducted in this work, focusing on the use and refinements to provide a robust integration
architecture to support the integration of heterogeneous data on GHG emission sources and

stocks.

3.1.2.1 DSR Approach

DSR (Design Science Research) can be characterized as an approach to building
solutions by elaborating, developing, and evaluating artifacts. Knowledge and understanding
of a problem domain and its solution are achieved by constructing and applying the designed
artifact (Hevner et al., 2004).

The methodology aims to develop solutions to real problems, combining scientific rigor
with practical relevance. The construction of artifacts follows scientific methods and aims to
generate knowledge about a specific item. The artifact design corresponds to an iterative and
incremental activity, and its evaluation occurs at each DSR cycle, providing feedback for
building and improving the product (Hevner et al., 2008).

It begins with identifying problems in a real-world application environment,
considering that DSR focuses on designing, implementing, and verifying solutions that meet
specific objectives. Based on assumptions or hypotheses, the artifact is created as a concrete
solution to the problem. Artifacts are not exempt from natural laws or behavioral theories. On
the contrary, their creation relies on existing kernel theories that are applied, tested, modified,
and extended through the researcher's experience, creativity, intuition, and problem-solving

capabilities. Technology and behavior are inseparable in software engineering research (Hevner
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et al., 2004). As an artifact is created, empirical evaluation occurs, through case studies,
experiments, or simulations, among other methods (Pimentel et al., 2020).

Hevner (2007) exemplifies using the DSR methodology in three cycles: relevance,
design, and rigor. The relevance cycle begins with gathering the requirements and acceptance
criteria for the artifact. This cycle connects research to the practical situation, signaling that the
problems faced are relevant and that the proposed solution is viable and valuable (Hevner,
2007). In this cycle, application domain, problems, and opportunities are defined. The design
cycle concentrates on the most intensive work, developing the artifact. The entire research
process must be described, and rigorous methods must be applied to construct and evaluate the
artifact. From the results obtained in the evaluations, it is possible to know whether new
iterations will be necessary for functional or quality improvements. In each iteration, it is
evaluated whether the artifact met the requirements and whether it solved the problem. The
artifact is refined to obtain more accurate results if it does not comply. Finally, the rigor cycle,
where the theoretical foundation occurs, guides the construction of the artifact using methods,
theories, or processes available in the literature. Moreover, the rigor cycle seeks a DSR project
to result in valuable additions to the knowledge base, which are gained throughout artifact
development and evaluation, such as theoretical insights, methodological improvements, or
new meta-artifacts (Hevner, 2007). In this cycle, scientific knowledge is generated and design
s advances in research (Hevner et al., 2010).

According to Pimentel et al. (2020), the DSR approach seeks to build knowledge to
develop artifacts that are satisfactory for a given objective considering a given context. It is
acceptable because it is generally not possible to determine an optimal solution, as there are
countless possible solutions considering the available technologies, space-time, the people who
will use that solution, and cultural aspects, among other factors. In this way, the DSR approach
has a double objective: (i) to develop an artifact to solve a practical problem in a specific context
and (ii) to generate new technical and scientific knowledge. The DSR model, proposed by
Pimentel et al. (2020), synthesizes different approaches and consists of a set of elements that

must be coherently interrelated. The main elements are represented in Figure 3.
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Figure 3: Core Elements of the DSR-Model
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In this model, the design of an artifact must be based on behavioral conjectures.
Behavioral conjectures are assumptions about how people learn, work, think, relate, and
communicate. Based on these conjectures, the artifact is designed to solve a problem in the
context. The use of the artifact, through an empirical evaluation, makes it possible to evaluate
whether the problem was solved and whether the conjectures that supported the development
of the artifact seem valid. In this way, through the design of an artifact and investigation into
its use, technical knowledge (about the art of making) and scientific knowledge (about human
behavior) are produced. The instantiation of this model serves as a guide for the researcher to
reflect on the main elements of their research and whether they are coherently related (Pimentel

et al., 2020).

3.1.2.2 First DSR Cycle

For the first DSR cycle, we have as a conjecture an architecture model for heterogeneous
data integration. We want to find out if this architecture supports the generation of agricultural
GHG inventories. Based on the conjecture and the research problem defined, with the
preliminary version of the architecture created from the definition of the requirements in the
exploratory study, we executed the first cycle of the DSR methodology. In this cycle, the
following improvements were made: (i) the use of an ontological model for data integration;

and, (i1) adding data sources. Figure 4 shows the CarboFarm architecture.



Figure 4: Architecture CarboFarm proposed in the first DSR cycle
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Regarding integration, we have yet to find studies in the literature that address

ontologies related to climate issues focusing on controlling GHG emissions and capture in

agriculture. Considering this gap, we designed an ontological model for data integration. At the

syntactic level, the ontology classes and SWRL rules contribute to the preparation and

persistence of data according to an integrative model, preserving the consistency and integrity

of the data. At the semantic level, the ontology provides semantic constructs that discover new

relationships between data, improving interoperability.

The ontological model, called CarbOnto, integrates data and derives knowledge based

on its classes and relationships to generate a balance of carbon emissions and stocks in the soil.

The balance inventory can be considered as part of a farm's GHG inventory. Figure 5 shows the

classes of the first version of the CarbOnto ontology. The details of the CarbOnto ontology are

presented in Chapter 4.
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Figure 5: CarbOnto ontological model in the first DSR cycle

Mobile_Machiner Stationary_Mach " @ Siate Gity Biome | [ coz | CH4
¥ inery J
7 f/
o - N2O
Elatricity \ Farm
N “ 8/ GHG Pruning_Waste

Synthetic_Ferti ] : D owl Tm:gﬁi X ey 4
lizer y \ % = .

J Iy SR e — Source_Sequestr

Source Mechanic o~ - Suurcla_ Non-Mech ation
x - anica

al - ' !

Organic_Fertili | F - Farm_Area i
28t TN T

. \ I

Coverage_Type

Liming Enteric_Ferment l

ation v

! Coverage_Type M
R;m\ﬂ:ﬂLAn mal A e | emmaﬁ _Type_|
reo B 1

S S !
o3 !
Ruminant_Animal Ruminant_Animal L: [M GHG_Measure_Met [_—]
s - Coverage_Period
_Category _Emission_Facto, Ruminant_Animal hod ge_

i

Source: Prepared by the author using Protégé software (2023)

The data integration proposal for this study involves sources of GHG emissions and
stocks on rural properties. These sources are basically divided into two types: mechanical and
non-mechanical sources. Mechanical sources include existing equipment and machines on the
farm, such as tractors, harvesters, power generators, and pressing and drying machines. Non-
mechanical sources include other emissions and stocks, such as the use and type of vegetation
cover on the soil, organic and synthetic fertilizers, and enteric fermentation of ruminant animals,
which contribute to methane emission (CHs). Furthermore, we aim to integrate monitoring data,
such as data obtained from soil and animal sensors, and alerts on deforestation and changes in

land use.

3.1.2.3 Considerations about the First DSR Cycle

As stated, the first cycle focused on the “Data Source” and “Data Integration” layers.
Therefore, an ontological model was developed for data integration based on the obtained data
sources.

However, while conducting this cycle, the difficulty in obtaining data on estimates of
GHG emissions and capture on farms was evidenced. Therefore, in this study, we will only use
data sources related to land use on rural properties, that is, non-mechanical sources. We did not

find studies or databases from public or private organizations that provided data related to GHG
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emissions from mechanical sources. However, the architecture is prepared to add this source
type when it becomes available.

Regarding animals, the studies returned by the literature review did not provide the
number of animals per farm, which made it impossible to integrate these data into CarboFarm.
In the first cycle, we also did not work with monitoring data due to the unavailability of data
from soil and animal sensors. Related to deforestation and land use change alerts, we found
services that provide alerts that only focus on deforestation. In any case, integrating this type
of data will make more sense in later stages when the land cover maps of the properties are
integrated, and the areas to be monitored are defined.

To obtain land use and land cover data for properties, it was necessary to obtain
georeferenced maps that have this information. The MapBiomas Project (MapBiomas, 2021)
maps the country's territorial coverage. This mapping is an initiative of the Climate
Observatory, co-created and developed by a multi-institutional network involving universities,
NGOs, and technology companies to map Brazil's land coverage annually and use and monitor
changes in the territory. The work uses cloud computing through the Google Earth Engine
(GEE) platform. The territory coverage map is generated from automatic classification
processes using the random forest algorithm, applied to Landsat® satellite images, with sections
by biomes, states, or municipalities (Souza Jr. et al., 2020). As the minimum geographic scope
offered for generating maps is at the municipal level, we need to go further and look for
alternatives for cropping at the rural property level.

To obtain the georeferenced polygons of rural properties (shapefiles), we consulted the
websites of Brazilian Regulatory Institutions, obtaining data from the CAR (Rural
Environmental Registry), SIGEF (Land Management System) and SNCI (National Property
Certification System). The Brazilian Forest Service manages CAR, while SIGEF and SNCI are
managed by INCRA (National Institute of Colonization and Agrarian Reform)’. These
databases contain georeferenced data on rural properties for various purposes. CAR has the
objective of environmental regularization, while SIGEF and SNCI are intended to control land
and registry aspects.

Data on carbon emission and stock estimates from land use and cover were extracted
from the BRLUC Method (Brazilian Land Use Change) (BRLUC, 2022; Garofalo et al., 2022),
developed by the Brazilian Agricultural Research Corporation (EMBRAPA). The BRLUC is a

¢ https://landsat.gsfc.nasa.gov/satellites/landsat-8
7 https://acervofundiario.incra.gov.br/acervo/login.php
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method to estimate the direct land use change (LUC) associated with Brazilian agricultural
products and the derived CO; emissions at national, state, and municipal levels. The calculation
procedures were mainly based on IPCC guidelines for national inventories in line with most
Life Cycle Assessment (LCA) standards (e.g., ISO 14.0678%, 2018; ILCD?, 2010). Researchers
developed this method from the Brazilian Agricultural Research Corporation - EMBRAPA
(BRLUC, 2022; Garofalo et al., 2022). The BRLUC method provides data on CO2 emission
rates and stocks associated with land use for all 5,570 Brazilian cities and all 64 crops available
in the IBGE database, in addition to forestry and planted pastures, using conversion data
spatially explicit lands. Carbon stocks in this method were calculated using data from four
sources: (1) soil carbon stocks under native vegetation from Bernoux et al. (2001); (ii) relative
factors of variation in actions of the IPCC Guidelines; (iii) European Commission data on
biomass carbon associated with different agricultural land uses; and, (iv) biomass carbon
associated with natural vegetation in Brazil (Garofalo ef al., 2022).

The extraction of polygon metadata from properties and land cover metadata was carried
out using QGIS'? software, using a plugin provided by the MapBiomas Project (MapBiomas,
2021). QGIS is free and open-source GIS (Geographic Information System) software.

3.1.2.4 Evaluation of First DSR Cycle

The first DSR cycle focused on data extraction and integration. Data from farms in the
Pedra Dourada/MG city were selected and integrated due to the diversity of vegetation cover
and the fact that these properties' data were duly registered in the CAR (Rural Environmental
Registry) system. With the implementation of the CarbOnto ontology, it was possible to verify
that the functional requirements RFO1, RF02, RF03, and RF04 were met. However,
requirements RFO5 and RF06 were not met at this stage. Regarding non-functional
requirements, with the development of the “Data Source” and “Data Integration” layers, it was
possible to meet NFRO1. The CarboFarm architecture must incorporate new features to meet
the other requirements. The first cycle, as mentioned, focused on data integration to verify the
feasibility of the proposal and, in addition, verify the need for improvements in the architecture

based on the lessons learned.

8 https://www.iso.org/standard/71206.html
? https://bit.ly/ilcd_eu
10 https://qgis.org
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While integrating and extracting metadata from the polygons of rural properties from
the CAR, SIGEF, and SNCI systems, we noticed inconsistencies, such as internal overlaps
between the bases and duplicate polygons presenting the same geometry. Furthermore, as data
on property geometries are available in a segmented form in the CAR, SIGEF, and SNCI
systems, we found it difficult to merge a set of geometries in territorial size considered relevant
for the study, such as all rural properties for a specific city. Another problem detected was with
the use of QGIS software. The integration of maps to extract metadata proved costly from a
processing point of view, and, in addition, we had difficulties while automating the calculation
of farm coverage areas. We did not find functionality in the software or a plugin that could
satisfactorily perform the area calculations (in raster'! format).

Data integration is the most critical part of the work. Syntactic and semantic integration
will allow the data to meet other architectural requirements. For this reason, the central artifact
to be improved in the DSR methodology is the CarbOnto ontology.

In this way, in the first cycle, we could verify the feasibility of the study in achieving
some of the proposed functional and non-functional requirements. However, as discussed
above, we identified the need for architectural improvements. Therefore, we need to solve the
identified deficiencies in using QGIS software, address inconsistencies in data sources, and

improve the ontological model.

3.1.2.5 Second DSR Cycle

In the second cycle of developing the CarboFarm architecture and the CarbOnto
ontology, we considered the necessary improvements after the results of the first cycle. Figure

6 presents the improved CarboFarm architecture.

I Raster or bitmap data is images that use a pixel grid, each pixel corresponding to a small piece of the
image.



Figure 6: Architecture CarboFarm proposed in the second DSR cycle.
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For the second cycle, the following improvements were made:

(i) Data Source:

49

(a) The CAR, SIGEF, and SNCI databases were replaced with the Brazilian Land Atlas

database'?. The Atlas, also known as the Land Tenure Map, uses several public

government databases, including INCRA's property and settlement databases (De

Freitas et al., 2018). This database is a collaborative project between Imaflora, the

GeoLab at Esalq/USP, the Royal Institute of Technology (KTH-Sweden), and the

Federal Institute of Education, Science and Technology of Sao Paulo (De Freitas et

al., 2018). The methodology for building the Atlas involves analysis and resolution

of problems related to overlap, removal of duplicates, and removal of features

outside the limits of Brazil, resulting in a single vector base covering 82.6% of the

Brazilian territory with 4,519,223 distinct properties. With the geometries metadata

from the Brazilian Land Atlas and MapBiomas maps, it became possible to map

land cover and use at the rural property level.

12 https://atlasagropecuario.imaflora.org
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(b) The QGIS software was replaced by the Google Earth Engine’? cloud platform to
extract metadata from maps. The data extraction and integration process will be
detailed in Chapter 5.

(i1) Data Integration:

(a) The ontology was developed with a set of rules. CarbOnto details will be presented
in Chapter 4.

(b) Including a Global Schema Database using the bottom-up strategy (Ozsu and
Valduriez, 2020). Considering that one of the objectives of the CarboFarm
architecture is the development of applications for an MRV system, the retrieval of
GHG emissions information must be at the lowest possible organizational level so
that accounting and quantification are more accurate (Monzoni, 2013). Cultivated
areas within rural properties represent the lowest level considered in this study.
Once GHG emission estimates have been calculated in each area, they are
consolidated to generate estimates for the entire property. The bottom-up
integration process occurs in two steps: translation and schema generation. In the
first step, the database schemas are translated into a common intermediate canonical
representation, the ontological model, and in the second step, the intermediate
schemas are used to generate a global conceptual schema (Ozsu and Valduriez,
2020).

(ii1)) Data Analysis: We added the “Data Analysis” layer considering the inclusion of a
new functional requirement FRO7: “The architecture must be capable of generating
knowledge from integrated data and semantic analysis”. The analysis layer has two
components to meet this requirement:

(a) Machine Learning: Applying machine learning techniques aims to identify
predictions and extract more appropriate land use patterns, considering the
characteristics and variables involved, such as location, size, climate, and soil type
of the rural property, among others. The “Machine Learning” component was
designed to support a number of machine learning algorithms. A dataset of interest
will be received from the integration layer, and the algorithm with the best
accuracy will be automatically selected depending on the context.

(b) Decision Support Processing: The decision support component should guide

decisions aimed at reducing emissions related to site-specific agricultural

13 https://earthengine.google.com
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practices. Although not all impacts are perceived at a local scale, decisions made
locally influence global impacts (Arulnathan et al., 2020). The component aims
to transform the processing carried out in the previous layers into alternative
solutions for users, that is, to make knowledge available to enable choices for

better conditions for using the soil and farming techniques.

(iv) Controller: The architecture layers separate responsibilities. Each component has its

(v)

specific function following the MVC pattern (Voorhees, 2020). The control layer
coordinates the interactions between the model (analysis layer) and the view

(application layer), providing flexibility, testability, and code reuse.

Blockchain: We added the “Blockchain” layer considering the inclusion of a new
functional requirement FOR8: “The architecture must be capable of supporting the
generation of carbon credits through the availability of integrated data and
provenance”.

The Blockchain layer has the function of, based on data captured by provenance,
presented in the first cycle, enabling the generation of smart contracts for the carbon
market, offering protection, transparency, and traceability. The carbon credit is a
negotiable security. The certificate means third-party verification that the reduction was
carried out. Everything is properly documented and proven. To this end, smart contracts
are essential tools for formalizing agreements and storing records of negotiations based
on MRV systems. Blockchain combined with MRV systems can meet this need (Ju et
al., 2022; Kim and Baumann, 2022). With reliable data, parties can disclose all carbon
credit generation chain records, providing valid proof of authenticity and making them
available to the offset market. As seen in Appendices A.2, blockchain technology is
based on a mutual distributed network, which allows for a high level of trust between
users and better monitoring of stored data. Transactions are recorded openly and
permanently, promoting transparency and traceability. Public and private keys protect
data cryptographically, ensuring security and authenticity (UNFCCC, 2017). All steps
involved, from data collection and integration to ontological processing and machine
learning techniques, must be registered to guarantee the veracity of the process and the

immutability of the information used in decision-making.
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(vi) Application Programming Interface:
We added the Application Programming Layer (API) to facilitate integration by
providing communication functionalities for MRV system applications or other

systems of interest.

3.1.2.6 Considerations about the Second DSR Cycle

In the second DSR cycle, in addition to changes to available sources, we added four
new layers to CarboFarm architecture: “Data Analysis”, “Application Programming Interface”,
“Contoller” and “Blockchain”. These layers comply with functional requirements RF07 and
RF08. This way, the CarboFarm architecture can meet all specified functional and non-
functional requirements.

There was also an improvement in the CarbOnto ontology, adding new classes,
properties, and SWRL rules, contributing to semantic enrichment. Considering that it is an
integration component for data from heterogeneous databases, the inclusion of new data sources
requires: (i) the construction of a specific wrapper component for extracting data from the
source; and (ii) the addition of a new class and its inherent properties in the ontology, when
necessary, that is, when they were data sources not foreseen in CarbOnto.

The knowledge generated during the execution of the two cycles showed us the
importance of including the blockchain and data analysis layers. Regarding data analysis, the
knowledge acquired by our research group is also a fact to consider. (Gomes et al., 2023; Silva
et al., 2023; Amara et al., 2024; Soares et al, 2024).

Chapter 4 will detail the CarbOnto ontological model. For the CarbOnto evaluation, we
conducted a case study by integrating GHG data sources into agricultural activities. The case
study will be presented in detail in Chapter 5. With the data integrated into the ontology, we
conducted analyses with supervised and unsupervised learning using machine learning
techniques, which will be presented in Chapter 6. Chapter 7 will present data visualization and
the knowledge generated after integration. Moreover, in Chapter 8, we will evaluate the second

and final cycle of the DSR methodology.
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3.2 KNOWLEDGE DISCOVERY PROCESS

Knowledge discovery from heterogeneous databases is one of the focuses of the
CarboFarm architecture. To achieve this objective, we used the KDD (Knowledge Discovery
in Databases) process (Fayyad et al., 1996).

KDD is originally a process of discovering knowledge in databases using mining
techniques. However, the process goes beyond data mining and encompasses related areas such
as Artificial Intelligence, encompassing machine learning, and statistics. KDD emphasizes that
knowledge is the end product of data-driven discovery. The basic problem addressed is mapping
low-level data (which is typically too voluminous to be easily understood) into other forms that
may be more compact, abstract, or useful. Process steps such as data selection, processing, and
transformation, as well as incorporation of knowledge and adequate interpretation of results,
are essential to ensure that valuable knowledge is effectively derived from data (Fayyad et al,,
1996). Rudin et al. (2022) adapt the KDD model of Fayyad et al. (1996), replacing the data
mining step with a machine learning step. Rudin et al. (2022) argue for the interpretability of
machine learning as a crucial measure for decisions and solutions to relevant problems.

In CarboFarm architecture, we used the adapted version of Rudin et al. (2022). We also
specialize the data transformation stage, which contains an ontology as an integration
component. The ontological model transforms data into formats compatible with machine
learning algorithms. Figure 7 shows the adaptation of the KDD diagram from the version by
Rudin et al. (2022), which, in turn, was adapted from the original diagram by Fayyad et al.

(1996).
Figure 7: Knowledge Discovery Process
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Next, we present the CarboFarm architecture guided by the adapted KDD process.

Figure 8:CarboFarm architecture guided by the KDD process
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Our knowledge discovery process begins with data selection. The preprocessing step in
our approach involves extracting the data from the selected sources. The extracted data is
integrated and transformed through semantic analysis performed by the ontology, using the
reasoner and SWRL rules. The transformed data is stored in a database, making it available for
use by artificial intelligence techniques. In CarboFarm, we use machine learning algorithms. In
the interpretation/evaluation phase, the knowledge generated by the ontological model and
machine learning is available for use in front-end applications or applications in MRV systems.
In each following phase, i.e., preprocessing, data transformation, and processing of machine
learning algorithms, a provenance extractor may collect and store information to guarantee
the entire process's traceability. Traceability data may become available for use in blockchain
networks. However, in the second cycle of CarboFarm architecture, the provenance collector

and blockchain networks were not implemented.

3.3 FINAL REMARKS OF THE CHAPTER

In this chapter, we presented an exploratory study and the DSR research methodology

executed in two cycles to specify the CarboFarm architecture. CarboFarm aims to integrate and
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analyze data to generate GHG inventories on rural properties to support decision-making. The
CarboFarm architecture is intended for applications for end users, such as rural landowners, or
for applications that would be part of an MRV system through API. The measurements provided
by the inventories are basic assumptions for generating carbon credits. The credit generation
process involves environmental, social, economic, technological, and political perspectives, as
we saw in Chapter 2.

The following chapters detail each layer of CarboFarm architecture. For this end,
datasets are used to illustrate each layer functionality. At each chapter, the evaluation
conduction is also presented, once we used real data from a case study to explain the layers.

Chapter 4 details the CarbOnto ontology. Chapter 5 presents a case study on the data
source and integration layers. With the data integrated by CarbOnto, we will present the
application of supervised and unsupervised machine learning algorithms, focusing on
knowledge generation, in Chapter 6. Chapter 7 will present an application developed to
visualize integrated data and generated knowledge. After the detailed presentation of these
components of the CarboFarm architecture, we discuss the evaluation results of the second
cycle in Chapter 8, including the instantiation of the DSR Model (Pimentel ez al., 2020).

Considering the agricultural domain studied, the integration of data with the objective
of generating knowledge and carbon credits, as well as the two cycles of the DSR methodology
carried out, we found the need for the provenance and blockchain layers to be represented in
the CarboFarm architecture. The potential impact of the CarboFarm architecture, with these

layers in place, is inspiring and motivates us to continue our research.
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4 CARBONTO ONTOLOGY

As previously stated, one of the main components of CarboFarm architecture is
CarbOnto ontology. This chapter details its components and the main functionalities derived
from the ontology processing.

CarbOnto is an ontology for integrating heterogeneous datasets related to GHG emission
and sequestration sources on rural properties. CarbOnto derives knowledge from its classes and
relationships to generate GHG inventories. Detailed on-farm carbon inventories allow carbon
stock quantification in different locations, such as in soil and plant biomass. They also allow
the quantification of emissions from activities such as livestock farming and use of fuel and
electricity (Riignitz et al. 2009).

Farms may have several reasons for developing inventories, such as identifying
opportunities to reduce emissions, setting goals and monitoring performance, and managing
risks and opportunities associated with GHG flows. These reasons can help reduce costs and
increase agricultural productivity (GHG Protocol, 2014). Actions to reduce GHG emissions can
also offer co-benefits, such as reducing erosion and soil degradation, improving water quality
and retention, controlling atmospheric pollutants, and increasing soil fertility.

Analyzing the relative contribution of different sources to agricultural system
inventories using a consistent set of methods is a complex job (GHG Protocol, 2014).
Measurement can be hampered by the inability to account for the quantity and impact of
emissions in a transparent and uniform way. The role of ontologies, in this context, would be
to contribute to the necessary standardization, sharing, and interoperability of data (Kim and
Baumann, 2022).

International guidelines and protocols must guide a reliable measurement process (GHG
Protocol, 2014). The construction of the CarbOnto ontology was based on the IPCC guidelines
(IPCC, 2021), the WRI Brasil protocols (GHG Protocol, 2014), and emission factors published
by Brazilian public bodies supervised by the Ministry of Science, Technology, and Innovation.
For its development, the “Methontology” methodology (Ferndndez-Lopez et al, 1997) was

executed.
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4.1 METHODOLOGY

In the development of CarbOnto, the six phases of the “Methontology” methodology
(Fernandez-Lopez et al., 1997) were carried out: (i) Specification; (i) Conceptualization; (iii)
Formalization; (iv) Integration; (v) Implementation; and (vi) Maintenance.

In the “Specification” phase, we identify the “purpose” of the ontology, which is the
integration of data to generate GHG inventories and knowledge to support decision-making on
farms; the “scope”, which is the processing of GHG emission sources and stocks available on
the farm and on public bases; and the “users”, who are rural landowners, researchers or users
of MRV system applications. The “Conceptualization” phase focused on organizing and
structuring the semantic meaning of the data. As a result, classes and their relationships were
defined to represent the variables identified as relevant for the purposes of the study. In the
“Formalization” phase, we use the Protégé!* software (version 5.6.3) to build the conceptual
model using the OWL 2.0'3 language. We also defined a set of SWRL rules'® to support the
semantic processing of terms and compute GHG emissions and stocks on farms. To process
SWRL inferences and rules, we use the Pellet!” reasoner. The “Integration” phase is when
existing and correlated ontologies are aligned. However, our research did not find other works
that have specified or implemented ontologies related to agricultural carbon inventories. In the
“Implementation” phase, the model generated in the Protégé software was implemented in the
Google Colab'® environment using the OWLReady2!? library. Finally, in the “Maintenance”
phase, changes were made, and new versions of the ontology were generated as the study
evolved.

The verification step consists of verifying and validating. The correctness of the
ontology was verified using the Pellet reasoner. Validation ensures that the ontology fulfills its
purpose by answering Competency Questions (CQ). In Chapter 5 we present an evaluation that

uses the CarbOnto ontology.

1 https://protege.stanford.edu

15 https://www.w3.org/TR/owl2-overview
16 https://www.w3.org/submissions/SWRL
17 https://github.com/stardog-union/pellet
18 https://colab.research.google.com

19 https://owlready?2.readthedocs.io
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4.2 COMPETENCY QUESTIONS

An ontology model is based on Competency Questions (CQ) to accommodate domain-
specific needs. A CQ is a natural language sentence that expresses a pattern for a question that
people or computational applications expect an ontology to answer (Uschold and Gruninger,
1996).

Derived from the literature overview, including academic and grey literature, and also
from interviews from specialist, CarbOnto's ontological competence questions are specified:

CQI) What are the mechanical sources of GHG emissions from a farm?

CQ2) What are the GHG values emitted by each mechanical source?

CQ3) What are the non-mechanical sources of GHG emissions from a farm?

CQ4) What are the GHG values emitted by each non-mechanical source?

CQ4.1) How many cultivation areas does the farm have??
CQ4.2) What are the GHG emission values for each cultivation area?
CQA4.3) How many ruminant animals are there on the farm?
CQ4.4) What are the breeds, sex, age, and number of animals on the farm?
CQ4.5) How much CH4 is emitted by animals?
CQ5) What are the non-mechanical sources of GHG sequestration from a farm?
CQ6) What are the values of GHG sequestered by each non-mechanical source?
CQ6.1) What are the GHG sequestration values for each cultivation area?

CQ7) What is the total amount of GHG emissions from the farm?

CQS8) What is the total amount of GHG stock on the farm?

CQ9) What is the farm’s GHG balance?

Data integration and semantic rule processing should allow answers to these competence
questions. The expected result of the answers is the generation of the rural property's GHG

inventory and, through this, the generation of knowledge to support decision-making on farms.

4.3 CARBONTO ONTOLOGICAL MODEL

Information on GHG emissions and stocks must be collected at the lowest possible
organizational level of accounting and quantification (Monzoni, 2013). In the inventory

proposal for farms specified in CarboFarm architecture, the lowest level is represented by the
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planted areas of the properties. However, integration occurs both at the area level and at the
farm level, which results from the totalization of all areas.
Figure 9 presents the classes of the CarbOnto ontological model, which will be

explained below.

Figure 9: CarbOnto ontological model

Source: Prepared by the author using Protégé software (2024)

The classes are:

— Biome: Represents the biome in which the farm is located.

— City: Represents the city where the farm is located.

— Climate: Represents the climate of the city where the farm is located.

— Farm: Represents rural properties.

— Farm_Area: Cultivation areas (cover and land use) within each rural property. The area

was defined, in this methodology, as the lowest organizational level of accounting for
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emission and stock of greenhouse gases on a farm. The sum of the areas results in the size

of the farm.

GHG (Greenhouse Gases): The amount of greenhouse gases emitted or sequestered by

the farm’s mechanical and non-mechanical sources. It has the following subclasses:

GHG Type: gases typically related to the activities of an agricultural chain:
CO3, CH4, N2O.

GHG Measure Method Coverage: methods used to account for GHG
emissions from land use and cover.

GHG Measure Method Stock: methods used to account for GHG sequestration

from land use and cover.

GHG Measure Method Year: year creation of the method.

— Ruminant Animal: Refers to ruminant animals that emit CH4. Animals do not need to

be computed by area; they can be counted at the farm level, considering that they can

be raised in confined areas or areas integrated with other crops, for example, the areas

of integration between livestock, crops, and forest. It has the following subclasses:

Ruminant Animal Breed: Breed of raised animals related to CH4 emission.
Ruminant Animal Category: CH4 emission factor of animals related to factors
such as age, sex, and milk production.

Ruminant Animal Emission Factor: CHs emission factor for each animal
category.

Ruminant Animal Type: Categories of animals raised, such as cattle, goats and

sheep.

— Source_Mechanical: Relating to equipment and machinery operated by the farm. It has

the following subclasses:

Eletricity: amount of electrical energy consumed by the farm.
Mobile_Machinery: amount of fuel consumed by mobile machines, such
sowing machine, combine harvester, tractors, etc.

Stationary_Machinery: amount of fuel consumed by stationary machines, such

pressing, drying, processing equipment, etc.

— Source_Non_Mechanical: Relating to the other emission sources and must be

classified in subclasses:

Coverage Soil: the soil cover of each area of the farm. It has the following

subclasses:
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— Coverage Period: Number of months of the year used for a given crop.
The reference period for calculating the GHG balance is one year.
Cropland can be used for crop rotation, with more than one type of land
use during the year.

— Coverage Type: Vegetation cover represents the land use in each area
within a farm. Each type of coverage (forest, pasture, soy, coffee, etc.) or
even its absence (in the case of degraded soils) can present the soil’s
emission values or carbon stock.

Crop Residue: Crop residues left after harvesting and which generate GHG
emissions. This waste can decompose or be burned, emitting N>O.

Enteric Fermentation: CH4 emissions resulting from the enteric fermentation
process of ruminant animals.

Liming: N>O emissions from using limestone in the soil.

Organic Fertilizer: CO> emissions from using organic fertilizers (animal waste
and crop residues deposited on the soil).

Urea: N>O emissions resulting from using urea.

Synthetic Fertilizer: emissions resulting from using synthetic fertilizers.

— State: Represents the city location state.

Considering classes are the sets that contain individuals, properties establish binary

relationships between individuals. Object properties connect one individual to another, and data

properties connect the individual to a value. Figures 10, 11, and 12 show the classes, data

properties, and object properties visualized in the Protégé software.
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Figure 12: CarbOnto
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4.4 SWRL RULES

CarbOnto's SWRL rules helps in the processing of calculation and totalization of GHG
emissions and stocks according to the methodology defined in this study, which computes GHG
emissions and stocks related to land use by area. Both the calculation of these variables, as well
as the others, related to the farm as a whole, follow the IPCC guidelines (IPCC, 2021) and the
WRI Brazil protocols (GHG Protocol, 2014), in addition to the use of emission factors
published by Brazilian regulatory audiences supervised by the Ministry of Science, Technology

and Innovation.

4.4.1 Calculation of GHG emissions and stocks due to land use

1) SWRL rule for calculating CO2 emissions from land use in each area of the farm: this
rule considers the emission factor per hectare (hasEmissionValueCO2FarmAreaHa) and the
size of the area (hasSizeFarmArea). The emission factor per hectare is related to the soil
coverage in the farm area. Examples are forest cover, pasture area, or cultivation of coffee,
corn, soybeans, etc. The emission factor is obtained with integrated data from the BRLUC

database (2022).

Farm_Area(?fa) * hasEmissionValueCO2FarmAreaHa(?fa, ?hevCO2faha) »
hasSizeFarmArea(?fa, ?hsfa) * swrlb:multiply(?total, ?hevCO2faha, ?hsfa)
-> hasEmissionValueCO2FarmArea(?fa, ?total)

2) SWRL rule for calculating CO: stock due to land use in each area of the property: the
rule considers the stock factor per hectare (hasSequestrationValueCO2FarmAreaHa) by the
size of the area (hasSizeFarmArea). The stock factor per hectare is related to the soil carbon
stock in the farm area. The emission factor is obtained with integrated data from the MapBiomas

database (2023).

Farm_Area(?fa) * hasSequestrationValueCO2FarmAreaHa(?fa, ?hsvCO2faha) *
hasSizeFarmArea(?fa, ?hsfa) ~ swrlb:multiply(?total, ?hsvCO2faha, ?hsfa)
-> hasSequestrationValueCO2FarmArea(?fa, ?total)
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3) SWRL rule for calculating the area's CO:2 balance: the rule considers the area's carbon
sequestration (or stock) (hasSequestrationValueCO2FarmArea), calculated by rule 2, from the

area's carbon emission (hasEmissionValueCO2FarmArea), calculated by rule 1.

Farm_Area(?fa) * hasSequestrationValueCO2FarmArea(?fa, ?hsvCO2fa) *
hasEmissionValueCO2FarmArea(?fa, ?hevCO2fa) * swrlb:subtract(?total, ?hsvCO2fa,
?hevCO2fa) -> hasCO2BalanceFarmArea(?fa. ?total)

4) SWRL rule for calculating the CO2 balance per hectare: the rule processes the carbon
balance of the area (hasCO2BalanceFarmArea), calculated by rule 3, using the size

(hasSizeFarmArea) to find the carbon balance value per hectare.

Farm Area(?fa) * hasCO2BalanceFarmArea(?fa, 7hCO2Bbfa) " hasSizeFarmArea(?fa,
?hsfa) ~ swrlb:divide(?total, 7hCO2Bbfa, ?hsfa) -> hasCO2BalanceFarmAreaHa(?fa,

5) SWRL rule for calculating N2O emissions from crop residues: the rule for calculating
N20 emissions from harvest residues is the transformation into SWRL language of the Equation

1 suggested by the GHG Protocol (2014).

Farm_Area(?fa) * hasAnualProduction(?fa, ?hap) * hasFractionDryMatter(?fa, ?hfdm) *
hasRatioDryResidueDryProduct(?fa, ?hrdrdp) * hasNitrogenAerialPart(?fa, ?hnap) *
hasEmissionFactorCropResidue(?fa, ?hefcr) * swrlb:multiply(?totall, ?hap, ?hfdm) »

swrlb:multiply(?total2, ?totall, ?hrdrdp) ~ swrlb:multiply(?total3, ?total2, ?hnap)
swrlb:multiply(?total4, ?total3. ?hefcr) -> hasEmissionCropResidue(f. ?total4)

Equation 1: Calculation of N20O emissions from crop residues

ResDM

= X X ———
N20ORes [CROP FRACDMCrop CROPDM

X FRACNCReS] X FE

Where,

CROP is the annual production of each crop;

— FRACbwmcrop is the fraction of dry matter of the product harvested from each crop;
Respm /CROPpy is the ratio between dry residue and dry product for each crop;
— FRACNKcres s the nitrogen content of the aerial part of each crop;

FE is the emission factor.

The Respm/CROPpM, FRACncres and FE values are obtained from the GHG Protocol
(2014).
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6) SWRL rule for calculating CO2 emission from limestone: the rule for calculating the use
of limestone is the transformation into the SWRL language of the Equation 2 suggested by the
GHG Protocol (2014).

Farm_Area(?fa) * hasCalciticLimestone(?fa, ?cl)  hasQuantityDolomiticLimestone(?fa,
?dl) ~ swrlb:multiply(?total2, ?dl, ?efdl) ~ swrlb:add(?total3, ?totall, ?total2) »
swrlb:multiply(?total4, ?total3, 3.67) * swrlb:multiply(?total, ?cl, ?efcl) »
hasEmissionFactorDolomiticLimestone(?fa, ?efdl) *
hasEmissionFactorCalciticLimestone(?fa, ?efcl) -> hasEmissionLimestone(?fa, ?total4)

Equation 2: Calculating CO> emission from limestone

44
CO2 Limestone = [QCalcitic X FECalcitic + QDolomitic X FE Dolomitic] X 1

Where,
— CO2 Limestone 18 the CO» emission associated with the application of limestone to the
soil;
— Qcalcitic 1s the amount of calcitic limestone (CaCO3) applied to the soil;
— Qpolomitic 1S the amount of dolomitic limestone (CaMg(COs3)2) applied to the soil;
— FE is the emission factor (percentage of carbon in limestone);
44/12 is the conversion factor from C to CO; (dimensionless).

The emission factor values are obtained from the GHG Protocol (2014).

8) SWRL rule for calculating N2O emission from organic fertilizers: the rule for calculating
organic fertilizers is the transformation into SWRL language of the Equation 3 suggested by
the GHG Protocol (2014).

Farm(?fa) » fractionAppliedVolatilizesInNH3andNOx(?fa, ?favinn)
hasEmissionFactorOrganicFertilizer(?fa, ?efof) ~ hasQuantityOrganicFetilizerApplied(?fa,
?hqofa) * percentageNitrogenOrganicFertilizerApplied(?fa, ?pnofa) *
swrlb:subtract(?total, 1.0, ?favinn) ~ swrlb:multiply(?total5, ?total4, 1.57) »
swrlb:multiply(?total4, ?total3, ?efof)  swrlb:multiply(?total3, ?total2, ?pnofa) *
swrlb:multiply(?total2, ?total, ?hqofa) -> hasEmissionOrganicFertilizer(?fa, ?totals)

Equation 3: Calculating N>O emission from organic fertilizers

44
N20AdOrg = QOrg x Nad X (1 — FRACGasm) X EF X 28

Where,
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— N20adorg 1s the emission of nitrous oxide associated with the application of organic
fertilizers;

— Qorg 1s the amount of organic fertilizer applied;

— Naa is the percentage of nitrogen in organic fertilizer;

— FRACGgasm is the applied fertilizer fraction that volatilizes in the form of NH3 and
NOx;

— EF is the emission factor;

— 44/28 is the conversion factor from N to N2O (dimensionless).

The values of Nag, FRACgasm and EF are obtained from the GHG Protocol (2014).

9) SWRL rule for calculating N2O from synthetic fertilizers: the rule for calculating
synthetic fertilizers is the transformation into SWRL language of the Equation 4 suggested by
the GHG Protocol (2014).

Farm(?fa) ~ hasQuantitySyntheticFetilizerApplied(?fa, ?hgsfa) *
fractionAppliedVolatilizesInNH3andNOx(?fa, ?favinn) *
hasEmissionFactorSyntheticFertilizer(?fa, ?efsf) ~ swrlb:subtract(?total, 1.0, ?favinn) *
swrlb:multiply(?total3, ?total2, ?efst) » swrlb:multiply(?total4, ?total3, 1.57) »
swrlb:multiply(?total2, ?total, ?hgsfa) -> hasEmissionSyntheticFertilizer(?fa, ?total4)

Equation 4: Calculating N>O from synthetic fertilizers

44
N20OFert = NFert x (1 — FRACGasf) X EF X o

Where,
— N2Orer is the emission of nitrous oxide associated with the application of synthetic
nitrogen fertilizers;
— Nrert is the amount of nitrogen fertilizer applied;

— FRACGast 1s the fraction of applied nitrogen that volatilizes in the form of NH3z and
NOx;
— EF is the emission factor.

The values of de FRACgasrand EF are obtained from the GHG Protocol (2014).

10) SWRL rule for calculating N20Q emission from urea: The rule for calculating the

emission of N>O when using urea is the transformation into the SWRL language of the Equation

2 suggested by the GHG Protocol (2014).

Farm Area(?fa) * hasNitrogenUrea(?fa, ?hnu) ” hasFractionVolatilize(?fa, ?hfv) »
hasEmissionFactorUrea(?fa, ?hefu) » swrlb:subtract(?totall, 1.0, ?hfv) »
swrlb:multiply(?total2, ?totall, ?hnu) * swrlb:multiply(?total3, ?total2, ?hefu) *
swrlb:multiply(?total4, ?total3, 1.57) -> hasEmissionUrea(?fa, ?total4)
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Equation 5: Calculating N2O emission from urea

44
N20Urea = NFert X (1 — FRACGasfu) X EF X 8

Where,

— N2Ourea 1s the emission of nitrous oxide associated with the application of urea;

— Nrert 1s the amount of urea applied;

— FRACGastu 1s the fraction of the application that volatilizes in the form of NH3 and
NOx;
EF is the emission factor.

The values of FRACgastu and EF are obtained from the GHG Protocol (2014).

4.4.2 Calculation of methane (CH4) emissions from enteric fermentation

CH4 emission factors from bovine enteric fermentation were obtained from the report
of the General Coordination of Global Changes of the Brazilian Ministry of Science and
Technology (MCT, 2015). According to the report, emissions from cattle vary according to the
category (female, dairy female, male, and young). The rules calculate for each category and

total the value of CH4 emitted throughout the farm.

11) SWRL rule for calculating CH4 per female cattle: the rule calculates the CH4 emission
(hasEmissionValueCH4CattleFemale)  according to the number of females
(hasCattleFemaleQuantity) and their respective emission factor

(hasEmissionFactorCH4CattleFemale).

Farm(?f) » swrlb:multiply(?total, ?hcfq, ?hefcf) * hasEmissionFactorCH4CattleFemale(?f,
?hefcf) * hasCattleFemaleQuantity(?f, ?hcfq)” swrlb:multiply(?total2, ?total, 0.001) >
hasEmissionValueCH4CattleFemale(f, ?total2)

12) SWRL rule for calculating CH4 per dairy female: the rule calculates CH4 emission
(hasEmissionValueCH4CattleFemaleMilk) according to the number of dairy females
(hasCattleFemaleMilkQuantity) and their respective emission factor

(hasEmissionFactorCH4CattleFemaleMilk).
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Farm(?f)  hasCattleFemaleMilkQuantity(?f, ?hcfmq) *
hasEmissionFactorCH4CattleFemaleMilk(?f, ?hefcfm) *
swrlb:multiply(?total, ?hcfmq, ?hefcfm) ) * swrlb:multiply(?total2, ?total, 0.001->
hasEmissionValueCH4CattleFemaleMilk(?f, ?total2)

13) SWRL rule for calculating CH4 per male cattle: the rule calculates the CH4 emission
(hasEmissionValueCH4CattleMale) according to the number of  males
(hasCattleFemaleMilkQuantity) and their respective emission factor

(hasEmissionFactorCH4CattleMale).

Farm(?f) » hasEmissionFactorCH4CattleMale(?f, ?hefcm) " hasCattleMaleQuantity(?f,
?hemq)” swrlb:multiply(?total, 2hcmq, ?hefcm) * swrlb:multiply(?total2, ?total, 0.001) >
hasEmissionValueCH4CattleMale(f. ?total2)

14) SWRL rule for calculating CH4 per young cattle: the rule calculates the CH4 emission
(hasEmissionValueCH4CattleYoung) according to the number of young cattle
(hasCattleYoungQuantity) and their respective emission factor

(hasEmissionFactorCH4CattleYoung).

Farm(?f) ~ hasCattleY oungQuantity(?f, ?hcyq) * hasEmissionFactorCH4CattleY oung(?f,
?hefcy) * swrlb:multiply(?total2, ?total, 0.001) ” swrlb:multiply(?total, ?hcyq, ?hefcy) ->
hasEmissionValueCH4CattleY oung(?f, ?total2)

15) SWRL rule for calculating total CH4 on farm: the rule adds all CH4 emissions from cattle

to calculate the total emissions on the farm (hasTotalAnimalQuantity).

Farm(f) ” hasCattleY oungQuantity(?f, ?hcyq) * hasCattleFemaleMilkQuantity(?f, ?hcfmq)
)  hasCattleFemaleQuantity(?f, ?hcfq) * hasCattleMaleQuantity(?f, ?hcmq) *
swrlb:add(?total3, ?total2, ?hcfmq) * swrlb:add(?total2, ?total, ?hcfq” swrlb:add(?total,
7hcyq, ?hemq) -> hasTotal AnimalQuantity(?f, ?total3)

4.4.3 Calculation of CO: emissions due to the use of electrical energy

The estimation of electricity emissions suggested by the GHG Protocol (2014) requires

an emission factor. These factors estimate the CO- associated with a given amount of electricity
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generated. The factor results from the average calculation of generation emissions, considering
all generating plants. If all consumers calculated their emissions by multiplying the energy
consumed by this factor, the sum would correspond to the emissions of the entire national
system. Thus, it should be used when the aim is to quantify the emissions of electricity being
consumed in each period.

The average CO; emission factors are calculated monthly and made available by the
Brazilian Ministry of Science, Technology, and Innovation®’, under the guidelines of the United
Nations Framework Convention on Climate Change?' (UNFCCC).

The SWRL rule for calculating the farm's emissions due to the consumption of

electricity is:

Farm(f) * hasEmissionFactorElectricityCO2(f, ?hefe)  hasElectricityConsumption(f,
7hec) * swrlb:multiply(?total, ?hec, ?hefe) -> hasEmissionElectricityCO2(f, ?total)

Where,

— hasEmissionElectricityCO2 is the emission of CO;
— hasElectricityConsumption is the energy consumption in MWh;
— hasEmissionFactorElectricityCO2 is National Emission Factor.

4.4.4 Calculation of CO:2 emissions due to the use of fuels

CO» emissions from the use of fuels are calculated based on the total use of each type
of fuel (gasoline, diesel, biodiesel, etc.) and an emission factor for each type, using the

following rule:

Farm(f) * hasFuelConsumption(f, ?hfc)  hasEmissionFactorFuel CO2(f, ?heff) *
swrlb:multiply(?total, ?hfc, ?heff) -> hasEmissionFuel CO2(f, ?total)

Where,

— hasEmissionFuelCO2 is the emission of CO»;
— hasFuelConsumption is the fuel consumption in liter;
— hasEmissionFactorFuelCO?2 is emission factor for each fuel.

Fuel emission factors are obtained from the GHG Protocol (2014).

20 https://bit.ly/3Xc15qw
2L https://bit.ly/PAmethodologies
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Figure 13 shows the Protégé software screen with the SWRL rules created for the

CarbOnto ontological model.

Figure 13: SWRL rules in Protégé software
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Source: Prepared by the author using Protégé software (2024)

4.5 FINAL REMARKS OF THE CHAPTER

The CarbOnto ontology was built to syntactically and semantically integrate the

<€ CarbonOntod-0 (http://www.semanticweb.org/administrador/ontologies/2023/05/CarbonOntod-0) : [C:\D\dados\estudo\mestrado'ufjf\2022\disciplinas\Dissertacao\.capitulos\ontologia\CarbOnto':

databases used to prepare GHG inventories for rural properties. The methodology involves data
integrated by farm planting areas related to soil cover and applying fertilizers and other
chemical additives. It also involves calculating data for the entire property, such as the number
of cattle, fuel and electricity use. The methodology defined for the ontology follows the IPCC
guidelines (IPCC, 2021), the WRI Brasil protocols (GHG Protocol, 2014) and uses emission
factors published by Brazilian public bodies supervised by the Ministry of Science, Technology
and Innovation.

The competency questions to be answered by CarbOnto were presented, in addition to
the ontological model with classes, their relationships and the SWRL rules that process the
calculation and totalization of GHG emissions and stocks on rural properties.

Chapters 5, 6 and 7, details respectively, Data Integration, Data Analysis and Data
Visualization layer. In addition, each chapter presents a case study with details of the sources

and integrated data.
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5 DATA SOURCE AND INTEGRATION

The Intergovernmental Panel on Climate Change (IPCC, 2021) provides guidelines for
preparing national GHG inventories, classifying them into three tiers, as discussed in Chapter
2. As explained before, the purpose of this study is related to Tier 3, which is related to creating
a methodology for generating carbon inventories to be used in any country with available
agricultural datasets. In this chapter, we present the Data Source and Integration layers through
a case study detailing the data sources and the integration processing the CarbOnto artifact. The

datasets refer to Brazilian rural properties and were extracted from heterogeneous sources.

5.1 DATASETS: BRAZILIAN RURAL PROPERTIES

Brazil is one of the leading agricultural producers in the world. In 2020, Brazilian cattle
represented around 14% of the world herd (FAO, 2022). Brazilian grain production is the fourth
largest in the world, representing approximately 8%, according to Statistics from the Food and
Agriculture Organization of the United Nations (FAO, 2022). In contrast, Brazil presents high
heterogeneity in land use patterns, agricultural management practices, and carbon stocks. Land
use and land use change (LUC) represented the most significant GHG emissions in 2021,
corresponding to 46% of the gross total (Potenza et al., 2021). Due to the importance of
agricultural activity in the Brazilian economy, this sector must be a fundamental player in the
greenhouse gas emission mitigation strategy.

Data obtained from rural properties can contribute to generating GHG inventories. But
it must be integrated. This integrated data not only fosters a deeper understanding of best
practices in agriculture and livestock, making them more sustainable, but also contributes to the
creation of carbon credits.

One obstacle, however, is the availability of data. For example, considering animal data,
in our research, we did not find the number of animals grouped by farms so that we could
integrate them into the study. We also did not find values or estimates of electricity
consumption, fuel, and use of organic or chemical additives in the soil. For this reason, data
integration will enable the generation of partial GHG inventories. However, with the advent of
smart farms, data on animal husbandry, fuel consumption, energy, and substances used to

prepare the soil for planting can be provided by meters or sensors.
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The data to be included in the ontology must conform to the classes, properties, and
formats defined in CarbOnto in Section 4.3. For each new data source, wrappers and
components for extracting the data, will need to be defined.

Therefore, CarboFarm aims to integrate land use and land cover databases with their
respective emission factors or carbon stocks. With the data integrated by the CarbOnto
ontology, we intend to answer the competency questions presented in Subsection 4.2 and collect

evidence to answer our research questions presented in Subsection 1.4.

5.2 DATA SOURCES

5.2.1 Land Use and Cover

Land use and cover for Brazilian rural properties were obtained through the integration
of rural property polygons (shapefiles) obtained from the Land Tenure Map (De Freitas et al.,
2018) and land use and cover maps of the MapBiomas Project (MapBiomas, 2021), as
mentioned in Chapter 3. The wrapper component for these data sources was built by creating
scripts to extract metadata from these maps. With this integration, it was possible to map land
coverage and use at the rural property level.

Data from the Land Tenure Map are available in vector format (georeferenced
polygons), and data from land use and cover maps are available in raster format (bitmap). The
vector maps were copied to the cloud (Google Drive) to enable integration with the raster data
from the MapBiomas Project (2021), made available on the Google Earth Engine cloud
platform. We created scripts on the Google Earth Engine platform to overlay these
georeferenced maps and extract metadata from rural properties in the regions of interest by the
samples selected for the study, which will be detailed later in Subsection 5.3. The metadata
extracted included the size of the areas of each rural property, divided according to soil cover
and the type of soil cover in each region. This metadata was extracted directly into Google
Drive in CSV (comma-separated values) format. Figure 14 shows a diagram of the overlaying

and extracting data from maps.
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Figure 14: Overlay diagram and data extraction of polygonal maps and
land use and land cover maps
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Figure 15 shows, as an example, rural properties in Pedra Dourada city, state of Minas
Gerais, Brazil, projected onto images from the Landsat? satellite. Next, Figure 16 shows for
the same city, property polygons superimposed on the land use and cover map from collection
7.1 of the MapBiomas Project (MapBiomas, 2021). Moreover, Figure 16 includes legends for
identifying classes, codes, and colors of the land use and cover classification. Figure 17 shows

some excerpts of the script created for data integration and extraction.

22 https://landsat.gsfc.nasa.gov/satellites/landsat-8



Figure 15: Rural properties in the Pedra Dourada city superimposed on
images from the LandSat satellite
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Source: Prepared by the author in Google Earth Engine (2024)

Figure 16: Rural properties in the Pedra Dourada city overlaid on the
MapBiomas land use and cover map (2021)
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Figure 17: Script excerpts for overlaying and extracting land use and cover data after
integrating the property polygon and the land use and cover map.

GO gle Earth Engine Q  search places and datasets ‘} (7] a ﬁ
- wins - s ==L =5]

5
5 // Collection MapBiomas

i 6 var mapbiomas_collection = 'projects/mapbiomas-workspace/public/collection7/mapbiomas_collection7@_integration v2'
7

8 // Set the 1image collection

i 9 var mapbiomas = ee.Image(mapbiomas_collection)

16 print('Data mapbiomas', mapbiomas)

11

fari lanti

12 //Select the collection

13 var lulc_2021 = mapbiomas.select('classification_2021')

14

15 //Palette color

16 var palettes = require(‘users/mapbiomas/modules:Palettes.js').get( classifications');
17~ var vis = {

18 palette:palettes,

19 min:0,
20 max:49
i 21

22 print('Color palette',palettes)
23

24 //Add Layer

25 Map.addiayer(lulc_2021,vis,'Seil Use 2021 Brazil',false)
26

271 /-

28 // Set the areas of study

29 /,
30 // Set the IBGE microregion of Muriaé/MG (code 31063)

31

32 var estado_mg = ee.FeatureCollection('projects/ee-lzfsantos/assets/MG_UF_2021')
i 33 filter(ee.Filter.eq('co_UF','31%))

4

35 /) Defl\_\mg the cities ) . )
36 var municipios_microrregiao_muriae_mg = ee.FeatureCollection('proj

s/ee-lzfsantos/assets /MG_Municipios_2021')

37 .filter(ee.Filter.or(ee.Filter.eq('CD_MUN','3163188'), ee.Filter.eq('CD_MUN','3185589"), ee.Filter.eq('CD_MUN','3116103'),

38 ee.Filter.eq('CD_MUN','3113305'), ee.Filter.eq('CD_MUN','3122009'), ee.F1lter.sq('CD_MUN','3124203'), ee.Filter.eq('CD_MUN','3124906'), ee
i 39 ee.Filter.eq('CO_MUN','3143906'), ee.Filter.eq('CD_MUN','3145877'), ee.Filter.eq('CO_MIN','3148202'), ee.Filter.eq('CD_MUN','3149002'), ee

48

41 /7 Defining rural properties in the Pedra Dourada/MG city
42 var malha_fundiaria_pedra_dourada_mg = ee.FeatureCollection('projects/ee-lzfsantos/assets/rg_se_landtenure_imaflora_201810_sirgas')

43 filter(ee.F1lter.or(ee.Filter.eq('1d_imovel',115967), ee.Filter.eq('1d_imovel',216903), ee.Filter.eq('1d_imovel',94147), ee.Filter.eq('1d
44 ee.Filter.eq('id_imovel',183385), ee.Filter.eq('id_imovel',1268622), ee.Filter.eq('id_imovel' 1267886}, ee.Filter.eq('id_imovel',412942),
45 ee.Filter.eq('id_imovel',497369), ee.Filter.eql'id imovel', 971648}, ee.Filter.eq('id imovel',108318), ee.Filter.eq('id imovel',123712), ee
46 ee.Filter.eq('1d_imovel',2977135), ee.Filter.eq('1d_imovel',1625080), ee.Filter.eq('1d_imovel',189703), ee.Filter.eq('1d_imovel',1610811),
a7 ee.Filter.eg('1d_imovel',797003), ee.Filter.eg('1d_imovel',139643), ee.Filter.eq('id imovel',219505), ee.Filter.eq('1d_imovel',55847), ee
48 ee.Filter.eq('id_imovel',1621827), ee.Filter.eq('id_imovel',833585), ee.Filter.eq('id_imovel',1727745), ee.Filter.eq('1d_imovel',1792905]),
49 ee.Filter.eq('id_imovel',b1486417), ee.Filter.eq('id_imovel',1536777), ee.Filter.eq('id_imovel',1610186), ee.Filter.eq('1d imovel',1640498)

i 50 ee.Filter.eq('1d_imovel',3726352), ee.F1lter.eq('1d_imovel',3776346), ee.Filter.eq{'1d_imovel',3879980), ee.Filter.eq('1d_imovel',3919506)
51

52 // Outline of study areas

53 // Outline the state of MG

54 var empty = ee.Image().byte();

55+ var contorno_estado_mg = empty.paint({

56 featureCollection: estado_mg,

57 color: 1,

58 width: 2

59 });

60

61 // Outline of the cities of microregion 63 of the state of MG
62~ var contorno_municiplos_microrregiao_muriae = empty.paint({

63 featureCollection: municiples_microrreglac_murlas_mg,
64 color: 1,

65 width: 2

66 });

67

68 // Outline of the land map of the Pedra Dourada/MG
69~ var contorno_malha_fundiaria Pedra_Dourada = empty.paint({

70 featureCollection: malha_fundiaria_pedra_dourada_mg,
71 color: 1,
72 width: 2
73 H
74
T e L L PP LT
76 // Selection LandSat layer (cloudless Landsat & surface reflectance composite)
Y
78 var input_LandSat = ee.TmageCollection('LANDSAT/LCO8/C02/T1_12")
79 .filterBounds (municipios_microrregiao_muriae_mg)
80 filterDate('2019-01-01", '2022-91-01")
8l .filter(ee.Filter.lt('CLOUD_COVER', 1))
82 .med1an()
83 .clip{municipios_microrregiao_muriae_mg)
i 84 .select('SR_B.").multiply(0.0000275) .add(-6.2) //fator de escala
85
-t
87 // Cutting out the bases for the same area and adding collection
B8 oo

89 var mapbiomas_clip_malha_fundiaria_Pedra_Dourada = lulc_2021.clip(malha_fundiaria_pedra_dourada_mg)
90 var mapbiomas_clip_mun_micro_rg_murize = lulc_2021.clip(municipios_microrreglao_murias_mg)

91
L
93 // Calculation of 1image area in Mapbiomas collection v7
L
95~ var calculateClassArea = function(feature) {
96 var areas = ee.Image.pixelArea().addBands (mapbiomas_clip_malha_fundiaria_Pedra_Dourada)
a7 . reduceRegion({
98~ reducer: ee.Reducer.sum().group({
99 groupField: 1,
100 groupName: 'class’,
101 H,
102 geometry: feature.geometry(),
163 scale: 2@,
104 maxPixels: leld
i 105 )
106
i 107 var classAreas = ee.List(areas.get('groups’))
108~ var classArealists = classAreas.map(function(item) {
i 109 var areaDict = ee.Dictionary(item)
i 110 var classhumber = ee.Number(areaDict.get( 'class')).format()
i 111 var area = ee.Number(areaDict.get('sum')).divide(le6) .multiply(100).format('%.27")
i 112 area = ee.Number(area)
i 113 return ee.List([classNumber, area])
i 114 1
115
i 116 var result = ee.DictionarylclassArealists.flatten())
i 117 var farm = feature.get('id_imovel')
i 118 return ee.Feature(feature.geometry(), result.set('Imovel', farm))
i 119}

Source: Prepared by the author in Google Earth Engine (2024)
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5.2.2 Soil Carbon Stocks

One integrated data source was the soil carbon stock from the entire Brazilian territory.
This is the first MapBiomas collection related to carbon stocks in Brazilian soil, covering the
period from 1985 to 2021 (MapBiomas, 2023).

MapBiomas soil maps were created using data from the SoilData Repository* and
dozens of environmental covariates representing Brazilian soil formation factors.
Environmental covariates were used to consider the temporal coverage of the data, which can
be static, without temporal reference, or dynamic, with annual data. Among the static variables
are the soil's morphometric characteristics, the climate classification, biome,
phytophysiognomies, and preexisting maps of soil properties. Temporal carbon dynamics were
modeled based on land use and land cover data from the MapBiomas 7.1 collection, which
considers dynamic covariates (MapBiomas, 2023).

The regression models were implemented as machine learning algorithms and represent
the best that the available data and information allowed to produce. The regression method used

to predict carbon stock was Random Forest?*

. The processing of covariates, the training of
predictive models, and the spatio-temporal flexibility of carbon stocks were carried out in
Google Earth Engine (MapBiomas, 2023).

The quantification is calculated by the amount of carbon in the soil's surface layer,
ranging from the surface to a depth of 30 centimeters in tons per hectare (t/ha). This layer is
essential, as it is where the most significant interaction between plant roots, the decomposition
of organic matter, and the formation of soil occurs (MapBiomas, 2023)

In these soil carbon maps, the smallest geographic section is at the municipality level.
All rural properties in the same city have the same estimates, varying, however, according to
soil use and coverage. In this way, the wrapper component for this data source was built using
scripts from the MapBiomas Project (2023) on the Google Earth Engine platform. The scripts
exported the soil carbon data in CSV (comma separated values) format.

Considering that the scripts used provide the totalization of soil carbon by the city, the
following steps were carried out to integrate the data: (i) calculate soil carbon per hectare and

for each land cover area of the selected municipality; (ii) with the value obtained in the first

stage, calculate the value of the carbon stock for each area of the selected farms.

2 https://soildata.mapbiomas.org
24 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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Figure 18, shows the carbon map in the soil with a section by biome (Mata Atlantica

biome, in this case) in an image generated by Google Earth Engine.

Figure 18: Soil carbon map of the Mata Atlantica biome
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Source: Google Earth Engine (2024).

5.2.3 Carbon Emissions from Land Use

Data on carbon emission estimates from land use and cover were extracted from the
BRLUC (Brazilian Use Change) Method, developed by researchers from the Brazilian
Agricultural Research Corporation - EMBRAPA (BRLUC, 2022; Garofalo et al., 2022). The
BRLUC is a method to estimate the direct land use change (LUC) associated with Brazilian
agricultural products and the derived CO> emissions at national, state, and municipal levels.
The study provides data on CO» emission rates associated with land use for all 5,570 Brazilian
cities and all 64 crops available in the IBGE database, in addition to forestry and planted
pastures, using spatially explicit land conversion data.

In an ideal scenario, carbon balance studies should use data specific to the system under
analysis, such as data collected on the farms under study. This ideal scenario includes local
measurements from sensors in the soil, measurements of fertilizer use, fuel use in machines,

electricity, and the availability of data on the control of animal husbandry. Despite being the
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ideal scenario, this data is often unavailable or may require high costs to obtain. In these cases,
the BRLUC method supports studies with estimates produced with regionalized data and in
accordance with international protocols (BRLUC, 2022).

The data generated by the BRLUC method is available on the project website*>. The
wrapper component consisted of extracting data in CSV format, to be integrated into the

CarbOnto ontology.

5.2.4 Correspondences between Land Cover Classes and Crops

To calculate the carbon stock, we used the carbon map from the MapBiomas Project,
which covers the entire Brazilian territory. Although the BRLUC method also presents carbon
stock values by type of crop in all Brazilian municipalities, some MapBiomas classes and types
of BRLUC crops do not correspond.

We associated the data obtained from crops (BRLUC method) with the corresponding
locations' soil cover classes (MapBiomas Project). In this way, we could calculate the emissions
for each land cover area (crop, forest, pasture, among others) on the rural property. However,
as mentioned, there are limitations in the correspondence between classes and crops, mainly
because: (i) the MapBiomas classes related to non-vegetated areas and water bodies were not
addressed in the BRLUC method. Therefore, these areas were excluded during integration into
our ontology; (i1) MapBiomas has a class called “Mosaic of Uses”, corresponding to areas
where it was not possible to distinguish pasture from agriculture in the classification process in
collection 7.1. The “Mosaic of Uses” class in the BRLUC Method has corresponding crops in
the “Temporary,” “Permanent,” and “Planted Pasture” crops. In our study, we defined the
“Mosaic of Uses” class with the corresponding “Planted Pasture” from BRLUC; (iii) the
BRLUC method provides data for 64 crops, but there are no classes corresponding to all of
them in MapBiomas. Therefore, there is not always a direct relationship between a MapBiomas
class and the crop of the BRLUC method. In this way, we establish correspondence
relationships between classes and according to the definitions found in the studies: BRLUC
(Garofalo et al., 2022) and the MapBiomas Project (Souza Jr et al., 2020; MapBiomas, 2021).

Table 2 shows the correspondences between classes and crops used in this study.

%5 https://brluc.cnpma.embrapa.br
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Table 2: Correspondences between classes and crops for data integration

BRLUC

Sugar | Planted | Forest Temporary
. |Sovbean !

cane | Pasture |Plantation i Crops

Cotton| Rice |Orange|Coffee

L¥5)

Forest Formation
4|Savanna Formation
Forest Plantation

12| Grassland

13| Other non Forest Formations
15|Pasture

19| Temporary Crop
20|Sugar cane

21|Mosaic of Uses
36|Perennial Crop
39|Soybean

40|Rice

41| Other Temporary Crops
46|Coffee

47| Citrus

48| Other Perennial Crops
62| Cotton

Source: Prepared by the author (2024)

=]

MapBiomas

5.2.5 City and Biome Data

Data on Brazilian cities with the code of the city®®, their respective state and biome?’
were obtained from the website of the Brazilian Institute of Geography and Statistics (IBGE),
in spreadsheet format (.x/s). The wrapper component for this data source was built to extract
the data of interest from these spreadsheets for integration.

Each biome has distinct characteristics and a different relationship with carbon stocks.
Knowing the location of these stocks in Brazilian biomes and their temporal dynamics is crucial
in calculating realistic estimates of greenhouse gas emissions and removals across the country

(Tsai et al., 2023).

5.2.6 Climate Data

As a formation factor, climate refers to the availability of water, air, and heat in the
interior and the atmosphere close to the soil's surface. These conditions determine biological
activity in a location, regulating the accumulation rate of photoassimilates by vegetation and

soil microbiota. The carbon stocks vary from region to region, depending on current local use

2 hitps://bit.ly/dtb_ibge
27 https://bit.ly/biome_ibge
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and coverage and conditions in previous years. Therefore, the climate acts as a regulator of
carbon inputs and outputs (MapBiomas, 2023). In this study, we used the Kdppen climate
classification, illustrated in Figure 19, considered the first quantitative climate classification of
regions worldwide (Alvares et al., 2013). Data were obtained in electronic spreadsheet format
(.xls). The wrapper component for this data source was built to extract the data of interest from

these spreadsheets for integration.

Figure 19: Climate classification for Brazil according to the Koppen criteria
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5.2.7 Data Extraction Diagram

The CarboFarm architecture has specific wrappers to extract the datasets from the
sources to an adequate format for integration. The creation of these wrappers was mentioned
when discussing each data source. As these are heterogeneous data sources, the specification
of new wrappers will depend on the data format provided by the source. In our study, some data
could already be extracted from sources in formats suitable for integration, while others needed
to be processed for inclusion.

In this CarboFarm architecture version, the following data sources were integrated:

Land Tenure Map (De Freitas ef al., 2018), Land Use Map (MapBiomas, 2021), Brazilian Land
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Use Change Method (BRLUC, 2022), Annual Mapping of Soil Organic Carbon Stock in Brazil
(MapBiomas, 2023), data on Brazilian cities and biome (IBGE), and climate (Alvares ef al.,
2013).

Figure 20 shows an overview diagram of the data extraction and integration model.

Figure 20: Data extraction and integration diagram used in this study
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Source: Prepared by the author (2024)

5.3 DEFINITION OF RURAL PROPERTIES FOR STUDY

According to the selected data sources, it would be possible to generate land use GHG
inventories for 82.6% of the Brazilian territory, covering 4,519,223 different properties, the
limit of which is the number of properties in the Land Tenure Map (De Freitas et al., 2018).
However, for the case study, we sampled 91,747 properties corresponding to 295,854
cultivation areas, whose selection criteria were defined as follows:

(i) The number of farms per biome between 15,000 and 16,000 units;

(i1)) Within each biome, rural properties were selected in regions with great land cover

diversity, using as a reference the land use and occupation map of the MapBiomas
Project (MapBiomas, 2021). Furthermore, the production issue was considered, that
is, the search for regions with agricultural production. Data from the EMBRAPA

Territorial®® and the Brazilian Agricultural Observatory were used as references, in

28 https://www.embrapa.br/territorial
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addition to access to the websites of the city halls of these regions, in order to obtain

information on the agricultural production of the cities;

(i11)) We excluded of exclusively forested areas, which primarily in the Amazon biome,

due to their lower diversity of soil cover. These areas are already investigated by

projects and studies on carbon credits within the Reduction of Emissions from

Deforestation and Forest Degradation (REDD+)* mechanism. The scope of this

study is related to reductions in AFOLU?® (Agriculture, Forestry, and Other Land

Use) emissions resulting from changes in land use and cover.

The following tables (3, 4, 5, 6, 7 and 8) list the cities, the number of rural properties,

and the areas into which these properties are divided, selected for each Brazilian biome:

Amazonia, Caatinga, Cerrado, Mata Atlantica, Pampa, and Pantanal. The Figures 22, 23, 34,

25, 26 and 27 accompanying the tables show partial maps of Brazil, with selected states and

municipalities highlighted by a blue contour line. The selected cities are covered in colors

representing land use and coverage (MapBiomas, 2021). The maps in the figures are the result

of the integration of georeferenced geometries (vector data) (De Freitas ef al., 2018) and data

in raster format (MapBiomas, 2021), carried out in Google Earth Engine.

Amazonia Biome: Table 3 contains information on the cities in Rondonia state, selected as

representatives of the Amazonia biome. Figure 21 highlights the state of Rondonia and the cities

selected for the study.

Table 3: Numbers of study areas and farms by cities in the Amazonia biome

City Code City Name Number of Number of
Farms Areas

1100015 | Alta Floresta D'Oeste 3801 8651
1100049 | Cacoal 4644 9949
1100098 | Espigdo D'Oeste 2623 6701
1100379 | Alto Alegre dos Parecis 1639 5393
1100908 | Castanheiras 1187 2656
1101203 | Ministro Andreazza 1435 3199

Total 15329 36549

Source: Prepared by the author

2 https://unfccc.int/topics/land-use/workstreams/redd/what-is-redd

39 https://www.ipcc.ch/report/ar5/wg3/agriculture-forestry-and-other-land-use-afolu



83

Figure 21: Partial map of Brazil, highlighted (blue line) the state of Rondonia and the
cities in the Amazodnia biome selected for the study
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Source: Prepared by the author in Google Earth Engine (2024)

Caatinga Biome: Table 4 contains information on the cities in Ceard state, selected as
representatives of the Caatinga biome. Figure 22 highlights the state of Ceara and the cities
selected for the study.

Table 4: Numbers of study areas and farms by cities in the Caatinga biome

City Code City Name Number of Farms Number of
Areas
2301901 |Barbalha 933 2766
2303105 |Cariré 547 1631
2303402 | Carnaubal 236 958
2304202 | Crato 1737 5127
2304236 |Croata 266 1098
2304350 |Forquilha 301 775
2304657 |Graga 426 1076
2304905 | Groairas 385 1140
2305001 | Guaraciaba do Norte 476 1962
2305308 |Ibiapina 398 1582
2306108 |Irauguba 423 1370
2307106 |Jardim 1782 5402
2307304 | Juazeiro do Norte 194 727
2308005 | Massapé 261 708
2308377 |Miraima 296 1088
2309003 | Mucambo 385 841
2309201 |Nova Olinda 694 2128
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2309904 | Pacuja 102 353
2311108 |Porteiras 996 2858
2312007 |Santana do Acarau 432 1498
2312106 |Santana do Cariri 1142 3674
2312304 | Sao Benedito 392 1585
2312809 |Senador Sa 143 385
2312908 | Sobral 1062 3396
2313401 |Tiangud 365 1018
2313609 | Ubajara 116 387
2314102 | Vigosa do Ceard 678 1793

Total 15168 47326

Source: Prepared by the author

Figure 22: Partial map of Brazil, highlighted (blue line) the state of Ceara and the cities
in the Caatinga biome selected for the study

Source: Prepared by the author in Google
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rth Engine (2024)

Cerrado Biome: Table 5 contains information on the cities of Goias, Mato Grosso, and Mato

Grosso do Sul states, selected as representatives of the Cerrado biome. Figure 23 highlights

Partial map of Brazil, highlighting (blue line) the states of Goias, Mato Grosso, and Mato

Grosso do Sul and the cities selected for the study.

Table 5: Numbers of study areas and farms by cities in the Cerrado biome

City Code City Name Number of Farms Number of
Areas
5005608 | Miranda 495 1958
5006903 | Porto Murtinho 717 2769
5104609 | Itiquira 957 4471
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5105200 |Juscimeira 845 3313
5105903 | Nobres 437 2002
5106109 |Nossa Senhora do Livramento 1250 4469
5106224 | Nova Mutum 1846 7610
5107768 | Santa Rita do Trivelato 806 3293
5201454 | Aparecida do Rio Doce 172 674
5201504 | Aporé 520 2057
5204409 | CaiapOnia 2143 10431
5205059 | Castelandia 133 586
5205471 | Chapaddo do Céu 325 1475
5211909 | Jatai 2687 11914
5213004 |Maurilandia 236 1085
5213103 | Mineiros 1985 9784

Total 15554 67891

Source: Prepared by the author

Figure 23: Partial map of Brazil, highlighted (blue line) the states of Goias, Mato Grosso, and
Mato Grosso do Sul and the cities in the Cerrado biome selected for the study
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Source: Prepared by the author in Google Earth Engine (2024)
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Mata Atliantica Biome: Table 6 contains information on the cities in Minas Gerais state,

selected as representatives of the Mata Atlantica biome. Figure 24 highlights the state of Minas

Gerais and the cities selected for the study.

Table 6: Numbers of study areas and farms by cities in the Mata Atlantica biome

City Code

City Name

Number of Farms

Number of
Areas

3103108

Antonio Prado de Minas

225

692
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3105509 |Barao de Monte Alto 359 952
3110103 |Caiana 479 1726
3113305 | Carangola 1221 4067
3122009 |Divino 1727 5644
3124203 | Espera Feliz 1497 5468
3124906 | Eugendpolis 886 2862
3125309 |Faria Lemos 228 797
3125952 | Fervedouro 834 2896
3142106 |Miradouro 1015 3254
3142205 | Mirai 642 1823
3143906 |Muriaé 2201 6133
3145877 | Orizania 738 2289
3148202 | Patrocinio do Muriaé 330 853
3149002 |Pedra Dourada 221 846
3156452 |Rosario da Limeira 397 1338
3161403 | Sdo Francisco do Gloéria 494 1584
3164431 |Sao Sebastido da Vargem Alegre 390 1304
3169208 | Tombos 714 2249
3171402 | Vieiras 508 1645

15106 48422

Source: Prepared by the author

Figure 24: Partial map of Brazil, highlighted (blue line) the state of Minas Gerais and the
cities in the Mata Atlantica biome selected for the study
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Source: Prepared by the author in Google Earth Engine (2024)
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Bioma Pampa: Table 7 contains information on the cities in Rio Grande do Sul state, selected

as representatives of the Pampa biome. Figure 25 highlights the state of Rio Grande do Sul and

the cities selected for the study.

Table 7: Numbers of study areas and farms by cities in the Pampa biome

City Code City Name Number of Farms | Number of Areas
4302907 | Cacequi 1008 3824
4306379 |Dilermando de Aguiar 906 2958
4316402 | Roséario do Sul 1843 6138
4316907 | Santa Maria 4193 13145
4316972 | Santa Margarida do Sul 459 1652
4319125 | S@o Martinho da Serra 1191 4788
4319406 | Sao Pedro do Sul 2231 9711
4319604 | Sao Sepé 2520 8889
4319802 | Sao Vicente do Sul 1182 3991

15533 55096

Source: Prepared by the author

Figure 25: Partial map of Brazil, highlighted (blue line) the state of Rio Grande do Sul and the
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Pantanal Biome: Table 8 contains information on the cities of Mato Grosso and Mato Grosso

do Sul states, selected as representatives of the Pantanal biome. Figure 26 highlights the states

of Mato Grosso and Mato Grosso do Sul and the cities chosen for the study.
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Table 8: Numbers of study areas and farms by cities in the Pantanal biome

City City Name Number of Farms | Number of Areas

Code
5001102 | Aquidauana 1839 5842
5005202 | Ladéario 99 314
5007406 | Rio Verde de Mato Grosso 1379 4896
5101605 | Bardo de Melgaco 743 2194
5102504 | Caceres 6418 11937
5103437 | Curvelandia 271 762
5106505 | Poconé 2637 8415
5107602 | Rondonodpolis 1671 6210
15057 40570

Source: Prepared by the author

Figure 26: Partial map of Brazil, highlighted (blue line) the states of Mato Grosso and Mato
Grosso do Sul and the cities in the Pantanal biome selected for the study
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Source: Prepared by the author in Google Earth Engine (2024)

According to data in Table 9, the study covers a total of 91,747 (ninety-one thousand

seven hundred and forty-seven) farms and 295,854 (two hundred and ninety-five thousand eight

hundred and fifty-four) cultivation areas of these farms.
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Table 9: Totalization of quantities of farms and study areas.

Biome Number of Farms Number of Areas
A oni 15329 36549
mazonia
Caati 15168 47326
aatinga
Cerrado 15554 67891
Mata Atlantica 15106 48422
P 15533 55096
ampa
Pantanal 15057 40570
Total 91747 295854

Source: Prepared by the author

5.4 CARBONTO DATA INTEGRATION IN THE CLOUD ENVIRONMENT

The land use, land cover, and soil carbon stock datasets were extracted by wrappers
(scripts built on the Google Earth Engine cloud platform) directly to Google Drive in “.csv”
format files. The other data sets (carbon emissions from crops using the BRLUC method, data
from municipalities, biomes, and climate) were copied to Google Drive in files in the ".csv "
and “.xIs” format. In this case, the wrappers for extracting the data of interest were built in
Google Colab, an environment described below. The “.owl” file with the CarbOnto ontological
model, generated in the Protégé software, was also copied to Google Drive.

Therefore, the environment used to create the integration scripts was Google
Collaboration, also known as Google Colab®!| a platform that offers a cloud service with many
of the following functionalities suitable for the CarboFarm architecture, such as access via
browser; creation and execution of codes in the Python language collaboratively; integration
with Google Drive; - access to computing resources (processing, memory, and storage) free of
charge and also upon subscription to the service; integrated data visualization.

Access to the environment is carried out through authentication with Google Gmail*?
credentials. In the free version, storage and memory space is available. The concept of
“computation units” is used for processing, which have dynamically adjusted limits in the free
version. According to the service's usage policy™ processing capacity may vary, and unlimited

resources are not guaranteed. Application development at Google Colab is based on Jupyter

31 https://colab.research.google.com
32 https://mail.google.com
33 https://research.google.com/colaboratory/intl/pt-BR/faq.html
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Notebook®!. To implement the CarbOnto ontology in the cloud, the OWLReady2*® framework
was used.

As defined in the CarboFarm architecture (Subsection 3.1), through the bottom-up
strategy (Ozsu and Valduriez, 2020), data integrated with the CarbOnto ontology persisted in
the quadstore database after integration. Quadstore is an OWL semantic level database that
comes with the OWLReady?2 framework and stores quadruplets in RDF format; that is, RDF
triples in the form (subject, property, object) plus an ontology identifier. The database stores all
information from loaded ontologies in a compact format. It can be placed in RAM or on disk
in the form of an SQLite’® database file. The Owlready? library loads ontology entities on
demand and automatically removes them from RAM when no longer needed. Additionally, if
these entities are modified, Owlready2 automatically updates the quadstore. The diagram in
Figure 28 shows the architecture of Owlready?2. This architecture allows the loading of large
ontologies (several tens or hundreds of gigabytes) while accessing specific entities very quickly,
for example, with a textual search (Lamy, 2021).

CarbOnto was implemented to meet flexibility and scalability requirements. It can easily
extend the model for specific niches. It can accommodate many classes because the ontology
instantiation is executed using the Persistent World (PW) library, which enables the processing
of large volumes of data and has an optimized processing performance to load and perform
inferences. This approach divides the ontology into a model (TBox — only model description)
and a complete ontology (Tbox + Abox, description of model and instances). From Tbox, a
world is created to receive a limited number of instances and limit the reasoner's processing
time (the architecture currently uses the Pellet reasoner). After inference processing, this
processed new world is loaded into the complete ontology for queries. PW allows the

persistence of all the worlds of ontologies created and loaded.

34 https://jupyter.org/
35 https://owlready2.readthedocs.io
36 https://www.sqlite.org
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Figure 27: Overview of the Owlready?2 architecture
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Source: Lamy (2017).

5.4.1 Inferences and SWRL Rules

As the integration scripts run, the ontology classes are instantiated for loading into
memory, and the Pellet reasoner also runs, generating new data through inferences and SWRL
rules. Then, all data is stored in the quadstore database. The images below show an example of
the steps carried out from extracting land cover and usage data on the Google Earth Engine
platform to integrating the data into the CarbOnto ontology, with the inferences and calculations
carried out by the SWRL rules. It should be noted that the ontology steps are carried out via
code on the Google Colab platform. However, for demonstration purposes, we loaded data into
the Protégé software to facilitate the visualization of some examples.

Figure 28 shows, as an example, four rural properties identified by their respective
codes, located in the municipality of Caiana, state of Minas Gerais, Brazil. In the image, it is
possible to observe the areas of soil coverage identified by colors. The values are expressed in

tCOz.ha'l.yr™! (ton of carbon per hectare per year). Table 10 shows the related data.



Figure 28: Land cover map of rural properties in the Caiana/MG city
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Source: Prepared by the author in Google Earth Engine (2024)

Table 10: Emission estimates and carbon stock from the areas of the farms

Estimates of CO2 | Estimates of CO2 stock | Estimates of CO2 | Estimates of CO2 | Positive carbon
Cun\;r::e Color| Legend Classes |Area (ha)| emission by hectare | in soil by hectare in | emission by area in |stock in soil by area balance

in tCO2.ha yr tCo2.ha yr" tCo2.hayrt in tC02.hayr® |(stock - emission)

Farm ID: 3851328
3 - Forest Formation 1,15 -0,42 54,491 -0,483 62,665 63,148
15 Pasture 12,18 0,36 52,801 4385 643,117 638,732
21 Mosaic of Uses 248 0,36 52,041 0,893 129,061 128,169
a6 Coffee 0,82 2,72 53,028 -2,230 43,483 45713
Total 2,564 878,325 875,761

Farm ID: 3388089
3 - Forest Formation 5,16 -0,42 54,491 -2,167 281,174 283,341
15 Pasture B9 0,36 52,801 3,204 469,929 466,725
21 Mosaic of Uses 6,43 0,36 52,041 2,315 334,623 332,308
46 Coffee 0,79 -2,72 53,028 -2,14% 41,892 44 041
Total 120 112762 112641

Farm ID: 1854245
3 - Forest Formation 8,56 -0,42 54,491 -3,595 466,443 470,038
15 Pasture 15,7 0,36 52,801 5,652 828,977 823,325
21 Mosaic of Uses 9,17 0,36 52,041 3,301 477,215 473,914
a6 Coffee 0,54 2,72 53,028 -1,469 28,635 30,104
Total 3,89 1801,27 1747,38

Farm ID: 3806624
3 - Forest Formation 5,43 -0,42 54,4581 -2,701 350,377 353,078
15 Pasture 6,67 0,36 52,801 2,401 352,183 345,782
21 Mosaic of Uses 474 0,36 52,041 1,706 246,674 244 867
a6 Coffee 3,46 2,72 53,028 -9,411 183,475 192,386
Total -8,00 1132,71 1140,71

Source: Prepared by the author (2024)
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The data in Table 10 were obtained using the following SPARQL?? (Protocol and

Resource Description Framework Query Language) query.

PREFIX carbonto: <http://www.semanticweb.org/administrador/ontologies/2023/05/CarbonOnto4-0#>
SELECT ?farm ?farm_area ?area_size ?emission CO2 ha ?stock CO2 ha ?emission CO2 area
?stock CO2_area ?balance CO2 area
WHERE{
?farm carbonto:hasPart ?farm_area .
?7farm_area a carbonto:Farm_Area .
7farm_area carbonto:hasSizeFarmArea ?area_size .
?farm_area carbonto:hasEmissionValueCO2FarmAreaHa ?emission_ CO2 ha .
?farm_area carbonto:hasSequestrationValueCO2FarmAreaHa ?stock CO2 ha .
?7farm_area carbonto:hasEmissionValueCO2FarmArea ?emission_ CO2_area .
7farm_area carbonto:hasSequestrationValueCO2FarmArea ?stock CO2_area .
7farm_area carbonto:hasCO2BalanceFarmArea ?balance CO2_area .

GROUP BY ?farm ?farm_area ?area size ?emission CO2 ha ?stock CO2 ha ?emission CO2 area
?stock CO2 area ?balance CO2 area
ORDER BY ?farm ?farm_area

From Table 10, we can observe the codes, colors, legends, and sizes of the planted areas
of the farms identified with the IDs 3851328, 3388089, 1954243, and 3806624. We used the
same identification codes from the Land Tenure Map (De Freitas et al., 2018). The other
columns of the table contain the following data: (i) carbon emission estimates of the type of
cultivation in the area per hectare, obtained using the BRLUC method (BRLUC, 2022); (ii)
estimates of soil carbon per hectare, obtained from the Soil Carbon Map (MapBiomas, 2023);
(i11) carbon emission estimates for the entire area, calculated based on estimates per hectare and
the size of the area; (iv) stock estimates for the entire area, calculated based on estimates per
hectare and area size; (v) carbon balance of the area, obtained by the difference between stock
and emission. Finally, we have the sum of the areas corresponding to each farm's carbon balance
by land use.

The images below present the inferences and results of processing the SWRL rules
related to land use on the farm with ID: 3806624. Figure 29 displays the Protégé software
screenshot with the farm's data, while the images in Figures 30 and 31 display data for each
area of that farm. The yellow highlights the “Object property assertions”, representing land use
inferences. The highlights of the “Data property assertions” represent the calculations carried

out by SWRL related to land use.

37 https://www.w3.0rg/2001/sw/wiki/SPARQL
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Figure 29: Inferences for the farm with ID: 3806624.
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Figure 30: Inferences and results of SWRL rules for areas with codes 3 and 15 of the farm with
ID: 3806624
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Figure 31: Inferences and results of SWRL rules for areas with codes 21 and 46 of the farm

with ID: 3806624
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The diagram in Figure 32 represents the main classes with their respective instances

related to land use, farm ID: 3806624, and its code area 3 (Forest Formation).

Figure 32: Representative diagram of CarbOnto classes with their instances. The values
highlighted in green are the results of SWRL rule calculations.
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5.4.2 Answers to Competency Questions

With integrated data from Brazilian farms using the CarbOnto ontology, we could
answer competency questions related to land use and land cover (specified in Section 4.2). The
other CQ were not answered, considering they are related to electric energy consumption,
fertilizer use, and livestock, which are outside our study.

The CQ3 “What are the non-mechanical sources of GHG emissions from a farm” was
partially answered. The integrated data dealt with the non-mechanical emission source “land
cover and use”.

The CQ4.1 “How many cultivation areas does the farm have?” was fully answered
when CarboOnto identified and counted the areas of the farms studied. As an example, Table
10 shows the results for four farms located in the Caiana/MG city.

The CQ4.2 “What are the GHG emission values for each cultivation area?” was
answered partially, considering that the emission values of the integrated data were only
computed data related to land cover and use. No data on soil treatment with organic or inorganic

substances, such as fertilizers, limestone, and urea, was integrated. Adding the GHG emissions
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of these substances is essential for a complete balance. However, as mentioned, no public
databases were found with this data. We believe they can be added to smart farm inventories
or, collaboratively, by rural landowners. Example values of emissions related to land use are
shown in Table 10.

The CQ5 “What are the non-mechanical sources of GHG sequestration from a farm?”
was answered completely, considering that the sources of stock on rural properties are the soil,
which contains stored carbon, and vegetation, which, depending on the type, sequesters
different amounts of carbon. An example data is shown in Table 10.

The CQ6.1 “What are the GHG sequestration values for each cultivation area?” was

answered completely, with example data in Table 10.

5.5 DATASET EXPORT TO MACHINE LEARNING

The data integrated by the CarbOnto ontology was stored in the quadstore database. The
use of an ontological model played a key role in the generation of knowledge through the
addition of semantic information, which can be a gain in the generation of agricultural
inventories. Furthermore, ontology contributed to the standardization and interpretation of the
meaning of terms, eliminating or reducing conceptual and terminological confusion.
Standardizing terms in the context of GHG inventories is very important for the interoperability
of applications from the same domain, mainly to prevent the same metrics from being named
or defined by different terms.

From the database, datasets were exported for processing using machine learning
techniques. The file is called “data_integration_all areas.csv” and contains the areas of the
rural properties analyzed, with the format specified in Table 11. In this file, the granularity is at
the “area” level, that is, the areas of all sampled properties. Cultivation areas are grouped to

generate the total balance per farm when necessary.

Table 11: Data_integration_all _areas.csv file format.

Field Format Description

index integer | Identifier of record

farm cod integer | Code of the farm holding the area

area cod integer | Vegetation cover code for the area according to the Mapiomas
Project classification (MAPBIOMAS, 2021)

area name string Name of the area's vegetation cover according to the Mapbiomas
Project classification (MAPBIOMAS, 2021)

area size float Area size in hectares
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CO?2 emission ha | float Carbon emission value per hectare

CO?2 emission area | float Carbon emission value across the entire area

CO2 stock ha float Soil carbon stock value per hectare

CO2 stock area float Area-wide carbon stock value

balance CO2 area | float Carbon balance (stock — emission) of the area

balance CO2 ha float Carbon balance (stock — emission) of the hectare related to that
area

city cod integer | Code of the city to which the farm belongs, according to the IBGE
table of state and municipal codes (IBGE-DTB, 2022)

city name string Name of the city to which the farm belongs

state cod integer | Code of the state to which the city belongs, according to the IBGE
table of state and municipal codes (IBGE-DTB, 2022)

state name string Name of the state to which the city belongs

biome cod integer | Code of the biome where the farm is located, defined in this study
by the alphabetical order of the names of the biomes.

biome name string Name of the biome where the farm is located

climate cod integer | Climate code according to the location of the farm and Koppen
climate classification (ALVARES et al., 2013)

climate name string Climate acronyms according to the Koppen climate classification
(ALVARES et al, 2013)

year integer | Data reference year

Source: Prepared by the author (2024)

Table 12 present examples of data exported through the “data integration

_all areas.csv” file.




Table 12: Example of data exported in the data_integration_all areas.csv file
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Al B | ¢ | D L& | F | G | H | | | i | K Lt ] M N | o | ] Q | R s LT

1 |index farm area_cod area_name area_size CO2_emission_ha CO2_emission_area (CO2_stock_ha C02_stock_area balance_CO0O2_area balance_CO2_ha city_cod cily name state_cod slale_name biome_cod biome_name climate_cod climale_name year
2 | 14614170 3Forest Formation  1.67 -3.45 -5.7615 44,15802955503968 73.74390935691626 79.50540935601626 47.60802955503968 = 5001102 Aquidauana 50 Mato Grosso do Sul 6 Pantanal 2Am 2021
= 2 4614170 4 Savanna Formation 0.07 -3.45 -0.2415 136.31954601461695 2.54236682210231866 2.7838682210231864 39.76054601461604 = 5001102 Aquidauana 50Mato Grosso do Sul 6 Pantanal 2Am L2021
4 | 3 4614170 12 Grassland 16.02 3.23 51.7446 33.580499358277734 537.0505007196093 486.2148007196093 30.35049935827773 = 5001102 Aquidauana 50Mato Grosso do Sul 6 Pantanal 2Am 2021
5 | 44614170 15 Pasture 5.01 3.23 16.182209009990998 30.530254859310007 153.00166734614314 136.81936734614314 27.30925495931001 = 5001102 Aquidauana 50Mato Grosso do Sul 6 Pantanal 2Am 2021
6 5 4597948 12 Grassland 13 3.23 4,199 33.580489358277734 43.65464916576106 139.45564916576106 30,350499358277737 5001102 Aquidauana 50 Mato Grosso do Sul & Pantanal 2Am 2021
7 | 64597948 15 Pasture ki | 323 10.3683 30.539254950310007 98.03100841038512 87.66270841938511 27.300254950310003 5001102 Aquidauana 50 Mato Grosso do Sul & Pantanal 2Am 2021
—_iasil 7 4597481 3Forest Formation  0.38 -3.45 -1.3110000000000002 44.15802055503068 16.78005123091508 18.00105123001508 47.608029555030685 5001102 Aquidauana 50 Mato Grosso do Sul i Pantanal 2Am 2021
g B 4597481 4 Savanna Formation 0.18 -3.45 -0,621 36.31954601461695 6.5375182826310505 7.15851828263105 39.76954601461695 5001102 Aquidauana 50 Mato Grosso do Sul 6 Pantanal 2Am 2021
_10 | 9 4597481 12 Grassland 1.46 3.23 4.7158 33.580409358277734 40.02752006308549 44.31172906308549 30.35049935827773 = 5001102 Aquidauana 50Mato Grosso do Sul 6 Pantanal 2Am 2021
11| 10 4597481 15Pasture 2.61 3.23 8.430200090999999  30.530254959310007 79.70745544379912 71.27715544379912 27.309254958310007 5001102 Aquidauana 50Mato Grosso de Sul G Pantanal 2Am 2021
_12 | 113821285 3Forest Formation  12.77 -3.45 -44.0565 44.15802955503068 563.8080374178567 607.9545374176567 47.608029555030685 5001102 Aquidauana 50 Mato Grosso do Sul @ Pantanal 2Am 2021
13| 12 3821285 4 Savanna Formation 138.71  -3.45 -478.5495000000001 36.31954601461695 5037.884227687517 5516.433727687517 39.76954601461694 = 5001102 Aquidauana 50Mato Grosso do Sul 6 Pantanal 2Am L2021
14 | 13 3821285 12 Grassland 1740.39 3.23 5621.4597 33.580499358277734 58443.165276815299 52821.70557815200 30.350499358277737 5001102 Aquidauana 50Mato Grosso do Sul 6 Pantanal 2Am 2021
15 | 14 3821285 15 Pasture 48773  3.23 1575.3679 30.539254850310007 14884.910821304273 13310.542021304272 27.30925495031001 = 5001102 Aquidauana 50Mato Grosso do Sul G Pantanal 2Am 2021
16 | 15 4038736 3Forest Formation  38.05 -3.45 -131.2725 44.15802055503968 1680.2130245692597 1811.48552456026 47.60802955503868 = 5001102 Aquidauana 50 Mato Grosso do Sul & Pantanal 2Am 2021
17 | 164038736 4 Savanna Formation 147.34  -3.45 -508.323 36.31954601461605 5351.321909793661 5850.644909793661 39.76954601461695 5001102 Aquidauana 50 Mato Grosso do Sul 6 Pantanal 2Am 2021
18 | 17 4038736 12 Grassland 32512 323 10.501,376 33.580499358277734 109176.91951363256 98675.54351363255 30.35049935827773 5001102 Aquidauana 50Mato Grosso do Sul 6 Pantanal 2Am 2021
19 | 18 4038736 15 Pasture 487.53 3.23 1574.7219 30.539254050310007 14888.802970312408 13314.081070312406 27.300254950310007 5001102 Aquidauana 50Mato Grosso do Sul 6 Pantanal 2Am 2021
_20 | 19 4038632 3 Forest Formation  554.8 -3.45 -1914.06 44.15802955503968 24493.874797136014 206412.93479713601 47.608029555039685 5001102 Aquidauana S0Mato Grosso do Sul G Pantanal 2Am 2021
_21 | 20 4038632 4 Savanna Formation 1084.18 -3.45 -3.740,421 36.31954601461685 39376.9253981274  43117.3463981274  39.76954601461695 5001102 Aquidauana 50Mato Grosso do Sul G Pantanal 2Am 2021
_22 | 21 4038632 12 Grassland 344462 323 11126.1226 33.580499358277734 115672.05969951065 104545.93709951064 30.35049935827773 5001102 Aquidauana 50 Mato Grosso do Sul & Pantanal 2Am 2021
23 | 22 4038632 15Pasture 357343 3.23 11542.1789 30.539254959310007 109129.88984924716 97587.71094924716 27.309254958310007 5001102 Aquidauana 50Mato Grosso do Sul G Pantanal 2Am 2021
_24 | 234342009 JForest Formation  156.87  -3.45 -541.2015 44.15802955503968 6927.070096299075 7468.271596200075 47.60802955503968 = 5001102 Aquidauana 50Mato Grosso do Sul 6 Pantanal 2Am 2021
_25 | 24 4342099 4 Savanna Formation 222.87  -3.45 -768.9015 136.31954601461695 B094.537220277679 8863.43872027768 30.76954601461605 = 5001102 Aguidauana 50Mato Grosso do Sul 6 Pantanal 2Am L2021
_26 | 254342000 12 Grassland 5084.53 3.23 16455.331800000007 33.580480358277734 171076.86139572665 154621.52040572666 30.35040035827773 5001102 Aquidauana 50Mato Grosso do Sul G Pantanal 2Am 2021
_27 | 264342009 15 Pasture 1054.66 3.23 3406.5518 30.539254850310007 32208.53063538589 28801.978835385803 27.300254958310007 5001102 Aquidauana 50Mato Grosso do Sul & Pantanal 2Am 2021
28 | 27 4342971 3 Forest Formation 15,86 -3.45 -54.717 44.15802955503968 700.3463487429293 755.0633487420293 47.60802955503968 = 5001102 Aquidauana S0Mato Grosso do Sul 6 Pantanal 2Am 2021
29 | 28 4342971 4 Savanna Formation 3.38 -3.45 -11,661 36.31954601461605 122.76006552940528 134.42106552040527 39.76054601461694 5001102 Aquidauana 50Mato Grosso do Sul & Pantanal 2Am 2021
30 | 20 4342071 12 Grassland 175.99 3.23 568.4477 33.580490358277734 5900.832082063209 5341.384382063209 30.350499358277737 5001102 Aquidauana 50Mato Grosso do Sul & Pantanal 2/Am 2021
_31 | 30 4342971 15 Pasture 273.25 323 882.5975 30.539254959310007 8344.80141763146  7462.25391763146 27.30025495931001 = 5001102 Aquidauana 50Mato Grosso do Sul G Pantanal 2Am 2021
32 | 31 4038477 3 Forest Formation  14.04 -3.45 -48.438 44.15802955503968 619.9787349527571 668.4167349527571 47.608029555038685 5001102 Aquidauana 50 Mato Grosso do Sul & Pantanal 2Am 2021
33 | 32 4038477 4 Savanna Formation 29.79 -3.45 -102.7755 36.31954601461605 1081.9502757754388 1184.7347757754387 30.76954601461694 = 5001102 Aquidauana 50 Mato Grosso do Sul 6 Pantanal 2Am 2021
34 | 33 4038477 12 Grassland 558.11 3.23 1805.9253 33.580499358277734 18775.192096206664 16060.267606206665 30.350499358277737 5001102 Aquidauana 50Mato Grosso do Sul G Pantanal 2Am 2021
35| 344038477 15Pasture 29.58 3.23 95.5434 130.539254950310007 903.35116169639 807.8077616963899 27.309254959310003 5001102 Aguidauana S0Mato Grosso do Sul G Pantanal 2Am L2021
_36 | 35 4038637 3Forest Formation  1.52 -3.45 -5.244000000000001  44.15802955503068 67.12020492366032 72.36420402366032 47.608029555039685 5001102 Aquidauana 50Mato Grosso do Sul & Pantanal 2Am 2021
37 | 36 4038637 4 Savanna Formation 0.03 -3.45 -0.1035 36.31954601461605 1.0895863804385084 1.1930863804385083 39.76954601461605 = 5001102 Aquidauana 50 Mato Grosso do Sul & Pantanal 2Am 2021
38 | 37 4038637 12 Grassland 70329 323 2271.6267 33.580499358277734 23616.829393683147 21345.202693683143 30.35049935827773 5001102 Aquidauana 50Mato Grosso do Sul G Pantanal 2Am 2021
39 | 38 4038637 15 Pasture 261.09 3.23 843.3206999000009  30.539254950310007 7973.494077326249 7130.173377326249 27.300254959310007 5001102 Aguidauana 50Mato Grosso do Sul & Pantanal 2Am 2021
_40 | 39 4038642 3 Forest Formation  7.88 -3.45 -27.186 44.15802955503968 347.9652728937127 375.1512728937127 47.608029555039685 5001102 Aquidauana 50Mato Grosso do Sul & Pantanal 2Am 2021
_41 | 40 4038642 4 Savanna Formation 26.19 -3.45 -80.3555 36.31954601461685 051.208010122818 1041.564410122818 39.76054601461685 = 5001102 Aquidauana 50 Mato Grosso do Sul 6 Pantanal 2Am 2021
42 | 41 4038642 12 Grassland 1046.17 3.23 3379.1201 33.580499358277734 35130,91101364942 31751.78191364042 30.350499358277737 5001102 Aquidauana 50Mato Grosso do Sul 6 Pantanal 2Am 2021
4_§ 42 4038642 15 Pasture 102.52 3.23 331.1396 30.539254959310007 3130.8844184284617 2799.7448184284617 27.309254958310007 5001102 Aquidauana 50Mato Grosso do Sul 6 Pantanal 2Am 2021
44 | 43 4342077 3 Forest Formation  4.14 -3.45 -14.283 44.15802055503968 182.81424235786423 197.00724235786425 47.60802955503968 = 5001102 Aquidauana 50Mato Grosso do Sul 6 Pantanal 2Am 2021
_45 | 444342077 4 Savanna Formation 63.84 ~3.45 -220.248 136.31954601461695 2318.6309817573146 2538.887817573146 39.76954601461695 = 5001102 Aguidauana S0Mato Grosso do Sul G Pantanal 2Am L2021
_46 | 45 4342977 12 Grassland 20691 3.23 959.0193 33.580499358277734 9970.386064466244 9011.366764466244 30.350499358277737 5001102 Aquidauana S0Mato Grosso do Sul G Pantanal 2Am 2021
47 46 4342977 15 Pasture 39.62 323 127.9726 30.539254959310007 1209.9652814878625 1081.9926814878625 27.309254959310007 5001102 Aquidauana 50 Mato Grosso do Sul 6 Pantanal 2Am 2021
_48 | 47 4484499 3Forest Formation  10084.21 -3.45 -37805.5245 44.15802055503068 485041.0608187624 522036.5043187624 47.608029555030685 5001102 Aquidauana 50 Mato Grosso do Sul 6 Pantanal 2Am 2021

Source: Prepared by the author (2024)
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5.6 FINAL REMARKS OF THE CHAPTER

This chapter presented the use of the Data Integration layer through a case study using
some datasets from Brazilian rural properties. Data related to soil use and coverage and soil
carbon stock were extracted from georeferenced maps of rural properties sampled in each
Brazilian biome. Data on the geographical location of properties and climate were also used.
The data retrieved and extracted from the data sources were integrated by the CarbOnto
ontology.

The steps for extracting data from their sources, the processing carried out by the
OwlReady?2 library, and using the CarbOnto ontology, with semantic analysis based on
inferences and SWRL rules, were detailed.

At the end of this process, answering the competence questions of the CarbOnto
ontology related to land use and coverage was possible.

The data integrated by CarbOnto was persisted in the quadstore database. The datasets
of interest from this database were exported in a file called “data_integration_all areas.csv” to
be injected into the Analysis layer and processed by the machine learning algorithms. In the

next chapter, we will detail the Data Analysis layer.
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6 DATA ANALYSIS

Integrating Artificial Intelligence (Al) techniques in managing emissions in agriculture
can introduce precision and efficiency (Konya and Nematzadeh, 2024). Al-powered systems
aim to collect, process, and evaluate data from diverse sources in the agricultural sector,
identifying patterns, correlations, and trends that would be difficult for humans to identify. Al
algorithms can generate predictions of potential emission increases by leveraging historical data
and current conditions. Predictive models can enable the specification of well-informed
strategies to proactively tackle emission concerns (SaberiKamarposhti et al., 2024).

Model accuracy and data quality continue to be the subject of research and development.
This technology allows stakeholders, including producers, to reduce emissions without
sacrificing productivity. However, a crucial aspect is considering the accessibility and
economic viability of Al-powered systems for smallholder farmers (SaberiKamarposhti et al.,
2024).

As previously stated, the CarbOnto ontology enabled data integration with semantic
enrichment through the inferences made. The data integrated allows the generation of a carbon
balance by land use, an essential step towards generating GHG inventories on farms. However,
the CarboFarm architecture aims to generate knowledge to support farmers' decision-making.
In this way, we provide another layer in the intelligence processing, i.e., the Data Analysis
layer. Therefore, considering the importance of Al for current GHG emissions management
systems, we used supervised and unsupervised learning algorithms as Al techniques in
CarboFarm architecture.

From the data integrated by CarbOnto and persisted in the database, the file
“data_integration all areas.csv” was exported and injected in the Data Analysis layer. To
illustrate its use, we present the processing in the Data Analysis layer of the datasets described
in Chapter 4 - Data Integration. Going deeper into the injected files, the granularity for analysis
is at the “area” level, that is, the areas of all sampled properties. The areas are grouped to
generate the total balance per farm when necessary. This explanation is important to understand
the processing of the analysis. Therefore, this chapter details the “Machine Learning” and

“Decision Support Processing” components of Data Analysis layer.
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6.1 EXECUTION ENVIRONMENT

Data analysis layer processing was performed in the Google Colab cloud environment.
As these are algorithms that may involve the use of considerable processing capacity, some
considerations about the execution environment are important. Access to Google Colab is free
but with limited resources. The platform uses the concept of “computing units”, which have
dynamically adjusted limits according to its usage policy. These limits may vary, and unlimited
resources are not guaranteed. There are four subscription levels for paid plans with different
configuration possibilities, including GPU (Graphics Processing Unit) and TPU (Tensor
Processing Unit). The free environment is used for this study, and the configurations are 12.7
GB of RAM and 107.7 GB of storage. However, processing units were occasionally acquired
when the environment did not respond satisfactorily, mainly when executing algorithms with
more significant processing requirements, such as Polynomial Regression and Neural
Networks. In next sections, we explain the functioning of the Data Analysis module with the

help of ML algorithms.

6.2 UNSUPERVISED LEARNING

Initially, concerns about the current political context regarding the carbon market are
necessary, which directly affects the intended results of this work. As detailed in Chapter 2, the
regulation of the carbon market in Brazil is under analysis by the National Congress at the time
of carrying out this work (SBCE, 2022). The agribusiness sector was excluded from the
proposal. If the exclusion remains, carbon credits generated in agricultural projects can only be
sold on the voluntary carbon market. The law project in progress will not define guidelines for
generating carbon credits in Brazilian agriculture and livestock.

The initial objective of this work would be to classify rural properties according to their
potential for generating carbon credits using the guidelines for the regulated market. However,
this classification only makes sense with regulation. The lack of guidelines for the regulated
carbon market results in a lack of criteria for the transparent and standardized generation of
carbon credits in rural activities. Therefore, it does not seem appropriate to directly relate the
carbon balance of farms intended by this study with the generation of carbon credits.

Due to this context, there needs to be clearly defined features to classify rural properties
based on their carbon balances. Therefore, we initially submitted the data to unsupervised

machine learning using the clustering technique. The objective of clustering algorithms is to
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identify groups of objects, or clusters, that are more similar to each other than other clusters,
grouping them according to their similarities (Wierzchon and Klopotek, 2018; Rodriguez et al.,
2019). By analyzing common characteristics, we may be able to establish criteria for other types
of classifications using supervised learning.

The algorithm K-means®® was selected for this task due to: (i) be widely used by
researchers (Wu et al., 2008; Rodriguez et al., 2019); (ii) having wide acceptance in many
domains to solve clustering problems; (iii) have a simple iterative method, with low
computational cost and that generates good results (Wu et al., 2008; Rodriguez et al., 2019;
Ikotun et al., 2022). According to the requirement for architectural flexibility, other algorithms
can be used in new versions.

K-means algorithm requires a number of groups (k) and a distance metric as input
parameters. Each data point is initially associated with one of the “k” clusters based on its
distance from the centroids (cluster centers). New centroids are then calculated, and the
classification of data points are re-sorted. This process is repeated until no significant changes
in the centroid positions are observed (Rodriguez et al., 2019). Due to the characteristics of
Brazilian biomes that influence vegetation and land use, unsupervised learning analyses were

carried out per biome, as we detail below.

6.2.1 Biome analysis results

Considering the dataset used in this study with 91,747 (ninety-one thousand seven
hundred and forty-seven) rural properties, divided into 295,854 (two hundred and ninety-five
thousand eight hundred and fifty-four) areas, we chose to carry out the analysis of the data
totaled by farms segmented by biome, to obtain more information within this geographical area.
Three clusters were defined for the groups, with this number being defined by the largest
number of climate types in the sampled municipalities. The following subsections display data,

graphs, information obtained, and analysis after clustering by the K-means algorithm.

6.2.1.1 Amazoénia Biome

Integrated data from the Amazon biome show the carbon concentration per hectare of

the sampled rural properties, all located in regions with the Monsoon Tropical climate (Am),

38 https://scikit-learn.org/stable/modules/generated/sklearn.cluster. KMeans.html



103

according to the Koppen climate classification (Alvarez et al., 2013). Graph 33 displays the
climate code as a predictive attribute and rural properties' carbon stock (tons per hectare:
tCOy.ha-1) as the target attribute. The scale colors represent the target attribute values

standardized by the StandardScaler’’ function.

Figure 33: Graph Grouping of carbon stock per hectare in relation to the climate of farms
in the Amazonia biome.

1 15 2 25 3

Koppen Climate Classification
Code Acronym Climate
2 Am Monsoon Tropical
Source: Prepared by the author (2023)

» 40 oraph in the Figure 34 shows the grouping of municipalities in the

The “treemap
Amazon biome and the types of soil cover in these cities' rural property areas. The data reveals
that the rural properties analyzed have the largest areas with soil cover types 15 (Pasture) and
3 (Forest Formation), respectively. The other covers found were: 4 (Savanna Formation), 12
(Campestre Formation), 39 (Soy), and 41 (Other Temporary Crops), according to the
Mapbiomas Project's land use and cover codes (Souza et al., 2020). Viewing the history of the
land cover map (MapBiomas, 2021) of this region considering the years 1985 to 2021, in
addition to information from the government of the state of Rondonia*!, it is observed that many

forest areas have transformed into pasture areas for raising beef cattle, which justifies the

greater concentration of these two areas.

39 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

%A treemap graph provides a hierarchical view of the data, facilitating pattern recognition and
representing item quantification as a set of nested rectangles.

1 https://bit.ly/cattle_ro
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Figure 34: Graph Grouping of land cover areas of rural properties sampled by each city in
the Amazonia biome.

Source: Prepared by the author (2023)

6.2.1.2 Caatinga Biome

Integrated data from the Caatinga biome show the carbon concentration per hectare in
the sampled rural properties located in regions with Savanna Tropical (As) and Hot, Dry
Semiarid (BSh) climates, according to the K&ppen climate classification (Alvarez et al., 2013).
Graph in Figure 35 displays the climate code as a predictive attribute and the carbon stock (tons

per hectare: tCO>.ha™!) of rural properties as a target attribute.

Figure 35: Graph Grouping of carbon stock per hectare in relation to the climates of the
Caatinga biome.

arbon/ha
o
o

3 4 =

climate

Koppen Climate Classification

Code Acronym Climate
3 As Savanna Tropical
5 BSh Hot, Dry Semiarid (BSh)

Source: Prepared by the author (2023)

The parallel category graph in Figure 36 shows the municipalities and the respective

land coverage areas of the rural properties sampled in the Caatinga biome. The data reveal that
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rural properties in the cities analyzed have a more significant number of areas with soil coverage
of the following types: 3 (Forest Formation), 4 (Savanna Formation), 15 (Pasture), and 21
(Mosaic of Uses), according to the land cover and use codes of the MapBiomas Project (Souza

et al., 2020).

Figure 36: Graph of Cities in the Caatinga biome with the types of land cover areas of the
rural properties sampled
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6.2.1.3 Cerrado Biome

Integrated data from the Cerrado biome show the carbon concentration per hectare in
the sampled rural properties located in regions with Equatorial Tropical (Af), Monsoon
Tropical (Am), and Savanna Tropical (Aw) climates, according to the climate classification of
Koppen (Alvarez et al., 2013). Graph in Figure 37 displays the climate code as a predictive
attribute and the carbon stock (tons per hectare: tCO2.ha!) of rural properties as the target

attribute.
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Figure 37: Graph Grouping of carbon stock per hectare in relation to the climates of the
Cerrado biome

color

climate

Koppen Climate Classification

Code Acronym Climate
1 Af Equatorial Tropical
2 Am Monsoon Tropical
4 Aw Savanna Tropical

Source: Prepared by the author (2023)

The bar graph in the Figure 38 shows the land cover types of rural properties sampled
in the Cerrado cities. The data reveal that rural properties in the cities analyzed have a more
significant number of areas with soil coverage of the following types: 3 (Forest Formation), 4
(Savanna Formation), 15 (Pasture), and 21 (Mosaic of Uses), according to the land cover and

use codes of the MapBiomas Project (Souza et al., 2020).

Figure 38: Graph of types of area coverage of rural properties sampled from cities in the
Cerrado biome
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Source: Prepared by the author (2023)
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6.2.1.4 Mata Atlantica Biome

Integrated data from the Mata Atlantica biome show the carbon concentration per
hectare in the sampled rural properties located in regions with Savanna Tropical (Aw), Hot
Summer Temperate (Cwa), and Cool Summer Temperate (Cwb) climates. Analysis of these data
shows that the highest concentration of carbon per hectare occurs in properties located in
regions of higher altitude, with dry winters and mild summers, according to the K&ppen climate
classification (Alvarez et al., 2013). The graph in the Figure 39 displays the climate code as a

predictor attribute and the stock of tons of carbon per hectare (tCO2.ha™!) as a target attribute.

Figure 39: Graph Grouping of carbon stock per hectare in relation to the climates of the
Mata Atlantica biome
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Source: Prepared by the author (2023)

The parallel category chart in Figure 40 displays the municipalities (city name), types
of land cover (area cod), and climate (climate cod) of the sampled rural properties.
Highlighted, in black lines, from the selection of the Cool Summer Temperate climate (code 9),
it is possible to verify that most of the areas of soil cover in this climate are of the types: 4
(Savanna Formation), 9 (Silviculture), 41 (Other Temporary Crops) and 48 (Other Perennial

Crops), according to the MapBiomas Project land cover and use codes (Souza et al., 2020).
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Figure 40: Graph Grouping of farm coverage areas (area_cod) related to climate
(climate_cod) and the cities in which they are located (city_name)
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6.2.1.5 Pampa Biome

Integrated data from the Pampa biome show the carbon concentration per hectare in the
sampled rural properties located in regions with a Temperate Hot Summer climate (without dry
season) (Cfa), according to the Koppen climate classification (Alvarez et al., 2013). The graph
in the Figure 41 displays the climate code as a predictive attribute and rural properties carbon

stock (tons per hectare: tCO2.ha™') as the target attribute.

Figure 41: Graph Grouping of carbon stock per hectare in relation to the climates of the
Pampa biome
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The “treemap” graph in the Figure 42 displays the ten largest rural properties in hectares
in Santa Maria/RS city. The values indicate the representation of the property code, according
to the codes of the Brazilian Agricultural Atlas (De Freitas ef al., 2018), followed by the size

(in hectare) and the carbon stock (tons per hectare: tCOz.ha™).

Figure 42: Graph Grouping of the ten largest rural properties in the city of Santa Maria/RS
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Source: Prepared by the author (2023)

6.2.1.6 Pantanal Biome

Integrated data from the Pantanal biome show the carbon concentration per hectare in
the sampled rural properties located in regions with Tropical Monsoon (Am) and Tropical
Savanna (Aw) climates, according to the Koppen climate classification (Alvarez ef al., 2013).
Graph in the Figure 43 displays the climate code as a predictive attribute and the carbon stock
(tons per hectare: tCOx.ha™!) as the target attribute.
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Figure 43: Graph Grouping of carbon stock per hectare in relation to the climates of the
Pantanal biome
| I color’2
Koppen Climate Classification
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2 Am Tropical Monsoon
4 Aw Tropical Savanna

Source: Prepared by the author (2023)

The parallel category graph in Figure 44 displays the twenty rural properties with the

highest carbon balances (tons per hectare: tCO2.ha™!) in the Pantanal biome. All of them belong
to the city of Ladario/MS.

Figure 44: The twenty rural properties with the highest carbon balances per hectare in the

Pantanal biome
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6.3 SUPERVISED LEARNING

According to the graphs and analyses presented in the previous section, the groupings
in unsupervised learning made it possible to find relevant information related to carbon balances
on the sampled rural properties. As an example, in the Mata Atlantica biome, it was revealed
that the highest carbon balance values are in regions with higher altitude and a colder climate,
in line with the study by Ozlu (2022), that states that carbon emissions increase with higher
temperatures and decreases with lower temperatures. Still, it is not possible to generalize and
state that this conclusion applies to the entire biome. It would be necessary to carry out more
sampling from other regions of the same biome, considering that, based on the data analyzed in
our study, the correlation between climate and carbon balance is moderate, as we will see below.

Another significant factor in this analysis, previously mentioned, is that there are no
technical and regulated criteria to classify rural properties according to their potential for
generating carbon credits. Although we consider the information from unsupervised helpful
learning, we will not use it to classify rural properties. We submitted the same dataset to
supervised learning algorithms using the regression technique, with details in the following

subsections.

6.3.1 Correlation Verification

The “data_integration_all areas.csv” file, which contains the attributes of the areas of
the rural properties analyzed, was submitted to correlation verification. The results are shown
in Figure 45. We considered the correlation coefficient with the categorization in Table 13,
according to Callegari (2003). This correlation aims to identify the attributes that are more

correlated to our target attribute, i.e., “balance CO2 ha”.

Table 13: Classification of the correlation coefficient adapted from Callegari (2003)

Correlation Coefficient (r) Classification
r<0 Null
0<r<0,3 Weak
0,3<r<0,6 Moderate
0,6<r<09 Strong
09<r<1 Very Strong
r=1 Perfect
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Figure 45: Correlation verification of attributes in the data_integration all _areas.csv
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figura - plt.figure(figsize-(18,8))
sns.heatmap(all_areas_df.corr(), annot=True)
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Source: Prepared by the author (2023)

6.3.2 Regression Algorithms

Regression algorithms were applied to make carbon balance predictions. The idea is that
based on the processed data and predictive attributes, the model calculates predictions of carbon
concentration per hectare. The target attribute is “balance CO2 ha” and the predictor attributes
selected according to the correlations were: “area cod” (0.047), “city cod” (0.18),
“biome cod” (0.24) and “climate cod” (0.58).

Considering that the individual correlations of the predictor attributes “area cod”,
“city_cod” and “biome cod” with the target attribute “balance CO2 ha” are weak and the
correlation of the predictor attribute “climate cod” is moderate, the attributes “area cod”,
“climate_cod”, “city_cod” were grouped to generate a composite predictor attribute. The
“biome cod” attribute was not added because the “city cod” attribute meets the same
requirement but with greater precision in the tests carried out.

Once the attributes and correlations are defined, we select the algorithms. The selection
of algorithms must involve some factors, such as problem complexity, performance, and
amount of data (Taherdoost, 2023). In our case, specifically, we also have the issue of running

in the cloud, whose environment, Google Colab, offers limited resources, which depend on the
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type of subscription, the number of connected users, and other factors inherent to cloud
computing.

In this way, it was decided to initially select a set of algorithms with different
performances and complexities, according to the literature (Singh, A. ef al., 2016; Ray, 2019;
Taherdoost, 2023). This allowed us to comprehensively evaluate their effectiveness in solving
our problem. The selected algorithms were: Linear Regression, Polynomial Regression,

Decision Tree, Random Forest and Neural Networks.

6.3.3 Validation of Results

To validate the results, the Houd-out method (Blum et al., 1999) was applied. This
method divides the data set into two mutually exclusive subsets, one for training and the other
for testing. Using the train_test split*’ method from the Sklearn library, the database was split
with 75% of the data (221,890 records) for training and 25% (73,964 records) for testing. Figure
46 displays, as an example, the code used for this division when applying neural network

algorithm.

Figure 46: Application code for the train_test split method for the Neural Networks algorithm.

# Dataset splitting (t(75% trein, 25% test)
X_areas_rna_mult trein, X_areas_rna_mult test, ¥ areas _rna_mult trein, ¥Y_areas_rna_mult_test =

train_test split(X_areas rna_mult, Y areas _rna_mult, test size = 0.25, random state = @)
X_areas_rna_mult_trein.shape, Y_areas_rna_mult_trein.shape, X_areas_rna_mult_test.shape, Y _areas_rna_mult_test.shape

((221898, 3), (221898, 1), (73964, 3), (73964, 1))

Source: Prepared by the author (2024)

The GridSearchCV* function, from the Sklearn library, was used to carry out
parameterization tests for the Polynomial Regression, Random Forest, and Neural Networks
algorithms. GridSearchCV automates the parameter adjustment process, which is known as

“tuning"" ”

. The values are used as inputs. All possible combinations were tested, and the best
results were obtained.

The “degree” parameter was tested in the Polynomial Regression algorithm with values
ranging from 2 to 30. The best results, both on the test and training bases, were obtained with
degree 8. In the Random Forest algorithm, the “n_estimators” parameter (number of desired

trees) was tested with the values 2, 10, 30, 50, 80, 100, 200, 500, and 1000. The results returned

42 https://scikit-learn.org/stable/modules/generated/sklearn.model _selection.train_test split.html
43 https://scikit-learn.org/stable/modules/generated/sklearn.model _selection.GridSearchCV .html
* https://scikit-learn.org/stable/modules/grid_search.html
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were very close for all values. Thus, the number 100, already initially configured in the
algorithm (default value), was maintained. In the neural network algorithm, the “max_iter”” and
“hidden_layer sizes” parameters were tested. The “max iter” parameter determines the
maximum number of iterations that will be performed. The values 100, 200, 500, and 1000
were tested. The “hidden_layer sizes” parameter has two values, indicating the number of
hidden layers and the number of nodes (neurons) per layer. Considering that we have 3 predictor
attributes (input) and 1 target attribute (output), the initial values were defined by the average
((3+1)/2=2), that is, (2,2), followed by higher values (9,9), (40,40) and (100,100). The best
results were obtained with “max_iter = 100” and “hidden_layer sizes = (40,40)”. Figure 47

displays the GridSearchCV code for the Neural Networks algorithm.

Figure 47: Code for the GridSearchCV function for the Neural Networks algorithm.

# Params tunning

param = {'max_iter': [160,200,500,1008], 'hidden_layer_ sizes':[(2,2),(9,9),(40,48),(1e0,1008)]}
grid_search = GridSearchCV (estimator=MLPRegressor(), param_grid=param)
grid_search.fit(X_areas_rna_mult_scaled, Y_areas_rna_mult_scaled.ravel())

best_param = grid_search.best_params_

best_result = grid_search.best_score_

print ('best_param: ',best_param)

print ('best_result (score): ',best_result)

Source: Prepared by the author (2024)

With the parameterization tests completed, the training and test data were submitted to
the algorithms, obtaining the results in Table 14. Performance measures were calculated using
the score and “mean absolute error” (MAE). The score, in this case, corresponds to R?
(coefficient of determination), which measures how well a statistical model predicts an
outcome, that is, how well the model outputs correspond to the actual outputs, with a maximum
value of 1 indicating a perfect fit. MAE returns the mean absolute difference between predicted

values and actual values.

Table 14: Score and error values of regression algorithms

Predictor attribute: area_cod
Target attribute: balance CO2 ha
Correlation: 0,047
Linear Polynomial Decision Random Neural
Regression Regression Tree Forest Networks
Train Test Train Test Train Test Train Test Train Test
Score 0,0023 | 0,0020 | 0,2661 0,2652 | 0,2685 | 0,2679 | 0,2685 | 0,2679 | 0,2625 | 0,1332
MAE 7,1838 | 7,2047 | 5,9955 6,0085 | 5,9949 | 6,0077 | 5,9947 | 6,0084 | 6,0269 | 6,8750
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Predictor attribute: climate cod
Target attribute: balance CO2 ha
Correlation: 0,047
Linear Polynomial Decision Random Neural
Regression Regression Tree Forest Networks
Train Test Train Test Train Test Train Test Train Test

Score 0,3407 | 0,3376 | 0,3926 0,3896 | 0,3926 | 0,3896 | 0,3926 | 0,3896 | 0,3761 | 0,3888
MAE 5,5247 | 5,5566 | 5,1796 5,2035 | 5,1797 | 5,2035 | 5,1797 | 5,2037 | 5,2361 | 5,2276

Predictive attributes: area_cod, climate cod e city cod
Target attribute: balance CO2 ha
Linear Polynomial Decision Random Neural
Regression Regression Tree Forest Networks
Train Test Train Test Train Test Train Test Train Test
Score 0,3582 | 0,3545 | 0,8200 0,8176 1 1 0,9999 | 0,9999 | 0,7434 | 0,7417
MAE 5,3703 | 5,4031 | 0,2788 0,2872 | 4,5e-13 | 1,5e-13 | 2,7e-05 | 0,0001 | 3,3674 | 3,288l

Source: Prepared by the author (2024)

The results showed that using only the “area cod” or “climate cod” attributes, the
scores were all lower than 0.5, indicating that they are not good predictive attributes when used
separately. As for the compound predictor attribute “area_cod”, “climate cod” and “city cod”,
the score was less than 0.5 only in the linear regression algorithm, also indicating that it is not
a good algorithm to use in predictions. The other algorithms scored above 0.5, with highlights
being Decision Tree and Random Forest, with scores of 1 and 0.99, respectively. The results
have shown, so far, that with the Hold-out method, these algorithms generate the best models
for predicting carbon stocks in the context of this study.

Continuing the tests, Cross Validation was applied, with details in the next section. The
Linear Regression algorithm was excluded, as it was considered inefficient when applying the
Hold-out method. Cross Validation will be applied with Polynomial Regression, Decision Tree,

Random Forest, and Neural Networks algorithms.

6.3.4 Cross Validation

The Hold-out method has some limitations that become more or less noticeable
depending on the size and data analyzed. Metrics may depend on how the data was separated
for training and testing. Significant observations can be separated, affecting model training and
test results. Furthermore, the test sample, when larger, may cause bias in the estimates, while
smaller samples may imply variability in the estimator (Kohavi, 1995; Veloso, 2022).

Considering the limitations of the Hold-out method, the Cross Validation method was
applied. Known as “k-fold Cross-Validation”, the data set is divided into “k” disjoint sets of
approximately equal sizes, called a “fold” (Burman, 1989). The test, or validation, sample

comprises the “k” partition, while the training sample encompasses the other “k-1" partitions.
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This process is repeated “k” times until each of the “k = 1,2, ..., k” partitions of the sample is
considered as a validation sample (Veloso, 2022). The bias of the “k-fold” method decreases
the higher the value of “k” value. However, a very high “k” increases the computational cost of
the technique and implies a small test sample, which increases the variance (Borra and Ciaccio,
2010; Cunha, 2019). The ideal value of “k” is discussed in the literature, with the most common
options being “k = 2, 5 or 10”. Studies indicate that the value “k = 10” has better performance
(Kohavi, 1995; Borra and Ciaccio, 2010; Cunha, 2019).

4 cross-validation function, which,

The Sklearn library provides the cross val score
applied with the Kfold*® function, returns a list with each test's result (coefficient of
determination). The value of this coefficient indicates how much the explanatory variables can
explain the dependent variable; that is, the closer it is to 1, the stronger the correlation between
these variables.

For Cross Validation, 60 rounds of tests were applied to each algorithm with the value
of “k=10", resulting in 600 tests for each algorithm. Figure 48 shows the application diagram of

the k-fold Cross-Validation method, and Figure 49 shows, as an example, the application code

for the Neural Networks algorithm.

Figure 48: Diagram of the application of the k-fold Cross-Validation method

‘ Dataset (K partitions) ‘

‘ Fold 1 ‘ Fold 2 ‘ Fold 3 ‘ Fold 4 | Fold 5 ‘ Fold 6 | Fold 7 ‘ Fold 8 ‘ Fold 9 ‘ Fold 10‘

Iteration 1 ‘ Test | Train ‘ Train ‘ Train ‘ Train ‘ Train ‘ Train ‘ Train ‘ Train ‘ Train ‘[{) Score 1

Iteration 2 ‘ Train |Train ‘ Train ‘ Train | Test ‘ Train | Train ‘ Train ‘ Train ‘ Train ‘[M Score 2 ‘

Iteration 3 ‘ Train ‘ Train ‘ Test ‘Train | Train ‘ Train | Train ‘ Train ‘ Train ‘ Train ‘[I} Score 3 Score

Average
Iteration 4 ‘ Train |Train ‘ Train ‘ Train | Train ‘ Train | Test ‘ Train ‘ Train ‘ Train ‘ [:>

Iteration 10 ‘ Train ‘ Train |Train ‘ Train ‘ Train ‘ Train | Train ‘ Train ‘ Train ‘ Test ‘ [> Score 10

Source: Prepared by the author (2024)

43 https://scikit-learn.org/stable/modules/generated/sklearn.model _selection.cross_val score.html
46 https://scikit-learn.org/stable/modules/generated/sklearn.model _selection.KFold.html
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Figure 49: Code for the k-fold Cross-Validation method for the Neural Networks algorithm.

results rna = []

for i in range(68):
kfold = KFold(n_splits=1@, shuffle=True, random_state=i)
rna = MLPRegressor(max_iter=1088, hidden_layer_sizes=(40,48))
scores = cross_val_score(rna, X_areas_rna_mult_scaled, Y_areas_rna_mult_scaled.ravel(), cv=kfold)

results_rna

[ 1 # Cross Validation Neural Network

results rna.append(scores.mean())

Source: Prepared by the author (2024)

Table 15 displays the statistical data after applying Cross Validation to the Polynomial

Regression, Decision Tree, Random Forest and Neural Networks algorithms. Table 16 presents

the variance and coefficient of variation values.

Table 15: Statistical data of the analyzed algorithms

Polynomial Decision Tree Random Forest Neural Network
count 60.000.000 60.000.000 60.000.000 60.000.000
mean 0.816594 0.999954 0.999953 0.737038
std 0.000022 0.000005 0.000006 0.001188
min 0.816527 0.999943 0.999936 0.734063
25% 0.816579 0.999953 0.999951 0.736079
50% 0.816596 0.999956 0.999957 0.737051
75% 0.816604 0.999958 0.999957 0.737778
max 0.816645 0.999962 0.999965 0.739600

Source: Prepared by the author (2024)

Table 16: Variance values and coefficient of variation of the analyzed algorithms

Variance Coefficient of Variation
Polynomial 4,76E-04 0.002673
Decision Tree 2,50E-05 0.000500
Random Forest 3,93E-05 0.000627
Neural Network 1,41E+00 0.161184

Source: Prepared by the author (2024)

with the Decision Tree and Random Forest algorithms.

Lower coefficients of variation indicate greater precision. The best results were obtained
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6.4 STATISTICAL TESTS

Discovering knowledge from data is fundamentally a statistical endeavor. Statistics
provides a language and framework for quantifying uncertainty resulting from attempts to infer

patterns or predict values from a specific sample of a general population (Fayyad et al., 1996).

6.4.1 Test of Normality of Results

The results obtained with the application of Cross Validation were submitted to the
normality test to identify which statistical tests (parametric or non-parametric) should be
applied.

With normal distributions, one can opt for parametric tests, which are generally more
powerful. This means that for the same significance, they present a lower probability of type II
errors (an error that occurs when the statistical analysis is unable to reject a hypothesis if this
hypothesis is false). Otherwise, that is, with non-normal distributions, non-parametric tests are
applied, which, in general, have no restrictions for their application (Serranho and Ramos,
2017).

The normal distribution is a continuous and symmetric probability distribution that
randomly represents a natural phenomenon's behavior. It occupies the central place among all
distributions in probability and statistics (DasGupta, 2011). The normal distribution assumes a
probability density function whose graph is a Gaussian curve (bell-shaped curve) centered on
the mean (Serranho and Ramos, 2017).

The Shapiro-Wilk test was chosen to check normality, as it is considered to have greater
statistical precision (Razali ef al., 2011). Let us consider the null (HO) and alternative (H1)
hypotheses, being:

HO (Null hypothesis): The distribution of the variable is normal (if p > 0.05),

H1 (Alternative hypothesis): The distribution of the variable is non-normal (if p <= 0.05).

The results of the Shapiro-Wilk test are shown in Table 17:
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Table 17: Shapiro-Wilk test results

Algorithm Statistic p-value
Polynomial 0.9800339341163635 0.4299737811088562
Decision Tree 0.8589093089103699 5.6370176935161e-06
Random Forest 0.830583930015564 8.527013619641366e-07
Neural Network 0.9867259860038757 0.7591196894645691

Source: Prepared by the author (2024)

Considering the p-values, it appears that the sequences of Polynomial Regression (p =
0.43) and Neural Networks (p = 0.76) sequences do not refute HO; that is, they are normal
distributions. The Decision Tree (p = 5.64e-06) and Random Forest (p = 8.52¢-07) sequences
refute HO and accept H1, that is, they are not normal distributions.

Figure 50 displays the distribution graphs. Serranho and Ramos (2017) suggest an
intuitive way to check whether a given variable has a normal distribution: make its histogram
and check whether it approaches a Gaussian curve. Analyzing the graphs, it is clear that the
results of the Decision Tree and Random Forest, even though they are not normal distributions,
present, in essence, similar appearances to the graphs of Polynomial Regression and Neural

Networks, with their curves in the form of bell.

Figure 50: Charts of data sequences resulting from the application of algorithms
in Cross Validation

Polynomial Regression h Neu.ra-l Nei-wml-l;s

ank, distplob{reslt_decislon_tre 88, color-"dodgerblus”, fabel-"Compact™,

Decision Tree I Random Forest

Source: Prepared by the author (2024)
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In addition to the graphical appearance, the “Central Limit Theorem” defines the mean
of the values of an independent and identically distributed sample as following an approximately
normal distribution when the sample size is large enough. Therefore, it is expected to assume
normality for large samples (DasGupta, 2011; Serranho and Ramos, 2017). In this way, the
resulting data will be subjected to both parametric and non-parametric tests for the following
considerations: (i) the “Central Limit Theorem™; (ii) the results of the analyzed algorithms that
identified two normal and two non-normal distributions; (iii) the similar appearances of the
graphics; and, (iv) the possibility of approaching a normal distribution as the number of cross-
validation cycles increases.

Regarding item (ii), it is important to note that 60 rounds of cross-validation tests were
implemented, with 60 final values for each algorithm. This number of 60 rounds was defined
due to processing limitations in the Google Colab cloud computing environment. The
Polynomial Regression and Neural Networks algorithms, parameterized according to values
suggested by performance tests, required greater computational power. It should be noted,
however, that the limitations are related to the environment configurations mentioned in Section
6.1. Using algorithms with longer test cycles will result in more results, allowing the observation
of changes in the behavior of data distributions. However, this will only be possible with

increased processing capacity through a subscription to the Google Colab service.

6.4.2 Parametric Test

The parametric tests selected were ANOVA (Analysis of Variance) and Tukey. The
ANOVA test is applied to determine whether or not there is a statistically significant difference
between the means of the groups studied. If there is a difference, the Tukey test, a post hoc?” test
used to determine in which groups there are differences, is then applied. As it presents smaller
intervals, the Tukey test makes it easier to find significant differences (Serranho and Ramos,
2017).

To apply the ANOVA test, let us consider the null (HO) and alternative (H1) hypotheses,
being:

HO (Null hypothesis): There is no statistical difference between groups (if p > 0.05);

HI (Alternative hypothesis): There is a statistical difference between groups (if p <= 0.05).

47 The Latin expression post hoc means “after this”, that is, an analysis of experimental data that will be carried
out later.
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The application of the ANOVA test returned the p-value = 0.0, as shown in Figure 51.

Figure 51: Application of the ANOVA test on the analyzed algorithms.

# se p < alpha (@.e5)

_, p = f_oneway(result_polynomial 6@, result_decision_tree_ 60,
result_random_forest_6@, result_neural_network_6@)

print(p)

0.9

Source: Prepared by the author (2024)

As the p-value < 0.05, we conclude that the groups have statistical differences. With this,

we will apply the Tukey test to check the significance of these differences shown in Figure 52.

Figure 52: Application of the Tukey test to the analyzed algorithms.

statistical_test 6@ = compare_algorithm_68.tukeyhsd()
print(statistical test &8)

Multiple Comparison of Means - Tukey HSD, FWER=8.85

groupl group? meandiff p-adj lower  upper reject
decision_tree neural network -8.2629 8.8 -8.2632 -8.26258 True
decision_ftree polynomial -8.1834 8.8 -68.1836 -8.1831 True

§ decision_tree random_forest -¢.8 1.0 -8.2883 £.0003 False|
neural_natwork polynomial @.8796 @.8 B©.87%3 8.8798 True
neural _network random_forest @.262% 8.8 8.2626 ©.2632 True
polynomial random _forest @.1834 @.6 B8.1831 8.1836 True

Source: Prepared by the author (2024)

From the table in Figure 53, it can be seen that only the “p” value of the Decision Tree
and Random Forest algorithms is greater than 0.05 (p = 1.0). Therefore, it does not reject
(“reject” value = FALSE) the null hypothesis (HO), indicating that there is no statistically
significant difference between the two. The remaining comparisons reject HO (p = 0.0 and
“reject” value = TRUE), accepting the alternative hypothesis (H1), indicating that there is a
significant statistical difference between the other algorithms analyzed.

Figure 53 displays the comparisons between the algorithms in graphic form.
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Figure 53: Visualization of Tukey test results

statistical test 6@.plot simultaneous();

Multiple Comparisons Between All Pairs (Tukey)

random_forest L ]

polynomial L 3

nevral_network L

decision_tree L

075 0.80 0.85 0.90 095 1.00

Source: Prepared by the author (2024)

Therefore, based on the parametric tests, the Decision Tree and Random Forest
algorithms are statistically superior to the Polynomial Regression and Neural Network

algorithms.

6.4.3 Non-Parametric Test

The non-parametric tests selected were the Kruskal-Wallis and Nemenyi. The Kruskal-
Wallis test is an alternative to the ANOVA parametric test when the variance analysis
assumptions are unmet (Liu and Weihong, 2012). The main objective of this test is to determine
whether there is a statistical difference between the medians of at least three independent groups
(Serranho and Ramos, 2017). Let us consider the null (HO) and alternative (H1) hypotheses,
being:

HO (Null hypothesis): The median is the same for all groups of data (if p > 0.05),
HI (Alternative hypothesis): The median is not equal for all data groups (if p <= 0.05).

Applying the Kruskal-Wallis test returned a p-value = 1.83e-43, as shown in Figure 54.
If p <0.5, HO is rejected, and H1 is accepted; that is, the median is not the same for all groups,

indicating statistical differences between them.
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Figure 54: Application of the Kruskal-Wallis test to the analyzed algorithms

# Conduct the Kruskal-Wallis Test

result KW test 6@ = stats.kruskal(result polynomial 68, result decision tree 6@,
result_random_forest_68, result _neural_network_6@)

print (result_KW test _68)

KruskalResult(statistic=281.67313969571228, pvalue=1.8349592749716886e-43)

Source: Prepared by the author (2024)

Considering the statistical differences between the groups, the Nemenyi test is applied;
this is a posthoc multiple comparison test used to determine which groups are significantly
different, verifying the source of significance (Liu and Weihong, 2012). Let us consider the null

(HO) and alternative (H1) hypotheses, being:

HO (Null hypothesis): The samples are from the identical population (if p > 0.05),
HI (Alternative hypothesis): The samples are from different populations (if p <= 0.05).

The application of the Nemenyi test shown in Figure 55 has the following
correspondences: (0) Polynomial Regression, (1) Decision Tree; (2) Random Forest; and (3)
Neural Networks. The result indicates that only the algorithms (1) Decision Tree and (2)
Random Forest accept HO (p-value = 0.89); that is, the algorithms do not have a statistically
significant difference. The remaining comparisons refute HO and accept HI, indicating

statistical differences.

Figure 55: Application of the Nemenyi test to the analyzed algorithms

# Conduct the MNemenyi post-hoc test

data_Nemenyi_68 = np.array([result_polynomial 68, result_decision_tree_68,
result_random_forest 68, result neural network 68])

result Nemenyi test 68 = sp.posthoc_nemenyi friedman(data_Nemenyi 68.T)

print (result Nemenyi test 6@)

a 1 2 3
1.0 O0.80lece 0.001808 6.061

g.ea1 1.00Peee (@.888247 @.e01
8.001 [9.888247 1.000008 &.001

g8.881 o.o06lece 0.091688 1.260

[FER N B

Source: Prepared by the author (2024)

Thus, after applying parametric and non-parametric statistical tests to the Cross

Validation results, the results indicated that the Decision Tree and Random Forest algorithms
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are statistically superior to the Polynomial Regression and Neural Networks algorithms for
predicting positive carbon balance on rural properties.

In this way, returning to the CarboFarm architecture diagram, the regression models of
the selected algorithms with the best performance (Decision Tree and Random Forest) in the
“Machine Learning” component are used by the “Decision Support Processing” component.
Through the generated models, rural producers can consult types of crops for their farms,
checking which ones return the most significant carbon stock per hectare. This knowledge helps

farmers in their decision-making.

6.5 FINAL REMARKS OF THE CHAPTER

The datasets integrated by the CarbOnto ontology and exported from the database were
submitted to unsupervised machine learning algorithms in the Data Analysis layer to find
patterns for subsequent supervised classification. However, we were unable to find patterns that
supported classifications. The fact that there is no provision for regulation of the carbon market
for agriculture is a complicating factor. Regulation could establish objective guidelines and
criteria for generating carbon credits in rural activities. The data integrated by the CarbOnto
ontology indicates the carbon balance due to land use. One of the CarboFarm architecture
objectives is to demonstrate the potential for generating carbon credits from the GHG inventory
of rural properties. However, due to the lack of regulation and precise concepts of how this
potential can be defined, the classification cannot be carried out.

The dataset was also subjected to supervised learning using regression techniques to
generate models to estimate the carbon balance on rural properties. The following predictive
attributes were selected: “land cover code”, “climate code”, and “city code” to which the rural
property belongs. The following algorithms were used: Linear Regression, Polynomial
Regression, Decision Tree, Random Forest and Neural Networks.

After dividing the data set into training and testing bases, the Linear Regression
algorithm proved to be inefficient for the purpose. The Decision Tree and Random Forest
algorithms showed the best results. Next, the Cross Validation technique was applied to the
Polynomial Regression, Decision Tree, Random Forest, and Neural Networks algorithms.

The Cross Validation results were subjected to parametric and non-parametric statistical
tests, which indicated that the Decision Tree and Random Forest algorithms are statistically

superior to the Polynomial Regression and Neural Networks algorithms for this study.
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Therefore, the regression models of the Decision Tree and Random Forest algorithms can be
used together in a complementary way for predictions.

The analyses carried out in this chapter detailed the two components of the Data
Analysis layer. The “Machine Learning” component selects the most efficient algorithms to
solve the soil carbon balance regression problem. The regression models of the selected
algorithms were injected into the “Decision Support Processing” component to make
predictions about the carbon stock per hectare for each crop type, assisting farmers in decision-
making.

In the next chapter, an application will be presented that enables the georeferenced
visualization of data integrated by the CarbOnto ontology. It will also use regression models
from the Decision Tree and Random Forest algorithms, with an example of support for

decision-making for rural producers.
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7 DATA VISUALIZATION

In the previous chapter, we presented the components of the Data Analysis layer. The
analyzes were performed with supervised and unsupervised machine learning algorithms. The
datasets submitted to these algorithms were exported from the data integrated by the CarbOnto
ontology.

This chapter presents the Data Visualization layer through an application developed in
a cloud environment. The aim is to visualize the datasets after integration and analysis. Within
this application, we also present the carbon stock prediction functionality for cultivation areas,

to support rural producers' decision-making.

7.1 DATA PROCESSING

The data was extracted from the sources and integrated using the CarbOnto ontology.
Integration using the ontological model allowed validation and addition of semantic
information through the inference engine. This engine enables checking the hierarchy,
relationships, and consistency of classes. In addition, it deduces new information from their
relationships and properties. For example, when integrated, the cultivated areas assume
characteristics defined for the city, state, and biome where the farm is located. Using SWRL
rules, the inference engine also analyzes and aggregates the stock and emission data, generating
the carbon balances of the farms. In this way, the inference engine ensures the correctness and
standardization defined in the ontological model.

Once integrated, the data is stored in the database. The dataset was exported from the
database for processing in the analysis layer, where the Decision Tree and Random Forest
algorithms were selected to predict carbon stock from the desired crops for a given farm.

Previsions offer the possibility of performing queries to identify carbon stock estimates
per hectare by crop type. These estimates make it possible to find the best crop for the farm
from the perspective of carbon stock. In this way, the rural producer can identify alternatives

that support their decision-making.

7.2 APPLICATION

The application was developed in the Google Colab environment based on datasets

integrated by CarbOnto and the models of the machine learning algorithms defined in the
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analysis layer. The data sets include all rural properties in the sampled municipalities, as
detailed in Chapter 5.

In this regard, we selected a rural property in the municipality of Sdo Francisco do
Gloria, state of Minas Gerais. The images display the following information about the rural
property:

(1) The state and city of location;

(i1) The identification code, according to the Land Tenure Map (De Freitas et al., 2018);

(ii1) The total area;

(iv) The biome;

(v) The climate code, according to the Koppen climate classification (Alvarez et al.,

2013);

(vi) The year of the land use and cover map (MapBiomas, 2021) used as a reference to

obtain the property areas; and,

(vii) The carbon balance (stock — emission) of the entire farm and the carbon balance

per hectare, which were calculated after CarbOnto's integrated data.

In Figure 56, the highlighted map displays the state of Minas Gerais, indicating the city
of Sao Francisco do Gloria, where the property code “3866741” is located.

Figure 56: Map of the state of Minas Gerais indicating the location of the city of Sdo
Francisco do Gloria, where the farm code “3866741” is located.

State. | Minas Gerais N City: | S&o Francisco do Giona v Farm: | 3866741 4
rea | 99,68999999999998 Blome | Mata Atidntica Cimate | Cwa

fear. | 2021 CO2 (LUC) | 5002,303443503198 CO2mha | 50,17858805801182

@ e aivador = F
LI All layers on/oflf
& openstreetap

State

“pabd

& city
Ports Segurs & Fam (MapBiomas)

Esn. Worldimagery

¢ & o o ©o o

Drawn Features

ipyleafiet | & OpenSireeiMap conirbutors, Googie Earth Engine, Esn

Source: Prepared by the author (2024)



128

In Figure 57, the highlighted map displays the territory of the municipality of Sdo

Francisco do Gloria, indicating the location of the rural property code “3866741”.

Figure 57: Map of the municipality of Sdo Francisco do Gloria, indicating the

location of the farm code “3866741”.
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Source: Prepared by the author (2024)

Figure 59 shows the map of the rural property code “3866741”, with color divisions that

represent the land cover and use classes, according to the legend of Figure 58 (MapBiomas,

2021). According to the legend, the areas of land cover and use are as follows: (1.1) Forest

Formation; (3.1) Pasture; (3.2.1.1) Coffee; (3.4) Mosaic of Uses; and (5.1) River, Lake, and

Ocean.

Figure 58: Land use and cover legend

Collection 7 Classes ID |Color Collection 7 Classes ID | Color
i 3.2.1.3. Rice 40
1.1, Forest Formation |3 3.2.1.4. Cotton (beta) 62
1.2, Savanna Formation | 4 3.2.1.5. Other Temporary Crops 41
1.3. Mangrove 5 3.2.2. Perennial Crop 36
1.4. Wooded Sandbank Vegetation 43 3.2.1.1. Coffee 46
10 3.2.1.2. Citrus 47
2.1. Wetland 11 3.2.1.3. Other Perennial Crops 48
2.2. Grassland 12 3.3. Forest Plantation ]
2.3. Salt Flat 32 3.4. Mosaic of Uses 21
2.4. Rocky Qutcrop 29 4. Non vegt d area 22
2.5. Herbaceous Sandbank Vegetation 50 4.1. Beach, Dune and Sand Spot 23
2.5. Other non Forest Formations 13 4.2. Urban Area 24
3. Farming | 14 4.3. Mining 30
3.1. Pasture 15 4.4. Other non Vegetated Areas 25
3.2.1. orary Crop 19 5.1. River, Lake and Ocean 33
3.2.1.1. Soybean 39 5.2. Aquaculture 31
3.2.1.2. Sugar cane 20 -] 6. Non Observed 27 | |

Source: MapBiomas (2021)
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Figure 59: Land use and coverage map of farm code “3866741”.

State: | Minas Gerals V‘ City: | S0 Francisco do Gldria ! Farm: | 3866741 v
Area | 99,68999999999998 ‘ Biome: | Mata Atidntica Climate: | Cwa
Year. | 2021 ‘ €02 (LUC): | 5002,303443503198 CO2ma: | 50,17858805801162

Dyleatie! | © OpenSireelia) conibutors. Googie Eartn Engine, Esn

Source: Prepared by the author (2024)

In Figure 60, the satellite image*® display of the region overlaid with the land use and
cover map of the farm code “3866741”. With the superimposed images, it is possible to verify

the real land cover and the classes identified by the classification process of the MapBiomas
Project (2021).

Figure 60: Overlay of satellite image and land use and cover map of the farm
code “3866741”.

Siate. | Minas Gerais b ‘ City: = S&o Francisco do Gldria L Famm: | 3866741 v

Area. | 99,68999999999998 ‘ Biome: | Mata Atdntica Chmate: | Cwa

Year: | 2021 ‘ CO2 (LUC) | 5002303443503198 CO2ma: | 50.17858805801182

0D OO0 B a0

ipyleaflet | & OpenSiree(Map coniributors, Google Earth Engine, Esri

Source: Prepared by the author (2024)

8 Esri.WorldImagery satellite image (https://www.esri.com/en-us/home)
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7.2.1 Carbon Stock Prevision

In the Data Analysis layer, the models generated by the prediction algorithms from the
data integrated by the CarbOnto ontology were defined to predict carbon stocks in land use.
Decision Tree and Random Forest algorithms were selected because they obtained the best
results in tests with regression and statistical models. These predictions can support farmers in
decision-making, such as choosing crops for a specific area of the farm.

In the case of rural property code “3866741”, the data indicates 68.82 hectares occupied
by Pasture area. To illustrate the Data Visualization layer processing, let’s consider that the
owner of this farm is interested in replacing the soil cover in this area to increase the farm's
carbon stock. In this case, he could use the application to calculate predictions of which crops
may offer the most significant carbon sequestration.

This way, the Decision Tree and Random Forest regression models could be applied.
For example, the CarboFarm architecture can predict the following crops: coffee, corn,
silviculture, and forest formation. Based on the land use and cover map (MapBiomas, 2021),
these crops were identified in our study as existing and compatible with the municipality of Sao
Francisco do Gloéria/MG.

Figure 61 shows the carbon stock prediction calculation for corn cultivation using the
following parameters:

(1) Land cover area code (Area Code) =41 (corn);

(1)) Municipality code (City Code) = 3161403 (Sao Francisco do Gloria/MG);

(ii1)) Climate code (Climate Code) = 8 (Cwa: Hot Summer Temperate).

Figure 61: Application with carbon stock prevision calculation

Regression Model: Regression Model:
Decision Tree _| Decision Tree
[ Random Forest Random Forest
Area Code: | 41 Area Code: | 41
City Code: | 3161403 City Code: | 3161403
Climate Code | 8 Climate Code | 8
Calculate | Calculate
Carbon/ha: | 43 48995855 Carbon/ha: | 43.49767456

Source: Prepared by the author (2024)



131

The results show that corn cultivation in this area can store approximately 48.50 tons of
carbon per hectare (ton/ha) in the two regression models, Decision Tree and Random Forest.
Table 18 shows the other values calculated for the carbon stock per hectare for the

following crops: Forest Formation, Silviculture, Corn and Coffee.

Table 18: Prevision of carbon stock by crops

Area Code Area Name Decision Tree Random Forest
3 Forest Formation 55.0990 55.0990
9 Silviculture (Forest Plantation) 51.9451 51.9451
41 Corn (Other Temporary Crops) 48.4899 48.4977
46 Coffee 53.4969 53.4969

Source: Prepared by the author (2024)

By analyzing the data in Table 18, it is possible to identify that the greatest return of
carbon stock is through Forest Formation (55.09 tons/ha), that is, the planting of native trees,
increasing the property's forest formation area. Next is Coffee plantation (53.49 ton/ha),
followed by Silviculture or Forest Plantation (51.94 ton/ha), which is the planting of trees for
extractive purposes. Finally, the Corn plantation (= 48.50 ton/ha), or Other Temporary Crops,
as identified in the BRLUC Method (Garofalo et al., 2022) and MapBiomas (2021).

The carbon stock of the “Pasture” cover for this farm is 49.00 tons/ha. Except for corn
planting, all other coverage would give a greater return than Pasture. The user's analysis would
probably involve other variables, such as more details about the current use of this pasture area,
whether it is being used for economic purposes, such as raising livestock, whether it is an
unused area, or whether it still has degraded soil condition. If the area is used for livestock
farming, reducing GHG emissions due to methane emitted by enteric fermentation must also be
considered.

The application's analysis indicates the best land use options considering the carbon
stock to build an inventory with a positive balance that generates carbon credits. This
information can support the rural owner's decision-making, who must also consider other
economic, political, and social variables, such as the return each crop can provide and credit

programs for rural producers depending on land use due to their social condition, among others.
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7.3 CODE AVAILABILITY

All  code developed during this work was made available on
https://github.com/lfs19/CarboFarm. This repository contains:
(1) Notebooks developed on the Google Colab platform (Jupyter Notebook standard)*’;

(i1) Datasets are exported after integration by the CarbOnto ontology.

7.4 FINAL REMARKS OF THE CHAPTER

This chapter detailed the use of the Data Visualization layer through the presentation of
a cloud application developed in the Google Colab environment that visualizes the information
generated after integrating the data with the CarbOnto ontology and the carbon stock prediction
functionality by crop areas.

The application allows one to understand the flexibility and web accessibility that cloud
environments can provide for developing GHG inventory applications.

This was an example of an application that can be developed to support rural
landowners' decisions. CarboFarm's architectural proposal and the development of its layers, as
shown in previous chapters, generated integrated data, regression models, and knowledge that

can be used in other applications through an API, especially those that integrate MRV systems.

4 https://jupyter.org
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8 EVALUATION

In this study, we present the evaluation of CarboFarm architecture results. CarboFarm
was initially designed to integrate an MRV system or support mobile computing applications
to generate knowledge and provide decision support to rural landowners. In previous chapters,
we presented the components of the CarboFarm architecture, i.e., Data Integration, Data
Analysis, and Data Visualization layers.

In this chapter, we detail an evaluation of the second DSR cycle. Additionally, we

address the contributions, threats to the validity, and limitations of the evaluation.

8.1 SECOND DSR CYCLE

The DSR methodology aims to model a reality modified by artifacts developed to solve
problems in specific contexts (Pimentel et al., 2020). Evaluation is presented as one of the
fundamental parts of this methodology (Hevner, 2007; Pimentel ef al., 2020).

Therefore, this evaluation aims to verify whether CarboFarm architecture can support
data integration for the generation of agricultural inventories, providing standardization,
flexibility, and support for decision-making.

Based on the theory in the literature review and the exploratory study (theoretical
framework), we evolved the CarboFarm architecture. After the first cycle, the need for changes
to components and an enhancement of the ontology were identified, including more classes,
properties, relationships, and SWRL rules, aiming to improve the semantic analysis of data. We
included the analysis layer with the Machine Learning and Decision Support Processing
components to process the data integrated by CarbOnto and generate knowledge.

Next, the case study was carried out to evaluate the architecture, except for the
provenance and blockchain layers, which were not implemented in the second cycle despite
being components of the architecture.

The “DSR-Model” (Pimentel et al., 2020) was instantiated to illustrate the evaluation
elements in DSR. Figure 62 shows the DSR Element Map, representing the artifact, the
theoretical research approach, the application context, and other components. They highlight
the correlation between theoretical scientific knowledge and applied technological

development.
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Figure 62: DSR Element Map for artifact assessment
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8.2 EVALUATION SCENARIO

The case study was conducted according to the five steps of Runeson and Host (2009):
(1) Case study design; (ii) Preparation for data collection; (iii) Collecting evidence; (iv) Analysis
of collected data; and, (v) Reporting.

In the “Case study design” step, data extraction from the selected sources was planned
to integrate them through the CarbOnto ontology. In the “Preparation for data collection” step,
procedures and tools for data collection were defined, such as software to support data
extraction (software for editing and analyzing georeferenced data, database viewers and
editors), the definition of programming languages for script generation, use of APIs, among
others. In the “Collecting evidence” step, data was collected according to the planning and
submitted for integration. In the “Analysis of collected data” stage, the integrated data were
subjected to machine learning algorithms to generate knowledge to support rural landowners’
decision-making. In the “Reporting” step, to communicate results, we published papers in
conferences and workshops related to computing and collaboration (Santos et al., 2023a; Santos
et al., 2023b).

The case study was detailed in chapters “5 - Data Source and Integration”, “6 — Data
Analysis” and “7 — Data Visualization”. With the results obtained from conducting the case
study, we found that theoretical conjectures aligned with expectations. The artifact works. The
CarboFarm architecture was able to integrate data, generate knowledge and support decisions
related to GHG balances on farms. The integrated data could be made available in specific
formats to be submitted to the analysis layer's machine-learning algorithms. The expected
outcome of the analytics layer is to provide insights based on the integrated data set. According
to the results, it is possible to identify the balance of GHG emission sources and stocks related
to land use on rural properties. Based on this knowledge, the rural owner can adopt measures
that aim to generate or enhance a positive result that enables the generation of carbon credits.
Furthermore, with the same functionalities presented and within the built architecture, appears
capable of integrating an agricultural MRV system.

After executing the two DSR cycles, we considered the requirements met: RFO1, RF02,
RF03, RF04, RF06, RF07, NFRO1, NFR02, NFR03, NFR04, NFR06, NFR07, NFR08 and
NFRO09.
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8.3 ANSWERS TO RESEARCH QUESTIONS

The results obtained by executing the case study showed that the proposed solution
achieved the initially defined objectives. Besides the advantage of providing standardization of
concepts within the domain, data integration through an ontological model enabled semantic
integration with inference mechanisms and SWRL rules, as seen in Figures 29 to 32.

The results obtained for the carbon balance of rural properties, examples of which are
shown in Table 10, would not have been possible without the extraction and integration of data
from heterogeneous sources. The data extracted from geospatial datasets were fundamental to
the results, making it possible to perform calculations by crop areas within the geographic
boundaries of rural properties according to land use.

Regression techniques in machine learning made it possible to extract knowledge from
the integrated data and offer this generated knowledge as decision support to rural landowners.

Thus, considering the DSR methodology's application and the case study's results, we

found evidence to answer the research questions (main and secondary) presented in Section 1.4.

RQ: How does integrating data from GHG emissions and stocks support the generation
of agricultural inventories?

Data on emissions and carbon stocks from land use and land cover are essential for farm
GHG inventories. Soil is an important carbon reservoir on the planet (Tahir et al, 2022;
MapBiomas, 2023). Soil coverage and management, that is, the species of vegetation and the
techniques used for cultivation, can increase or decrease the concentration of stored carbon. It
is essential to measure GHG stock and emission estimates on rural properties. Farmers can
adopt measures to reduce emissions or increase GHG stocks with knowledge of the estimates.
The CarboFarm architecture, particularly the CarbOnto ontology, proved to be suitable for
integrating data from heterogeneous bases that can contribute to the generation of GHG
inventories. The reliability of estimates is guaranteed by standardization and regionalized
parameter values, and internationally recognized methodologies must guide them. CarboFarm
offers this necessary reliability. An agricultural GHG inventory template that can be generated

with data integrated by CarbOnto is available in Appendix B.

SRQ1: How does integrating data from emissions and GHG stock sources support more

sustainable farm production?
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Inventories generated by integrated data allow us to understand rural properties' GHG
balance status. Understanding the property's status allows us to mitigate emissions and make
production more sustainable. Factors such as soil management, type of cultivation, and the use
of organic or inorganic substances in crops are variables related to carbon sequestration and
emissions. Changes in vegetation cover and land use can result in gains or losses in GHG
concentration. Adopting better land use practices can improve resource use, reduce expenses,
increase profits, and, through an iterative cycle, contribute to more sustainable agricultural

operations.

SRQ2: Can knowledge be extracted for generating carbon credits from integrating data
on emission sources and GHG stocks?

Data integration with an ontological model contributed to a syntactic analysis with the
inference engine and SWRL rules that discovered new relationships between the data and
derived knowledge. The integrated data submitted to machine learning algorithms produced
knowledge about agricultural practices that can indicate crops that store more carbon in their
biomass and soil. The greater carbon stock can lead to positive GHG inventories that, in turn,

can generate carbon credits.

8.4 CONTRIBUTIONS

In the following subsections we will discuss the main contributions of this study.

8.4.1 Ontological Model

Among the layers of the CarboFarm architecture, we focus on syntactic and semantic
data integration through an ontological model called CarbOnto. During the research that
resulted in this work, we did not find studies that addressed ontologies built to address climate
issues with an emphasis on GHG inventories in agriculture. CarbOnto can fill this gap or
integrate other existing ontologies or those that may emerge within this context.

Using ontology in this domain contributes to generating more complete GHG
inventories. The addition of semantic information contributes to the generation of knowledge,
which helps rural landowners in making decisions. Furthermore, the ontological model can
make a decisive contribution to interoperability between MRV systems through standardization

and interpretation of the meaning of terms, eliminating or reducing conceptual and
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terminological confusion. Standardizing of terms would be important for creating applications
for the carbon market, offering greater reliability and transparency. From a software
engineering perspective, a well-defined semantic structure could provide better system

specifications and component reuse.

8.4.2 Machine Learning

During this study, Law Project 412/2022 (SBCE, 2022) was being processed in the
National Congress, establishing Brazil's regulated carbon market. However, the agricultural
sector was excluded from this regulation. Until this decision, we expected that if the agricultural
sector were included, we would have guidelines for calculating emissions in rural activities.
The guideline of interest for our study would be the definition of the baseline of emissions
projects. The baseline is the scenario that represents the level of anthropogenic GHG
emissions/removals that would occur in the absence of the proposed activity. From the
definition of the baseline, it would be possible to identify which emission sources and stocks
would be involved in calculating the carbon balance. If the sources used in this study were
participants in the baseline calculation, we could classify rural properties according to their
capacity to store carbon implying the potential for generating carbon credits.

Given the scenario of non-regulation of the agricultural market, we focused the study
on the analyzing of integrated data to generate knowledge for rural owners. Using machine
learning techniques, we were able to generate regression models that indicate the best use of
land for a rural property, considering the type of cultivation desired, location (municipality),
and climate. In this case, the answer is the value of carbon stored for that type of cultivation.
The rural producer can research, for example, among the crops compatible with a given region,
the one that would give him the greatest return, focusing on stock and the generation of carbon

credits.

8.4.3 Decision Support for Small Rural Producers

In Section 2.3, when dealing with the perspectives of the carbon market in Brazil, we
mention that when compared to REDD+ projects (Reduction of Emissions from Deforestation
and Forest Degradation), AFOLU projects (Agriculture, Forestry, and Other Land Use), objects
of our study, have, proportionally, higher costs of preparation, implementation and greater

difficulty in monitoring. For a project to be viable, the minimum estimated property size must
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be 10 thousand hectares. On the other hand, from a social perspective, we found that, according
to the latest IBGE Agricultural Census (IBGE, 2017), 76.8% of agricultural establishments in
Brazil are family farming, and 53% of these establishments have an area smaller than 10
hectares. In this way, many rural producers would have difficulty entering the carbon market.
In this context, we propose a solution accessible to this audience, offering knowledge to support
decisions. Furthermore, future implementations of the provenance and blockchain layers could
provide a viable solution for storing information necessary for establishing smart contracts and
tokenizing assets generated by carbon credits, supporting democratizing access to these
technologies.

Considering also a scenario where all the data is available for integration into the
CarbOnto ontology, we could know which rural properties obtained the best results related to
carbon stock in land use, including the use of soil additives (fertilizers and other substances) or
in the creation of ruminant animals that emit less CHa, such as the type of pasture used, breed
and gender, among others. Knowing the good practices, they could be shared with neighbors,

with the same territorial and climatic conditions to replicate the model.

8.4.4 Cloud Applications

The CarboFarm architecture presented in this work is intended to develop applications
in a cloud environment.

For the context of applications in the agricultural domain, it is necessary to consider the
target audience, mainly small farmers, who may have access difficulties, whether of a technical
nature, such as handling technologies (computers, software, use of the Internet), cognitive order
(autonomy and independence in the use of technologies) or economic order (ability to acquire
more powerful computing equipment and have every time Internet connectivity). In this way,
cloud applications that meet usability, flexibility, and accessibility requirements can better
reach this audience.

The CarboFarm architecture also uses geospatial datasets for data extraction. Extraction
and analysis of satellite image data can generate GHG inventories and monitor desired areas,
such as those involved in carbon credit projects.

The cloud architecture also facilitates reuse by other countries that adopt the same
inventory generation methodology and have agricultural GHG datasets. Some South American
and Southeast Asian countries could use Brazilian estimates, as they have climate

characteristics similar to Brazil's (MapBiomas, 2021; Garofalo et al., 2022). In this case, they
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would adopt “Tier 1” established by the IPCC (2021), which occurs when specific data for the

country is unavailable and standard data or data closer to their realities can be used.

8.4.5 Degraded Pastures

Soil comprises nearly 75% of Earth's total carbon, more than the amount stored in living
animals and plants. Soil plays an important role in maintaining a stable carbon cycle. For this
reason, they must be managed appropriately, and the recovery of degraded areas is essential
(Tahir et al., 2022).

According to Bolfe et al. (2024), Brazil has approximately 109 million hectares of
cultivated pastures with some level of degradation. Degradation occurs in practically all
regions, causing economic and environmental losses. Worldwide, 20% of pastures are
estimated to lose productivity due to degradation caused by inadequate soil management (Bolfe
et al., 2024). When they reach an advanced stage, these pastures are taken over, for example,
by invasive plants and termites, presenting an accelerated erosion process in which the native
flora is unable to regenerate.

The Brazilian Government published Decree N° 11,815/2023%, establishing the
“National Program for Conversion Degraded Pastures into Sustainable Agricultural and
Forestry Production Systems”. The decree is part of the “National Program for the Conversion
of Degraded Pastures”, which foresees the recovery of almost 40 million hectares over 10 years.
The intention is to promote and coordinate public policies capable of converting currently
unused areas through good agricultural practices that increase carbon capture

Several crops, such as rice, cotton, sugar cane, corn, and soybeans, among others, can
be used to replace or integrate pastures with signs of degradation. Crop choice is site-specific
regarding property profile, soil type, and crop variety (Bolfe et al., 2024).

Considering this context of degraded pastures, this study can contribute to finding the
best cultivation options for a given location through models generated with machine learning
techniques. Using the Decision Tree and Random Forest algorithms, we can effectively answer
which crop type has the most significant potential for storing carbon in a given region. With
input information: (i) municipality code; (ii) city climate; (iii) types of desired crops; we can

answer the carbon potential to be stored per hectare for each type of crop.

50 hitps://bit.ly/d11815-2023
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The effort to achieve the goals proposed by the Government Decree involves the
perspectives for the carbon market described in Section 2.3. The recovery of pastures involves
a high cost (economic perspective), the need to grant and facilitate credit conditions to
producers, especially those from family farming (political and social perspectives), and support
with the necessary technologies (technological perspective) to achieve soil recovery
(environmental perspective). Even though it is a complex project with several perspectives
involved, we believe that this study can offer a relevant contribution, which, in addition to
regenerating degraded areas and increasing productive capacity, can also promote

environmental sustainability.
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8.5 LIMITATIONS OF THE STUDY

Our architecture proposal provided layers with components necessary for a software
solution that contributes to an agricultural MRV system. The proposed architecture focused on
data extraction, integration, and analysis. For now, the study does not include the details of the
provenance and blockchain layers. This detail will occur in future work.

During our research, we could only obtain real data for some non-mechanical sources
of GHG emissions and stocks proposed in the CarbOnto integration ontology. Consequently,
we needed help calculating complete GHG inventories for the rural properties.

We used the land cover and use classes from the MapBiomas Project (MapBiomas,
2021) and the crop types from the BRLUC method (BRLUC, 2022) to calculate GHG emissions
and stocks due to land use. However, there were some limitations in the correspondence
between these classes and types of culture; they did not always correspond. In this way, we
created a mapping between classes and types of crops, presented in Subsection 5.2.4. For
example, the land use and cover map have a generic class called “Mosaic of Uses”, assigned to
locations where the land cover was not identified from the analyzed satellite images. For this
class, we assign the emission and stock values of the “Planted Pasture” crop type from the
BRLUC method. Therefore, the estimates calculated for these locations may be more inaccurate
than those for other locations where the classes and types of crops corresponded.

The estimates generated in this study are calculated based on other estimates, which
may present distortions compared to real values measured in the field. Therefore, quantifying
these values may present errors because every estimate, no matter how carefully the calculation
method, always attempts to approximate the real value. However, it is essential to highlight that
the data used were carefully selected from studies and methodologies developed by public
bodies and groups of researchers with significant expertise in their respective areas and, in most
cases, supported by scientific publications or relevant technical reports, such as can be seen in

citations and references.

8.6 THREATS TO VALILIDTY

The limitations of this research result are related to the quantity and quality of data and

the artificial intelligence models used. We chose a classification scheme, also used by Runeson

and Host (2009). The following threats can affect the validity of results:
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Internal validation: Land cover and use data were extracted from the sources
MapBiomas (2021), MapBiomas (2023), and BRLUC (2022). Updating these maps with data
from later years may change or add new classes, affecting the results. Using data with the same
characteristics but from other sources can result in different results. The ontological model is
prepared to accept data from different sources. However, the metadata of these sources (name,
reference year, among others) needs to be specified, and the correlation with other sources needs
to be established, as performed in Subsection 6.4.1. Furthermore, the addition of data related to
the use of fertilizers in the soil, animal husbandry, and GHG emissions from mechanical sources
can change the results. In this case, it is necessary to integrate them into the ontology and carry
out new analyses with machine learning algorithms, as performed in Chapter 6.

External validation: Although we considered the results satisfactory, domain experts
did not validate the solution presented. Furthermore, the results obtained in the case study are
specific to Brazil and cannot be generalized. However, South American and Southeast Asian
countries with similar climatic characteristics to Brazil can use Brazilian agricultural GHG
estimates, according to MapBiomas (2021) and Garofalo et al. (2022). In this way, the results
of this work can also be used as a reference by these countries if they do not have specific GHG
data for their territories. For the other countries, obtaining a set of land use and land cover data
will be necessary.

Construct validation: Models trained with specific data sets may have difficulties
predicting results in situations that differ significantly from the training context. Furthermore,
artificial intelligence models other than those presented in Chapter 6 were not tested for data
analysis during the case study. For the integrated datasets, the models used were considered
satisfactory. However, with new data sources, new studies can be carried out to verify the
performance of other algorithms in the search for better results.

Reliability: This work presents details of the studies' execution, but more specific
information related to the construction of scripts for extracting the data sources was made
available along with the code. We make this documentation available to ensure the case studies

can be rerun to mitigate this threat.

8.7 FUTURE WORKS

Based on the CarboFarm architecture, there are some possibilities for carrying out future
work. The next step in improving the architecture is detailing and implementing the provenance

and blockchain layers. Provenance will bring gains in auditing and traceability of all data sets
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used, bringing more transparency to the process. By capturing provenance, new possibilities
open up for the use of blockchain networks. Blockchain can be used to support the creation of
smart contracts for MRV systems and create a security mechanism against fraud, avoiding the
generation of false credits or duplicate credits and providing greater security and transparency
in negotiations.

Data integration from heterogeneous databases was carried out using structured
databases and did not apply to generic files or formats. Using a global schema presents some
limitations related to the cost of accessing, transforming, and integrating data. In future work,
adopting more flexible and agile solutions for data integration using the polystore technique is
necessary (Karpathiotakis ef al., 2015; Sanca and Ailamaki, 2023).

The growing concern about the effects of global warming and technological innovation
in agricultural practices, supported by technologies related to smart farms, tends to drive the
development of new studies and the availability of new data sets. Future work may use this
data, contributing to improve the CarbOnto ontology, expand the scope of semantic analysis,
and improve SWRL inferences and rules.

We can use the CarboFarm architecture to develop a collaborative tool for rural
landowners. By inputting data on GHG emissions and stock sources, the tool could calculate
farm estimates to discover the best combinations related to land use (cultivation, chemical
additives, etc.), fuels use, and energy that would lead to a positive carbon balance. For cases
where rural properties have complete data sets, the tool can calculate more accurate estimates
for the carbon inventory.

Regarding land cover and use data from the MapBiomas project, we used maps from
collection 7.1, dated April 2023. In August 2023, collection 8 was presented, with more mapped
classes and improvements in classification. Updates are expected annually. Therefore, future
work that uses the CarboFarm architecture must update the data according to the most recent
collection.

The CarboFarm architecture has the possibility of evolving into an E-SECO platform
(E-science Software Ecosystem) to support experiments between researchers (Ambrosio et al.,
2021; Santos et al., 2023), which we are calling Carbon-SECO in our study group (Santos et
al., 2023; Silva et al., 2024). The objective is to facilitate interactions between geographically
distributed researchers through scientific service workflows. These services could focus on
integrating, analyzing, and capturing data provenance, aiming to compare and reuse
experiences. A suggested application would be to compare methodologies for GHG emissions

and stocks on farms and compare methodologies with real data when available. This way,
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researchers could evaluate the results and collaboratively promote improvements in their

methods.

8.8 FINAL REMARKS OF THE CHAPTER

In this chapter, we present the evaluation of the study after carrying out two cycles of
the DSR methodology. With the development of the CarbOnto artifact and its integration into
the CarboFarm architecture, as well as the conduct of the case study, it was possible to verify
the validation of the conjectures that supported the development of the ontological model. In
this way, the knowledge acquired in the DSR cycles enabled the production of technical and
scientific knowledge.

We present the DSR-Model instantiation with the artifact's representation, the context
of the application, and the practical and theoretical approaches, which enabled us to answer the
research questions proposed for the study.

We also present the study's contributions and limitations, the threats to validity, and

future work that we consider attractive for continuing this research.



146

9 CONCLUSION

Global warming has been an evident topic in recent years. Extreme events caused by
climate change can impact forms of life and human activities, especially those that depend on
natural resources, such as agricultural activities. Agriculture has a dual role in this context,
being a significant source of GHG emissions and presenting great potential for mitigation.
Emissions originate in a variety of ways, such as soil management practices, enteric
fermentation of animals, energy consumption, and fuels for agricultural machinery, among
others.

This work presented a set of concepts related to GHG inventories on farms, syntactic
and semantic data integration, ontology, and decision support systems. Through these concepts,
a literature review and an exploratory study were conducted, aiming to seek challenges, gaps,
and opportunities for contribution in this field of research. At this stage, we identified that the
integration of heterogeneous databases of GHG emissions and sequestration sources, as well as
the use of artificial intelligence, can contribute to environmentally and economically
sustainable agriculture. Data integration and analysis can generate knowledge for farmers to
support decision-making and entry into the carbon market. Within this scenario, we present the
main research question: “RQ: How does integrating data from GHG emissions and stocks
support the generation of agricultural inventories?” and two secondary research questions:
“SRQI1: How does integrating data from emissions and GHG stock sources support more
sustainable farm production?” and “SRQZ2: Can knowledge be extracted for generating carbon
credits from integrating data on emission sources and GHG stocks?”

In search of answers to the research questions, this study proposed:

(1) A methodology for generating GHG inventories based on data from cultivation areas
within rural properties, using internationally recognized guidelines from the
Intergovernmental Panel on Climate Change (IPCC, 2021) and the GHG Protocol
(2014); and,

(i1)) A cloud architecture, called CarboFarm, for data integration and analysis and
support for decision-making.

We used the DSR methodology to develop the CarboFarm architecture. The two DSR
cycles performed allowed us to improve the architecture. The results were obtained from a case
study of Brazilian farms. They showed that CarboFarm was able to provide data integration,
promote the addition of semantic information, and generate knowledge to support the decision-

making of rural producers.
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The case study integrated data related to carbon emissions and stocks on rural properties
in 86 sampled municipalities divided by biome. Syntactic and semantic integration, provided
by inference and SWRL rules, allowed the generation of GHG inventories with estimates of
soil carbon balance. Then, datasets with these estimates were made available for processing in
machine learning algorithms. Through the regression technique, it was possible to generate
carbon balance predictions depending on the desired location, climate, and soil cover. The
previsions are helpful for farmers in deciding which crop in a given area can generate the most
significant carbon sequestration.

After carrying out two DSR methodology cycles to develop the CarbOnto ontology, we
can consider the following contributions:

- Using an ontological model for standardizing and interpreting the meaning of GHG
inventory terms eliminates or reduces conceptual and terminological confusion.
Furthermore, an ontology, with a well-defined semantic structure, in this context can
facilitate sharing and interoperability between MRV systems, contributing to better
specifications and application development and the reuse of components.

- Machine learning techniques generate knowledge from the data integrated by ontology.
The knowledge provided by combining semantic inferences and machine learning
predictions contributes to decision-making on farms and also to the review and
readjustment of more ecologically correct agricultural practices, such as those used to
recover degraded areas.

- Presentation of a cloud architecture model for creating agricultural GHG inventories
and generating carbon credits, providing flexibility and web accessibility for developing
solutions in this domain.

- Analysis and extraction of geospatial dataset to produce GHG inventory on farms.

- This approach may be suitable for any country with agricultural GHG datasets,
especially for regions with climate characteristics similar to Brazil's, such as some
countries in South America and Southeast Asia.

The use of new technologies, especially with the advent of smart farms, can facilitate
data generation, availability, and integration. In the context of climate change, the construction
of low-emission agriculture must be aligned with the adoption of production systems and
technologies that are more efficient in the use of natural, human, and economic resources,
considering the recognition of the agricultural sector's particularities and heterogeneities.

Implementing measures to reduce emissions in the agricultural sector contributes to food

security and promotes sustainability. Facilitating access to the carbon market, especially for
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small rural producers, could be a motivational factor with the possibility of economic return.
Agriculture can significantly contribute to mitigating climate change and biodiversity by
adopting a comprehensive approach that incorporates political, social, and economic changes

combined with technological advances and innovations.
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APPENDIX A — ADDITIONAL BACKGROUND THEORY

A.1 ONTOLOGY AND DATA INTEGRATION

An ontology is an explicit specification of a conceptualization. A conceptualization is
an abstract view of the world we want to represent for some purpose. It encompasses
representation, formal naming, definition of categories, properties, and relationships between
concepts, data, and entities that substantiate one, many, or all domains of discourse. Ontologies
are like conceptual schemas in database systems. While a conceptual scheme defines
relationships about data, an ontology defines terms that represent knowledge (Gruber, 1993).

Ontology theory (Guarino, 1998) supports the idea of a model that provides a formal
and explicit representation of the meaning of vocabulary. A model that software applications
can use as a reference for interoperability or developing new features. The ontology also allows
to find important relationships that are not naturally detected and to infer specific situations
through data analysis and processing rules. Well-founded ontologies act as standards for
terminology use and follow strict rules for evolution and reuse, leading to an ecosystem of
potentially interoperable artifacts (Vita et al., 2018; Yuanwei et al., 2024).

Uschold and Gruninger (1996) suggest using ontologies to reduce or eliminate
conceptual and terminological confusion, unify different points of view, and serve as a basis
for communication between people and systems interoperability. In particular, for software
engineers, it would contribute to better specification, greater reliability, and the reuse of
components. An ontological model allows the generation of software that can evaluate semantic
relationships, validate statements made within a knowledge domain, and provide much richer
rules for managing information (Feilmayr and W68, 2016).

Fernandez-Lopez et al. (1997) present the “Methontology” methodology for building
ontologies. The methodology divides the ontology life cycle into six phases: specification,
conceptualization, formalization, integration, implementation, and maintenance. We identify
the purpose, scope, implementation language, and intended end users in the specification phase.
The conceptualization phase focuses on organizing and structuring the semantic meaning of the
data. This phase was based on folksonomy and the relationships defined between terms. In the
formalization phase, the conceptual model is transformed into a formal representation, and the
rules to support the semantic processing of terms are defined to discover new relationships
between them. The possibility of reusing definitions already incorporated in other ontologies is

verified in the integration phase. The next phase is implementation, represented by coding,
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followed by the last phase, represented by maintenance, with treatment of changes aimed at
improvements or corrections. Permeating all phases, three activities were defined. The activity
of acquiring knowledge, with the search for sources of knowledge from experts, in literature,
in systems, or existing ontologies. The documentation activity must be very detailed and carried
out throughout the ontology development process; and the evaluation activity consists of two
stages: verification and validation. The verification stage refers to accuracy, while validation
seeks to ensure that the ontology, software environment, and documentation correspond to the
system they should represent, looking for incompleteness, inconsistencies, and redundancies.

An ontology must also be able to represent questions using its terminology and
characterize the answers to these questions using axioms and definitions. These are Competence
Questions (CQ). They specify the requirements and also check whether the ontology meets
these requirements. Ideally, competency questions should be defined in a stratified manner,
with higher-level questions requiring the solution of lower-level questions (Uschold and
Gruninger, 1996).

The language commonly used for representing, publishing, and sharing ontologies is
Ontology Web Language (OWL) (Gomez-Pérez, 2006), which is one of the main languages
created by the Semantic Web (Berners-Lee, 2001). It was developed as an extension of
RDF(S)®!, within the scope of the W3C Web-Ontology (WebOnt) Working Group, do W3C>2,
Another important language is the Semantic Web Rule Language (SWRL)3, which extends the
expressive power of OWL by allowing the definition of rules that combine classes and
properties to infer new knowledge from existing data.

In the Semantic Web context, Descriptive Logic (DL) plays an important role, providing
the logical basis for knowledge representation. The DL theory is divided into the
Terminological Box (TBox) and the Assertional Box (ABox). The TBox contains intensional
(terminological) knowledge and is constructed through declarations of general properties of
concepts. The ABox contains extensional (assertional) knowledge specific to individuals in the
discourse domain. In other words, the TBox contains the definitions of concepts and functions,
while the ABox contains the definitions of individuals (instances) (Gomez-Pérez, 2006). DL
systems allow the representation of ontologies with three components: concepts, roles, and
individuals. Concepts in Descriptive Logic represent classes of objects. Roles describe binary

relationships between concepts and the description of properties of concepts. Finally,

S RDF(S) is the combination of RDF and RDF Schema (Gomez-Pérez, 2006)
52 https://www.w3.org
53 https://www.w3.org/submissions/2004/03
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individuals represent instances of classes (Gomez-Pérez, 2006). Description logic plays a
crucial role in the semantic representation of concepts and inferring new knowledge. This
allows machines to understand and process information more intelligently and efficiently.

An ontology can be used as a data integration tool. Data integration through an
ontological model involves creating a structure that formally represents the concepts and
relationships within a specific domain. Ontologies enable a common and shared understanding
of a domain of knowledge. Considering communication between the agents involved in the
processes (people and systems), they play an important role in the exchange of information, as
they provide a semantic structure to data sources and reduce conceptual or terminological
differences (Almeida et al., 2003). In this context, the ontology must be designed to facilitate
integration and interoperability, allowing computational systems to understand and use this data

transparently, coherently, and consistently.

A.2 PROVENANCE

Provenance, sometimes called data lineage, is the description of the origins of data and
the process by which it arrived in a database (Buneman et al., 2001). According to Herschel et
al. (2017), provenance is metadata describing a production process rather than data. It
contributes to quality, as it can help with the reputation of the agent responsible for the creation,
the device it created, and how the data has been transformed since its creation. It also contributes
to auditing and traceability, bringing transparency to the process. Miles et al. (2011) describe
provenance as essential to help users better understand, trust, reproduce, and validate data.

Lim et al. (2010) and Koop and Freire (2014) classify provenance into prospective,
retrospective and evolutionary. Prospective provenance captures a workflow's static structure
and context, expressing the steps to be followed to generate a dataset. It specifies the
computational tasks that will be performed in the experiment. Retrospective provenance is
associated with information about the execution of a workflow and the activities and steps taken
to derive a dataset. More specifically, it is a detailed record of the execution of each task in the
workflow. The evolutionary provenance reflects the changes made between two executed
versions of the workflow, that is, the evolution history, maintaining all changes applied
throughout its life cycle.

Provenance data differs from process records, as by using provenance, we can capture

influence relationships between the data and not just record the actions performed. In
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heterogeneous data scenarios, provenance capture must be independent of the data source,
allowing interoperability between them (Costa et al., 2021).

Among the provenance models suggested in the literature, PROV>* stands out. It is a
generic model that presents several possibilities for specialization for specific domains. The
PROV model aims to express provenance data using descriptions of entities, activities, and
agents involved in the production or delivery of an object and the relationships between them.
The objective of PROV is to enable the publication and exchange of provenance information in
heterogeneous environments (Costa et al., 2021). The diagram in Figure 63 provides a high-

level overview of the structure of PROV records.

Figure 63: High-level overview of the PROV record structure

wasDerivedFrom

wasGenerated By

wasAssociatedWith
Activity

Source: https://www.w3.org/TR/prov-primer

According to the PROV Model Guide®®, the entities can be physical, digital, or
conceptual. Records can describe the provenance of entities, and the provenance of one entity
can refer to many other entities. Activities are how entities come into existence and their
attributes change to become new entities, often using previously existing entities. They are
dynamic aspects of the world, such as actions, processes, and others. Activities generate new
entities and also make use of entities. An agent assumes a role in an activity or entity with some
responsibility. It can be a person, software, an object, an organization, or other entities that can

be assigned responsibility. When an agent has some responsibility for an activity or entity,

% An overview of PROV model in https://www.w3.org/TR/2013/NOTE-prov-overview-

20130430.
33 https://www.w3.org/TR/prov-primer
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PROV says that the agent was associated with it, and several agents may be associated with an
activity or entity and vice versa.

In this way, provenance aims to answer: “where” and “when” the data transformation
occurred, “what” the transformation was, “why” it was carried out and “who” provided such

information (Jiang et al., 2017).

A.3 BLOCKCHAIN

The document “Bitcoin: A Peer-to-Peer Electronic Cash System”, published in 2008 by
a person or group under the pseudonym Satoshi Nakamoto, considered the creator(s) of the
Bitcoin cryptocurrency>®, laid the foundation for blockchain technology by describing the
technical and conceptual principles. Among the principles are decentralization, immutability,
transparency, security, and consensus on the validity of transactions.

The algorithm proposed under the name Proof of Work (PoW) guarantees the grouping
and propagation of transactions on the network, the verification of consensus, and the addition
of new blocks by solving a cryptographic problem (Nakamoto, 2008). Due to the considerable
concern related to energy expenditure in executing the PoW algorithm, some blockchain
implementations started using the Proof of Stake (PoS)>’ algorithm, in which the validation of
blocks is carried out under conditions that require less computational power, with the definition
of criteria such as the number of cryptocurrencies held by the validator and the time of their
participation in the network, for example (Du et al., 2024).

Due to its characteristics, the blockchain network now has a wide range of applications
in various knowledge domains. One of these application areas is in support of smart contracts.
Smart contracts are digital protocols that automate predefined rules when a specific condition
is met. Smart contracts can support the digitalization of measurement, reporting, and
verification (MRV) processes by serving as an aggregation platform, like a “ledger” or meta-
record, connecting all heterogeneous issuance systems on one platform (Patel ef al., 2020;
Schletz et al., 2020; Woo et al., 2021). Smart contracts, supported by provenance and
blockchain, offer the necessary traceability based on the storage of credit metadata information,
such as the country of issuance, sectoral scope, project name, identification number, and applied
methodology, among others. Blockchain also offers a security mechanism against fraud,

preventing the generation of false or duplicate credits. The combination of blockchain and smart

36 https://bitcoin.org/en
37 https://bitcointalk.org/index.php?topic=27787.0
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contracts significantly changes how transactions and agreements are carried out, providing
greater efficiency, security, and transparency in negotiations (Schletz et al., 2020; Ju et al.,
2022; Parhamfar et al., 2024).

The use of blockchain also allows assets to be fractionated for commercialization
securely, offering traceability and democratizing access. This allows any interested person or
company to invest in environmental projects focused on reducing greenhouse gas emissions.
(UNFCCC, 2017; Parhamfar et al., 2024).

Blockchain technology is increasingly recognized as a means of increasing transparency
and traceability in agricultural supply chains. By systematically recording emissions data at
each stage of production and distribution, blockchain technology plays a crucial role in
promoting accountability and facilitating emissions reductions across the entire value chain. By
accessing verifiable information, consumers and stakeholders can make informed decisions that
align with sustainable practices (Kamyab et al., 2024)

In this way, integrating blockchain into carbon trading platforms offers clear benefits
regarding interoperability with other emerging technologies, transparency, traceability,
auditability, security, and increased trust between parties. Blockchain can improve governance

and sustainability to support collective action to combat climate change.
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APPENDIX B — BASIC STRUCTURE OF AN INVENTORY OF GREENHOUSE
GASES (GHG) ON FARMS

1) OBIJECTIVE

2) METHODOLOGY

3) GHG EMISSION ESTIMATES

3.1) MECHANICAL SOURCES
Accounting for direct and indirect GHG emissions from mechanical sources across

the farm (e.g., electricity, mobile and stationary machinery).

3.2) NON-MECHANICAL SOURCES
Accounting for direct GHG emissions from non-mechanical sources across the farm
(e.g., CH4 emissions from ruminant animals and GHG emissions calculated by crop

area on the farm).

4) GHG STOCK ESTIMATES

4.1) NON-MECHANICAL SOURCES
Accounting for direct GHG stocks from non-mechanical sources across the farm (e.g.,

stocks calculated by crop area on the farm).

5) RESULTS
The result is the balance of the farm's GHG estimates, that is, the difference between the

value of emissions and stocks.

6) CONCLUSION



