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ABSTRACT

This work proposes a local equilibrium model and a population balance model to
study foam flow assisted by nanoparticles in porous media. In both cases, we include the
nanoparticle effect reducing foam mobility in a version of the Stochastic Bubble Population
model, based on literature experimental data for silica nanoparticles. The population
balance nanoparticle-stabilized foam model, besides including foam texture as a variable,

incorporates particle retention and the resulting permeability reduction.

The local equilibrium model is a non-strictly hyperbolic system of conservation
laws. We obtain the global analytical solution, which allows us to quantify the effect of
nanoparticles on foam flow. When only gas is injected, the breakthrough time and water
production increase with the nanoparticle concentration, but this effect is less pronounced
for high concentrations. Counterintuitively, during water-gas co-injection for a certain
parameter range, adding nanoparticles yields a negligible effect on water production. We
also investigate a simplified version of this model (using quadratic relative permeability
functions), allowing for algebraic expressions to construct the solution profiles. We conduct
uncertainty quantification and sensitivity analysis for the quadratic model, focusing on
breakthrough time, water production, and pressure drop. Nanoparticles significantly
reduce uncertainty propagation due to foam stabilization. Our findings indicate that
the effect of nanoparticles exceeds the model’s uncertainty, suggesting that measuring
it experimentally is statistically feasible. We achieve convergence even using the Monte

Carlo method, evidencing how analytical solutions drastically reduce computational costs.

For the population balance model, we obtain a semi-analytical solution under
steady-state conditions. We study foam flow considering nanoparticle concentrations of
0.1, 0.5, and 1.0 wt%, with and without NaCl, using retention parameters from experi-
ments. Higher concentrations increase foam viscosity, reduce water saturation, and improve
sweep efficiency, while 0.1 wt% shows minimal impact. Neglecting nanoparticle retention
generally underestimates pressure drop, especially in scenarios with significant retention.
However, while retained nanoparticles increase pressure by reducing permeability, the loss
of suspended nanoparticles decreases pressure by reducing the foam’s apparent viscosity.
Consequently, when considering both nanoparticle loss and reduced permeability, the
pressure drop is higher than in models that ignore retention. In contrast, omitting retention

effects on permeability, the pressure drop is lower.

Keywords: Nanoparticle-stabilized foam. Flow in porous media. Particle retention.

Uncertainty quantification. Sensitivity analysis.



RESUMO

Este trabalho propoe um modelo em equilibrio local e um modelo de balango
populacional para estudar o escoamento de espuma estabilizada por nanoparticulas em
meios porosos. Em ambos, incluimos o efeito das nanoparticulas reduzindo a mobilidade
da espuma em uma versao do modelo SBP (Stochastic Bubble Population model), com
base em experimentos da literatura para nanoparticulas de silica. O modelo de balanco
populacional, além de incluir a textura da espuma como variavel, incorpora retencao de

particulas e redugao de permeabilidade.

O modelo em equilibrio local é um sistema nao estritamente hiperbdlico de leis de
conservacgao. Obtemos a solucao analitica global, que nos permitiu quantificar o efeito
das nanoparticulas no escoamento de espuma. Quando apenas gas é injetado, o tempo de
breakthrough e a producao de agua aumentam com a concentracao de nanoparticulas, mas
esse efeito € menos pronunciado para altas concentracoes. Contraintuitivamente, durante
a coinjecao gas-agua para uma certa faixa de parametros, adicionar nanoparticulas resulta
em um efeito insignificante na producao de dgua. Também investigamos uma versao
simplificada deste modelo (usando permeabilidades relativas quadraticas), possibilitando
expressoes algébricas para construir os perfis de solugcao. Estudamos a propagacao de
incertezas e sensibilidade para o modelo quadratico, com foco no tempo de breakthrough,
producao de agua e queda de pressdo. As nanoparticulas reduzem significativamente
a propagacao da incertezas devido a estabilizacdo da espuma. Os resultados sugerem
que seria estatisticamente viavel medir o efeito das nanoparticulas experimentalmente.
Atingimos a convergéncia mesmo usando o método de Monte Carlo, evidenciando como as

solugoes analiticas reduzem drasticamente os custos computacionais.

Para o modelo de balango populacional, apresentamos uma solugao semi-analitica
em estado estacionario. Estudamos o escoamento de espuma considerando concentragoes
de nanoparticulas de 0.1, 0.5 ¢ 1.0 wt%, com e sem NaCl, usando pardmetros de retencao
experimentais. Concentracoes mais altas aumentam a viscosidade da espuma, reduzem
a saturacdo de dgua e melhoram a eficiéncia de varredura, enquanto para 0.1 wt% é
insignificante. Negligenciar a retengao de particulas geralmente subestima a queda de
pressao, especialmente em cenarios com retencao significativa. No entanto, enquanto
as nanoparticulas retidas aumentam a pressao ao reduzir a permeabilidade, a perda de
nanoparticulas suspensas diminui a pressao ao reduzir a viscosidade aparente da espuma.
Consequentemente, ao considerar tanto a perda de nanoparticulas quanto a permeabilidade
reduzida, a queda de pressao é maior do que em modelos que ignoram a retencao. Em

contraste, omitindo os efeitos da retencao na permeabilidade, a queda de pressao é menor.

Palavras-chave: Espuma estabilizada por nanoparticulas. Escoamento em meios porosos.

Retengao de particulas. Quantificacao de incertezas. Analise de sensibilidade.



Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Figure 10 —
Figure 11 —
Figure 12 —
Figure 13 —
Figure 14 —
Figure 15 —
Figure 16 —

Figure 17 —
Figure 18 —
Figure 19 —
Figure 20 —
Figure 21 —
Figure 22 —
Figure 23 —
Figure 24 —
Figure 25 —
Figure 26 —

Figure 27 —

Figure 28 —
Figure 29 —

LIST OF FIGURES

Mlustration of the FAWAG technique. . . . . . . . . .. ... ... ... 16
Comparison between gas and foam injection. . . . . . . . . . . ... .. 17
Scheme of foam stabilization by surfactant and nanoparticles. . . . . . 18
Uncertainty quantification scheme. . . . . . . .. . ... ... ... .. 20
Characteristics on the -t plane. . . . . . . . . ... .. .. ... .... 24
Schematic representation of a shock and a contact on the z-t plane. . . 25
Schematic representation of a rarefaction on the z-t plane. . . . . . . . 25
Intermediate state to the Buckley-Leverett problem. . . . . . . . .. .. 27
Solution to the Buckley-Leverett problem. . . . . .. ... ... .. .. 28
Porous media definition. . . . . . . ... ... 0L oL 30
Particle retention mechanisms. . . . . . . . . . ... ... ... 37
Maximum foam texture under different nanoparticle concentrations. . . 43

Fractional flow function and its second derivative for several values of C. 47
Phase plane S-C' division into sets 7, L, and R. . . . . . . . ... ... 50
Geometric representation of S¥(U). . . . .. ..., 51

Geometric representation of v](f < v? and v? > v? to analyze the compatibility

of a wave sequence. . . . . . ... 53
Geometric representation of v& = v? .................... o4
Phase plane S-C' division into regions Ry, Ry, and R3 for some Uy. . . 55
Schematic representation of the solution in the phase plane S-C'. . . . . 56
Schematic representation of a C-wave. . . . . ... ... ... ..... o7
Schematic representation of an S-wave sequence. . . . . . . . . ... .. o7
Schematic representation of a C'S-wave sequence. . . . . . . .. .. .. 58
Schematic representation of an SC-wave sequence.. . . . . . . . .. .. o8
Schematic representation of an SC'S;-wave sequence. . . . . . . .. .. 59
Schematic representation of an SCS,-wave sequence. . . . . . . .. .. 60

Comparison between analytical and numerical solution for an SCS>-wave
sequence (original model). . . . . ... Lo 62
Comparison between analytical and numerical solution for a C'S-wave sequence
(original model). . . . . ..o 63
Numerical simulations convergence (original model). . . . . . . . .. .. 63
[lustration of the drainage procedure after a slug of water with surfactant

and nanoparticles. . . . .. .. Lo Lo 64

Figure 30 — Effect of nanoparticle concentration on foam flow during pure gas injection. 65

Figure 31 — Effect of nanoparticles on water production during water-gas co-injection. 66

Figure 32 — Example of solution (SC-wave sequence) for water-gas co-injection. . . 66



Figure 33 — Difference in water production due to the addition of nanoparticles during
water-gas co-injection. . . . . . ... Lo L Lo 67

Figure 34 — Example of water outflow rate over time with and without nanoparticles. 67

Figure 35 — Example of structural instability (Case 1, U, € £). . . . . . ... ... 69
Figure 36 — Example of structural instability (Case 1, Up € T). . . . . . . . . ... 69
Figure 37 — Example of structural instability (Case 1, U, € R). . . . . . . . . ... 70
Figure 38 — Example of structural instability (Case 2). . . . .. ... ... ... .. 70
Figure 39 — Example of structural instability (Case 3). . . . . .. . ... ... ... 71

Figure 40 — Comparison between analytical and numerical solution with structural insta-
bility (water saturation profiles). . . . . . ... ... L. 71
Figure 41 — Mapping the difference in WP (%) due to the addition of nanoparticles. 72

Figure 42 — Comparison between analytical and numerical solution for a C'S-wave sequence

(quadratic model). . . .. ..o 75
Figure 43 — Comparison between analytical and numerical solution for an SC-wave se-
quence (quadratic model). . . . . ... Lo Lo 76
Figure 44 — Numerical simulations convergence (quadratic model). . . . . .. . .. 76

Figure 45 — Comparison between analytical and numerical water production over time. 77
Figure 46 — Division of the fractional flow functionin Land R. . . . . . .. .. .. 79
Figure 47 — Example of construction of the water saturation profile. . . . . . . . . . 80
Figure 48 — Effect of nanoparticle concentration on the water saturation profiles during

foam flow (quadratic model). . . . . . ... oL 83
Figure 49 — Effect of nanoparticle concentration on the bubble density and the water

pressure profiles (quadratic model). . . . . .. ... 83

Figure 50 — Distribution and correlation corresponding to nanoparticle parameters. 85

Figure 51 — Convergence analysis for the breakthrough time. . . . . . . . .. .. .. 86
Figure 52 — Convergence analysis for the water production and pressure drop. . . . 86
Figure 53 — Uncertainty quantification for the breakthrough time. . . . . . . . . .. 87

Figure 54 — Uncertainty quantification for the water production and pressure drop. 88
Figure 55 — Convergence of Sobol indices for the breakthrough time with Cr = 0. . 88
Figure 56 — Convergence of Sobol indices for the breakthrough time with Cr as uncertain

input. . . .. 89
Figure 57 — Sensitivity analysis for the breakthrough time. . . . . . . . . .. .. .. 89
Figure 58 — Convergence of Sobol indices for water production without nanoparticles. 90
Figure 59 — Convergence of Sobol indices for water production, C'y as uncertain input. 90
Figure 60 — Sensitivity analysis for the water production without nanoparticles. . . 91
Figure 61 — Sensitivity analysis for the water production with C'g as an uncertain input. 91
Figure 62 — Convergence of Sobol indices for the maximum pressure drop with Cz as an

uncertain input. . . . .. ... Lo 92



Figure 63 — Sensitivity analysis for the maximum pressure drop with Cg as an uncertain

input. . . .. 92
Figure 64 — Steady-state suspended and retained NP concentration (NF1 and NF2). 102
Figure 65 — Steady-state suspended and retained NP concentration (NF3 and NF4). 102
Figure 66 — Steady-state suspended and retained NP concentration (NF5 and NF6). 103
Figure 67 — Relative permeability curves for water and gas after nanoparticle injection. 103

Figure 68 — Steady-state water saturation and foam apparent viscosity profiles for foam

flow and NP-stabilized foam flow (neglecting particle retention). . . . . 104
Figure 69 — Steady-state pressure drop profiles for foam flow and NP-stabilized foam flow
(neglecting particle retention). . . . . . . . ... 104
Figure 70 — Steady-state water saturation and foam apparent viscosity profiles for foam
flow and NP-stabilized foam flow (in the absence of NaCl). . . . . . . . 105
Figure 71 — Steady-state pressure drop profiles for foam flow and NP-stabilized foam flow
(in the absence of NaCl). . . . . .. . ... ... ... 105
Figure 72 — Steady-state water saturation and foam apparent viscosity profiles for foam
flow and NP-stabilized foam flow (in the presence of NaCl). . . .. .. 106
Figure 73 — Steady-state pressure drop profiles for foam flow and NP-stabilized foam flow
(in the presence of NaCl). . . . .. . ... ... ... ... ... ... . 106

Figure 74 — Comparison between steady-state pressure drop profiles for NP-stabilized
foam flow (in the absence of NaCl): Neglecting particle retention, neglecting
only permeability reduction, and accounting for both. . . . . . . . . .. 108
Figure 75 — Comparison between steady-state pressure drop profiles for NP-stabilized
foam flow (in the presence of NaCl): Neglecting particle retention, neglecting
only permeability reduction, and accounting for both. . . . . . . . . .. 108
Figure 76 — Total pressure drop at steady-state for NP-stabilized foam flow with and
without NaCl: Neglecting particle retention, neglecting only permeability
reduction, and accounting for both. . . . . . .. ... ... 109
Figure 77 — Comparison between steady-state water saturation and foam apparent viscos-
ity profiles for the PB and LE models (C7 = 1.0 wt%, K, =0.1s7!). . 111
Figure 78 — Comparison between steady-state pressure drop profiles for the PB and LE
models (CT=1.0 wt%, K, =0.1s™1). .. ... ... ... ... .... 111
Figure 79 — Comparison between steady-state water saturation and foam apparent viscos-
ity profiles for the PB and LE models (C1 = 1.0 wt%, K, = 0.02 s71). . 112
Figure 80 — Comparison between steady-state pressure drop profiles for the PB and LE
models (CT =1.0 wt%, K, =0.02s7). . . ... ... ... ... ... 112



LIST OF TABLES

Table 1 Summary of the action of tracers on two-phase flow in previous studies. 35
Table 2 Physical parameters used in this work. . . . . . . ... .. ... 60
Table 3 Parameters of the original relative permeability model. . . . . . . . . .. 61
Table 4 — Relative errors for different mesh refinement (original model). . . . . . . 63
Table 5 Parameters of the quadratic relative permeability model. . . . . . . . .. 74
Table 6 — Relative errors for different mesh refinement (quadratic model). . . . . . 75
Table 7 — Distributions of the permeability parameters. . . . . . . . . . .. .. .. 84
Table 8 Distributions of the silica nanoparticles parameters. . . . . . .. . . .. 85
Table 9 Significance test for the difference in breakthrough time due to changes in

nanoparticle concentration . . . . .. ... ... 87
Table 10 — Population balance NP-stabilized foam flow model parameters. . . . . . 100

Table 11 — Nanoparticle retention parameters. . . . . . . . . . . . ... ... . ... 101



LIST OF ABBREVIATIONS AND ACRONYMS

CDF Cumulative distribution function
CFT Colloid Filtration Theory

CI Confidence interval

CFT Colloid Filtration Theory

CV Coefficient of variation

EOR Enhanced oil recovery

FAWAG Foam-assisted water-alternating-gas
IVp Initial value problem

LHS Latin hypercube sampling

LE Local equilibrium

MC Monte Carlo

MRF Mobility reduction factor

NP Nanoparticles

PDE Partial differential equation

PI Prediction interval

PB Population Balance

Qol Quantity of interest

RCD Reaction—convection-diffusion equations solver
SA Sensitivity analysis

SAG Surfactant-alternating-gas

SDS Sodium dodecyl sulfate surfactant
SBP Stochastic bubble population model
UuQ Uncertainty quantification

WAG Water-alternating-gas

WP Cumulative water production



LIST OF SYMBOLS

Conservation laws

RJr

R™

@ Fi(o)
o)

o) av
avv

Ap

p

Cn

o
u-,ut
Up,Ug
Up(x)
Ul

I

Set of non-negative real numbers
m-~dimensional real space

Derivative of a function F(v) with respect to v
Partial derivative with respect to v

Second partial derivative with respect to v
Gradient vector

p-th eigenvalue

p-th eigenvector

Differentiability class n

Propagation velocity of a discontinuity

Left and right states of a single wave

Left and right states of the Riemann problem
Initial condition of a IVP

Inflection point of the flux function
Convex-hull of the flux function

Two-phase flow in porous media

w, Nw

w, g

U

AP
Swm Sg'r
Ck,;
Ny, Ng

Subscripts for wetting and non-wetting phases (general two-phase flow)
Subscripts for water and gas phases (water-gas flow)
Porosity of the porous medium

Saturation of the phase j

Absolute permeability of the porous medium
J-phase relative permeability

Mobility of the phase j

Viscosity of the phase j

Fractional flow of the phase j

Pressure in the j-phase

Capillary pressure

Darcy velocity (or superficial velocity)
Partial Darcy velocity of the phase j
Pressure drop

Connate water and residual gas saturations
Endpoint relative permeability of the phase j
Corey exponents

Pore-size-distribution parameter

Core length

Core diameter

Breakthrough time



NP-stabilized foam flow (LE models)

Chp Nanoparticle concentration

Nmaz(Crp)  Maximum foam texture at local equilibrium

15} Mobility parameter

by, by Angular and linear coefficients of 1,4 (Chp)

C Dimensionless and normalized nanoparticle concentration
S Normalized water saturation

NP-stabilized foam flow (PB models)

n Foam texture

Noo Equilibrium foam texture

) Foam balance source term

K, K4 Bubble generation and destruction coefficients

C Suspended nanoparticle concentration

o Retained nanoparticle concentration (mechanical entrapment)
A Adsorbed nanoparticle concentration

A Filtration coefficient

O, 04 Relative permeability reduction factors (for water and gas)
g, O Viscosity proportionality constants

d Constant related to the fluid viscosity

o Injected (suspended) nanoparticle concentration

K . kf}g Original relative permeability functions (before nanoparticle injection)

Analytical solution

S, Sk Left and right water saturation values of the Riemann problem
Cr,Cr Left and right nanoparticle values of the Riemann problem

Unm Intermediate state

Ac, As Eigenvalue associated with the C' and S families

ec, €s Eigenvector associated with the C' and S families

T Transition curve

LR Sets located to the left and the right of T

v, vj} Initial and final velocities of an A-wave

Uncertainty quantification and sensitivity analysis

E Expected value

Y Quantity of interest (Qol)
\Y Variance

Zi Uncertain input

S; Main Sobol index of z;
S, Total Sobol index of z;

W Mean

o Standard deviation
U Uniform distribution
N Normal distribution



1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
9.3
5.4
9.5

CONTENTS

INTRODUCTION . ... ... it ittt e e 16
MATHEMATICAL MODELING AND ANALYTICAL INVESTIGATION 18
UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS 19

THESIS ORGANIZATION . . . . . ... . . .. 21
THEORETICAL FOUNDATION . .. ... ... ........ 22
CONSERVATION LAWS . . . . . ... . 22
FRACTIONAL FLOW THEORY . . . ... ... ... ... .. ... 29
FOAM FLOW MODELS . . . . . . .. .. o .. 34
NANOPARTICLE TRANSPORT AND RETENTION . . . . .. .. .. 37
UNCERTAINTY QUANTIFICATION . .. ... ... ... .. .... 39
SENSITIVITY ANALYSIS . . . . . . .. o o . 40
NP-STABILIZED FOAM FLOW MODEL WITHOUT PARTICLE
RETENTION . . . . . .. s d e e e e 41
GOVERNING EQUATIONS . . . . .. .. o o . 41
ANALYTICAL SOLUTION . . . .. ... . . .. 44
MODEL SETUP AND QUANTITIES OF INTEREST . ... ... .. 60
NUMERICAL VALIDATION . . . . . . ... o o . 61
EFFECT OF NANOPARTICLES ON FOAM FLOW . ... ... ... 63
STRUCTURAL INSTABILITY OF THE SOLUTION . . . .. ... .. 68
DISCUSSION AND PARTIAL CONCLUSIONS . . ... ... ... .. 71
UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANAL-
YSIS FOR NP-STABILIZED FOAM FLOW ... ....... 74
NUMERICAL VALIDATION . . . . . . . .. oo oo . 75
ALGEBRAIC EXPRESSIONS FOR THE ANALYTICAL SOLUTION . 76
SOLUTION PROFILES . . . . . ... .. . ... 82
MODEL SETUP FOR UQ AND SA STUDIES . . . . ... ... .. .. 83
UNCERTAINTY PROPAGATION . . . . ... ... ... . .... 85
SENSITIVITY ANALYSIS . . . . . . ... o o oo . 88
DISCUSSION AND PARTIAL CONCLUSIONS . . ... ... ... .. 92
NP-STABILIZED FOAM FLOW MODEL ACCOUNTING FOR
RETENTION AND PERMEABILITY REDUCTION . . . .. 94
GOVERNING EQUATIONS . . . . . .. .. o .. 94
STEADY-STATE SEMI-ANALYTICAL SOLUTION . ... ... ... 97
MODEL SETUP . . . . . .. .o oo 100

IMPACT OF NANOPARTICLE RETENTION ON FOAM FLOW . . . 102
INVESTIGATING EFFECTS OF RETENTION AND PERMEABILITY
REDUCTION ON PRESSURE DROP . . . ... ... ... ... ... 107



5.6

5.7

6.1
6.2

COMPARING POPULATION BALANCE AND LOCAL EQUILIBRIUM

MODELS UNDER STEADY-STATE CONDITIONS . . ... ... .. 110
DISCUSSION AND PARTIAL CONCLUSIONS . . ... ... ... .. 110
CONCLUDING REMARKS . ... ... ... ... 0., 113
LIMITATIONS . . . . o e 114
CONTRIBUTIONS . . . . .. o e 115
REFERENCES . . . . . . .. ittt e 117



16

1 INTRODUCTION

The interest in modeling and solving foam flow in porous media has grown recently
due to its relation to several applications. Examples of applications are soil remediation
practices [1], decontamination and blocking of pollutants in aquifers and groundwater [2,3],
degradation of solid waste in landfills [4], more effective fertilizer delivery in the agricultural
industry [5], CO5 storage [6], and improved oil recovery [7], which is the main application
of this work. Conventional oil extraction techniques, such as water or gas injection to
increase reservoir pressure, can only recover about 30% of the available oil [8]. Therefore,
the upstream petroleum industry has increasingly used more advanced techniques. For
Brazilian Pre-salt, the importance of technological advances in enhanced oil recovery
(EOR) methods is even more evident. The challenges of its exploration include the
heterogeneous nature of the carbonate reservoir, a thick salt layer, and the presence of CO,
in the associated gas, in addition to the unique demands regarding sub-sea engineering [9].
For environmental and economic reasons, it is interesting to reinject the CO4, produced
back into the reservoir, so the technique of water-alternating-gas (WAG) injection started
to be used [10]. However, the high mobility of CO,, along with the heterogeneity and
the thickness of the reservoirs, can favor phenomena that negatively affect their sweep
efficiency. The main three phenomena are viscous fingering (unstable and irregular front
due to the viscosity difference between the fluids), channeling (preferential paths for fluid
flow through a high-permeable zone), and gravity override (accumulation of a less dense
fluid in the upper layers of the porous medium) [11,12]. A possible option to minimize
these problems is the use of foam. Fig. 1 presents a scheme of the foam-assisted water-
alternating-gas (FAWAG) injection, also called surfactant-alternating-gas (SAG) injection.
In this technique, foam is generated in the reservoir by alternating injection of gas and a
solution of water with surfactant. Foam presents higher viscosity and, consequently, lower
mobility (in comparison with gas), yielding an improved sweep efficiency of the porous
rock and a higher oil recovery factor [13,14]. Fig. 2 shows a schematic comparison between

gas and foam injection.

Foam formation

Figure 1 — Hlustration of the FAWAG technique, which involves injecting water, a slug of
surfactant, and gas in a cyclical process into an oil-filled reservoir.

One of the biggest challenges of using foam in EOR is maintaining long-term
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Foam
injection injection

Figure 2 — Comparison between gas and foam injection. The foam formation helps prevent
three phenomena that negatively affect oil production: viscous fingering, channeling, and
gravity override. Source: [15].

foam stability due to high bubble surface tension. Surfactants are typically used to
enhance bubble generation and resistance to coalescence, but they face limitations at
reservoir conditions, where they tend to degrade faster in the presence of oil, brine, and
high temperatures [16,17]. Recently, some experimental studies [18-24] have reported
that adding nanoparticles (NP) improved foam stability and resistance; see [25,26] for
a detailed review. Nanoparticles are particles with a diameter of approximately 1-100
nm, composed of a core and grafted or covalently linked surface molecules [27]. Since the
properties depend on the core and the surface molecules combination, it is possible to
produce nanoparticles with specific physical properties to suit the demands of different
applications [27]. They can be produced from various inexpensive materials, such as fly ash,
sand, limestone, and silica [25]. The foam stabilization by surfactants and nanoparticles
is based on their accumulation at the gas-liquid interface and Plateau borders, which
reduces the direct contact between the fluids; see Fig. 3. This slows down liquid drainage
and gas diffusion, reducing the velocity of film rupture and bubble coalescence [28-30].
The main advantage of using solid particles as stabilizer agent lies in their high adhesion
energy at the gas-liquid interface [18]. Unlike surfactant molecules, nanoparticles require
high desorption energy to pull out from the interface, so the adsorption to the gas-liquid
interface is almost irreversible [19]. In addition, the thermal and mechanical strength and
rigidity properties enable them to be stable when other chemicals (including surfactants)
start degrading. All these characteristics ensure long-term foam stability even under
unfavorable conditions [18, 19, 31].

In general, for particles injection to be effective in subsurface applications, they
must meet three key criteria [32]: (i) maintain stable dispersion in the injected water
without forming aggregates; (ii) travel long distances with minimal retention; and (iii)
attach themselves only at specific/desired locations. Particle retention is a concern as it
can lead to reduced rock permeability and a decline in injectivity (i.e., increased pressure
at a given flow rate) in injection wells [33]. In the specific case of foam flow with suspended
nanoparticles, the consequences are more complex. A high retention rate reduces the
number of particles available for foam stabilization, reducing foam flow efficiency [23]. The

surface chemistry of nanoparticles plays a key role in influencing their filtration, adsorption,



18

\¢ o
o
S

%% nanoparticles

o— surfactant

Figure 3 — Scheme of foam stabilization by an anionic surfactant and hydrophobic nanopar-
ticles. The blockage of foam lamella and Plateau borders with nanoparticles, along with
other surface phenomena, slows down liquid drainage and film rupture [28,29].

and rheological behavior within porous media. Consequently, proper surface modifications
can regulate particle characteristics, enabling improved emulsification, minimized particle

retention, controlled wettability, and enhanced foam stability [34].

1.1 MATHEMATICAL MODELING AND ANALYTICAL INVESTIGATION

Foam usage for improving oil recovery was reviewed extensively [35,36], and there
are several approaches to modeling foam flow in porous media [13,14,37-39]. However, it is
extremely challenging to incorporate nanoparticles. Two works [30,40] presented numerical
solutions for foam models using calibrated parameters derived from experimental data
of foam assisted by nanoparticles. That is, only the effect of nanoparticles is included
in these models. In another study [41], the authors propose a model coupling foam and
nanoparticles, which was later experimentally validated [42]. These two works investigate
the remediation of contaminated sites, focusing on the foam action on nanoparticle
transport. In the present study, we are interested in the action of nanoparticles on foam
transport in porous media. Notice that the latter model [41,42] is too complex for analytical

investigation, which is our purpose here.

In this thesis, we propose two mathematical models describing foam flow with
nanoparticles (NP-stabilized foam flow) in porous media: a local equilibrium model and a
population balance model. They are based on the Stochastic Bubble Population (SBP)
model, proposed by [13] and validated experimentally [43,44]. In comparison to other foam
models [37,38], it simplifies the number of fitting parameters while remaining robust enough
to predict foam behavior in porous media [13]. The SBP model consists of a two-phase
(water-gas) flow in the presence of foam. Additionally, we include a transport equation
incorporating nanoparticles as a tracer in the water phase and consider the nanoparticle

effect reducing foam mobility based on experimental data for silica nanoparticles [19, 30].

Our first NP-stabilized foam flow model is based on a simplified version of the SBP
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model with foam in local equilibrium, which is a common hypothesis used in most commer-
cial simulators [45]. We consider the aqueous solution of surfactant and nanoparticles to
be a colloidally stable dispersion. That is, the particles are dispersed at a constant concen-
tration without sedimentation, agglomeration, or retention over time. After the injection
process, the particles migrate to the gas-liquid interface, which leads to the stabilization of
the foam. This complex phenomenon is simply described by the equilibrium foam texture,
proposed as a function of nanoparticle concentration. The local equilibrium model is a
non-strictly hyperbolic system and, following the Conservation Laws Theory [46,47], we
prove the existence of a global solution for generic initial and injection conditions. Then,
we use the obtained solution to investigate the effect of nanoparticle concentration on
water production and the breakthrough time (the time it takes for the gas phase to reach

the reservoir’s end).

The second model considers the mechanistic SBP model, including a transport
equation for suspended and retained nanoparticles based on the deep-bed filtration theory
[48,49]. We also include permeability reduction due to particle retention. A semi-analytical
solution under steady-state conditions is presented, which is a valid approach for describing
the foam-particle flow with retention for limited times [50]. The semi-analytical solution
allows for obtaining water saturation, foam apparent viscosity, and pressure drop profiles.
We study different nanoparticle concentrations (in the presence and absence of salt) using

retention parameters based on experimental data for silica nanoparticles.

1.2 UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS

Mathematical models are frequently calibrated using laboratory experiments. The
reliability of the results depends on the accuracy of the data acquired, which is affected
by inherent measurement errors and technical limitations in experiments [51]. Hence,
performing uncertainty quantification (UQ) and sensitivity analysis (SA) is important to
understand and quantify how these uncertainties in the input data impact the model’s
predictions [51,52]; see Fig. 4. Since precise UQ and SA studies require a high number of
calls to the model, the process can be very costly depending on the model’s complexity [52].
In [53,54], the authors used analytical solutions combined with polynomial chaos expansion
to overcome this problem. In [54], sensitivity indices were validated using results derived
from the classical Monte Carlo (MC) framework. This is possible only because a benchmark
analytical solution is available [54]. However, the MC simulations did not converge,

highlighting the challenge of achieving convergence for this method.

Previous works explored UQ and SA studies in the context of modeling foam flow
in porous media [56-60]. For instance, in [58], the authors investigated the performance of
two foam models (CMG-STARS and the linear kinetic model) in capturing experimental

data. Additionally, different objective functions were studied in [61], focusing on parameter
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Figure 4 — In a traditional deterministic model, a fixed value is chosen for each input
parameter, and the model produces a single output (gray line). However, when performing
uncertainty quantification, the distributions of input parameters are considered, resulting
in a range of possible output values for the model (shaded region). Source: [55].

estimation and uncertainties propagation through foam flow models. In [60], on the
other hand, the authors utilized the measured variations from laboratory experiments as
a weighting factor for the objective function. A recent study [62] evaluates parameter
identifiability in foam flow models, showing that it is not feasible to calibrate relative
permeability and foam parameters when only foam quality scan data is accessible. In [63],
the authors conduct an uncertainty quantification and sensitivity analysis of a foam
implicit-texture model to further understand the interactions between relative permeability

and foam parameters.

In this thesis, we perform UQ and SA studies considering an NP-stabilized foam
flow model in local equilibrium with quadratic relative permeability functions. The solution
remains qualitatively the same as the more realistic (non-quadratic) model [64]. This
simplification allows algebraic expressions to determine the solution type and construct
the solution profiles, speeding up the calculations significantly. The forward propagation
of uncertainties follows the MC method, and we use Sobol indices [65] as a sensitivity
measure. We achieve fast convergence by using analytical solutions constructed with

algebraic expressions.
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1.3 THESIS ORGANIZATION

This work is structured as follows. Chapter 2 presents the theoretical foundation
that will be used throughout this work. Chapter 3 proposes a local equilibrium model
for NP-stabilized foam flow, neglecting particle retention. A global solution to this model
is presented, enabling an analysis of the impact of nanoparticle concentration on foam
flow. Chapter 4 presents a simplified model with quadratic relative permeability functions,
simplifying the analytical solution. We perform an uncertainty quantification and sensitivity
analysis. Chapter 5 proposes a population balance model for NP-stabilized foam flow that
incorporates particle retention and permeability reduction. A semi-analytical solution is
derived under steady-state conditions, enabling the investigation of retention effects on
foam flow efficiency and pressure drop. We highlight that Chapters 3, 4, and 5 present the
results of articles [64], [66], and [67], respectively. Finally, Chapter 6 presents conclusions

and contributions.
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2 THEORETICAL FOUNDATION

In this chapter, we introduce some concepts and notation that will be used through-
out the work. Section 2.1 presents fundamental principles of the Conservation Laws Theory.
Section 2.2 briefly describes the fractional flow theory in porous media, which will be used
to review some foam flow models in Section 2.3. In Section 2.4, we provide a literature
review about nanoparticle transport and retention in porous media. In Sections 2.5 and
2.6, we introduce the methods used for the uncertainty quantification and sensitivity

analysis.

2.1 CONSERVATION LAWS

A conservation law is a partial differential equation (PDE) describing the behavior
of a conserved quantity; that is, a variable that remains constant over time [46]. In this
thesis, we study models that involve the conservation of mass. Let us consider the following

system for U = U(x,t), with U : @ x RT — R™:

)
U8+ V- F(U) =0, (2.1)

where F': R™ — R™ is called the flux function. For a given subdomain w C €2, we can

rewrite this system in the integral form as [68]

gt(/WU(a:,t)dw)+/8WF(U)'ﬁ(x)dx:0> (22)

where 7i(z) is the outward-pointing unit normal vector to dw at point x on the boundary
Ow. Eq. (2.2) represents the balance between the quantity U and its flux at the boundary.

The system (2.1) also can be rewritten in the quasilinear form
oU+ A(U)o,U =0, (2.3)

where A(U) is the Jacobian matrix. We denote the p-th eigenvalue related to A as \,(U),
with A\ (U) < A (U) < ... < A\ (U). The corresponding eigenvector is e,(U). If matrix A
is diagonalizable with real eigenvalues, the system is said to be hyperbolic. In particular, if

all eigenvalues are distinct for all U = U(x,t), then the system is strictly hyperbolic.

To solve a system of conservation laws, we associate it with an initial condition in
the spatial domain and, sometimes, boundary conditions. In this work, we focus on pure

initial value problems (IVP) with m one-dimensional equations (2 C R):
U+ 0, (F(U))=0, z€R, teRT, (2.4)
U(z,0) =Up(x), —oo<x< 00, (2.5)
known as the Cauchy problem. A classical solution to this problem is a function U :

R x RT — R™ continuous with continuous first partial derivatives (C' class), satisfying
the IVP (2.4)-(2.5) for all (z,t) € R x R™.



23

Let us consider a particular Cauchy problem composed of Egs. (2.4)-(2.5) with a

piecewise constant initial condition and a single discontinuity as follows

U( ) UL, if ZE<0, (2 6)
xr) = .
0 Up, if z>0.

This is called the Riemann problem, and Uy, and Ug denote left and right states, respectively.
A solution to the Riemann problem is invariant under a uniform scale transformation.
That is, a change of coordinates (x,t) — (kx, kt), for a constant £ > 0, does not change
the system or the initial conditions. Therefore, its solution only depends on the ratio z/t,

being comprised of a superposition of independently propagated fundamental waves [46].

Discontinuous solutions do not satisfy Eq. (2.4) in the classical sense at all points,
as derivatives are not defined at discontinuities. The integral form (defined as in Eq. (2.2))
remains valid, but it is more complex to work with. Therefore, we use a more convenient
approach called the weak form of the PDE. In this method, the PDE is multiplied by a
smooth test function ¢ : R x R™ — R™, which must be continuously differentiable with
compact support (¢ € D(R x RT)); see [47] for details. Then, we use integration by parts

to change the derivatives to ¢ as follows

/ / ( "‘FU)gi) dtd:z:—i—/ Uo(z)¢(x,0) dx = 0. (2.7)

We say that a function U(x,t) is a weak solution for system (2.4)-(2.5) if for all test
functions ¢ € D(R x RT) holds (2.7). Note that every classical solution is a weak solution,

but the converse is not always true.

In the following subsections, we first investigate scalar conservation laws to better
understand the construction of solutions. Then, we extend the results to a system of m

one-dimensional equations.

2.1.1 Scalar problems

Consider a scalar one-dimensional IVP defined by Eqgs. (2.4)-(2.5), with U : R x
R* — R and F : R — R. For a classical solution U € C! of this system and F € C"

(n > 2), we define the characteristic curves t — (x(t),t) in the z-t plane as follows

d :
5 (@) = F'({U(x(1),1)). (2.8)

Note that, by differentiating U(x,t) along one of these curves, we obtain

d dxr 0 9, ou o 0U _
%(U(m(t),t)) E%U( )+§U(x, t) = (at + F'(U) ag;> (x,t) = 0. (2.9)

Therefore, U is constant along the characteristics. As a result, the characteristics are

straight lines on the z-t plane given by

ZL‘(t) = To+ tF/(Uo(ZE())), (210)
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where zy = x(0) is the initial data (at t = 0) of the curve and F'(Uy(xo)) is its slope. A

schematic representation is presented in Fig. 5.

t

g = 0 T
Figure 5 — Characteristics on the z-t plane.

We are interested in a particular type of weak solution to system (2.4)-(2.5) that
is class C' by parts. That is, there are a finite number of curves I'y,...,I', defined by
x = ¢&(t), where & € C! (1 =1,...,p). In this case, U is a weak solution if U is a classic
solution in all the domain where it is C! and U satisfies the following condition along the
discontinuity curve I":

FU") =~ F(U™) = €U+ —U"), (2.11)
where U~ and U™ are the states on the left and right of the discontinuity. This equation is
known as the Rankine-Hugoniot condition and governs the behavior of shock and contact

waves. For scalar problems, the shock propagation velocity o = £’(t) is given by

_FUT) -FU7)
== (2.12)

The left panel in Fig. 6 shows a schematic representation of a shock wave on the x-t

plane. Note that shock formation occurs when the characteristics first intersect. The
discontinuous solution is a contact when the characteristics are parallel on both sides of
the discontinuity; see the right panel in Fig. 6. In this case, the propagation velocity of
the contact wave is equal to the characteristics slope F'(U~) = F'(U™).

Hyperbolic systems of conservation laws usually possess more than one solution,
leading to the development of various criteria based on mathematical and physical principles
to identify a single admissible weak solution [69]. In continuum physics, admissibility
criteria naturally arise from the Second Law of thermodynamics, which fundamentally
represents a statement of stability. These criteria may be directly defined through entropy
inequalities or indirectly introduced by incorporating vanishing diffusion into the system,;
see [47,69] for details.

For system (2.4)-(2.5), a discontinuity with velocity propagation ¢ (2.12) must
satisfy the entropy condition [46]

F'(U)>o>F(UY). (2.13)
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Figure 6 — Schematic representation of a shock (left panel) and a contact (right panel)
on the z-t plane. The central blue lines represent the change between left (U~) and right
(UT) states of each discontinuity.

We highlight that if F' is convex (F” > 0), o must lie between F'(U~) and F'(U™), which
are the characteristics slope for the shock left and right states; see Fig. 5 and 6. Thus,
Eq. (2.13) reduces to F'(U~) > F'(U™"), yielding (by convexity) U~ > UT. The Oleinik
entropy condition [70] is a more general criterion that can be applied also to nonconvex

scalar functions. It states that an entropic shock must satisfy

FU) - FU")
> g > ,
U-U- - U-U+

(2.14)

for all U between U~ and U™*. Geometrically, if Ut > U™, the line connecting (U*, F(U"))
to (U~, F(U™)) must be below the graph of F. Otherwise, if U~ > U™, the line connecting
(U, F(U7)) to (U, F(U")) must be above the graph of F.

Even if the initial condition is discontinuous, it is possible for the conservation
law to have a continuous solution (called rarefaction wave). This solution immediately
smooths out the initial discontinuities and takes the form U = U(z/t), being constant
along any line x/t. In the z-t plane, the region where rarefaction occurs does not have any
characteristics. The rarefaction is represented as straight lines starting from the origin
with slopes varying from F'(U~) to F'(U™") [46], as shown in Fig. 7.

rarefaction

U(z/t)

U+

x

Figure 7 — Schematic representation of a rarefaction on the x-t plane.
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Let us consider the scalar Riemann problem

U + 8,(F(U)) =0, (2.15)
if
Uo<x>={ U, it <0, (2.16)
Ug, if x>0.

For a convex function, the solution is always either a shock or a rarefaction, depending on
the left and right states; see the entropy condition (2.13). If Uy, < Ug, the solution is a

rarefaction and takes the form [46]

UL, if =z S F,(UL)t,
Uz, t) = V(z/t), it F'(U)t <z < F'(Ug)t, (2.17)
lj'R7 if x Z F/(UR)t,

where V' = (F")~(z/t). Otherwise, if U;, > Ug, the solution is a shock given by

Uy, if z<ot,

(2.18)
UR, if x > O't,

Uz, t) = {
where o is the propagation velocity of the shock obtained by the Rankine-Hugoniot
condition: F(Us) — F(U,)

R) — L
= , 2.19
o U U, (2.19)

Analogous, for a concave function (F” < 0), the solution is a shock wave if U, < Ur and

a rarefaction wave if Uy, > Ug.

Now, we will apply this theory to the Buckley-Leverett equations [71], which
provide a simple model for two-phase flow in a porous medium. These equations can
be used to study oil recovery applications, where water is injected to displace oil from a
reservoir to a production well. We can describe a one-dimensional system of oil-water flow
by Egs. (2.15)-(2.16), where U represents the water saturation (U € [0,1]) and F' is the
water fractional flow function. Usually, we assume that the Buckley—Leverett function is
S-shaped, such as the following example

2
T U2+ k(1-U)

F(U) (2.20)
where k is a constant. We investigate the scenario of pure water injection (Uy, = 1) into

pure oil (Ug = 0).

Note that function (2.20) is neither convex nor concave, as it possesses an inflection
point U!, where F”(U) = 0. Thus, the entropy solution is a combination of shock and
rarefaction waves. Following the Welge’s method [72], to solve the Buckley-Leverett

problem we use the the “convex-hull” U*, which is obtained by

F(U") — F(Ug) = F'(U")(U* — Up). (2.21)
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Figure 8 — Construction of the intermediate state to the Buckley-Leverett problem (U*).
The inflection point (U”) is also indicated, where F”(U) = 0.

Figure 8 shows the construction of this intermediate state U*, which divides f into convex

and concave parts.

Since F'is concave in the interval [U*, U] and Uy > U* (here, U* is the wave’s
right state), the wave connecting Uy, to U* is a rarefaction. Conversely, F' is convex in the
interval [Ug, U*] and U* > Ug (here, U* is the wave’s left state), so the solution connecting

U* to Ug is a shock. Then, the complete solution is given by

Uy, if = < F'(Up)t,
-1 : 1 ! *
Uity — 4 F)7 /0, i P U< o < PO 2.2
U, it F'(U"t <z < ot,
Uk, if x> ot,

where o = ([F(U*) — F(Ug)])/(U* — Ug). Fig. 9 shows a scheme of this solution following
the Wash-Lake diagram [73].

2.1.2 Systems of nonlinear conservation laws

Now, we will study nonlinear systems of conservation laws. In this case, the
eigenvalues and eigenvectors are also functions of U. We are looking for weak solutions
to the Riemann problem (2.4)-(2.6) as a sequence of shocks, rarefactions, and contacts.

Firstly, we need to introduce some definitions.

Given a general conservation law (2.3), the p-th characteristic field (known as p-th

family) is said to be genuinely nonlinear if
VA (U) -e,(U) #0, YU € R™, (2.23)

where V,(U) = (0A,/0Uy, ...,0\,/0U,,)) is the gradient of \,(U). If there is some
U € R™ such that VA, (U) - e,(U) = 0, we say that the p-th family possesses a local linear

degeneracy. This family is said to be linearly degenerate if

VAWU) -e,(U) =0, YU € R™ (2.24)
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Figure 9 — Solution to the Buckley-Leverett problem. The upper panel shows the solution
construction using the flux function. The lower panels show a scheme of the solution
profile at a given time and the corresponding characteristic curves.

Genuinely nonlinear families are associated with shock and rarefaction waves, while a

discontinuity in a linearly degenerate field is a contact wave [46].

The integral curve associated with the eigenvector field e, (U) possesses the property
that the tangent vector to the curve at any point is in the direction of e,(U). That is, if

U, is a parameterization for £ € R of an integral curve in the p-th family, we obtain

Up(&) = K(§)ep(Up(§)), VEER, (2.25)

where k() is a scalar factor; see [46] for details. Continuous solutions lie along integral
curves. Hence, considering a p-th family genuinely nonlinear, a left state U~ can be
connected to a right state U' by a rarefaction wave if both states lie on the same integral

curve and \,(U(&)) is monotonically increasing along this curve between U~ and U™ [46].

Shocks are discontinuous solutions characterized by assuming constant values to
the left (U~) and to the right (U™) of the discontinuity. As in the scalar case, the shock
velocity must satisfy the Rankine-Hugoniot Condition (defined as in Eq. (2.11)). Let us
consider UT € R™ fixed and o, U~ as variables. We are looking for all points U € R™ that

can be connected to UT by a discontinuity satisfying (2.11) for some velocity propagation
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0. Thus, we obtain a system of m equations in m + 1 unknowns
FUY)-FU)-o(Ut-U)=0, (2.26)

which defines m curves (called Hugoniot curves) through the point U", one for each
characteristic family; see [46] for details. The set of points U € R™ in these curves is
known as Hugoniot locus of U™, being represented by H(U™, o, U). Analogously, we can

fixed U~ and consider o, UT as variables, yielding
HU,o,U)=FU)—-FU )—o(U—-U")=0. (2.27)

We say that Ut and U~ can be connected by a shock wave if both states lie on the same
Hugoniot curve and there is ¢ € R such that H(U~,0,U") = 0.

For a p-th field linearly degenerate, the eigenvalue A\,(U) is constant on the integral
curves of e,(U) YU € R™, so the eigenvector is also constant on these curves. Therefore,
the integral curves are straight lines in phase space and form the Hugoniot locus for
contact discontinuities [46]. That is, if a left state U~ is connected to a right state U™ by
a contact in the p-th family, these states lie on the same integral curve of e,(U), and the

discontinuity propagates at a velocity A\,(U~) = A\,(U™").

For a given U, all points U € H(U ,0,U) can be connected to U by a discontinuity,
but to finding the entropic solution we must verify an additional criterion. The Lax
entropy condition [74] is a generalization of (2.13) (scalar case) to systems of equations. It
establishes that, for a genuinely nonlinear p-th field, a discontinuity in this field connecting
U~ to U™ is admissible only if

MUT) >0 > MUY, (2.28)

M1 (U7) <o < X1 (UT). (2.29)
To linearly degenerate fields, the Lax entropy condition to admissible contact waves is
modified, allowing the equality in Eqs. (2.28)-(2.29).

Constructing the complete solution to the Riemann problem associated with a
system of m nonlinear conservation laws is very challenging. If U € R?, as the systems

investigated in this work, the solution procedure is significantly simplified [46,47].

2.2 FRACTIONAL FLOW THEORY

The fractional flow theory investigates the multi-phase flow dynamics in porous
media. Although the foam flow involves more complex phenomena, this theory can still be

useful in describing it [75].
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2.2.1 Basic definitions

A porous medium refers to a spatial domain with interconnected voids (pores)
occupied by one or more fluids [76]; see Fig. 10. The ratio between the total pore space
(V,) and the total volume (V') is called absolute porosity. However, we use porosity () in
the sense of relative porosity, which considers only the volume of interconnected pores
)

(2.30)

Figure 10 — The left panel shows a microscopic image of a ceramic (an example of a porous
medium). Source: [76]. The right panel illustrates a porous medium in the two-dimensional
space, where the solid matrix is represented in brown. Note that there are interconnected
pores (light blue region) and isolated porous (blue regions).

The saturation of a phase j is the ratio between the total volume occupied by this

phase (V;) and the total pore space:
(2.31)

The hypothesis of a saturated porous medium assumes that the pores are filled with the
model’s included phases, i.e., >°;S; = 1. We define the residual saturation (Sj,) as the

amount of the j-phase that remains irreducible in the medium.

Permeability (k) measures the medium’s ability to allow fluid flow based on pore
geometry. Multiple fluids in a pore space lead to lower permeability for each phase
compared to single-phase flow due to partial occupancy and potential interaction with
other phases. The concept used to describe this situation is called relative permeability
and is defined as

ky; = k];j, (2.32)
where k; represents the flow capacity of the j-phase in the presence of other phases,
called effective permeability. Various mathematical models have been proposed to estimate

relative permeabilities as functions of phase saturation [77-81].
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The mobility of a phase j is written as
)\j - —, (233)

where f1; is the wiscosity and refers to the fluid’s resistance to flow (regardless of the

medium). Other correlated definitions are total mobility (Ar) and relative mobility (A.;):

ky;
M= XN, Ay = —2 (2.34)

- %
Using this definition, the fractional flow of a phase j (f;) is the volumetric fraction of its
displacement in a specific direction, being calculated by the ratio of the j-phase mobility

and lhe lolal moblhly [I 1]
r )\]
3 )\7{1'

Note that, for a saturated medium, »>; f; = 1.

(2.35)

2.2.2 Darcy’s law

Darcy’s law is a mathematical equation describing the hydrodynamic behavior of a
fluid flow through a porous medium. It was initially inferred by Henry Darcy [82] based on
the outcomes of his experiments on the flow of water through sand beds. The formula is
used to predict the velocity of a fluid in a porous medium, taking into account the pressure
gradient (Vp), fluid viscosity, and the medium’s permeability. Considering a homogeneous
medium and neglecting gravitational effects, the Darcy velocity (or superficial velocity) is
given by [83]

u= —EVp. (2.36)

I
This definition refers to the effective fluid flow velocity (on a macroscopic scale). The
velocity at which the fluid travels through the pores, known as interstitial velocity, is

inversely proportional to porosity as v = u/y.

Although Darcy’s law was originally proposed for a single-phase flow, its extension
to multi-phase flows, proposed by [84], is widely utilized. For each phase j, we define the
partial Darcy velocity as [83]

uj = —kA;Vpj, (2.37)

where Vp; is the partial pressure gradient. In this case, the partial interstitial velocity

(vj) is related to the volumetric fraction in the porous medium occupied by phase j:

u,
v —

= , 2.38
J (;DS] ( )

We highlight that the superficial velocity is the sum of all partial velocities, i.e., 3, u; = u.
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2.2.3 Relative permeability models

Making direct experimental measurements of relative permeability is quite chal-
lenging, so many methods have been proposed to estimate permeability curves using
experimental capillary pressure data [85]. In the context of porous media, capillary pres-
sure is the pressure differential between two immiscible fluids in contact (a wetting and
non-wetting phase) caused by the interfacial tension between them. In this section, we con-
sider two-phase flow, with the index 7 = w, nw representing the wetting and non-wetting

phases, respectively. Thus, the capillary pressure (P.) is given by

P. = puw — Puws (2.39)

where p; is the pressure in the j-phase.

In [85], the authors use classical works of Purcell [86] and Burdine [87] to derive
equations for calculating the relative permeabilities using the capillary pressure. From [86],

the relative permeability of the wetting (k) and non-wetting (k,,) phases are

JdSu/(P? L f dSu/(R)

rw — 9 rnw . 240
1§ 45,/ (P.) i 45, /(P (240
From [87], where a tortuosity factor (7,,) is included, we obtain [85]
J5 dSy/(P.)? Js, dSw/(F:)”
krw = (Trw>2 01 /( )2 ) rnw ( rnw)2 Sl 5 (241)
fO dSw/(Pc) fO dSw/<PC)
The tortuosity ratio of the wetting and non-wetting phases is given by
Sw_Sm Sw_Sm_Se
Trw = T a Trnw = 7T a o 2.42
1—5n 1-5,—3S. (242)

where S,, represents the minimum saturation of the wetting phase from the capillary

pressure curve, while S, represents the equilibrium saturation of the non-wetting phase.

These two models (Egs. (2.40) and (2.41)) show that determining an analytical
expression for relative permeability relies on representing capillary pressure as a simple
mathematical function. Considering an oil-gas flow (in this case, oil is the wetting phase
and gas is the non-wetting phase), Corey [77] found that the capillary pressure curves
could be approximated by:

1 *
= S, (2.43)
where ¢* is a constant and S is the normalized wetting phase saturation. Since this
relation was originally proposed for the drainage case (the wetting phase is displaced by
the non-wetting phase), S = (S, — Sur)/(1 — Sur). However, it can be extended by the

imbibition case (the wetting phase is the displacing fluid) defining

Sw - Swr

S: 1_Sw7"_5mur’

(2.44)
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where S, and S, are the residual saturation of wetting and non-wetting phases. After
substituting Eq. (2.43) into Eq.(2.41) and assuming S. = 0 and S,,, = Sy, the relative

permeabilities can be calculated as [77]:

kpw = S Eppw = (1 — 8)%(1 — S?). (2.45)

The original Corey model was generalized by Brooks and Corey [78] by proposing

another function to describe the capillary pressure:
P.=pS"T, (2.46)

where p, is the entry pressure and 7 is a parameter related to the pore size distribution.
Then, Eq. (2.45) is rewritten as

2437 241

ko =S"7 ) Kmw=(1-8)721~-8"7). (2.47)

From now on, we will refer to relative permeability models in the form
Ky = Clrw Snw, Kpnw = Chkynw Sn"w, (248)

as Corey type (or simply Corey). Here, ¢, and c,, ., are the endpoints relative perme-

TNW

ability of wetting and non-wetting phases. These values, along with the model’s exponents

N, Npw, are obtained experimentally.

2.2.4 Two-phase flow with a tracer

In flow dynamics, a tracer refers to a substance that is present in small quantities
in a solvent fluid and is carried along with it [68]. Tracers can be categorized as passive if
they do not affect the fluid properties or active if they do. Here, we are interested in active
tracers that can be used to optimize a two-phase flow in porous media by changing the
mobility of fluids. To model NP-stabilized foam flow with nanoparticles as tracers in the
aqueous phase, we were inspired by various mathematical models found in the literature
with other applications [88-91]. Below, we briefly present some of them, focusing on how

the tracer is included in each model.

Polymers are traditionally used to modify the mobility of injected water in EOR
applications. Isaacson [88] and Johansen and Winther [89] presented water-oil flow models
where there is one equation describing the tracer (polymer) transport in the wetting
(water) phase. The polymer acts on the same phase where it is diluted, increasing the
water viscosity. Surfactants are also frequently used to optimize oil flow during alternating
injections of water and gas. In this case, the tracer is used to modify the gas mobility by
generating bubbles. Thorat and Bruining [90] and Fritis et al. [91] proposed water-gas

flow models where there is one equation describing the tracer (surfactant) transport in the
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wetting (water) phase. However, although the surfactant is a tracer in the aqueous phase,

it affects the non-wetting (gas) phase mobility, where the foam formation occurs.

As will be detailed in the next section, there are different approaches to model
foam flow. Several works do not consider the surfactant concentration as a variable, using
the foam texture instead. In such cases, the foam itself can be considered as a tracer.
Simjoo and Zitha [43] and Zavala et al. [92] presented water-gas flow models where there
is one equation describing the tracer (foam) balance in the non-wetting (gas) phase. This
implies that the tracer acts and is diluted in the gaseous phase. About NP-stabilized
foam models, Li and Prigiobbe [41] proposed a model for water-gas flow with two tracers:
foam (in the same sense as [92]) and nanoparticles. Nanoparticles are diluted in both
phases, and the exchange rate between them is considered, while the foam is present in
the non-wetting (gas) phase. The main aim of this study was to evaluate the influence of
foam in the nanoparticle transport. Therefore, nanoparticles were considered a passive

tracer and did not influence the flow characteristics.

In this thesis, we present a local equilibrium model and a population balance model
describing NP-stabilized foam flow. We consider nanoparticles diluted in the wetting
(water) phase, with a transport equation inspired by [88,89]. For the first model, proposed
in [64,66], foam acts on the non-wetting (gas) phase by reducing the gaseous phase relative
permeability (depending on the foam texture [13,92]). In this case, foam texture is not a
variable since we adopt the equilibrium hypothesis. Therefore, nanoparticle is the only
tracer and acts indirectly on the gaseous phase through the influence of nanoparticle
concentration in the equilibrium foam texture. The second model (population balance),
proposed in [67], considers the foam texture as a variable, so both nanoparticles and foam
are tracers. Foam and nanoparticles act by reducing the gaseous phase mobility through

the foam’s apparent viscosity, which depends on nanoparticle concentration.

A summary of these different approaches to include tracers in two-phase flow is

presented in Tab. 1.

2.3 FOAM FLOW MODELS

Foam models can be classified as empiric and mechanistic, according to the foam-
related variable [11]. Empiric models consider the foam’s action implicitly through a
change in the gas’s mobility, with the foam always in local equilibrium. According to [14],
models with foam in local equilibrium can describe their displacement adequately. These
models are less complex and more numerically stable, being used in most commercial
simulators [45]. Mechanistic models consider foam texture as an independent variable with
a separate equation to describe it. The general form, physically more accurate, is called the
population balance model. In this model, foam texture is obtained explicitly by solving a

partial differential equation, and gas mobility is written as a function of foam texture [57].
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Table 1 — Summary of the action of tracers on two-phase flow in previous studies.

References Tracer

Type Diluted in Acts on
Isaacson [88], Pol has The w-phase
Johansen and Winther [89] olymet W-plase mobility
Simjoo and Zitha [43], Foam nw-phase The nw-phase
Zavala et al. [92] P mobility
Thorat and Bruining [90], The nw-phase
Fritis et al. [91] Surfactant w-phase mobility

Do not influence the
flow characteristics
The nw-phase
mobility

The nw-phase
mobility

The nw-phase
mobility

The nw-phase
mobility

Li and Priogiobbe [41] Nanoparticle Both phases

Foam nw-phase

Danelon et al. [64,66] Nanoparticle w-phase

Danelon et al. [67] Nanoparticle w-phase

Foam nw-phase

Due to the complexity of this approach, especially regarding bubble generation and
coalescence rates, some researchers proposed local equilibrium or semi-empirical methods

to calculate foam texture from algebraic equations [11].

Foam texture (n) can be defined as the number of bubbles per unit volume [93],
being a way to quantify the strength of the foam. Considering a homogeneous medium

and incompressible flow, the foam transport can be described as [13]:

0 0

—(Syn) + =—(uyn) = P, 2.49
¥ 825( g ) (7x( g ) ( )
where S, is the gaseous (foam) phase saturation, u, is the foam superficial velocity, and
® is the source term. This term can be expressed as the difference between functions

describing the bubble generation and the coalescence rates (¢ = r, — r.).

The SBP model proposed by Zitha and Du [13] simplifies the number of parameters
to be fitted compared to other foam models [37,38]. It remains robust enough to predict

foam behavior in porous media [13]. The authors model the source term as
D = Sy [Ky(Nmaz — n) — Kyn], (2.50)

where K, and K, are the bubble generation and coalescence rate coefficients, which can
be obtained experimentally. This term can be rewritten as ® = pS, (K4 + K;)(ne —n),
where the equilibrium foam texture is ne = e K (Kq + K,)7'. In [92], the authors
prove that, mathematically, both cases K; = 0 and K, # 0 are equivalent. Thus, without

loss of generality, considering K; = 0 we obtain 1., = N, and

P = S, K (ne —n). (2.51)
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Although the source term is simple, the modification of gas mobility is quite complex,

being included in the gas’s relative permeability and viscosity.

Often, we use the dimensionless foam texture np = n/Nye., where npq, is a
maximum value (at equilibrium). Ashoori et al. [14] proposed a foam model with the
source term similar to [13], but including the gas mobility reduction in the foam relative

permeability (k/,) as

k
e — 2.52
"9 18500np + 1’ (2.52)

where k,, is the foam-free gas relative permeability. Combining these two works [13,14],

Zavala et al. [92] presented the following foam model for a water-gas flow

9S, 0 dP.\ 8S.,\
v T o ( Juw+ (fwAgdSw> a:::) =0, (2.53)
0 0
@a(SgTLD) + %(ugnD) =, (2.54)

where ® = S, K,(1—np). The authors consider a saturated porous medium (S;+.5,, = 1),
incompressible phases, and small capillary pressure gradients. Following the definitions
presented in Subsection 2.2.1, the fractional flow of water and the relative mobilities of

water and gas are given by

A kk kk
fo=c—— A= —2, A= —2. 92.55
Aw + Ay Hap ! Hg ( )

As we consider the porous medium saturated, the fractional flow function of the gas phase
can be written as f; = 1 — f,,. The relative permeability of water and foam-free gas phases

are Corey type:

0, 0 < Su < Suwe,
]{er(sw) = { ( Su—Sue )nw g <9 <] (256)
Chyoy 1—Swe—Sqr ) we = Pw = 4
1-Sw—Sgr \™9
15 —5- ) chSSwS]-_Sru
ho(s) = { oo (52555) ! o5
O, 1_Sgr§5w§15

where c,,,, cx,, are the endpoints relative permeability of water and gas phases, Sy. is

the connate water saturation, and Sy, is the residual gas saturation. The exponents are
n, = 7 and ng, = (37 4+ 2)/7, with 7 being the a pore size distribution parameter. Based
n [14], the foam action is included in the gas relative permeability (but not water [12])

through a Mobility Reduction Factor (MRF):

Krg(Sw)

f
birg(Sw:mp) = MRF (np)’

(2.58)

where M RF = Bnguqnp + 1 (6 is a mobility parameter).

Including nanoparticles in foam flow models is a challenge, especially when consider-

ing their impact on bubble generation and coalescence process [94]. Therefore, researchers
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often use an implicit approach to calibrate the foam parameters using experimental data
of NP-stabilized foam flow [30,40,95]. In [41], the authors propose a mechanistic model
describing the transport of nanoparticles with and by foam. This work focuses on nano-
remediation, a technique that injects reactive nanoparticles into the subsurface to displace
or degrade contaminants. Foam can be used to improve this method by inhibiting the
attachment and aggregation of nanoparticles and controlling their mobility. In EOR appli-
cations, foam is used to control gas mobility while nanoparticles improve foam stability,
so the way foam and nanoparticles are coupled is different. The model [41] accounts for
nanoparticle aggregation and attachment processes, the effect of nanoparticles on bubble
generation and coalescence, and considers nanoparticles in the liquid, gas, or even both
phases. Hence, this model is too complex for analytical investigation, being solved only

numerically in [41].

2.4 NANOPARTICLE TRANSPORT AND RETENTION

Mechanical entrapment and adsorption are important retention mechanisms af-
fecting the transport of particles in porous media [33,96,97]; see Fig. 11. Mechanical
entrapment (size exclusion) occurs when pore throats block the passage of particles during
a suspension flow, playing a crucial role in maintaining particle concentration over long
distances [33,49]. Adsorption refers to the attachment of particles to the rock surface
due to intermolecular forces, which may involve both physical and chemical interactions,
affecting the propagation speed of the particle suspension in porous media [98]. Pore
throats in reservoir rocks are typically much larger than nanoparticles, reducing the chance
of retention by size exclusion. However, agglomeration is a significant phenomenon during
nanoparticle transport and can completely alter the dominant retention mechanisms, as

nanoparticle aggregates behave like larger particles [99].

water .

porous

media

agglomeration
adsorption —

L ‘ e
mechanical
entrapment

Figure 11 — Example of processes impacting particle transport through porous media: Me-
chanical entrapment (size exclusion), adsorption (related to physicochemical interactions),
and agglomeration (particles aggregation).
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Predicting and controlling the nanoparticle interaction with the porous medium
is a huge challenge since many factors influence agglomeration and retention processes.
In the context of EOR, the electrostatic interactions between nanoparticles and the
porous medium are critical, as reservoir rock surfaces typically carry ionic charges [100].
Moreover, it is worth noting that nanoparticle concentrations used in EOR applications

are significantly higher than those typically found in environmental impact studies [101].

Several experiments have investigated nanoparticle transport and retention in
porous media [32,97, 98,100, 102-105]. The findings indicate that the main factors
influencing nanoparticle retention include their type and size, the concentration and ionic
strength of the injected solution, the flow rate, and the surface charges of both nanoparticles
and rock [102,106]. In [103], micromodel tests were conducted to examine the transport
behavior of various types of nanoparticles (MgO, SiOq, and Al;O3). The findings revealed
that high concentrations led to a significant decrease in permeability for all nanoparticle
types, primarily due to the pore-plugging process. In [97], single-phase core-flooding
experiments were performed to examine the transport of silica nanoparticles through
dolomite rocks. The authors found that higher nanoparticle concentrations and increased
aqueous phase ionic strength decrease nanofluid stability (the average size of nanoparticles
increased), leading to greater nanoparticle retention in the rock and significant permeability

reduction.

There are divergent results regarding whether the nanoparticle attachment to
the rock surface is reversible (recovery of nearly all the injected particles) or presents
reversible and irreversible behaviors. Reversible retention impacts the propagation speed
of nanoparticle suspension in porous media, while irreversible entrapment is crucial
for maintaining a certain nanoparticle concentration over long distances [98]. In [32]
and [100], core-flooding experiments with surface-treated nanoparticles indicated low
retention (between 1 and 10 wt%) and some delay in the arrival of the injected nanoparticles.
Based on these findings, the authors concluded that attractive interactions between
particles and pore walls were the dominant retention mechanism, indicating reversible
physicochemical adsorption. In [98], a comprehensive set of transport experiments for
surface-coated silica were conducted in both core plugs and columns packed with crushed
sedimentary rock. Their results and analysis suggest that both reversible and irreversible
retention occur, and finite retention capacities exist for both cases. In [104], the authors
investigated the adsorption of silica nanoparticles on carbonate surfaces under simulated
reservoir conditions. They concluded that reversible adsorption was predominant, with the
initial hydrophilicity of both the nanoparticles and the rock surface significantly affecting

particle retention.

Based on previous experimental results, we conclude that mechanical entrapment

is a significant factor in nanoparticle transport through porous media, although in certain
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cases, it can be reasonably considered negligible. In addition to lower nanoparticle
concentrations and reduced fluid ionic strength, an analysis of experiments reporting low
retention highlights the importance of proper surface coatings (which keeps nanoparticles
individually dispersed in water). In studies involving the co-injection of nanoparticle
solutions (with or without surfactants) and gas, the focus is primarily on the potential of
nanoparticles to stabilize foam. Notably, studies such as [17,23,107] included retention
tests; however, these tests were conducted separately from the gas injection. It is assumed
that retention is lower during foam flooding, as nanoparticles tend to migrate to the

gas-liquid interface [17,107].

In this thesis, we study nanoparticle retention in porous media associated with NP-
stabilized foam injection. Nevertheless, studying the transport and retention of particles
in porous media is highly relevant for another technique: polymer injection [33,96, 108].
Moreover, it can also be significant in contexts where no particles are intentionally injected
since even filtered injected water contains suspended particles [109] and particles from the

porous medium itself may detach and subsequently redeposit during flow [110,111].

2.5 UNCERTAINTY QUANTIFICATION

The uncertainty of the model’s parameters is described in terms of probability
distributions. For a random variable Z € R, we define the cumulative distribution function
(CDF) as Hz(z) = P(Z < z) (the probability of this variable being less or equal to z).

For continuous variables, we define the probability density function (PDF) as
h(z) =dHz/dz. (2.59)
Then, we can rewrite the CDF as follows

Hy(z) = / h()d (2.60)

— 00

We employ the classical Monte Carlo method to propagate the uncertainty of input
parameters to the quantities of interest. This method involves generating samples from
distributions and using them to derive information about the distributions [112]. Consider
Z € R an input vector defined on the sample space D, where N, is the number of
uncertain parameters. For each input, the model returns a quantity of interest ) = M(Z).

We are interested in their expected value, defined by

- /D MO)h(z) dz, (2.61)

where h(z) is the PDF for the inputs. Using the MC estimator with NV independent and

identically distributed random samples, we approximate this integral as [112]

1 N
¥ ; (2.62)
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To study the convergence of the method, we must determine the variance in I, which
can be approximated by the variance in the samples. Consider the sample variance of the

probability distribution of a Qol:
N
Z Iy = V(zn))?, (2.63)

with Yy being the sample mean of the N samples. Then, as N — oo, the error in the

estimate converge to a normal distribution with mean zero and variance given by
V(Iy — E[Y]) = o%/N. (2.64)

This result is based on the Central Limit Theorem and shows that the Monte Carlo
estimator’s error decreases as vV N, with a constant that depends on the Qol sample

variance [112].

2.6 SENSITIVITY ANALYSIS

The sensitivity analysis quantifies the contribution of each uncertain input to the
output variability. This helps identify insignificant inputs and quantify the impact on
the output uncertainty if an input is known exactly [113]. There are several methods to
perform sensitivity studies. We conduct a variance-based SA using the main and total
Sobol indices [65], which are defined below.

The main Sobol index, also known as the first-order Sobol index, quantifies the
direct contribution of a particular uncertain input z; to the variance of the output ). It is

defined as [114]:
" VIEY ()]

P = 2.65
S VD (2.65)
The total Sobol index can be expressed as [114]
VIEY(z-)]]
Sr,=1- 2.66
Tl V[y} Y ( )

where z_; is the set of all input parameters except z;. It is used to estimate changes in
V[Y] taking into account first- and high-order interactions between different uncertain

inputs, which is neglected by the main Sobol index.

The variance of the model is decomposed into the sum of variances associated with
each input variable and their interaction effects. We perform MC simulations to obtain
these variances through the UQLab [115,116]. In this package, the Janon estimator [117]

is used to compute total indices; see [116] for details.
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3 NP-STABILIZED FOAM FLOW MODEL WITHOUT PARTICLE RE-
TENTION

In this chapter, we propose a model describing NP-stabilized foam flow in porous
media, considering foam in local equilibrium and without nanoparticle retention. The
proposed model is a non-strictly hyperbolic system and, following the Conservation Laws
Theory [46,47], we search for solutions as a sequence of waves. Isaacson [88] and Johansen
and Winther [89] solved similar models applied to water-oil flow, with polymers as a tracer.
In [88], there are linearly degenerate and genuinely nonlinear families, while in [89], both
families are not degenerate. In the present study, one family is linearly degenerate (related
to shock and rarefaction waves), and the other possesses local linear degeneracies (related
to contact discontinuities); the same classification appears in [118]. We construct the
solutions through a sequence of proofs following a classical framework [88] and also [91].
Then, we use the obtained solution to investigate the effect of nanoparticle concentration

on water production and the breakthrough time.

Section 3.1 introduces the model assumptions and formulates the governing equa-
tions. In Section 3.2, we obtain the analytical solution for this model. Section 3.3 presents
the model setup based on experimental data. In Section 3.4, we compare the analytical
solution with numerical simulations. Section 3.5 investigates practical applications for NP-
stabilized foam flow using the analytical framework. In Section 3.7, we present discussions

and partial conclusions based on the results presented in this chapter.

The results presented in this chapter are summarized in the paper [64].

3.1 GOVERNING EQUATIONS

Let us consider one-dimensional water-gas flow in a saturated porous medium in
the presence of foam and with suspended nanoparticles in the aqueous phase. Both phases
are assumed to flow simultaneously during the co-injection of gas and a solution containing
surfactants and nanoparticles. As is usual in the literature [14,15,39,92,119], we consider
the following model assumptions. The gas and liquid phases are treated as incompressible
and immiscible, and the porous medium is considered homogeneous. Additionally, we
adopt a large-scale approximation, i.e., the diffusion terms are neglected compared with

the advective fluxes.

Considering foam in local equilibrium and following [13,88,89,92], this phenomenon

is described by the system:

0S, 0 B
0 0
goE(Sanp)nL%(uwanp) = 0 (3.2)
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where S,, is the water saturation, ¢ is the porosity of the medium, u is the superficial
velocity of the mixture (water and gas), C,, is the nanoparticle concentration, and
fuw = fuw(Sw, Crp) is the fractional flow function of the water phase. The first equation

models the water mass balance, and the second models the nanoparticle transport.

We define f,, and the relative permeability of water and foam-free gas phases as in
Eqgs. (2.55), (2.56), and (2.57). Since we assume the equilibrium between bubble generation
and coalescence rates, we also include foam action through MRF (see Eq. (2.58)), but

here it is a function of nanoparticle concentration:

Frg(Sw)
kI p) = e :
'I’g(SUJ? C P) MRF(Cnp> (3 3)
Based on [14,92], MRF is defined as follows
MRF(Crp) = Brimaz(Chp) + 1, (3.4)

with the maximum foam texture n,,,, (mm=2) depending on Cyp. Note that foam is a

non-Newtonian fluid with apparent viscosity given by [93]
Happ = tg + anu, (3.5)

where the constants a and d are related to the viscosity of the fluids, p, is the foam-free
gas viscosity, and n is the foam texture. Therefore, to estimate the mobility parameter [,
following [92] we equate the mobilities from Eq. (3.5) (with foam texture n = n,.,) and
the one presented in Eq. (2.55):

k], k], a

,ug + anmaxvfd Hg(l + ﬂnmaa;) /U?,Ug

(3.6)

We consider vy = uy/(S,¢) as an estimate for foam velocity, using S, = 1 for calculations.

In [30], experimental data of NP-stabilized foam [19] were used to calibrate the
Nmaz Parameter of the SBP model. For silica (SiOs) nanoparticles and sodium dodecyl
sulfate (SDS) surfactant, the authors obtained that when the nanoparticle concentration
increases from 0.0 to 2.0 wt%, the 7,4, value increases from 500 mm~ to 5500 mm~3; see
Fig. 12. In [25], several experimental studies of NP-stabilized foam were reviewed. They
investigate an optimal nanoparticle concentration based on the experiments found in the
literature using foam stability. We call attention to two works that also used SDS and
presented similar results. Karakashev et al. [120] analyzed nanoparticle concentrations up
to 4.0 wt%, and they observed that the influence of particles on the foam stability became
insignificant above 1.0 wt%. In [22], the authors studied nanoparticle concentrations up
to 5.0%, and they observed that above 1.0 wt% the foam stability decreased. Using these
results, we propose the maximum foam texture as an increasing linear function of C,,,

until 1.0%; above this value, 1y, is constant:

b1Cyp + ba, 0.0 < Gy, < 1.0wWt%,

(3.7)
by + bg, Cnp > 1.0 wt%.

nmar(c'ﬂ ) - {
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Figure 12 shows the 7,4, values calibrated by [30] and the corresponding function proposed
in Eq. (3.7), where we use the least squares method to derive the mean values b; = 2531.80
mm 2 and by = 802.58 mm 3. For simplicity, we adopt from now on 0.0% < C,, < 1.0%,

since we consider that the foam texture is constant for nanoparticle concentration above

= 1.0%.
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Chp

Figure 12 — Maximum foam texture under different nanoparticle concentrations. Ap-
proximation by least squares method (blue line) based on experimental data [19,30] for
concentrations 0.1%, 0.5%, 1.0%, 1.5%, and 2.0% (cross-mark). The function defined by
Eq. (3.7) (red dashed line) is constant for nanoparticle concentration above 1.0% [22,120].

Consider dimensionless time and length variables ¢t = ¢/t* and z = z/z*, where
t* = Lp(l — Sye — Syr)u™t and a* = L, respectively (L is the length of the reservoir).

Using ¢, x, and normalized water saturation and nanoparticle concentration:

Sw - S’wc o Cnp
s oy )
the system (3.1)-(3.2) is rewritten as
0SS+ 0.f(S,C) = 0, (3.9)
O [(S+a)Cl+ 0, [f(5,C)C] = 0, (3.10)

where (S,C) € I x I, with I = [0,1] and (z,t) € R x R*. The constant a is defined as
a = Sye/(1 — Sye — Sgr). The dimensionless and normalized water fractional flow function

f:IxI— Risgiven by
ki (S)

f(5,C) = , 3.11
5 = (8 + (a1 (5, € (3-11)
with relative permeabilities
1—8)"s
krw(S) = e, S™, ki, (S,C) = iy (1= 5)™ (3.12)

MRF(C)

In this work, we study the local equilibrium NP-stabilized foam flow model (3.9)-(3.10)

using two relative permeability functions by changing the Corey exponents n,,,n, (and
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endpoints c,,,, cx,,) of Eq. (3.12). In the practical results of this chapter, we consider the
same permeability functions used in [43,92], where n,, = 7 and n, = (37 + 2)/7, with the
pore-size-distribution parameter 7 = 5.0. Chapter 4 investigates a simpler case, where
ny, = ng = 2, to facilitate the uncertainty quantification and sensitivity analysis studies.

We will refer to these two models as original and quadratic models.

Remark 3.1. Notice that the non-dimensionalization results in system (3.9)-(3.10) with
the accumulation term containing the constant a. The same term appears when modeling
the foam flow with linear adsorption. Thus, the introduction of linear adsorption into the
model depends only on changing the meaning of the constant a; see [91]. In that way, the

analytical results presented in this work are valid for the model with linear adsorption.

Let us define U = (S, C)T € Q; hereafter, we drop out the notation 7" for simplicity.

The system (3.9)-(3.10) can be rewritten in the matrix form as
U+ A(U)o,U =0, (3.13)
with A(U) being the Jacobian matrix

A= [ Osf dof (3.14)

0 f/(S+a)

The next chapter presents the construction of a weak solution to the Riemann

problem given by system (3.13) with initial condition Uy(x) = U(z,0) as follows

U ( ) UL, if < 0, (3 15)
xr) = .
‘ U, if z>0.

The left state U, = (Sp,Cp) represents the injection condition, and the right state

Ur = (Sg, CR) represents the initial reservoir condition.

3.2 ANALYTICAL SOLUTION

In this section, we construct the solution to the Riemann problem (3.13)-(3.15).
The analytical framework developed here holds for any flux function f : I x I — R, where
I =10, 1], satisfying the following properties.

(i) The function f is continuous with all partial derivatives, up to the second order,
continuous (f € C?). Also, f(0,C)=0and f(1,C)=1,VC € I.

(ii)) The derivative of f in relation to S satisfies dsf(S,C) > 0 for 0 < S < 1 and
0sf(0,C) =0sf(1,C)=0VC € 1.

(iii) The derivative of f in relation to C satisfies 0o f(S,C) >0 for 0 < S < 1, VC € I.
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(iv) For each fixed C' € I, f(S,C) possesses a single inflection point 0 < SZ(C) < 1, such
that dssf(S,C) >0 for 0 < S < ST and ds5f(S,C) <0 for ST < S < 1.

Now, we will prove that the fractional flow function presented in Eq. (3.11) satisfies
these properties for both relative permeability models considered in this work. For the
more realistic case, the proof of property (iv) is partial, being verified only numerically.
However, we present a complete proof for the quadratic case. In [88,89], the properties
used to obtain the solution are the same, except that f is an increasing function of C' here,

while it is a decreasing function in these works.

Proposition 3.1. The function f : I x I — R presented in Eq. (3.11) satisfies the
properties (i)-(iv) for both original (n, =5 and n, = 3.4) and quadratic (ny, = n, = 2)

relative permeability models.

Proof. Once the model constants are all strictly positives, the relative permeabilities
are non-negative, and their derivatives satisfy Ogk,,(S5,C) < 0, Ock,4(S,C) < 0, and
k., (S) > 0.

(i) Due to the definition of the functions k., k., and MRF, we conclude that f € C*.
Since ky,(0) = 0 and k,4(0,C) > 0, it follows that f(0,C) =0 for all C' € I. In the
same way, from k(1) = ¢, and k,4(1,C) = 0 we conclude that f(1,C) =1 for all
Cel

(77) The partial derivative of f in relation to S is given by

s (S (5, C) ()i (S, C)
tg  [Frw(S) + (b/ p1g)kirg (S, O)J?
For the case S = 0 we obtain k,,,(0) = k. ,(S) = 0. While, for the case S =1 we
obtain k,,(1,C) = Osk,4(1,C) = 0. Both cases result on dsf(S,C) =0 for all C' € I.
In addition, for 0 < S < 1 yields dsk,4(S,C) < 0. Once the other terms in (3.16)
are strictly positive, we obtain dsf(S,C) > 0 for all C' € I.

8Sf(87 C) =

(3.16)

(iii) The partial derivative of f in relation to C' is given by
Hw kTw(S)aCkTg<Sv C)
Ocf(S,C) = —— _
( ) ,LLg [kTUJ(S) + (Mw//vbg)krg(sv C)P

If 0 < S <1, it follows that dcf(S,C) > 0 for all C € I, once Jck,4(S,C) < 0 and
the other terms in (3.17) are strictly positives. Notice that 0ck,4(S,C) = 0 only if
S=1forall C el

(3.17)

(iv) To determine the inflection points of f for each fixed C, we need to analyze
the equation Jdssf(S,C) = 0. For the quadratic case, we can rewrite the frac-
tional flow function (3.11) as f(U) = S%/(S* + p(C)(1 — S)?), with p(C) =
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(PwChyy )/ [(1gChy )M RF(C)]. Then, the second partial derivative of f in relation to
S is given by

(45° = 65 + 2)p(C)? + (45° — 65*)p(C)

aSSf(Sa O) = [52 —i—p(C)(l _ 5)2]3

(3.18)

The inflection points S?(C) for each fixed C' are the real roots (inside the interval I)

of the equation dssf(S,C) = 0. After some simplifications, it can be rewritten as
4p(C) + 1) — 6[p(C) + 1]S? + 2p(C) = 0. (3.19)
Using the Cardano’s Method [121,122], the discriminant of Eq. (3.19) is

p(C)?  p©)
16(p(C)+1)2  16(p(C)+1)

A(C) = (3.20)
For all C' € I, we obtain 0 < p(C)/[p(C) + 1] < 1 (as p(C) > 0) yielding A(C) < 0.

Then, we have three real and different roots:

S;(C) = ; + cos (W) , j=0,1,2, (3.21)
where 6(C') = arccos(1 — 2p(C)/[p(C) + 1]). Substituting the constants of the model
(see Tab. 2 in Section 3.3), only S3(C) = 1/2 4 cos((0 + 4m)/3) is in (0,1). Note
that, from Eq. (3.18), if S =0 < ST(C) we obtain dssf(S,C) = 2/p(C) > 0 and if
S =1> S1(C) we obtain dss5f(S,C) = —2p(C) < 0, so the proof is complete.

We numerically verify this property for the fractional flow function with n,, = 5 and
ngy = 3.4, due to its complexity. In [123], the authors proved that a flux function
with convex permeability Corey models has an S-shape for the class of power-law
permeabilities. The left panel in Fig. 13 shows the f(S,C) graph for several values of
C. Notice that all curves give the impression of an S-shape, indicating the existence
of a single inflection point for each curve. This becomes clearer for dsg f (.S, C') graph;
see the right panel in Fig. 13. Besides the existence of a single 0 < ST < 1, such
that the second derivative in S is null, for each fixed C' the graphs also shows that
Dssf(S,C) > 0for 0 < S < ST and 9s55f(S,C) <0 for ST < S < 1.

3.2.1 Preliminary results

As seen in Chapter 2, the typical solution for a non-linear system of conservation
laws is a sequence of fundamental waves: shocks, rarefactions, and contacts, each of them

connecting left and right states [46,47]. To construct the wave sequences, we first need to
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Figure 13 — Inflection points of the fractional flow function (original model) for several
values of C'. The left panel shows f (.S, C'), and the right panel shows their second derivatives
Jssf(S,C). There is only one inflection point for each C.

identify and classify the characteristic fields associated with S and C'. From the eigenvalues

(Ac, As) and eigenvectors (ec, eg) associated with system (3.13):

Ao = f/(S+a), ec=(0cf, [/(S+a)—0sf),

(3.22)
As = 0sf, es = (1,0),
we obtain that
_(0sf(S+a)—f Ocf f _
V)\C c€c = ( (S T a)2 g n a> . <8cf, 57%—(1 - (%f) = 0, (323)

for all (S,C) € I x I. Therefore, the C-family is linearly degenerate, and it follows that
the elementary waves associated with this characteristic field are contact discontinuities;

see Subsection 2.1.2. Conversely, for the S-family, we obtain

Vs -es = (0ssf,0csf)-(1,0) = Oss f, (3.24)

so this family presents a local linear degeneracy once f possesses an inflection point (as
shown in Prop. 3.1). Thus, the solutions can be a shock, a rarefaction, or a combination
of these waves [46]. The eigenvector of the S-family is eg = (1,0) (3.22), then the integral
curve is a straight line, and the value of C remains constant. Therefore, it follows the

typical Buckley-Leverett type solution presented in Subsection 2.1.1.

To analyze the fundamental waves, let us examine U~ = (S7,C7) and Ut =
(St,CT), representing each wave’s left and right states. Shock waves or contact disconti-
nuities satisfy Rankine-Hugoniot condition (see Eq. (2.11) in Section 2.1), which, applied
to system (3.13), is

o(ST=87) = fU") - fU), (3.25)
o[CH(ST +a) — CL(S™ +a)] = CHAUY) —Cf(U), (3.26)
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where o is the propagation velocity of the discontinuity connecting U~ to U". From
Egs. (3.25) and (3.26), we obtain

_ U - 1)
0= (3.27)
(CT=C)fU)ST+a)— f(U)S™ +a))=0. (3.28)

There are two possibilities for Eq. (3.28). If C* = C~, the states U~ and U™ are on the
same fractional flow curve, and the solution is a shock with propagation velocity og = o
given by Eq. (3.27). Another option is C* # C~, yielding

re(hy = LN T 0, (329)

that is, the solution is a contact wave with velocity [46]
oc = Ac(U_) = /\0(U+) (330)
For rarefaction waves, the velocity is given by [46,47]

os(U) = Ag(U), with U~ <U < U*. (3.31)

Since shock and rarefaction waves are in the same family, following [88], we use
the notation S-wave for shock, rarefaction, or rarefaction followed by shock (from left to
right or from upstream to downstream). Contact discontinuities will be called C-waves.
To represent that an S-wave connects a left state U~ to a right state U™, we write
U- = Ut [88]. The initial velocity v and final velocity v? represent the velocities of
the tail (U~) and the head (U™) of the S-wave. For rarefaction or rarefaction followed
by shock, vy # vf , as presented in Eq. (3.31). Analogously, U~ % U+ means that a
C-wave connects U~ to U™ with initial velocity v¢ and final velocity v?. However, in this
case, v& = v7; see Eq. (3.30). Note that when both left and right states are on the same
fractional flow curve (the concentration of nanoparticles is constant), the solution is an
S-wave. The C-wave appears just when we move from one fractional flow curve to another

(the concentration of nanoparticles changes).

The following proposition proves that there exists a curve where the characteristic
velocities coincide, and system (3.13) is non-strictly hyperbolic. This curve divides the
parameter space into three regions, leading to different solution sequences, as presented in

the next chapter.

Proposition 3.2. For each fivred C' € I, there exists a unique S = S(C) in the interior of
the interval I, such that Ao(S,C) = As(S, C).

Proof. Let us consider ¢ : I — R given by

#(S) = f(S,0) — dsf(S,0C)(S + a). (3.32)
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It follows that ¢(S) = 0 < f(5,C)/(S 4+ a) = dsf(S,C), that is, Ac(S,C) = As(S,C).
We will show that ¢ possesses only one root in the open interval (0,1). From ¢'(5) =

—0ssf(S,C)(S + a) and the condition (v) of Prop. 3.1, yields
¢'(9) <0,if S < S, ¢(S)=0,ifS=5" ¢(S)>0,ifS> 5" (3.33)

Since ¢(0) = f(0,C) — dsf(0,C)a =0 and ¢(1) = f(1,C) — 9sf(1,C)(1 4+ a) = 1, by the
Intermediate Value Theorem [124] for all ¢ in the interval 0 = ¢(0) < g < ¢(1) = 1 there
is some p such that ¢(p) = ¢. In particular, this also holds for ¢ = 0. As for uniqueness,
once ¢/(S) < 0 and ST is the minimum of ¢, if S < S, it follows that ¢ is a decreasing
function. This concludes that ¢(ST) < 0. On the other hand, ¢/(S) > 0 if S > ST, so ¢ is
strictly increasing in this interval and ¢(S7) < 0 < ¢(1) = 1. Thus, there exists a unique
S such that ¢(5) = 0.

O

The set (5’ , C) for each C' defines a curve in the phase plane S-C' called the transition
curve and is denoted by 7. As in [89], we divide the phase plane into sets £ and R,
located to the left and the right of 7, respectively; see the left panel in Fig. 14. These

sets are defined as

T = {(S,C)GIXIl)%*(U):)\S ,
L = {(8,C)eIxI|r(U)<As(U)}, (3.34)
R = {(S,C)EIX]lAc(U)>>\S .

Now, let us study the behavior of the curve

f(5,C)

2el8.0) ="

= K, (3.35)

in the phase plane S-C', where « is a constant. Using the Implicit Function Theorem [124],
Eq. (3.35) defines the function C,(S). Differentiating Eq. (3.35) with respect to S along

the curve A\¢ = K, we obtain
_Ac—As

C'(S) = 3.36
(5) =20 (3.0

Using the phase plane S-C' definition (17), yields
C'(S)<0inL, C/(S)>0inR. (3.37)

Thus, the function A¢ in the phase plane S-C' is concave up, as shown in the right panel
in Fig. 14.

Hyperbolic systems of conservation laws usually possess more than one solution,
so it is necessary to impose some constraints on the discontinuities to find the physically

correct solution to the Riemann problem. Following [88,118], we require that C-waves do
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Figure 14 — Phase plane S-C' division. The left panel shows sets £ and R, located to the
left and the right of the transition curve T, respectively. The right panel shows A\¢c = k
curves (blue lines) for several values of k, where the outer curves Ao are for smaller . As
k increases, the parabolas start to reach their minimum point inside the domain 1 x I.

not cross the transition curve 7 in the phase plane S-C'. That is, C'-waves can connect
two states only if both states are in £ or both are in R. For S-waves, it is necessary to
satisfy the Oleinik entropy condition [70]:

fU) = f(U-) fUT) - f(U)

> g >
S—s- == §r—§

(3.38)

for all U between U~ and U*. This criterion can be applied because the S-waves keep
C constant. When S tends to S~ or ST in Eq. (3.38), we obtain that the classic Lax’s

entropy condition (see Section 2.1) is also satisfied
As(UT) <o < As(U7). (3.39)

According to [125-127], this entropy criterion is equivalent to the generalized Lax entropy
condition proposed by Keyfitz and Kranzer [128].

When the solution is composed of two or more waves, we need to verify an additional
condition. We say that the wave sequence U~ U M L Utis compatible (that is, can
be combined to solve the Riemann problem with left state U~ and right state U™") if and
only if vf < v [88]. In the same way, U~ s Uy =25 U+ is compatible if and only if
vf <wof.

3.2.2 Riemann problem solution

From now on, the states Uy and Uy represent the injection and initial reservoir
conditions of the Riemann problem, respectively. A wave sequence Uy, U M U R
is compatible if and only if v;? < ¢ [88]. That is, Uy, BN Uy and Uy, SN Ur (U is

the right state of the S-wave and the left state of the C-wave) can be combined to solve
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the Riemann problem. In the same way, Uy, U M 25U r is compatible if and only if
v? <.

For a given state U = (S, C), we define S* = S*(U) satisfying A\c(U) = \c(S*, O).
Geometrically, (S*, £(S*, () is the intersection between the secant line connecting points
(—a,0) to (S, f(U)) and the fractional flow function for fixed C; see the left panel in
Fig. 15. The right panel in Fig. 15 shows two special cases when this secant line doesn’t
cross f in another point: (i) U € T, then S¥(U) = S (as defined in Prop. 3.2), and (ii) S*

does not exist and we define S* = +oc.

1

0.8 0.8

0.6 0.6
— —

04 04

0.2 0.2

0 : : : 0 : : :
—a 0 02 04 06 08 1 0 02 04 06 08 1

S S

Figure 15 — Geometric representation of S*(U) for any U = (S, C), where the blue dashed
lines represent the secant line connecting points (—a, 0) to (S, f(U)). The left panel shows
the general case, and the right panel shows the special cases S¥(U) = S and S*(U) = +o0.

The following theorem proves the existence of the Riemann problem solution,
presenting necessary and sufficient conditions for a wave sequence connecting the left Uy,
to the right state Ug to be compatible. A system similar to (3.9)-(3.10) is studied in [88].
Since this work models another application, there is a difference in the properties of the
fractional flow function f (similar to [91]); see Proposition 3.1. Using the change of variable
C =1— C, we obtain the same properties of [88], as f(.5,C) is a decreasing function of C.
Therefore, the results proved in [88] and Theorem 3.3 are equivalents. However, there are
some differences in the geometric analysis due to the presence of constant a in our model

and the introduction of the notation S*(U). For clarity, we present the proof here.

Theorem 3.3. For arbitrary states Up,Ug € I x I, with Uy, # Ug:

(i) The wave sequence
Up -5 Uy =5 Ug, (3.40)

is compatible, if and only if, Uy € LUT and 0 < Sk < S¥(Uyy).

(7i) The wave sequence
Uy, % Uy - Up, (3.41)

is compatible, if and only if, Uyy € RUT and S¥(Uy) < Sp < 1.
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(iii) If Cp, < Cg, the wave sequence
Uy, 25 Uy -5 Uy 22 Uy, (3.42)

is compatible, if and only if the following conditions are satisfied: U, € R, Uy € T,
U2 € L and 0 S SR S Sk<U2)

(i) If Cp, > Cg, the wave sequence
Ur 2% U, -5 Uy 225 Uy, (3.43)

is compatible, if and only if the following conditions are satisfied: Uy € R, Uy € T,
Ur € L and Sk(Ul) < Sp <1

Therefore, there is a sequence of one, two, or three compatible S-waves and C-waves that
give a solution to the Riemann Problem (3.9)-(3.10) and (3.15) with left state Uy, and right
state Ug.

Proof. In this proof, we use that contact waves only connect points of the same side of
the transition curve 7. Thus, if two states are connected by a contact wave, the value
of C' changes along the wave. Note that along the wave means along the corresponding

curve in the phase plane S-C.

(1) Since the states Uy, and Uy, are connected by a contact wave, the intermediate state
is given by Uy; = (Sy, Cr). Let us assume that the sequence is compatible. By

definition, v? <7, so applying the Lax’s entropy condition (3.39) we obtain
Ae(Un) = v <) < As(Un), (3.44)

yielding Up; € LU T. Assuming that, by contradiction, Sg > S*(U,,), we analyze

two cases.

o If the S-wave starts with shock, v; is a shock wave velocity given by v?
[f(Ur) — f(Unr)]/(Sr — Sar). By hypothesis, S*(Uyy) is finite, then A\o(Ups) =
Ao (S*(Upr), Cr). Applying Oleinik’s entropy condition (3.38) for (S*(Uyy), Cr):

F(S*(Un),Cr) — f(Unr) S f(Ur) = f(Un)

(3.45)

which contradicts the wave sequence compatibility UJ? < v?; see Fig. 16. Note
that Sg < S*(Uyy) is always true if S¥(Uy) = +oo0.

o If the S-wave starts with rarefaction, v is a rarefaction wave velocity. Once

Uy € LUT, Sy < S(C’R). If Sy > ST, where S is the inflection point
of f(S,CR), the secant line connecting (Sys, f(Unr)) to (Sg, f(Ur)) is below
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f(S, Cr) graph starting at (S, f(Uar)) and ending at (Sg, f(Ug)). By Oleinik’s
entropy condition (3.38), this is a shock wave, which contradicts the initial
hypothesis. If Sy; < ST, then S¥(Uy) = +oo and, therefore, S < S*(Uy,) is

always valid.

Conversely, let us suppose Uy € LU T and 0 < Sr < S¥(Uys). The first one yields
As(Unr) > Ae(Upp). If the S-wave starts with rarefaction, then v = A\g(Uy). Once

C-waves keep same velocity for all intermediary states, v? = Ac(Un) and we obtain
v) = As(Unr) = Ae(Un) = 0§, (3.46)

that is, the wave sequence is compatible. If the S-wave starts with shock, 0 < Sy <
Sk(Uyy) implies that if S¥(U,,) exists and
o f(S*(Unm),Cr) = f(Un) _ fUr) = f(Un) &

v SE(Unr) — Sy - Sr— Su e

(3.47)

then the wave sequence is compatible. The remainder case S*(Uy) = +oo also

provides compatible wave sequences.

of >
0.8
0.6
S
0.4
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Figure 16 — Geometric representation of v](cj (slope of the red dashed line) and v (slope
of the blue dashed line). On the left panel, 0 < Sk < S*¥(Up). On the right panel
Sr > S¥(Upy); this case implies vf > v7, then the wave sequence is incompatible.

(77) This case is analogous to the previous one. The states Uy, and Uy are connected by
a contact wave, so the intermediate state is Uy = (Sp, Cp). If v;? is a shock wave

velocity, by a similar analysis to the item (7), the inequality

fUm) = fUL) _ fUwm) = [(S*(Un),C1) _ o
Su—5, Su — S¥(Un) v

vf = (3.48)
is satisfied if and only if Uy, € RU T, and S*(Uy,) < Sp < 1. Note that S*(Uyy)
always exists, since Uy € RUT.

If v} is a rarefaction wave velocity, v = As(Unr). Once v = Ae(Uny), v§ < of
is satisfied if and only if Ag(Upr) < Ac(Uns); that is, Uy € R U T. The condition
0 < Sr < S*(Uyy) is satisfied by Oleinik’s entropy condition (3.38).
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(iii) From item (i), for Uy < Uy 22, Up to be compatible, it is necessary and sufficient
that Us € LUT and 0 < Sp < S*(Us,). From item (i), for Uy, B4y, - U, to be
compatible, it is necessary and sufficient that U; € R U T and S*(U;) < S < 1.
Furthermore, the intermediate states are Uy = (S1,Cr) and Uy = (Ss, CR).

Cc _

(S2, f(Us)); see the left panel in Fig. 17. Assuming U € T, the line connecting (—a, 0)
to (Ss, f(Us)) does not cross f(S,Cr), and there is no U; such that Ao (Uy) = A\o(Us);

see the right panel in Fig. 17. Therefore, for the sequence to be compatible, it is

Geometrically, as vf = v, the same secant line contains (—a,0), (S, f(U1)), and

necessary that Us € L. Since it is only possible to connect two states through a
contact wave when they are on the same side of the transition curve, U; € T. As
a result, S*(U;) = S’(C’L) < Sp and U, € RUT. Nevertheless, if Uy, € T then
S¥(U,) = Sp. This case was treated in item (i), so we suppose that S; # Sr.
Therefore, Uy, € R.

Figure 17 — Geometric representation of v& = v? (slope of the red dashed lines). The left
panel shows the general case, and the right panel shows the case Uy € T.

(iv) Analogously to the previous one, items (i) and (7i) provides that for Uy < U, 225 Uy
and Uy, IR Uy <, U, to be compatible, it is necessary and sufficient that Uy € LUT,
U1 e RU T, 0 S SR S Sk(U2>, and Sk(Ul) S SL S 1.

If Uy € T there is no exist a secant line connecting both fractional flow functions.
Thus, U; € R and U, € T, because it is the only point that satisfies A\cU; = AcUs.
Moreover, it should be noticed that 0 < Sk < SE(Us) < §(CR); therefore, Ur € L.

]

3.2.3 Classification of the phase plane S-C'

Based on Theorem 3.3, we classify the phase plane S-C according to the Riemann
problem solution. Given a state V € I x I, we define the set of all states U € I x I with
the same Ao as V:

F(V)={UelIxI|A(U)=X(V)}. (3.49)
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Once A\¢ = f(S5,C)/(S + a) is a smooth function, I'(V') defines a curve. Thus, for any
point Ur € T the phase plane can be divided into three regions:

R = {UeIxI| (U)2AUNU{UEL|C>C), (3.50)
Ry = {U€LUT|C<Cr},

(3.51)
Ry = {U S RUT| /\()(U) < )\C(U7—>}, (352)

as shown in Fig. 18. Note that the regions share internal boundaries, so there are
intersections between R;, Rs, and Rj.

T _T(U7r)

Ry Rs

Figure 18 — Phase plane S-C' division into regions Ry, Ry, and R3 for some Ur.
For a fixed left state Uy, = (S, CL), we define the state Uy as Up, Uz, or Ur,
according to Uy, location:

o IfUy € L, we define

Urp=TnNTI'UL), (3.53)
which exists and is unique if I'(U},) reaches the minimum point inside I x I. Otherwise,
we take U, ={U e I'(U,)NR | C = 0}.

o If Uy, €T, it is not necessary to define a new point, and Uy, = Uy,

o If Up € R, we define

Un,=Tn{U Q| C=0C}, (3.54)
which always exists and is unique.

Remark 3.2. The points Ur,, Ur,, and Uy, may not define three regions but two or just

a single region. This section considers the general case (see Fig. 18), as the solution of
particular cases can be easily obtained by simplifying the general solution.

Figure 19 summarizes the solution in the phase plane S-C' for a fixed left state

Ur. In Fig. 19(a), Uy, € L, and the colors represent the solution type in that region (or
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curve) if the right state Uy is located there. Cases U, € T and Ur, € R are shown in
Fig. 19(b) and Fig. 19(c), respectively. Fig. 19(d) presents these types of solutions; note
that we introduce the notation C'S-wave sequence, SC-wave sequence, and SCS-wave
sequence for solutions composed of two or more C'-waves and S-waves. Our next step is to
describe each solution type and determine the intermediate states to obtain compatible

wave sequences, following the conditions presented in Theorem 3.3.

Rl R1
@) Q
R2 R2
R
' ] C-wave
[ S-wave
O |1 CS-wave sequence
[7] SC-wave sequence
[7] SCS;-wave sequence
SCSy-wave sequence
It
(c) UL € R. (d) Types of solution.

Figure 19 — Schematic representation of the solution in the phase plane S-C. The left
state Uy, is fixed, and the colors represent the solution type in that region (or curve) if
the right state Ug is located there. The two-color dashed lines represent the intersection
between two types of solutions.

1. C-wave: Uj <, Ugr
This type of solution is a contact connecting Uy, to Ug and is valid when
e Ur € L and Ur € F(UL) N (,CUT),
e UpeT and Uy € P(UL),
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e U, €R and UREF(UL)Q(RUT).

7T I'Ur)

Ry,

Rs

Figure 20 — Schematic representation of a C-wave sequence in the phase plane S-C' if
Up € L (left panel), U, € T (central panel), and Uy, € R (right panel).

2. S-wave: Uy BN Ugr

This type of solution is a shock, a rarefaction, or a combination of these waves

connecting Uy, to Ug. It is valid when C, = Cp.

T T(Ur,) P(Ur)T T(U)

Ur\ UL
Rs Rs ! Rs

Figure 21 — Schematic representation of an S-wave sequence in the phase plane S-C' if
U, € L (left panel), Uy, € T (central panel), and Uy, € R (right panel).

3. C'S-wave sequence: Uy, <, U S, Ur

This type of solution is composed of a C-wave connecting Uy to an intermediate
state Uy, and an S-wave connecting Uy to Ug. From item (i) of Theorem 3.3, Uy,
is given by

Uy =TU)n{U e LUT |C =CRg}, (3.55)

as shown in Fig. 22.
The solution type is a C'S-wave sequence when
e Uy, € LUT and Ui € Ry, except in particular cases when the solution type is
a C-wave or an S-wave.

e U, € Rand Uy =T(UL)NT. That is, Ug is such that Uy, defined by Eq. (3.55)
is on the transition curve 7.
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Figure 22 — Schematic representation of a C'S-wave sequence in the phase plane S-C' if
Up € L (left panel), U, € T (central panel), and U, € R (right panel).

4. SC-wave sequence: Up, S, Uy <, Ugr

This type of solution is composed of an S-wave connecting Uy, to an intermediate
state Uy, and a C-wave connecting Uy, to Ugr. From item (7i) of Theorem 3.3, Uy,
is given by

Uy=T({Ur)N{UeR|C=Cr}, (3.56)

as shown in Fig. 23. The solution type is an SC-wave sequence when
e« Up € L and Uy € R3, except in particular cases when the solution type is an

S-wave.

e U, € RUT and Uy € R3, except in particular cases when the solution type is

a C-wave or an S-wave.

IUr) 7T T(Ur) I(Ur)
o Un
Y

A
]
Ur Uv UL
R3 Rs

Figure 23 — Schematic representation of an SC-wave sequence in the phase plane S-C' if
U € L (left panel), Uy, € T (central panel), and Uy, € R (right panel).

5. SCSi-wave sequence: Uy, iR U, SN U, LN Ug, with C, < Cj

This type of solution is composed of an S-wave connecting Uy, to an intermediate
state Uy, a C-wave connecting U; to another intermediate state Us, and an S-wave

connecting Us to Ug. It is valid when Cf, < Cg; from item (4ii) of Theorem 3.3, U;
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and U, are given by

Uy, = F(U1> N {U el | C= CR}, (358)

as shown in Fig. 24. The solution type is an SC'S;-wave sequence when Uy € R

and Ugr € Ry, except in particular cases when the solution type is an S-wave or an

SC-wave sequence.

Ry

Ur Us)

L'(Uzn) T
L
[

1
1
|
|
|
1
|
|
|
|
]
|
\!

P

U, =Urn\ UL
Ro Rs

S

Figure 24 — Schematic representation of an SC'S;-wave sequence in the phase plane S-C.

6. SCSy-wave sequence: Uy, IR U, <, U, LN Ugr, with C, > Cg

This type of solution is similar to SC'S;-wave sequence, but C, > Cp in this case.

It is valid when C > Cg; from item (iv) of Theorem 3.3, U; and U, are given by

Uy = TN{UeIxI|C=Cq}, (3.59)
U = D(U,)N{UER|C =0}, (3.60)

as shown in Fig. 25. The solution type is an SC'Sy-wave sequence when

e Upre LandUr € RyN L.

e Uy €T and Ug € Ry N L, except in particular cases when the solution type is
an S-wave.

e Up e R and Ur € Ry N L, except in particular cases when the solution type is

an S-wave or a C'S-wave sequence.

Remark 3.3. There are cases with two solutions at the boundaries between Ry, Ry, or
R3 (represented by the two-color dashed lines in Figs. 19). According to [91,129, 130], the
Riemann problem solution is structurally unstable in these cases, as perturbations in the
initial data or the flux function change the structure of the solution. More details about

this loss of structural stability are presented in Section 3.6.
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Figure 25 — Schematic representation of an SC'Ss-wave sequence in the phase plane S-C' if
U, € L (left panel), U, € T (central panel), and Uy, € R (right panel).

3.3 MODEL SETUP AND QUANTITIES OF INTEREST

For practical examples, we follow the core-flood experiment reported in [44], where
a surfactant solution and gas are co-injected into Bentheimer sandstone cores with porosity
and permeability of about 20+1% and 2.04+2%, respectively. The core length and diameter
are 0.17 m and 0.038 m. The physical parameters used in this work are summarized in
Table 2. The results presented in this chapter consider the Riemann problem (3.13)-(3.15)

with the original relative permeability model; see Table 3.

Table 2 — Physical parameters used in this work. Source: [44,92]

Symbol Parameter Value

a (Pa-s*3ml%3)  Viscosity proportionality const. 5.8 10716
@ (—) Porosity 0.21

k (m?) Absolute permeability 2510712
pg (Pass) Gas viscosity 1.8-107°
iy (Pa-s) Water viscosity 1.0-1073
d(—) Power law viscosity exponent 1/3

ug (m/s) Gas velocity 1.471-107°
Uy (M/S) Water velocity 1.446 - 107°
Swe (—) Connate water saturation 0.10

Sgr (—) Residual gas saturation 0

S (m?) Mobility parameter 7.817-10710
L (m) Core length 0.17

D (m) Core diameter 0.038

To quantify the sweep efficiency of the porous medium, we focus on the breakthrough
time and cumulative water production, as these are the key parameters for industrial
applications [131]. The breakthrough time can be directly obtained by dividing the
reservoir length by the corresponding wave velocity. We use the analytical solution and,

when necessary, numerical integration to obtain the production over time, as detailed

below.
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Table 3 — Parameters of the original relative permeability model. Source: [44,92]

Symbol  Parameter Value
ny (—)  Corey exponent for water relative perm. 5

ng (—)  Corey exponent for gas relative perm. 3.4
¢k, (—) Gas endpoint relative perm. 1.0
Ck., (—) Water endpoint relative perm. 0.75

It is equivalent to calculating water production over time for the model (3.9)-(3.10)

by the inflow rate and integration of water saturation profiles

t 1 1
WP(t) = / FU0,7))dr + / S(z,0)dz — / S(x, t)dx, (3.61)
0 0 0
or by the outflow rate
t
WP(t) = / FUQ, 7))dr, (3.62)
0
see [46] for details. Using the second one, we present a scheme of the WP calculations for
a C'S-wave sequence type solution; the other cases are similar. If the S-wave is a shock:
f(URr)t, if ¢<1,
f(UR)Tl—I—f(UM)(t—Tl), if T1 <t STQ,
fUR)T + f(Uy)(To —T) if t > Ty,
+f(UL)(t — T2),

where the intermediate state is Uy, = (Syr, Cr), 11 is the breakthrough time, and T is

WP(t) = (3.63)

the time when the contact wave reaches the reservoir’s end. If the S-wave is a rarefaction
followed by a shock:

F(UR)t, it t<T,
FURTy + Jr, F(S(t), Cr) dt, if Ty <t<Ty
FURT + [£2 F(S(),Cr)dt + f(Un)(t — To), if Th <t <Ts, (3.64)

FURT + [£2 F(S(t),Cr) dt + f(Un)(T5 — Tp) if t>Ts,
+f(UL)(t = T3),

where T} is the breakthrough time, 75 is when the rarefaction wave passes through the

entire reservoir, and 73 is the time when the contact wave reaches the reservoir’s end.
Since the water saturation is a function of '/t for rarefaction waves, we numerically solve
the differential equation dsf(S(t), Cr) = 1/t to find S at the end of the reservoir for each

t. Then, we use numerical integration to calculate WP.

3.4 NUMERICAL VALIDATION

We assume that the solution is a sequence of waves to solve the Riemann problem.

Now, we compare the analytical solution with direct numerical simulations to validate this
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assumption. We use the reaction—convection—diffusion equations solver (RCD) [132], which
is a C++ structured package of routines based on the Crank-Nicolson finite difference
scheme and Newton’s method. For the spatial discretization, were used 10* points. The

time step adopted was 1075,

We present two examples. The first is an imbibition case (water saturation in the
reservoir is increasing) for injection condition Uy, = (0.8,0.8) and initial reservoir condition
Ur = (0.2,0.2). The solution is an SCSy-wave sequence; see the left panel in Fig. 26.
The right panel shows good agreement between the analytical and numerical solutions.
The second example is a drainage case (water saturation in the reservoir is decreasing)
for injection condition Uy, = (0.2,0.2) and initial reservoir condition Ur = (0.8,0.8). The
solution is a C'S-wave sequence; see the left panel in Fig. 27. The right panel shows good

agreement between the analytical and numerical solutions.

S, Analytical
1 1 — — S, Numerical
rarefaction C, Analytical
0.81 0.8 r//—. contact  — — ¢ Numerical
\ Jl rarefaction
0.61 0.6 \v=—--
O Dﬁ I~N— /
04/ 0.4 : | shock
|
0.2] 0.2 S S —
0 Ro Rs 0"
0 02 04 06 038 1 0 0.2 0.4 0.6 0.8 1
S T

Figure 26 — The solution (SC'S;-wave sequence) composed of a rarefaction connecting Uy,
to Uy, a contact connecting Uy to Us, and a rarefaction followed by a shock connecting Us
to Ug for Uy, = (0.8,0.8) and Ur = (0.2,0.2). The left panel shows the phase plane S-C,
and the right panel compares the analytical and numerical solution profiles at dimensionless
time T = 0.15.

To verify the convergence of the numerical simulations we calculate the relative

error between the numerical solutions ¢ obtained for meshes of N/2 and N points (with

their corresponding time steps) using I, Euclidean norm as \/ > Unjz —Un)? Y (Unga)?

Table 4 summarizes the adopted discretizations and their respective relative errors
considering the drainage example (injection and initial conditions U, = (0.2,0.2) and
Ur = (0.8,0.8)) at time 7" = 0.15 (before the breakthrough). Figure 28 presents the
relative error for each mesh size. Note that, when machine precision is reached for each
difference Uy/» — Uy, the relative error calculated by Euclidean norm above stabilizes

close to 107°.
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Figure 27 — The solution (C'S-wave sequence) composed of a C-wave connecting Uy, to
Uy and a rarefaction followed by a shock connecting Uy, to Ug for Uy = (0.2,0.2) and
Ur = (0.8,0.8). The left panel shows the phase plane S-C, and the right panel compares
the analytical and numerical solution profiles at dimensionless time 7" = 0.15.

Table 4 — Relative errors for different mesh refinement.

Mesh points Time step Relative error (%)

2.5-103 4.0-107° 1.4-107*
5.0-103 2.0-107° 6.4-107°
1.0-104 1.0-107° 9.3-10°6
2.0-104 5.0-1076 8.0-1076
10%
5
o)
<)
2
=
e
10'5; % _—
0 0.5 1 1.5 2
Mesh size x10*

Figure 28 — Numerical simulations convergence (order 0.95, calculated before the machine
precision is reached) for spatial and temporal discretizations shown in Table 4.

3.5 EFFECT OF NANOPARTICLES ON FOAM FLOW

We aim to investigate the effect of nanoparticles on foam flow in porous media
using the proposed model and its respective analytical solution. Inspired by the FAWAG
technique, we consider the cyclical injection of water, chemical slug (water with surfactant
and nanoparticles), and gas into the reservoir originally filled with oil. Foam is formed when
the gas is mixed with the previously injected surfactant. The idea is that the nanoparticles

added to the chemical slug improve foam stability, enhancing sweep efficiency. In this
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scenario, we study the drainage procedure (mainly gas injection) after a slug of water with
surfactant and nanoparticles, as shown in Fig. 29. Thus, this section focuses on the region

where the gas bank (low S, Cf, = 0) meets the slug (high Sg, Cr > 0).
Foam formation

Slug of surfactant

Figure 29 — llustration of the drainage procedure (mainly gas injection) after a slug of
water with surfactant and nanoparticles, inspired by the cyclical injections of the FAWAG
technique. This work focuses on the region where the foam formation occurs (between the
gas bank and the slug).

Remark 3.4. To compare the cases without and with nanoparticles, the injection conditions
for both cases are (S},0) and (S7,CL). Matching the injection water saturations yields
St = Si and equating the injection rates (Q},; = uf(S},0) and Q,; = uf(S7,CL)) results
in f(S?,C1) = f(S},0), thus this comparison needs to consider Cr, = 0. We study the
impact of nanoparticle concentration in solutions by studying various initial reservoir

conditions below.

Next, we present two cases: the first one is more related to an industrial applica-
tion, showing how nanoparticles improve WP. The second one investigated the effect of
nanoparticles in the water-gas co-injection (which is a widely used laboratory experiment
technique [22,24,94]). The latter includes the counterintuitive example when adding
nanoparticles does not improve WP. Presented cases follow core-flood experiments [44]

with parameters given in Tables 2 and 3.

3.5.1 Sweep efficiency during pure gas injection

We study Riemann problem (3.1)-(3.2) with injection condition Uz, = (0,0) varying
the initial condition Ug = (1, Cg). The solution is a C'S-wave sequence, where the S-wave
is a rarefaction followed by a shock. Note that the contact velocity is 0 since Sp = 0
(see Eq.(2.11)). The case Cr = 0 represents the foam flow without nanoparticles, and
MRF > 1 is constant; see Eq. (3.4).

The left panel in Fig. 30 presents the WP curve for nanoparticle concentrations
0.0%, 0.2%, 0.4%, 0.6%, 0.8%, and 1.0%. To show the good agreement between the
analytical and numerical results, we plotted the production curves corresponding to the
saturation profiles obtained numerically for C,, = 0.0% and C,, = 1.0%. Comparing

these two concentrations, the time for producing approximately 32 mL of water decreases
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from 61 to 26 min with the addition of nanoparticles. Notice that the chosen control
amount of water (32 mL) is consistent with the core-flood experiment reported in [44].
The breakthrough time (min), as a function of the nanoparticle concentration, can be

approximated by a quadratic polynomial:
Ty (C) = —1.64C% + 3.68C + 24.85. (3.65)
In the same way, for the production curve (mL) at ¢ = 60 min, we obtain
WP;_g(C) = —1.62C? + 3.67C + 32.03, (3.66)

as shown in the right panel in Fig. 30. Therefore, the effect of nanoparticles on water
production and breakthrough time is less pronounced for high nanoparticle concentration.

These results corroborate with the model in Eq. (3.7), see Fig. 12.

35 -
%——
3% / (345
E /
Z 25 / »
= / 34
S y
i / 1835 =
5 / — Cp=0.0% =
o 15 / — Chp=02% 33
o ,/ Chp=0.4% =)
.
sy — Clp=0.6% 325 8
/ — — 0.8Y
E ) Cpp=0 Sf -
/ Cnp: 1-04
07 24 ‘ : 31.5
0 10 20 30 40 50 60 0.0% 02% 04% 0.6% 08% 1.0%
Time (min) p

Figure 30 — Effect of nanoparticle concentration on foam flow during gas injection. The
left panel shows the production curve over time (continuous lines correspond to analytical
solutions and black dashed lines correspond to numerical simulations). The right panel
shows the breakthrough time (blue line) and the production at ¢ = 60 min (red line).
Crossmarks represent the analytical solution and solid lines correspond to Egs. (3.65) and
(3.66).

3.5.2 Sweep efficiency during water-gas co-injection

We study Riemann problem (3.1)-(3.2) with the injection condition Uy, = (S, 0)
and the initial condition Up = (Sg,Cg), where S; € [0,0.5] and Sg € [0.5,1]. When
Cr > 0, the solution can be a C'S-wave sequence or an SC-wave sequence. When Cr = 0,

the solution is always an S-wave.

For the SC-wave sequence, the addition of nanoparticles reduces the breakthrough
time and its effect on the sweep efficiency is negligible regardless of the considered
concentration. Figure 31 presents an example where the WP curve for U, = (0.49,0)
and Ur = (0.85, 1) is similar when compared to the one corresponding to the foam flow

without nanoparticles (Ug = (0.85,0)). Note that the water saturation of the intermediate
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state is very close to the initial water saturation of the reservoir, then the water saturation
profile practically does not change with the nanoparticle concentration; see the left panel
in Fig. 32. Furthermore, as the contact velocity is greater than the shock velocity, the

nanoparticles are present only in the region with high water saturation (i.e., low gas/foam

fraction); see the right panel Fig. 32.
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Figure 31 — The water production over time with (Ugr = (0.85,1)) and without (Ugr =
(0.85,0)) nanoparticles (NP) for the same injection condition Uy, = (0.49,0). The addition

of nanoparticles decreases the breakthrough time (7}, < T2), but there is no significant
slope change for the WP curve at T},
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Figure 32 — The solution (SC-wave sequence) composed of a shock connecting Uy, to Uy,
and a contact connecting Uys to Ug for Uy, = (0.49,0) and Ug = (0.85,1). The left panel
shows the phase plane S-C', and the right panel compares the analytical and numerical
solution profiles at dimensionless time 7' = 0.3. For this example, Uy, = (0.8497,0).

For the C'S-wave sequence, we observe the sweep efficiency improvement when in
the presence of nanoparticles for short times. Figure 33 presents an example of water
production with (Ugr = (0.5,1)) and without (Ur = (0.5,0)) nanoparticles for the same
injection condition Uy, = (0.2,0). This effect can be better observed by analyzing the
water outflow (see Fig. 34). After the breakthrough, the rate of outflow with nanoparticles

is lower than without nanoparticles as the total WP tends to be equal for large times, see
Fig. 33.
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Figure 33 — The water production over time with (Ur = (0.5, 1)) and without (Ur = (0.5, 0))
nanoparticles for the same injection condition Uy = (0.2,0). The left panel shows WP
and the right panel shows the difference in WP due to the addition of nanoparticles.
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Figure 34 — Water outflow rate over time with (Ugr = (0.5, 1)) and without (Ug = (0.5,0))
nanoparticles for the same injection condition Uy, = (0.2,0). The addition of nanoparticles

increases the breakthrough time and, after T2, the outflow rate is lower than without
nanoparticles.

Note that for both C'S- and SC-wave sequences, the total WP tends to the same
values for large times because when the reservoir reaches its minimum water content, the
total amount of produced water must be the same. For the particular case plotted in
Fig. 30, the last wave of the solution is a rarefaction and, since Uy, = (0,0), the water
production curves meet at 7' = A\g(Uz)~! = co. The following theorem generalizes this
discussion, proving that the difference in WP between two cases with different initial

nanoparticle concentrations always tends to zero over time.

Theorem 3.4. Consider the Riemann problem (3.1)-(3.2) with the injection condition
U = (Sr,0) and initial conditions Uy = (Sg,Ck) (case 1) and U3 = (Sg,C%) (case 2).

At long times, the difference in WP between cases 1 and 2 tends to zero.

Proof. The Riemann problem solution is a sequence of waves: shock, rarefactions, and

contacts. Consider ¢; as the time when the slowest wave composing the solution of case j
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reaches the reservoir’s end and WP; the water production curve for this case (j = 1,2).
For t* = max(ty,t3), the reservoir reached its minimum water content, i.e., the water
saturation profile is constant and equal to Sp. Calculating the WP by using the inflow

rate and integrating the water saturation profiles (see Eq. (3.61)), we obtain
WP (t*) = WPy(t*) = f(SL,0)t" + Sg — Si, (3.67)

yielding AWP(t*) = |[WPy(t*) — WP, (t*)| = 0. After t* the WP curves increase linearly
over time since the outflow rate is constant (f(Sg,0); see Eq. (3.62)). Then, AWP(¢) =0
for all ¢t > t*.

Note that t* can be infinity since the velocity of the slowest wave can be zero. In
this case, lim; . AWP(¢) = 0 by Eq. (3.67).

3.6 STRUCTURAL INSTABILITY OF THE SOLUTION

Given a left state Uy and a right state Uy located in only one of the regions Ry, Rs,
or R3 defined by Egs. (3.51)-(3.52), there is a single compatible wave sequence connecting
Ur, to Ui determined by Theorem 3.3. However, at the boundary of these regions, more
than one wave sequence can be compatible, as represented by the two-color dashed lines
in Fig. 19; see Section 3.2. Following [129], the Riemann problem solution is structurally
stable if perturbations in the initial data or the flux function do not change the number
and types of its component waves. For system (3.9)-(3.10) the structural stability of the

solution is lost if when

o Ug is on the curve I'(Ur) N R, for any Uy, fixed (Case 1);
o Ugison the curve {U € L | C = Cr} and Uy, € L (Case 2);

o Ugp=Urand Uy, € L (Case 3).

Each of these three cases is analyzed below.

Case 1: Up e T'(U,)NR

We study separately the cases: Uy, € £, U, € T, and U, € R. If U, € L, both
C'S- and SC-wave sequences are valid solution types; Fig. 35 presents an example. In this
example, the C'S-wave sequence is a contact connecting Uy, to the intermediate state Uy,
and a shock connecting Uy, to Ug, while the SC-wave sequence is a shock connecting Uy,

to the intermediate state Uy, and a contact connecting Uy, to Ug.

If Uy, € T, both C-wave and C'S-wave sequence are valid solution types; Fig. 36

presents an example. In this example, the C'S-wave sequence is a contact connecting U,
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Figure 35 — Example of Case 1 when U, € L for initial states Uy = (0.44,0.8) and

Ur = (0.5694657531,0.6). The left panel shows the solution in the phase plane, and the
right panel shows the water saturation profiles for a dimensionless time 7" = 0.15. The
valid solution types are C'S- (blue lines) and SC-wave sequences (orange lines).

to the intermediate state Uy, and a shock connecting Uy, to Ug. If U, € R, SC-wave
sequence and SCS;-wave sequence are valid solution types; Fig. 37 presents an example.
In this example, the SC-wave sequence is a rarefaction connecting Uy, to the intermediate
state U; and a contact connecting U; to Ur. The SCS;-wave sequence is also composed

of the rarefaction connecting Uy, to Uy, but U; is connected to another intermediate state
Us,, followed by a shock connecting U, to Ug.
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Figure 36 — Example of Case 1 when Uy € T for initial states U = (0.55,0.1751524842)
and Ur = (0.6014939685,0.7). The left panel shows the solution in the phase plane, and
the right panel shows the water saturation profiles for a dimensionless time 7" = 0.15. The
valid solution types are C-wave (purple lines) and C'S-wave sequence (blue lines).

Case 2: Upe{Uc L|C=Cr}and U, € L

For this case, both C'S-wave sequence and SCS,-wave sequence are valid solution
types; Fig. 38 presents an example. In this example, the C'S-wave sequence is a contact
connecting Uy, to the intermediate state U, and a rarefaction followed by a shock connecting
Uy to Ug. The SCS;-wave sequence is a shock connecting Uy, to Uy, a contact connecting
U, to Us,, and a rarefaction followed by a shock connecting Us to Ug.
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Figure 37 — Example of Case 1 when Uy, € R for initial states U, = (0.8,0.1751524842)
and Ur = (0.6014939685,0.7). The left panel shows the solution in the phase plane, and
the right panel shows the water saturation profiles for a dimensionless time 7" = 0.15. The

valid solution types are SC-(orange lines) and SCS;-wave sequences (green lines).
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Figure 38 — Example of Case 2 for initial states U, = (0.4371890714,0.7) and Ug =
(0.3,0.1751524842). The left panel shows the solution in the phase plane, and the right
panel shows the water saturation profiles for a dimensionless time 7" = 0.15. The valid
solution types are C'S- (blue lines) and SCSy-wave sequences (yellow lines).

Case 3: Up =Up and U, € L

For this case, both C-wave and SC-wave sequences are valid solution types; Fig. 39

presents an example. In this example, the SC-wave sequence is a shock connecting Uy, to

the intermediate state Uy, and a contact connecting Uy, to Ug.

Numerically, it is impossible to pick a point exactly on a curve, so to obtain the
two types of compatible solutions, we choose points in the neighborhood of the curve. To

perform this test, we use RCD with 10? mesh points and 10~ time step; see Section 3.4.

Consider U, = (0.8,0.1751524842) € R and Uy = (0.6014939685,0.7) € I'(Ur) N R.

Both SC-wave sequence and SC'Sj-wave sequence are valid solution types; see Fig 37.
To numerically obtain the two types of solutions, we consider small variations in Sg:
S = 0.602823036 and Sy = 0.593951052. Then, U and Uy are inside regions R3 and

Ry, respectively. The saturation profiles obtained for this example are shown in Fig. 40.
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A similar investigation was performed in [91].
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Figure 39 — Example for Case 3 for initial states U, = (0.4371890714,0.7) and Ugr =
(0.55,0.1751524842). The left panel shows the solution in the phase plane, and the right
panel shows the water saturation profiles for a dimensionless time 7" = 0.15. The valid
solution types are C-wave (purple lines) and SC-wave sequence (orange lines).
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Figure 40 — Water saturation profiles numerically obtained for a dimensionless time
T = 0.15, and left state Uy, = (0.8,0.1751524842). For U = (0.602823036,0.7) the
solution is an SC-wave sequence (dashed orange line), and for Uy = (0.593951052,0.7)
the solution is an SC'S;-wave sequence (green line).

3.7 DISCUSSION AND PARTIAL CONCLUSIONS

In this chapter, we proposed a new model for NP-stabilized foam flow in porous
media, with the flow dependence on nanoparticle concentration formulated from the
literature’s experimental data. Our model consists of a non-strictly hyperbolic system
of conservation laws, which is solved for a generic Riemann problem initial conditions.
The mathematical solution changes qualitatively compared to the same model without
nanoparticles. This is due to a contact discontinuity that appears when we move from one
fractional flow curve to another (the concentration of nanoparticles changes). We proved
the existence of a global solution, presenting the necessary and sufficient conditions to

guarantee the compatibility of the wave sequences. We classified the phase plane S-C'
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according to these compatible wave sequences. All analytical results are in good agreement

with direct numerical simulations.

The breakthrough time and water production are the most interesting parameters
for industrial applications. The presented analytical framework allows for obtaining both.
When only gas is injected, the breakthrough time and the production increase with the
nanoparticle concentration. For example, when the concentration increased from 0.0% to
1.0%, the time for producing 32 mL of water decreased from 61 to 26 min. We also observe
that the effect of nanoparticles is less pronounced for high nanoparticle concentration,

which agrees with the literature and corroborates the proposed model.

Literature [19-24] suggests that adding nanoparticles increases the foam stability
improving the reservoir’s sweep efficiency during the drainage procedure (mainly gas
injection): increasing the breakthrough time and increasing water production. The
model presented in Section 3.1 considers that the Mobility Reduction Factor (MRF), in
agreement with the literature, increases in the presence of nanoparticles. Counterintuitively,
considering the water-gas co-injection for a certain parameter range, adding nanoparticles
changes the mathematical solution qualitatively, yielding lower breakthrough time. In
this case, the effect of nanoparticles on water production is negligible regardless of the

concentration considered.

To better understand the presented results, we map all initial and injection condi-
tions corresponding to relative values of the WP for the cases with and without nanoparti-
cles in Fig. 41. For this map, we consider the breakthrough time for NP-stabilized foam
flow, with Cr = 1. Notice that nanoparticles do not affect WP in the region corresponding
to the SC-wave sequence, while it modifies WP in the C'S-wave sequence region by chang-
ing the corresponding solution qualitatively. On the other hand, the major impact on WP

happens for low values of the initial water saturations, where it reaches approximately
37%.

SC-wave sequence

C'S-wave seque

0 01 02 03 04 05
St

Figure 41 — Mapping the difference in WP (%) due to the addition of nanoparticles for
Sp €10,0.5] and Sk € [0.5,1] (C, =0, Cr = 1) at the moment of breakthrough.



73

Our results indicate that it is possible to observe the effect of nanoparticles in
laboratory experiments during water-gas co-injection core-flooding, which is a widely used
laboratory experiment technique [22,24,94]. The difference in production can be most
effectively observed by measuring the time to produce a fixed amount of water and choosing
a parameter range more favorable to the deployment of nanoparticles. Mapping several
initial and injection conditions (Fig. 41) we observed that the smaller Sk, the higher the
increase in water production. High values of S, especially if Sg is also high, lead to a
region where the solution changes qualitatively and the effect of nanoparticles is negligible.
Based on our analysis (see Fig. 41), we believe that the best conditions to observe the
increase in production occur for the reservoir partially saturated (Sg € [0.5,0.6]) and a
co-injection water/gas ratio of up to 40/60% (S € [0, 0.4]).
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4  UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS
FOR NP-STABILIZED FOAM FLOW

In this chapter, we perform uncertainty quantification and sensitivity analysis
studies for NP-stabilized foam flow. We consider the Riemann problem (3.13)-(3.15) (foam
in local equilibrium and negligible retention) with quadratic relative permeabilities. The
solution remains qualitatively the same as the more realistic (non-quadratic) case, including
the solution structure. This simplification is generally used to facilitate mathematical
investigations [133,134] and can be obtained from the classical Corey relative permeabilities
[77] with the tortuosity factor equal to zero; see [85] for details. The flow models with
foam and nanoparticles presented in [20, 41] also used quadratic Corey and showed
good agreement with experiments [42]. Note that numerical tools are still required for
constructing the analytical solution in Chapter 3 due to the complexity of the fractional
flow function. The model proposed here allows algebraic expressions to determine the

solution type and construct the solution profiles, speeding up the calculations significantly.

As in Chapter 3, we follow the core-flood experiment reported in [44] for practical
examples, with the physical parameters of Table 2; see Section 3.3. Table 5 presents the
parameters of the quadratic relative permeability model. We calculated ¢, and c,,
using the least squares method to fit the fractional flow function with quadratic relative

permeabilities to the original fractional flow function [92].

Table 5 — Parameters of the quadratic relative permeability model.

Symbol  Parameter Value
ny (—)  Corey exponent for water relative perm. 2.0
ng (—)  Corey exponent for gas relative perm. 2.0
¢k, (—) Gas endpoint relative perm. 3.95
k. (—) Water endpoint relative perm. 0.25

Section 4.1 compares the analytical solution of the quadratic model with numerical
simulations. In Section 4.2, we use the simpler model to derive algebraic expressions
to construct the solution profiles, presented in Section 4.3. Section 4.4 presents the
model setup for UQ and SA studies. Finally, Section 4.5 and Section 4.6 investigates
the uncertainty propagation and model’s sensitivity using the analytical framework. In
Section 4.7, we present discussions and partial conclusions based on the results presented

in this chapter.

The results presented in this chapter are summarized in the paper [66]. In [135],
we perform UQ and SA studies considering a particular case of the global solution for the

NP-stabilized foam flow model presented here.
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4.1 NUMERICAL VALIDATION

The analytical solution of the quadratic model is validated by performing direct
numerical simulations with RCD (10* mesh points and 1075 time step), analogous to what

was done for the original model in Section 3.4. We use the parameters of Tables 2 and 5.

We provide examples of two types of solutions: C'S- and SC-wave sequences.
When the injection condition is Uy, = (0.2,0.2), and the initial reservoir condition is
Ur = (0.8,0.8), the solution is a C'S-wave sequence, as shown in the left panel of Fig. 42.
On the other hand, when Uy, = (0.5,0.4) and Ug = (0.9,0.9), the solution is an SC-wave
sequence, as shown in the left panel of Fig. 43. In both Figs. 42 and 43, the right panel

demonstrates good agreement between the analytical and numerical solutions.

['(Ur) T
' \ 1
1 \
Unm! i U
08 M p—— 08 ——F—————————
\ I
0.6 | 0.6 I '
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Figure 42 — The solution (C'S-wave sequence) composed of a contact connecting Uy, to
Uy and a rarefaction followed by a shock connecting Uy, to Ug, for Uy, = (0.2,0.2) and
Ur = (0.8,0.8). The left panel shows the phase plane S-C, and the right panel compares
the analytical and numerical solution profiles at dimensionless time 7" = 0.15.

The convergence of numerical simulations is verified by comparing the numerical
solutions U for meshes of N/2 and N points with their corresponding time steps. The
relative errors (calculated by the Iy Euclidean norm) for each discretization are presented
in Table 6, considering an example with U, = (0.2,0.2) and U = (0.8,0.8)) at time
T = 0.15 (before the breakthrough). Linear convergence is shown in Figure 44, with the
relative error decreasing as the mesh size increases. As in Section 3.4, the relative error

stabilizes close to 1075 when machine precision is reached for each difference Uns2 — Un.

Table 6 — Relative errors for different mesh refinement.

Mesh points Time step Relative error (%)

4.0-10° 8.0-107 2.618 - 1074
8.0-103 4.0-107° 1.568 - 10~
1.6 - 10* 2.0-107° 2.803 - 1075

3.2-10% 1.0-1075 1.144-107°
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Figure 43 — The solution (SC-wave sequence) composed of a shock connecting Uy, to Uy,
and a contact connecting Uy, to U, for U, = (0.5,0.4) and Ug = (0.9,0.9). The left panel
shows the phase plane S-C', and the right panel compares the analytical and numerical
solution profiles at dimensionless time 7" = 0.15. Note that the water saturation values of

Uy and Upg are almost the same, then the water saturation profile practically does not
change with the nanoparticle concentration.

Relative error

0 1 2 3
Mesh size x10*

Figure 44 — The convergence of numerical simulations (order 2.8) for the spatial and
temporal discretizations is presented in Table 6.

We also compare WP obtained using analytical and numerical water saturation
profiles for the examples presented in Figs. 42 and 43; see Subsection 4.2.3 for details of

WP calculations. We found a good agreement between them, as shown in Fig 45.

4.2 ALGEBRAIC EXPRESSIONS FOR THE ANALYTICAL SOLUTION

Using the quadratic model, we can derive algebraic expressions to determine the
solution type and construct the solution profiles without solving any equation numerically.
This is a significant advantage of using a simpler model, as it drastically reduces the time

required to obtain solutions, allowing us to perform a UQ and SA study (described in the
next chapter) in a feasible time.

This section is divided into two parts. First, we describe how to find (algebraically)

the solution type when we have a sequence of C- and S-waves. Then, we detail how to
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Figure 45 — Comparison between analytical and numerical water production over time.
The left panel shows WP for U, = (0.2,0.2) and Ug = (0.8,0.8), where the solution is
a C'S-wave sequence; see Fig. 42. The right panel shows WP for U, = (0.5,0.4) and
Ur = (0.9,0.9), where the solution is an SC-wave sequence; see Fig. 43.

construct this solution since we need to determine all the intermediate states. We must
solve a third-order polynomial equation in both parts to find saturation values. We use

the polynomial coefficients vector A = (ay, as, as, as) to describe an equation
a153+a252+a35+a4 = 0. (41)

The physically correct saturation solution among the three roots must be a real parameter
within the interval I = [0,1]. We will indicate if the solution is the root Sj, S, or Ss,

which are defined below.

In some cases, a; = 0 in Eq. (4.1), and we obtain a quadratic equation with roots

—(13—\/Z —ag—f—\/z
51:77 SQZTa
2

4.2
0 (4.2)
where A = a3 — 4asay is the discriminant. We apply the Cardano’s Method [121,122] for

the general case. First of all, we rewrite the equations for h = S + as/(3a,) as
R+ Ah+ Ay =0, (4.3)

where
A, — as a% ay 2@% as0as
"Ta o 3d2 a;  27a3  3a3’
Then, the roots are determinate according to the discriminant A = (A;/2)? + (A4/3)? as

follows.

Ay = (4.4)

1. f A=0:
by = —(4A)13, by = hy = (A3/2)1V%, (4.5)

2. If A > 0:
hy = (=A2/2+ VAP 4 (= Ay/2 = VAP (4.6)

—hy —\/—3h% +4A —hy +1/—3h% +4A
ho ! Lo ! —— (4.7)

- 2 BT 9
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3. fA<O:
hy = 2p"3 cos(0/3), (4.8)

0+ 2 6+ 4
hy = 2p"/3 cos ( —; W) . hs=2p"3cos (?) , (4.9)

where p = \/A3/4 + |A| and 6 = arccos(—As/(2p)).

Finally, the saturation solution is one of the three roots S; = h; — as/(3a1) (j = 1,2, 3).
For each point of interest, the physically correct solution (real and inside the interval [0, 1])
was found by substituting the model’s parameters (Table 2).

4.2.1 Analysis of the solution type

To simplify the calculations, let us rewrite the fractional flow function (3.11) as

52
pum— 4-].
) = ren =5 (410
where
p(C) = E2 s v rp(O) (4.11)
/’Lgckrw
Then, the partial derivate in relation to S is given by
1
0s1(5,0) = U= 5) (4.12)

(9% +p(C)(1 = 5)*]*

Given injection and initial states Uy, and Ug, the first step to find the solution using

the framework developed in Section 3.2 is to determine whether U, is located in LU T

or R. Note that, for a fixed (', the transition between these regions is the point of the

fractional flow curve where A\c = f/(S + a) = 0sf = Ag; see Fig. 46. After substituting

Eq. (4.10) in f/(S + a) = Jsf, and performing some algebraic transformations, we can
describe the transition curve (3.34) using p(C(S)):
53

M) =G rs 20

(4.13)

To obtain an expression for C'(S), we use the definition of the function p(C) (4.11).

The next step is to determine the point Uy dividing the phase plane S-C into
regions Ry, Rs, or Rs; see Egs. (3.51)-(3.52). We use the curve I'(V') composed of all
states with the same eigenvalue as V' € Q (3.49). For each V', analogous to the transition
curve, we describe I'(V') using p(C(S)). Defining k = A¢ (V') and substituting Eq. (4.10)
in the other term of Eq. (3.49), after some algebraic transformations we obtain

S%(k(S +a)—1)
k(S—1)2(S+a)

P(S) = (4.14)

The Ur definition depends on the Uy, location (see Egs. (3.53) and (3.54)) as follows



79

0 02 04 06 08 1
S

Figure 46 — The fractional flow function (for C}, fixed) and the point 7 (Cp), dividing the
curve in £ and R.

o If U, € T, by definition Uy = (S, Cp).

o If Uy € L, Uy is the intersection between T and I'(UL). Equating expressions (4.13)
and (4.14) (with V = Uy), we obtain that the saturation Sr is the root S; of the

equation with polynomial coefficients vector
A= (0, 1—2\c(Up), 1 —4arc(Uyr), 2a — 2a*Xc(Up)). (4.15)

Note that the third-order equation is reduced to a quadratic equation. The concen-
tration C7 is the intersection between 7 and the line S = S7, so it can be determine
by evaluating Eq. (4.13) in S7. If I'(UL) does not reach the minimum in €2, Sr is
the intersection between I'(U) N'R and the line C' = 0, so it can be determine by
equating Eq. (4.14) (with V' = Up) to zero. After some simplifications, St is the

root S3 of the equation with polynomial coefficients vector

A= Ac(UL)(p(0)+ 1), Ae(UL)(p(0)a — 2p(0) + a) — 1, (4.16)
p(0)Ac(UL)(1 — 2a), p(0)Ac(UL)a). (4.17)

In this case, C7 = 0.

o If Uy, € R, Ur is the intersection between 7 and the line C' = Cf. Therefore,
Cr = Cp and St can be determine by equating Eq. (4.13) to Cf. The saturation

St is the root S; of the equation with polynomial coefficients vector

A= (p(CL)+1, 0, p(CL)(2a — 1), —2ap(C})). (4.18)

4.2.2 Construction of the water saturation profiles

We focus on two solution types to construct the water saturation profiles: SC- and
C'S-wave sequences. The results can be simplified to C- and S-wave cases or combined to

SCS1- and SCSy-wave sequence cases.



30

Since the states connected by a C-wave and the point (—a,0) are on the same line,

for a C'S-wave sequence we can determine Sy, (3.55) by solving the equation

f(Su,Cr)  f(SL,CL)

= ) 4.19
SM +a SL +a ( )

Similarly, for an SC-wave sequence, we can determine Sy, (3.56) by solving
f(Su, Cr) f(SRaCR). (4.20)

Sy +a Sr+a
To construct the solution, we must also analyze if the S-wave is a rarefaction, a shock,
or a rarefaction followed by a shock. To solve this typical Buckley-Leverett problem,
we use the inflection point S?(C') and the “convex-hull” S* which is obtained with the
Welge’s method (0sf(S*,C)(S — S*) = f(S,C) — f(S*,C)); see Subsection 2.1.1 for

details. Fig. 47 illustrates the water saturation profile construction.
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Figure 47 — Construction of the solution for U, = (0.2,0.2) and Ug = (0.8,0.8). The
solution (C'S-wave sequence) is composed of a contact connecting Uy, to Uy, a rarefaction
connecting Uy to U* = (5%, Cg) and a shock connecting U* to Ug. The left panel shows
the fractional flow functions, where we move from one fractional flow curve to another
through the contact wave. The right panel details the water saturation profile.

Now, we will present algebraic expressions for the saturation of the intermediate
states. After some calculations, we obtain that S}, is one of the three roots of the equation

with polynomial coefficients vector

A= (1 —|—p(C’1), a —I—p(C’ﬂ(a - 2) - 1/)\0([]2), (421)

p(C1)(1 = 2a), p(Cy)a), (4.22)

where Uy = (S1,C1) and Uy = (S5, Cs) can take the values of Uy, or Ug depending on the
solution type. In the case of a C'S-wave sequence, U; = Ug, Uy = Uy, and the root is Ss.
In the case of an SC-wave sequence, U; = U, Uy = Ug, and the root is S;. When the

S-wave is a rarefaction followed by shock, the other intermediate state S* is the root Sy of

the equation with polynomial coefficients vector

A= (251 = 1)(p(U1) + 1), (=257 = 51)(p(Uy) + 1), (4.23)
257 (p(Ur) + 1) + p(Ur), —Sip(Uh)). (4.24)
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For a C'S-wave sequence, U; takes the value of Ug, and for an SC-wave sequence, U; takes

the value of Uy,.

The solution construction is completed with the expression for the inflection point

in Eq. (3.21); see Proposition 3.1.

4.2.3 On the water production and pressure calculations

The water production for the quadratic model is calculated analogous to the original
model, but the algebraic expressions introduced in this section reduce the use of numerical
tools. Again, we focus on the C'S-wave sequence type solution, where WP is calculated by
Egs. (3.63) or (3.64), as presented in Section 3.3.

If the S-wave is a shock, the time that contact and shock waves reach the end of the
reservoir can be directly obtained using f and 0sf; see Eqgs. (4.10) and (4.12). Therefore,
with Eq. (3.63) and the expression to Sy, developed in Subsection 4.2.2, water production

can be calculated algebraically.

If the S-wave is a rarefaction followed by a shock, there are two intermediate states
(Sy and S*). They are calculated by using the expressions developed in Subsection 4.2.2.
Note that S* is not explicit on WP calculations (3.64), but it is necessary to calculate the
breakthrough time. In this case, the saturation at the reservoir’s end varies with time during
the rarefaction wave, being described by the differential equation ds f(S(t), Cr) = 1/t. For
the original model, this value was found numerically. Here, we significantly reduce costs
by developing an expression to find S(t). This value is determinate by the fourth-order

polynomial equation a;S* + 42583 + a35% + a4S + as, with coefficients

ap = (p(Cg)+1)% (4.25)
az = —4p(Cr)[p(Cg) + 1], (4.26)
az = 6p(Cr)* + 2p(Cr)(t + 1), (4.27)
as = —2p(Cr)[2p(Cr) + 1], (4.28)
as = p(Cr)*. (4.29)

We apply the Ferrari’s Method [122,136], first rewriting the equations as
At ALh? + Ash + Ay = 0, (4.30)

where > 5
as ay (054 Qo203 ay

A, =2 272 p — 2 — 4.31
T 8d? T 8dd 222 T ay (431)
Ay = —3&% as Q204 agai’) (432)

- 256at  a; 4a®  16a3’
We will use an auxiliary equation ¢® 4+ 24,9 + (A2 — 4A3)g — A3 = 0. The three roots can

be found through the framework for third-order polynomial equations developed previously,
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using a; = 1, ay = 2A;, a3 = (A} — 443), and a4 = —A2. After substituting the model’s
parameters (Table 2), the real root is the first one, which we call ¢g;. Finally, we calculated
the roots of Eq. (4.30) as follows

_1
h3 = 05 <—\/E+ \/_91 — 2A1 =+ 2A2g1 2) , (435)

hy = 0.5 (—@ - \/—91 — 24, + 2A291_2> . (4.36)

The saturation is one of the four roots S; = h; —as/(4a1) (j = 1,2,3). With the model’s
parameters, the physically correct solution is S5. Finding this expression simplifies the
calculations, but numerical integration is still needed to obtain WP during the rarefaction

wave.

From the extension of Darcy’s law to multi-phase flow, the partial velocity of a
J-phase is u; = —\;Vp;; see Subsection 2.2.2. For water-gas flow, j = w, g representing
aqueous and gaseous phases, and P, = p;, — p,, is the capillary pressure. In our model,
we neglect the effects of capillary pressure, so p, = p, = P. By using that u, = uf,
ug, =uf, =u(l — f), and f = A\, /Ar, we obtain

1
Pw =Dy = —u/ —dx. (4.37)
Ar

Then, assuming that the pressure at the core outlet is constant (P(1,t) = P, ), we can

estimate the pressure at each point & € [0, 1] for a fixed ¢ as

~ ! L
P(Z,t) = U/j Ar(S(z,t), O, t))

dz + P, (4.38)

where A\ = A\, + A4 is the total mobility. Note that the pressure drop is calculated as
AP(t) = P(0,t) — P(1,1).

4.3 SOLUTION PROFILES

In order to better understand how nanoparticles affect foam flow in the quadratic
model, we present some preliminary results. Fig. 48 shows water saturation profiles at
t = 5 min (before breakthrough) for different nanoparticle concentrations. Note that the
presence of nanoparticles results in a delay of the gas front, consequently leading to a delay
in breakthrough. The bubble density (calculated as (1 —S) - npe(C)) at the same time is
presented in the left panel of Fig. 49. The foam front propagates faster with a lower bubble



83

density in the case without nanoparticles. In the presence of nanoparticles, the bubble
densities can be up to four times greater than the case without nanoparticles. The right
panel of Fig. 49 shows the water pressure profiles for different nanoparticle concentrations
at t = 5 min, considering the pressure at the core’s outlet fixed as P,,; = 2026.5 kPa (as
in [43]). The pressure of water (or gas) in the core is estimated by integrating the total
mobility of the mixture over space. Note that the presence of nanoparticles leads to higher

pressures, especially in the core inlet region.
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Figure 48 — Effect of nanoparticle concentration on the water saturation profiles during
foam flow at ¢ = 5 min. This example considers Uy, = (0.2,0) and Ur = (1.0, Cg), with Cg
varying between 0 (without nanoparticles) and 1 (maximum nanoparticle concentration).
For the case without nanoparticles, the solution is a rarefaction followed by a shock, while
for Cr > 0, the solution is composed of a contact, a rarefaction, and a shock.
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Figure 49 — Effect of nanoparticle concentration on the bubble density profiles (left
panel) and the water pressure profiles (right panel) during foam flow at ¢ = 5 min. This
example considers Uy = (0.2,0) and Ug = (1.0, Cg), with Cg varying between 0 (without
nanoparticles) and 1 (maximum nanoparticle concentration).

4.4 MODEL SETUP FOR UQ AND SA STUDIES

We use the quadratic local equilibrium model to perform an uncertainty quantifi-
cation and sensitivity analysis for NP-stabilized foam flow. As in Chapter 3, we focus
on the drainage process (mainly gas injection) after injecting a chemical slug composed

of water, surfactant, and nanoparticles. We consider the Riemann problem (3.13)-(3.15)
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with injection condition U, = (0.2,0) and initial water saturation Sg = 1. The initial
nanoparticle concentration C'y varies, but when C'r > 0, the solution is always a C'S-wave
sequence. The particular case C'r = 0 represents the foam flow without nanoparticles. In
this case, MRF > 1 is constant (see Eq. (3.4)), and the solution is always an S-wave. The

S-wave can be a rarefaction followed by a shock (most common case) or a shock.

The forward propagation of uncertainties follows the Monte Carlo method, and we
use Sobol indices [65] as a sensitivity measure; see Sections 2.5 and 2.6 for details. These
results were computed using the UQLab package [115,116] with the Latin Hypercube
Sampling (LHS) technique.

When conducting uncertainty quantification and sensitivity analysis studies, we
must define the relevant quantities of interest. We consider the breakthrough time (7y;),
cumulative water production (WP), and pressure drop (AP) because they are crucial
parameters for industrial applications [131]. All output quantities can be determined by

using the analytical solution presented in this chapter.

Consider the set of inputs Z = {cy,,, ,.,,, b1, b2}. We assume normal (or Gaussian)
distributions N (u, o) for the endpoint relative permeabilities, where p and o are the mean
and standard deviation. The mean values are calculated using the least squares method
to fit the fractional flow function with quadratic relative permeabilities to the original
function presented in [92] (based on experimental data [44]). In [137,138], the authors
found errors in the range of 0.2% to 15% in relative permeability estimates from several
flow experiments. Therefore, we use a coefficient of variation (CV = o/u) of 10% for these

parameters. The distributions are summarized in Table 7.

Table 7 — Distributions of the permeability parameters. Source: [44,92]

Symbol Parameter Distribution
Cr,, (-)  Gas endpoint relative perm. N (3.95,0.395)
Ckn () Water endpoint relative perm.  N(0.25,0.025)

We adopt uniform distributions U (6, 6s) for the nanoparticles parameters, rep-
resenting an experiment with arbitrary outcome between 6, and ;. These coefficients
are related to the mean and standard deviation of a distribution by 6; = 1 — v/3¢ and
Oy = pu+ V30. We use the least squares method to derive the mean values from litera-
ture [30] (based on experimental data [19]); see the left panel in Fig. 50. Since b, and by
are the angular and linear coefficients of 7,,,4,, we adopt normal (or Gaussian) copula with
coefficient —0.6 to include a negative dependence between them. Then, small values of
b, are related to large values of by and vice versa. Due to this correlation, we increased
the CV of each parameter by 50% to better cover the prediction interval. We obtained a
CV of 10.5% for by and 37.5% for by; see the distributions in Table 8. The right panel in
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Fig. 50 shows samples drawn from these distributions with the normal copula obtained by
the MC method.
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Figure 50 — Distribution and correlation corresponding to nanoparticle parameters. The
left panel shows the fit (black line) based on literature data [30] (cross-mark). The mean
values are b; = 2531.80 and by, = 802.58 (mm~3), with the 95% confidence interval (95%
CI) represented by the shaded region. The red lines illustrate the proposed 71,4, (see
Eq. (3.7)) and the corresponding 95% CI. The right panel shows samples drawn from the
uniform distributions presented in Table 8 with a normal copula coefficient —0.6.

Table 8 — Distributions of the silica nanoparticles parameters. Source: [19, 30]

Symbol Parameter Distribution
by (mm—3) Angular coef. of .. U(2054.82,3008.78)
by (mm~—3) Linear coef. of nye,  U(269.30,1335.86)

The other parameters, inspired by the core-flood experiment presented in [44], are

summarized in Table 2.

4.5 UNCERTAINTY PROPAGATION

To investigate how uncertainties propagate through the model, we calculate the
mean, variance, confidence intervals, and prediction intervals for each Qol (the break-
through time and water production). The last one was obtained by selecting the results

within the 5th and 95th percentiles from the output distributions (90% prediction interval).

In order to obtain accurate results, we conducted a convergence analysis of the
mean and the confidence bounds, increasing the size of samples from 10 to 2000; see
Figs. 51 and 52. We perform 200 simulations, resulting in a total of 201000 calls to the
model. Around the sample size 2000 convergence was achieved for all Qols, so we use this

value in the UQ studies below.

To analyze the impact of nanoparticle concentration on uncertainty propagation for
the breakthrough time, we consider several concentration values ranging from 0.0% (without

nanoparticles) to 1.0% (maximum amount of nanoparticles); see Fig. 53. The results show
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Figure 51 — Convergence analysis for the breakthrough time. We study the cases C,,, = 0.0%
(without nanoparticles) and C,,,, = 1.0% (maximum nanoparticle concentration). The blue
central lines represent the mean, and the shaded regions correspond to the 95% confidence
intervals.
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Figure 52 — Convergence analysis for the water production (left panel) and pressure drop
(right panel), both at ¢ = 50 min. We study the cases C,,, = 0.0% (without nanoparticles)
and Cp, = 1.0% (maximum nanoparticle concentration). The blue central lines represent
the mean, and the shaded regions correspond to the 95% confidence intervals.

a reduction in the model’s uncertainties when nanoparticles are employed, indicating the
stabilization potential of this technique. As expected, adding nanoparticles increases the
breakthrough time, and this effect is less pronounced for high nanoparticle concentrations,
aligned with [64]. To further investigate the significance of this phenomenon, we calculate
the p-value, which is a statistical probability commonly used to measure the strength
of evidence against a null hypothesis. In our case, we are testing the hypothesis that
there is no significant difference between the model’s output for the breakthrough time
obtained for two different C,,, values. The p-value ranges from 0 to 1, with 0 indicating
that the observed results are impossible under the null hypothesis, while 1 indicates that
the observed results are likely to occur by chance. As shown in Table 9, all of them can
be considered null. Therefore, the effect of nanoparticle concentration in Tj; is statistically

significant.
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Figure 53 — Uncertainty quantification for the breakthrough time. We study several

concentration values ranging from 0.0% (without nanoparticles) to 1.0% (maximum amount

of nanoparticles). The markers represent the mean and the shaded region corresponds to
the 90% prediction interval (90% PI).

Table 9 — Significance test for the difference in breakthrough time due to changes in
nanoparticle concentration

Cyp compared p-value
[0.0%,0.1%] 3.222-1071%°
[0.1%,0.2%]  2.771 - 107133
[0.2%,0.3%]  4.600 - 107125
[0.3%,0.4%] 6.019- 107114
[0.4%,0.5%]  1.309 - 10~101
[0.5%,0.6%]  2.360-107%
[0.6%,0.7%]  5.578-10""
[0.7%,0.8%]  7.318-107%
[0.8%,0.9%]  4.345-107%
[0.9%,1.0%]  1.369 - 107!

To analyze the impact of nanoparticles on the uncertainties propagation for water
production and pressure drop, we compare the cases C,;, = 1.0% (maximum nanoparticle
concentration) and C,, = 0.0% (without nanoparticles); as shown in Fig. 54. Since
nanoparticles increase the breakthrough time, there is less water in the core compared with
the case without nanoparticles at the same time. This leads to a reduction in both WP
and AP uncertainties when nanoparticles are employed. The results also indicate that the
WP with nanoparticles is larger than the other one, and the corresponding 90% prediction
intervals do not intercept for a significant time interval (up to three breakthrough times);
see the left panel in Fig. 54. Notice that WP curves will always intersect at large times,
as proved in [64]. Furthermore, WP curves initially coincide because while the water
saturation at the core’s end is Sg = 1.0 the outflow rate remains constant; see Section 3.3
and Eq. (3.11). The pressure drop also increases due to the addition of nanoparticles;
see the right panel in Fig. 54. Both cases (with and without nanoparticles) reach the

maximum AP value at the breakthrough time, but this value is approximately three times
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higher when nanoparticles are employed.
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Figure 54 — Uncertainty quantification for the water production (left panel) and pressure
drop (right panel) over time. We compare the cases C),, = 1.0% (maximum nanoparticle
concentration) and C,, = 0.0% (without nanoparticles). The central lines represent the
mean, and the shaded regions correspond to the 90% prediction interval (90% PI).

4.6 SENSITIVITY ANALYSIS

To perform the sensitivity analysis, we included the initial nanoparticle concentra-
tion as an uncertain input. We consider the uniform distribution ¢/(0.7,1.0), obtained from
a mean of 0.85 and 10% for CV (the same adopted for endpoint relative permeabilities).
We also perform a control test without nanoparticles. In this case, the set of uncertain

inputs is composed only of ¢, , ck,,, and by.

The convergence of the sensitivity analysis considering the breakthrough time is
presented in Figs. 55 (without nanoparticles) and 56 (with C'r as an uncertain input). We
perform 200 simulations, increasing the size of samples from 40 to 8000. Convergence was

achieved around 8000, so we use this sample size for the results presented in Fig. 57.
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Figure 55 — Convergence of sensitivity analysis for the breakthrough time with C'r = 0.
The left panel shows the main Sobol indices, and the right panel the total Sobol indices.

The left panel in Fig. 57 shows the Sobol indices for the Tj; with C'r = 0, where by

almost dominates the Qol. This was expected as it represents the maximum foam texture
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Figure 56 — Convergence of sensitivity analysis for the breakthrough time with Cg as
uncertain input. The left panel shows the main Sobol indices, and the right panel the
total Sobol indices.

without nanoparticles. The right panel of Fig. 57 shows the scenario where Cg is an
uncertain input. We observe that the Qol sensitivity to the endpoint relative permeabilities
becomes more relevant while by decreases. Note that high-order interactions among the
parameters, indicated by the total Sobol indices, were only observed with the presence of

nanoparticles. This is due to the correlation between b; and b,.
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Figure 57 — Sensitivity analysis (Sobol indices) for the breakthrough time. The left panel
shows the case without nanoparticles (Cr = 0), and the right panel shows the case with
Cg as an uncertain input.

The convergence of the sensitivity analysis considering water production over time
is presented in Figs. 58 (without nanoparticles) and 59 (with Cr as an uncertain input).
Analogous to the previous study, we increased the size of samples from 40 to 8000, and
the convergence was achieved. We use a sample size of 8000 for the results presented
in Figs. 60 and 61. For both cases (Cr = 0 and Cg as an uncertain input), we begin
calculating the Sobol indices at the breakthrough time, since WP curves coincide before
that. We also consider a time interval where all waves composing the solution reach the

end of the core.
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Figure 58 — Convergence of sensitivity analysis for water production at ¢ = 50 min with
Cr = 0. The left panel shows the main Sobol indices, and the right panel the total Sobol
indices.
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Figure 59 — Convergence of sensitivity analysis for water production at ¢ = 50 min with
Cg as uncertain input. The left panel shows the main Sobol indices, and the right panel
the total Sobol indices.

Figure 60 shows that the model without nanoparticles is more sensitive to parameter
by for any time. In this case, there are no significant high-order interactions. Fig. 61
shows how the model’s sensitivity changes over time in the presence of nanoparticles.
By comparing the Sobol indices for the breakthrough time (right panel in Fig. 57), we
observe that the sensitivity of WP to b, increases over time, while the sensitivity to other
parameters decreases. At long times, as the WP curves coincide after the contact wave
reaches the core end, the model’s sensitivity to each parameter is very similar to the case

without nanoparticles.

In the previous results for the Ty, and WP, it was observed that by dominates the
foam flow behavior in the absence of nanoparticles. Therefore, our next investigation focus
only on the pressure drop sensitivity for the model with nanoparticles. We consider its
maximum value AP,,,, (calculated at the breakthrough time for each sample) since this
is a relevant parameter for practical applications. The convergence study considers 200
simulations, increasing the size of samples from 40 to 8000; see Fig. 62. Convergence was

achieved around 8000, so we use this sample size for the results presented in Fig. 63. The
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Figure 60 — Sensitivity analysis for the water production without nanoparticles (Cg = 0).
The left panel shows the main Sobol indices and the right panel shows the total Sobol
indices. The analysis begins at the breakthrough time (25.5 min), and the time when the
rarefaction wave reaches the core’s end is highlighted (77.6 min). These time values are
calculated as an average for all samples, excluding particular cases where the S-wave is a

shock.
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Figure 61 — Sensitivity analysis for the water production with C'z as an uncertain input.
The left panel shows the main Sobol indices and the right panel shows the total Sobol
indices. The analysis begins at the breakthrough time (30.4 min), and the time when the
rarefaction and contact waves reach the reservoir’s end is highlighted (59.5 and 289.3 min,
resp.). These time values are calculated as an average for all samples, excluding particular
cases where the S-wave is a shock.

analysis shows that AP,,,. is more sensitive to the gas endpoint relative permeability.
However, C'r and by are also relevant parameters. Furthermore, while the sensitivity to cgrg
and ¢, was similar for the breakthrough time and water production, AP, is much more
sensitive to cgrg than to c¢g,,. This occurs because most of the reservoir’s initial content
has already been swept at the moment of breakthrough. Consequently, gas mobility has a

greater impact on total mobility.
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Figure 62 — Convergence of sensitivity analysis for the maximum pressure drop with Cr
as an uncertain input. The left panel shows the main Sobol indices and the right panel
shows the total Sobol indices.
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Figure 63 — Sensitivity analysis (Sobol indices) for the maximum pressure drop with C
as an uncertain input.

4.7 DISCUSSION AND PARTIAL CONCLUSIONS

In this chapter, we simplified the NP-stabilized foam flow model proposed in
Chapter 3 by using quadratic relative permeabilities to describe the water-gas fractional
flow. Despite the simplification of the relative permeability model, the solution structure
remains the same as the more realistic one. The proposed model allowed us to obtain
algebraic expressions to analyze the solution type and construct the water saturation
profiles, yielding performing an uncertainty quantification and sensitivity analysis study
in a feasible time (drastically reducing computational costs). In particular, we achieved
convergence for both UQ and SA, even using the Monte Carlo method, which is known to
be computationally expensive. To the best of our knowledge, this is the first application
of UQ and SA in the context of NP-stabilized foam.

Uncertainty quantification of the NP-stabilized foam model was performed for
three quantities of interest (Qols): breakthrough time, cumulative water production,
and pressure drop. The developed analytical framework allowed us to obtain them all.

Considering different values for nanoparticle concentration, as expected, we concluded that
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adding nanoparticles increases the breakthrough time. This effect is less pronounced for
high nanoparticle concentration. We also observed an increase in pressure drop with the
addition of nanoparticles, with the maximum value increasing approximately three times
compared to the case without nanoparticles. Our results showed that the water production
with nanoparticles is larger than the other one, and the corresponding 90% prediction
intervals do not intercept for a significant time interval (up to three breakthrough times). It

indicates that measuring the effect of nanoparticles experimentally is statistically feasible.

We investigated the sensitivity of the same Qols to the model’s parameters. In
this case, we included the nanoparticle concentration as an uncertain parameter. For the
case without nanoparticles, the foam-related parameter dominates the breakthrough time
and water production. For NP-stabilized foam, the breakthrough time sensitivity to the
foam-related parameter decreased, and the endpoint relative permeabilities became more
relevant. Over time, production’s sensitivity to the foam-related parameter increased while
the sensitivity to other parameters decreased. The maximum pressure drop was more

sensitive to the gas endpoint relative permeability and the nanoparticle concentration.
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5 NP-STABILIZED FOAM FLOW MODEL ACCOUNTING FOR RE-
TENTION AND PERMEABILITY REDUCTION

In this chapter, we propose a mechanistic model describing NP-stabilized foam
flow in porous media, accounting for nanoparticle retention and the resulting permeability
reduction. The general assumptions for modeling NP-stabilized foam flow remain the same
as in the previous chapters. However, we extend the model by incorporating the dynamics
of bubble generation and coalescence, along with the inclusion of both suspended and

retained nanoparticles.

Section 5.1 introduces the governing equations. In Section 5.2, we obtain a semi-
analytical solution for this model under steady-state conditions. Section 3.3 presents the
model calibration based on experimental data. Section 5.4 investigates the impact of
nanoparticles on foam flow through solution profiles for water saturation, foam apparent
viscosity, and pressure drop. In Section 5.6, we compare the steady-state model with a
dynamic NP-stabilized foam flow model. In Section 5.7, we present discussions and partial

conclusions based on the results presented in this chapter.

The results presented in this chapter are summarized in the paper [67].

5.1 GOVERNING EQUATIONS

We highlight that, in this chapter, we work directly with the dimensional system
while maintaining simplified notation. Thus, = and ¢ represent space and time (in units of

length and time), and C' denotes the nanoparticle concentration in wt%.

5.1.1 Nanoparticle transport models

Nanoparticles are expected to exhibit similar behavior to colloids (particles with
diameters between 1 and 1000 nm) when they move through porous media [106]. As
a result, some researchers have used colloid retention models to simulate the transport
of nanoparticles in saturated columns [97,106,109, 139, 140], allowing them to interpret
experimental data. Following the Colloid Filtration Theory (CFT) [48], the single-phase
colloidal-suspension flow is modeled by considering advection, hydrodynamic dispersion,
and deposition (filtration). At low particle concentrations and moderate ionic strength,
the fluid-phase particle concentration C(x,t) and retained particle concentration o(x,t)
can be described by [48, 141]

0 oC 0*C
0o

where u = u(t) is the flow velocity, A is the filtration coefficient, and D is the hydrodynamic

dispersion coefficient. Here, the suspended concentration is defined as the number (volume)
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of particles per unit volume of the carrier fluid, while the retained concentration is defined

as the number (volume) of particles per unit of the rock volume.

In many practical applications, the system (5.1)-(5.2) is typically analyzed at steady-
state, where the effects of hydrodynamic dispersion are minimal and can be neglected [141].
It is commonly assumed that the particle deposition rate remains constant over time and
space (A is constant). Given these assumptions, initial conditions C'(z,0) =0, o(z,0) =0
and boundary condition C(0,¢) = C!, the solution of (5.1)-(5.2) is [142]

C(z,t) =Cle™,  o(x,t) = \CH(Ut — px)e™*, (5.3)

for < ut/p; otherwise, both concentrations C' and ¢ vanish. Note that this model
predicts that nanoparticle retention will continue to increase indefinitely as long as the
dispersion concentration remains above zero. As a result, in a core-flooding experiment with
continuous injection, the nanoparticle effluent concentration will not reach the injection

concentration (even after the breakthrough).

The classical filtration model is based on the assumption of irreversible particle
deposition, with no upper limit on filtration capacity. As more particles accumulate,
the permeability gradually declines. A hyperbolic form is commonly assumed for the
permeability reduction function, introduced in a modified form of Darcy’s law as follows

[142]
k(o) OP K°

= —_—— k‘ =
“ p ox’ () 14600’

(5.4)

where 1 is the water viscosity, P is the pressure, k¥ is the original permeability before

injection, and @ > 0 is the permeability-reduction coefficient.

Different models have been proposed modifying the CFT to include other phenom-
ena, such as detachment, agglomeration, and even adsorption (retardation); for details,
see [99,143]. Due to the complexity of nanoparticle transport and experimental results
reporting both reversible and irreversible particle capture, a mixed model, including
mechanical retention and adsorption, seems to be the best way to model nanoparticle
retention. However, there is still a lack of more rigorous studies, especially validation of

mathematical models with reliable experimental data [102].

5.1.2 Foam flow with nanoparticles

Neglecting capillary effects (p, = p, = P), the foam transport is described
by [13,92]:
@Q(S n)-l—g(u n)=>a (5.5)
ot 9 ox 7 ’ '
where n is the foam texture and the source term is ® = pS,K,(n. — n); see Section 2.3

for details. Foam is a non-Newtonian fluid with apparent viscosity depending on the gas
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velocity. We include the effect of nanoparticles on foam stabilization by increasing the

foam’s apparent viscosity, leading to lower mobility. Based on [93], we propose
Happ = Hg + Oé(C)WZ, (5.6)

where 11, is the foam-free gas viscosity and d is a constant related to the fluid viscosity.
We assume « as a linear function o(C) = ayC + o depending on the nanoparticle

concentration C' in the aqueous phase.

Based on the CFT (see Eq. (5.1) and Eq. (5.2)) and following [33,96] to include

physicochemical adsorption, we propose the conservation law for nanoparticle transport as

@aat(CSw +A+o0)+ aam(C’uw) =0, (5.7)
where A is the concentration of nanoparticles adsorbed on the rock surface. Considering low
suspension concentration, we use Henry’s (linear) adsorption isotherm, i.e., A = vC. The
nanoparticle capture rate is assumed to be proportional to the dispersion-free nanoparticles
flux (do/0t = A(0)Cuy), and the filtration function is constant in time and space
(o) = N).

To model the fractional water-gas flow, we consider the original water and gas
relative permeability functions k7, and k7, as described by Eq. (2.56) and Eq. (2.57).
Since we introduced the effect of nanoparticles in the foam flow directly into the foam’s
apparent viscosity, the foam relative permeability function is assumed to be the same as
that for free gas. However, the nanoparticles retained by mechanical entrapment change

the relative permeabilities of each phase, which decrease monotonically with o as [142]

k?w(‘sw)
(1+6,0)’

kgg(sw)

krw(sw,U) = m7

krg(Sw,0) = (5.8)

where 6,, and 6, are positive constants called permeability-reduction factors. Adsorption

is considered low enough not to cause changes in permeability.

Consider the overall flux as the total superficial velocity of water and foam wu(t) =
Uy + Ug, which is independent of x due to the incompressibility of both phases. The
water fractional flow function is defined as f, = wu,/u. Following the introduction of
the fractional flow theory for two-phase flow of non-Newtonian fluids [50], f,, becomes a

function of the mobility ratio and the overall velocity, with

fw :fw(Sw7CaU>U)- (59)

Therefore, the NP-stabilized foam flow is described by the following system of five unknowns
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(Sw, C, P,n, and o):

GO ey (5.10)
() e o
ool = Sl + s (1 = fu)] = 91 = 8Kyl —m), (512
gogt(CSw tAto)+ u;x(C fu) =0, (5.13)
2;::A0ﬂu0ﬁw (5.14)

The initial conditions corresponding to the water-saturated core with no bubbles or
particles are given by
C=0, 0=0, n=0, S,=1, (5.15)

and inlet boundary conditions corresponding to the co-injection of a chemical solution

(water with surfactant and nanoparticles) and gas are

c=c!, p=pPl, n=0. (5.16)

5.2 STEADY-STATE SEMI-ANALYTICAL SOLUTION

The system composed of Egs. (5.10) to (5.14) is quite complex to allow an analytical
solution. Therefore, in this section, we study the steady-state case, with the flow velocities
u,, and u, independent of x. We divide this section into two parts. First, we investigate the
foam flow model (without nanoparticles) at steady-state, presenting an analytical solution.
Analogously, we study the NP-stabilized foam flow model, obtaining a semi-analytical

solution.

5.2.1 Foam flow model at steady-state

Consider normalized water saturation S = (S, — Sue)/(1 — Sue). At steady-state
and without nanoparticles, the Darcy velocities and bubble balance equation associated
with the system of Eq. (5.10) to (5.14) are given by

Ck S™dP
— _k Tw - ‘1
1—S)**dp
%:_ﬁm( )d—a (5.18)
g + aonug  dx
dn %)
= (1= Sue) (1 = 8)Ky(noc —n). (5.19)

g

Let us consider the constant A = (twftwCh,,)/(UgCk,,, ). The solution procedure

follows four steps, as described next.
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. Equate pressure gradient from Eq. (5.17) and Eq. (5.18), to obtain an expression

describing the foam texture:

ASTT(1 = S)*F —

d
Oé()ug

n(x) = (5.20)
. Substitute Eq. (5.20) and its derivative in relation to z into Eq. (5.19), to obtain an
expression for dS/dx:

45 [AST(- 8™~y autnag](1-5) pK,(1— S,

@ _ ! g . . 5.21
dv 7S 1-8)*% 4 (3+2)97(1- 97  Au 20

. Assuming that there is no bubble at the inlet (n(0) = 0), from Eq. (5.20) we obtain
S7T(1 = 8)*F — py /A =0. (5.22)

This is the transcendental equation for S(x = 0) = S¥, allowing us to determine the

inlet boundary condition for water saturation.

. Distribution n(z) is calculated by Eq. (5.20) for known profile S(x). The pressure
profile is obtained by

P(z) = P! — sz:“" /0 " S(a) " da. (5.23)

Note that the solution S(z) can be obtained by separation of variables

S() 1
——dS = 5.24
/y g s== (5.24)

where the function g(5) is defined as the right side of Eq. (5.21).

5.2.2 NP-stabilized foam flow model at steady-state

Consider normalized water saturation S = (S, — Sye)/(1 — Sue). At steady-state,

the Darcy velocities and bubble balance equation associated with the system of Eq. (5.10)

to 5.14 are given by

ke, ST dP
o= ——brw® B 2
" pw (1 + 0,0) dx (5:25)
Uy = — ker,, (1~ S>3+% ar (5.26)
T g+ (anC + ag)nud] (14 40) da’ '

dn

T (1= 8,)(1 = 8K, (e — n). 5.27

= 205,00~ Sy~ (5.27)

Since we assume that adsorption only delays the front propagation of the nanoparticles, it

does not impact this steady-state analysis.
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According to the CFT, the solution for C' and o is given by Eq. (5.3); see [142]
for details. As we are looking for the stationary solution, we approximate the retained

nanoparticle concentration as
o(z) =TC(z) =TCTe™, (5.28)

which is valid for a limited time. Since C' varies along the core, we still consider mechanical

entrapment, with the retained concentration changing with z.

Analogous to the previous case (Subsection 5.2.1), the solution procedure follows

four steps.

1. Equate pressure gradient from Eq. (5.25) and Eq. (5.26), to obtain an expression

describing the foam texture:

1+46 [Cle== 2
A - 1—8)3*7877 —
() <1+9gFCfe—M’>< ) o
B (nCle™® + ag)ud ’

(5.29)

where A = (UwftwCr,,)/(UgCh,., )-

2. Substitute Eq. (5.29) and its derivative in relation to x into Eq. (5.27), to obtain an

expression for dS/dx:
s [al(ﬂe"\z + g (alCI)\ug_de‘M(ug — AB(1-25))

dr uy (a1 CTe= 4+ )2
K- Su)S 1) [ uy(e, — AB(1- )
> oo+~ (5.30)
AB(1 — S)xeMT(0, —0,,)C* 1-S 2\17"
. |AB Il
(% 1 10,07) (e + 16,07 aB(=gorreel)]
where iz s ;
(1-5)*7 (e +T16,C
B=B = . 31
(z,5(x)) o 0,07 (5.31)
3. Assuming that there is no bubble at the inlet (n(0) = 0), from Eq. (5.29) we obtain
o 3+% -7 ﬁ 1 + HQFCI _
(1-9)"+8 1 <1 To.TCT) 0, (5.32)

allowing us to determine the inlet boundary condition S(z = 0) = S’ for water

saturation.

4. Distribution n(z) is calculated by Eq. (5.29) for known profile S(z). The pressure
profile is obtained by

P(z) = P — ZZ’?” /0 (14 0,00)8 " dx. (5.33)

Note that the right side of Eq. (5.30) depends on z, so the solution S(z) can not
be obtained by separation of variables as in the previous case. Therefore, we find the

saturation profile numerically.
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5.3 MODEL SETUP

This section presents the results obtained by using the steady-state solution de-
veloped in Section 5.2. We use the ODE45 solver from Matlab to obtain the numerical
water saturation profiles. Given the absence of comprehensive experimental data for
NP-stabilized foam flow that would allow us to fit both the SBP and the nanoparticle

retention model, we use different data for each part. Model setup is detailed below.

The physical parameters used to calibrate the SBP model are the same as those in
Chapter 3; see Tables 2 and 3. The parameters related to the effect of nanoparticles on
foam flow were obtained from the local equilibrium foam texture proposed in Section 3.1
(based on experimental data [19,30]). Using that n,,.,(C) = 2531.80C + 802.58 mm 3,
for 0 < C < 1 representing nanoparticle concentration between 0.0 and 1.0 wt% of the
total aqueous phase, we adjust the models through the foam apparent viscosity adopting
Noo = 802.58 mm™>, ap = 5.8 - 10716 Pa-s*m!%3 and a; = (2531.80ay)/ns Pa-s¥3m!0/3,

Table 10 summarizes the model parameters used in this chapter.

To calibrate the nanoparticle retention model, we follow [97], where a core-flooding
experiment was conducted to investigate the transport of silica nanoparticles in dolomite
rocks. The experiments were carried out on several core samples with a diameter of
3.8 cm, an average length of 10 cm, and absolute permeability ranging from 23 to 40
mD. Nanofluids with 0.1 and 0.5 wt% SiO, nanoparticle concentrations were tested with
different ionic strengths and ion types (NaCl, MgCly). The experiment was analyzed using
deep-bed filtration theory, yielding the filtration (A) and the permeability-reduction (6,,)
coefficients under these varying conditions. In the present study, we only consider the
variations in nanoparticle (NP) and salt concentrations, as shown in Table 11. We included
two artificial nanofluids with C7 = 1.0 wt% (NF5 and NF6). Since this nanoparticle
concentration was not experimentally investigated in [97], we use the same values of A and
0., obtained for C! = 0.5 wt%. This assumption may slightly overestimate or underestimate
the positive effect of nanoparticles on foam flow, as increasing concentration raises foam
viscosity without altering retention-related parameters. Additional experimental data is

needed for more accurate estimates.

Table 10 — Population balance NP-stabilized foam flow model parameters. Source: [30,44]

Symbol Parameter Value
ap (Pa-s*?m!%/3)  Viscosity proportionality const. 5.8 - 10716
oy (Pa-s??m'%/3)  Viscosity proportionality const.  1.83- 1071

7 (—) Pore-size-distribution parameter 5.0

Chyy (—) Gas endpoint relative perm. 1.0

Chry (—) Water endpoint relative perm.  0.75

K, (s7) Bubble generation rate 0.1
-3

Neo (Mm™) Equilibrium foam texture 802.58
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Table 11 — Nanoparticle retention parameters. Source: [97]

Nanofluid ~ SiO, (wt%) NaCl (ppm) X (m™') 6, (—)

NF1 0.1 0 1.51 2013
NF2 0.1 50000 2.95 3269
NF3 0.5 0 1.86 1312
NF4 0.5 50000 5.33 913
NF5 1.0 0 1.86 1312
NF6 1.0 50000 5.33 913

Note that the permeability-reduction factor 6, was obtained for a single-phase
model in [97]. In two-phase models involving the injection of an aqueous solution with
suspended particles into an oil reservoir, permeability reduction is typically considered
only for the aqueous phase. However, in this study, we examine the co-injection (or
alternate injection) of gas and an aqueous solution with surfactant and nanoparticles. In
this scenario, the retained particles influence the relative permeability of both phases. To
be more realistic, we assume that this impact varies between phases, with 6, = 0.50,, as
the equivalent parameter for gas relative permeability. This hypothesis is based on the
fact that the presence of non-wetting fluids leads to lower permeability reduction due to
particle retention, as there is incomplete accessibility of the available surface and pores to

particles transported by the water phase [110].

Additionally, we consider I' = 0.3\L to calculate the retained nanoparticle concen-
tration. This value was chosen to align the simplified (steady-state) o solution proposed by
Eq. (5.28) with the classical (dynamic) CFT solution calculated by Eq. (5.3) at 2 injected
pore volumes (PV); see Fig. 64, 65, and 66. Note that, in the absence of NaCl (NF1, NF3,
and NF5), the decay in the suspended and retained concentration profiles is similar for
all nanoparticle concentrations. However, with NaCl (NF2, NF4, and NF6), the decay

becomes more pronounced as nanoparticle concentration increases.

The co-injection of the nanofluid and gas can lead to nanoparticle entrapment on the
rock surface and in pores accessible to both aqueous and gaseous phases, thereby reducing
the relative permeabilities of water and gas. By calculating k,,, and k,, using Eq. (5.8), we
obtain the curves presented in Fig. 67 for nanofluids without NaCl (NF1, NF3, and NF5)
and with NaCl (NF2, NF4, and NF6). This figure also displays the original curves with no
particle retention (equivalent to water injection without nanoparticles, i.e., C = 0). Note
that, for both cases without and with NaCl, the water permeability-reduction coefficients
decrease (or remain the same) as the injected nanoparticle concentration increases; see
Table 11. Even so, the endpoints of k,,(Sy, o) and k,.4(S,, o) decrease with increasing
CT. This occurs because o varies with C7 and X. In addition, the presence of salt
increases particle retention (see Fig. 64, 65, and 66), resulting in a greater reduction in

gas relative permeability compared to the case without salt. That is, the endpoints of c,,
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Figure 64 — Steady-state suspended (C') and retained (o) nanoparticle concentration for
NF1 (left panel) and NF2 (right panel), calculated by Eq. (5.28). The dashed lines show
the dynamic retained nanoparticle concentration at 2 PVs following the CFT (ocpr),
calculated by Eq. (5.3).
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Figure 65 — Steady-state suspended (C') and retained (o) nanoparticle concentration for
NF3 (left panel) and NF4 (right panel), calculated by Eq. (5.28). The dashed lines show
the dynamic retained nanoparticle concentration at 2 PVs following the CFT (o¢pr),
calculated by Eq. (5.3).

for NF2, NF4, and NF6 are much lower than for NF1, NF3, and NF5. As for the water
relative permeability, the presence of salt is only significant for the lowest nanoparticle

concentration (the endpoint of k,,, for NF2 is notably lower than for NF1).

5.4 IMPACT OF NANOPARTICLE RETENTION ON FOAM FLOW

The semi-analytical solution for NP-stabilized foam flow at steady-state, developed
in Subsection 5.2.2, allows us to obtain the water saturation, apparent viscosity, and
pressure drop profiles for each nanofluid. To compare these results with foam flow (without

nanoparticles), we use the steady-state analytical solution developed in Subsection 5.2.1.

Before presenting the results for nanofluids 1-6, let us examine the effect of nanopar-
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Figure 66 — Steady-state suspended (C') and retained (o) nanoparticle concentration for
NF5 (left panel) and NF6 (right panel), calculated by Eq. (5.28). The dashed lines show
the dynamic retained nanoparticle concentration at 2 PVs following the CFT (ocpr),
calculated by Eq. (5.3).

0.2 0.4 0.6 0.8 1.0

Figure 67 — Relative permeability curves for water (k,,, blue curves) and gas (k,,, green
curves) after nanoparticle injection. The solid lines represent the case without nanoparticles.
The left panel shows the relative permeability curves for nanofluids without NaCl, and
the right panel shows the relative permeability curves for nanofluids with NaCl.

ticles on foam flow while neglecting particle retention (i.e., A = 0). Fig. 68 shows the
steady-state solution profiles for water saturation and foam apparent viscosity. Fig. 69
shows the steady-state pressure drop profiles, where P, = P(L) is the pressure at the
core’s end. The addition of nanoparticles increases the foam’s apparent viscosity, resulting
in a reduction in water saturation along the core and an increase in pressure drop. More-
over, this effect becomes more pronounced as the concentration of injected nanoparticles
increases. Lower steady-state water saturation represents better sweeping efficiency since

more water has been swept from the porous medium.

Now, let us analyze the complete model, taking into account particle retention for
the case without NaCl (NF1, NF3, and NF5); see Figs. 70 and 71. From the saturation
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Figure 68 — Steady-state water saturation (left panel) and foam apparent viscosity (right
panel) profiles. The solution profiles are presented for foam flow (without nanoparticles,
C! = 0) and NP-stabilized foam flow (C? = 0.1, 0.5, and 1.0 wt%) neglecting particle
retention (A = 0).
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Figure 69 — Steady-state pressure drop for foam flow (without nanoparticles, C! = 0) and
NP-stabilized foam flow (C! = 0.1, 0.5, and 1.0 wt%) neglecting particle retention (A = 0).
The left panel shows the pressure drop profiles for P(z) — Pp, where P, = P(L) is the
pressure at the core’s end. The right panel shows the total pressure drop AP = P(0) — Pp.

profiles, we observe that the water saturation along the core is slightly higher (for all
nanofluids) compared to the case without retention. Additionally, there is a decay in
the foam’s apparent viscosity profiles, which intensifies as the core’s end is approached.
These two results are associated with the loss of nanoparticles due to retention, which
reduces their effect on the foam’s apparent viscosity and, consequently, reduces the sweep
efficiency compared to the case without retention. On the other hand, the pressure drop
shows a significant increase, which aligns with the reduction in relative permeabilities
caused by the retained particles. For the case with NaCl (NF2, NF4, and NF6), the results
are similar; see Figs. 72 and 73. However, as this case represents high ionic strength,
nanoparticle retention is higher, leading to a more significant reduction in sweep efficiency

and a more pronounced increase in pressure drop.
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Figure 70 — Steady-state water saturation (left panel) and foam apparent viscosity (right
panel) profiles. The solution profiles are presented for foam flow (without nanoparticles,
C! = 0) and NP-stabilized foam flow accounting for particle retention in the absence of

NaCl (NF1, NF3, and NF5).
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Figure 71 — Steady-state pressure drop for foam flow (without nanoparticles, C! = 0) and
NP-stabilized foam flow accounting for particle retention in the absence of NaCl (NF1,
NF3, and NF5). The left panel shows the pressure drop profiles for P(z) — P;, where
P, = P(L) is the pressure at the core’s end. The right panel shows the total pressure
drop AP = P(0) — Py.

Remark 5.1. Note that nanoparticle loss due to retention has a clear negative impact
on foam flow, as it diminishes the positive effect of nanoparticles in increasing the foam’s
apparent viscosity. Conversely, analyzing the impact of the resulting permeability reduction
is more complex. This reduction can lead to positive outcomes, such as reducing channeling
(preferential paths), as well as negative consequences, such as a decline in injectivity.
Opposite effects of permeability reduction can also be observed in the pressure drop, as

detailed in Section 5.5 ahead.

Remark 5.2. In both laboratory and field tests, higher injection rates are required to

maintain efficient foam flow as the foam’s apparent viscosity increases. However, equipment
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Figure 72 — Steady-state water saturation (left panel) and foam apparent viscosity (right
panel) profiles. The solution profiles are presented for foam flow (without nanoparticles,
C! = 0) and NP-stabilized foam flow accounting for particle retention in the presence of

NaCl (NF2, NF4, and NF6).
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Figure 73 — Steady-state pressure drop for foam flow (without nanoparticles, C! = 0) and
NP-stabilized foam flow accounting for particle retention in the presence of NaCl (NF2,
NF4, and NF6). The left panel shows the pressure drop profiles for P(x) — P;, where
P, = P(L) is the pressure at the core’s end. The right panel shows the total pressure
drop AP = P(0) — Py.

capacity and rock resistance impose a limit on the injection pressure. Thus, although the
high-viscosity nature of foam solutions enhances reservoir sweep efficiency by controlling
gas mobility, it reduces injectivity and can even make flow impossible. In this work, we
do not establish an injection pressure limit or study injectivity decline. The NP-stabilized
foam injection study presented here involves high pressure drop values (see Fig. 69, 71,
and 73), which would be impractical for field applications; however, these pressure values

are compatible with laboratory experiments.
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5.5 INVESTIGATING EFFECTS OF RETENTION AND PERMEABILITY REDUC-
TION ON PRESSURE DROP

As shown in Section 5.4, when particle retention is neglected, nanoparticles improve
the sweep efficiency of the porous medium by increasing the foam’s apparent viscosity.
This results in a lower steady-state water saturation and a higher pressure drop. However,
when nanoparticle retention is considered, two effects occur: (i) the loss of suspended
nanoparticles reduces their impact on p,,,, and (ii) the retained nanoparticles reduce
the relative permeabilities. Mathematically, both effects lead to an increase in water
saturation, which generally decreases the pressure drop compared to a model that neglects
retention. Nevertheless, the reduction in permeability directly increases the pressure
drop (see Eq. (5.33)). As a result, whether the pressure drop increases or decreases when

considering particle retention depends on which of these opposing effects is more dominant.

To better understand the effects of particle retention on the pressure drop profiles,

we study separately:

1. The impact of suspended nanoparticles loss, by comparing a model without retention
(i.e., A = 0) with a model with retention but no permeability reduction (i.e.,
0, =10,=0).

2. The impact of suspended nanoparticles loss and permeability reduction, by comparing

a model without retention with the complete model.

Figure 74 presents the pressure drop profiles for the nanofluids without NaCl (NF1, NF3,
and NF5). In the left panel of Fig. 74, when only the loss of suspended nanoparticles is
considered (solid lines), the pressure drop is lower compared to the case without retention
(dashed lines). In the right panel of Fig. 74, when permeability reduction is also taken
into account (solid lines), the pressure drop is higher compared to the case without
retention (dashed lines), particularly for NF5 (highest nanoparticle concentration). For
the nanofluids with salt (NF2, NF4, and NF6), the results are similar, as shown in Fig. 75.
In this scenario, however, the loss of suspended nanoparticles due to retention is greater.
Consequently, even when only this loss is considered, without accounting for permeability
reduction, a significant difference in pressure drop for NF4 and NF6 is observed compared

to the case without retention; see the left panel of Fig. 75.

Let us quantify the difference in the pressure drop when retention is considered,
compared to the case A = 0. By substituting o = I'C' from Eq. (5.28) into Eq. (5.33), and
after some calculations, the difference between the total pressure drop considering particle

retention (AP) and the total pressure drop neglecting particle retention (APy—g) can be
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Figure 74 — Steady-state pressure drop profiles for NP-stabilized foam flow in the absence
of NaCl (NF1, NF3, and NF5). The left panel compares the model without particle
retention (A = 0) with the model with retention but no permeability reduction (6,, = 0).
The right panel compares the model without particle retention with the complete model.
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Figure 75 — Steady-state pressure drop profiles for NP-stabilized foam flow in the presence
of NaCl (NF2, NF4, and NF6). The left panel compares the model without particle
retention (A = 0) with the model with retention but no permeability reduction (6, = 0).
The right panel compares the model without particle retention with the complete model.

written as

_ _ Mty Lo /L 1o
AP~ APy = 7o lewr /0 st e -5) 4 (5.34)

Analogously, the pressure drop considering retention but with no permeability reduction

(AP, —o) is given by

Uty (L[ 1 1
AP, _o— APy = / — ) dn 5.35
oo = AP = 328 [ () (5.3

Figure 76 presents the total pressure drop for each nanofluid in the three cases. The
numbers on top of each bar indicate the relative difference in pressure drop compared to

the no-retention model.
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Figure 76 — Total pressure drop at steady-state for NP-stabilized foam flow with (left
panel) and without (right panel) NaCl. We study the pressure drop: neglecting particle
retention (APy—), considering retention but with no permeability reduction (AP, —o),
and considering both particle retention and permeability reduction (AP). The numbers
on top of each bar indicate the pressure drop variation in relation to APy—g.

Since the presence of NaCl is associated with higher ionic strength and, consequently,
greater retention, we expect that neglecting particle retention will have a more pronounced
effect in this case. Indeed, when there is no permeability reduction, the variation in pressure
drop APy, —o relative to APy—g is smaller for NF1 compared to NF2, for NF3 compared
to NF4, and for NF5 compared to NF6. All these differences are negative, indicating the
dominance of nanoparticle loss decreasing the pressure drop. When permeability reduction
is considered, neglecting particle retention also has a more pronounced effect in the case
of NaCl. Nevertheless, the variation in pressure drop AP relative to APy—q is positive,

indicating the dominance of permeability reduction increasing the pressure drop.

Based on our findings, models that neglect nanoparticle retention and those that
account for retention but neglect permeability reduction underestimate the pressure drop.
It is worth noting that if we consider the complete model to be closer to reality, the
model that considers only nanoparticle loss results in pressure drop values further from
the actual behavior than the model that entirely neglects the retention phenomenon. The
differences between these pressure drop estimates increase with the ionic strength and the
nanoparticle concentration. Nevertheless, due to the lack of experimental data for higher
concentrations, we employed the same retention parameters for NF5 and NF6 as those
used for NF3 and NF4, respectively. Thus, further investigation is necessary to validate

our results.
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5.6 COMPARING POPULATION BALANCE AND LOCAL EQUILIBRIUM MODELS
UNDER STEADY-STATE CONDITIONS

Let us compare the steady-state model introduced in Section 5.2 with the dynamic
NP-assisted foam flow model proposed in Chapter 3 (with the original relative permeability
functions). In this local equilibrium model, particle retention was neglected. Therefore, to
appropriately compare the results, we analyze Eq. (5.25)-(5.27) without retention (A = 0),
which yields a specific case of the solution developed in Subsection 5.2.2 for the complete
system. In addition, we consider the dynamic model solution for large times after all waves

have reached the core’s end.

In this section, we will refer to the model proposed in this chapter as the PB
(population balance) model and the one proposed in Chapter 3 as the LE (local equilibrium)
model. For the PB model, the initial and boundary conditions are described by Eq. (5.15)
and Eq. (5.16). For the LE model, in which we have only two unknowns (S,, and C), we
also consider the core to be initially saturated with no particles (S, (z,0) = 1, C(z,0) = 0)
and with the same injected nanoparticle concentration (C(0,t) = C'). However, the
injected water saturation S is chosen as the saturation at the core outlet obtained by the

PB model rather than being set as a boundary condition.

Figures 77 and 78 compare each model’s water saturation, foam apparent viscosity,
and pressure drop profiles at steady-state for C! = 1.0 wt%. The blue and gray lines show
results obtained with the same fluid velocities presented in Table 2 (u,, = 1.45-107% m/s
and u, = 1.47-107° m/s), while the red and yellow lines represent results for a higher
gas velocity (u, = 3.0-107° m/s). There is a good agreement between the results, even
considering no bubbles at x = 0 in the PB model. That is, foam is generated very close to
the core’s inlet, and the bubble density can be well approximated by an equilibrium value
Neo. 1t is also possible to observe changes in the solution according to the foam velocity

due to the non-Newtonian behavior of the foam.

To obtain the results of Figs. 77 and 78, we considered a high bubble generation
rate (K, = 0.1 s71). Figs. 79 and 79 show the solution for a lower value (K, = 0.02 s71).
In this case, the LE model does not describe the foam behavior as well at the core’s inlet,

since the foam is generated further along the core.

5.7 DISCUSSION AND PARTIAL CONCLUSIONS

In this chapter, we proposed a new mechanistic model for NP-stabilized foam flow
in porous media, considering particle retention and the resulting permeability reduction.
Analyzing the steady-state simplification of the model, we derived an analytical solution
for the foam flow without nanoparticles and a semi-analytical solution for the complete

case of foam assisted by nanoparticles. This solution allowed for the analysis of water
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Figure 77 — Comparison between steady-state water saturation (left panel) and foam
apparent viscosity (right panel) profiles for the population balance (PB) and local equilib-
rium (LE) models for C7 = 1.0 wt%. The results consider two foam velocities. Retention
was neglected in the PB model (A =0) and K, = 0.1 571,
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Figure 78 — Comparison between steady-state pressure drop profiles for the population
balance (PB) and local equilibrium (LE) models for C! = 1.0 wt%. The results consider
two foam velocities. Retention was neglected in the PB model (A =0) and K, = 0.1 s™*.

saturation, foam apparent viscosity, and pressure drop profiles. Results were obtained for
nanoparticle concentrations of 0.1, 0.5, and 1.0 wt%, both with and without NaCl, using

retention parameters based on experimental data.

When comparing NP-stabilized foam with different nanoparticle concentrations,
higher values lead to increased foam apparent viscosity, reducing steady-state water
saturation and increasing pressure drop, thereby improving the sweep efficiency. Comparing
foam flows with and without nanoparticles, taking retention into account, resulted in
enhanced sweep efficiency only for higher nanoparticle concentrations (0.5 and 1.0 wt%).

For 0.1 wt% the difference is insignificant.

Based on our findings, models that neglect nanoparticle retention and those that

account for retention but neglect permeability reduction underestimate the pressure drop.
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Figure 79 — Comparison between steady-state water saturation (left panel) and foam
apparent viscosity (right panel) profiles for the population balance (PB) and local equilib-
rium (LE) models for C7 = 1.0 wt%. The results consider two foam velocities. Retention
was neglected in the PB model (A =0) and K, = 0.02 s™*.
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Figure 80 — Comparison between steady-state pressure drop profiles for the population
balance (PB) and local equilibrium (LE) models for C7 = 1.0 wt%. The results consider
two foam velocities. Retention was neglected in the PB model (A = 0) and K, = 0.02 s*.

The differences between these pressure drop estimates increase in scenarios with significant
retention (e.g., in the presence of NaCl and high nanoparticle concentration). Considering
retention, while retained nanoparticles increase pressure by reducing permeability, the loss
of suspended nanoparticles decreases pressure by reducing the foam’s apparent viscosity.
Consequently, when considering both nanoparticle loss and reduced permeability, the
pressure drop is higher than in models that ignore retention. In contrast, omitting retention

effects on permeability lowers the pressure drop.

We also compared the semi-analytical steady-state solution for NP-stabilized foam
flow developed in this chapter with a dynamic model solution (for large times). The

comparison, neglecting particle retention, showed excellent agreement.
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6 CONCLUDING REMARKS

In this thesis, we proposed two mathematical models for NP-stabilized foam flow
in porous media: a local equilibrium (LE) model and a population balance (PB) model.
In both cases, the flow dependence on nanoparticle concentration was formulated from the
literature’s experimental data. The LE model is simpler, allowing for a global analytical
solution. The PB model is more complex and considers particle retention and permeability
reduction; therefore, we provide a semi-analytical steady-state solution for this case. Each
model solutions were used to analyze the effect of nanoparticles on foam flow, as detailed

below.

The LE NP-stabilized foam flow model is a non-strictly hyperbolic system of
conservation laws, solved for generic Riemann problem initial conditions. The mathematical
solution changes qualitatively compared to the same model without nanoparticles due to
a contact discontinuity that appears when the nanoparticle concentration changes. All
analytical results are in good agreement with direct numerical simulations. Key industrial
metrics, breakthrough time, and cumulative water production were derived using the
analytical framework. Results show that higher nanoparticle concentrations increase
foam stability and sweep efficiency, enhancing breakthrough time and water production
during pure gas injection. However, this beneficial effect is less pronounced for high
nanoparticle concentration, consistent with literature findings. Counterintuitively, for
water-gas co-injection, nanoparticle addition can reduce breakthrough time under a specific
parameter range with negligible impact on water production. Our results suggest that
optimal conditions to observe enhanced water production in core-flooding experiments
occur in partially saturated cores (Sg € [0.5,0.6]) and a co-injection water/gas ratio of up
to 40/60% (S, € [0,0.4]).

We also proposed a simplified LE model for NP-stabilized foam flow using quadratic
Corey permeabilities. The solution structure remains the same as the more realistic
model. This simplification enabled algebraic expressions for analyzing solution types and
constructing water saturation profiles, facilitating an uncertainty quantification (UQ) and
sensitivity analysis (SA) study with significantly reduced computational costs. Notably,
convergence was achieved for both UQ and SA, even with the computationally intensive
Monte Carlo method. We consider three quantities of interest (Qols): breakthrough time,

water production, and pressure drop.

As expected, adding nanoparticles increased breakthrough time, though the effect
diminished at higher concentrations. Pressure drop also increased significantly with
nanoparticles, reaching approximately three times the value observed without them.
WP with nanoparticles was consistently higher, with non-overlapping 90% prediction

intervals for up to three breakthrough times, demonstrating the statistical feasibility
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of experimentally measuring nanoparticle effects. Sensitivity analysis revealed that for
foam without nanoparticles, the foam-related parameter had the greatest influence on
breakthrough time and WP. With nanoparticles, the breakthrough time sensitivity to the
foam-related parameter decreased, and the endpoint relative permeabilities became more
relevant. Over time, WP’s sensitivity to the foam-related parameter increased while the
sensitivity to other parameters decreased. The maximum pressure drop was most sensitive

to gas endpoint relative permeability and nanoparticle concentration.

For the PB NP-stabilized foam flow model, we obtained a semi-analytical solution
under steady-state conditions, simplifying to an analytic solution in the absence of nanopar-
ticles. This framework enabled the analysis of water saturation, foam apparent viscosity,
and pressure drop profiles for nanoparticle concentrations of 0.1, 0.5, and 1.0 wt%, with
and without NaCl, using retention parameters derived from experimental data. Higher
nanoparticle concentrations increased foam apparent viscosity, reducing steady-state water
saturation and increasing pressure drop, which improved sweep efficiency. However, the
comparison between foam flows with and without nanoparticles revealed enhanced sweep
efficiency only for higher concentrations (0.5 and 1.0 wt%), while 0.1 wt% showed negligible
differences. The semi-analytical solution aligned well with the solution for the dynamic

LE model (for large times) when nanoparticle retention was neglected.

Incorporating nanoparticle retention revealed that the loss of suspended nanoparti-
cles diminishes their positive effect on foam’s apparent viscosity, while retained particles
reduce permeability. Mathematically, these effects increase water saturation, generally
leading to a lower pressure drop compared to models that ignore retention. Nevertheless,
the reduction in permeability directly increases the pressure drop, so whether the pressure
drop increases or decreases depends on which of these opposing effects is more dominant.
Notably, models neglecting nanoparticle retention or omitting permeability reduction
underestimate pressure drop. This underestimation becomes more pronounced in cases
with significant retention, such as when NaCl is present or the nanoparticle concentration
is high.

6.1 LIMITATIONS

The use of foam stabilized by nanoparticles for subsurface applications is still in
the laboratory stage. This technique presents some limitations regarding the costs and
technology involved in large-scale production [34]. It is important to note that while higher
pressure gradients can lead to increased water production, excessively high values may
result in injectivity loss. Therefore, determining the optimal nanoparticle concentration
that effectively stabilizes foam without causing detrimental retention during displacement

is a key challenge for NP-stabilized foam.

The specific limitation of this study is related to the lack of data on NP-stabilized
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foam flow in porous media, particularly experiments with nanoparticle retention tests in
the presence of a gaseous phase. We calibrated our models based on several literature
experiments [19,22,44,120], so differences between the rocks in each experiment, in addition

to other experimental conditions, can affect the reliability of the model’s predictions.

Since foam flow assisted by nanoparticles is a recent area of study, there are only a
few models available, and they are rarely validated against experimental data [144]. So far,
we did not find any experiments in the literature that could be used for such a comparison.
Advancing research in this direction depends on new core-flooding experiments with foam
and nanoparticles, which are quite challenging. Observing the spatial propagation of
foam front requires Micro Computational Tomography or numerous precision pressure
measurement equipment, making these experiments time-consuming and costly. Analytical
investigations, such as those discussed here, can assist in predicting flow behavior and

optimizing the design of these experiments.
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