UNIVERSIDADE FEDERAL DE JUIZ DE FORA
INSTITUTO DE CIENCIAS EXATAS
PROGRAMA DE POS GRADUACAO EM CIENCIA DA COMPUTACAO

Luis Felipe de Almeida Nascimento

A Model-Driven Methodology to Support Runtime Assurance of Open and
Adaptive Systems

Juiz de Fora

2024

Luis Felipe de Almeida Nascimento

A Model-Driven Methodology to Support Runtime Assurance of Open and
Adaptive Systems

Dissertacao apresentada ao Programa de Poés
Graduacao em Ciéncia da Computacao da
Universidade Federal de Juiz de Fora como
requisito parcial a obtencao do titulo de
Mestre em Ciéncia da Computacdo. Area
de concentragao: Engenharia de Software e
Banco de Dados.

Orientador: Prof. Dr. André Luiz de Oliveira

Coorientador: Prof. Dra. Regina Maria Maciel Braga Villela

Juiz de Fora

2024

Ficha catalografica elaborada através do Modelo Latex do CDC da UFJF

com os dados fornecidos pelo(a) autor(a)

Nascimento, Luis Felipe de Almeida.

A Model-Driven Methodology to Support Runtime Assurance of Open
and Adaptive Systems / Luis Felipe de Almeida Nascimento. — 2024.

118 f. : il

Orientador: André Luiz de Oliveira

Coorientador: Regina Maria Maciel Braga Villela

Dissertagao (Mestrado) — Universidade Federal de Juiz de Fora, Instituto
de Ciéncias Exatas. Programa de Pés Graduagao em Ciéncia da Computagéo,
2024.

1. Cyber-Physical Systems. 2. Assurance Cases. 3. SACM. 1. de Oliveira,
André Luiz, orient. II. Villela, Regina Maria Maciel Braga, coorient. III.
Titulo

Luis Felipe de Almeida Nascimento

A model-driven methodology to support runtime assurance of open and adaptive systems

Dissertacao
apresentada

ao Programa de Pés-
graduacao em
Ciéncia da
Computacao

da Universidade
Federal de Juiz de
Fora como requisito
parcial a obtencao do
titulo de Mestre em
Ciéncia da
Computacdo. Area de
concentracao: Ciéncia
da Computagdo.

Aprovada em 23 de setembro de 2024.

BANCA EXAMINADORA

Prof. Dr. André Luiz de Oliveira - Orientador

Universidade Federal de Juiz de Fora

Prof2. Dra. Regina Maria Maciel Braga Villela - Coorientadora

Universidade Federal de Juiz de Fora

Profa. Dra. Fernanda Cldudia Alves Campos

Universidade Federal de Juiz de Fora

Prof. Dr. Leonardo Montecchi

Norwegian University of Science and Technology

Prof2. Dra. Rosana Teresinha Vaccare Braga

Universidade de Sao Paulo

Juiz de Fora, 10/09/2024.

Documento assinado eletronicamente por Rosana Teresinha Vaccare Braga, Usuério
Externo, em 23/09/2024, as 11:40, conforme horario oficial de Brasilia, com
fundamento no § 3° do art. 4° do Decreto n° 10.543, de 13 de novembro de 2020.

/ fl
Sel’ &)
assinatura

eletrénica

Documento assinado eletronicamente por Regina Maria Maciel Braga Villela,
Professor(a), em 23/09/2024, as 12:19, conforme horario oficial de Brasilia, com
fundamento no § 3° do art. 4° do Decreto n° 10.543, de 13 de novembro de 2020.

il
Sel A
assinatura
eletrénica

Documento assinado eletronicamente por Leonardo Montecchi, Usuério Externo,
em 24/09/2024, as 18:51, conforme horario oficial de Brasilia, com fundamento no § 3°
do art. 4° do Decreto n° 10.543, de 13 de novembro de 2020.

il
Sel A
assinatura
eletrénica

Documento assinado eletronicamente por Andre Luiz de Oliveira, Professor(a), em
24/09/2024, as 19:45, conforme horario oficial de Brasilia, com fundamento no § 3° do
art. 4°do Decreto n°® 10.543, de 13 de novembro de 2020.

il
Sel o
assinatura
eletrbnica

Documento assinado eletronicamente por Fernanda Claudia Alves Campos,
Professor(a), em 26/09/2024, as 07:29, conforme horario oficial de Brasilia, com
fundamento no § 3° do art. 4° do Decreto n° 10.543, de 13 de novembro de 2020.

1
el o
assinatura
eletrénica

"

b+ A autenticidade deste documento pode ser conferida no Portal do SEI-Ufjf
== (www2.ufjf.br/SEI) através do icone Conferéncia de Documentos, informando o
- codigo verificador 1977522 e o codigo CRC B2F79894.

RESUMO

Contexto: Sistemas ciber-fisicos (CPSs) abrigam vasto potencial econémico e
impacto social, permitindo novos tipos de aplicagoes promissoras em diferentes dominios de
sistemas embarcados como automotivo, avidnicos, ferroviarios, de satde e automacgao. Esses
sistemas desempenham fungdes criticas e, se falharem, podem prejudicar pessoas ou levar
ao colapso de infraestruturas importantes com consequéncias catastroficas para a industria
e/ou sociedade. Dessa forma, o desenvolvimento de CPSs demanda a demonstracao de
propriedades de seguranca, protegao e confiabilidade. Casos de garantia fornecem um meio
explicito para justificar/avaliar as propriedades de confianga do sistema com referéncias
explicitas e implicitas a artefatos de design, de analise seguranca e de confiabilidade. O
Structured Assurance Case Metamodel (SACM) define um metamodelo padronizado para
representar casos de garantia estruturados. O standard SACM fornece a base para a
garantia de seguranca de sistema dirigida por modelos com grande potencial para ser
aplicada em dominios de CPSs abertos e adaptativos emergentes. Motivagao: A natureza
aberta (capacidade de se conectar) e adaptativa (adaptar a mudangas de contextos)
dos CPSs exige uma mudancga de paradigma de garantia de seguranca do sistema em
tempo de design para a garantia em tempo de execuc¢ao. Assim, espera-se que 0s casos
de garantia sejam intercambeados, integrados e verificados em tempo de execugao para
garantir a confianga de CPSs. Entretando, possibilitar a rastreabilidade entre os casos
de garantia e modelos de design, analise e de processso do sistema, que sao parte da
Identidade de Confianga Digital Executével (EDDIs) de componentes de um CPSs, ainda
é uma barreira. Objetivo: Neste trabalho é proposta uma nova metodologia dirigida
por modelos para apoiar a especificacdo e a sintese de casos de garantia executaveis a
partir de um conjunto de modelos de sistema para demonstrar a seguranca e protecao
de CPSs em tempo de execuc¢ao. Este trabalho aprimora a especificacgado SACM com
pattern extensions que adicionam semantica ao conceito de ImplementationConstraint
para possibilitar a especificagdo de padrdes de caso de garantia executéveis (templates)
vinculados a informagoes de modelos de projeto, anélise e de processo (evidéncias) que
constituem a EDDI de um CPS e/ou de um componente do CPS. A metodologia proposta
inclui um método de apoio a especificagdo e a instanciacao de padroes de caso de garantia,
uma ferramenta de modelagem com a capacidade de especificar padroes de caso de garantia
executaveis vinculados a informacoes de uma EDDI e um algoritmo de instanciacao para
apoiar a sintese automatica de casos de garantia. Avaliagao: A viabilidade da metodologia
proposta foi avaliada por meio de sua aplicacao na geracao de casos de garantia para dois
sistemas do dominio automotivo. Resultados: A efetividade da metodologia proposta
foi demostrada pelo baixo tempo de excucao da instanciagao, alta precisao e omissoes
minimas na geracao de casos de garantia para dois sistemas de tamanho médio.

Palavras-chave: Sistemas Ciber-Fisicos. Casos de Garantia. SACM.

ABSTRACT

Context: Cyber-physical systems (CPS) harbor vast economic potential and
societal impact, enabling new types of promising applications in different embedded system
domains such as automotive, avionics, railway, healthcare, and home automation. These
systems perform safety-critical functions, thus in case of failure, they may harm people or
lead to the collapse of important infrastructures with catastrophic consequences to industry
and /or society. Therefore, CPSs demand the justification of system safety and component
reliability. Assurance cases provide an explicit means for justifying/assessing confidence in
system dependability with explicit and implicit references to design, safety, and reliability
artifacts. The Structured Assurance Case Metamodel (SACM) defines a standardized
metamodel for representing structured assurance cases. SACM provides the foundations
for model-based system assurance with potential to be applied in emergent open and
adaptive CPS domains. Motivation: CPSs are loosely connected and come together as
temporary configurations of smaller systems that may dissolve and give place to other
configurations. The open and adaptive nature of CPSs, demands a paradigm shift from
design-time to runtime system assurance. To ensure the dependability of CPSs, assurance
cases are expected to be exchanged, integrated, and verified at runtime. However, enabling
the traceability between assurance cases and system design, analysis, and process models,
which are part of Executable Digital Dependability Identities (EDDIs) of CPS components,
is still a barrier. Objective: This study introduces a novel model-driven methodology to
support the specification and synthesis of executable SACM assurance cases from various
systems models to demonstrate CPS safety and security at runtime. This work also
enhances the SACM standard with pattern extensions that added semantics to the concept
of Implementation Constraint to support the specification of executable assurance case
pattern (templates) specifications linked to information from design, analysis, and process
models (evidence) that constitute the EDDI of a CPS and/or CPS component. This
study also provides an assurance case pattern specification and instantiation methodology;,
comprising a modeling tool for specifying executable assurance case patterns linked to
EDDI information, and an instantiation algorithm to support the automatic synthesis of
assurance cases from EDDI information. Evaluation: The feasibility of the proposed
methodology is evaluated in two illustrative studies from the automotive domain. Results:
The effectiveness of the proposed methodology are demonstrated by low instantiation
execution time, higher accuracy, and minimal omissions in the generated product assurance
cases for the two medium-sized automotive systems.

Keywords: Cyber-Physical Systems. Assurance Cases. SACM.

FIGURES

Figure 1.1 — Contributions Overview. 14
Figure 2.1 — General example of CPS. 0. 17
Figure 2.2 —ISO 26262 (ISO, 2018). 19

Figure 2.3 — Functional Hazard Analysis Example (TRIBBLE; LEMPIA; MILLER, 2002) 20
Figure 2.4 — FTA Excerpt for the Hazard — Incorrect Guidance (TRIBBLE; LEMPIA;

MILLER, 2002). 21
Figure 2.5 - OMG Meta-Object Facility (ATKINSON; KUHNE, 2003) 24
Figure 2.6 — Elements of GSN notation (GSN, 2018). 26
Figure 2.7 — An Example of GSN Goal Structure. 26
Figure 2.8 - GSN Abstractions (GSN, 2018). 27
Figure 2.9 — GSN Pattern Representation Example (KELLY; MCDERMID, 1997). . 27
Figure 2.10-SACM Metamodel (OMG, 2021). 29
Figure 2.11-SACM Assurance Case Base Classes. 30
Figure 2.12-SACM Structured Assurance Case Terminology Classes. 31
Figure 2.13-SACM Artifact Metamodel. 32
Figure 2.14-SACM Assurance Case Base Classes. 33
Figure 2.15-SACM Argumentation package elements (OMG, 2021). 33

Figure 2.16-Excerpt of the Hazard Avoidance pattern (KELLY; MCDERMID, 1997). 34
Figure 2.17-Runtime assurance overview (WEI, R.; KELLY, T. P.; DAI, X., et al,,

2019). . . 36
Figure 2.18-Digital Dependability Identity 37
Figure 2.19-Overview of the Open Dependability Exchange Metamodel 38
Figure 2.20-ODE::FailureLogic::FTA Package (DEIS, 2020). 39
Figure 2.21-Weaving-Model Based Instantiation (HAWKINS; HABLI, et al., 2015). 40
Figure 2.22-Excerpt Requirements Breakdown Pattern. 41
Figure 2.23-Example of a populated P-table (DENNEY, Ewen; PAI, Ganesh, 2013). 42
Figure 2.24-Excerpt Requirements Breakdown Pattern Instance. 42
Figure 2.25-ACME Architecture Overview. 43
Figure 3.1 — Constraints Subtypes Representation. 45
Figure 3.2 — Extended Meta-model Representation. 45
Figure 3.3 — Components Pattern Excerpt. 51
Figure 3.4 — Components External Model. 51
Figure 3.5 — Components Pattern Instance. 52
Figure 3.6 — Functional Breakdown Pattern Excerpt. 52
Figure 3.7 — Functional Breakdown Pattern Instance. 54
Figure 3.8 - HSFM Pattern Excerpt., 54

Figure 3.9 - HSFM External Model. 55

Figure 3.10-HSFM Pattern Instance. 56

Figure 4.1 - SACM ACEditor Architecture. 58
Figure 4.2 — Assurance Case Module View. 60
Figure 4.3 — Terminology Module View. 61
Figure 4.4 — Implementation Constraints Overview. 61
Figure 4.5 — Expressions Specification First Step. 62
Figure 4.6 — Expressions Specification Second Step. 62
Figure 4.7 — Artifact Module View. 63
Figure 4.8 — Argument Module View. 64
Figure 4.9 - Model Element View. L o 65
Figure 5.1 — Methodology Overview. 67
Figure 5.2 — Vocabulary Specification. 0L 69
Figure 5.3 — Argumentation Elements Specification. 69
Figure 5.4 — Mapping Argumentation Elements to Vocabulary. 70
Figure 5.5 — Argumentation Elements Constraints. 71
Figure 5.6 — Terminology Elements Constraints. 71
Figure 5.7 — Safety Analisys FTA Result / ODE Representation. 73
Figure 5.8 — Instantiation result package View. 74
Figure 5.9 — Instantiation Result Power Failure ArgumentPackage View. 75
Figure 5.10-Instantiation Result Relay Connect Fail ArgumentPackage View. . . . 75
Figure 6.1 — Instantiation Modules. L. 7
Figure 6.2 — Class Diagram EObject Module. 80
Figure 6.3 — Class Diagram ModelElement Module. 82
Figure 6.4 — Class Diagram Package Module. 83
Figure 6.5 — Class Diagram Term Module. 85
Figure 6.6 — Class Diagram Expression Module. 86
Figure 6.7 — Expression Terms. L 87
Figure 6.8 — Expression Instantiation. o000 87
Figure 6.9 — Class Diagram AssertedRelationship Module. 88
Figure 6.10-Class Diagram Artifact AssetRelationship Module. 89
Figure 7.1 — Hybrid Braking System Architecture. 92
Figure 7.2 — Highly Automated Driving Vehicle Architecture. 93
Figure 7.3 — Hazard Avoidance Pattern in SACM 94
Figure 7.4 — Risk Argument pattern in SACM 95
Figure 7.5 - HSFM Pattern in SACM 97
Figure 7.6 - HBS Fault Tree Excerpt. 99
Figure 7.7 - HBS ODE Fault Tree Excerpt. 100
Figure 7.8 — HBS Hazard Avoidance. 101

Figure 7.9 - HBS Risk Argument. 102

Figure 7.10-HBS HSFM. 103

Figure 7.11-HAD Fault Tree Excerpt (MUNK; NORDMANN, 2020). 104
Figure 7.12-HAD ODE Fault Tree Excerpt. 105
Figure 7.13-HAD Hazard Avoidance., 106
Figure 7.14-HAD Risk Argument. 106

Figure 7.15-HAD HSFM. 107

TABLES

Table 3.1 — Components Pattern Constraints. 51
Table 3.2 — Functional Pattern Constraints. 53
Table 3.3 — Example of Identified Aircraft Hazards. 53
Table 3.4 — Example of Aircraft Functions 53
Table 3.5 - HSFM Pattern Constraints. %)
Table 7.1 — Evaluation Goals, Questions, and Metrics. 91
Table 7.2 — Hazard Avoidance Pattern Constraints. 95
Table 7.3 — Hazard Avoidance Pattern Queries. 95
Table 7.4 — Risk Argument Pattern Constraints. 96
Table 7.5 — Risk Argument Pattern Queries. 96
Table 7.6 — HSFM Pattern Constraints. 98
Table 7.7 — HSFM Pattern Queries., 98
Table 7.8 — Instantiation Efficiency. L. 108

Table 7.9 — Instantiation Effectiveness. 109

1.1
1.2
1.3
1.4

2.1

2.2

2.3

24
24.1
2.4.2
2.4.3
2.5

2.6

2.7
2.71
2.7.2
2.8
2.8.1
2.8.2
2.8.3
2.84
2.9
2.10
2.11
2.12
2.12.1
2.12.2
2.12.3

3.1
3.2
3.3
3.4
3.5
3.6

SUMMARY

INTRODUCTION ettt it e e e 12
CONTEXT o 12
MOTIVATION e 12
OBJECTIVE 13
ORGANIZATION e 15
BACKGROUND it ittt et e e 16
CYBER-PHYSICAL SYSTEMS (CPS) 16
TERMINOLOGY e 17
SAFETY LIFE-CYCLE 18
SAFETY ANALYSIS TECHNIQUES 19
Functional Hazard Analysis 19
Fault Tree Analysis 20
Assurance Case Specification 21
MODEL DRIVEN ENGINEERING 23
MODEL-BASED SAFETY ANALYSIS 24
GSN ASSURANCE CASES 25
Goal Structuring Notation 25
GSN Pattern Extension L 26
STRUCTURED ASSURANCE CASE METAMODEL (SACM) 28
Assurance Case Base Classes 28
Structured Assurance Case Terminology Classes 31
Artifact Metamodel 31
Argumentation Metamodelo 32
RUNTIME ASSURANCE 35
DIGITAL DEPENDABILITY IDENTITY 37
OPEN-DEPENDABILITY EXCHANGE METAMODEL (ODE) 38
RELATED WORK 39
Weaving-Model Based Instantiation 40
Table Based Instantiation 40
Assurance Case Editor o 42
SACM PATTERN EXTENSIONS 44
CONSTRAINT TYPESIN SACM 44
MAPPING 46
MULTIPLICITY e e e 47
OPTIONAL s 48
CHOICE 49
CHILDREN 49

3.7
3.7.1
3.7.2
3.7.3
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
9.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1

7.2
7.2.1
7.2.2
7.3
7.3.1
7.8.1.1
7.3.1.2
7.83.1.3

USAGE OF SACM PATTERNS EXTENSIONS 50

Component Decomposition Argument Pattern 50
Functional Breakdown Argument Pattern 52
Hazardous Software Failure Mode Argument Pattern 54
SUMMARY 56
SACM ACEDITOR 58
ASSURANCE CASE EDITOR ARCHITECTURE 58
ASSURANCE CASE MODULE 59
TERMINOLOGY MODULE, 60
ARTIFACT MODULE 63
ARGUMENTATION MODULE 64
PATTERN EXTENSIONS MODULE 64
SUMMARY 65
METHODOLOGY FOR SPECIFICATION AND INSTANTIATION
OF SACM ASSURANCE CASE PATTERNS 67
OVERVIEW 67
ASSURANCE CASE PATTERN SPECIFICATION 68
ASSURANCE CASE PATTERN INSTANTIATION 73
SUMMARY e 75
SACM PATTERN INSTANTIATION ALGORITHM 77
OVERVIEW 7
EOBJECT MODULE 80
MODEL ELEMENT MODULE 81
PACKAGE MODULE 83
TERM MODULE 84
EXPRESSION MODULE 86
ASSERTED RELATIONSHIP MODULE 88
ARTIFACT ASSET RELATIONSHIP MODULE 89
SUMMARY 90
EVALUATION e e e e e et e e e 91
STUDY DEFINITION 91
CASE STUDY SELECTION AND DESCRIPTION 92
Hybrid Braking System oL 92
Highly Automated Driving Vehicle 93
CASE STUDY EXECUTION 93
Assurance Case Pattern Specification 94
Hazard Avoidance Pattern 94
Risk Argument Pattern 0L 95

HSFM Pattern 97

7.3.2
7.8.2.1
7.3.2.2
7.4

7.5
7.5.1
7.5.2
7.5.3
7.6

Assurance Case Pattern Instantiation 99

HBS Safety Analysis and Pattern Instantiation 99
HAD Safety Analysis and Pattern Instantiation 103
DATA COLLECTION AND ANALYSIS 108
THREATS TO THE VALIDITY 109
Construct Validity o 109
External Validityo 110
Reliability o 110
SUMMARY 110
CONCLUSION ottt e e e e e e e e e e s e e e 112

REFERENCES i i it e e 114

12
1 INTRODUCTION

1.1 CONTEXT

Cyber-physical systems (CPS) integrate physical processes and computer systems
that contain sensors to observe the environment and actuators to influence physical
processes (KOPETZ et al., 2016). CPSs harbor vast economic potential and societal
impact, enabling new types of promising applications in different embedded system domains
such as automotive! (DAJSUREN; BRAND, 2019), avionics? (ASLANSEFAT et al., 2022),
railway, healthcare, and home automation (WEI, R.; KELLY, T. P.; HAWKINS, R.,
et al., 2017). These systems perform safety-critical functions, thus in case of failure, they
may harm people or lead to the collapse of important infrastructures with catastrophic
consequences to industry and/or society (TRAPP; SCHNEIDER; LIGGESMEYER, 2013).

Safety-critical CPS demand justification of system safety and component reliability.
Assurance cases provide an explicit means for justifying and assessing confidence in safety,
security, and other dependability properties of interest. An assurance case is a structured
argument formed by a set of claims arguing and justifying the assurance of system safety
and security properties in a particular operating environment based on compelling evidence
(e.g., design, analysis, and process models) and the relationships between these elements
(HAWKINS; KELLY, 2010). An assurance case supported by evidence is the key artifact
for the safety/security acceptance of systems before their release for operation. The
required system assurance evidence can be gathered by applying safety and reliability
analysis techniques. Fault Tree Analysis (FTA) (NASA, 2002) and Failure Modes and
Effects Analysis (FMEA) are among the most popular safety analysis techniques. These
techniques support engineers in determining how a system can fail and the likelihood of
those failures. FTA and FMEA constitute integral parts of Model-Based Safety Analysis
(MBSA).

1.2 MOTIVATION

CPSs are loosely connected and come together as temporary configurations of
smaller systems that may dissolve and give place to other configurations. Given the
highly open and adaptive nature of CPSs, i.e., systems can connect at runtime and adapt
their behaviors to changing contexts, the evidence and justification of system assurance
need to change from design time to runtime. With this shift, there will be a transition
from the current design time assurance cases produced from manually created artifacts to
assurance case models that can be automatically synthesized and evaluated at runtime
(WEIL; KELLY, et al., 2018).

1
2

Autonomous cars
Unmanned aerial vehicles

13

To achieve this goal, it is necessary to equip a CPS or a CPS component with all
the information that uniquely describes its dependability characteristics (design, analysis,
and process models). This collection of models and dependability information constitutes
a system Executable Digital Dependability Identity (EDDI) (WEI, Ran; KELLY, Tim P;
HAWKINS, Richard, et al., 2018). EDDIs contain all the required information for system
assurance, when produced at design time provide the basis for automated integration of
components into systems at development-time, and dynamic integration of independent
systems into systems of systems at runtime. To ensure the dependability of CPSs, assurance
cases are expected to be generated, exchanged, integrated, and verified at runtime (WEI,
Ran; KELLY, Tim P; DAI, Xiaotian, et al., 2019). The Structured Assurance Case
Metamodel (SACM) (OMG, 2021), issued by the Object Management Group (OMG),
provides the foundations for runtime model-based system assurance. SACM defines
a standardized metamodel and visual notation for representing structured assurance
cases. SACM was developed to support interoperability between different assurance
case approaches, e.g., GSN (GSN, 2018), CAE (BLOOMFIELD, Robin; BISHOP, Peter,
2009). The SACM was used in the DEIS project (DEIS, 2020) as a backbone for its
Open Dependability Exchange (ODE) metamodel, which defines the appropriate format
of an EDDI, in the first step towards runtime assurance of CPSs. SACM enables the
specification, traceability to evidence, and automated synthesis of executable SACM
assurance case patterns (templates) from design and analysis (ODE) models. Assurance
case patterns are useful in capturing good practice in system argumentation for re-use,
by defining the required system information to instantiate abstract assurance claims and
evidence to support those claims (KELLY; MCDERMID, 1997). Although SACM and
ODE metamodels provide the backbone for the assurance of CPSs at runtime, it is still a
barrier enabling the traceability between the assurance case and system design, analysis,
and process models which are part of the EDDI of open and adaptive CPS components,

at runtime.

1.3 OBJECTIVE

This study introduces a novel model-driven methodology to support the specifica-
tion and synthesis of executable assurance cases from various system models. The primary
goal is to enable the demonstration of the safety and security of Cyber-Physical Systems
(CPS) at runtime. The first contribution of this work is the enhancement of the SACM
standard with pattern extensions. These extensions add semantics to the concept of SACM
Implementation Constraint, which is crucial to support the specification of executable
assurance case patterns (templates). These extensions support the specification of trace-
ability links between abstract elements of assurance case patterns and information from
design, safety /security analysis, and process models, i.e., the system assurance evidence.
Such evidence constitutes the Executable Digital Dependability Identity (EDDI) of a CPS

14

and /or CPS component.
In addition, this study presents a methodology to support the specification and

instantiation of executable assurance case patterns. The proposed methodology is sup-
ported by a modeling tool for specifying executable assurance case patterns linked to EDDI
information. Moreover, an instantiation algorithm was developed to enable the synthesis
of executable assurance case patterns from EDDI information. This algorithm ensures
that the SACM assurance case patterns are executable, and accurately reflect the safety
and security properties of the CPS stored in its EDDI. The feasibility of the proposed
methodology was evaluated in two medium-sized CPSs from the automotive domain: the
Hybrid Braking System (HBS) and the Highly Automated Driving (HAD) system. The
results demonstrated the effectiveness of the proposed methodology in generating assurance
cases that correspond to the expected output for each one of those case studies. The results
also demonstrate the efficiency of the developed algorithm concerning the execution time
from the order milliseconds taken to synthesize assurance cases for both systems. Figure
1.1 provides an overview of the contributions of this work and their interconnections. The
SACM pattern extensions provide conceptual definitions for the methodology and the
semantics for the instantiation algorithm. The SACM pattern extensions are supported by
the SACM ACEditor. The proposed methodology outlines a systematic method to specify
and instantiate SACM assurance case patterns. Lastly, the instantiation algorithm is

implemented by the SACM ACEditor to automatically instantiate assurance case patterns.

supports
SACM Pattern Extensions H SACM ACEditor ‘
provides definitions for supports

{ Methodology for SACM }

Assurance Case Patterns

specifies

h 4

Assurance
Case
Patterns

A

instantiates

provides semantics | ga M Pattern Instantiation | implements
algorithm

Figure 1.1 — Contributions Overview.

15

1.4 ORGANIZATION

This dissertation is organized into eight chapters. Chapter 2 presents the basic
concepts, e.g., cyber-physical system, safety terminology, assurance cases, Digital Depend-
ability Identity, Model-Driven Engineering, SACM, and the contextualization of related
work, needed for the reader to understand the contributions of this research. Chapter 3
introduces the SACM patterns extensions for specifying executable assurance case patterns.
Chapter 4 describes the Assurance Case Editor (ACEditor) modeling tool to support
the specification of executable assurance case patterns linked to the EDDI information.
Chapter 5 presents a Model-Driven methodology to enable the runtime assurance of
open and adaptive systems. Chapter 6 presents a instantiation algorithm, developed
to support the automatic instantiation of executable assurance case patterns from EDDI
information. Chapter 7 describes the feasibility evaluation of the proposed methodology
in two medium-sized CPSs models from the automotive domain. Chapter 8 highlights

the contributions, limitations of this study, and future research directions.

16
2 BACKGROUND

This chapter presents the background concepts needed for the reader to understand
the context of the research contributions. Section 2.1 describes Cyber-Physical Systems
and their properties. Section 2.2 explores some of the terminology used in this work.
Section 2.3 presents an overview of Safety life-cycle and safety standards. Section 2.4
describes some of the main safety analysis techniques used for system assurance. Section
2.5 describes the Model-Driven Engineering (MDE) and Section 2.6 describes the Model-
Based Safety Analysis (MBSA). Section 2.7 explores GSN-compliant assurance cases. The
Structured Assurance Case Metamodel (SACM) is detailed in Section 2.8. Section 2.9
explores the concept of Runtime Assurance. Section 2.10 describes the concepts of system
Digital Dependability Identities (DDIs) and Section 2.11 describes the Open-Dependability
Exchange metamodel (ODE). Finally, Section 2.12 explores the related works.

2.1 CYBER-PHYSICAL SYSTEMS (CPS)

Cyber-Physical Systems (CPS) integrate physical processes and computer systems
that contain sensors to observe the environment and actuators to influence physical
processes (KOPETZ et al., 2016). CPSs harbor vast economic potential and societal
impact, enabling new types of promising applications in different embedded system domains
such as automotive! (DAJSUREN; BRAND, 2019), avionics? (ASLANSEFAT et al., 2022),
railway, healthcare, and home automation (WEI, R.; KELLY, T. P.; HAWKINS, R., et al.,
2017). CPSs in such domains are highly open (systems can connect at runtime), and
adaptive (they are capable of adapting to changing contexts). Figure 2.1 illustrates a typical
example of a CPS, where sensors capture information about the physical process sending
it for computation through a network and resulting in actions from the actuators. These
systems perform safety-critical functions and if they fail may harm people or lead to the
collapse of important infrastructures with catastrophic consequences to industry, and/or
society (TRAPP; SCHNEIDER; LIGGESMEYER, 2013). CPSs are loosely connected and
come together as temporary configurations of smaller systems that may dissolve and give
place to other configurations. The key problem in assessing the safety and security of CPS
is that it is almost impossible to anticipate the concrete CPS structure (configuration),
capabilities, and environment at design time. Thus, since most open and adaptive CPSs
are safety-critical, it is imperative to assure the safety, security, and other dependability
properties of a CPS/CPS not only at design time but also at runtime (WEI, R.; KELLY,
T. P.; DAI X., et al., 2019; WEI; KELLY, et al., 2018).

1
2

Autonomous cars
Unmanned aerial vehicles

17

Physical
Process

Computation

Figure 2.1 — General example of CPS.

Safety standards establish guidelines to ensure the dependability properties of CPS,
e.g., ISO 26262 for the automotive domain and SAE ARP 4754A aircraft domain. These
guidelines must be followed in the development and safety life cycle. Safety standards
require the analysis and demonstration of the safety properties of a critical at different
levels of abstraction, from requirements to component implementation. When a critical
system addresses all the requirements posed by safety standards, it is qualified to receive

the certification and release for operation.

2.2 TERMINOLOGY

Dependability is the ability of a system to deliver service that can justifiably be
trusted. This integrative concept encompasses availability, reliability, safety, confidentiality,
integrity, maintainability, and security. Awvailability is readiness for correct service.
Reliability is the continuity of correct service. Safety is the absence of catastrophic
consequences on the user(s) and the environment. Confidentiality is the absence of
unauthorized disclosure of information. Integrity is the absence of improper system state
alterations. Maintainability is the ability to undergo repairs and modifications. Security

is the concurrent existence of availability for authorized users only with confidentiality
and integrity (AVIZIENIS; LAPRIE; RANDELL, et al., 2001).

Hazard is defined as the potential source of harm caused by the malfunctioning
behavior of a system or component. Risk is the combination of the likelihood of harm (i.e.,
death, physical injury, and damage to people, property, or environment) and the severity of
that harm. Failure is the inability of a system or system component to perform a required
function within specified limits when a fault is encountered. Fault is the manifestation of
an error, which could lead to a failure. Safety requirement is the required risk reduction
measures associated with a given hazard or component failure. Assurance is the planned

and systematic actions necessary to provide adequate confidence and evidence that a

18

system satisfies the given safety requirements. Evidence is the information that serves as
the grounds and starting-point of (safety) arguments, based on which the degree of truth
of the claims in arguments can be established, challenged, and contextualized (OLIVEIRA,
2016).

2.3 SAFETY LIFE-CYCLE

Standards define the concept of Safety Integrity Levels (SILs) to allocate require-
ments to mitigate hazard, subsystem, and/or component failure effects on the overall
system safety. The IEC 61508 (BROWN, 2000) industry standard defines four different
safety integrity levels, ranging from the least stringent SIL 1 to the most stringent SIL
4. The most stringent SILs demand significant verification and validation effort such
as performing control-flow and data-flow testing to be achieved. On the other hand,
achieving the least stringent SILs demands less rigorous verification activities such as
software inspection. Standards also define a risk-based approach, e.g., based on severity
and likelihood levels, to classify the risk posed by system hazards and component failures
in a given SIL, and they prescribe requirements and provide guidance to achieve safety
per SIL. It also defines rules for decomposing safety requirements allocated to mitigate
hazard effects (in the form of SILs) into requirements to mitigate architectural subsystems

and component failures.

In the automotive domain, the ISO 26262 (ISO, 2018) standard defines the re-
quirements for ensuring functional safety in electrical/electronic systems of small and
medium-sized general-purpose road vehicles (Figure 2.2). This standard introduces a
comprehensive safety lifecycle, a risk-based approach to determine Automotive Safety
Integrity Levels (ASILs), requirements for validation, and confirmation measures to ensure
an acceptable level of safety. At the concept phase (ISO 26262 Part 3), firstly, functions
are allocated to systems, subsystems, and components, which can be software, electric, or
electronic at the item definition (Sec. 3.5) of Figure 2.2. Then, item dependencies and
their interactions with the environment at the vehicle level are specified to initiate the
safety lifecycle (Sec. 3.6). After the initiation of the safety lifecycle, Hazard Analysis
and Risk Assessment (HARA) is performed to identify and categorize the hazards that
malfunction the item (Sec. 3.7) at the system level, e.g., using HAZard and OPerability
studies. Safety goals, in the form of ASILs, are then allocated to eliminate or minimize
hazard effects, and decomposed into functional and technical safety requirements, at
the Functional Safety Concept (Sec. 3.8), e.g., using Fault Tree Analysis (FTA) and
Failure Modes and Effects Analysis (FMEA) safety analysis techniques. System safety
requirements, e.g., fault prevention, detection and removal, tolerance, and/or forecasting,
assigned to mitigate hazard effects are preliminary allocated to architectural elements

(i.e., Functional Safety Requirements - FSRs) of the item to mitigate hazardous behaviors

19

into subsystems. FSRs allocated to architectural subsystems are finally decomposed into
technical safety requirements (T'SR) to mitigate component failure effects on safety. This

standard also recommends the specification of an Assurance Case.

1. Vocabulary I

2. Management of functional safety

‘2-5 Overall safety management ‘

2-7 Safety management after the item’s release

2-6 Safety management during the concept phase
for production

and the product development

3. Concept phase

4. Product devel at the sy level Production and operation

|3-5 Item definition

‘3-6 Initiation of the safety lifecycle

|3-7 Hazard analysis and risk ‘
|

3-8 Functional safety
concept

jation of product
ent at the system level

jon of the technical
pents

4-11 Release for productio

4-10 Functional safety,
4-9 Safety validatig

-6 Operation, service
(maintenance and repair), and
issioning

5-8 Evaluation of the
architectural metrics

5-10 Hardware integration and
testing

B-11 Verification of software safety
requirements

8. Supporting processes

8-5 Interfaces within distributed developments

8-10 Documentation

8-6 Specification and management of safety requirements

8-11 Confidence in the use of software tools

8-7 Configuration management

8-12 Qualification of software components

8-8 Change management

8-13 Qualification of hardware components

8-9 Verification

8-14 Proven in use argument

9. ASIL-oriented and safety-oriented analyses

9-5 Requirements decomposition with respect to ASIL tailoring] 9-7 Analysis of dependent failures |
9-6 Criteria for coexistence of elements | 9-8 Safety analyses |
I 10. Guideline on ISO 26262 I

Figure 2.2 — ISO 26262 (ISO, 2018).

2.4 SAFETY ANALYSIS TECHNIQUES

This section presents two of the most popular and used safety analysis techniques
and the concept of assurance case specification which is also relevant for understanding this
work. Section 2.4.1 describes the Functional Hazard Analysis (FHA) technique. Section
2.4.2 describes the Fault Tree Analysis (FTA) technique. Section 2.4.3 presents the

assurance case specification process.

2.4.1 Functional Hazard Analysis

Functional Hazard Analysis (FHA) is conducted at the beginning of the system life
cycle, (JOSHI et al., 2006). This technique identifies and classifies the failure conditions
at the appropriate level, considering both loss of function and malfunctions, associated
with the target system functions and combinations of functions. The FHA establishes

derived safety requirements needed to limit failure effects, e.g., design constraints, and

20

annunciation of failure conditions. Firstly high-level functions of the system and the
failure conditions associated with these functions are considered. Then the effects of these
failure conditions are determined and classified. These failure conditions can be further
broken down through FHAs and Fault Trees. The failure conditions associated with each
hazard are defined together with their respective safety goals and the proposed means for
demonstrating compliance, (JOSHI et al., 2006).

Ref. | Functional Critical Aircraft Manifestation | Criticality Comment
Failure Operational
(Hazard) Phase
1.1.1 Loss of Approach Presence of No Computed Minor Becomes major
Guidance Data (NCD) should signal hazard, equivalent
Values FD and AP disconnect. to incorrect
guidance, if
disconnect fails.
1.1.2 | Incorrect Approach Gradual departure from Major No difference to
Guidance references until detected by the AP between
Values flight crew during check of loss of guidance
primary flight data resulting and incorrect
in manual disconnect and guidance.
manual flying.

Figure 2.3 — Functional Hazard Analysis Example (TRIBBLE; LEMPIA; MILLER, 2002)

Example: Figure 2.4 shows an excerpt of the FHA for an aircraft system (TRIB-
BLE; LEMPIA; MILLER, 2002). The hazard "Loss of guidance values" is minor in this
figure because the AP and FD components should sense the absence of data and disconnect.
"Incorrect guidance values" hazard has a major criticality because it may cause the aircraft
to drift from its intended flight plan producing a “significant reduction in safety margin”.
This could also require a “significant increase in workload” on the part of the flight crew

to return the aircraft to its intended flight plan.

2.4.2 Fault Tree Analysis

Fault Tree Analysis (FTA) is a widely used, top-down reasoning technique for
safety and reliability analysis (NASA, 2002). FTA is based on a visual notation to support
the analysis of combinations of fault propagation paths (i.e., using AND, OR, NOT gates),
comprising intermediate and basic events, that can lead the system to fail (top event),
causing harm to people, environment, or property. The starting point of this analysis is a
given top event (i.e., a system failure). Then, the possible combinations of causes that
could trigger the top event (system failure) are progressively explored until individual
component failures (basic events) have been reached. The FTA supports qualitative
(logical) and quantitative (probabilistic) analysis. FTA requires extensions to model
dynamic relationships between causes and component failures (i.e., modeling the dynamic
failure behavior). Fault trees have been used for diagnosis purposes in runtime applications.
In the work of Aslansefat (ASLANSEFAT et al., 2022), sensor readings are connected to

"complex basic events' (CBE) as inputs to the fault tree analysis. The failure model is

21

updated in real time to provide diagnoses, predictions of failures, and reliability evaluation
at runtime. Runtime FTA is the first step towards the integration of fault trees into the

system Executable Digital Dependability Identity.

Incorrect AP Guidance | | Incorrec t FD Guidance

;ASM

ect AP Gu\dar\ce Internal AP Erre
Value R ved From
A500 A428
FGS- AP Communications FGS Sends I ccccccc t FGS Output lD erwhelms
nnel Failure id:
Aasa A429 AES1
P age 1
Active FGS Sends I ctive FGS Sends
Incorrect Guidance | | Incorrec! I Guidance
Value:
Ad31 7432 A429

/\

Page 2 Page 2 Page 1

Figure 2.4 — FTA Excerpt for the Hazard — Incorrect Guidance (TRIBBLE; LEMPIA;
MILLER, 2002).

Example: The top levels of the FTA for a hazard called Incorrect Guidance are
shown in Figure 2.4. The fault tree root node first splits into two nodes “Incorrect AP
Guidance” and “Incorrect FD Guidance” through an OR gate because the AP and the
FD both receive guidance values from the FGS. At the next level, the “Internal Error”
basic event addresses the possibility of AP, or FD corrupting correct data values provided
to them by the FGS component. The OR gate “Incorrect Guidance Values Received From
FGS” addresses the possibility that the FGS may pass incorrect values. These incorrect
guidance values may, in turn, be due to the basic event “Communications Channel” or
the gate “Output Overwhelms” hardware failures, in addition to the FGS internal event,

“FGS Sends Incorrect Guidance Values” (TRIBBLE; LEMPIA; MILLER, 2002).

2.4.3 Assurance Case Specification

An Assurance Case or Safety Case is a clear, comprehensive and defensible
argument that a system is acceptably safe to operate in a particular context, (KELLY
WEAVER, 2004). An assurance is clear because it communicates with a third party, it is
an argument because must demonstrate how a reader can reach a reasonable conclusion

about whether a system that is not limited to the conventional engineering "design" is

22

acceptably safe to operate in a particular context, because, a system be safe is considered
an unobtainable goal. Thus, an assurance case has to be convincing about the system
being safe enough to operate within a particular context. An assurance case should
define the context because no system can be considered safe if it is used inappropriately
or unexpectedly (KELLY; WEAVER, 2004).

The informal reuse of an assurance case is already commonplace, especially within
stable and well-understood domains, e.g., aerospace engine controllers. However, informal
reuse can fail, and in some cases be potentially dangerous. Several potential problems
can arise where people are the main operators of cross-project reuse of assurance case
artifacts and some of them are: artifacts being reused inappropriately; Reuse occurring
in an ad-hoc fashion; Loss of knowledge; Lack of Consistency and Process Maturity; and
Lack of traceability. To solve or minimize these problems, the reuse of an Assurance Case
must be explicitly recognized and documented. This involves identifying and abstracting
the reusable elements. Reuse of a specific assurance case, e.g., a particular fragment of
evidence, can be highly unsuccessful because the structure of an assurance case may change
from one system to another. However, the reuse of the general principles of a safety case
is more successful than specific ones. General argumentation principles are present in
different assurance cases. Therefore, an assurance case pattern describes a partial solution
for arguing the system safety reusing the general structured (KELLY; MCDERMID, 1997).
An Assurance Case pattern is a partial solution that references reusable elements and
information, e.g., evidence, solutions, or artifacts required for the construction of systems
safety arguments. The abstraction of details of a safety argument into a pattern is named
abstract term, i.e., a reference to the required information. The information that will be
used to instantiate a term, transforming it from abstract to non-abstract representation

should be documented in the Assurance Case pattern specification.

Several notations have been proposed in the literature to document Assurance Cases
and Assurance Case Patterns. Initially, a free text notation has been created. However,
the ambiguity inherent to the natural language makes it difficult to accurately express
complex arguments. Tabular notations have been created to overcome the limitations
of natural language in expressing an assurance case. However, tabular notations have
limitations in representing an argument whose assumptions and evidence are supported
by another argument simultaneously (KELLY; WEAVER, 2004). The example below,
extracted from a paper, illustrates the limitations of natural language assurance cases
in clearly expressing complex arguments. In this example, references to sections of the
textual assurance case are included in the text as needed, making it difficult to understand

and discern the reasoning behind the argumentation.

“For hazards associated with warnings, the assumptions of [7] Section 3.4

associated with the requirement to present a warning when no equipment

23

failure has occurred are carried forward. In particular, with respect to hazard
17 in section 5.7 [4] that for test operation, operating limits will need to be
introduced to protect against the hazard, whilst further data is gathered to
determine the extent of the problem." (KELLY; WEAVER, 2004).

To overcome the lack of expressiveness from textual and tabular notations in
representing complex argument structures, graphical notations have been created applying
the Model-Driven Engineering concepts, (SELIC, 2003). Although graphical notations
are not perfect, because each notation has its limitations, they are better than natural
languages for representing an Assurance Case. Goal Structured Notation (GSN) (GSN,
2018) and the Structured Assurance Case Metamodel (SACM) (OMG, 2021) are examples
of graphical notations that support the specification of assurance cases. These notations

are discussed in Section 2.7 following the explanation of Model-Driven Engineering.

2.5 MODEL DRIVEN ENGINEERING

Model-Driven Engineering (MDE) focuses on models as the first-class entity of
a software development process rather than computer programs. By creating abstract
representations of systems, MDE helps streamline the design and implementation processes,
allowing a more efficient and error-resistant software creation. A model is an abstraction
with an intended and defined purpose (SELIC, 2003). An MDE approach includes Domain-
Specific Modeling and Model Management. Domain-specific Modeling allows domain
experts to capture the modeling concepts of their system in a meta-model, which aims
to support the creation of system models according to the syntax and semantics of the
language defined in the meta-model. A meta-model defines abstractions and rules to
build computer readable specific models in a domain of interest, which establishes: an
abstract syntax i.e. "the concepts from which models are created"; a concrete syntax
i.e. "how rendering these concepts"; well-formed rules i.e. 'rules for the application
of the defined modeling concepts"; and the description of the semantics of a specific
model (SELIC, 2003). The Model Management supports automated operations in
the models. These operations include model validation, comparison, generation, merging,
and transformation. In the development of critical systems, MDE allows unambiguous
expression of requirements and architecture, and provision of automated support for system
development and safety assessment (JOHNSON et al., 1998).

Automation is the most effective technological means for improving productivity
and reliability, e.g., complete code generation, in which modeling languages take the
role of implementation languages. The existing model-based techniques and tools have
achieved levels of maturity that enable the practical usage of MDE in large-scale industrial
applications. Modern code generators and related technologies can produce code whose
efficiency is comparable to or even better than hand-crafted code (SELIC, 2003). The

24

models are classified into structured or formal, which have a well-defined meta-model,
or non-structured, which have not been defined based on a meta-model. The Meta-
Object Facility (MOF) and Eclipse Modeling Framework (EMF) (ECLIPSE, 2018a) are

development infrastructures for domain-specific language and modeling tools.

Figure 2.5 illustrates the OMG Meta-Object Facility (MOF) infrastructure, com-
prising four hierarchical levels. The MO represents concrete entities, i.e., the instantiation
of a meta-model, i.e., a model. The M1 represents the concepts associated with a domain-
specific meta-model built upon abstractions defined in M2 and M3. M2 represents
abstractions defined in UML and M3 is the highest abstraction level used to define meta-
models, e.g., MOF entities, their attributes, and relationships (ATKINSON; KUHNE,
2003).

./_—%

M3 Meta-Object Facility

instance_of
— =

M2 = UML concepts
instance_of

M1 2_3 = User concepts
instance_of

M0 User data

Figure 2.5 — OMG Meta-Object Facility (ATKINSON; KUHNE, 2003)

2.6 MODEL-BASED SAFETY ANALYSIS

Model-Based Safety Analysis (MBSA) is an approach where the system and safety
engineers share a common system model created and incremented using a model-based
development process. This model used for both system and safety engineering can reduce
the cost, improve the quality of the safety analysis, and provide support for automating
this process. Within the safety life-cycle safety engineers must perform analysis (e.g. Fault
Tree Analysis) based on information originated from several sources, including informal
design models and requirements documents. However, these analyses are highly subjective
and dependent on the skill of the engineer. For instance, Fault trees which are one of the

most common techniques used by safety engineers can differ in substantive ways depending

25

on the engineer’s skill. Even in the final product after review and consensus, it is unlike
the result will be complete, consistent, and error-free due to informal models used as the
basis for the analysis. The lack of precise models of the system design and its failure modes
pushes the safety analysts to devote much more time and effort to gather information
about the system and embedding this information in the safety analysis artifacts. This
problem is addressed by using formal models for the system in development and safety
life cycle. In model-based development, various activities such as simulation, verification,
testing, and code generation are based on a formal model of the system under development.
The MBSA is an extension of the MDE where the safety analysis activities in addition to
the traditional development activities are incorporated into the model-based development.
MBSA operates on a formal model describing both the nominal system behavior and the
fault behavior (JOSHI et al., 2006).

2.7 GSN ASSURANCE CASES

This section presents two graphical notations for representing assurance cases and
their features. Section 2.7.1 describes the Goal Structuring Notation (GSN) and Section
2.7.2 describes the GSN Pattern Extension.

2.7.1 Goal Structuring Notation

Goal Structured Notation (GSN, 2018) is a graphical notation to support the
specification of Assurance Cases. Assurance cases have been adopted in a growing number
of industries in Europe in domains such as defense, aerospace, nuclear, and railway, e.g.,
FEurofighter Aircraft Avionics Safety Justification, U.K. Dorset Coast Railway Re-signalling
Safety Justification and Submarine Propulsion Safety Justifications (KELLY; WEAVER,
2004).

The GSN base elements are Goal, Solution, Strategy, Context, and Undeveloped
Goal. Figure 2.6 illustrates the graphical representation of each one of these elements. GSN
provides a hierarchical goal structure that decomposes goals into sub-goals. This allows
engineers to demonstrate how the goals are successively broken down into sub-goals until
reaching a point where they are supported directly by the available evidence (solutions),
i.e., whatever artifact supports the arguments/assumptions that the system is acceptably

safe, e.g., test cases and FTA.

26

L]

Goal Solution Strategy
Undeveloped Goal
Context (to be developed further)

Figure 2.6 — Elements of GSN notation (GSN, 2018).

Figure 2.7 shows an example of goal structure in GSN. It argues that the system
is considered safe based on the safety of system functions that have been implemented.
The main Goal (G1) arguing that "MySystem is safe" is addressed by arguing that "All
system functions are safe" (S1). Context C1 gives the information that Strategy S1 can
only be executed in the context of the system functions that have been implemented. In
this example, functionl and function2 have been implemented. Thus, the sub-goals G2
and G3 have been constructed arguing that these functions are safe and supporting this

affirmation with Solutions, which are test cases (TC1, TC2).

Gl

MySystem is safe

S1

All system
functions are
safe

C1

Implemented functions
of MySystem

G2 G3

function1 is safe function2 is safe

TC2

Passed on test
case TC2

TC1

Passed on test
case TC1

Figure 2.7 — An Example of GSN Goal Structure

2.7.2 GSN Pattern Extension

GSN Pattern Extension provides support for specifying assurance case patterns. In
this extension, the abstract terms should be represented between brackets, i.e., { Term}, as

described in the example. The GSN Pattern extension supports two types of abstractions:

27

structural abstraction, which supports the generalization of relationships such as one-

to-one and one-to-many, and element abstraction that allows the generalization or

postponing details of an element in the argument structure.

Indicates a 1-to-many
Relationship

Abstract Goal Choice
—— -
Multiplicity Optional

Figure 2.8 — GSN Abstractions (GSN, 2018).

G1: {System X} is Safe Indicates that
Element Remains
To Be Instantiated

T\

A

S1: Argument by C1: Safety Related
claiming safety of all Functions of {System X}
safety-related functions
implemented by system (n = # functions)

Indicates a Range of

Indicates that
Element Remains
To Be Instantiated

P Options Available
~
> @
G3: Interactions G4: All system :
G2: {Function Y} is safe between system functions are Indicates that .
: functions are non- independent Ele]_uent Remains
hazardous (no interactions) To Be Developed

& Then Developed

N <> o ~ (i.e. Supported)

Figure 2.9 — GSN Pattern Representation Example (KELLY; MCDERMID, 1997).

GSN pattern extension defines constraints types with the visual notation to represent

structural and element abstractions (Figure 2.8): multiplicity, which adds multiplicity

to a relationship between goal and sub-goals; Optional that means that a relationship

between a GSN Goal and sub-goal can be optionally instantiated; and choice, which

specifies a choice that has to be made when the source element is instantiated, i.e., what

target elements will be instantiated after the instantiation of a source element (ACWG,

2022). GSN multiplicity, optional and choice constraints provide information about

how to instantiate the elements associated with abstract terms. Figure 2.9 shows an
example of a GSN pattern representation adapted from (KELLY; MCDERMID, 1997).

28

The purpose of this pattern is to show the safety of a system (G1) regarding each one of its
safety-related functions (51, C1). The terms System X and Function Y are placeholders
for specific systems information. A multiplicity is associated with the goal G2 due to
the number of functions that a system may have. The choice is associated with G&8 and
G4 to indicate the behavior of these functions, i.e. they can be either non-hazardous (G3)
or independent (G4).

2.8 STRUCTURED ASSURANCE CASE METAMODEL (SACM)

SACM is a standard for assurance case modeling languages developed by specifiers of
existing system assurance approaches, built upon the collective knowledge and experiences
from safety and/or security practitioners over the last two decades (WEI, Ran; KELLY,
Tim P; DAI, Xiaotian, et al., 2019). SACM provides the following features: modularity;
multiple language support; controlled vocabulary; describing the level of trust in arguments;
and counter-arguments; traceability from evidence to the artifact; and automated assurance
case instantiation. The SACM meta-model is divided into different sets of elements (OMG,
2021). Each set has more specific purposes, and when these sets are grouped, they compose
the SACM meta-model illustrated in Figure 2.10. The colors in the figure are used to
group these sets of elements. The groups are structured into assurance case base classes,
assurance case packages, terminology classes, argumentation metamodel, and artifact

metamodel. Each of these groups will be discussed in the following sections.

2.8.1 Assurance Case Base Classes

Assurance case base classes (Figure 2.11) express the foundation concepts and rela-
tionships of base elements of the SACM meta-model and are utilized, through inheritance,
by the bulk of the rest of the meta-model, (OMG, 2021). SACMElement contains the basic
properties shared among all elements of a structured assurance case. Each SACMElement
has a +gid, a unique identifier within the scope of a model instance, an +isClitation
Boolean flag indicating whether it cites another element, and an +isAbstract Boolean flag
to indicate whether the SACMFElement is considered to be abstract. The +isAbstract flag
is used to indicate whether an element is part of an assurance case pattern or template.
ModelElement refines SACMFElement with a +name and references to UtilityElements such

as Description and ImplementationConstraint.

LangString is the SACM format for description. It has the same purpose of a
String with the additional specification of the language (+lang) used for its +content. A
ModelElement can contain a Description that provides its content, e.g., a Description
that provides the text of a Claim. EzpressionLangString extends LangString to denote a
structured expression, which can be (optionally) used to refer to an ExpressionElement

(Term or Expression) in the TerminologyPackage. The +citedElement is a reference to

29

Figure 2.10 — SACM Metamodel (OMG, 2021).

30

another SACMUElement that the SACMElement cites. If +citedElement is not empty,
+isCitation must be true. Finally, a concrete SACMFElement can also have an optional
+abstractForm reference to an abstract SACMFElement to which this element conforms.
Thus, the property +abstractForm is used in concrete elements (+isAbstract = false) to

refer to abstract elements (+isAbstract = true)

Terminology::ExpressionElement | i B ﬁ

+axpression |1 z}
ke B i | i
S MultiLangString le—— MR angstring i £‘1
1 2 3 b o |
L il
toontent | 1 +ang : String [0.1] |
+content : String [0..1] +name
pome
-2 B! []
- = SACM Element
ExpressionLangString s LeabstractForm
+gid © String {0.1] 5_]

+igCitation : baglean [0..1] = lalse

iS5
A #isAbsiract : boalean [0..1] = false ¢
UtilityElement T ScitedBement 0.1
= .
e
|

TaggedValue | | hote | ImplementationConstraint | Description | ModelElement
| |
+taggedValue 0.~ *note ‘ D.* implementationCanstraint { 0.* +description o1 e
| ArtifactElement |

Figure 2.11 — SACM Assurance Case Base Classes.

The ModelElement extends SACMElement and it is the base element for the
majority of SACM modeling elements. A Description can be represented in any language
via MultiLangString. A MultiLangString provides a means to describe things using different
languages. It contains a list of LangString used to specify the languages and the descriptions
in the languages. A ModelElement can contain zero or more ImplementationConstaints.
An ImplementationConstraint specifies the details of a constraint that must be satisfied
to convert a referencing ModelElement from +isAbstract = true to +isAbstract = false.
For example, in the context of a SACM assurance case pattern fragment, an element will
need to satisfy the implementation rules of the pattern to be instantiated in a concrete

assurance case model.

The language used in the specification of an ImplementationConstraint is not limited
to computer languages (e.g., OCL, EOL, SQL). In the SACM ImplementationConstraints
can even be described in natural language. However, natural language constraints cannot be
used in the automatic instantiation of assurance case patterns due to their non-deterministic
nature leading to challenges and difficulty in interpreting them to instantiate the abstract
elements. Thus, deterministic computer languages ImplementationConstraints allow users
to query information available in external artifacts (e.g., ODE design, analysis models),

using a query language such as OCL, which can be used to instantiate Terms and other

31

abstract elements of a SACM pattern. A ModelElement can also contain Notes, to hold
additional generic and unstructured information other than descriptions, and Tagged Values.
A TaggedValue is a simple key/value pair that can be attached to any SACM element. It
is an extension mechanism to allow users to add attributes to an element beyond those
already specified in SACM. ArtifactElement extends ModelElement and acts as the base
class for elements in other SACM packages. All elements that extend from ArtifactElement

are considered artifacts and can be referenced via SACMArgumentation::ArtifactReference.

2.8.2 Structured Assurance Case Terminology Classes

Structured assurance case terminology classes define the concepts of terms and
expressions providing the formalism to create them. Term can be abstract if the +isAbstract
property is set true, or concrete if +isAbstract is false. Abstract Terms can be considered
placeholders for concrete terms, i.e., in the assurance case pattern instantiation the
abstracts Terms become concrete Terms. The Ezpression is used to construct expressions

composed by others FxpressionElements, i.e., Terms or other Ezpressions.

Base::ArtifactElement

+lummolog-'Elmmnl, TerminologyElement
0

+Herminology Bement

TerminologyGroup

TerminologyAsset

T Ar——— P = L . TerminologyPackage |
Ter face

+implements_
| —
1

N

+participantPackage | 2.* T ‘] “

Termi

logyPackage Binding

+category |

Category 10 ExpressionElement

+value : String !]

T +element {

Expressnan

Base::ModelElement I(% Term
0.1 2

+externalReference : String [0..1]

Figure 2.12 — SACM Structured Assurance Case Terminology Classes.

2.8.3 Artifact Metamodel

Artifact metamodel is used to manage corresponding objects that are available,
e.g., an artifact which is a test case linked to the requirement that validates the test
case once it has already been created. Any elements in the meta-model that extends to
ModelElement can be considered an ArtifactElement, because the ModelElement extends

the ArtifactElment. Thus, the assurance case elements themselves can be used as artifacts.

32

factElame

ar
Base::ArtifactElement 0. 1
+artifactBement ArtifactGroup

0.)

Property

ArtifactPackagelnterf ArtifactPack 'propeltyIO ’
rtifactPackageinterface . ArtifactPackage

+implements
| EEEEEEEE— |
1

e —— . +arget
+participantPackage | 2.* | P

T E—— JApatavaNa) ? 1. [

ArtifactPackageBinding { T

IJW—I—\

Artifact | Activity | Event Participant ‘ Technique Resource

ArtifactAsset +source ArtifactAssetRelationship
d 1.0

+version : String [0..1]
+date : date [0..1]

+startTime : date [0..1]

+occurence : date [0..1]
+endTime : date [0..1] L ——

Figure 2.13 — SACM Artifact Metamodel.

2.8.4 Argumentation Metamodel

Argumentation metamodel defines the necessary concepts to model structured
arguments, e.g., elements, relationships among them, and their properties (Figure 2.14).
Structured arguments are represented in SACM through Claims, citations of artifacts
or ArtifactReferences (e.g., Evidence and Context for Claims), and the relationships
between these elements expressed via AssertedRelationships. The AssertedRelationship is
an abstract meta-class for different types of relationships with their respective meaning
and usage. AssertedInference is used to associate one or more Claims to another Claim.
AssertedContext and AssertedEvidence are used to connect one or more ArtifactReferences
to a Claim. In addition to these elements, SACM supports the provision of an additional
description of the reasoning (ArgumentReasoning) associated with inferential and/or

evidential relationships.

Figure 2.15 illustrates the visual representation (concrete syntax) of the main SACM
Argumentation elements. A Claim is represented by a rectangle where the claim statement
(description) is written within the rectangle, and a unique identifier is placed at the top
left corner of the rectangle. An inferential relationship between Claims (AssertedInference)
is represented using a line with a solid arrowhead and a solid dot in the middle of the
line that can be used as a connection point. An ArgumentReasoning used to describe
non-obvious relationships between Claims and ArtifactReferences, is represented by an
annotation symbol. It can be attached to an AssertedInference, which connects Claims,
or to an AssertedEvidence/ AssertedContext which connects Claims to ArtifactReferences.
ArtifactReference is represented using a document symbol, to provide a clue to its meaning
(as an artifact), with an arrow placed on the top right of the symbol to denote a reference.
ArtifactReferences are represented by rectangles nodes with the +gid in the top left corner
and Description in the middle. While ArgumentReasoning is represented by an open

semi-rectangle node with the gid in the top center and Description in the middle.

33

- - ; +referencedArtifactBement
De Base::ArtifactElement
|AssertionDeclaration ctl -

p— I
asserled
needsSupport ArgumentGroup +argumentafionBement |0..*
assumed T
3 3
axiomatic “ ArgumentationElement
et +argumentationBement
asCited 9 l—) ArtifactReference
0.*
'J7 +target
ArgumentPackagelnterface +implements ArgumentPackage ArgumentAsset 1
—
1 L +source
+participantPackage 2 + rspucm(eIO 1 ?‘ -
- Ary R
ArgumentPackageBinding jd I
w
Ameriion +reasoning | 0.1
+assertionDeclaration : AssertionDeclaration [1] = asserted
f23 = |
AssertedRelationship
+mataClaim 0. r) §
Claim | +isCounter : boolean [1] = false
T [y
AssertedContext AssertedEvidence Assertedinference ‘ lAssartadAnilacll:nntext‘ ‘AﬁsaﬂedAﬂifﬂctSnpporl

Figure 2.14 — SACM Assurance Case Base Classes.

ID ID o 7
statement —— statement statement
Claim ArgumentReasoning
ArtifactReference
° ! ® -
AssertedInference / AssertedContext
AssertedEvidence

Figure 2.15 — SACM Argumentation package elements (OMG, 2021).

A Claim can be supported by one or more Claims, and the relationships between
them can be defined using an AssertedInference relationship. In no obvious relationships,
a ArgumentReasoning can be used to provide a further description of the reasoning
involved. A Claim may cite a reference to contextual and/or evidential information, this
can be done through ArtifactReference elements. However, to differentiate between them
it is necessary to identify the type of relationship to which the ArtifactReference and
Claim are related. Contextual information is using AssertedContext and AssertedEvidence
relationships respectively, (SELVIANDRO; HAWKINS; HABLI, 2020).

Figure 2.16 shows an excerpt of Hazard Avoidance (KELLY; MCDERMID, 1997)
argument pattern in the SACM visual notation. This pattern provides the abstract
structure for arguing a given "{SystemX} is safe" (C7) based on the avoidance of each
identified hazard (C2). C1 abstract Claim is represented by a dashed rectangle. C2
abstract Claim is represented by a dashed rectangle decorated with a three-dot symbol to

denote this claim needs further supporting evidence or argumentation. C1 and C2 abstract

34

81

Argument by claiming

addressed all identified
plausible hazards

{ HazardX} has been
: addressed

Figure 2.16 — Excerpt of the Hazard Avoidance pattern (KELLY; MCDERMID, 1997).

Claims are connected via an AssertedInference relationship with an S7 element describing
the reasoning for decomposing C1 into C2 sub-claim arguing each identified "{HazardX}
has been addressed". Abstract Terms are within brackets in the Ezpressions that describe
each abstract Claim. Each abstract Term is a placeholder referencing information from
an external artifact (design, analysis, or process model) required to instantiate it in a

concrete assurance case model.

SACM supports the specification of ImplementationConstraints to abstract elements
of an assurance case pattern. However, it is not possible to specify executable SACM
assurance case patterns (i.e., assurance case patterns that can be automatically instantiated
based on analysis, design, and process models) with explicit links between evidence
referenced within abstract Terms (placeholders) and external artifacts. These artifacts
can be ODE Design, Hazard Analysis and Risk Assessment (HARA), Failure Logic, Fault
Tree Analysis, and Security Analysis models, which constitute the Digital Dependability
Identity (WEL; KELLY, et al., 2018) of a CPS or CPS component. The explicit links, i.e.,
traceability, between abstract Terms (placeholders) and artifacts are necessary to enable
the automated instantiation and reasoning of safety/security assurance claims of open
and adaptive CPSs at runtime. In addition to the lack of traceability, there is still a need
to add semantics to the concept of ImplementationConstraints to support management
and the systematic reuse of SACM assurance cases in the same way patterns extensions
(KELLY; MCDERMID, 1997) in GSN assurance cases. Therefore, it is needed to provide
semantic support for representing the concepts of n-any, optional, alternative structures
with traceability in the SACM. These features provide the basis for the automated synthesis
of executable assurance case patterns. By implementing these features, it is possible to
specify: i) structural relationships between abstract SACM argumentation elements in an
assurance case template; i7) generalization/specialization relationships between abstract
argumentation elements; i) traceability links between abstract terminology elements

and information from EDDI artifacts. This can be considered a preliminary solution for

35

the realization of the concept of Executable Digital Dependability Identity and runtime
assurance (WEL KELLY, et al., 2018; DEIS, 2020).

Hence, it is needed to support the specification of complex dependence relationships
between abstract Terms of a SACM assurance case template, e.g., the instantiation of
HazardX abstract Term, from Hazard Avoidance pattern illustrated in Figure 2.16, is
dependent upon the System.name information retrieved from the design model required
to convert SystemX Term from isAbstract = true to isAbstract = false. The potential
of computer languages such as OCL and EOL in providing semantic support for Imple-
mentationConstraints to connect abstract terminology and argumentation elements from
SACM assurance case patterns to external artifacts was not fully exploited yet to enable

the automated reasoning of safety /security assurance of CPSs at runtime.

2.9 RUNTIME ASSURANCE

Since most open and adaptive CPS domains are safety-critical, it is imperative to
ensure the safety, security, and other dependability properties of a CPS/CPS component
face unknowns and uncertainties, introduced by Artificial Intelligence, at runtime (WEI,
R.; KELLY, T. P.; DAL X., et al., 2019; WEI; KELLY, et al., 2018). Thus, assurance
cases are expected to be exchanged, integrated, and verified at runtime to ensure the
dependability of CPSs. However, established assurance approaches, e.g., Goal Structuring
Notation (GSN) (GSN, 2018), Claims-Arguments-Evidence (CAE) (BLOOMFIELD, R.;
BISHOP, P., 2010), and standards designed to address standalone systems, building a
complete understanding of the system and its environment at design time, are insufficient
to assure the dependability of CPSs. CPSs are loosely connected and come together as
temporary configurations of smaller systems that may dissolve and give place to other
configurations. The key problem in assessing the safety and security of CPS is that it is
almost impossible to anticipate the concrete CPS structure (configuration), capabilities,
and environment at design time. The configurations a CPS may assume over its lifetime
are unknown and potentially infinite. Moreover, state-of-the-art dependability analysis
techniques require prior knowledge of the CPS configurations at the design phase, which
provides the basis for the analysis of systems. Thus, existing assurance approaches can
limit runtime flexibility, and cannot cope with the complexity of CPSs (WEIL, R.; KELLY,
T. P.; HAWKINS, R., et al., 2017).

Assurance cases at runtime are needed to enable open and adaptive systems
to inspect the assurance case of other systems at runtime to evaluate if they are safe
and/or secure to interact with (TRAPP; SCHNEIDER; LIGGESMEYER, 2013). This is
needed for autonomous systems in which some claims about safety/security can only be
instantiated at runtime due to the uncertainties introduced by some of its components
(e.g., Al) (WEL KELLY, et al., 2018). A runtime assurance case allows autonomous CPS

36

to infer their safety and security. When systems adapt their behaviors in response to
changes in their environment, the evidence (e.g., verification and validation models - V&V)
may become invalid. Hence, runtime V&V models may support reinstating the evidence
used (referenced) by assurance case models (WEI, R.; KELLY, T. P.; DAI X., et al.,
2019).

In a first step towards runtime system assurance, SACM has been used in the DEIS
project (DEIS, 2020) as a backbone for its Open Dependability Exchange meta-model
(ODE) within the Digital Dependability Identity (DDI). ODEs system models are used to
assure the dependability of Cyber-Physical Systems at runtime (Figure 2.17). The runtime
assurance is achieved through an assurance case with traceability links to the design and
analysis ODE models (i.e. evidence) within the argumentation structure. At runtime,
these models may change based on data from sensors. Then, the certification algorithm
periodically evaluates the assurance case. Thus, if any ODE model changes at runtime
the re-certification of the assurance case is executed. SACM provides the foundations
for argumentation about the safety and/or security of a wide range of systems. It also
supports referencing evidence of their arguments at both design time and runtime,(WEI;
KELLY, et al., 2018).

3

Certification
Algorithm Periodic Evaluation

Assurance Case
-7 / A\ S
\

" /
/ \
/ A

ODE ODE ODE ODE
Failure Logic Dependability Requirement Architecture
Model Model Model Model

A

Data-to-Model
@ » Adapter

Sensors

Figure 2.17 — Runtime assurance overview (WEI, R.; KELLY, T. P.; DAL X., et al., 2019).

Model Repository

The assurance of CPS and/or CPS component dependability properties demands
a paradigm shift from parts of the system assurance process activities at design time to
runtime where uncertainties can be resolved dynamically (WEI; KELLY et al., 2018). With
this shift, there will be a transition from the current design time assurance cases produced
from manually created artifacts to assurance case models that can be automatically
synthesized and evaluated at runtime. To achieve this goal, it is necessary to equip a CPS

or a CPS component with all the information that uniquely describes its dependability

37

characteristics (design, analysis, and process models) within a Digital Dependability
Identity (DDI) (WEIL, R.; KELLY, T. P.; HAWKINS, R., et al., 2017). Thus, DDIs
produced at design time provide the basis for automated integration of components into
systems at development time and dynamic integration of independent systems into systems

of systems at runtime.

2.10 DIGITAL DEPENDABILITY IDENTITY

A Digital Dependability Identity (DDI) is an evolution of classical modular depend-
ability assurance models. DDI formally integrates several separately defined dependability
aspect models allowing for comprehensive dependability reasoning (DEIS, 2020). DDIs are
produced during design, and certified when the component or system is released. Then,
it is continuously maintained over the lifetime of a component or system. Therefore,
it requires continuous traceability between a SACM safety argument and safety-related
evidence models stemming from hazard and risk analysis, functional architecture, safety
analysis, and safety design concepts (Figure 2.18). Although the SACM argument is about
the safety property of a system, the DDI concept is general enough to equally apply it
to other dependability properties such as security, reliability, or availability, (REICH,;
ZELLER; SCHNEIDER, 2019).

Desing Time DDI

Claim: System is sufficiently safe

h 4
Assurance Case Argument (SACM)

. e
= . v Y Ty

Hazard & Risk Functional =
Aalysis P e Safety Analysis — Safety Concept
LS
| — | |
HARA Model Functional Net | _|Component Faut|_| o, ~popeo)
(SysML) Tree

(N

Model Based Risk Reduction Evidence

Figure 2.18 — Digital Dependability Identity

A DDI comprises all the information that uniquely describes the dependability
characteristics (design, analysis, and process models) of a CPS or a CPS component (WEI,
Ran; KELLY, Tim P; HAWKINS, Richard, et al., 2018). DDIs provide a formal basis
for automated and dynamic integration of independent systems into systems of systems
in the field at runtime. The Open Dependability Exchange (ODE) is a metamodel for

38

representing DDIs. Thus, the ODE provides the basis for representing and exchanging
development and safety information (e.g., FME(D)A, FTA, and Markov Chains) between
open-adaptive CPSs and CPS components. The SACM metamodel is the backbone of
the ODE, providing the formal traceability between assurance cases and DDI information.
Therefore, SACM assurance case patterns can be instantiated based on the information

provided by CPS and CPS component DDIs.

2.11 OPEN-DEPENDABILITY EXCHANGE METAMODEL (ODE)

The Open-Dependability Exchange metamodel (ODE) comprises several packages
as illustrated in Figure 2.19. The ODE and its core features are at the highest level of
abstraction and aggregate the Dependability, Design, and Failure Logic packages. The
Dependability package elements represent artifacts created/required during the early
phases of the development process. For instance, it can be used to specify the system
development standards and identify functional and non-functional requirements and their
prioritization through early safety activities such as Hazard Analysis & Risk Assessment
(HARA). The design process is supported by the Design package where it is possible to
define the primary entities of the system, and how they relate to each other concerning
composition and their interactions. The Failure Logic package provides the basic concept
of safety analysis techniques to evaluate whether the design sufficiently avoids, removes,
or mitigates the identified hazards. To investigate the relationship between causes and
safety measures the cause analysis is progressively broken down to lower-level elements of

the architecture.

oDl
Tinstar'.ce of
OMG SACM ODE
Failure Logic Design Dependability
" —1
FTA FMEA Markov Domain HARA Requirement

Figure 2.19 — Overview of the Open Dependability Exchange Metamodel

The ODE supports three different safety analysis techniques that are relevant
for the industry. These techniques are the Fault Tree Analysis (FTA), Failure Mode
and Effects Analysis (FMEA), and Markov analysis which are within the Failure Logic

39

package. The information represented in the ODE can be used as supporting evidence in
an assurance case. Therefore, the SACM is used to represent the argumentation structure
of the assurance case linking all relevant artifacts (e.g., hazards, fault trees, and failure
logic models) represented in the ODE to elements of the argumentation. Thus, the SACM
is the backbone of the ODE and the DDI concept, structuring and relating all system
models and information, (ZELLER et al., 2023).

FailureLogic 1
FailureModel
Ay
Base:
BaseElement

g i

’ FaultTri‘

Cause
+type : CaurseT;'pe' causes
"
«enumeration»
GateType
I i i e
failure causes P T OR
«enumeration» XOR
NOT
CauseType VOTE
- :.'__7 = f;r meration literals PAND
FailureLogic:: T eI ‘InputEven! POR
Failure — | OutputEvent SAND
T BasicEvent inputEvent
R ape - ateType iGBie OutputEvent

Figure 2.20 — ODE::FailureLogic::FTA Package (DEIS, 2020).

The ODE FTA Package meta-model (Figure 2.20) captures the information
from Fault Tree Analysis techniques. The FTA Package element extends the Failure-
LogicPackage element enabling references to relevant elements (e.g. InternalFailures).
The Gate element captures the logical relationship that associates the various types of
events represented within a fault tree structure. Such events correspond to input, output,
and internal failures captured in the FailureLogic package. Gates represent the top and
intermediate events of fault trees enabling the representation of their hierarchical structure
through the +causes property. The basic events of fault trees are represented by Cause
elements with its +type set to InputEvent, OutputEvent, or BasicEvent, (DEIS, 2020).

2.12 RELATED WORK

This section presents the works related to this study. Section 2.12.1 explores a
weaving model-based approach for the automatic instantiation of assurance case patterns.
Section 2.12.2 describes a table-based assurance case pattern instantiation process. Section
2.12.3 presents a modeling tool for the specification of SACM-compliant assurance cases

and patterns.

40

2.12.1 Weaving-Model Based Instantiation

A weaving model is the key to this approach. This model links the referenced
information within meta-models to the GSN argument patterns. The primary objective
of the weaving model is to handle fine-grained relationships between elements of distinct
models, establishing links between them. The mapping between models themselves are
also formal models increasing the expressiveness and flexibility. However, aside from
the pattern and the desired system or dependability model, this third model called the
weaving model must be specified either manually or automatically (i.e. transformation).
In this approach, the model captures the dependencies between roles in GSN patterns and
individual /multiple reference information metamodels. Thus, information from external
models can be used for the automatic instantiation of the GSN argument, (HAWKINS;
HABLI, et al., 2015).

Figure 2.21 shows the overview of the instantiation process using the weaving
model approach. First, the GSN Pattern is specified. Then GSN roles are mapped to
the Reference Information Metamodel generating the Weaving Model. The inputs for
the instantiation process are the GSN Pattern, the Waving model, and the Reference
Information Model, i.e., external artifact. After this process, a GSN Argument is generated

comprising information from the external artifacts based on the Weaving Model mapping.

Reference
Information
Metamodel

Reference
Information
Model

o Instantiation
GSN Pattern » Instantiation program [— Model
GSN Weaving GSN
Metamodel Model Argument

Figure 2.21 — Weaving-Model Based Instantiation (HAWKINS; HABLI, et al., 2015).

2.12.2 Table Based Instantiation

The core of this approach is a generic data table model called P-table and an
instantiation algorithm to generate GSN arguments from GSN patterns. The P-table
inherits the structure of the intended GSN pattern. The P-table is represented in tabular
form where the columns are the data nodes (i.e. Goals, Strategies, Context, Assumptions,

Justifications, and Solutions) D, and rows by D x V pairs, i.e., values for abstract roles

41

or joins. Thus, the P-table must be specified manually or automatically for each pattern
with the respective columns with root values and joins to enable automatic instantiation.
A row, therefore, consists of the data that instantiates an upward-closed fragment of the
pattern, following the paths of the fragment up until the join. To instantiate a GSN
pattern from its P-table each row is processed to create a row instance fragment. This
is effectively the creation of zero or more instances of a given data node of the pattern
assigning the parameter values within table joins. For each value it is not added just the
instantiation of the appropriate data node, also any boilerplate between that node and
the preceding data node. Multiple values in the P-table lead to multiple instances of a
data node. However, those boilerplate nodes which appear after a multiplicity are only
repeated. Instances indices are used to connect nodes to the correct parent when there are

such multiples. At any point in the algorithm we identify the “current node” as current,
and the pattern root as root, (DENNEY, E.; PAI, G., 2013).

In this table-based approach, the automatic generation of GSN assurance cases
starts with the specification of an assurance case pattern followed by the specification
of the P-table which are the inputs for the instantiation process. In the instantiation
phase, the values within P-table cells are used to instantiate the GSN data nodes (e.g.
Goals). Figure 2.22 shows an excerpt of the Requirements Breakdown Pattern described
in (DENNEY, E.; PAIL, G., 2013).

C1: Source GT= System/Sarety C2: Requirement
{so:'source} < LB TEL aIIocation {2I"allocation}
"’ {rs::requirement} holds -

®1.*

v
S3: Argument by
verification method
{vm::verification
Method}

G4: {g:: goal | (G1)}

E1: Verification
result
{va::verification
Allocation}

Figure 2.22 — Excerpt Requirements Breakdown Pattern.

Figure 2.23 shows an example of a data table (P-table) where each column is a
node of the GSN Requirements Breakdown Pattern and the values and joins are displayed
within its rows. The required information to instantiate the assurance case pattern is

present in each cell of the table. The structural relation between the instances is given by

the join column.

Parameter Type| Requirement Lower-level Allocated Source Requirement Verification Verification
requirement | Requirement Allocation Method Allocation
Data node G1 G2 G3 c1 c2 s3 E1
Join
R1 R1.1,R1.2 AR1 S A VM11, VM12 VA11, VA12
(S3, VM12) VA22
(G2,R1.1) VM1.11, VM1.12| VA1.11, VA1.12
(G2, R1.2) R1.2.1,R1.2.2 AR1.2
(G2,R1.2.1) VM1.2.1 VA1.2.1
(G3,AR1.2) AR1.21 VM1.2 VA1.2

42

Figure 2.23 — Example of a populated P-table (DENNEY, Ewen; PAI, Ganesh, 2013).

Finally, Figure 2.24 shows an excerpt of the instance of the Requirements Break-
down Pattern after its instantiation using the P-table data. This example contains the
instantiation result for the first two rows of the table. The goal G1 has been instantiated
for the requirement R1 in context of the source S (C1) and requirement allocation A
(C2). The Strategy S3 has been instantiated for each verification method, i.e. VM11 and
VM12. The pattern Goal G/ has been instantiated into Goals G5 and G6 for the first
verification method VM11 due to the multiplicity of the verification allocation Evidence
(VA11 and VA12). Finally, the pattern Goal G4 is instantiated into the Goal G7 for the
verification allocation Evidence (VA22) regarding the verification method VM12.

C1: Source S a o[C2: Requ_lrement
allocation A

Repetitonof 7 T

G1: System/Safety
requirement R1
holds

Boilerplate aft ! [S4: :
Olrﬁjﬁisliiify . 3: Argumentby| | . i [S4: Argument by |1
; verification PO.' nt"")i verification Row 1
| method VM11 | O™ :L method VM12 Row 2

G7: R1,VM12

|G5: R1,yM11| |G6: R1,VM11|;

: E1:
i | Verification
esult VA11

E1: : E1:
Verification | :

esult VA1

Verification
esult VA2

Figure 2.24 — Excerpt Requirements Breakdown Pattern Instance.

2.12.3 Assurance Case Editor

In order to exploit the benefits provided by SACM whilst providing support for
existing assurance case approaches (e.g. GSN) an assurance case editor has been developed
by (WEIL R.; KELLY, T. P.; DAI, X., et al., 2019). This tool called ACME (Figure
2.25) was implemented using the Graphical Modelling Framework (GMF) (ECLIPSE,
2018b) which supports the creation of editors based on metamodels defined using the
Ecore metamodel provided by the Eclipse Modelling Framework (EMF) (ECLIPSE, 2018a).

With ACME users can specify an assurance case and assurance case patterns using SACM

43

or GSN for the arguments. It is the first step towards an integrated modeling environment
for SACM.

Eclipse EMF

Eclipse GMF

ACME

SACM Ecore
Metamodel

GSN to SACM GSN & CAE
Transformation Integration

Graphical Editor

Figure 2.25 — ACME Architecture Overview.

ACME enables existing assurance case approaches to be used in conjunction
with SACM exploiting SACM features such as evidence-artifact traceability, controlled
vocabularies, and multiple language support. It also introduces the concept of mapping
queries within the SACM implementation constraint elements. This feature aims to
instantiate placeholders of assurance case patterns based on external artifact information.
However, it is still not possible to instantiate assurance case patterns using the ACME
tool set. ACME acts as a transitional solution from GSN argument specification to SACM
model-based system assurance providing easy-to-use SACM facilities as well as automated
model-to-model transformation from GSN to SACM, (WEI R.; KELLY, T. P.; DAI X,
et al., 2019).

44

3 SACM PATTERN EXTENSIONS

This chapter describes the pattern extensions proposed in this thesis for assurance
case pattern specification in SACM visual notation. Section 3.1 presents the representation
of the implementation constraints sub-types. Section 3.2 presents the Mapping constraint,
Section 3.3 describes the Multiplicity constraint, Sections 3.4 and 3.5 show the Optional
and Choice constraints respectively, Section 3.6 presents the Children constraint. Finally,
Section 3.7 describes the usage and applications of the constraints sub-types in SACM

assurance case patterns.

3.1 CONSTRAINT TYPES IN SACM

In the GSN assurance case notation pattern extensions have been proposed defining
types of constraints and some general abstractions to provide support for the specification
of GSN assurance case patterns, (GSN, 2018). These well-defined constraints allowed
the development of automatic instantiation algorithms for GSN assurance case patterns
(HAWKINS; HABLI, et al., 2015; DENNEY, E.; PAI, G., 2013). However, in SACM this
constraint concept is still too generic, the ImplementationConstraints element used for
defining the rules for instantiating an element has no defined type or semantics. This
lack of definition in the SACM metamodel is a barrier to the automation of the assurance
case pattern instantiation. The instantiation algorithm can not interpret natural language
constraints or even computer language constraints without considering their meaning.
Therefore, in order to fulfill this gap this thesis proposes a pattern extensions for the

SACM metamodel to address types of ImplementationConstraints as in GSN notation.

SACM pattern extensions add semantics to ImplementationConstraints to support
the specification of executable assurance case patterns, i.e., assurance case patterns that can
be automatically instantiated. The pattern extension is comprised of Multiplicity (m),
Optional(o), Choice(c), Mapping(p), and Children(s) constraints subtypes. The m,
o0, and ¢ constraints have the same semantics of GSN Multiplicity and Optionality patterns
extensions (HABLI; KELLY, 2010). Mapping constraints are used to relate abstract terms
to elements from external artifacts, e.g., design, analysis, or process models, via model
queries to obtain model elements (WEI, R.; KELLY, T. P.; DAI X., et al., 2019). Finally,
the Children constraint is used to specify hierarchical relationships between instances of
abstract terms in a SACM argument pattern. In this proposed approach a LangString
element with its +lang slot set with the constraint type, and its +content slot possibly
set with a query should be added to the +content slot of an ImplementationConstraint

element to differentiate between ImplementationConstraints sub-types (Figure 3.1).

45

:ModelElement :LangString
+lang: <sub_type=

+ content: <query=

T

implementationConstraints#1 value#i

!ImplementationConstraint :MultLang String

content

Figure 3.1 — Constraints Subtypes Representation.

Users can associate the implementation constraint sub-types to any SACM Mod-
elElement with no restriction in the used language. The language used in implementation
constraints is not limited to computer languages. Natural languages can also be used
to describe instantiation rules of implementation constraints, except the instantiation
procedure is limited to manual. The automation of assurance pattern instantiation needs

tool support and a model management engine to execute the implementation constraints.

SN ¥ Element

+axpression |1 5

+value
1.

ke
hi MultiL; ing - LangString
1

«romenllW sang .Slrzu; 0.1 I
+content ; String [0..1] l+name
| e
a2 1
» SACM Element
Esrevsiontanging | abstractForm
+gid : String [0..1] 0.1
+sOltation : bookean [0..1) = false
+isAbstract : boolean [0..1] = false &
UtitityElement T ChedBement |0..1
- _—
oo
[[| T |
TaggedValue Note | ImplementationConstraint | Description M odelElement
- IS -
+aggedValue 0.* +note | 0.° & 0. +description 0.1 i
L YTy
+implementationConstraint
ArtifactElement
Mapping ‘ ‘ Children | ‘ Multiplicity ‘ ‘ Optionality ‘ | Choice |

Figure 3.2 — Extended Meta-model Representation.

Computer languages such as Object Constraint Language (OCL) (O.M.G., n.d.)
and Epsilon Object Language (EOL) (KOLOVOS; PAIGE; POLACK, 2006) can be used
to specify queries for Mapping and Children constraints when the external artifact is a
MOF compliant model. The Mapping and Children constraints provide traceability by
linking abstract terms from SACM argument patterns to external artifacts (design or
analysis models). Depending on the external artifact a proper query language should be

chosen, e.g., if the artifact is the relational database the SQL language should be used.

46

Thus, the specification of implementation constraints to elements of SACM argument
patterns plays the role of a weaving model (HAWKINS; HABLI, et al., 2015) linking
abstract terms to elements from external artifacts. The objective of the weaving model is to
map abstract Terms of an assurance case pattern to information within other artifacts. The
queries within abstract Terms constraints map their values directly to the external artifacts
without needing a third model, i.e., weaving model. Figure 3.2 shows the SACM Base
Classes meta-model extended with the implementation constraints sub-types proposed in

this work.

3.2 MAPPING

Mapping (p): can be attached to an abstract Term t to impose restrictions on
+wvalue slots of its instances. Semantics: a mapping (p) constraint is used to link the
+wvalue slot of an abstract Term t to information from an external artefact. The reference
to an external artifact is stored in the +externalReference slot of an abstract Term ¢. The
constraint p denotes that ¢ will be instantiated with one or a set of concatenated values
retrieved from an external artifact, specified in the +externalReference slot from t, by
executing a computer language model query, e.g., EOL. The return of the query execution

must be a list comprising zero or more strings.

Origin relationships between abstract terms can be specified in the argument
pattern. This allows the instantiated values of abstract terms to be used as parameters
for instantiating other terms. These origin relationships are achieved through the +origin
slot of abstract terms (Figure 2.12). Therefore, if an abstract Term t’ originates from
another Term t, t” must have its +origin slot set to t. Once the abstract terms are
instantiated based on the origin relationships, their instances also inherit their origin
during the instantiation. This feature provides support for parameterized mapping queries

within ¢, i.e., the values of each instance of ¢ can be used to instantiate t’.

Example: consider an abstract Term portY that originates from a Term compo-
nentX, and a system design model with components and ports where each port is related
to a component. The EOL mapping query Component.all.collect(c | c.name) can be
added to the abstract Term componentX to get the names of all components and instan-
tiate componentX. The parametrized EOL mapping query Component.all.selectOne(c/
c.name=‘$origin’).ports.collect(p| p.name) can be added to the abstract Term portY to
get all the ports names related to each $origin componentX and instantiate portY. It is
possible because at instantiation time the $origin parameter is replaced by each +wvalue
of the instances of componentX and the resulting queries are executed to generate the

instances of portY.

47

3.3 MULTIPLICITY

Multiplicity (m): can be attached to SACM ModelElements, e.g., argumenta-
tion and terminology expression elements. Semantics: m denotes zero-or-more n-ary
cardinality of an abstract ModelElement, e.g., Claim, AssertedRelationship, Term, in an
argument pattern. In the same way as GSN (GSN, 2018), multiplicity indicates zero or
more instances of an abstract ModelElement (Claim, Term) relate to element property
values retrieved from an external artifact. A m constraint attached to a ModelElement
denotes that zero or multiple instances of such an element should be created during
argument pattern instantiation. This type of constraint subtype can be attached to various

types of abstract elements as described below.

e Terms: it indicates that the number of instances of abstract terms with m constraint

is related to the number of values resulting from mapping (p) constraint execution.

o FExpressions: it indicates that the number of instances of abstract expressions with
m constraint is related to the number of instances of abstract Terms within the

expressions +element slot.

o AssertedRelationship: the multiplicity constraint within these elements has the
meaning of determining the relationship instances, their target, and their sources.
The relationship instances are determined by instances of the +target element. The
sources of these relationship instances are all the instances of sources from the
abstract relationship that have in their Description slot direct reference and/or have

a term that originates from one or more terms of the +target relationship instance.

o AssuranceCase, Artifact, and Argument packages including binding and interfaces:
the multiplicity constraint within these elements has the meaning of determining
the packages instances and their contents. The package instances are determined by
instances of abstracts Terms referenced through +g¢gid in the +content slot of the m
constraint. The contents of these package instances are all the instances of elements
from the abstract package that have direct or indirect reference to the referenced

term instance or have a term that originates from it in their Description slot.

o ArtifactAssetRelationship: the multiplicity constraint within these elements has the
meaning of determining the relationship instances, their targets, and their sources.
The relationship instances are determined by instances of abstracts Terms referenced
through +g¢id in the +content slot of the m constraint. The targets and sources
of these relationship instances are all the instances of targets and sources from the
abstract relationship that have direct reference to the referenced term instance or

have a term that originates from it in their Description slot.

48

e Claims and further ModelElements: indicates the number of instances of claims and
model elements is related to the number of instances of abstract FxpressionElements

referenced inside its Description via EzxpressionLangString elements.

The specification of m constraints should be consistent throughout the ModelEle-
ments of a SACM argument pattern specification. Consistency means that each abstract
ModelElement, e.g., Claim, AssertedRelationship, referencing (directly or indirectly) to an

abstract Term with a m constraint should also have a multiplicity constraint.

Example: consider the abstract Term t and a system design model describing all
system hazards. For instantiating ¢ for each system hazard it should have multiplicity(m)
and a mapping(p) constraints. The EOL query Hazard.all.collect(c | c.name) is defined
within p to get the names of all hazards from the external artifact defined +externalRefer-
ence slot of t. As a result, the abstract Term t will be instantiated with the name of each

system hazard.

3.4 OPTIONAL

Optional (0): can be attached to any SACM ModelElement, except Terms and
Fxpressions. Semantics: o is used to denote zero-or-one n-ary cardinality of an abstract
ModelElement, e.g., Claim, AssertedRelationship, in an argument pattern. The semantics of
an o ImplementationConstraint is similar to GSN Multiplicity pattern extensions attached
to a GSN SupportedBy element. Optional are used to assign Boolean conditions under
element property (p) values (v) retrieved from an external artefact, that should be satisfied

for instantiating an abstract ModelElement.

An element property p can assume different values v, e.g., vl or v2. To achieve
this, a TaggedValue element should be added to a Term ¢ with p set as +key and the
+wvalue set to an ExpressionLangString with the +expression slot set to an abstract Term
t’. Thus, the +wvalue of the instances of ¢’ will determine the value v of the key p for
each instance of t. The +taggedValue of an ModelElement is all the element properties,
i.e.,+taggedValue, of each Term within its Description. Therefore, if one of the optional
constraints assigned to an instance of ModelElement is not fulfilled, the ModelElement

should not be instantiated, i.e., the element is removed from the instantiated argument.

Example: consider the optional(o) ImplementationConstraint with the following
Boolean condition $tv(ENG, ASIL) = "ASIL C" under the value of an instance of the
abstract Term componentX attached to an abstract Claim "{componentX} is ASIL
C'" of an argument pattern. It is also necessary to consider that the abstract Term
componentX contains a Tagged Value with its key slot set to "ASIL" and its value set to
an FrpressionLangString referencing the abstract Term ASIL. This term should originate

from componentX and have a constraint mapping(p) with a parameterized query. This

49

enables the correct association of ASIL Tagged Values within instances componentX. During
the instantiation, the optional query $tv(ENG, ASIL) is replaced by the +wvalue of
the TaggedValue which has key ASIL and is related to instances of the abstract Term
componentX within an English(ENG) multi lang Description of the Claim. If the optional
condition is not satisfied for an instance of the Claim this instance is removed from
the resulting model. Considering tree components MechanicPedal, ElectronicPedal, and
BrakeUnit where MechanicPedal and ElectronicPedal are ASIL C, then, the instances
generated for the Claim are "MechanicPedal is ASIL C" and "ElectronicPedal is ASIL C".
The instance of the Claim "BrakeUnit is ASIL C" is deleted because it did not satisfy the
condition $tv(ENG, ASIL) = "ASIL C" during instantiation.

3.5 CHOICE

Choice (c): constraint can be attached to ArtifactAssetRelationship and Asserte-
dRelationship elements. Semantics: it can be used to denote possible alternatives (choices)
in satisfying a relationship analogous to GSN Optionality extension (GSN, 2018). A choice
constraint can be used to represent 1-of-n or m-of-n n-ary selection of source nodes of an
abstract SACM AssertedRelationship or ArtifactAssetRelationship. The source nodes of
an AssertedRelationship can be Claim or ArtefactReference elements. Artefact elements
(Artefact, Activity, Event, Participant, Technique, Resource) can be the source nodes of an
ArtifactAssetRelationship. Choice constraint supports the specification of lower and upper

bounds for the selection of source nodes of an SACM relationship.

The choice implementation constraints can be combined with optional(o) constraints
to define conditions that should be satisfied for instantiating (selecting) each source node
of an ArtifactAssetRelationship or AssertedRelationship relationships. While optional
constraints define the conditions to instantiate source nodes of the relationships, the choice
constraint verifies if source nodes of relationships were correctly instantiated considering
the number of instances and the information provided by external artifacts (e.g., design,

analysis, process models).

Example: Consider a top-level claim ¢ with an AssertedInference relationship to
tree other sub-claims. Each sub-claim must have an optional(o) implementation constraint
defining conditions to instantiate them. Thus, a choice ¢ ImplementationConstraint with
bounds set to 1-of-3 selection can be attached to the AssertedInference relationship to

denote that only one of the sub-claims must be instantiated.

3.6 CHILDREN

Children (s): This constraint subtype can be attached to abstract Terms. Se-
mantics: It has similar semantics of the mapping(p) constraint, i.e., mapping abstract

Terms to elements from an external artifact via model query. Children constraints are used

20

to indicate hierarchical relationships (i.e., parent and child) between instances of the same
abstract Term retrieved from an external artifact. A children constraint obtains the child
elements of each model element retrieved from an external artifact by executing the queries
stored into a mapping(p) constraint, and into a children (s) constraint associated with the
given abstract Term t. A children ImplementationConstraint manipulates the result of a
mapping constraint. For this reason, a children constraint should be used in conjunction
with a mapping constraint to enable the recursive instantiation of abstract Terms based on
the hierarchical structure, e.g., the structure of FTA results. In the Children instantiation,
the parent Terms are stored in memory as +origins of the instantiated Term enabling the

hierarchical relationship among them to be used in the instantiation.

Example: consider an abstract Term t, and recursive hierarchical relationships
between components (parent) and sub-components (child) in the design model (i.e., an
external artifact), a query that captures hierarchical relationships between components
and sub-components of a design model can be specified as Component.all.selectOne(c/
c.name="8parent’).subcomponents.collect(s| s.name). This type of query is attached to the
+content slot of children (s) ImplementationConstraint subtype. At instantiation time
the $parent parameter is replaced at first by the values retrieved from the mapping(p)
to get the root nodes children. Then $parent parameter is replaced recursively by each
resulting value from the children(s) execution. The final result is the instantiation of the
abstract Term t for each value resulting from the execution of both (p, and s) constraints.
If only a mapping constraint with a recursive closure is used to instantiate the abstract
term there will not be a hierarchical relationship among the Term t instances to be used

in the instantiation of recursive argumentation structures.

3.7 USAGE OF SACM PATTERNS EXTENSIONS

This section contains practical examples of how the assurance case pattern ex-
tensions can be applied. The first scenario (Section 3.7.1) describes an example of a
Mapping constraint to instantiate a pattern based on a component model. The second
scenario (Section 3.7.2) describes the application of a Mapping, Multiplicity, Choice,
and Optional to instantiate a functional assurance case pattern. Finally, the last sce-
nario (Section 3.7.3) describes the usage of the Children and Mapping constraints for

instantiating a fault tree result.

3.7.1 Component Decomposition Argument Pattern

Figure 3.3 shows an Excerpt of the Component Decomposition Argument Pattern
which is crucial for ensuring safety assurance in complex systems. This pattern helps
in structuring safety arguments by breaking down the overall safety case into smaller,

manageable components. This pattern contains the Claim 1 with no constraints referencing

o1

an abstract term component in its description. This claim is decomposed into the sub-claim
Claim 2 by an AssertedInferenceRelationship with no constraints referencing the abstract

term port.

Figure 3.3 — Components Pattern Excerpt.

The abstract terms component, and port have a mapping(p) constraints sub-types
(Table 3.1). The term port has its +origin property as component. The component term
has a mapping(p) constraint with the query set to Component.all.collect(c | c.name). The
port term has a mapping(p) constraint with the query set to Component.all.selectOne(c/
c.name="‘$origin’).ports.collect(p| p.name). These queries retrieve the components and

ports names from the external model.

Table 3.1 — Components Pattern Constraints.

Type | Name Constraints Origin
Term | component | Mapping -
Term | port Mapping component

Claim | Claim 1
Claim | Claim 2

2]

_In AddBrake | Out

Figure 3.4 — Components External Model.

Figure 3.4 contains an example of an external model. This model has one component
"AddBrake" and its two ports "In" and "Out". Figure 3.5 shows the components pattern
instance where the abstract term component was instantiated with the name of each

system component retrieved from the external model generating an instance of Claim

52

1. The abstract term port is instantiated with all system ports related to an origin
component generating an instance of Claim 2. In this example Claim 1 is instantiated for
the component "AddBrake" and Claim 2 for its ports "In, Out".

Claim 1

AddBrake

Claim 2

In,Out

Figure 3.5 — Components Pattern Instance.

3.7.2 Functional Breakdown Argument Pattern

Figure 3.6 shows the Functional Breakdown Argument Pattern (KELLY; MCDER-
MID, 1997) excerpt in SACM notation. It is a structured approach used in assurance

cases to demonstrate that a system meets its safety and dependability requirements.

| Claim 1

{ function } is safe

Claim 3

| Claim 2 ;
{ function } is non- { function } is
: hazarduos : independent

Figure 3.6 — Functional Breakdown Pattern Excerpt.

This pattern involves breaking down the overall safety argument into smaller, more
manageable functional components, each with its own specific safety claims and evidence.
In this structure, Claim 1 is decomposed into two mutual exclusive selection sub-claims
arguing two different sub-goals of functional safety: Claim 2 argues that interactions
between system functions are non-hazardous. Claim 3 argues that all system functions are

independent (no interactions). These claims have been extracted from the pattern in order

93

to illustrate an instantiation scenario. The reasoning behind the safety of the functions
considering their type, i.e., non-hazardous or independent, are further decomposed into

sub-claims in the real argumentation structure.

Table 3.2 describes each one of the main elements and their constraints. The abstract
term function has a multiplicity(m) and mapping(p) constraints sub-types. This term is
referenced within the description of Claim 1, Claim 2, and Claim 3. A multiplicity(m)
constraint is attached to all of the claims due to the multiplicity of the abstract term
referenced. A choice ¢ ImplementationConstraint of 1-of-2 selection is attached to an
AssertedInference element to denote that that only one source sub-claim between Claim
2 and Claim & should be present in one instance of Functional Breakdown argument
pattern. Two optional constraints are present in the pattern specification. They define
Boolean conditions under the function type of an instance of function abstract Term. If
the function type is independent Claim 3 should be instantiated. On the other hand, if
the type is Non-hazardous Claim 2 should be instantiated.

Table 3.2 — Functional Pattern Constraints.

Type Name | Constraints

Term function | Mapping, Multiplicity
Claim Claim 1 | Multiplicity

Claim Claim 2 | Multiplicity, Optional
Claim Claim 3 | Multiplicity, Optional
AssertedRelationship | - Choice

Assuming that independent systems and non-hazardous systems do not contribute
to the system hazard. The system hazards (Table 3.3) and the system functions (Table
3.4) are analyzed resulting in: the Anti-Icing System is independent, the Navigation Lights
are non-hazardous, and the Communication System is hazardous and related to the hazard
of Loss of Communication ASIL C.

Table 3.3 — Example of Identified Aircraft Hazards.

System | Hazard Asil
Aircraft | Loss of Control D
Aircraft | Loss of Communication C
Aircraft | Loss of Navigation Capability | D

Table 3.4 — Example of Aircraft Functions

Function Type Hazard
Anti-Icing System Independent -
Navigation Lights Non-Hazardous -
Communication System | Hazardous Loss of Communication

o4

Figure 3.7 shows the Claim 1 instantiated for each system function is independent
or non-hazardous and their respective sub-claims related to the function type. In this
example, an instance of Claim 2 and Claim & are produced with descriptions "Navigation

light is non-hazardous" and "Anti-Icing System is independent" respectively.

Claim 1.1 Claim 1.2
Navigation Lights is safe Anti-lcing System is safe
Claim 2 Claim 3
Mavigation Lights is Anti-lcing System is
non-hazarduos independent

Figure 3.7 — Functional Breakdown Pattern Instance.

3.7.3 Hazardous Software Failure Mode Argument Pattern

The Hazardous Software Failure Mode Argument Pattern is a structured approach
used in assurance cases to demonstrate that a software system meets its safety requirements
by addressing potential hazardous failure modes (WEAVER, 2003). This pattern helps
in systematically identifying, analyzing, and mitigating software-related hazards. This
patterns aims to demonstrate that the occurrence of primary, secondary, and control
failure modes of a given fault tree gate, e.g., AND/OR gates, do not lead the system to an
unsafe state.

+citedElment

{ HSFMType } is o= o o
absent

Claim 2 it Claim 3

[HSFMType lis

absent

| [HSFMEvent}is
i acceptable

Figure 3.8 — HSFM Pattern Excerpt.

Figure 3.8 shows an excerpt of the Hazardous Software Failure Mode Argument

95

Pattern. The top-level Claim 1 is decomposed into fault mitigation sub-claims Claim 2
and Claim 3. Claim 1 argues that all causes of each failure event specified in fault tree
leaf nodes are acceptable, i.e., they do not lead the system to an unsafe state. Claim 1
argues about the absence of an unsafe state through each non-leaf failure event of a fault
tree node. Claim 3 is a citation claim with its +citedElement property set to Claim 1 as

pattern reference for recursive instantiation.

Table 3.5 Shows the constraints within this pattern. The abstract term HSFM Type
has a multiplicity(m) constraint to allow the term to be instantiated multiple times.
HSFM Type also has a mapping(p) constraint mapping to top events of the fault tree and a
children(s) constraint mapping to intermediate events of a fault tree. The HSFMFEvent
has origin in the HSFMType term and the constraints mapping(p) and multiplicity(m)
mapping the term to all basic events of a fault tree related to a given top or intermediate

event. The claims have multiplicity(m) constraints due the terms multiplicity.

Table 3.5 — HSFM Pattern Constraints.

Type | Name Constraints Origin
Term | HSFMType | Mapping, Multiplicity, Children -
Term | HSFMEvent | Mapping, Multiplicity HSFMType
Claim | Claim 1 Multiplicity

Claim | Claim 2 Multiplicity

Claim | Claim 3 Multiplicity

Power failure

Relay connect
fail

Diode fall

Figure 3.9 — HSFM External Model.

The external model (Figure 3.9) is a fault tree result generated after performing a
safety analysis of the system. The path for this model is defined in the +ezternalReference
property of the abstract terms HSFMType and HSFMFEvent. The model is composed of

26

one top event "Power failure', one intermediate event "Relay connect fail", and three basic

events, "Miniature circuit break fail", "Diode fail", and "Over heat".

Figure 3.10 shows the result of the instantiation. It starts the recursion instantiating
Claim 1 for the "Power failure" top event and Claim 2 for the basic event "Miniature circuit
break fail". In the next step Claim 1 is instantiated for the "Relay connect fail" intermediate
event because the citation property of Claim 3. Finally, Claim 2 is instantiated for "Diode

fail", and "Over heat" basic events.

Claim1.1

Power failure is absent

Claim 2.1 Claim 1.2

Miniature circuit break
fail is acceptable

Relay connect fail is
absent

Claim 2.2 Claim 2.3

Diode fail is acceptable Over heat is absent

Figure 3.10 — HSFM Pattern Instance.

3.8 SUMMARY

This chapter presented the pattern extensions to the SACM metamodel and visual
notation to support the specification and synthesis of executable SACM argument patterns
with traceability links between claims and external artifacts. The proposed extension
enabled the realization of the concept of Executable Digital Dependability Identity as
another step toward system assurance at runtime. The extensions were proposed to
add semantics for the ImplementationConstraint element from SACM to enable the
specification of assurance case patterns with Multiplicity, Optionallity, and Choice present
in GSN argument patterns (HABLI; KELLY, 2010). In addition, Mapping and Children
SACM pattern extensions (i.e., ImplementationConstraints) have been proposed to enable
the specification of executable argument patterns linked to evidence (fragments of model
artifacts) in the SACM visual notation (SELVIANDRO; HAWKINS; HABLI, 2020). Those
constraints can be attached to SACM abstract Terms to make the argument patterns

executable, contributing to the synthesis, and modification of Assurance Case at runtime.

o7

These constraints have been incorporated into SACM assurance case standard without
any change in its meta-model, supporting the realization of the Automated Assurance
Case Instantiation feature defined in SACM specification. To enable the specification of
executable SACM assurance case templates enriched with the proposed extensions, the
Assurance Case Editor, developed and integrated within the Eclipse Modeling Framework
(EMF) platform is presented in the next chapter.

o8
4 SACM ACEDITOR

SACM can be supported by model-based tools to fully exploit the benefit of
automation brought by Model Based System Engineering (MBSE). This chapter describes
a model-based tool for the specification of SACM assurance case and SACM assurance
case patterns with support to SACM pattern extensions and automatic instantiation of
assurance case patterns. Section 4.1 shows an overview of the ACEditor architecture and
implementation. Section 4.2 presents the assurance case module. Section 4.3 describes
the terminology module. Section 4.4 shows the artifact module. Section 4.5 presents the

argumentation module. Finally, Section 4.6 describes the pattern extensions module.

4.1 ASSURANCE CASE EDITOR ARCHITECTURE

A previous work (NASCIMENTO, 2020) presented a preliminary version of the
SACM ACEditor designed to support the specification and management of SACM assurance
cases, and non-executable assurance case patterns. This chapter describes a new release,
which supports the specification of assurance case patterns enriched with implementation

constraints with explicit traceability links between the assurance case and evidence.

SACM ACEditor has been developed upon the Eclipse environment through
the Graphical Editing Framework (GMF) (ECLIPSE, 2018b) for supporting the cre-
ation of the editor view, and features based on a SACM metamodel compliant with
the EMF platform (ECLIPSE, 2018a). GMF enabled the development of graphical
editors from EMF Ecore models. EMF is a widely used domain-specific modeling
framework in the context of Model-Based Software Engineering (MBSE). The ACEd-
itor supports the specification of custom implementation constraints sub-types. User-
specific constraint sub-types can be defined by extending the Eclipse extension point

org.ufif.sacm.aceditor.sacm?2. ImplementationConstraint TypesProvider (Figure 4.1).

ACEditor % |

2]

SsuEanee Line Argumentation Module | |
Module

Pattern Exetensions
Module

S

?
Hl

Instantiation Module

i

cl cl

Terminology Module Artifact Module

ImplameantationConstraintTypesProvider

Figure 4.1 — SACM ACEditor Architecture.

The editor comprises the Assurance case, Terminology, Artifact, and Argumen-

29

tation modules. The Pattern Extension Module provides sub-types of constraints. The
Instantiation Module is responsible for instantiating the pattern enriched with constraints.
ACEditor provides extensibility, modularity, multi-language support, and traceability in the
assurance case specification. The extensibility comes from the support for new sub-types
of implementation constraints. This feature allows new types of constraints to be imple-
mented with their own rules and graphical representation. With modularity assurance
cases can be built using different package levels such as AssuranceCasePackages, Argu-
mentationPackages, ArtifactPackages, and TerminologyPackages. The multi-language
support is achieved in assurance cases through the SACM MultiLangString element with
one LangString for each desirable language. ACEditor allows the default language to be
switched during the specification to show the descriptions of the elements in the chosen
language (i.e. show only one LangString element from the multi-language Description).
The Traceability between abstract terms and external information from design and analy-
sis models is done through the definition of +ezternalReference property of abstract terms

and the specification queries within the implementation constraints sub-types supported
by the ACEditor tool.

4.2 ASSURANCE CASE MODULE

The Assurance Case Module implements the features of the SACM Assurance-
CasePackage. It is the parent container for any assurance case in ACEditor and provides
support for modular argumentation. The Assurance Case Module (Figure 4.2) contains a
mixture of artifacts, argumentation, and terminology packages used for content exchange
between users and packages. The specific types of packages supported by this module
are the AssuranceCasePackages, ArtifactPackages, ArgumentPackages, and Terminology-
Packages. The associative properties addressed are +assuranceCasePackage, +interface,
+artifactPackage, +terminologyPackage, +argumentPackage of the AssuranceCasePackage

meta-model element.

o +assuranceCasePackage: AssuranceCasePackage [0..*] (composition) — a collec-

tion of optional sub-packages;

» +interface: AssuranceCasePackagelnterface [0..*] — a number of optional assur-

ance case package interfaces that the current package may implement;

o +artifactPackage: ArtifactPackage [0..*] (composition) — a number of optional

artifact sub-packages;

o +terminologyPackage: TerminologyPackage [0..*] (composition) — a number of

optional terminology sub-packages;

60

o +argumentPackage: ArgumentPackage[0..*] (composition) — a number of optional

argument packages.

@7' “case_study.sacm2_diagram {3 =g
* | 53 Palette b
heead-
(= Argumentation Palette o
[T ArgumentPackage

i j [F ArgumentPackagelnterface

SystemACP (= Artifact Palette w
1 systemX} assurance case T i ArtifactPackage

package)
[ArtifactPackageBinding

1] ArtifactPackagelnterface

(= Packages Palette %0

T T AssuranceCasePackage
[AssuranceCasePackageBinding
1] AssuranceCasePackagelnterface

(= Terminclogy Palette ko]

7 TerminologyPackage
[TerminologyPackageBinding

[f TerminologyPackagelnterface
v

Figure 4.2 — Assurance Case Module View.

4.3 TERMINOLOGY MODULE

The Terminology Module of the ACEditor contains a set of features to support the
terminology elements (vocabulary) specification and management. This module represents
the TerminologyPackage of the SACM meta-model. It is the container element for any
terminology assets. This module is composed of a set of TerminologyElements which can
be Expressions, Terms, Categories, TerminologyGroups, or other TerminologyPackages
including TerminologyPackagelnterfaces and TerminologyPackageBindings addressed by
the +terminologyFlement property.

o +terminologyElement: TerminologyElement[0..*] (composition) — TerminologyEle-
ments contained in the TerminologyPackage, it can be either TerminologyPackage

(and its sub-types) or TerminologyAssets (or its sub-types).

Figure 4.3 shows a table view of the Terms and Expressions of this module in a real
assurance case pattern. It has been developed to improve the assurance cases management
and specification. The terminology module also contains an implementation constraints
overview table. It resumes all the implementation constraints sub-types assigned to the
elements within the selected Terminology Module. It is useful for checking if they have
been assigned to the correct Terminology Elements. Figure 4.4 shows an example of this

table with abstract Terms and the types of implementation constraints assigned to them.

=

Selected TerminologyPackage View

SACMElement Properties MadelElement Properties ETerminnIogyElementsi Createbxpressions | IC Overview |

Type Gid Value)
Expression expRiskHazardD Risk posed by { hazard } is acceptable
Term hazard { hazard }
Term safetyStandard { safetyStandard } Only ExpressionElements
Term HS5FMType { HSFMType } Only Abstracts
Term operationalEnvir.. { operationalEnvironment } Al Tk
Term type {type}
Term HSFMEvent { HSFMEvent } Add Expression
Term systemX { systemnX } Y
Term hsfmil {5il} —
Term hzdComponents { components } Add Group
Term failureCondition { failureCondition }
Term systemDefinition | systernDefinition }
Term hazard5il {5}
Term CSF { CSF} v
< >
Figure 4.3 — Terminology Module View.
=] O P
Selected TerminologyPackage View
SACMElement Properties MadelElement Properties | TerminaclegyElements CreateExpressions [1c Over\riew;
Gid Mo Type Children Choice Mapping Multiplicity =~ Optionality —*
hazard X X
safetyStandard X X
HSFMType X X X
operationalEnvironment X X
type X X
HSFMEvent X X W

Figure 4.4 — Implementation Constraints Overview.

61

An assurance case vocabulary may have a large set of Terms and Expressions, thus,

creating them can be time-consuming. The number of SACM properties and relations

to be defined also difficult this process. Therefore, in order to address this problem, a

two-step view for creating expressions from text has been implemented. The first view

(Figure 4.5) has a text area for writing the text to be interpreted and translated into

expressions. Natural language should be used to create the terms and expressions, and

abstract terms must be written between brackets. A separator can be chosen for creating

multiple expressions.

=) o X
Selected TerminologyPackage View
TerminulogyEIement: CreateExpressiDns! IC Cverview | »;.
Base Gid: | expression Test
Lang: | English w
Base Name:

Expressicns Separaton:

| v

62

Expressions Start Cont: | 0

|
|
| expression Test |
|
|
|

Gid and Mame Separator: |

Text

{systemi} is acceptable safe to operate in the {enviroment’};
Argument aver all failures within f contextZ}

Figure 4.5 — Expressions Specification First Step.

= O *

Selected TerminologyPackage View

SACMElement Proper.., | ModelElement Prope.. !Termincrlclg},rEIements @rCreateExpressiDnsi IC Over'.riew_i

Type Gid Value
~ Expression expressionTestd) | systemX }is acceptable safe to operate in the { enviromentY }
Term systern { systemX }
» Expression isacceptablesaf.. is acceptable safe to operate in the
Term enviromenty { enviromentY }
w Expression expressionTest] Argument over all failures within { contextZ }
w Expression Argumentovera.. Argument over all failures within
Term Argument Argument
Term over over
Term all all
Term failures failures
Term within within
Term context? { context? }
< >

Back | | Finish

Figure 4.6 — Expressions Specification Second Step.

63

The second view for creating expressions (Figure 4.6) contains a tree table-like
preview visualization of the expression elements, i.e., Terms and Expressions, that will be
created. However, if one or more of them already exist in the model they are automatically
loaded. The elements can also be edited in this view to assign other properties such as
descriptions and implementation constraints. The output is one or more Expressions with

the +element property referencing the terms informed in the text.

4.4 ARTIFACT MODULE

The Artifact Module of the ACEditor represents the ArtifactPackage of the SACM
meta-model. It is a containing element for artifacts involved in a structured assurance
case. It is composed of a set of ArtifactElements which can be Artifact, Activity, Event,
Participant, Technique, Resource, ArtifactAssetRelationip, or other ArtifactPackages
including ArtifactPackagelntefaces and ArtifactPackageBindings. Figure 4.7 shows a
pattern example specified within the Artifact Module. It is possible to see that, aside
from the elements within its domain, any other SACM element can be specified in this
module. This is an SACM feature where not only external references are used as artifacts
but assurance case themselves can also be used as artifacts to provide evidence for an
argument structure. This is achieved through the +artifactElement property of the SACM
ArtifactPackage.

o +artifactElement: ArtifactElement|0..*] (composition) — a collection of ArtifactEle-

ments forming an artifact package in a structured assurance case.

E_EE! *case_study.sacm2_diagram#6 I = O
A 2% Palette [»
. - | [} @ E I
Art. HzdAnalysisArt i | i
; = (= Argumentation Palette
name: { hzdAnalysisMame }, | = Artifact Palette &
iversion: { hzdAnalysis\ersion} |
|] 1| Activity
‘i' Artifact
|
| —+ ArtifactAssetRelationship
Part. Owner ! - oo E
i } Rct. HzdAnalysisAct E=AE| () ArtifactGroup
participant { hzdAnalysisParticipantiame }, JiL\ """" Eacmmr_ [hzdActivity], stariTime: 71 ArtifactPackage
role: { hzdAnalysisPariicipaniRole } _/" o 1{ hzdAnalysisStart }, endTime:
/" N i{ hzdéAnalysisEnd } T ArtifactPackageBinding
3 “\‘ i [ArtifactPackagelnterface
7 M
i ., o Event

{I’ech. HzdAnaiysisTech

=

. | i
i ‘é | Rec FiZdAnaiysisFie B Froperty
iartiiad. { hzdAnalysisMame }, I E} Participant
iname: { hzdfnalysisTechName }, | iﬁleLocaIion:
ltook: {hzdAnalysisTechTool} | It nzaanalysisFileL ocation } [Resource
! i L = [Packages Palette

< > (= Terminology Palette

Figure 4.7 — Artifact Module View.

64

4.5 ARGUMENTATION MODULE

The Argumentation Module is one of the most important modules. In ACEditor
it represents the SACM ArgumentPackage element. This module provides support for
argumentation ‘modules’ within the assurance case. It is composed of a set of Argu-
mentationElements which can be Claim, ArgumentReasoning, AssertedContext, Assert-
edEvidence, AssertedInference, AssertedArtifactInference, Asserted ArtifactSupport, or
other ArgumentPackages including interfaces and bindings. These elements can be defined
within the +argumentationElement property of an ArgumentPackage. Figure 4.8 shows
the Hazard Avoidance argument pattern from (KELLY; MCDERMID, 1997) in SACM
notation specified using the SACM ACEditor.

o +argumentationElement: ArgumentationElement[0..*] — an optional collection of

ArgumentationElements organised within the ArgumentGroup.

'*,3,‘ case_study.sacm2_diagram#2 %
L Palette
NCLEIE
Claim Syssafe | ! Claim OperationalEnv = A tation Palett
Eiaim SafetyStandard Flaim Sys Safe ! ﬁp" e : rqumentation Palette
{s afetyStandard} { systemX }is - O {operafionalEnvironment; —[ArgumentReasoning
{_O-—ll--acceptablysafeto |
operate in the i S () ArgumentGroup
_E_P_G_C_l_ﬁ_e_d‘_f':‘ﬂ\"_- ________ : \h 1 ArgumentPackage
! ysHazardDe compaositiori._ Claim SysDef . .
i . " s T ﬁArgumentPackageBlndlng
L Argument over the risk - jisystemDefinition}
¥ posed bythe identified "‘_ w ArgumentPackagelnterface
| hazards i
i ; ArtifactReference
: RiskArgument [Claim RiskHazard] * AriRef identHzds e [—w AssertedArtifactContext
- A :
X |Risk posed by{ hazard }is PEsssms Identified { systemX} i ! —» AssertedArtifactSupport
hazards i
e i —= AssertedContext
i

—+ AssertedEvidence

—+ AssertedInference

[]Claim

Figure 4.8 — Argument Module View.

4.6 PATTERN EXTENSIONS MODULE

The Pattern Extensions Module implements the ACEditor extension point for
providing constraints sub-types. The types provided are the Mapping, Children, Op-
tionality, Multiplicity, and Choice (Sections 3.2 to 3.6). Specific rules have been
defined for each constraint sub-type using the extension point notation. These rules are
dependent on the constraint sub-type domain, for instance, Mapping and Children
constraints rules limit them to be applied only to abstract Terms. Views have been
implemented in ACEditor to enhance the usability of the SACM assurance case pattern

specification and implementation constraint sub-types. Specifically, there is a tab view for

65

editing ModelElement properties (Figure 4.9). This view allows the edition of the +imple-
mentationConstraint ModelElement property, thus, typed implementation constraints or
natural language constraints can be added to the selected element. ACEditor also allows
the edition of other ModelElement properties in this view, i.e., +name, +description,
+note, +taggedValue. The list below describes the related properties of a ModelElement

which can be edited in this view.

+name: LangString[1] (composition) — the name of the ModelElement.

o« +implementationConstraint: ImplementationConstraint [0..*] (composition) — a

collection of implementation constraints.

o +description: Description|0..1] (composition) — the description of the ModelEle-

ment.

» +note: Note[0..*] (composition) — a collection of notes for the ModelElement.

o +taggedValue: TaggedValue [0..*] (composition) — a collection of TaggedValues,
they can be used to describe additional features of a ModelElement

=] O X

Selected Term View
(1) Set the ModelElerent properties of the selected element

SACMElement Properties [ModelElement Properties-E_Term Properties;

Marne
Lang: | English v|
Content: | systemX |

Is ExpressionElement: []

systemX

Preview:

i Description | ImplernentationConstraints | Notesf TaggedValues |

Gid Type Text
MultSystemi Multiplicity Add
MappingSystemiX Mapping ExternalReferencelt_system.all.collect(s|s.a_name)
Add Typed Constraint
Remove
< >
@ Cancel

Figure 4.9 — Model Element View.

4.7 SUMMARY

This chapter presented an overview of the developed SACM ACEditor and archi-
tecture. The ACEditor has been developed within the Eclipse platform using GMF and

66

EMF for domain-specific modeling and model management. An extension point for the
SACM ImplementationConstraint sub-types has been implemented. This capability was
implemented to support the specification of pattern extension constraints Mapping, Cli-
dren, Multiplicity, Optional, and Choice, described in Chapter 3, to SACM argument
pattern elements. Next chapter presents a methodology to support the specification and

instantiation of SACM assurance case patterns.

67

5 METHODOLOGY FOR SPECIFICATION AND INSTANTIATION OF
SACM ASSURANCE CASE PATTERNS

This Chapter introduces a methodology to support the automatic generation of
assurance cases synthesized from Fault Tree Analysis results. Section 5.1 provides an
overview of the proposed methodology. Section 5.2 describes the Assurance Case Pattern
Specification phase and Section 5.3 describes the Assurance Case Pattern Instantiation

phase.

5.1 OVERVIEW

The proposed methodology is comprised of two major phases. The first phase,
Assurance Case Pattern Specification, establishes the steps for creating an SACM assurance
case pattern with traceability to external system artifacts including ODE-compliant Fault
Tree Analysis results. The second phase, Assurance Case Pattern Instantiation, describes
the steps required to generate FTA results and their transformation to one or more ODE

models to enable the automated synthesis of executable SACM assurance case patterns.

ASSURANCE CASE PATTERN SPECIFICATION

i : \ /" 2 Specify the ¢ 3 Specify mappings between
H 1\222&?’;% —>| argumentation }—>| argumentation and terminology
Y 74 _ elements / L elements J

. - ~—

o)) B) 4 -
/B Specify mappings i 5 Specify implementation N /4 Specify implementation
between abstract Terms constraints associated with |<——{ constraints associated with
I\ and FTAresults / terminology '_\ argumentation elements /,f'

Y

- . - ~

Vil L1 .r/ Ay .r'./- --\\\\
(1 Perform system safety | |2 Integrate the FTA resulis| | 3 Execute the instantiation |
\ analysis J \ into the EDDI J \ program)

N
-~ N G

ASSURANCE CASE PATTERN INSTANTIATION

Figure 5.1 — Methodology Overview.

Figure 5.1 shows an overview of the proposed methodology. In the Assurance Case
Pattern Specification phase, the vocabulary is specified followed by the specification of the
argumentation elements and their mapping to the vocabulary within their Description.
Next Multiplicity, Optionality, and Choice implementation constraints sub-types are
specified for the argumentation elements then Multiplicity constraints are specified for
the terminology elements. Finally, Mapping and Children constraints are specified
for the vocabulary implementing the traceability to information within external artifacts

elements through computer language queries. In the first step of the Assurance Case

68

Pattern Instantiation phase, the safety analysis is performed at system, function, and
component levels. Then, in the second step, the tool-specific Fault Tree Analysis results
are transformed to an ODE-compliant model which enables the execution of the automatic

instantiation in the final step.

5.2 ASSURANCE CASE PATTERN SPECIFICATION

The inputs of this phase are the Hazard avoidance (KELLY; MCDERMID, 1997)
and Hazardous Software Failure Mode (HSFM) (WEAVER, 2003) assurance case pattern
catalog. In this phase, engineers specify the structure of the assurance case pattern using
the SACM visual notation (OMG, 2021). SACM assurance case modeling tools such as
ACME (WEI R.; KELLY, T. P.; DAI, X, et al., 2019) and ACEditor (NASCIMENTO
et al., 2023) can be used to support the specification of assurance case patterns with

explicit links to evidence. This phase encompasses six steps detailed in the following:

Step 1: Specify the vocabulary. Description: In this step, we specify the
placeholders using abstract SACM terminology elements (i.e., Terms and Expressions),
and the textual information using concrete SACM Expression elements, which constitute
the vocabulary of the targeted Hazard Avoidance and HSFM argumentation patterns used
to build the assurance case pattern structure. Still in this step, we specify the relationships
between abstract and concrete terminology elements to define expressions to be used as
descriptions of SACM Claims, Reasoning, and ArtifactReference argumentation elements.
Abstract SACM terms and expressions, via +origin and +elements properties respec-
tively, provide the context to enable the automated instantiation of the pattern. SACM
abstract Term and Expression elements enable an assurance case pattern specification
to be machine-readable, i.e., it enables the specification of mappings between abstract
terminology elements to the concrete information from design, safety assessment, and
process models needed to instantiate abstract assurance case argumentation elements.
Output: assurance case pattern vocabulary comprising concrete and abstract Term and
Expression elements. Figure 5.2 shows all abstract terms and expressions produced in this
step for the Hazard avoidance assurance case pattern specification. The +origin property
of the terms operationalEnvironment, safetyStandard, systemDefinition and hazard are set

to the abstract term systemX.

69

= O x

Selected TerminologyPackage View

SACMElement Properties | ModelElement Properties | TerminologyElements | CreateExpressions | 1C Overview

Type Gid Yalue []:Only ExpressionElements!
Expression Expl { HSFMEvent } is acceptable [] Only Abstracts
Expression Exp0 { H5FMType } is absent Add Term

Term HSFMEvent 1 HSFMEwvent }

Term HSFMType { HSFMType } Add Expression

Figure 5.2 — Vocabulary Specification.

Step 2: Specify the argumentation elements. Input: the assurance case pat-
tern vocabulary, i.e., abstract (non-instantiated) and concrete SACM terminology elements.
Description: in this step, we specify the claims, artifact references, reasoning elements, and
their relationships, using SACM AssertedRelationships, to define the hierarchical structure
of the Hazard Avoidance and HSFM assurance case patterns. Qutput: the hierarchical
structure of the pattern. Figure 5.3 shows an excerpt of the Hazardous Software Failure
Mode assurance case pattern as a result of this step. TheClaim I is decomposed into
two sub-claims Claim 2 and Claim 3. Claim 3 is a citation claim with its +citedElement
property set to Claim 1 as pattern reference for recursive instantiation. The claims and

their characteristics are represented using the SACM visual notation.

Claim 1

Claim 2 Crai {ArgPack[Claim 1]

Figure 5.3 — Argumentation Elements Specification.

Step 3: Specify mappings between argumentation and terminology el-
ements. Input: the assurance case pattern vocabulary and argumentation structure.

Description: here, we define the description of each argumentation element (claim, reason-

70

ing, and artifact reference) specified in the pattern. A Description of an argumentation
element includes explicit references to one or several SACM ExpressionElements. An
expression element can be composed of both abstract and concrete SACM Term and
Expression elements. Qutput: the assignment of descriptions to each SACM Claim, Rea-
soning, and Artifact Reference from the assurance case pattern. Figure 5.4 shows the
result of this step where a Description had been assigned to the argumentation elements
referencing vocabulary expressions created in step 1. This mapping has been done by
adding English ExpressionLangString elements into the multi-language +content property
of the argumentation elements Description. Claim 1 argues that all causes of each failure
event specified in fault tree leaf nodes are acceptable. Claim 2 argues about the absence

of an unsafe state through each non-leaf failure event of a fault tree.

Claim 1 |
- |

{HSFMType lis I,{]
|

absent

A
|

T
= T
e T,
Pt g,

Claim 2 Clai jsrgPack[Claim 1] |
{ HSFMEvent } is m3 | i

| |
acceptable i il HSFMType } is absent!
i i

Figure 5.4 — Mapping Argumentation Elements to Vocabulary.

Step 4: Specify implementation constraints associated with argumen-
tation elements. Inputs: the assurance case pattern vocabulary, structure, and SACM
argumentation elements (Claim, Reasoning, and Artifact Reference) enriched with SACM
Description elements. Description: here, we assign Multiplicity and Optional SACM
Implementation Constraint subtypes, defined into the SACM pattern extensions (NASCI-
MENTO et al., 2023), to abstract Claims, Reasoning, and/or Artifact Reference assurance
case pattern argumentation elements. In this step, we also assign SACM Choice implemen-
tation constraint to abstract SACM Asserted Relationship elements from the assurance
case pattern. Qutput: assurance case pattern specification enriched with implementa-
tion constraints assigned to argumentation elements. Figure 5.5 shows the multiplicity

constraints assigned to Claim 1, Claim 2, and for the assertedInference relationship.

71

=] O W

Selected ArgumentPackage View

SACMElement Properties | ModelElernent Properties | 1C Overview

Gid Mo Type Children Choice Mapping Multiplicity Optionality
assertedInference X
Claim 2 X
Claim 1 X

Figure 5.5 — Argumentation Elements Constraints.

Step 5: Specify implementation constraints associated with terminology.
Inputs: the assurance case pattern vocabulary, structure, and SACM argumentation
elements (Claim, Reasoning, and Artifact Reference) enriched with SACM Description
and implementation constraints elements. Description: here, we assign Multiplicity,
Mapping, and Children ImplementationConstraint subtypes, defined into the SACM
pattern extensions, to abstract Terms. In this step, we also assign SACM Multiplicity
implementation constraint to SACM Expression elements. Qutput: assurance case pattern
specification enriched with implementation constraints assigned to terminology elements.
Figure 5.5 shows the constraints associated with each terminology element. All the
abstract terms have mapping constraints to retrieve their values from external artifacts
and multiplicity constraints due to the number of tree events. The expressions that have
referenced them through the +element property also have multiplicity constraints. The
abstract term HSFM Type has a children constraint to enable recursive instantiation of

fault tree nodes.

= o x

Selected TerminologyPackage View

SACMElement Properties | ModelElement Properties | TerminologyElements | CreateExpressions | IC Overview

Gid Mo Type Children Choice Mapping Multipheity — Optionality
Exp0 X
Exp1 X
HSFMEvent X X
HEFMType b X X

Figure 5.6 — Terminology Elements Constraints.

72

Step 6: Specify mappings between abstract Terms and FTA results.
Inputs: the assurance case pattern vocabulary with implementation constraints, structure,
and SACM argumentation elements (Claim, Reasoning, and Artifact Reference) enriched
with SACM Description, implementation constraint elements, and the ODE metamodel.
Description: in this step, we define model-based queries for the Mapping and Children
implementation constraint subtypes assigned to abstract Terms. These queries provide
traceability links between abstract terms of a pattern and ODE FTA package metamodel
using a computer language such as EOL to map the values of these terms to FTA results.
Output: an assurance case pattern specification enriched with traceability links to FTA

results.

Listing 5.1 - HSFMType Mapping Query.

ExternalReference!Gate.all
.select(clc.description.contains ("TOP-EVENT"))

.collect(s|s.name)

Listing 5.1 shows query specified within the mapping constraint of the abstract
term HSFMType. This query selects the names of all top events of the fault trees related
to system hazards to instantiate the term. Listing 5.2 contains the children query of the
HSFMType. This query recursively retrieves the values from fault tree intermediate events.
It starts replacing the $parentValue parameter for the value of each top event and next for

each value retrieved by its execution until an empty array is returned.

Listing 5.2 - HSFMType Children Query.

ExternalReference!Gate.all
.selectOne(s|s.name="$parentValue")
.causes.select(ala.causeType.name = "Gate")

.collect(cl|c.name);

Listing 5.3 — HSFMEvent Mapping Query.

ExternalReference!Gate.all
.selectOne(s|s.name="$originValue")
.causes.select(ala.causeType.name <> "Gate")

.collect(c|c.name);

Listing 5.3 shows query specified within the mapping constraint of the abstract term
HSFMFEvent. This query selects the names of all basic events of the fault tree to instantiate
it. The HSFMFEvent has its +origin property set to the HSFMType abstract term.
Thus, this mapping query is executed for each instance of HSFMType. The $originValue

parameter is replaced with the +wvalue property of its origin instances. Therefore, it returns

73

the names of all leaf nodes of a fault tree whose parent is a top event or an intermediate

event.

5.3 ASSURANCE CASE PATTERN INSTANTIATION

This phase encompasses three steps that should be performed to generate an

assurance case for a target system with references to FTA results.

Step 1: Performing system safety analysis. Input: system design. Description:
in this step, the engineers must conduct safety analysis at both system, function, and
component levels, e.g., using HAZOP at the system level to identify the potential hazards
that malfunction the system, their safety risks, and safety goals; and fault tree analysis at
function and component levels to identify how architectural subsystems and components
may fail and contribute to the occurrence of hazards that may cause harm, and allocate
functional and technical safety requirements to subsystems and components respectively.
Model-Based Safety Assessment (MBSA) tools such as HiP-HOPS (PAPADOPOULOS
et al., 2011), OSATE AADL (DELANGE; FEILER, 2014), CHESS framework (CHESS,
n.d.), or EMFTA (CMU-SEI, n.d.) can be used to support this step. Outputs: fault trees
describing the fault propagation paths for each identified system hazard. Figure 5.7 A
shows a fault tree result as an example of this safety analysis step. The FTA result has
one top-event called "Power failure", one intermediate event 'Relay connect fail", and three

basic events, "Miniature circuit fail", "Diode fail", and "Over heat".

Power failure

w 2| platform:/resource/Exemplos/untitled. model
w < DDl Package DDIPackage
w 4 Failure Logic Package FailureLogicPackage
w 4 Fault Tree FaultTree
4 Gate Power failure
Relay connect % Cause Miniature circuit fail
fail 4 Gate Relay connect fail
4 Cause Diode fail

< Cause Over heat

Q
A B
Diode falil Over
heat

Figure 5.7 — Safety Analisys FTA Result / ODE Representation.

Step 2: Integrate the FTA results into the EDDI. Inputs: fault trees

of each identified system hazard. Description: in this step, engineers execute a model

4

transformation algorithm developed to convert the input fault tree models, e.g., specified
using HiP-HOPs, into the Open Dependability Exchange (ODE) metamodel compliant
fault tree format. For fault tree models produced using third-part MBSA tools other than
HiP-HOPs, e.g., Component Fault Trees (ZELLER et al., 2023) and OSATE AADL Error
Annex (DELANGE; FEILER, 2014), the engineers need to specify a model transformation
to map the tool metamodel elements to the ODE elements. The ODE::FailureLogic::FTA
Package provides full support for representing FTAs, thus, the difficulty of this process
lies in understanding the structure of the input fault tree and how it can be transformed
to ODE. The Epsilon framework (ECLIPSE, 2022) offers languages and features for model
management reducing the effort required for developing transformations from specific FTA
models to ODE models. Qutput: ODE fault tree compliant models. Figure 5.7 B is the
ODE-compliant fault tree result presented in the last step.

Step 3: Execute the instantiation program. Inputs: an assurance case pattern,
and the ODE fault tree compliant models. In this step, engineers provide the pattern and
the fault tree models to the assurance case pattern instantiation program, developed by
the authors in (NASCIMENTO et al., 2023), to synthesize the system safety argument
based on the FTA results. Qutput: a product safety argument for the target system with

references to FTA results (evidence).

TerminologyPackage.0
IArgPack.0 IArgPack.1
Power failure :I Relay connect fail :|

Figure 5.8 — Instantiation result package View.

The assurance case pattern is recursively instantiated resulting in two argumentation
packages. One package contains the instantiated pattern for the Gate "Power failure" and
the other for the Gate "Relay connect fail" (Figure 5.8). Figure 5.9 shows the instantiated
pattern for the "Power failure" Gate. The top-level claim refers to a concrete instance of
the term HSFMType. Claim 2.0 has a reference to an instance of the HSFMFEvent term
generated for the "Miniature circuit fail" Cause. Claim 3.0 is a citation claim referencing
the top-level claim within the argument package generated from the pattern recursive

instantiation.

5

Claim 1.0
Power failure is
ahsent
Claim 2.0 Clai ArgPack.1 [Claim 1.1]
Miniature circuit fail m
3.0 :Relay connectfail is

is acceptable
absent

Figure 5.9 — Instantiation Result Power Failure ArgumentPackage View.

Figure 5.10 shows the argument package generated for the "Relay connect fail
Gate. The top-level claim refers to a concrete instance of the term HSFM Type while Claim
2.1 and Claim 2.2 reference instances of the HSFMFEvent term. HSFMFEvent instances
have been generated for the Causes "Diode fail" and "Over heat" related to the Gate "Relay

connect fail".

Claim 1.1
Relay connect fail is

h
/\

Claim 2.1 Claim 2.2
Diode fail is Qver heatis
acceptable acceptable

Figure 5.10 — Instantiation Result Relay Connect Fail ArgumentPackage View.

54 SUMMARY

This chapter presented a methodology to support the specification and synthe-
sis of executable SACM argument patterns with traceability links between claims and
ODE-compliant FTA results within an Executable Digital Dependability Identity. The

methodology is comprised of two phases, Assurance Case Pattern Specification where

76

users specify the SACM assurance case pattern, and Assurance Case Pattern Instantiation
where users perform safety analysis providing data for the instantiation of placeholders.
Thus, executable assurance case patterns can be specified, mapping ODE-compliant FTA
elements to abstract terms enabling automatic instantiation. The next chapter presents
the instantiation algorithm to support the automatic instantiation of SACM assurance

case patterns.

7
6 SACM PATTERN INSTANTIATION ALGORITHM

This chapter presents our model-driven approach for automated synthesis of ex-
ecutable SACM argument patterns from system design models. Section 6.1 provides
an overview of the automated system of assurance case pattern instantiation algorithm.
Section 6.2 covers the FObject module. Section 6.3 discusses the ModelElement module.
Section 6.4 focuses on the Package module. Section 6.5 explores the Term module. Section
6.6 describes the Fzpression module. Section 6.7 details the AssertedRelationship module.
Finally, Section 6.8 reviews the ArtifactAssertedRelationship module.

6.1 OVERVIEW

The instantiation algorithm was implemented using Epsilon EOL (KOLOVOS;
ROSE, et al., 2013) and Java languages, and it executes on the Eclipse Modeling Framework
(ECLIPSE, 2018a) platform. Imput: an executable SACM-compliant assurance case
pattern specification model enriched with ImplementationConstraints, and MOF-compliant
(e.g., EMF, UML) or other (e.g., Simulink, XML) design, analysis, and process models
stated as +externalReferences of abstract Terms of the pattern. Output: a product
safety argument for the target system with references to external artifacts information.
The proposed algorithm transforms a SACM assurance case pattern specification into a
system assurance case. Thus, all the elements within the input model are generated in the
output model replacing the placeholders defined in the pattern by system design, process,
and analysis information. If an element has the +isAbstract property set to "true', it is

instantiated in the output model. Otherwise, the element is copied to the output model.

EObject Module
ModelElement Module
2
Term Module Expression Module Package Module AssertedRelationship IArtifactAssetRelationship
Module Module

Figure 6.1 — Instantiation Modules.

Due to the large number of SACM meta-classes and different semantics, the
implementation of the proposed assurance case pattern algorithm has been broken down
into modules as illustrated in Figure 6.1. These modules are Java classes containing

properties and operations to manipulate models through the Eclipse Epsilon and EMF

78

frameworks. Instances of these classes are created and SACM assurance case pattern

elements are assigned to them in order to be instantiated.

The EObject Module defines the basic structure for instantiating a SACM el-
ement, and general concepts (e.g., copies management) used in the instantiation. This
module is used for directly instantiating SACM LangString, Description, Note, and Tagged-
Value elements, and through inheritance by all the other modules. The ModelElement
Module defines the basic structure for instantiating an SACM ModelElement. It is
also used, through inheritance, by the Package, Term, Expression, AssertedRelationship,
and Artifact AssetRelationship modules. The Package Module is responsible for in-
stantiating SACM AssuranceCasePackages, ArgumentPackages, TerminologyPackages,
and ArtifactPackages and their bindings and interfaces. The Term and Expression
modules contain the rules for instantiating abstract SACM Terms and SACM Expressions,
respectively. Due to the difference in the number of targets, two modules have been cre-
ated to support the instantiation of SACM asserted and artifact asset relationships. The
AssertedRelationship Module supports the instantiation of SACM AssertedContext,
AssertedEvidence, AssertedInference, AssertedArtifactContext, and Asserted ArtifactSup-
port. AssertedRelationships can only have one element defined within their +target
property. In contrast, Artifact AssetRelationships can have multiple elements within their
+target property. Thus, the Artifact AssetRelationship Module provides rules for
instantiating SACM Artifact AssetRelationships among artifact elements.

Listing 6.1 provides an overview of the assurance case pattern instantiation algo-
rithm. The proposed algorithm starts with the instantiation of abstract term enriched
mapping, multiplicity, and children implementation constraints (lines 1-7). Firstly, for each
abstract term ¢, it is verified if its +origin property has been defined (line 2). Next, if it is
true, the mapping query within ¢ is then executed for each instance of the origin term
ot, replacing the "$originValue" query parameter for the value of the origin term (line 3).
Therefore, instances of ¢ are generated for all the values retrieved from the execution of
the mapping constraint (line 4). If ¢ has a children constraint, it is recursively instanti-
ated (line 5). Thus, the children constraint query is recursively executed generating new
instances of ¢ (lines 6-7). For instance, the "$parentValue" query parameter of a children
implementation constraint, e.g., the "$parentValue" of a FTAGate.all.selectOne(g/g.name
= "$parentValue").causes.collect(cfc.name) EOL query that returns all causes of a given
hazard, is replaced by the root values retrieved from the execution of a mapping constraint
attached to t. Next, the query parameter is recursively replaced by the values retrieved
from the execution of the query assigned to a children constraint until an empty list is
returned. Later, model elements of a SACM assurance case pattern associated with each
abstract term are instantiated by replacing references to abstract terms by references to

their instances (lines 8-10).

79

Listing 6.1 — Overveiew of the instantiation algorithm.

01
02
03
04
05
06
07

08
09
10

11
12

13
14

15
16
17

18
19
20

for each abstract term t

if t has an origin term(ot) instantiates ot
executes the mapping queries p into the 0ODE model
creates an instance of t for each value retrieved
if t has a children(s) implementation constraint
| for each instance t_i of t
| | instantiates t recursively
| | executing s query on the ODE model
for each model element(me) referring to t

for each instance t_i of t

|
| | instantiates me replacing
| | the t reference by t_i,

|

| e.g., "{SystemX}" by "MySystem"

for each relationship(r)

creates a new instance of r

gouping the instantiated sources with

the related instantiated targets, i.e., they are linked
only if at least one instantied term within the source
had been direcly originated from the instantiated

terms of the target.

for each package (k)

if k references a term(t)

trough multiplicity(m) constraint

| for each instance t_ i of t

| | creates a new instance k i of k

| | put as content of k_i each instance me_i
| | of the model elements(me) within k

| | only if me_i has t_i or a term that directly
| | originated from t_i

else

| creates a new instance k_i of k

| put as content of k_i all instances me_i

| of the model elements(me) within k

After instantiating model elements, each abstract SACM AssertedRelationship is

instantiated based on its target claim (line 12). Thus, an instance of the AssertedRelation-

ship is created for each instance of the target claim with its +target property set to its

respective claim. The source claims are also instantiated, and defined within the +sources

30

property list of a concrete AssertedRelationship if they relate to the target claim. Therefore,
instances of the source claims should be added to this list only if they contain at least one
instantiated term, i.e., an abstract term ¢ that becomes a concrete t;, which is within the
Description of the target claim or that has originated from at least one term within this
Description. The algorithm ends with a set of steps to instantiate abstract SACM packages
(lines 13-20). If the package has a multiplicity constraint, the abstract term referenced
through its +gid property is instantiated (line 15). Then, for each one of its instances, a
new instance of the package is created (line 16). The instantiated concrete term ¢; related
to a package instance determines its content. The model elements within a package are
instantiated (line 17). However, only model elements with the same instantiated term
(t;) as the package instance, or at least one term that originates from ¢;, are added to
this package. On the other hand, if the package does not have a multiplicity constraint,
then only one instance is generated (line 19). The content of this instance comprises all
instances of model elements generated for the package (line 20). The instantiation modules

implemented for the instantiation algorithm will be presented in the following sections.

6.2 EOBJECT MODULE

The EObject module provides the basic capabilities for instantiating SACM
assurance case pattern elements (i.e., abstract and concrete terms and model elements).
Those capabilities are reused across each level of the SACM assurance case pattern
instantiation process. The inputs for this module are SACM LangString, Description,

Note, and TaggedValue elements.

zinteriaces
linstantiableEQbject

+ instantiate(): List=EObject=
+ newlinstance(): ECbject

+ copy(): EObject

+ getCopies(): List=EQbject=

+ removeAllCopies{): void

¥

InstantiableEObjectimpl

eOhject: EObject
instances: List=EQbject=

copies: List=EChbject=

Figure 6.2 — Class Diagram EObject Module.

81

Figure 6.2 shows the EObject Module UML class diagram excerpt. The IIn-
stantiableEobject interface includes a set of utility assurance case pattern instantiation
operations that concrete classes should implement in each module of the proposed in-
stantiation program. The InstantiableEObjectImpl implements the behavior specified
in IInstantiableEODbject for instantiating the SACM basic elements (i.e., elements that
do not inherit from the SACM ModelElement meta-class) of an assurance case pattern
specification. The InstantiableEObjectImpl class has eObject properties referencing the
SACM pattern elements being instantiated. The SACM pattern element instances and
their copy property list reference the instances generated within the product assurance case.
The instantiate function returns a list of instances. The newlnstance function generates
instances of the eObject pattern element in the product assurance case adding it to the
list of instances. The pattern element is instantiated with the +isAbstract property set to
false, and the possible global identifier property (+gid) set to the pattern element +gid
concatenated with the instance number. The EObject Module also defines a generic copy
function that executes the newlnstance function adding the generated element to the
copies list (copies). The functions getCopies and removeAllCopies have been implemented

to obtain and clear the copies list when necessary.

6.3 MODEL ELEMENT MODULE

The ModelElement module increments the basic capabilities of the EObject
module allowing the instantiation of SACM ModelElement and their properties. These
capabilities are reused across the Package, Term, Expression, AssertedRelationship, and
Artifact AssetRelationship Modules of the SACM assurance case pattern instantiation
process. The inputs for instantiation in this module are SACM Claim, ArgumentGroup, Ar-
tifactReference, ArtifactGroup, Property, Artifact, Activity, Event, Participant, Technique,
Resource, TerminologyGroup, and Category elements. Figure 6.3 shows the ModelElement
Module UML class diagram excerpt. The IInstantiableModelElement interface extends
from the IInstantiableEobject and includes a set of utility operations that concrete classes
should implement to enable the instantiation of SACM ModelElements. The Instan-
tiableModelElementImpl implements the behavior specified in IInstantiableModelElement
and extends from the InstantiableEObjectImpl. The InstantiableModelElementImpl class
overrides the newlnstance and instantiate functions of the InstantiableEObjectImpl. The
newlnstance method generates instances of the eObject pattern element in the product
safety case without adding it to the list of instances. The pattern element is instantiated
with the +isAbstract property set to false, and the possible global identifier property
(+gid) set to the pattern element +gid concatenated with the instance number. Instances
generated from newlnstance method are only added to the list of instances within the
instantiate function. This function returns the list of instances if the element has already

been instantiated, otherwise, it executes the instantiation procedure adding instances to

82

the list and returning them at the end. This process depends on the model element being
instantiated and its properties. Thus, instantiate method is overridden in the Package,

Terms, Expression, AssertedRelationship, and ArtifactAssetRelationship modules.

ginterfaces
> InstantiableEQbjectimpl linstantiableEQbject

1

zinterfaces
linstantiableModelElement

+ hasConstraint{String type): boolean
+ getQuery{String type): List=String=
+ gefTerms(): type

+ runOptionalityConstraints(): void

+ geiTaggedValueProperiies(String lang): Map-=5iring, String=

A

InstantiableModelElementimpl

+ containsTerm(): boolean

+ runQptionalites(EODject instance); void

+ replaceTv(MatchResult p, ECbject instance); Siring

Figure 6.3 — Class Diagram ModelElement Module.

The InstantiableModelElementImpl class instantation method has two possible
outcomes depending on the +isCitation and +citedElement properties of the ModelElement
being instantiated. If the element is a citation (i.e., +isCitation property is true and
+citedElement is not null) its instances are generated according to the cited element
instances. Otherwise, if the element is not a citation its instances are generated according
to its multi-language +description property. Thus, the ModelElement is instantiated
based on a D set comprising its descriptions {dy, ds, ..., d, } where each d; element can be
either a LangString or an ExpressionLangString description. A matrix D’ is defined where
each Dj; element is a specific instance j of a description i. Therefore, an instance of the
ModelElement is generated for each column j of D' matrix, and its +description property

is set to all descriptions instances J (ViDj; — J).

The IInstantiableModelElement defines a few more methods that are implemented
by the InstantiableModelElementImpl to enable the instantiation of SACM ModelElements.
The +hasConstraint method verifies if the pattern model element has an implementation
constraint sub-type. The computer language queries are obtained through the +getQuery

method. The +getTerms function returns all the terms within the model element Descrip-

33

tion. The +containsTerm verifies if a model element has a specific term in its Description.
After the instantiation of the model element, the +runOptionalityConstraints executes all
optionality constraints in each instance. If an instance does not satisfy all these constraints
it is removed from the product assurance case. The verification of the conditions is done by
the +runOptionalites. This method runs all the optionalities queries for a specific instance.
It uses the +replaceTv method for replacing the TaggedValue wildcards within optionality
queries for its values in order to execute a boolean statement. For example, the wildcard
"$tv(ENG, SIL) == A" checks if the model element has a TaggedValue with the lang set
to "ENG", key "SIL", and value equal to "A". The TaggedValues are returned through
the function getTagged ValueProperties. This function returns all the TaggedValues within
the +taggedValue property and within the Expression/Terms elements referenced through

ExpressionLangStrings by the Description of the model element.

6.4 PACKAGE MODULE

The Package module increments the basic capabilities of the MlodelElement mod-
ule allowing the instantiation of SACM Packages. The inputs for instantiation in this mod-
ule are SACM AssuranceCasePackage, AssuranceCasePackageBinding, AssuranceCasePa-
ckagelnterface, ArgumentPackage, ArgumentPackagelnterface, ArgumentPackageBinding,
ArtifactPackage, ArtifactPackageBinding, ArtifactPackagelnterface, TerminologyPackage,

TerminologyPackageBinding, and TerminologyPackagelnterface elements.

ginterfaces
> Insta ntiableModelElementimpl linstantiableModelElement

f

zinterface:
linstantiablePackage

+ getListOflnstanceForElement{EChject instance, EObject e): List=EQbject=

A\

InstantiablePackagelmp!

— - term: ECbject

+ getContents(); List<EQbject=

Figure 6.4 — Class Diagram Package Module.

Figure 6.4 shows the Package Module UML class diagram excerpt. The IInstan-

tiablePackage interface extends from the IInstantiableModelElement and includes a set

84

of utility operations that concrete classes should implement to enable the instantiation
of SACM Packages. The InstantiablePackagelmpl implements the behavior specified in
IInstantiablePackage and extends from the InstantiableModelElementImpl. The Instan-
tiableEObjectImpl class has a -term property referencing or not a Term instance. The
instantiate method has two possible outputs depending on the multiplicity constraint
assigned to the package. If the package being instantiated does not have a multiplicity
constraint, only one instance is created. Then all of its contents are instantiated and added
as content of this instance. However, if the package being instantiated has a multiplicity
constraint it is instantiated according to the Term referenced within this constraint by the
+gid property. Thus, for each instance t; of this term a new package instance is created
with the -term set to t;. The contents within the package are also instantiated and its
instances are added as content of the respective package instance. Instances of elements
instantiated from abstract elements that have a reference to a -term package instance term
or another term that originates directly from it are added to the contents of this instance.
Instantiated elements originated from pattern elements with +isAbstract property set
to false are added as content off all the packages instances. These elements without
placeholders are considered constants and should be present in the package independent of
their -term property. The +getListOfInstanceForElement method returns the respective
property list to add an element according to its type and the +getContents method returns

all the package contents.

6.5 TERM MODULE

The Term module increments the basic capabilities of the ModelElement module
allowing the instantiation of SACM Terms. The inputs for instantiation in this module
are SACM Term elements. Figure 6.5 shows the Term Module UML class diagram
excerpt. The IInstantiableTerm interface extends from the IInstantiableModelElement
and includes a set of utility operations that concrete classes should implement. The
InstantiableTermImpl implements the behavior specified in IInstantiableTerm and extends
from the InstantiableModelElementImpl. The InstantiableTermImpl class has a -origins
property list used for referencing the origins of a term. The methods +addOrigin and
+getOrigins are used respectively for adding and removing elements of this -origins list.
The -wasAbstract property is used to indicate if an instantiated Term has been instantiated
from a Term with +isAbstract set to true or not. This flag allows the algorithm to return
only the Terms instantiated from abstract Terms within elements (e.g. Claim) description,
thus, the -wasAbstract property provides a way to relate these elements without considering

pattern concrete Terms.

85

ainterfaces
= InstantiableModelElementimpl | | instantiableModelElement

7

zinterfaces
lInstantiableTerm

+ getOrigins(). List=EObject=

+ addOrigin{EObject origin): List=EObject=
i

Instantiable Termimpl

- origins: List=EQbject=

- wasAbsftract: Boolean

— - getTermWithinAlredyinstantiated(String value): EObject
- instantiateChildren{ECbject parent, String query): void
- runQuery(String query,String value): List=Sfring=

Figure 6.5 — Class Diagram Term Module.

The instantiate method of the InstantiableTermImpl generates an instance of a
term according to its +implementationConstraints and +origin properties combination.
An abstract term has a mapping constraint to define the +wvalue property of its instance(s).
If this abstract term has the +origin property defined, the mapping constraint query is
executed for each origin instance, otherwise, only once. The values extracted from external
models by the mapping queries are used to instantiate the abstract term. However, if
this term has a multiplicity constraint an instance is generated for each value retrieved,
if not, one instance is generated concatenating all these values. An abstract term with
multiplicity constraint may also have a children constraint. Then, after the instantiation
based on the mapping constraint for each instance ¢; generated the recursive execution of
children queries starts. Thus, for each value j retrieved by the children query execution a

new t;; is generated with -origins containing ¢;.

To provide support for the instantiation the methods -runQuery, -instantiate Children,
-get Term WithinAlredyInstantiated have been implemented in the InstantiableTermImpl.
The -runQuery method returns a list of values from the execution of a computer language
query replacing the possible wildcards "$originValue" or "$parentValue" for their respective
values (i.e., the +wvalue of an instance Term from +origin or from the recursive instantia-
tion). The -instantiateChildren method implements the recursive instantiation of terms
based on the children constraint definition. The getTerm WithinAlredylInstantiated method
returns an instance of the instantiated term with a specific +value property. This method

is used to prevent multiple instantiations of a term with the same +wvalue property.

36

6.6 EXPRESSION MODULE

The Expression module increments the basic capabilities of the ModelElement
module allowing the instantiation of SACM Expressions. The inputs for instantiation in
this module are SACM Expression elements. Figure 6.6 shows the Expression Module
UML class diagram excerpt. The IInstantiableExpression interface extends from the
[InstantiableModelElement and includes a set of utility operations that concrete classes
should implement. The InstantiableExpressionlmpl implements the behavior specified in

IInstantiableExpression and extends from the InstantiableModelElementImpl.

zinterfaces
== InstantiableModelElementlmpl | | lInstantiableModelElement

1

zinteriaces:
linstantiableExpression

+ getElement(); List=EObject=
+ indexCf{Object term): type
+ getRoot(): EObject

£

InstantiableExpressionimpl

+ getDerived(EObject]] element EObject term): ECbject

Figure 6.6 — Class Diagram Expression Module.

The InstantiableExpressionlmpl +getElement method returns the +element prop-
erty of the expression being instantiated. The +getRoot returns the first abstract term
with no origin defined within the +element property of the expression. The +getDerived
method returns the first abstract term that originates from a given abstract term within
the +element property. The indexOf method returns the respective index of a term in
the +element property. The instantiated method is implemented proving support for the
instantiation of Expressions. At first, an array of +element lists is generated for each
instance of the root term returned from the function +getRoot. Then, for each +element
list of the array, the references to the abstract root term are replaced with references
to each one of its instances. However, SACM expressions may have multiple abstract
terms within the +element property thus the other possible abstract terms must also be
instantiated. A top-down approach has been adopted to instantiate these terms. Thus,

the +getDerived function is executed by passing the root term and returning the first

87

derived term within the +element list. Then, references to the derived abstract terms
are replaced with references to instances in all +element lists. If a derived abstract term
has multiple instances, a new +element list is generated for each instance replacing its
reference. The final step of the instantiation is to generate expression instances according
to these +element lists. If the expression has a multiplicity constraint an instance is
generated for each one of these +element lists. However, if the expression does not have a
multiplicity constraint only one instance is generated containing all these +element lists

within the +element property.

Figure 6.7 — Expression Terms.

Figure 6.7 shows a representation of this instantiation phase considering the abstract
terms and their instances. The abstract term ¢2 originates from the abstract term ¢1 and
both have multiplicity and mapping constraints. The term 1 is instantiated in the terms
xl and z2. The term t2 is instantiated in the terms y1 and y2 originating from z1, and

y3 originating from z2.

{t2} originates from {t1}

{th originates from x1

{t2} originates from x2

y1 originates from x1

y2 originates from x1
y3 originates from x2

Figure 6.8 — Expression Instantiation.

Considering the abstract expression "{¢2} originates from {t1}" (Figure 6.8). At

step 1 the root element is selected and instantiated. At step 2 the derived term is selected

38

and then instantiated. This process continues until there is no abstract term to be
instantiated in the list. Element lists are generated for all paths from the root to each
leaf node resulting in step 3 with the lists "y1 originates from x1", "y2 originates from z1",

and "y3 originates from x2".

6.7 ASSERTED RELATIONSHIP MODULE

The AssertedRelationship module increments the basic capabilities of the Mod-
elElement module allowing the instantiation of SACM AssertedRelationships. The
inputs for instantiation in this module are SACM AssertedContext, AssertedEvidence,
AssertedInference, AssertedArtifactContext, and Asserted ArtifactSupport relationship
elements. Figure 6.9 shows the AssertedRelationship Module UML class diagram excerpt.
The IInstantiableRelationship interface extends from the IInstantiableModelElement and
includes a set of utility operations that concrete classes should implement to enable the
instantiation of SACM AssertedRelationships. The InstantiableAssertedRelationshipImpl
implements the behavior specified in IInstantiableRelationship and extends from the
InstantiableModelElementImpl.

v

sinterfaces
| InstantiableModelElementimpl linstantiableModelElement

T

zinterfaces:
linstantiableRelationship

+ runChoiceConstrainis(). void

A

InstantiableAssertedRelationshiplmpl

- intersectionWith Target(EObject target, EObject source): boolean

Figure 6.9 — Class Diagram AssertedRelationship Module.

The instantiate method of the InstantiableAssertedRelationshipImpl class generates
an instance r; of a pattern relationship(r) for each instance ¢; generated for the element
defined in r +target property. Then the elements within r +source property are instantiated.
The method -intersection WithTarget verifies if a given a source instance s; contain at least
one instantiated term, i.e., an abstract term that becomes a concrete, which is within the
Description of the target claim t; or that has originated from at least one term within

t; Description. If this condition is verified, s; is added in the +source property list of r;.

89

Thus, each instance of the relationship must have on its +source property elements that
are related to the +target or constant elements (i.e., elements that do not have abstract
terms). The method runChoiceConstraints is executed after instantiation on each instance
r; generated for the relationship. This method verifies if r; attends the lower and upper

bound of sources defined in the choice constraint of the pattern relationship r.

6.8 ARTIFACT ASSET RELATIONSHIP MODULE

The Artifact AssetRelationship module increments the basic capabilities of the
ModelElement module allowing the instantiation of SACM ArtifactAssetRelationships.
The inputs for instantiation in this module are SACM Artifact AssetRelationhip elements.
Figure 6.10 shows the ArtifactAssetRelationship Module UML class diagram excerpt.
The IInstantiableRelationship interface extends from the IInstantiableModelElement and
includes a set of utility operations that concrete classes should implement to enable the
instantiation of SACM Artifact AssetRelationships. The InstantiableArtifact AssetRelation-
shipIlmpl implements the behavior specified in IInstantiableRelationship and extends from
the InstantiableModelElementImpl.

zinterfaces
—=Insta ntiableModelElementimpl IInstantiableModelElement

1

zinterfaces
linstantiableRelationship

+ runChoiceConstraints(); void

i

InstantiableArtifactAssetRelationshiplmpl

— - term: EObject

- intersectionWith TermiECQbject term, EObject sourceCrTarget): boolean

Figure 6.10 — Class Diagram ArtifactAssetRelationship Module.

The instantiate method of the InstantiableArtifact AssetRelationshiplmpl class has
two possible outputs depending on the multiplicity constraint assigned to the Artifac-
tAssetRelationship. If the relationship r being instantiated does not have a multiplicity
constraint, only one instance r; is created. Then all elements within its +target and +source
properties list are instantiated and added to the respective property list of ;. However,

if the relationship r being instantiated has a multiplicity constraint, it is instantiated

90

according to the instances of the Term referenced within this multiplicity constraint by the
+gid property. Thus, for each instance h; of this abstract term a new relationship instance
r; is created with the -term set to h;. The elements defined in the +target property of r
are instantiated generating a set of ¢; instances. Then, the elements defined in the +source
property of r are instantiated generating a set of s; instances. Finally, ¢; is added to the
+target property and s; to the +source property of a relationship instance r; only if the
+intersection WithTerm method execution result, is true. This method verifies if a given
a source instance sj or target instance ¢; contain an instantiated term, i.e., an abstract
term that becomes a concrete, which is equal to the term h; of r; or that has originated
from h;. Constant elements (i.e., elements that do not have abstract terms) are added to

the +target/+source property list of all relationship instances ;.

6.9 SUMMARY

This chapter presented a instantiation algorithm written in Java and EOL (KOLOVOS;
ROSE, et al., 2013) within the Eclipse framework (ECLIPSE, 2018a) to support the auto-
matic instantiation of executable assurance case patterns. The interfaces and abstractions
proposed among modules increase the reuse of common functions and provide the basis for
implementing an instantiation procedure for different SACM versions. The algorithm com-
prises seven instantiation modules for transforming SACM argument pattern elements in
SACM product safety case elements. Therefore, executable assurance case patterns can be
instantiated with traceability from abstract terms to ODE-compliant FTA elements. The
next chapter evaluates the pattern extensions, methodology, tool support, and automatic

instantiation of SACM executable assurance case patterns.

91
7 EVALUATION

This chapter describes a case study to demonstrate the feasibility of the proposed
model-driven methodology in supporting the instantiation of SACM assurance case patterns
from a diverse set of models (e.g., design, hazard analysis, fault trees) that constitute the
Digital Dependability Identity (DDI) of an open and adaptive safety-critical system or

component.

7.1 STUDY DEFINITION

The study goal was defined using the Goal-Question-Metric (GQM) goal definition
template proposed by Basili et al. (BASILI; CALDIERA; ROMBACH, 1994). This study
aims to analyze the proposed model-driven assurance case methodology for the
purpose of evaluating it with respect to its effectiveness and efficiency from the point
of view of the Safety Engineers in the context of safety-critical systems. The research
questions and metrics shown in Table 7.1 were derived based on this goal. This study’s
first goal (G1) is to enhance the efficiency of the automatic instantiation of assurance case
patterns. To achieve this goal, it is necessary to answer the first question (Q1) which
assesses the time for generating a product assurance case. Q1 is measured by the time
taken to execute the instantiation (M1) to verify the feasibility of the algorithm. The
second goal (G2) focuses on ensuring the effectiveness of the automatic instantiation of
assurance case patterns. To achieve this goal, it is necessary to answer the second question
(Q2) which assesses the correctness of the generated assurance case. Q2 is ensured by
the number of elements correctly instantiated (M2) and the number of omissions (M3).
These goals aim to evaluate the capabilities of the proposed model-driven methodology in
supporting the instantiation of SACM assurance case pattern concerning its correctness

concerning a template solution, and execution time.

Table 7.1 — Evaluation Goals, Questions, and Metrics.

G1: Enhance the efficiency of the automatic instantiation of assurance case patterns.
Q1: How much time is needed to instantiate an assurance case pattern?
M1: Time taken to execute the instantiation.
G2: Ensuring the effectiveness of the automatic instantiation of assurance case
patterns.
Q2: How correct is the instantiated product assurance case?
M2: Number of elements correctly instantiated.
M3: Number of omissions.

92

7.2 CASE STUDY SELECTION AND DESCRIPTION

The systems used to evaluate the proposed methodology’s effectiveness and
efficiency are Cypher-Physical Systems from real-world scenarios. The first system is the
Hybrid Braking System (R. DE CASTRO; FREITAS, 2011) which has eleven components,
sixteen ports, and twelve connections. The second system is the Highly Automated Driving
Vehicle (MUNK; NORDMANN;, 2020) which has seven components, twelve ports, and six

connections. Both of these systems are safety-critical in the automotive domain.

The assurance case patterns used in the evaluation are the Hazard Avoidance
(KELLY; MCDERMID, 1997), Risk Argument, and Hazardous Software Failure Mode
(HSFM) (WEAVER, 2003). These patterns have been specified in SACM notation within
the SACM ACEditor to be automatically instantiated. They have been chosen due to
their distinct argument structure and reasoning approach which are crucial for ensuring

software safety and reliability.

7.2.1 Hybrid Braking System

Hybrid Braking System (HBS) is a hybrid brake-by-wire system (Figure 7.1) for
electric vehicles propelled by four in-wheel motors (IWMs) taken from (R. DE CASTRO;
FREITAS, 2011). Hybrid means that braking is achieved through combined action of
electrical IWMs, and frictional Electromechanical Brakes (EMBs). While braking, IWMs
transform the vehicle’s kinetic energy into electricity, which charges the power train battery,

increasing the vehicle’s range.

g

Auxiliary
Battery

Il
Y

£] £]
EMB Power »
{ Bus1 g_—l__)_ E,) Converter EmB —

Wheet Node IR &

Controller £] |

B IWM Power [wm
Mechanical Electronic Converter
Pedal Pedal

Bus2

2
Powertrain
Battery

Figure 7.1 — Hybrid Braking System Architecture.

Brake-by-wire eliminates the hydraulic connection between the brake pedal and
individual wheel brake modules. A redundant electronic Bus software handles the commu-
nication between the Electronic Pedal, which senses brake pedal movement, and Wheel
Node Controllers (WNCs) from local Wheel Brake modules, transforming brake pedal

93

movement into braking torque (force) for each wheel. Auxiliary Battery provides power to
each wheel brake module while braking. Power Train Battery stores the energy produced
by the IWMs. The system is activated when the driver presses the mechanical pedal. The
Electronic Pedal component senses the driver’s action, and it sends the braking forces,
via a duplex bus system, to WNCs of each wheel brake module. Each WNC generates
commands to the power converters to activate EMB and IWM braking actuators. While
braking, the power flows from the auxiliary battery to EMB, and from IWM to the
powertrain battery. Different hazards with different criticality (i.e., ISO 26262 Automotive
Safety Integrity Level - ASILs), and causes can arise from the interaction between wheel

braking system components.

7.2.2 Highly Automated Driving Vehicle

Highly Automated Driving (HAD) vehicle is an automated-driven system (Figure
7.2) for electric vehicles propelled by power-train batteries (Powertrain) taken from (MUNK;
NORDMANN;, 2020). The HAD can sense its environment through side cameras to operate,
without human involvement, the vehicle’s lateral and longitudinal movement. The left and
right Cameras sense the environment sending data to the VehicleComputer responsible
for defining the vehicle’s torque and wheel angle. The torque is sent to the Powertrain
module which controls the longitudinal movement. The wheel angle is sent to the Steering

module which controls the lateral movement.

<<proxyport>>

camera right longitudinal movement | ' —[] powertrain

: Camera : Powertrain
L]
[] vehicle computer]—L

jJ— : Vehicle Computer

camera left ---~[| steering
: Camera <<proxyport>> : ¢! Steering
lateral movement

Figure 7.2 — Highly Automated Driving Vehicle Architecture.

The system is activated when the VehicleComputer identifies the necessity of
changing the vehicle movement based on the images captured through the left and right
Cameras. Then, the system sends the torque and angle via ports to the Powertrain and
Steering modules, respectively. Thus, different hazards with different criticality (i.e., ISO
26262 Automotive Safety Integrity Level - ASILs), and causes can arise from the interaction

between HAD components.

7.3 CASE STUDY EXECUTION

In this Section, each phase of the proposed methodology is performed. Section

7.3.1 shows the Assurance Case Pattern Specification phase where the assurance case

94

patterns were specified in SACM using the proposed patterns extension. Section 7.3.2
shows the Assurance Case Pattern Instantiation phase for two systems of the automotive

domain.

7.3.1 Assurance Case Pattern Specification

This section presents the patterns which have been used in the case studies. Section
7.3.1.1 explores the Hazard Avoidance pattern, Section 7.3.1.2 the Risk Argument pattern,
and Section 7.3.1.3 the Absence of Hazardous Software Failure Mode pattern.

7.3.1.1 Hazard Avoidance Pattern

The hazard avoidance pattern (KELLY; MCDERMID, 1997) decomposes the
argument that the system is acceptable safe (SysSafe) into sub-claims arguing over the risk
posed by each system hazards (RiskHzdX) is acceptable (Figure 7.3). This argumentation
strategy (ArgOverRiskHzds) is in the context of the identified system hazards(IdentHzds).
The top-level claim (SysSafe) is in the context of the system properties as definition
(SystemDef), environment (Environment), and the target safety standard (SafetyStandard)

to be acceptable or not acceptable as safe.

Claim OperationalEnv

Fiaim SafetyStandard Claim SysSafe | operationalEny .
; operationalEnvironmen
s afetyStandard} i systemX}is - O g
- O---ll--acceptably safefo |
operate in the ; “~
sogcifiedeny i .
+ EysHazardDecompositiéi‘i*n.‘h Claim SysDef
f,]! Argument over the risk . jfsystemDefinition}
! posed bythe identified
| hazards
) i i
: RiskArgument [Claim RiskHazard] * ArtRef [dentHzds = -
z ! S
X Risk posed by{hazard } is [I _lidentified { systemX} i |
acceptable hazards i
0
J |

Figure 7.3 — Hazard Avoidance Pattern in SACM

Table 7.2 shows the implementation constraint subtypes assigned to the pattern ab-
stract terms. Table 7.3 shows the queries assigned to Mapping implementation constraints.
The term systemX has a Mapping constraint with the query ¢f which extracts from the
"'systems.xml" file the attribute "name" of the tag "system"'. The term operationalEnviron-
ment has origin in systemX and a Mapping constraint with the query ¢2 which extracts
from the "system.xml" file the attribute "environment" of the tag "system" related to
the origin. The term systemDefinition has origin in systemX and a Mapping constraint
with the query ¢3 which extracts from the "system.xml" file the attribute "sysDef" of the
tag "system" related to the origin. The term safetyStandard has origin in systemX and

95

a Mapping constraint with the query ¢4 which extracts from the "system.xml" file the

attribute "name" of the tag "standard" related to the origin.

Table 7.2 — Hazard Avoidance Pattern Constraints.

Type | Name Constraints | Origin | External Reference
Term | systemX M apping?t system.xml
Term | operationalEnvironment | M apping?> systemX system.xml
Term | systemDefinition Mapping® systemX system.xml
Term | safetyStandard M apping®* systemX system.xml

Table 7.3 — Hazard Avoidance Pattern Queries.

Query EOL Code
ql ExternalReferencelt_system.all.collect(s|s.a_name)
ExternalReferencelt_system.all.selectOne(s|s.a_name="$originValue")

a2 .a__environment

5 ExternalReferencelt_system.all.selectOne(s|s.a_name="$originValue")
4 .a_ sysDef
" ExternalReferencelt system.all.selectOne(s|s.a_name="S$originValue")

.children.select(c|c.name="standard").collect(s|s.a_name)

7.3.1.2 Risk Argument Pattern

This pattern argument is over the absence of component failures that can cause
a given hazard. This argument is in the context of the ASIL allocated to each system
hazard stated in SafetyStandard of the hazard avoidance (Figure 7.4).

Flaim RiskHazard | Claim HzdSafeReq
Risk posed by | 1Sil}
{ hazard }is el !
acceptable i
A , Ciaim FailureCond
T...._|{failureCondition}
ArgOverMtgContrFailures
A t ihe mitigati Claim CompConfig
gument over the mitigation
I T, E— -
of contributing failure modes L o {componentis}
of components ‘\.
_______ “'-\‘-
.
ite jAbsHSFM[Claim AbsHSFMType | Claim CausalAnalysis
5 Causal analysis for
SF Hazarduos Software Failure Mode ! failureCondition }
{ HSFMType }is absentin confributory
s oftware functionality

Figure 7.4 — Risk Argument pattern in SACM

96

The RiskHazardX top-level claim is stated in the context of the risk classification
allocated to the system hazard in Acceptable, and the top-level failure condition leading to
this hazard in claim FailureCondition. The top-level claim is decomposed into sub-claims
arguing the mitigation of component failures that directly contribute to the occurrence
of this hazard. Such decomposition strategy is defined in the context of the causal chain
defined in the hazard fault tree. The elements of this chain are decomposed by AbsHSFM,
which is supported by sub-claims arguing the absence of each contributing hazardous

software failure mode.

Table 7.4 — Risk Argument Pattern Constraints.

Type | Name Constraints Origin | External Reference
Term | hazard Mapping?t, Multiplicity | systemX system.xml
Term | Sily Mapping®, Multiplicity | hazard system.xml
Term | failureCondition | Mapping?, Multiplicity | hazard system.xml
Term | components Mapping®, Multiplicity | hazard system.xml

Table 7.4 shows the implementation constraint subtypes assigned to the pattern ab-
stract terms. Table 7.5 shows the queries assigned to Mapping implementation constraints.
The term hazard has origin in systemX, a Multiplicity constraint, and a Mapping constraint
with the query ¢I. The query ¢1 extracts from the "systems.xml" file the attribute "name"
of "hazard" tags within the "system" tag related to the origin. The term Sil has its origin in
hazard, a Multiplicity constraint, and a Mapping constraint with the query ¢2. The query
q2 extracts from the "system.xml" file the attribute "sil" of the tag "hazard" related to the
origin. The term failureCondition has its origin in hazard, a Multiplicity constraint, and a
Mapping constraint with the query ¢3. The query ¢4 extracts from the "system.xml" file
the attribute "text" of "cause' tags within the "hazard" tag related to the origin. The term
components has its origin in hazard, a Multiplicity constraint, and a Mapping constraint
with the query ¢/. The query ¢4 extracts from the "system.xml" file the attribute "text"

of "component" tags within the "hazard" tag related to the origin.

Table 7.5 — Risk Argument Pattern Queries.
Query EOL Code

ExternalReferencelt system.all.selectOne(s|s.a_name="$originValue")
.children.select(c|c.name="hazard").collect(s|s.a_name)

q2 ExternalReferencelt hazard.all.selectOne(h|h.a_name="$originValue").a_ sil

ExternalReferencelt hazard.all.selectOne(h|h.a_name="$originValue")
.children.select(c|c.name="cause").collect(t|t.text)

ExternalReferencelt_hazard.all.selectOne(h|h.a_name="$originValue")
.children.select(c|c.name="component").collect(t|t.text)

ql

q3

q4

97

7.83.1.8 HSFM Pattern

An Absence Hazardous Software Failure Mode (HSFM) fault mitigation pattern
argument is over the occurrence of primary, secondary, and control failure modes of a given
fault tree gate (e.g., AND/OR gates) do not lead the system to an unsafe state (Figure 7.5).
This pattern decomposes the claim ABSHSFM Type into tree sub-claims: i) AbValPrimary
arguing that the current failure mode is acceptable; i) AbsTypePrimarySecondary arguing
that the failure modes of other components that contribute to the current failure mode
are acceptable; i) AbsTypeControl arguing that the contributory software functionality
component is scheduled and allowed to run once. The AbsTypeSecondary is further
decomposed into fault mitigation sub-claims (HSFMAccept) arguing that all causes of
each failure event specified in fault tree leaf nodes are acceptable, i.e., they do not lead
the system to an unsafe state. For each fault tree non-leaf node, the AbsHSFM Type is
decomposed into another “Absence Hazardous Software Failure Mode” (HSFM) fault

mitigation argument.

Ciaim ContiibSWrunc Flaim CauseHSHType
|denfified s oftware funclionality : E:Sa\: d‘ij&;ss:;ﬂ?:{agm }
which contributes io hazarduos :
Claim AbsHSFMT - i
s oftware failure [HSFMType] [, e g fallure mede
B Hazarduos Software
s “iFailurs Mode { HSFMType | --ll-------- -D“/-.___
Ciaim SafeReqLSE e fis absentin contributory ‘_‘ Ciaim ContextCSF
: " isoftware fundiionality | "~ JWithin the context of
ASIL {50l } o . i T
3 P 4 contributory s oftware
/’_.' ,"I functionality { CSF }
2 /
Claim HSPM /_-" |,r‘ Claim AllCauses
THSFMType} e ‘,u" FailureMerc indentified failure
. . mechanisms describe all
Argument over failure - - know causes of { ype }
g mechanisms hazarduos software failure
e mode
- el 7 i
kel - -~ Ny
[laim AbsTypePrimary | Claim AbsType Secondary i [laim AbsTypeControl |
! HSFMType }is ! iFai!ur& of other components ! ! CSF }is scheduled and !
acceptable I jwhich lead to { HSFMType } | allowed to run once |
i ihazarduos s oftware failure i i
sew ! imode are accentable] e e !
! pOver SWFHuncCauses
| Argument over other software
JJ-‘ functionality ideniified as cause of
// “‘.,\ hazarduos sofiware failure mode
7 S
¥ e
o \\
g et
< > "
Liaim HSAMAccept Tai [AbsHSFM] Claim Abs HSEMTYpe |
All caus es of hazarduos
s oftware failure mode Hazarduos Software Failure Mode
{ HSFMEvent } are acceptable HS i HSFMType }is absentin
. e contributory software functionality

Figure 7.5 — HSFM Pattern in SACM

Table 7.6 shows the implementation constraint subtypes assigned to the pattern
abstract terms. Table 7.7 shows the queries assigned to Mapping and Children implemen-

tation constraints. The term HSFM Type has origin in hazard, a Multiplicity constraint,

98

a Mapping constraint with the query ¢1, and a Children constraint with the query ¢2.

The query qI extracts from the "ODE.model" file the +name property of Cause elements
with +description property containing "TOP-EVENT" within the FaultTree related to the
origin. The query ¢2 extracts from the "ODE.model" file the +name property of Gate

elements within the +causes property of the Gate related to the parent. The term S%

has its origin in HSFMType, a Multiplicity constraint, and a Mapping constraint with

the query ¢3. The query ¢38 extracts from the "ODE.model" the property +wvalue of a

KeyValueMap with the +key set to "sil" within the +keyValueMaps property of the Cause

related to the origin.

Table 7.6 — HSFM Pattern Constraints.

Type | Name Constraints Origin External Reference
T ~ 2
Term | HSFMType Mapp;\r;iql t;pCljiZchlrenq ’ hazard ODE.model
Term | Sil, Mapping®, Multiplicity | HSFMType ODE.model
Term | type Mapping®, Multiplicity | HSFMType ODE.model
Term | CSF Mapping®, Multiplicity | HSFMType ODE.model
Term | HSFMEvent | Mapping?®, Multiplicity | HSFMType ODE.model
Table 7.7 — HSFM Pattern Queries.
Query EOL Code
ExternalReference!Fault Tree.all.selectOne(s|s.name="$originValue")
ql .causes.select(c|c.description.contains("TOP-EVENT"))
.collect(s|s.name)
ExternalReference!Gate.all.selectOne(s|s.name="$parentValue")<>null 7
5 ExternalReference!Gate.all.selectOne(s|s.name="$parentValue")
4 .causes.select(ala.causeType.name = "Gate").collect(c|c.name)
: Sequence{}
Sequence{ ExternalReference! Cause.all.selectOne(s|s.name="$originValue")
q3 keyValueMaps.selectOne(s|s.key="sil")?.values?
selectOne(v|v.tag="Safety Requirement")?.value}
4 ExternalReference!Cause.all.selectOne(s|s.name="$originValue")
¢ failure.collect(s|s.failureClass)
ab Sequence{'$originValue".replace("\.[A-z]*[0-9]*$|[A-z]*-","") }
ExternalReference!Gate.all.selectOne(s|s.name="$parentValue")<>null 7
6 ExternalReference!Gate.all.selectOne(s|s.name="$parentValue")
d .causes.select(ala.causeType.name <> "Gate").collect(c|c.name)
: Sequence{}

The term type has its origin in HSFMType, a Multiplicity constraint, and a Mapping

constraint with the query ¢/. The query ¢4 extracts from the "ODE.model" file the

+failureClass property of the Failure associated with the Cause related to the origin. The

term CSF has its origin in HSFMType, a Multiplicity constraint, and a Mapping constraint

99

with the query ¢5. The query g5 returns the origin value without separators. The
term HSFMFEwvent has its origin in HSFMType, a Multiplicity constraint, and a Mapping
constraint with the query ¢6. The query ¢6 extracts from the "ODE.model" file the +name
property of Cause elements with +causeType different from "Gate" within the +causes

property of the Gate related to the origin.

7.3.2 Assurance Case Pattern Instantiation

This section describes the application of the Assurance Case Pattern Instantiation
phase in the target systems. Section 7.5.2.1 presents the instantiation of the specified
patterns for the Hybrid Braking System (HBS). Section 7.3.2.2 presents the instantiation
of the specified patterns for the Highly Automated Driving Vehicle (HAD).

7.3.2.1 HBS Safety Analysis and Pattern Instantiation

The system safety analysis was executed resulting in the identification of three
hazards: No braking after a request from the driver (H1: No Braking Four Wheels,
ASIL D); No front wheels braking after request (H2: No Braking Front, ASIL C); and
No rear wheels braking after request (H3: No Braking Rear, ASIL B). Figure 7.6 shows
a fault tree except for the hazard No Braking Four Wheels. At the first level is the top
event No_ Breaking 4 Wheels. At the second level, there are eight intermediate events
related to the EMB.Outl and IWM.Out1 of each break unit. Finally, at the third level,
there is one intermediate event Omission-Brake Unit4. Wheel _Node__Controller. Out2
and three basic events Brake Unitj.IWM.OFailure, Powertrain__Battery. OFailure, and
Brake Unit/.IWM _Power Converter.OFuailure.

No_Breaking 4 Wheels

0

[[|]

Omission- Omission- Omission- Omission-
Brake_Unit1.EMB.Out1 Brake_Unit1.IWM.Out1 Brake_Unit3.EMB.Out1 Brake_Unit3.IWM.Out1
Omission- Omission- Omission- Omission-
Brake_Unit2. EMB.Out1 Brake_Unit2.IWM.Out1 Brake_Unit4.EMB.Out1 Brake_Unit4.IWM.Out1

[
Brake_Unit4.IWM.OFailure1) - (Powertrain_Battery.OFailure1) Brake_Unit4.IWM_Power_Converter.OFailured Omission-
Brake_Unit4.Wheel_Node_Controller.Out2|

Figure 7.6 — HBS Fault Tree Excerpt.

After the execution of the safety analysis, the fault tree model specified using HiP-
HOPs is converted into the Open Dependability Exchange (ODE) metamodel-compliant

(Figure 7.7). In this transformation process, the top and intermediate events of the fault

100

tree are converted into ODE Gate elements with the +causes property set to their children.
The fault tree basic events are represented through the ODE Cause elements. ODE Failure
elements are created for the fault tree nodes with details about their failure type (i.e.,

+failureClass property).

v 2] platform:/resource/HBS/ODE.model
v < DDl Package DDI
v <4 Failure Logic Package HBS - FailureLogicPackage
v <4 Fault Tree No_Braking_4_Wheels
<+ Gate No_Braking_4_Wheels
4 Gate Omission-Brake_Unitd.EMB.Out1
4 Cause Brake_Unit4d.EMB.OFailurel
» Cause Brake_Unitd. EMB_Power_Converter.OFailurel
& Cause Brake_Unitd. Wheel_Node_Controller.OFailurel
4 Gate Omission-Brake_Unitd.Wheel_Node_Controller.Out1
4 Gate Omission-Brake_Unitd.In1
4 Gate Omission-Brake_Unitd.In2
4 Gate Omission-Brake_Unitd./WM.Out1
& Cause Brake_Unitd. /WM. OFailurel
& Cause Brake_Unitd.]WM_Power_Converter.OFailurel
& Cause Brake_Unitd. Wheel_Node_Controller.OFailure2
4 Gate Omission-Brake_Unitd.Wheel_Node_Controller.Out2

Figure 7.7 — HBS ODE Fault Tree Excerpt.

The HBS architecture and identified hazards have been represented in an XML
file (Listing 7.1). This file has a "system" tag with "subsystem" and "hazard' tags to
describe some architectural and analysis information. Thus, this file is used to represent
the general information regarding the system and hazards, i.e., definition, environment

name, sil, components, and causes.

Listing 7.1 — HBS System Model Exerpt.

<system name="HBS" sysDef="Definition of HBS" enviroment="high speed roads">
<standard name="ISO 26262"/>
<subsystem name="MechanicalPedal">
<Port type="out" name="Outl"'/>
</subsystem>
<hazard name="No_ Braking 4 Wheels" sil="4"
within="HazardAnalisys" faulttree="FT_ No_ Braking 4 Wheels">
<cause>
Omission—Brake__Unitl.Add. Braking AND
Omission—Brake__Unit2.Add. Braking AND
Omission—Brake__Unit3.Add. Braking AND
Omission—Brake__Unit4.Add. Braking
</cause>
<component>Brake_Unitl</component>
<component>Brake_ Unit2</component>
<component>Brake_Unit3</component>
<component>Brake Unit4</component>
</hazard>

The automatic instantiation result is a product assurance case comprising Hazar-
dAvoidance, Risk Argument, and HSFM patterns. The Hazard avoidance (Figure 7.8)

is instantiated based on information within the HBS "system.xml" file described above.

101

The name of the system has been instantiated correctly within the claims SysSafe and
IdentHzds. The context of the argumentation has been instantiated according to the
HSB context given by the definition of HBS (SysDef), high-speed roads operational
environment (operationalEnvironment), and the target safety standard ISO 26262 (Safety-
Standard). The citation claim RiskHzdX has been instantiated for No_ Breaking Front,
No__Breaking Rear, and No_ Breaking 4 _Wheels identified HBS hazards. These citation

claims cite claims within argument packages instantiated based on the Risk Argument

pattern.
F Claim SysDef.0
Flaim SafetyStand... Flaim Sys Safe.0 et vs ims
; efinition o
s afe to operate in the & 7
s pecified env
T [sysHazardDecompositi Claim Operational...
Argument over the risk high speed roads
i posed by the identified
hazards
is RiskArgument.0 [Claim RiskHazard.0] RriRef IdentHzds. %
Hz
X. iRisk posed byMo_Braking_Frontis Identified HES
acceptable hazards

is RiskArgument2 [Claim RiskHazard 2 |

Hz | i

X. ERisk posed by Mo_Braking_Rearis
lacceptable

is iRis k&rgument.1 [Claim RiskHazard 1]

Hz |

X. ERisk posed by Mo_Braking_4_‘Wheels is
lacceptable

Figure 7.8 — HBS Hazard Avoidance.

The Risk Argument is also instantiated based on information within the HBS
"system.xml" file. This pattern is instantiated for each identified HBS hazard describing
the acceptance of the risk posed by them. Figure 7.9 shows the instantiation result for
the hazard H1: No Braking Four Wheels, ASIL D. The name of the hazard has
been instantiated correctly within the claim RiskHazard. This claim is in the context
of the numeric value of safety integrity level D (HzdSafeReq), and the condition of
omission of all break unit modules in add braking (FailureCond). The reasoning for the
argument decomposition is in the context of the causal analysis of the failure condition
(CausalAnalysis) and the brake units involved in this failure (CompConfig). The citation
claim citeAbsHSFM has been instantiated for the No_Breaking 4 Wheels fault tree
top event. This citation claim cites a claim within an argument package (AbsHSFM.17)
instantiated based on the HSFM pattern.

102

Claim RiskHazard.1

Claim HzdSafeReq....

Risk posed hy -
No_Braking_4_whe [I ——® 4
els is acceptable
Claim FailureCond.1
A

Omission-Brake_lUnit1 Add.Braking AND
Omission-Brake_Unit2 Add.Braking AND
Omission-Brake_lUnit3 Add.Braking AND
® Omission-Brake_lUnit4 Add.Braking

[ArgOverMtgContrFailures.0.0

e Claim CompConfig.1
Argument over the mitigation

of contributing failure modes —j-® o Brake_Unit1, Brake_Unit2,
of components Brake_Unit3, Brake_Unit4

O——]

Claim CausalAnalysis.1
ite ;AbsHSFM.17 [Claim AbsHSFMType.17] Causal analysis for Omission-
bs Brake_Unit1 Add.Braking AND Omission-
SF ‘Hazarduos Software Failure Mode Brake_Unit2. Add Braking AND Omission-
-1 iNo_Braking_4_Wheels is absentin Brake_Unit3 Add.Braking AND Omission-
contributory software functionality Brake_lUnit4 Add.Braking

Figure 7.9 — HBS Risk Argument.

The HSFM pattern is instantiated based on HBS ODE fault tree model file infor-
mation. This pattern is instantiated for each top and intermediate event of the fault tree.
Figure 7.10 shows the instantiation result for the top-event "No Breaking 4 Wheels".
The No_ Breaking_ 4 Wheels failure mode does not lead the system to an unsafe state (Ab-
sHSFMType). This claim is in the context of the safety integrity level D (SafeReqCSF), iden-
tified and contributory software functionalities (ContribSWFunc, ContextCSF'), hazardous
software failure mode (HSFM), and the failure type (i.e., +failureClass) associated with
the failure mode (CauseHSFM Type, AllCauses). The argumentation is decomposed into
citation sub-claims comprising the failures that contribute to the No_ Breaking 4 Wheels
failure. In this case, there are eight different citation claims related to failures in the
EMB.Outl and IWM.Outl ports of each break unit. They represent intermediate events
of the fault tree, thus, they cite claims within argument packages instantiated recursively
based on the HSFM pattern.

Claim ContribSWFunc.17

|dentified software functionality]
which contributes to
hazarduos software failure
No_Braking_4_Wheels

Claim AbsHSFMType.17

Hazarduos Software Failure
Mode No_Braking_4_Wheels
is ahsentin contributory
software functionality

103

Claim CauseHSFM...
Know causes of

Omission hazarduos
software failure

mode

Claim SafeReqCSF....

Claim ContextCSF.12

(Within the context of contributory
ASIL D software functionality

No_Braking_4_Wheels

laim AllICauses.0.15
Indentified failure mechanisms
describe all know causes of Omission
hazarduos software failure mode

FailureMerc.0.16

Argument over
failure
mechanisms

Claim HSFM.17

No_Braking_4_Whe
els

Claim AbsTypeS dary.17

Failure of other components which
lead to No_Braking_4_Wheels
hazarduos software failure mode
are acceptable

Claim AbsTypeCont...

No_Braking_4_Whe
els is scheduled and
allowed to run once

Claim AbsTypePri...

No_Braking_4_Whe
els is acceptable

rgOverSWFuncCauses.0.16

Argument over other software
functionality identified as cause of
hazarduos software failure mode

I {AbsHSFM.1 [Claim AbsHSFMType.1] I /AbsHSFM.24 [Claim AbsHSFMType.24]

1

i
i
Hazarduos Software Failure Mode Omission-!
Brake_Unit4 EMB.Out1 is absentin :

contributory software functionality x

Hazarduos Software Failure Mode
Omission-Brake_Unit1 . EMB.Out1 is
absentin contributory software

I AbsHSFM.9 [Claim AbsHSFMType.9]

i /AbsHSFM.28 [Claim AbsHSFMType.28]

Hazarduos Software Failure Mode
Omission-Brake_Unit1.IWM.Out1 is absent
in contributory sofiware functionality

Hazarduos Software Failure Mode
Omission-Brake_Unit4.IWM.Out1 is absent
in contributory software functionality

i {AbsHSFM.11 [Claim AbsHSFMType.11 I AbSHSFM.22 [Claim AbsHSFMType.22] !
%Hazarduos Software Failure Mode Omission- !
iBrake_Unit3.IWM.Out1 is absentin contributory§

isoftware functionality |

%Hazarduos Software Failure Mode
iOmission-Brake_Unit2.EMB.Out1 is
%absent in contributory software

i AbsHSFM.15 [Claim AbsHSFMType.15] I AbsSHSFM.18 [Claim AbsHSFMType.18]
Hazarduos Software Failure Mode
Omission-Brake_Unit2.IWM.Out1 is absent
in contributory software functionality

Hazarduos Software Failure Mode
Omission-Brake_Unit3.EMB.Out1 is absent
in contributory software functionality

Figure 7.10 - HBS HSFM.

7.3.2.2 HAD Safety Analysis and Pattern Instantiation

The system safety analysis resulted in the identification of one hazard Hazarduos
Movement, ASIL D. This result has been presented and described by (MUNK; NORD-
MANN, 2020). Figure 7.11 shows a fault tree except for the hazard Hazarduos Moviment.
At the first level is the top event hazardous movement which can be caused by wrong
lateral movement or wrong longitudinal movement. The paths for these failures are broken
down until the basic events. The source of the wrong lateral movement can be an internal
fault in the vehicle computer. The Powetrain torque may cause the wrong longitudinal
movement due too high torque or too low torque. The torque failures can be caused by

an internal fault in the vehicle computer or blurry image. A failure in the left and right
cameras can lead to a blurry image.

hazardous

movement_block_HAD Vehicle

A

wrong latergl movement_block_[HAD Vehicle

wrong lateral movement_par§_steering wrong

wrong steering angle_part_gteering

wrong longitud

inal movement_blo

wheel movement_part_|

tk_HAD Vehicle

lpowertrain

wrong Tgle_part_vehicle cpmputer |
too high [torque_part_vehiclg

internal fault_part_vehicle computer

/)

[
y=1.00e-06

Powertrair torque Error_part_powertrain
|
computer too low torque_part_vehicle

romputer

/)

internal flault_part_vehicle cqmputer blurry

image_part_vehiclg

@
y=1.00e-06

internal fault_part_vehicle computer blurry

[)
y=1.00e-06

mage_part_vehicle

A

computer

blurry imagg left_part_vehicle

omputer blurry impge right_part_vehi

blurry image_part_came

fa left blurry]

fault_part_camera lgf

image_part_camerp right

ft fault_part_camera right

@
y=1.00e-05

[]
y=1.00e-05

Figure 7.11 — HAD Fault Tree Excerpt (MUNK; NORDMANN, 2020).

rle computer

computer

104

The automatic transformation step from fault tree to Open Dependability Exchange
(ODE) compliant model could not be performed due to the lack of a HIP-HOPs model. To
contour this problem the fault tree model has been manually created within an ODE model
(Figure 7.12). In the same line as the automatic transformation, the top and intermediate
events of the fault tree are created in the form of ODE Gate elements with the +causes
property set to their children. The fault tree basic events are created in the form of ODE

Cause elements. ODE Failure elements are specified for the fault tree nodes with details

about their failure type (i.e., +failureClass property).

105

w L] platform:/resource/HAD/ODE.model
w <= DDl Package DDIPackage
~ 4 Failure Logic Package FailurelLogicPackage

w < Fault Tree Hazarduos Movement
<4 (Gate Hazarduos Movement
<= Gate wrong longitudinal movement
<= Gate wrong lateral movement
<= Gate wrong lateral movement part steering
<= Gate wrong wheel movemnent part powertrain
<= Gate wrong steering angle part steering
<= Gate powertrain torque error part powertrain
<= Gate wrong angle part vehicle computer
<= Gate too high torque part vehicle computer
<= Gate too low torque part vehicle computer
4 Cause internal fault part vehicle computer
<= Gate blury image part vehicle computer
<= Gate blury image left part vehicle computer
<= Gate blury image right part vehicle computer
<= Gate blury image part camera left
<= Gate blury image part camera right
4 Cause fault part camera left
4 Cause fault part camera right

Figure 7.12 — HAD ODE Fault Tree Excerpt.

The HAD architecture and identified hazards have been represented in an XML
file (Listing 7.2). This file has a "system" tag with "subsystem" and "hazard' tags to
describe some architectural and analysis information. Thus, this file is used to represent
the general information regarding the system and hazards, i.e., definition, environment

name, sil, components, and causes.

Listing 7.2 — HAD System Model Exerpt.

<system name="HAD" sysDef="Definition of HAD" enviroment="high speed roads">
<standard name="ISO 26262"/>
<subsystem name="longitudinal movement">
<Port type="out" name="Outl"/>
</subsystem>
<subsystem name="lateral movement">
<Port type="out"' name="Outl"/>
</subsystem>
<hazard name="Hazarduos Movement" sil="4"
within="HazardAnalisys" faulttree="FT_hazarduos movement">
<cause>
wrong longitudinal movement AND
wrong lateral movement
</cause>
<component>longitudinal movement</component>
<component>lateral movement</component>
</hazard>

The automatic instantiation result is a product assurance case comprising Hazar-
dAvoidance, Risk Argument, and HSFM patterns. The Hazard avoidance (Figure 7.13)
is instantiated based on information within the HAD "system.xml" file described above.
The name of the system has been instantiated correctly within the claims SysSafe and

IdentHzds. The context of the argumentation has been instantiated according to the HAD

106

context given by the definition of HAD (SysDef), high-speed roads operational environment
(operational Environment), and the target safety standard ISO 26262 (SafetyStandard).
The citation claim RiskHzdX has been instantiated for Hazardous Movement identified

hazard. This citation claim cites a claim within an argument package instantiated based
on the Risk Argument pattern.

Claim SafetyStand... Claim SysSafe.0 Claim SysDef.0

ISO 26262 HAD is acceptably » e o Definition of HAD
—D_Q‘._safe to operate in the

specified env.

Claim Operational...

high speed roads
lsysHazardDecompositior

Argument over the risk
posed by the identified
hazards

is [RiskArgument.0 [Claim RiskHazard.0

Hz 1 Identified HAD
X. iRisk posed by Hazarduos Movement hazards

is acceptahle

ArtRef IderltHst.%/

Figure 7.13 - HAD Hazard Avoidance.

Claim RiskHazard.0 Flaim HzdSafeReq.0
Risk posed by 4
Hazarduos Movement e)
is acceptahle
Claim FailureCond.0
wrong longitudinal movement
® AMND wrong lateral movement
[ArgOverMtgContrFailures.0
o Claim CompConfig.0
Argument over the mitigation o
of contributing failure modes longitudinal
of components movement, lateral
movement
fle [AnSHSE 0 Ciaim AbsHSFITYPe 0] (laim CausalAnalysis.0
bs Causal analysis forwrong
SF ‘Hazarduos Software Failure Mode longitudinal movement AND
.0 iHazarduos Movement is absentin wrong lateral movement
contributory software functionality

Figure 7.14 — HAD Risk Argument.

The Risk Argument is also instantiated based on information within the HAD
"system.xml" file. This pattern is instantiated for each identified HAD hazard describing
the acceptance of the risk posed by them. Figure 7.14 shows the instantiation result for

the hazard H1: Hazardous Movement, ASIL D. The name of the hazard has been

107

instantiated correctly within the claim RiskHazard. This claim is in the context of the
numeric value of safety integrity level D (HzdSafeReq), and the condition of wrong lateral
and longitudinal movement (FailureCond). The reasoning for the argument decomposition
is in the context of the causal analysis of the failure condition (CausalAnalysis), the lateral,
and longitudinal components involved in this failure (CompConfig). The citation claim
cite AbsHSFM has been instantiated for the Hazardous Movement fault tree top event.
This citation claim cites a claim within an argument package (AbsHSFM.0) instantiated
based on the HSFM pattern. The HSFM pattern is instantiated based on information
within the HAD ODE fault tree model file. This pattern is instantiated for each top and
intermediate event of the fault tree. Figure 7.15 shows the instantiation result for the

top-event Hazardous Movement".

CTaim ContribSWF -~ (aim AbsHSFMType.0 Claim CauseHSFM...
Ident_iﬂed _softwgre mzd?ar?-luaozzzzzvsv?wriv?rﬂgﬁ is Know causes of
functionality which ; - Value hazarduos
contributes to absentin cont_nbutqnj software failure
hazarduos software software functionality mode
[Taim SafeReqCSF.0 (laim ContextCSEO-—
'Within the context of contributory
ASILD FailureMerc.0 software functionality Hazarduos
Movement
Argument over
failure
Fiaim ASF0 mechanisms
Hazarduos
Movemnent
Claim AllCauses.0

ETaim Abs TypePrimary.0 flaim AbsTypeSecondary.0 [laim AbsTypeControl.0 Indentified failure mechanisms

Hazarduos Movement is Failure of other components which| [Hazarduos Movement is describe all know causes of Value

acceptable lead to Hazarduos Movement scheduled and allowed to hazarduos software failure mode

hazarduos software failure mode run once
oo o are acceptable -

rgOverSWFuncCauses.0

Argument over other software
functionality identified as cause of
hazarduos software failure mode

AbsHSFM.1 [Claim AbsHSFMType.1] §AbsHSFM.5 [Claim AbsHSFMType.5]
Hazarduos Software Failure Mode wrongé %Hazarduos Software Failure Mode wrong lo
movementis absentin contributory softw imovement is absentin contributory software
functionality gfunctionality

Figure 7.15 — HAD HSFM.

The Hazardous Movement failure mode does not lead the system to an unsafe state
(AbsHSEMType). This claim is in the context of the safety integrity level D (SafeReqCSF),
identified and contributory software functionalities (ContribSWEFunc, ContextCSF), haz-
ardous software failure mode (HSFM), and the failure type (i.e., +failureClass) associated
with the failure mode (CauseHSFM Type, AllCauses). The argumentation is decomposed
into citation sub-claims comprising the failures that contribute to the Hazardous Movement

failure. In this case, there are two citation claims related to failures in the lateral and

108

longitudinal movements. These claims represent intermediate events of the fault tree, thus,
they cite claims within argument packages instantiated recursively based on the HSFM

pattern.

7.4 DATA COLLECTION AND ANALYSIS

In order to enhance the efficiency of the automatic instantiation of
assurance case patterns (G1) the Hazard Avoidance, Risk Argument, and HSFM assur-
ance case patterns, have been instantiated thirty times in a single computer. This
computer has a Windows operational system, processor Intel(R) Core(TM) i3-8100
3.60 GHz, and 8.00 gigabytes of RAM. The execution times were measured using the
System.currentTimeMillis() function in Java. The data have been collected after each
execution outputs the result and the time taken to instantiate the patterns. Table 7.8
shows how much time is needed to instantiate an assurance case pattern (Q1).
For the HBS system, the minimum time was 1710 milliseconds, the maximum time was
2250 milliseconds, and the average time was 1759 milliseconds. For the HAD system, the
minimum time was 189 milliseconds, the maximum time was 279 milliseconds, and the
average time was 205.5 milliseconds. The time taken to execute the instantiation
(M1) with 95% confidence falls between 1722.43 and 1795.57 milliseconds for HBS and
196.8 and 214.2 milliseconds for HAD.

Table 7.8 — Instantiation Efficiency.

System | Exec. | Max.(ms) | Min.(ms) | Avg.(ms) | M1(ms) M1(s)
HBS 30 2250 1710 1759 1759 £ 36.57 | 1.76 £ 0.04
HAD 30 279 189 205.5 205.5£8.7 | 0.21£0.01

The automatic instantiation process is deterministic unless the external artifacts or
the assurance case patterns change. Therefore, the result of the instantiation is the same
no matter how many times the pattern is instantiated. Thus, in order to ensuring the
effectiveness of the automatic instantiation of assurance case (G2), is necessary
to compare the generated assurance case with the expected result. In this study, the
elements of interest to be compared are Claim, ArgumentReasoning, ArtifactReference,
and AssertedRelationship instances. Table 7.9 shows how correct is the instantiated
product assurance case (Q2). The total number of elements correctly instantiated
(M2) are 662 for the HBS system and 248 for the HAD system. The total number of
omissions (M3) are 4 for the HBS system and 12 for the HAD system. For the patterns
Hazard Avoidance and Risk Argument all the elements have been correctly instantiated and
no omissions were detected. However, not all the elements have been correctly instantiated
for the HSFM pattern. Four omissions have been detected for the HBS system and twelve
for the HAD system.

109

Table 7.9 — Instantiation Effectiveness.

Hazard Avoidance | Risk Argument HSFM Total

HBS HAD HBS HAD HBS | HAD | HBS | HAD
M2 | 13 11 30 10 619 227 662 248
M3 0 0 0 0 4 12 4 12

An analysis has been executed and the cause for these omissions has been found.
The omissions detected in the HBS instantiation are due to the automatic transformation
from the fault tree model to an ODE-compliant model. The +failureClass property of
ODE Failure is only filled when the fault tree intermediate event name is prefixed with the
failure type (e.g., Omission, Value). Thus, for these non-prefixed events, the generated
ODE Failure associated with the respective Gate does not have a +failureClass. Therefore,
the HSFM pattern has not been fully instantiated due to the lack of values for the abstract
term type within claims Cause HSFMType and AllCauses. Thus, the FTA event names
must be prefixed by the failure type to be correctly instantiated by the implemented
transformation. The omissions detected in the HAD instantiation are due to the manually
generated ODE-compliant fault tree. The safety integrity level has not been defined in
the property +wvalue of a KeyValueMap within ODE Failures that have been created from

fault tree intermediate events.

The proposed automatic instantiation has achieved good results. The efficiency
(G1) regarding how much time is needed to instantiate an assurance case pattern
(Q1) has been addressed by the low instantiation time (M1). The effectiveness (G2)
regarding how much correct is the instantiated product assurance case (Q2) has
been addressed by the high number of elements correctly instantiated (M2) and the low

number of omissions (M3).

7.5 THREATS TO THE VALIDITY

This section presents the identified threats to the validity for the performed case
study. Construct validity (Section 7.5.1) concerns the extent to which the measures
accurately represent the concepts they are intended to measure. External validity (7.5.2)
refers to the generalizability of the findings beyond the specific context of the study and
sample size. Reliability (7.5.3) pertains to the consistency and reproducibility of the

results.

7.5.1 Construct Validity

Measurement Errors: Inaccurate measurement of the effectiveness or efficiency

of the instantiated patterns can affect the validity of the results. This threat has been

110

mitigated by providing M1, M2, and M3 metrics to quantify the efficiency and effectiveness

to automatically instantiate assurance case patterns.

7.5.2 External Validity

Generalizability: The findings from the case study might not be applicable to
other types of systems or contexts. This thesis provided a case study with two cyber-
physical from the automotive domain. However, the proposed automatic instantiation is
not limited to specific systems or domains. The process depends on the specification of
executable assurance case patterns and the traceability to external artifacts. Therefore,
there is the possibility of generalizing the findings for the automotive domain in general

and also for other domains.

Sample Size: A small sample size or a limited number of case studies can reduce
the ability to generalize the findings to other assurance case patterns. In order to mitigate
this threat, three real-world SACM assurance case patterns have been specified and
instantiated. Thus, a large set of SACM features, pattern extension constraints, and

instantiation capabilities have been explored.

7.5.3 Reliability

Reproducibility: The process of automatic instantiation must be reproducible to
ensure the reliability of the findings. If the results cannot be consistently replicated, the
reliability is compromised. Due to the deterministic nature of the automatic instantiation,
the results can be reliably replicated. This means that the generated product assurance
case remains consistent when the same pattern and external artifacts are instantiated

multiple times.

7.6 SUMMARY

This chapter presented a comprehensive evaluation of the automatic instantiation of
executable assurance case patterns. The study focused on two Cyber-Physical Systems: the
Hybrid Braking System (HBS) and the Highly Automated Driving (HAD) system. These
systems were chosen due to their complexity and relevance in the automotive domain. The
assurance case patterns, specifically the Hazard Avoidance, Risk Argument, and Hazardous
Software Failure Mode (HSFM) patterns, were meticulously specified using the proposed
methodology. These patterns were further enhanced with the proposed SACM pattern
extensions within the SACM ACEditor tool to ensure they met the necessary requirements

for instantiation.

Following the specification, the SACM patterns were instantiated for both the HBS
and HAD systems. This process involved applying the patterns to the systems to generate

111

assurance cases that demonstrate the safety and reliability of the systems. The results
of these instantiations were then presented in detail for each system. This included a
thorough analysis of the automatic instantiation process, highlighting the efficiency and
effectiveness of the methodology. Additionally, the chapter provided a detailed description
of the threats to the validity of the study, ensuring that the findings are robust and reliable.
This evaluation not only demonstrates the feasibility of the automatic instantiation but

also provides insights into its potential applications in other domains.

112

8 CONCLUSION

Assessing confidence in CPS dependability properties (e.g., safety and security)
is essential to protect people, the environment, and property from unintentional harm
(safety) and against intentional threats (security). Due to the open and adaptive nature of
CPS, it demands a paradigm shift from design-time to runtime system assurance. As a
standardized and well-structured metamodel, SACM provides the foundations for runtime
assurance. This work extended SACM with pattern extensions to add semantics to the
concept of Implementation Constraint providing support for traceability between assurance
cases and system design, analysis, and process models, which are part of Executable Digital
Dependability Identities (EDDIs). This concept has been used in a assurance case editor
tool and a novel model-driven methodology in order to support the specification and
synthesis of SACM-compliant executable assurance cases. To concertize the synthesis
of assurance cases, a instantiation algorithm has been implemented to automatically
instantiate executable assurance case patterns to demonstrate the safety and security of
CPS at runtime.

The pattern extensions facilitate the creation of executable argument patterns
linked to evidence within the SACM. This contribution proposes five sub-types of imple-
mentation constraints (i.e., multiplicity, optionality, choice, mapping, and children) that
can be used to specify SACM executable assurance case patterns. The assurance case
editor tool ACEditor provides support for the creation of these constraints within SACM-
compliant pattern models. The model-driven methodology proposes a two-phase
process for the specification and instantiation of these patterns. In the first phase, the
executable assurance case patterns are specified within the ACEditor tool with constraints
sub-types and computer language queries. In the second phase, the safety analysis is
performed and the fault tree result model is transformed into an Open Dependability
Exchange (ODE) model which is then used in the automatic instantiation implemented by
the instantiation algorithm. The feasibility of the proposed model-driven method-
ology in supporting the automatic syntheses of assurance cases was evaluated in two
systems from the automotive domain. The efficiency has been proved by the low time to
instantiate the assurance case patterns. Humans are not able to manually instantiate the
evaluated assurance case patterns and obtain the same results. However, the efficiency of
the automatic instantiation in runtime assurance and real-time application scenarios must
be further explored. The effectiveness has been proved by the high number of elements
correctly instantiated and the low number of omissions within the generated product
assurance cases. Therefore, the proposed methodology has been analyzed confirming its

efficiency and effectiveness in real-world CPS.

The proposed methodology enhances traceability between assurance cases and

system models, supports the creation of executable assurance cases, and improves the

113

semantics of ImplementationConstraint elements. This methodology also provides clear
guidelines for specifying executable assurance case patterns, thereby reducing errors in this
phase. The Assurance Case Editor (ACEditor) tool increases the usability for generating
SACM-compliant patterns. Additionally, the automatic instantiation by the instantiation
algorithm significantly reduces the time, cost, and errors associated with generating
product assurance cases from patterns. The methodology has been proven applicable
to CPS systems, advancing the field of system assurance and contributing to runtime

assurance of CPS.

Tool limitations: ¢) the novel model-driven methodology and the use of the
ACEditor tool may require a steep learning curve for practitioners, potentially impacting
initial adoption and productivity; i) experimental studies in the industry still need to
be conducted to evaluate the usability of both SACM visual notation and assurance case
modeling tools in supporting the specification of executable argument patterns enriched
with ImplementationConstraints; i) the transformation algorithm developed to convert
the input fault tree models into ODE-compliant models does not support third-party
MBSA tools other than HiP-HOPs;

Instantiation limitations: i) the methodology has been validated in specific case
studies, but its scalability to larger and more diverse assurance case patterns remains to
be thoroughly tested; i) the methodology has primarily been tested in the automotive
domain, and its applicability to other domains with different requirements and constraints
needs further exploration; #i) the lack of support for simplifying the specification of

complex model queries involving references to elements from different external artifacts.

Future work: i) exploit ontologies to simplify the specification of complex model
queries within SACM executable assurance case patterns; i) fulfill the lack of support
for third-party MBSA tools to convert the input fault tree models into ODE-compliant
models; #i) conduct an experimental study to evaluate the usability of both SACM
visual notation and assurance case modeling tools in supporting the specification of
executable argument patterns enriched with ImplementationConstraints; iv) application of
the proposed methodology in larger and more diverse systems of different domains using
different assurance case patterns. v) integrate assurance cases with runtime monitors such
as SAFE-ML to support the update of assurance at runtime based on the data of runtime
monitors. vi) integrate assurance cases with digital twins (i.e., a digital copy of the system)

to enable the evaluation of assurance claims based on digital twins data at runtime.

114
REFERENCES

ACWG. Goal Structuring Notation Community Standard (Version 3). SCSC,
2022. Available at: <https://scsc.uk/scsc-141C>. Access on: January 12" 2023.

ASLANSEFAT, Koorosh; NIKOLAOU, Panagiota; WALKER, Martin;

AKRAM, Mohammed Naveed; SOROKOS, Toannis; REICH, Jan; KOLIOS, Panayiotis;
MICHAEL, Maria K.; THEOCHARIDES, Theocharis; ELLINAS, Georgios;
SCHNEIDER, Daniel; PAPADOPOULOS, Yiannis. SafeDrones: Real-Time Reliability
Evaluation of UAVs Using Executable Digital Dependable Identities. In: MODEL-BASED
Safety and Assessment: 8th International Symposium, IMBSA 2022, Munich, Germany,
September 5-7, 2022, Proceedings. Munich, Germany: Springer-Verlag, 2022. P. 252-266.
ISBN 978-3-031-15841-4. DOI: 10.1007/978-3-031-15842-1_18. Available from:
<https://doi.org/10.1007/978-3-031-15842-1_18>.

ATKINSON, Colin; KUHNE, Thomas. Model-driven development: a metamodeling
foundation. IEEE software, IEEE, v. 20, n. 5, p. 36-41, 2003.

AVIZIENIS, Algirdas; LAPRIE, Jean-Claude; RANDELL, Brian, et al. Fundamental
concepts of dependability. Technical Report Series-University of Newcastle upon

Tyne Computing Science, University of Newcastle upon Tyne, 2001.

BASILI, Victor R; CALDIERA, Gianluigi; ROMBACH, H Dieter. The goal question
metric approach. Encyclopedia of Software Engineering, v. 2, p. 528-532, 1994.

BLOOMFIELD, R.; BISHOP, P. Safety and Assurance Cases: Past, Present and Possible
Future - an Adelard Perspective. In: DALE, C.; ANDERSON, T. (Eds.), p. 51-67.

BLOOMFIELD, Robin; BISHOP, Peter. Safety and assurance cases: Past, present and
possible future-an Adelard perspective. In: SPRINGER. MAKING Systems Safer:
Proceedings of the Eighteenth Safety-Critical Systems Symposium, Bristol, UK, 9-11th
February 2010. 2009. P. 51-67.

BROWN; Simon. Overview of IEC 61508 Design of electrical/electronic/programmable
electronic safety-related systems. Computing and Control Engineering Journal,
Citeseer, v. 11, n. 1, p. 6-12, 2000.

CHESS. Composition with guarantees for High-integrity Embedded Software
components aSsembly. Available at: <http://www.chess-project.org>. Access on: Nov
15t 2023.

CMU-SEI. EMFTA: EMF-based Fault-Tree Analysis Tool. Available at:
<https://github.com/cmu-sei/emfta>. Access on: Jun 20, 2023.

DAJSUREN, Yanja; BRAND, Mark van den. Automotive Systems and Software
Engineering: State of the Art and Future Trends. 1st: Springer Publishing
Company, Incorporated, 2019. ISBN 3030121569.

115

DEIS. D3.1: Digital Dependability Identities and the ODE Meta-Model. 2020.
Available at: <https://deis-project.eu/dissemination/>. Accessed on: January 12" 2023.

DELANGE, Julien; FEILER, Peter H. Supporting the ARP4761 safety assessment
process with AADL. In: EMBEDDED real time software and systems (ERTS2014). 2014.

DENNEY, E.; PAI, G. A Formal Basis for Safety Case Patterns. In: BITSCH, F.;
GUIOCHET, J.; KAANICHE, M. (Eds.). Computer Safety, Reliability, and
Security. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. P. 21-32. ISBN
978-3-642-40793-2.

DENNEY, Ewen; PAI, Ganesh. Evidence arguments for using formal methods in software
certification. In: IEEE. SOFTWARE Reliability Engineering Workshops (ISSREW), 2013
[EEE International Symposium on. 2013. P. 375-380.

ECLIPSE. Eclipse Modeling Framework (EMF). 2018. Available at:
<http://www.eclipse.org/modeling/emf/>. Access on: January 4% 2023.

ECLIPSE. Epsilon. 2022. Available at: <https://www.eclipse.org/epsilon/>. Access on:
January 12, 2023.

ECLIPSE. Graphical Modeling Project (GMP). 2018. Available at:
<http://www.eclipse.org/modeling/gmp/>. Access on: January 4" 2023.

GSN. GSN Community Standard Version 3 (2022). 2018. Available at:
<https://scsc.uk/r141B:17t=1>. Access on: January 4" 2023,

HABLI, I; KELLY, T. A Safety Case Approach to Assuring Configurable Architectures of
Safety-Critical Product Lines. In: GIESE, H. (Ed.). Archi. Crit. Sys., Inter. Symp.,
ISARCS 2010, Prague, Proceedings. Springer, 2010. v. 6150. (LNCS), p. 142-160.

HAWKINS, R. D.; KELLY, T. A Systematic Approach for Developing Software Safety
Arguments. English. In: 27TH International System Safety Conference. July 2010.
P. 25-33.

HAWKINS, Richard; HABLI, Ibrahim; KOLOVOS, Dimitris; PAIGE, Richard;

KELLY, Tim. Weaving an assurance case from design: a model-based approach. In: IEEE.
HIGH Assurance Systems Engineering (HASE), 2015 IEEE 16th International
Symposium on. 2015. P. 110-117.

[SO. ISO 26262: Road Vehicles Functional Safety, 2018.

JOHNSON, Leslie A et al. DO-178B, Software considerations in airborne systems and
equipment certification. Crosstalk, October, v. 199, 1998.

JOSHI, Anjali; HEIMDAHL, Mats PE; MILLER, Steven P; WHALEN, Mike W.
Model-based safety analysis. 2006. NASA Techreport.

116

KELLY, Tim; WEAVER, Rob. The goal structuring notation—a safety argument notation.
In: CITESEER. PROCEEDINGS of the dependable systems and networks 2004 workshop

on assurance cases. 2004. P. 6.

KELLY, Tim P; MCDERMID, John A. Safety case construction and reuse using patterns.
In: SAFE Comp 97. Springer, 1997. P. 55-69.

KOLOVOS, Dimitrios S.; PAIGE, Richard F.; POLACK, Fiona A. C. The Epsilon Object
Language (EOL). In: RENSINK, Arend; WARMER, Jos (Eds.). Model Driven
Architecture — Foundations and Applications. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006. P. 128-142. ISBN 978-3-540-35910-4.

KOLOVOS, Dimitris; ROSE, Louis; GARCIA-DOMINGUEZ, Antonio; PAIGE, Richard.
The Epsilon Book. 2013. Available at: <https://www.eclipse.org/epsilon/doc/book/>.
Access on: January 12", 2023.

KOPETZ, Hermann; BONDAVALLI, Andrea; BRANCATI, Francesco;

FROMEL, Bernhard; HOFTBERGER, Oliver; IACOB, Sorin. Emergence in
Cyber-Physical Systems-of-Systems (CPSoSs). In: Cyber-Physical Systems of
Systems: Foundations — A Conceptual Model and Some Derivations: The
AMADEOS Legacy. Ed. by Andrea Bondavalli, Sara Bouchenak and Hermann Kopetz.
Springer, 2016. P. 73-96. ISBN 978-3-319-47590-5. DOI: 10.1007/978-3-319-47590-5_3.
Available from: <https://doi.org/10.1007/978-3-319-47590-5_3>.

MUNK, Peter; NORDMANN, Arne. Model-based safety assessment with SysML and
component fault trees: application and lessons learned. Software and Systems
Modeling, Springer, v. 19, n. 4, p. 889-910, 2020.

NASA. Fault Tree Analysis Handbook for Aerospace Applications. 2002. WA,
USA.

NASCIMENTO, L. F. A. SACM: Editor: an OMG standard compliant
model-based tool for specification of Assurance Cases for Safety-Critical
Systems. 2020. Course Conclusion Work (Bachelor’s in Computer Science). Universidade
Federal de Juiz de Fora - Minas Gerais, Juiz de Fora, 2020.
http://monografias.nrc.ice.ufjf.br/tcc-web/exibePdf7id=468.

NASCIMENTO, Luis; OLIVEIRA, André L de; VILLELA, Regina; WEI, Ran;
HAWKINS, Richard; KELLY, Tim. Runtime Model-Based Assurance of Open and
Adaptive Cyber-Physical Systems. In: SPRINGER. INTERNATIONAL Conference on
Advanced Information Networking and Applications. 2023. P. 534-546.

O.M.G. O.M.G.: OCL Version 2.4, 2014,
https://www.omg.org/spec/0CL/2.4/PDF.

117

OLIVEIRA, André Luiz de. A model-based approach to support the systematic
reuse and generation of safety artefacts in safety-critical software product line

engineering. 2016. PhD thesis — Universidade de Sao Paulo.

OMG. Structured Assurance Case Metamodel (SACM) Version 2.2. 2021.
Available at: <https://www.omg.org/spec/SACM/2.2/About-SACM/>. Access on:
January 12", 2023.

PAPADOPOULOS, Yiannis; WALKER, Martin; PARKER, David; RUDE, Erich;
HAMANN, Rainer; UHLIG, Andreas; GRATZ, Uwe; LIEN, Rune. Engineering failure
analysis and design optimisation with HiP-HOPS. Engineering Failure Analysis,
Elsevier, v. 18, n. 2, p. 590-608, 2011.

R. DE CASTRO, R.E. Aratjo; FREITAS, D. Hybrid ABS with Electric Motor and
Friction Brakes. In: PROC. of 22nd Inte. Symp. on Dyna. of Vehi. on Roads and Tracks,
(IAVSD11). 2011. P. 1-7.

REICH, Jan; ZELLER, Marc; SCHNEIDER, Daniel. Automated evidence analysis of
safety arguments using digital dependability identities. In: SPRINGER. COMPUTER
Safety, Reliability, and Security: 38th International Conference, SAFECOMP 2019, Turku,
Finland, September 11-13, 2019, Proceedings 38. 2019. P. 254-268.

SELIC, Bran. The pragmatics of model-driven development. IEEE software, IEEE,
v. 20, n. 5, p. 19-25, 2003.

SELVIANDRO, N.; HAWKINS, R.; HABLI, I. A Visual Notation for the Representation
of Assurance Cases Using SACM. In: ZELLER, M.; HOFIG, K. (Eds.). Model-Based
Safety and Assessment. Cham: Springer International Publishing, 2020. P. 3-18. ISBN
978-3-030-58920-2.

TRAPP, Mario; SCHNEIDER, Daniel; LIGGESMEYER, Peter. A safety roadmap to
cyber-physical systems. In: PERSPECTIVES on the future of software engineering.
Springer, 2013. P. 81-94.

TRIBBLE, Alan C; LEMPIA, David L; MILLER, Steven P. Software safety analysis of a
flight guidance system. In: IEEE. PROCEEDINGS. The 21st Digital Avionics Systems
Conference. 2002. v. 2, p. 13c1-13cl.

WEAVER, Robert Andrew. The safety of software: Constructing and assuring
arguments. 2003. PhD thesis — University of York, Department of Computer Science.

WEI, R.; KELLY, T. P.; DAI, X.; ZHAO, S.; HAWKINS, R. Model based system
assurance using the structured assurance case metamodel. J. of Syst. and Soft., v. 154,

p. 211-233, 2019.

118

WEI R.; KELLY, T. P.; HAWKINS, R.; ARMENGAUD, E. DEIS: Dependability
Engineering Innovation for Cyber-Physical Systems. In: SEIDL, M.; ZSCHALER, S.
(Eds.). Software Technologies: Applications and Foundations - STAF 2017
Collocated Workshops, Marburg, Germany, July 17-21. Springer, 2017. v. 10748.
(Lecture Notes in Computer Science), p. 409-416.

WEI, Ran; KELLY, Tim; REICH, Jan; GERASIMOU, Simos. On the Transition from
Design Time to Runtime Model-Based Assurance Cases. In: MODELS (Workshops). 2018.
P. 56-61.

WEI, Ran; KELLY, Tim P; DAI, Xiaotian; ZHAQO, Shuai; HAWKINS, Richard. Model
Based System Assurance Using the Structured Assurance Case Metamodel. Journal of

Systems and Software, Elsevier, 2019.

WEI, Ran; KELLY, Tim P; HAWKINS, Richard; ARMENGAUD, Eric. Deis:
Dependability engineering innovation for cyber-physical systems. In: SPRINGER.
SOFTWARE Technologies: Applications and Foundations: STAF 2017 Collocated
Workshops, Marburg, Germany, July 17-21, 2017, Revised Selected Papers. 2018.
P. 409-416.

ZELLER, Marc; SOROKOS, Ioannis; REICH, Jan; ADLER, Rasmus;

SCHNEIDER, Daniel. Open dependability exchange metamodel: a format to exchange
safety information. In: IEEE. 2023 Annual Reliability and Maintainability Symposium
(RAMS). 2023. P. 1-7.

