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No computer has ever been designed that is ever aware of what

it’s doing; but most of the time, we aren’t either.

Marvin Minsky



ABSTRACT

Modeling cardiac electrophysiology plays a crucial role in advancing non-invasive
diagnostics and enhancing our understanding of heart function. Historically, models
describing excitable cells through systems of Ordinary Differential Equations (ODEs)
have been the standard in electrophysiology modeling. These models range from detailed
representations of ion channel dynamics to simplified reduced-order models that capture the
behavior of excitability phenomenologically. In this work, we compare a fast reduced-order
model with data-driven and physics-informed neural networks to assess their effectiveness
as efficient replacements for numerical solutions. For this, the FitzHugh-Nagumo model was
used, and scenarios with increasing complexity were studied. The networks were trained
using numerical data and knowledge of model physics, derived from the ODEs. Additionally,
several techniques were employed to improve training, including architecture optimization,
increased point density in regions of high error, and time-domain splitting. Inference
was conducted using the state-of-the-art TensorRT SDK to speed up model inference,
leveraging tensor core matrix-matrix specialization to ensure maximum performance. We
observed up to a 1.8x speedup compered to numerical models optimized and implemented
in CUDA, with minimal loss in accuracy. These gains highlight valuable use cases for
neural network emulators, as faster substitute for numerical methods when complexity
can be controlled, while still emphasizing the prominence of equation-based modeling in

cardiac electrophysiology in general due to their flexibility.
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1 INTRODUCTION

1.1 Motivation

Cardiac diseases are the leading cause of mortality worldwide, responsible for
tens of millions of deaths annually (World Health Organization, 2024). Early detection
through preventive exams plays a crucial role in mitigating the impact of these diseases by
identifying potential risks before they manifest into severe conditions. However, traditional
diagnostic procedures, while effective, are often invasive, carrying associated risks and
discomfort for patients. As an alternative, advancements in computational modeling and
the development of digital twins offer promising solutions (COOREY GLEN, 2022), (SEL
K., 2024) ,(LEPPER; BUCK, 2022). For instance, the Virtual Electrophysiological Study
can assess arrhythmia risk without the need for invasive procedures, such as catheter
insertion and continuous heart stimulation, required in a conventional Electrophysiological
Study. These digital exams provide a non-invasive, risk-free approach to monitoring and
predicting cardiac health, potentially revolutionizing the way we approach cardiac disease

prevention.

These virtual studies rely on large-scale models of the heart, typically represented
by meshes comprising millions of volumetric elements. These models are generally based
on partial differential equations (PDEs) and ordinary differential equations (ODEs), which
are solved numerically through computationally intensive methods. Furthermore, due to
uncertainties in parameter estimation and model analysis (CAMPOS et al., 2020), multiple
simulations are often required, further increasing computational costs. To address these
challenges, this work explores the use of neural networks to accelerate the computational

processes.

The use of neural networks to solve differential equations is an emerging field that
benefits a lot from recent advancements in other domains employing neural networks.
Techniques such as Physics-Informed Neural Networks (PINNs) (RAISSI; PERDIKARIS;
KARNIADAKIS, 2017b) are gaining traction, offering more efficient training methods for
these models. Additionally, the development of specialized hardware designed to accelerate
neural network inference (QIAN et al., 2022) is further enhancing the feasibility of this
approach.

1.2 Objectives

The objective of this work is to investigate how these technological advancements
can enable the application of neural networks to accelerate models like those used in the
Virtual Electrophysiological Study, thereby making them more efficient and accessible for

cardiac disease prevention. In particular we have the following objectives:
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O1: Explore the application of artificial neural networks to emulate models such as

the FitzHugh-Nagumo (FHN) model used in cardiac electrophysiology simulations.

02: Investigate the use of techniques like Physics-Informed Neural Networks to

enhance the training of these models.

03: Develop neural network emulators leveraging recent advancements in neural

network specialized hardware to be efficient alternatives to numerical solution.

1.3 Literature Review

The use of machine learning techniques to solve systems of differential equations
has been gaining increasing attention in recent years (MENG et al., 2022). This approach
seeks to leverage the recent developments in machine learning techniques and hardware
to find solutions to complex differential equations, which traditionally require intensive
numerical methods, in a more efficient manner. In this context, two primary approaches
stand out: purely data-driven models and techniques that integrate prior knowledge of the
system into the learning process of the models. Of special interest are Physics-Informed

Machine Learning (PIML) models, trained by incorporating the known system equations.

Pure data-driven models models—spanning from basic regression techniques to
more sophisticated algorithms—are trained on large datasets, that may consist of data
synthetically generated from computational simulations or from real-world observation.
These models learn the relationships between input and output variables solely based on
the provided data. This approach has been particularly successful in areas with abun-
dant and reliable empirical data, where advanced machine learning techniques, such as
linearly recurrent autoencoder networks (OTTO; ROWLEY, 2019), have proven effective
in modeling complex nonlinear dynamics. Additionally, data-driven approaches have
demonstrated the capability to recover original differential equations from noisy and incom-
plete datasets, offering a powerful tool for model discovery and calibration (GLASNER,
2019; MASLYAEVA; HVATOVA, 2019). Specifically in the field of electrophysiology,
data-driven neural networks have been successfully used to speed up action potential
simulations (GRANDITS et al., 2021).

However, purely data-driven models have significant limitations. The accuracy and
generalization capabilities of these models heavily depend on the quality and quantity of the
training data. When dealing with observational data, such extensive datasets often do not
exist or include significant noise, making it difficult to achieve accurate and generalizable
models, often requiring stochastic approaches (RAISSI; PERDIKARIS; KARNIADAKIS,
2017a). In the case of synthetic data, producing these large datasets with numerical models
can be prohibitively expensive and computationally intensive. Additionally, in fields where
the underlying processes are governed by well-established physical laws, the exclusion of

this knowledge from the learning process can result in predictions that are inconsistent
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with physical realities.

To address these challenges, Physics-Informed Machine Learning has emerged as a
promising approach that integrates prior physical knowledge into machine learning models
to enhance training. By incorporating physical laws and constraints directly into the
learning process, PIML enhances the accuracy and generalization capabilities of models,
even when training data is scarce or noisy. In Wu, Sicard e Gadsden (2024) and Meng et
al. (2022) a comprehensive review of the applications of PIML is provided, highlighting
its effectiveness in areas such as anomaly detection, condition monitoring, and solving

complex physical problems, while also discussing some limitations.

A particularly relevant example of Physics-Informed Machine Learning are the
Physics-Informed Neural Networks. PINNs extend the concept of integrating physical laws
into machine learning by embedding these laws directly into the training loss functions of
neural networks. This approach was notably advanced in the work of Raissi, Perdikaris
e Karniadakis (2017b), who demonstrated that PINNs could effectively solve partial
differential equations (PDEs) with limited data. Since then, PINNs have been successfully
applied in diverse fields such as fluid dynamics (RAISSI; PERDIKARIS; KARNIADAKIS,
2019), structural analysis (HAGHIGHAT et al., 2021), and electromagnetic simulations
(CHEN et al., 2020), where they offer a powerful alternative to traditional expensive
numerical solutions. By incorporating the governing equations as well as known boundary
and initial conditions (WANG; YU; PERDIKARIS, 2021), PINNs enable model training

even with scarce data.

PINNs are particularly promising in the field of Computational Electrophysiology,
where data is often scarce but the underlying system dynamics are well-understood and
thoroughly studied (PLANK; MESAROVIC; TRAYANOVA, 2020; PASSERINI, 2020). In
this context, PINNs offer a practical solution by integrating prior knowledge of the governing
equations, such as those describing cardiac and neuronal electrical activities, directly into
the neural network’s training process. This capability allows PINNs to efficiently leverage
existing physiological models and experimental data to enhance predictive accuracy and
reduce the reliance on large datasets. For example, PINNs have been successfully used
to characterize cardiac electrophysiology, providing valuable insights into the electrical
behavior of the heart and aiding in the study of arrhythmias and other cardiac conditions
(SAHLI; RAISSI; KARNIADAKIS, 2020). Furthermore, recent advances in hardware,
such as the advent of Tensor Cores, have allowed even faster inference for neural networks
(WANG et al., 2021), further highlighting their potential to complement traditional

numerical solvers in those extensive scenarios.
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2 BASIC CONCEPTS

2.1 Action Potential In Excitable Cells

The action potential is a fundamental phenomenon that occurs in excitable cells
such as neurons, muscle fibers, and certain glandular cells. Action potential refers to
the rapid and transient change in the membrane potential of a cell in response to an
electrical stimulus, allowing cells to transmit signals or initiate specific processes like

muscle contraction or hormone secretion.

In its resting state, an excitable cell maintains a stable negative membrane potential,
usually between —60 to —90 mV, due to the unequal distribution of ions across the cell
membrane. This potential is largely maintained by the sodium-potassium pump (Na® /K™
ATPase), which actively transports sodium (Na™) ions out of the cell and potassium (K)
ions into the cell. This creates steep concentration gradients of the ionic species between

intracellular and extracellular mediums, causing the negative resting potential.

When a stimulus reaches a critical threshold, voltage-gated sodium channels open,
leading to a rapid influx of Na* ions into the cell. This sudden influx of positive ions
causes a sharp depolarization, where the membrane potential becomes positive, typically
reaching around +30 mV. This depolarization marks the initiation of the action potential.
Once the peak is reached, sodium channels close and voltage-gated potassium channels
open, allowing Kt to flow out of the cell. This outward flow of potassium ions returns the
membrane potential back to its negative resting state, a process called repolarization. In
some cases, the membrane potential may briefly undershoot, becoming more negative than

the resting level, a phase called hyperpolarization. This process is shown in Figure 1.

The action potential is an all-or-nothing event, meaning that once the threshold
is reached, the full depolarization-repolarization cycle occurs in a predictable, consistent
manner. If the stimulus does not reach this threshold, no action potential is triggered.
After firing, cells enter a refractory period during which their excitability is significantly
reduced. In the absolute refractory period, sodium channels are inactivated, preventing
any new action potential, while during the relative refractory period, a stronger stimulus
is required to trigger another action potential. Repetitive firing occurs when a sustained
stimulus induces multiple action potentials, with the frequency of these spikes encoding

information about stimulus intensity.

This excitable dynamics are crucial to allow for the correct function of electro-
physiological systems where cells are connected with each other along tissues, and may
stimulate each other. In the brain, cells are arranged in a network topology, and process
information of input cells to dictate the stimulus given to cells down the line, and the
activation or not of each cell along the network is associated with many brain process.

Here the all-or-nothing behavior is crucial, being the core component of the information
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Figure 1 — Representation of an action potential and its principal characteristics. The top
figure shows a large stimulus causing an action potential (suprathreshold) followed by a
smaller stimulus that doesn’t cause an AP (subthreshold). The middle figure illustrates a
second stimulus applied while the cell is still in the recovery phase from the first stimulus,
preventing the generation of another AP. The bottom figure demonstrates a second stimulus
applied after the first one has completely ended, resulting in another action potential. Each
phase of the action potential is shown separately, highlighting the different timescales.

processing, aggregating the stimulus received from all connected cells in a 0 or 1 response.
In the heart, the action potential causes cells to contract, and the correctly synchronized
propagation of an action potential wave along the heart tissue triggers a heartbeat. Here

the refractory period is crucial for forcing the propagation to be unidirectional.

Action potentials form the electrical basis of key physiological processes, playing a
central role in communication within the nervous system, regulating cardiac rhythms, and
driving muscle activity. Thus, the precise coordination of ion channels and their timings is
essential for the function of excitable cells, and any disturbance in this balance can lead to

abnormal cellular behavior or pathophysiological conditions, such as inducing arrhythmias
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in the heart or impairing neural signaling.

2.2 Hodgkin-Huxley Model

The study of action potentials in excitable cells can be greatly enhanced by
employing detailed biophysical models that capture the underlying ionic mechanisms,
facilitating the investigation of the generation and propagation of action potentials. One
of the most celebrated Action Potential models in electrophysiology is the Hodgkin-Huxley
(HH) model (HODGKIN; HUXLEY, 1952), developed by Alan Hodgkin and Andrew
Huxley in 1952. This model was formulated based on experimental data from the squid
giant axon and revolutionized our understanding of neuronal activity by providing a

quantitative description of the ionic currents that contribute to action potentials.

The Hodgkin-Huxley model is grounded in the biophysical principles of membrane
conductance and ion channel dynamics. It describes the behavior of the membrane potential
V' by accounting for the flow of three main ionic currents: the sodium current (Iy,), the
potassium current (I ), and a leakage current (I1). These currents are modeled as
functions of voltage-dependent conductances and driving forces, as shown in the following

set of coupled differential equations:

Cm‘i;t/ = —(Ina + Ik + I0) + Leas, (2.1)
Ing = gNamgh(V — Ena), (2.2)

Ix = gen*(V — Eg), (2.3)

I =g.(V = Ep), (2.4)

where C,, represents the membrane capacitance, and I.,; denotes an external stimulus
current. The variables m, h, and n are gating variables that govern the opening and closing
of ion channels, with their dynamics described by first-order differential equations. gy,
Jr, and gr, represent the maximum conductances of the sodium, potassium, and leakage
channels, respectively, while Fy,, Fk, and E}, are the corresponding reversal potentials

for these ions.

The gating variables (m, h, and n) follow sigmoidal activation and inactivation
kinetics, depending on the membrane voltage. Their time evolution is given by equations

of the form:

dx
o =0s(V)(1 =) = B (V)e, (2.5)

where x represents m, h, or n, and a, and [, are voltage-dependent rate constants that

determine the transition probabilities between open and closed states of the ion channels.
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The Hodgkin-Huxley model captures the full action potential waveform, including
the rapid depolarization phase, the overshoot, and the subsequent repolarization and
hyperpolarization phases. It is able to describe all the key dynamics of excitability:
threshold behavior, refractory periods, and repetitive firing, making it a valuable tool for

understanding excitable tissue behavior.

The strength of the Hodgkin-Huxley model lies in its biophysical detail and its
ability to provide a mechanistic understanding of action potentials. By specifying the
ion conductances and reversal potentials, the model can be adapted to various types of
excitable cells. For example, modifications to the channel kinetics and conductances allow
the model to be applied to neurons with different firing patterns or to cardiac cells with
distinct action potential morphologies, or even to test the effect of drugs that influence
the ionic channels. The model’s utility in both theoretical and experimental contexts has
led to its widespread adoption in neuroscience and cardiac electrophysiology. Figure 2
illustrates the action potential generated by the Hodgkin-Huxley (HH) model under a
typical external stimulus, with the separate contributions of the sodium, potassium, and

leakage currents depicted.

The Hodgkin-Huxley model is a classical example of a mechanistic model in
biological systems. Comprising four coupled ordinary differential equations, it provides a
detailed and accurate description of the ionic currents and gating dynamics underlying

action potentials.

2.3 FitzHugh-Nagumo: A Surrogate Mathematical Model

While the Hodgkin-Huxley model provides a detailed and mechanistic description
of the ionic currents underlying action potentials, its complexity—arising from four
coupled nonlinear ordinary differential equations—can make it computationally intensive,
particularly when modeling large networks of neurons or cardiac cells. To address this

challenge, simplified models like the FitzHugh-Nagumo (FHN) model were developed.
The model developed by Richard FitzHugh and J. Nagumo in the 1960s, serves

as a mathematical surrogate, capturing the essential dynamics of excitability and action
potentials with reduced complexity. The FHN model reduces the detailed ionic currents
and gating variables from the HH model into a simplified framework, focusing on the key
features of excitability and action potential generation. The original HH system, described
by the membrane potential V' and three gating variables m, h, and n, is condensed
into a two-dimensional system by retaining the membrane potential V' and introducing
a recovery variable W. This simplification reduces the dimensionality of the problem,
making the system easier to solve numerically and analyze analytically, although it still

lacks a complete analytical solution.

The resulting FHN model captures the qualitative dynamics of action potentials,
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Hodgkin-Huxley Model: Membrane Potential, Currents, and Gating Variables
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Figure 2 — Hodgkin-Huxley model behavior for commonly used parameters (SICILIANO,
2012), including continuous stimulus. The top figure shows the membrane potential;
two action potentials are observed. With continuous stimulus, a new action potential is
generated as soon as the refractory period from the last one ends. The middle figure shows
the current in each ionic channel, illustrating the contributions of sodium and potassium
channels to the overall action potential, and a minor contribution of the leak channel. The
bottom figure shows the gating variables, highlighting the dynamic changes in ion channel
states that underlie the fast depolarization and slow repolarization phases.

including the all-or-none response, through a set of coupled ordinary differential equations:

du

S =UU =) (1 =U) =W+ L, (2:6)
AW
= (BU = W), (2.7)

here, U represents the membrane potential, analogous to V' in the HH model, while W
captures the slower recovery process. The cubic nonlinearity in the equation for U is crucial
for reproducing the threshold behavior characteristic of excitable cells. The parameters
«, B, v, and € govern the system’s response and can be adjusted to explore different

physiological scenarios or simulate the effects of various external stimuli.

While the Hodgkin-Huxley model provides a more detailed representation of the
action potential, the FHN model is still capable of reproducing the phases of the action

potential waveform—depolarization, re-polarization, and recovery from hypers+hooting —
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while retaining the essential excitability dynamics in this simpler form. The model’s cubic
nonlinearity captures the all-or-none response, while the two-variable system enables a
simplified description of the excitation and recovery process, making it computationally
efficient without sacrificing the qualitative behavior of excitable cells. The simplicity of
the FHN model allows for clear phenomenological interpretations for its parameters in
the context of excitable cells, such as neurons and cardiac myocytes. For example, K
influences membrane excitability, & and [ determine recovery kinetics, and e controls the

recovery timescale.

In this work, we explore the parameter space of the FHN model, focusing on
how variations in initial conditions U, and Wy, as well as the parameter K, influence
the system’s behavior. Figures 3 showcase model behavior under single and continuous
stimulus, Figures 4 and 5 illustrate the model’s behavior under different initial conditions
and parameter settings used in this work, showcasing its flexibility and utility in simulating

excitable dynamics.

Single Stimulus Continuous Stimulus

— — uw
— w — wi)

Values (U(t), W(t))

50
Time (ms)

Figure 3 — FHN model behavior under single (left) and continuous stimuli (right).
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Figure 5 — FHN model phase plane analysis.
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2.4 Numerical Methods

Most mechanistic or phenomenological action potential models, such as the HH
and FHN, are given by non-linear systems of ODEs that do not permit analytical solutions.
A common alternative is to use numerical methods (BUTCHER, 2016), to approximate
the solution of these temporal derivatives by evaluating changes over small time intervals.
Many such methods incorporate the Taylor series expansion, which approximates functions

through their derivatives. Consider a differential equation of the form:

dy

E - f(t7y>‘

Using the approximation obtained by the Taylor series expansion of y(t + At)
around ¢, truncate after the first term, we substitute the derivative, yielding the Euler
Method:

Yn+1 = Yn + Atf(tn’ yn)7 (28)

where v, represents the approximation of y at time t,, and At is the time step. Being a
first-order method, the scale of the local associated error is given by the truncated error
term O(At?), yielding an global error of O(At), meaning that for applications needing

high accuracy, very fine time steps are required.

2.5 Data-Based Models: Regressors

In addition to conventional differential equation models, data-based models, such
as regressors, have emerged as viable alternatives for analyzing and predicting complex
systems. The process of obtaining a model that best explains a given set of observed data
is known as regression, and the resulting models are termed regressors. Regressors seek to
learn patterns directly from the input-output mapping (X — Y) available in the training
data.

The regression process involves fitting coefficients to a specific base function to

map the observed X — Y relationship:

Y = f(X, B), (2.9)

here, X and Y represent the training data, f is a base regression function, and f is the
set of coefficients to be determined during training. The goal of training a regressor is to
minimize a loss function that encapsulates the model’s ability to fit the data set. L, error

functions are commonly used, with the form:

=

P

L= (it - i) (2.10)
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Thus, training a regressor model is essentially an optimization problem, with several
approaches available. For models with simpler base functions, where the coefficients appear
linearly, such as in polynomials and logarithms, linear regressors are frequently employed to
take advantage of this simplicity. A common method is least squares minimization, where
the loss function, containing the base functions, is easily differentiable. For a polynomial

base function of degree n with n + 1 coefficients 3, the loss function can be expressed as:
L= Y- X33 (2.11)

which is known as the Ls-norm squared. Minimization is performed by finding the point

where the gradient of the function is zero, representing the minimum point:
VL = —2XT(Y — X) =0, (2.12)
solving for 3, we find the optimal set of coefficients:

B =(XTX)"'X"TY. (2.13)

However, base functions with linear dependence between coefficients may not
be sufficient to explain the complex behavior of certain problems. In such cases, the
minimization problem becomes more complex, resulting in a nonlinear system that is
difficult to solve. A common strategy is to use the Gradient Descent Method (BOYD;
VANDENBERGHE, 2004), where the parameters § are adjusted iteratively in the direction
opposite to the gradient of the loss function L. This is expressed by updating the
parameters:

where 7 is the learning rate. This method seeks to find the optimal values of g that
minimize the loss function and, thus, optimize the model’s ability to fit the training data.
It is worth noting that the calculation of the gradient of the loss function is still required,
involving differentiation of the base function with respect to the coefficients. In some
regressor models, this task is trivial, but in other cases, specific numerical differentiation

techniques may be necessary.

2.6 Neural Networks

Neural networks, a specific type of regressor model, stand out for their remarkable
ability to capture complex patterns in the X — Y relationship (HAYKIN, 2001). Inspired
by the functioning of the biological nervous system, they consist of processing units called
neurons, organized in layers, that perform mathematical operations on inputs to produce
outputs. The learning capability of neural networks is achieved by adjusting the weights

associated with connections between neurons.
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Mathematically, a neural network model can be expressed as a composition of

chained functions:
Y(X) = f(L) (f(Lfl) ( .. f(2) (f(l)(X, W(l)), W(Z)) - ;W(Lfl)) ,W(L)) , (2.15)

here, each f represents the transformation applied by the i-th layer of the neural network.
The first layer f(© operates on the input values X, and the result is successively operated
upon by subsequent layers until the final layer, whose output is Y'; this process is called
the forward pass. The w® are the weights associated with each layer that need to be

adjusted.

In most cases, the applied transformations consist of a linear transformation followed

by a nonlinear activation function, that can be described with:
fO = f(XD W), (2.16)

where w(¥ is the matrix of coefficients for the linear transformation of the i-th layer. The
activation function f is nonlinear, and common choices include the hyperbolic tangent
tanh(z) and the ReLU function max (0, z). Figures 6 illustrate a general neural network

model.

III])llt L‘cl)"t‘»l' Hidden Layer Ou’[put L-a}r(‘l‘

N - A
aj = [l wizi) y. = g(X 0 wika;)

Figure 6 — A common neural network architecture represented as a typical graph scheme.

The input x is first linearly transformed with a tensor of weights W, then a nonlinear

function f is applied, and finally another linear transformation occurs to get the shape of
the output.

The activations functions are predefined, and the training process involves deter-
mining the coefficients w® for each layer. Therefore, training a neural network is an

optimization process where the goal is to determine the linear transformation coefficients
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in each layer that minimize a loss function, for example:

L(X,)Y,w)=|]Y — &) (f(L_l) ( P (f(l)(X, W(l))),W(2)) ,...,W(L_l)) ;W(L)) l|2-
(2.17)

In the case of neural networks, the optimization process is particularly complex due
to the large number of coefficients to be adjusted for each layer, which implies an N x N
matrix of coefficients to be optimized. Another challenge is the difficulty in differentiating
the loss function with respect to each component, due to the nonlinear relationships
introduced by activation functions and the chained nature of the model. Consequently,
the optimization process for neural networks typically employs a gradient descent method
paired with a differentiation technique called backpropagation, for calculating the partial

derivatives of the chained function.

The partial derivative of the loss function with respect to the output of the last

layer, denoted as 6(%), can be computed as:

- of@)”

Error propagation to previous layers is performed iteratively. For the i-th layer,
the partial derivative of the error with respect to the output of that layer, denoted as 6@,

can be expressed as:
56 — (W<z'+1))T5(z'+1> O (X 0w

where f'®) represents the derivative of the activation function applied in the i-th layer.

Gradients with respect to the parameters w¥ are then calculated for each layer
using the accumulated partial derivatives. For the i-th layer, the gradient is given by:
oL : T
Bt () Y (Rl )
5 = O (re)". (2.18)
These partial derivatives are used to update the weights during the optimization process
with the gradient descent method (SGD), adjusting the model parameters in the direction

of the negative gradient of the loss function:

0L

— 2=, 2.1
U (2.19)

W; < W,_1

However, in neural networks, SGD is often not enough (BOTTOU; CURTIS;
NOCEDAL, 2018). SGD updates the weights by following the direction of the negative
gradient, but it relies on a fixed learning rate and may struggle with issues like slow
convergence, getting stuck in local minima, or oscillating around saddle points, especially

in complex, high-dimensional spaces typical of deep learning models.

To address these issues, more sophisticated algorithms like Adam (Adaptive Moment
Estimation) (KINGMA; BA, 2015) are often preferred. Adam is a combination of two
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other optimization methods: RMSProp, which adjusts the learning rate using a moving
average of squared gradients to prevent updates from becoming excessively large or small,
and SGD with momentum, which introduces a momentum term through a moving average

of gradients to smooth updates and enhance convergence.

For the Adam method, in a given iteration i, the gradient of the loss function L(w)

with respect to the parameters w is first computed:

.<_87L( )
Gi Ow Wi )-

Then the first moment estimate m;, a moving average of the gradients, is updated

using the equation:

m; < Pimi—1 + (1 — B1)gs,

where (3; is commonly set to 0.9 and regulates the decay rate of this average. This is
the same term employed in SGD with momentum to smooth learning by leveraging past

gradients.

Similarly, the second moment estimate v;, a moving average of the squared gradients,

is updated as follows:

v; < Povio1 + (1 — 52)91-27

where 35 is typically set to 0.999, also controlling its decay rate. This is the same term

present in RMSProp to control the magnitude of the updates.

Finally, the parameters w are updated using:

nms;
NoE

where 7 denotes the learning rate, and € (a small constant, typically 107®) ensures numerical

Wil < Wi —

stability. This sophisticated adaptive mechanism allows Adam to efficiently navigate
complex loss landscapes typical in neural network training, dynamically accelerating
convergence in flatter regions of the loss surface and slowing down in steeper areas, leading

to more efficient optimization.

The universal approximation theorem (HORNIK; STINCHCOMBE; WHITE, 1989)
asserts that a feedforward neural network with a single hidden layer, containing a finite
number of neurons, can approximate any continuous function on compact subsets of
R™, given a non-linear activation function such as the sigmoid or ReLLU. This theorem
highlights the remarkable capacity of neural networks to model a wide range of functions,
applicable to both regression and classification tasks. Although a single hidden layer is

theoretically sufficient for function approximation, any practical use would require an
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impractically tall single layer, therefore increasing the number of hidden layers is often

preferred.

Large models with more hidden layers have more expressive power and can learn
more intricate patterns, however they are harder to train and more expensive to use once
trained. Various different kinds of network topologies have been developed to fine-tune the
neural network’s capabilities for specific applications. Notable developments include, Large
Language Models (LLMs) (BROWN et al., 2020), very deep networks with transformer
units (VASWANTI et al., 2017), which have revolutionized natural language processing
by efficiently handling long-range dependencies and enabling parallel processing, and
convolutional neural networks (CNNs) (KRIZHEVSKY; SUTSKEVER; HINTON, 2012),

which excel in image recognition tasks due to their ability to learn spatial hierarchies.

2.7 Physics-Informed Neural Networks (PINNs)

Physics-Informed Neural Networks are a class of neural networks designed to solve
problems where the governing equations of a system are known. Most dynamic systems of
interest can be described by a set of differential equations, derived from conservation laws,
known physical phenomena, or empirical observation. Traditionally, neural networks rely
purely on data for training, but PINNs leverage this prior system knowledge, incorporating
the governing equations directly into the training process. This allows the network to learn
solutions that respect both the observed data and the underlying physical laws, making
them highly effective for modeling physical systems.

Mathematically, PINNs enforce the system governing equations, ODEs or PDEs,
with a new term in the loss function that accounts for the residual of the network’s
prediction in relation to the prescribed equations. Consider a system described by the
PDE:

Nw)=0, u=u(z,t), (2.20)

where A (u) represents a differential operator applied to the unknown solution u(z,t). A
new term can be introduced to the loss function, to minimize the residuals between the

network’s prediction u,, and the governing differential equations, over a solution space w:

Lonysics = /w N (1) deo. (2.21)

This new term enforces the system’s physical constraints by penalizing deviations from
the expected behavior dictated by the governing differential equation. It is important to
note that A is a differential operator, that is, it is described by a function of one (ODEs)
or more (PDEs) derivatives of the solution function u(x,t). Therefore, the minimizing
term is also a differential function, requiring the derivatives of the network’s prediction in
relation to its arguments, and this is computed using automatic differentiation (see section
2.8).
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For instance, consider this form for the operator:

o
ot V@xQ

where u(x,t) is the unknown solution, v is a physical parameter (e.g., diffusion coefficient),

N (u) — f(xz,t) =0, (2.22)

and f(x,t) is a source term. The goal is to minimize the residual of this PDE:

TN (Bunlet)  Pu(et) i
Lphysics — ~/O /0 ( ot -V - f(flf, t) dx dt. (223)

0x?

Of course, this residual function is too hard to track analytically, so a numerical
approximation is made, estimating the error over the domain by sampling a set of points

from the parameter space:

N, 2 2
Liphysics = ]\1[r ; <8uw(a:?,tz) _Y ugfg“tz) - f(%h)) ; (2.24)
where N, is the batch size, a training meta-parameter, and at each sample 4, the residual
function is evaluated. The sampling process is arbitrary but generally seeks to produce
homogeneous samples, and more sophisticated methods can dynamically sample more
from higher error regions. Other kinds of residual functions can also be used, penalizing
more or less sharp deviations.

In order to perform that evaluation, the derivative of the neural network’s prediction

6uw(xi,ti) BQuW(mi,ti)
o and =55

approximation. This is done by assuming the predicted solution u(x, t) to be differentiable

in relation to its parameters

must be known, which also requires an

— a reasonable assumption, since all the activation functions are differentiable — and
using automatic differentiation (AD) to get approximations of the derivatives required for

the computation.

To analytically and numerically fix a solution among a family of solution functions
in a differential equation, an initial condition or boundary condition is required. With
PINNS, it is no different; the boundary conditions are also enforced in the solution. Each
boundary condition enforces another governing equation but applied only to a certain
part of the parameter space. These equations may also include functions of the input
parameters, allowing them to be parameterized, or derivatives of the output, requiring AD
as well. For the example system, the boundary condition constraints enforce the initial

condition of the solution at ¢ = 0 and a Neumann boundary at the borders €:

Lic = /OX (uw(z,t = 0) — fi(z,m))* dr, (2.25)

= [ (W - f2<t,72>)2 i, (2.26)

where f; and fo are arbitrary functions, and ~; and v, are coefficients that can be fixed or

an input of the neural network, allowing for boundary condition parametrization. Similar



26

to the main physics constraint, the boundary terms are also approximated using a finite

number of points:

N,
LBI Z Uy l‘“ = ) — fl(ZEi,’yl))2, (227)

Ly = (M —fg(tm)) . (2.28)

7” =1
The final training loss function includes the main physical constraint, the boundary

constraint, and may or may not also include a traditional data constraint:

L = ¢y Lpnysics + ¢2Lp1 + ¢3Lp2 + ¢4 Lpaa, (2.29)

where vector ¢ is a set of weights, with one for each term of the loss function. These
weights are training meta-parameters, they can be fixed or dynamically adjusted during
the training process. However, it is common to have the boundary terms be much more

weighted than the others, to force an early fixation of the solution.

In summary, PINNs provide a powerful framework that blends data-driven machine
learning with the underlying physics of a system, allowing for the efficient solution of
differential equations while respecting physical laws. By incorporating both empirical
data and known governing equations, PINNs significantly reduce the need for extensive
datasets, often required by purely data-driven models. Their flexibility and ability to
generalize across various physical systems make them a promising tool for advancing
the fields of scientific computing, engineering, and medicine, where accurately modeling

complex, dynamic processes is crucial.

2.8 Automatic Differentiation

Automatic differentiation (AD) (BAYDIN et al., 2018) is a computational technique
for calculating the derivatives of functions defined by computer programs. It is one of the
core components of neural network training and physics-informed learning. AD is neither
symbolic differentiation nor numerical differentiation (like finite differences); instead, it
systematically applies the chain rule to elementary operations of a function to compute
derivatives efficiently and accurately. It takes advantage of the fact that any computer
function can be broken down into a series of elementary operations and propagates
derivatives to machine precision, avoiding truncation errors common in numerical methods,
and introduces minimal computational overhead. This makes AD an essential tool
in machine learning algorithms and scientific computing applications, where complex

derivatives must be computed at each training iteration.

There are two primary modes of automatic differentiation. Forward mode prop-
agates the derivatives with respect to one independent variable forward in a chain to

the output function, calculating its derivative with respect to that one variable. Take
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Y = f(X) where f : R® — R™. Forward AD calculates 2L = [90v 0% 0fs = 0ln] iy

0zq 0T’ Oxg’ Oxg’ ) Oxq

one pass of the chain, where z, is an arbitrary component of input vector X.

To build the chain, f is broken down into elementary operations, and their deriva-
tives are added according to the chain rule. For example, if f involves intermediate

calculations z, then:

0 EoOf Oz
f 50105 (2.30)
Oz, = 0z 0x,
where z; are the intermediate operations. The resulting chain has the form:
of — Or, 0z 0Oz 02— 87f (2.31)
ox, Ox, Oz, 0z Oz, Oz
An initial value for g—iz = 1 is known as a seed. The function is evaluated one

elementary operation at a time, with each derivative being accumulated. After propagating

the derivatives through the entire function, one obtains:

ofr
O0xq

Of2
oY Ba
= | % (2.32)

Ofm
Oxq

which represents the derivatives of all the components of the function with respect to
a single independent variable. If derivatives of more independent variables must be
known, more passes are required. Forward AD is therefore particularly efficient when
the number of inputs is smaller than the number of outputs. It is useful in some cases

of PINNs where a constraint is enforced on multiple derivatives of some input variable,

Lphysics = F (g%, gﬂ{ 2, g—ﬁ, e g—i’;), but it is not generally used for neural networks.

Reverse-mode AD, on the other hand, propagates the derivatives backward from

the outputs to the inputs. By tracking a single component of the output f over the

chain all the way to the input vector X, its gradient with respect to the inputs, gﬂ:g =
[gi‘i, %7 gi‘;, . gj: =] is calculated, for an arbitrary component f, at each pass.

Consider a function Y = f(X), where f : R® — R™. Reverse-mode AD calculates
the gradient of a particular output component f, with respect to the entire input vector
X:
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Ofa
ox1

0 fa
Ofa | 0w

0X

(2.33)

Ofa
Oxn

To build the chain, the function f is broken down into elementary operations,
and their derivatives are added according to the chain rule. For example, if f involves

intermediate calculations through variables z;, the chain rule applied in reverse-mode is:

Ofa K 0fa 0z
OX = 0z 0X’

(2.34)

In reverse-mode AD, the derivatives are accumulated by traversing the chain
backward, starting from the output. Each intermediate derivative is stored and reused,
significantly reducing the computational cost when calculating the gradient of f, with
respect to all input variables. This method is especially efficient when the number of

inputs n is much larger than the number of outputs m.

Backpropagation is a specific application of reverse-mode AD used for training
neural networks. It calculates the gradient of the scalar loss function L with respect to the
network’s parameters. The loss function is a single scalar output, and its gradient with
respect to all parameters must be computed for optimization. During backpropagation,
the computational graph is traversed backward, applying the chain rule to propagate the

error from the output layer to the input layer.

For a neural network, the chain rule for backpropagation can be expressed as:

oL 87[1 0z, 0z
aWi N 8zk 8zk,1 o 8Wi’

where w; are the parameters of the network, and the intermediate variables z; represent

(2.35)

the activations at each layer of the network. The gradients are accumulated layer by layer,
starting from the output and moving toward the input, which efficiently computes the full

gradient for the network parameters, used in each training iteration:

oL
owq

oL

N (2.36)

oL

OwWn,
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Backpropagation allows for efficient gradient calculations by reusing intermediate
values, making it essential for training large neural networks. Reverse-mode AD is also
widely used in PINNs, where it is necessary to compute derivatives of the output with

respect to multiple input variables (e.g., space and time).
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3 METHODS

In this section, the tools used to produce neural network and evaluate their accuracy

and performance in relation to numerical methods are detailed.

3.1 CUDA Optimized Numerical Solutions and Training Sets

To generate training data for the regression model and to establish a baseline for
comparison with the trained networks - both in terms of accuracy and computational
cost - the Fitzhugh-Nagumo model was numerically solved using the Euler method. The
resulting scheme for the FHN model with the Euler method is:

Upsr = Up + A KU, (U, — a)(1 = Uy) — W + Tupp) » (3.1)
W1 = W, + At [e(BU, — 0.8W,,)] . (3.2)

The error associated with this numerical scheme is proportional to the time dis-
cretization At, while the computational cost is inversely proportional. To balance these
aspects, the neural networks were compared with the Euler method using At = 0.1, for
stability reasons. The Euler Method, despite being a first-order method and with many
more sophisticated options available, was chosen for this comparison because its simplicity
allows for a clear assessment of how neural networks can potentially offer advantages
in solving differential equations. It follows that if neural networks cannot surpass this

baseline efficiency of the Euler method, they would not be better than any other option.

To achieve optimal computational performance with the Euler method, an optimized
implementation was developed in CUDA /C++. The CUDA code is designed to accept an
input file where each line contains a set of parameters and initial conditions to be solved,
and to execute the numerical scheme in parallel using the GPU. Optimization techniques,
such as those in the CUDA guide (NVIDIA, 2023), were employed, focusing in efficient
flow control and memory access, in addition to performance focused targeted compilation

with the O3 and architecture flags, thus providing extremely efficient computation.

To replace numerical ODE solvers with neural networks, the training sets used in
this work consist of numerical solutions of the FHN model obtained via the Euler method.
These sets are generated by uniformly sampling the parameter space and computing
approximate solutions at specific time intervals. Each row in the set corresponds to a
combination of inputs (model parameters and time points) and outputs (model solutions).
The dataset comprises solutions for multiple parameter sets, sampled at different time
points, and is randomly reshuffled during training. The data is split into training and

validation sets, ensuring no overlap between them.
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3.2 Neural Network and Training

In this work, multiple problems are handled with the neural networks. In each case,
many different architectures were used to find optimal solutions. These model architectures
share the same overall design with some parameterized options that allow generating
multiple models. The loss functions also vary for each model and problem with the Adams

minimization method employed in every case.

The models have the general form of an MLP, or multi-layer perceptron, which
is a fully connected neural network architecture. This architecture consists of multiple
layers of neurons: an input layer, one or more hidden layers, and an output layer, where
each neuron in each layer is connected to every neuron in the following layer. The neurons
in each hidden layer apply nonlinear activation functions. In Figure 7 we have a scheme
representing the model topology employed. In this work multiple problems in the form

f(X) =Y are tackled, but the same base neural network structure is used in all of them.

The architecture was parameterized with respect to the number of hidden layers,
the size of each hidden layer and the nonlinear activation function in each hidden layer’s
neurons. Therefore the resulting MLP model’s architecture can be described by a sequence
of layers each with two attributes: size and activation function. This allows models with
heterogeneous architecture, where the size of the hidden layers and the activate functions
is not the same for every layer, as well as homogeneous architecture to be deployed. This is
important in fine tuning the models, in order to produce the smaller (number of neurons)

possible model to satisfy certain criteria.

Input Layer Hidden Layers

i h o h, h
LR
WA SR
TN

5

\

Figure 7 — MLP (Multi-Layer Percepton) base architecture used in this work. The model

learns the relation between inputs X and outputs Y. The model may have multiple hidden

layer h; each with a different amount of neurons and activation function. Training process
involves determining best set of coefficients 1) to minimize a loss function.
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For each problem, a distinct loss functions is formulated, comprising a combination
of loss terms (or constraints), each assigned an individual weight. The constraints might
enforce closeness to a training set (data constraints) or enforce known physical laws (physics
constraints). Regardless of the composition of the loss function, the training process is
the same. The loss function is minimized using the Adams algorithm (learning rate =
le-3), running for a million of interactions with no stop criteria. Additionally, a scheduling
technique know as Reduce on Plateau (factor=0.999999, patience=1000, threshold=1e-3,
min learning rate = le-5, eps = 1e-08) was employed to slightly reduce the learning rate

when training staggered.

The validation error and the loss of each term in the learning function were recorded

along the training for further analysis. The validation metrics are recorded at each 10000

training steps, when the error for each sample in the validation set is calculated, and the

mean and maximum errors over the set are recorded. The error of each sample is defined
as:

V' = Upred = Utruel + [Wiea — W3

true‘ )

(3.3)
and W

i
where U, e

frue are the numerical solutions for the ith samples, and Uéred and Wgred

are the network predictions for them.

3.2.1 Architecture Grid Search and Training Parallelization

Optimizing neural networks to replace numerical solvers for ODEs requires not
only training the models but also determining the optimal network architecture. This
task is complex due to the lack of general heuristics in the literature for selecting architec-
tures, making an exhaustive grid search a viable approach. By systematically exploring
combinations of architectural parameters, grid search helps identify models that balance

performance and computational cost.

In this work, we conducted a grid search to fine-tune neural network architectures for
several of the tackled problems. Each architecture is defined by a sequence of layers, where
each layer is characterized by two parameters: the number of neurons and the activation
function. Given a set of layer counts, such as [2,3,4], and a set of layer configurations,
such as (TANH, 16), (TANH, 32), (RELU, 16), (SINH, 16), every possible combination of
these layers, including repetitions, was explored. For example, all architectures with 2, 3,
and 4 layers, composed of permutations of the provided configurations, are included in
the search, as shown in Figure 8. Additional training parameters such as batch size, and
normalization are also included to efficiently test this techniques, as well as a parameter
to include or not a physics informed constraints, to easily compare purely data-driven
models with PINNs.

The grid search process is computationally intensive, as it involves training numerous

models over millions of iterations. To mitigate this, an MPI-based implementation was
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developed to parallelize the grid search across a multi-GPU cluster. The code takes the
search space as input, distributing model training tasks across available GPUs, allowing

different models to be trained in parallel to leverage the cluster capabilities.

During training, statistics on model evolution, iteration times, and final model
states are recorded to a shared file system for subsequent analysis. Post-training, this data
is used to generate visualizations of loss and validation error evolution, highlighting regions
of high error in the domain. Furthermore, ANOVA models are employed to evaluate the
influence of model attributes on performance metrics, such as inference speed or accuracy.
These models use predictor variables describing model characteristics and the attribute of

interest as the response variable, providing a more rigorous assessment of each technique’s

mmpact.

Grid Search Models Searched Model Training

Parameters

Possible Layers Models with 2 layers Machine 1

[(TANH,16), (TANH,32), (RELU,16), (SINH,16)] .

« [(TANH, 16), (TANH, 32)] Resglts Include:
« [(TANH, 16), (RELU, 16)] . _Flnal Model _
« [(TANH, 16), (SINH, 16)] Training Loss evolution
. [[((E\m 33?) Egﬁbﬂ 112))]] Model Meching 2 Validation Loss Evolution
. achine ;
+ [(RELU, 16), (SINH, 16)] Distribution Last evaluation sets error
« [(RELU, 16), (TANH, 32)]

+ [(TANH, 16), (RELU, 16), (SINH, 16)]
« [(TANH, 32), (RELU, 16), (SINH, 16;
« [(TANH, 32), (TANH, 16), (RELU, 16
« [(RELU, 16), (TANH, 32), (SINH, 16
« [(SINH, 16), (RELU, 16), (TANH, 32;
« [(SINH,16), (TANH, 16), (TANH, 32

- + [(SINH, 16), (TANH, 16)]
Possible number of layers Model Set . | Results written in shared File
[2.3,.N] Generation Models with 3 layers MPI code Machine 3 e
« [(TANH, 16), (TANH, 32), (RELU, 16)
« [(TANH, 16), (TANH, 32), (SINH, 16}

Additional Model and Training Parameters Machine N

Figure 8 — Scheme showing grid search of neural network models and MPI code to
implement model distribution and training parallelization across multiple machines.

3.3 Model Classes Employed

In this section the three classes of models used to tackled the multiple problems in
this work are presented. They follow the same described MLP parameterized architecture,
use the same minimization Adam’s algorithm, but employs different techniques to learn

the solution of the FHN model, mainly, using different types of loss functions.
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3.3.1 Data-Driven Neural Network Models

The first class of models employed is purely data-driven models, henceforth referred
to as DDNN. These models take the following form:

uddnn(w) (t7 U)) ~ U7 W7 (34)

where U and W are the solutions of the FitzHugh-Nagumo model, and u,0qe1 Tepresents a
multi-layer perceptron regressor with parameters w. The MLP is trained to approximate
the solutions U and W of the FHN model, learning the continuous behavior of the system
over time from observed data. Additionally, this model may also learn effects of some
parameters on the solution, with ¢ including parameters of the FHN model or initial

conditions.

The model are trained by minimizing a loss function over a dataset consisting of

numerical solutions of the FHN model:

1 Nset 1
LD - N. Z 5 (uddnn<w) (tia ¢1) - usolver(tia ¢z))2 ) (35)
set ;=1

where the term ¢ may include initial conditions or FHN parameters. For a model with
both initial conditions Uy and W, parameterized along with the FHN model parameter K,

the loss function is:

1 31 i oTri T 1o i 17 i 1oy ) 2
o > 5 (ttacton (W) (8, UG, W3, K7) = tgover (£, UG, W3, K7)) (3.6)
set ;=1

Lp=

where Uy, Wy, and K are the initial conditions and parameters of the FHN model in each
sample ¢. The training set is not taken as whole at each iteration of the training process.
Instead, at each iteration a random subset of samples, of a pre-determined size, is selected

and used to assemble a training batch. At each training iteration, the loss evaluated is:

1 Nyatcn 1

Lo=5— 2 3 (thatnn (W) (#, UG, W3, K7) = tsorve (8, U, W3, K7)) ™ (3.7)
batch ;—q

It is also possible to include various training datasets with different weights; for an

arbitrary number of sets N we have the final loss as the weighted sum:
N .
L= LpX, (3.8)
i=1
where D? is the i-th dataset with weight \’.

3.3.2  Physics-Informed Neural Network Models

The second class of models employed is Physics-Informed Neural Networks, where

the model leverages both data and the governing physical laws of the system. The FHN’s
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model differential equations are directly incorporated into the loss function to improve
training. The model learns the solution along the continuous time axis, with additional
constraints imposed on the derivatives of this solution, based on the system’s prescribed

equations. It has the following form:

Upinn (W) (¢, 0) = U, W. (3.9)
aupinn<w) (t7 ¢) ~
5 ~ [(L, ). (3.10)

The neural network wpinn(w)(t, ¢) is also a MLP, but beyond only learning the
solutions for U and W based on observed data, it also simultaneously satisfies the FHN
model’s governing equations f(t, ¢), a set of two ODEs, prescribing values for = and 8W.
They are:

fult,0) = KU)(U(t) — (1 =U(t)) — W(t) + L, (3.11)

fu(t, @) =n(BU(t) =W (1)), (3.12)

where the model parameter ¢ can change some of the coefficients. In each training iteration,
a batch is sampled from the parameter space, with it’s size being a training hyperparameter.
At each sample in the batch the derivatives are estimated using Automatic Differentiation
and the PINN constraint expression is evaluated, the residuals from the entire batch are

aggregated with the L2 norm. Considering a model with a FHN parameter K and both

the inital conditions parameterized, the final expression is:

L physics —

1 Nbatch (aupinn(w) (ti7 US? Wé, Kz)
ot

2
Nbatch i=1

The expression is evaluated with homogeneous samples from the whole parameter
space. Additional constraints can also be enforced for specific regions of the domain, and

may also have different weights:

physws Z Lphysms ) (3 14)

with the final physics loss Lynysics being composed of losses taken from multiple regions 7
of the parameter space. This is useful to increase the amount of information in critical

regions of the domain.

An additional PINN constraint is also required to enforced the initial conditions
for U, W at t = 0. The loss evaluate points at the border t = 0 and enforces the prescribed

values:
1 Nbatch

Lg= (Upinn (t = 0, Ug, W, K) — (Up, Wo))?, (3.15)

Nbatch i=1
where Uy, Wy might be fixed or model parameters. In most cases, the PINN models

combines data-driven and physics informed learning, therefore also including a training
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dataset and it’s data loss term. The final loss function is the weighted sum of the PINN

terms and the data term, given by:

Ltotal = )\DLD + )\PLphysics + )\BLB~ (316)

3.3.3 TIterator Neural Network Model

The final class of neural networks explored in this work is also a data-based but
that doesn’t learn the solution over the whole time domain, but instead learn to advance
the solution for some discrete time interval, much like a numerical method. They take the

form:

urr (U, W, ¢) = U(t + At), W (t + At), (3.17)

where At is the time interval that each pass in the network advances the solution. To
evaluate a time domain ¢ € (0,%), the network starts with a initial condition U, W,

advances the solution until ¢; incrementing At per pass:

Uf, Wf = UIT(Uf_l, Wf_l, ¢) .= UIT<U0, Wo, ¢) (318)

To learn the update function, the model learns on observed data. The dataset is
assembled, similarly to the previous ones, but with the format U, Wy, ¢ — Usiar, Wi ae
with data generated numerically with the Euler method. A training loss is constructed to
enforce simillarity to the set, learning the relation Y; — y;1a;. Allowing for parametrization

with a ¢ parameter, the resulting training loss has the form:

1 Npatch

- N Z (urr (Up, Wi, @) — (Up s, Wt+1))2- (3.19)
batch

i=1

Lp

An important parameter for this type of model is At, the time step that the network
learns to advance the solution per pass. Larger At reduces the number of iterations needed
to reach a final time, making the model faster, but also requiring it to learn more complex
dynamics over larger time intervals, often necessitating larger, more expressive networks.
Conversely, smaller At allows for more accurate training with smaller models that have
faster inference times, but at the cost of requiring more passes to reach the same final
time. Balancing At and model size is critical. If At approaches the discretization of the
numerical method (e.g., 0.1 for Euler), the Iterative Neural Network (ITNN) might fail to

outperform traditional methods, as each iteration would not be computationally cheaper.

3.4 Advanced Training Techniques

3.4.1 Subdividing the Time Domain

A key challenge in the FHN model is the heterogeneous behavior of the solution

across the time domain. The action potential generation features a rapid activation phase,
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followed by a slower recovery and eventually a prolonged steady-state, leading to distinctly
different behaviors over time. This variability in time scales makes it difficult for models,
particularly smaller ones with limited expressive power, to capture the entire solution
accurately. To address this problem, the temporal domain can be effectively divided in
smaller pieces to be solved separately, as illustrated in Figure 9. This approach enables
models to more easily capture the diverse dynamics present in different phases of the

solution.

Time Window Scheme
Subdomains of size Tw

X (1) Yit)

First Window
tE(0,Tw)

Intermediare
Window i
tE (Twi - Tw*(i+1))

Final Window
tE(Tf-Tw, Tf)

Figure 9 — Temporal domain divided in subdomains to be solved separately. Continuity is
ensured by including shared border points present in neighboring windows.

A

Solved

Solved
X1 Net1

Net 2

Solving
Net 2

Time >

Window Tlme

(t)

Figure 10 — Marching scheme: each training window corresponds to a subdomain in the t
axis to be addressed independently.
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A separate neural network is trained to solve each subdomain, as shown in Figure
10, using only the training data within its bounds. An additional continuity constraint
is imposed to ensure smooth transitions between solutions across adjacent time domains.
This constraint connects the solution of one window to the next, ensuring consistency at

the boundaries. Mathematically, this can be expressed as:

1 batch

= > (tmodat(t, U, Wi, KPP — toqal(t, Ug, Wg, K')"W) ™ (3.20)
Nbatch

Ly

Here, t; represents the interface point between two subdomains, marking the end of
prevW and the start of nextW. Each subdomain has its own neural network model, and
the continuity constraint ensures that the predictions at this interface point are identical
for both models. This guarantees that the initial conditions of the subsequent window align
with the final conditions of the previous window, effectively enforcing consistency between
subdomains. This mechanism functions similarly to boundary condition constraints,

ensuring smooth transitions across the entire solution

The time-window marching technique enables training smaller models to capture
complex temporal dynamics that would otherwise require larger, more expressive networks.
During inference, this approach introduces some overhead, as the model must iterate
through each subdomain to reach the desired final time. However, this overhead is reduced
if intermediate solutions at the end of each subdomain are also of interest, since the
iterative process naturally provides them. The main drawbacks arise during training,
where separate models must be trained for each subdomain, increasing computational and
memory demands. Moreover, as more model parameters are introduced, the dimensionality

and complexity of the interface constraint Ly grow, making training more difficult.

With parameterized initial conditions, this concept can be extended: if the model
learns the solution for any initial condition within a defined time domain, it can be reused
to obtain solutions beyond this initial domain. Specifically, the output from the model at
the end of the initial time domain can be utilized as the initial condition for subsequent
evaluations. Figure 11 illustrates solution mapping in both large and small time domains,
showcasing how mapping complexity increases for larger domains. Consequently, this
application of the window technique facilitates fitting smaller models with greater accuracy,

preserving the same benefits and drawbacks discussed earlier.

3.4.2 Increasing Cloud Point Density

Another common source of complexity are regions of the parameter space where
the solution behavior changes rapidly. This often occurs near unstable equilibrium or in
proximity to bifurcations. For example, in the FHN equations, such complexity is evident

in the activation threshold influenced by the (u — «) term. The term creates an unstable
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Figure 11 — Subdividing Time Domain technique combined with parametrization of the

initial condition. Continuity is ensured by having the neural network learning the solution

for any initial condition, and using solution at the end of one subdomain as input to the

next. The solution space (image) that the networks needs to learn has the same cardinality,
but the mapping is less complex the smaller the window.

equilibrium point around u = « such that solutions with initial conditions Uy above this
threshold, known as supra-threshold, trigger an action potential, while sub-threshold

solutions decay toward a steady state as show in 12.

Due to scarce data in these critical regions, training is often difficult, with very few
information about transitions regions, with resulting predictions carrying significant error.
This issue is mitigated by implementing constraints that evaluate additional points in
these transitional regions, forcing the neural network to learn more about these complex
regions. This can be achieved with an additional data term with a training set focusing on
points only in the critical regions, or by adding a PINN term that only samples points in
the regions, Figure 13 showcase this sampling strategy. This strategy helps to accelerates
convergence with an overhead cost proportional to the batch sizes of the additional terms.
However this cost can be mitigate by having these additional terms with smaller batch

sizes. Additionally, this terms can be individually weighted to fine tune training.

3.5 Problems Tackled

The ability of neural networks to model FHN ODEs was tested in three different

scenarios: one with no parameters, only time, where the neural network must learn a
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Figure 12 — Unstable equilibrium point caused by the term (u — «), introduces additional
complication for model learning, as it causes sharp gradients in the loss function.
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Figure 13 — Samples are taken near the region of interest to produce the new constraints.

single solution along the time axis; one where the initial conditions of the solutions are
also parameterized, meaning the network has to learn a complete family of solutions; and
one where [, in Equation (2.6) is also parameterized, changing the solution by increasing
the size and frequency of the action potentials (AP).Table 1 summarizes the problems

addressed, their designations, and the models employed in each.

3.6 Inference and TensorRT

An important part of this work is to assess the inference performance of the

trained models, with the goal of trying to produce models that are more efficient than
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Table 1 — The table presents the problems addressed, the models employed in each and

their respective forms detailing the solutions being approximated. In problem A, ¢ varies

from 0 to 20 time units; in the others from 0 to 50. Initial conditions range from Uy € (0, 1)

and Wy € (0,0.18), including all values observed in the model’s phase plan. The parameter
K ranges from 0 to 1, controlling the FHN parameter [, from 0.08 to 0.12.

Solution Description Models Em-
Problem Form ployed
Problem A u(t) FHN with only ¢ parame- DDNN, PINN

terized, models must learn
a single solution along the
time axis.

Problem B u(t, Uy, Wo) FHN with initial conditions DDNN,
parameterized, the model PINN, ITNN
must learn a family of solu-
tions.

Problem C u(t, Uy, Wo, K) FHN with initial conditions DDNN,

and K parameterized, the PINN, ITNN
model must learn families of
solutions.

the numerical method. To provide a fair comparison under equivalent conditions, model
speed was measured using an optimized CUDA code for the numerical solution and
a PyTorch inference solution implementing the state-of-the-art SDK TensorRT for the
networks. The TensorRT toolkit, developed by NVIDIA, greatly accelerates the inference
process by efficiently leveraging tensor cores, specialized arithmetic units designed for
matrix multiplication operations, which are present in modern GPUs. In neural network
inference, matrix multiplication operations compose a significant part of the cost, since
they are required when passing each layer. Therefore, the use of these specialized units,
combined with post-training optimizations available in TensorRT performance-oriented

model compilation, ensures state-of-the-art inference performance.

The inference process is benchmarked on a machine with an Nvidia GPU RTX
4070 and a Intel i5-12400F. Each model is evaluated sequentially, one at a time, including
the numerical solution. Inference performance is measured as the time taken to evaluate a
set of samples. For the neural networks, before benchmarking, the best batch size, that is,
the amount of data passed at once to the GPU, is determined by trial and error. For the
numerical solution, care is taken to ensure only the time taken in the actual solution is
measured, excluding memory allocations and copies to and from the GPU. This ensures

the best possible comparison for both solutions.

The numerical model was run with At = 0.1ms, the largest, therefore the fastest,

discretization that was stable, and the NN models were sampled once per time unit, i.e.,
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0t = 1, the maximum discretization to allow a proper reconstruction of the action potential
with its distinguishable features. Figure 14 illustrates the results using these parameters.
Figure 15 shows that reducing either parameter further leads to significant numerical

errors in the Euler method or a loss of distinguishable features in the neural networks.

te

1.0

o

=1
-
o

0.1

0.8 0.84

0.6 061

0.4+ 0.4+

Solution U for Euler with Delta

0.24 0.24

Solution U for Neural Network with delta

o
o
!

0.0+ J

Figure 14 — Solutions with dt = 0.1 and At = 1, these parameter values provide the fastest
possible evaluation for a given parameter set while also preventing numerical error for the
Euler method and preserving distinguishable AP features on the NN models.
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Figure 15 — Solutions showing that previous values of At and dt are indeed the fastest

possible choice. when At is further increased to 0.2 it causes numerical error, while dt,

when further increased to 2, causes features such as action potential duration (APD) and
max % to no longer be distinguishable.
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4 RESULTS

This chapter presents the main results of the study. First, we discuss the accuracy
achieved and the effectiveness of the training techniques applied, organized into sections
corresponding to each problem addressed. Next, we analyze inference performance results

for the best-performing model in each case.

4.1 Problem A

Problem A addresses a simplified form of the FHN model learning, where the
neural network must learn a single solution of the model over time, u(t). The FHN model
parameters are set to avoid autopacing, and the initial conditions are set to U = 0.5 and
W = 0, causing a single stimulus at the start, as shown in Figure 3. Using the numerical
solution for this initial condition, two datasets were created: one with abundant data that
completely describes the solution, and another with scarce data, as shown in Figure 16. The
scarce dataset lacks sufficient information to fully characterize an action potential, while
the complete set samples the entire time domain at extremely high resolution. Multiple
models from the DDNN and PINN classes were trained on each dataset separately, and

their final accuracy and training evolution were evaluated.
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Figure 16 — Datasets used in training. The scarce set contains 10 points along 20 time
units, barely able to describe the shape of the action potential. The large training set
perfectly defines the action potential in the whole domain, containing 1000 points.
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Multiple architectures were tested for both PINN and DDNN models using the grid
search algorithm. The same validation set was used across all models and architectures,
even for those trained with different datasets, to establish a consistent comparison baseline.
Networks with 2 and 3 hidden layers, including the configurations [(nn.SiLU, 16), (nn.Tanh,
8), (nn.SiLU, 32), (nn.SiLU, 16)], were tested. Since the parameter space is one-dimensional
along t, small batch sizes were used: 10 for data constraints, 16 for physics constraints,
and 2 for boundary conditions. Supplementary material Tables 14 and 15 list trained

models.

For the scarce dataset, a clear advantage is observed for PINN models, as shown in
Figure 17, where PINNs achieved better accuracy than DDNNs across all architectures.
By examining a specific PINN and DDNN model architecture with two (SILU-32) layers,
we gain insights into their training behavior. In Figure 19, we observe that the validation
loss for the DDNN model stagnates quickly, whereas the PINN model shows significant
breakthroughs, followed by a continuous decrease that persists throughout the training.
This is reflected in the training error (or loss), shown in Figure 20, where the DDNN
exhibits an initial sharp drop, followed by stagnation, while the PINN continues to learn

from both physics and data during the entire training process.

The advantage of the PINN model in this case is clearly attributed to the scarcity
of the training set. Examining the validation loss evolution in Figure 20, we observe
that while the DDNN learns the training points, as indicated by the sharp drop at the
beginning, it fails to extrapolate the full solution, performing only simple interpolation,
as shown in Figure 18. The significant difference in learning between the PINN and
DDNN models with the same architecture indicates that, although the architecture has
the expressive capacity to represent the solution space, it cannot reconstruct the solution
from the observed data alone. This behavior was consistent across all tested architectures,
suggesting a broader pattern. Consequently, in this scenario, PINN models were able to
generate synthetic data to augment the training set and accurately recreate the solution

with relatively low error.
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DDNNSs vs PINNs loss over scarce training dataset
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Figure 17 — PINNs and DDNNSs trained using the scarce dataset. Results clearly show

that PINN models were able to achieve much better accuracy (measured in mean error of

the validation set) in all cases, for both smaller and larger models. A T-test value of 7.42
indicates a substantial difference between the groups.
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Figure 18 — Validation set evaluation at the end of training for the two (SILU-32) layer
PINN and DDNN models trainned with the scarce set. The PINN is able to learn the
true solution, whereas the DDNN merely interpolates training data.
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Figure 19 — Validation loss evolution for PINN (left) and DDNN (right) models, showing
continuous decay of the loss throughout training, and an early stagnation respectively.
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Figure 20 — Training loss evolution. For the PINN model (left), big breakthroughs (sudden
drops in the loss) occur early, followed by a continuous decay of the loss. For DDNN
(right), the loss quickly becomes very low and then stagnates.
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For the more complete training set, i.e. with fine sampling, as shown in Figure 21,
the differences between the PINN and DDNN models are not statistically significant. The
observed variation is primarily due to the random nature of the training, with a p-value
of 0.74 indicating high probability of any observed effect be caused by the stochasticity
of the process. This suggests that there is no clear advantage of the PINN constraint in
this case. Thus, with sufficient data, DDNNs can also capture the entire solution space.
However, it is important to note that in this one-dimensional space, generating enough
data to accurately represent the solution is computationally inexpensive. In contrast,
for more complex problems with high-dimensional parametrization, this process may
become extremely costly. In such cases, as demonstrated by this example, PINNs can offer

significant advantages.

In both cases, training with the scarce and the complete datasets, it is notable that
an increase in model size does not correlate with an increase in accuracy. This suggests that
the solution space is effectively captured by the smaller networks, and further increasing
their expressive power offers no significant improvement. In this case, the solution space is
simple, consisting of two continuous functions of a single variable, with no discontinuities
or sharp gradients, making the smaller models sufficient. Interestingly, the training data
was generated using the Euler numerical scheme with At = 0.01, resulting in a global error
of the order of 0.01. It is possible that models trained with data generated using a smaller
At could achieve higher accuracy by learning from less noisy data, potentially benefiting

from an increase in model size.
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Figure 21 — PINNs and DDNNs trained using the complete dataset. PINNs and DDNNs

models with the same architecture (along the same x-axis) show no significant difference

in accuracy performance. A T-test value of 0.33 indicates no significant difference between
the groups.
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4.2 Problem B

Problem B consists of learning a family of solutions for the FHN model, where the
initial conditions that define the solution are parameters of the model. The model takes
the form wu(t, Uy, W) and must learn the solution along the time axis for various initial
conditions of U and W. This task is more challenging than Problem A, as it involves
learning a larger solution space. Two cases are considered for Problem B: one with /,,, = 0,
resulting in no continuous stimulation and a single action potential generation, and one
with I,,, = 0.1, which produces autopacing and cyclic solutions. Figure 3 illustrates the

behavior of both models.

Each model presents unique learning challenges: for the single-stimulus model,
the initial conditions Uy and W, determine whether or not an AP occurs, i.e., if Uy is
above the threshold and W, is not in the recovery phase. For the cyclic model, the initial
condition may either lie within the model’s limit cycle, shown in Figure 4, where the cycle
resumes from the initial condition, or outside it, where a small perturbation occurs at the
beginning before returning to the cycle. This presents a particular challenge because, for

each arbitrary initial condition, the model must learn the path to return to the cycle.

The two FHN-parameterized models are referred to as Problem Bg and B¢ for the
single and cyclic cases, respectively. Both datasets are generated by sampling the parameter
space for Uy and Wy, with no I,,, for Problem Bg and I,,, = 0.1 for Problem B.. Larger
architectures than those used in Problem A were considered for both PINN and DDNN
models, and each was trained for 1 million iterations using the Adam optimization method.
Specifically, for Problem B¢, an iterative neural network model (ITNN) with smaller
architectures was also tested. Additionally, the increased cloud point density technique was
employed for Problem Bg, targeting a region of rapid transition (i.e., unstable equilibrium)
caused by the threshold behavior around U = a. Both DDNN and PINN models can
incorporate an additional term to enforce the ODE constraint in this critical region. When
they do, they are referred to as DDNNa and PINNa, respectively.

4.2.1 Single Stimulus

The first set of results investigates the effectiveness of physics-informed learning
for Problem Bg, as well as the impact of varying the training batch size, two factors that
influences the amount of information used on each training iteration. Four models were
tested: a pair of purely data-driven (DDNN) and physics-informed (PINN) models trained
using points homogeneously sampled from the entire domain, and a pair that additionally
incorporates a physics constraint limited to the unstable equilibrium region (referred to
as PINNa and DDNNa), which implements the increased cloud point density technique.
All models utilized the same two-layer architecture (SiLU-32), and each was evaluated
with five different batch sizes (affecting all constraints): 32, 64, 128, 512, and 1536. A
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dataset containing 10,000 unique solutions homogeneously sampled from the domain was
assembled, with half of the points used for the data constraint present in all models and
the other half used for validation.

As shown in Figure 22, increasing the batch size has no significant effect on final
accuracy for any of the models, with only a slight trend toward improved accuracy as
the batch size grows. However, this improvement is minimal and may be attributed to
the stochastic nature of the training process. In the most extreme case, for the PINNa
model, optimizing the batch size resulted in a 40% to 60% improvement in accuracy. An
ANOVA analysis was performed to assess the effect of each parameter on training, fitting

the following explanatory model:

Q(Mean err) ~ C(iccs) - bs + C(pinn) - bs, (4.1)

here, the mean error is expressed as a function of bs (batch size), along with iccs and
pinn, which are categorical variables representing the use of the increased cloud point
density physics constraint and the general physics constraint, respectively. The results are
shown in Table 2. The data indicates that the small changes in model accuracy can be
equally attributed to both the model class (i.e., the parameters pinn and iccs) and the
batch size, as indicated by the F-value. The fitted coefficients show a small positive effect
(negative coefficient, decreasing the error) of increasing the batch size, and a negative effect
(positive coefficient, increasing the error) for both pinn and iccs models. Although the
negative coefficients are not large enough to indicate a significant trend, this suggests no
clear benefit to using either physics constraint for this problem and architecture. Even for
the maximum error, a metric that better captures performance in the unstable equilibrium
region enforced by the extra constraints, the results were similar, showing no significant
effect.

This is particularly noteworthy because the use of either constraint significantly
increases iteration cost and, consequently, overall training time, as shown in Figure 23.
The same ANOVA analysis, as in equation 4.1, but with iteration time as the response
variable (see Table 3), reveals that the pinn and iccs variables have a far greater impact
than batch size. This indicates that the computational cost of incorporating additional
constraints, and performing backpropagation through more terms in the loss function, is
substantially higher than merely increasing the batch size for loss evaluation. Therefore,
in these cases, the physics constraints not only fail to improve training but also hinder it

by increasing computational expense.

Moreover, the results show that using a full PINN model is significantly more costly
than applying a localized physics constraint, as in the DDNNa model. This difference
stems from the computational burden of the added constraints: in the PINN model, two

new constraints—one for the interior and one for the boundary—are evaluated at each
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iteration, whereas in DDNNa models, only a single localized constraint is introduced.
This effect is even more pronounced in the PINNa model, which incorporates all three

constraints, further increasing the computational cost.

The results shown in Figures 24 and 25 generalize these findings across different
architectures and activation functions. Models with two-layer architectures, using per-
mutations of the set [(nn.SiLU,8),(nn.SiLU,32),(nn.SiLU,64),(nn.Tanh,32), (nn.Tanh,64),
(nn.ELU,8)], were trained with the same batch sizes as before. The trend observed for
the two-layer (SiLU-32) architecture, where DDNN models outperform their PINN coun-
terparts in most cases, remains consistent across all tested architectures. Furthermore,
increasing batch size beyond a certain minimum viable limit does not yield noticeable
accuracy improvements for any of the models. However, for larger models, this limit is
slightly higher. A batch size of 128 was found to be sufficient even for larger architectures,
and it was thus used in subsequent experiments. Based on these findings, the focus shifts

to DDNN models for exploring a broader range of architectures.

Effect of batch size in model accuracy
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Figure 22 — Model accuracy for different model types, with increasing training batch size.
Results show a slight positive effect of increasing batch size, with data-driven models
achieving better accuracy in every case.
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Effect of batch size in training iteration time
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Figure 23 — Models average iteration cost in terms of time spent on loss evaluation,

backpropagation, and weight updates. Models of four different classes with various training

batch sizes are considered. Results show that physics-informed models are consistently
more expensive and that increasing batch size does not significantly increase cost.
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Figure 24 — Model accuracy for different architectures, organized by size (small if less than

32 neurons, large if more than 100, and medium otherwise), and trained with different

batch sizes. Larger models require a minimum batch size to achieve maximum efficiency,
though increasing it further has minimal impact.
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Effect of PINN employ in model accuracy
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Figure 25 — Model accuracy for different classes and architectures, organized by neuron
count (y-axis). Data-driven models consistently outperform physics-informed counterparts
in this case.

Table 2 — Summary of ANOVA results for the trained model accuracy in relation to model
category (iccs and pinn) and model training batch size (bs). Results show an effect of all
three variables in the accuracy, with a significant F' value and Sum of squares, than account
for the variability caused by each factor. Both the employ of the physics constraints in the
whole domain (pinn) and in the specified region (iccs) have an negative effect on model
accuracy (positive coefficient, increasing the error) while model batch size had smaller
positive effect. A low P-value (p<0.05) indicates low chance of results observed being due
to sthocasticity in tranning.

Parameter Fitted Coef Sum Sq F p-value
C(ices) 3.97 x 1074 7.61 x 1077 7.68 1.50 x 1072
C(pinn) 5.76 x 1074 8.49 x 1077 8.57 1.10 x 1072
bs —1.59 x 107 7.75 x 1077 7.81 1.43 x 1072
C(ices):bs —1.61 x 1078 4.20 x 10710 0.004 9.49 x 107*
bs:C(pinn) —3.60 x 1077 2.08 x 1077 2.10 1.69 x 1071
Residual 1.39 x 107¢
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Table 3 — Summary of ANOVA results for the explicative model for iteration time in
relation to the model category (iccs and pinn) and model training batch size (bs). The
results indicate that both the employ of physics constraints across the entire domain
(pinn) and within the specified region (iccs) significantly increase the iteration cost (high
F-value and sum of squares paired with positive coefficient), with pinn being remarkably

more impactfull. In contrast, the batch size (bs) exhibits a minimal effect.

Parameter Fitted Coef Sum Sq F p-value
C(ices) 5.25 x 1073 1.01 x 1074 79.70 3.74 x 1077
C(pinn) 6.60 x 1073 2.64 x 1074 209.00 8.36 x 10710
bs —3.90 x 107 1.47 x 1076 1.16 2.99 x 107!
C(iccs):bs —1.66 x 1076 4.46 x 107° 3.52 8.17 x 1072
bs:C(pinn) 1.49 x 107¢ 3.56 x 1076 2.81 1.16 x 107¢
Residual 1.77 x 107°
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With DDNN models demonstrating superior performance in the first experiment, we
conducted a new set of experiments aimed at optimizing these models by exploring a wide
variety of architectures. This involved training multiple DDNN model configurations for the
same problem, utilizing the same training and validation sets as in the previous experiment.
The architectures were generated using permutations of the following layers: [(nn.SiLU, 16),
(nn.Tanh, 16), (nn.Tanh, 32), (nn.SiLU, 64), (nn.Tanh, 64)], with configurations consisting
of either 2 or 3 layers, allowing for repetitions. These architectures were classified according
to their shape: rectangle (all layers of the same size), funnel (layers progressively smaller),
bottleneck (layers progressively larger), bowtie (three layers with a smaller middle layer),
and diamond (three layers with a larger middle layer). Such shapes correspond to common
neural network functions, where funnel and bottleneck structures are frequently used for
feature extraction and generative models, while the bowtie shape is typically employed in

autoencoders for dimensionality reduction.

In total, over 200 models with either two or three layers were trained for 1 million
iterations each, with results presented in Figure 26. The best performance, measured by
mean error on the training set, was achieved with the rectangular architecture (SiL.U, 32) —
(Tanh, 32) — (SiLU, 32), yielding a mean error of 0.00038 with 96 neurons. Figure 28
illustrates the models’ accuracy across a slice of the solution space, demonstrating low
error throughout most of the domain, except for a high-error region near the unstable
equilibrium point at Uy = a, as detailed in Figure 27. This pattern was consistent
across all models, with none able to adequately learn this complex region. Other three-
layer architectures also achieved comparable accuracy, remaining within the noise range
introduced by the stochastic nature of the training process. Table 16 (supplementary

material) lists the best-performing models, while Table 4 highlights notable architectures.

Models with two layers demonstrated significantly poorer performance, with the
best two-layer architecture, (Tanh, 32) — (SiLU, 64) — (Tanh, 32), achieving a mean error
of 0.00085. This error is notably larger than that of the worst-performing three-layer
models with the same neuron count, indicating a limitation in the expressive power of
two-layer architectures, which would require a substantially larger number of neurons
to achieve comparable performance. As highlighted in (LU et al., 2017), model depth
generally plays a critical role in accuracy, particularly for smaller models. However, this
increased depth comes at the expense of efficiency; the training iterations for models with
the same neuron count are approximately twice as costly when comparing two-layer to
three-layer architectures, which also adversely affects inference performance, as will be

discussed later.

On average, bowtie architectures outperformed other configurations with the same
neuron count, although several exceptions existed, including some rectangular architectures
that performed better. The architecture type was particularly influential for smaller neuron

counts, where greater performance variability among different groups was observed. This
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finding is especially relevant for achieving efficient models, particularly in small networks
with low error rates. Notably, the model (SiLU,8) — (Tanh, 32) — (SiLU, 8) achieved
a mean error of 0.00050 with only 48 neurons—half the size of the best-performing
architecture—while incurring less than a 15% increase in error. This model belongs to
a set of bowtie architectures that consistently outperformed all other models of similar
size, as illustrated in Table 17 (supplementary material), highlighting the significance
of optimizing model shape. In contrast, for larger models, the best architectures across
different shapes exhibited similar performance, suggesting that the influence of architecture

shape diminishes in favor of optimizing the arrangement of activation functions.

This effect can be analyzed by evaluating the error across model architecture
categories, with intra-group variation representing differences between models with the
same architecture (due to different activation function sequences) and extra-group variation
reflecting differences caused by architecture shapes. These variations serve as proxies for
the influence of activation functions and architectural design. Models were categorized
into small (fewer than 120 neurons) and large (120 neurons or more). For smaller models
the extra-group variance (1.46 x 107°) in the mean error is significantly higher than the
intra-group variance (1.06 x 107%), indicating that architecture shape plays a much larger
role in performance. In contrast, for larger models the extra-group variance (3.17 x 1077)
is much closer to the intra-group variance (2.08 x 1077), suggesting that architecture
shape and activation function choice contribute more equally to performance as model

size increases.

The ANOVA results, shown in Tables 5 and 6, further support the trend observed

with a variance analysis using the explanatory model:

@(Mean err) ~ C(neuron) - shape, (4.2)

where the mean error is defined as a function of neuron count and shape, a categorical
variable representing the architecture shape. Results show that for smaller models,
architecture shape has a strong effect, as reflected by the F-value for the shape variable
of 19.6. However, for larger models, this influence diminishes, with the F-value dropping
to 4.00, indicating a reduced impact of architecture shape. Neuron count remains a
consistently significant factor across both groups, with F-values of 42.8 and 34.5 for smaller
and larger models, respectively. Thus the effect of architecture optimization is shown
to be particularly significant in smaller models. As models grow larger, the influence of
architecture shape becomes comparable to the effect of rearranging activation functions,

with neuron count emerging as the dominant factor in performance.



Table 4 — Summary of notable models found for Problem Bg.
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Layers Mean err Neuron count Class Note
(ELU-8, SILU-8) 6.42e-03 16 rectangle Smallest
model <
0.01
(TANH-32, ELU- 8.94e-04 48 funnel Smallest
8, SILU-8) model <
0.001
(SILU-8, TANH- 5.06e-04 48 bowtie Best model
32, SILU-8) < 64
(SILU-32, 3.88e-04 96 rectangle Best model
TANH-32, < 128
SILU-32)
(TANH-32, 9.62e-04 64 rectangle Best  two-
SILU-32) layer
(SILU-32, 3.88e-04 96 rectangle Best model
TANH-32,
SILU-32)

Table 5 — Summary of ANOVA results for the explicative model mean error in relation to
class and neuron count, for models with less than 120 neurons. Both the model category
and the neuron count are very significant with high F value and Sum of Squares.

Source Sum Sq Mean Sq F-value P-value

C(class) 5.87 x 107° 1.47 x 107° 19.6 2.80 x 10713
neuron 3.20 x 107 3.20 x 107 42.8 6.88 x 10710
C(class):neuron 2.73 x 107° 6.83 x 107° 9.14 1.05 x 1076

Table 6 — Summary of ANOVA results for the explicative model for mean error in relation
to class shape and neuron count for models with more than 120 neurons. The model
category remains significant, F-value of 4, but its impact is notably reduced (by a factor

of 20) compared to smaller models.

Source Sum Sq Mean Sq F-value P-value
C(class) 1.27 x 1076 3.18 x 1077 4.00 0.0057
neuron 2.74 x 1076 2.74 x 1076 34.5 1.49 x 1077
C(class):neuron 6.76 x 107° 1.69 x 1076 21.3 2.30 x 1071
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Model Accuracy for Multiple Architechtures
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Figure 26 — Model accuracy over the validation set (mean error) after training for Problem
Bg. Results for all tested model architectures are shown. Models along the same y-axis
share the same neuron count but have varying architecture, with different sizes and
activation functions for each layer, and have 3 layer (darker shading) or 2 (lighter shading).
For ease of visualization, each category has been slightly dislocated on the x-axis. Results
show that Bowtie architectures have a notable advantage for smaller neuron counts, being
able to produce the most efficient models in terms of size and accuracy. Increasing neuron
count did not lower model average error significantly after around 5 x 10~* but lessened
the difference between shapes.
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Figure 27 — Model (SILU’>-32), (TANH>-32), (SILU’>-32) prediction for Problem Bg

over each solution in the validation set, the network prediction and actual solution (doted

line) are show. High solutions error, those containing points with at least 80% of the max
error, are highlighted. High error solution all start at the bifurcation region.
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True Predicted Error
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Figure 28 — Model (SILU’>-32), (TANH’>-32), (SILU’>-32) accuracy for Problem Bg

over three cut of the solution space. Each cut show solutions along the t axis, for varying

initial condition U, in the x axis, with the initial condition V; fixed in each cut. Z axis

show the accuracy in each point. Results show low error along most of the domain with a
high error region arround the bifurcation.
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4.2.2  Autopacing

Problem B¢ involves approximating the periodic solution of an ODE with parame-
terized initial conditions that may perturb or shift the solution. The model must capture
the entire phase plane (as seen in Figure 5) and the trajectory that results from any

perturbations to the limit cycle.

To demonstrate the effectiveness of the Time Domain Splitting Technique, models
were tasked with learning both a large time domain—spanning roughly three oscilla-
tions—and a small time domain, approximately one-third the size of an oscillation. Two
training sets of 10,000 samples were generated by sampling the parameter space: one
containing solutions up to t = 5, and another up to t = 50. A variety of model architec-
tures were tested using combinations of layers [(nn.SiLU, 8), (nn.SiLU, 32), (nn.SiLU,
64), (nn.Tanh, 32), (nn.Tanh, 64), (nn.ELU, 8)], with 2, 3, and 4-layer configurations.
As shown in Table 7, models trained on the time domain consistently performed better
(Figure 29). This demonstrates the potential of the technique, as it allows models to
focus on learning simpler mappings over small time domains, enabling models with fewer

neurons (and thus lower computational cost) to meet a given accuracy threshold.
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® Small Time Domain
® Large Time Domain

10-1 4

i s
' [ ;o e

@ ; °s "

2102 R . ° !'.. ‘o.' ° ... hod

g [ ] [ ) ° s ° '. 'l !. ..g % ° ’
. . oo .
° e s . =. .; l'| ..; b

L ] °
: ‘ o B HL U o
1077 4 [ ]

1074 T
102
Model size (N of neurons)

Figure 29 — Model accuracy over the validation set (mean error) for Problem B¢ in the

small and the larger time domains. Models along the same y axis share the same neuron

count but have varying architecture, with different sizes and activation functions for each

layer. Results show that all models perform much better when dealing with the smaller

time domain. Notably, for both the larger and small time domains, the mean error of all
the models was larger for Problem B¢ than for Problem Bg.

Next, we aim to identify the smallest possible model capable of solving Problem
B¢ by exploring a larger pool of models trained on a small time domains of ¢ = 5.
Models were generated with 2 and 3 layers using combinations of the following layers:
[(nn.SiLU, 8), (nn.SiL.U, 16), (nn.Tanh, 32), (SIN, 16), (nn.ELU, 8)]. Notably, the periodic

activation function, SIN, was included in the layer combinations. The same training
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Table 7 — Best, worst, and average model performance measured in mean error over the
validation set for large and small time domain cases. Results clearly show better results
for the smaller domain.

Time Domain size Mean + Std Best Worst
50 1.44 x 1072+ 1.14 x 1072 4.94 x 1073 8.27 x 1072
5 2.96 x 1072+ 1.93 x 1073 8.39 x 10~* 1.18 x 1071

protocol, including the Adams optimization method and the training parameters used
in previous cases, was followed. Results shown in Figure 30 indicate that training for
the small time domains consistently yielded an error of less than 1072, even with smaller
models. Remarkably, models with a neuron count as low as 16, utilizing two layers of size 8,
achieved this level of accuracy. Table 8 summarizes the results of the model optimization,
highlighting the most accurate model along with some notable models that exhibited good

accuracy relative to their size.

Model Accuracy for Multiple Architechtures
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Figure 30 — Model accuracy over the validation set (mean error) after training end for

Problem Bg with the small time domain. Results for all tested models are show. Models

along the same y axis share the same neuron count, but have varying architecture. Results

shows great variation in performance of models with the same neuron count, even within
the same architecture.

While the mean error for the best models was satisfactorily low, a high error region
phenomenon similar to that of Problem Bg was observed. In this case, the high error
region is linked to specific ranges of initial conditions for Uy and W}, which introduce

significant noise at the beginning of the solution. This high error concentration occurs near
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Table 8 — Summary of selected models based on their mean error and neuron count for

Problem Bg. The table includes the smallest models under various error thresholds, the

best performing models with neuron counts less than 32, 64, the overall best model, and
the best two-layer model.

Layers Mean err Neuron| Class Note
count
(SILU-8, ELU-8) 9.90e-03 16 rectangle Smallest
model <
0.01
(SIN-16, SILU- 1.85e-03 48 rectangle Smallest
16, SIN-16) model <
0.002
(SIN-16, TANH- 1.06e-03 64 diamond Best model
32, SIN-16) < 64
(SIN-16, SILU-8, 2.75e-03 32 funnel Best model
ELU-8) < 32
(TANH-32, 2.17e-03 64 rectangle Best  two-
TANH-32) layer
model
(SIN-16, TANH- 1.06e-03 64 diamond Best model
32, SIN-16)

an unstable equilibrium region this region, where small variations in the initial condition
can lead to substantial changes in the resulting solution, resulting in a chaotic behavior
characterized by minor oscillations outside the limit cycle at the start and sharp gradients
upon returning to the regular limit cycle. This chaotic behavior poses significant challenges
for the network’s learning process. Figure 31 displays some of these solutions. Additionally,
Figures 33 and 32 illustrate the high error region in various cuts of the parameter space for
both the large and small time domain models. The results indicate that while employing
a smaller time domains reduces the average error, it does not significantly mitigate the

error in the high error region.
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Figure 31 — Model predictions for Problem Bg using the architecture (SILU’>-32),

(TANH’>-32), (SILU’>-32). The network’s predictions are plotted alongside the ac-

tual solutions (dotted line) for each sample in the validation set. Solutions with high

prediction errors, defined as containing points with at least 80% of the maximum error,

are highlighted. Notably, these high error solutions initiate from an unstable equilibrium
region where the derivative is of low magnitude.
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Figure 32 — High error region, illustrated through a cut in the parameter space for models

trained on the larger time domain. This figure shows the distribution of errors across

different initial conditions for Uy and Wj, emphasizing the correlation between specific
initial conditions and increased prediction errors.
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Figure 33 — High error region, illustrated through a cut in the parameter space for models

trained on the smaller time domain. This figure highlights how the error distribution varies

with different initial conditions for Uy and W} and shows the impact of the decreasing the
size of the time domain on the model’s predictive accuracy.
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4.2.3 Tterator Model

The extension of the concept of time domain splitting to its limit involves reducing
the time domain to a single time step. For Problem B¢, Iterator Models were employed,
requiring the model to learn the solution after 2 time units for any given initial condition.
Due to the simpler nature of this problem, smaller models were tested, utilizing permu-
tations of the following layer combinations: [(nn.SiLU, 16), (nn.Tanh, 16), (nn.SiLU, 8),
(nn.Tanh, 8)]. The models were trained on two datasets: one comprised a homogeneous
sample of the parameter space with a size of 5,000,000, while the other included points
from the previously identified high error region. This region is identified by training the
model with the homogeneous set and selecting points of high error (top 5%) and sampling

points near then.

The Iterator Models are validated using two distinct sets. The first set maintained
the same structure as the training set, simply mapping solution states to their values after
the time interval had elapsed. The second set tracked the evolution of the solutions across
the time domain. In this case, the initial condition was interactively passed through the
Iterator Model to obtain predictions over the time domain, which were then compared
with the validation set. The sets included 100,000 and 10,000 different initial conditions

homogeneously sampled from the domain, respectively.

The initial results, presented in Figure 34, demonstrate the effectiveness of incor-
porating the extra data constraint in the high error region by comparing models trained
with and without this constraint. Overall, models utilizing the extra constraint exhibited
superior performance across both validation sets. Notably, this effect was more pronounced
in the evaluation of the entire time domain set, likely due to the compounding effect of
errors from successive passes through the network. Consequently, small reductions in
error during initial evaluations can lead to significant improvements in later parts of the

solution.

Despite training with the extra constraint, the same high-error region phenomena
were observed for the iterative model, as depicted in Figure 35. However, for the iterative
model, the error becomes more spread throughout the domain. This occurs because,
when the iterative model’s U and W approach the high-error region, increased errors are
introduced, detaching the network’s predictions from the actual solutions, as illustrated in
Figure 36. This leads dispersed errors across the domain, as shown in Figure 35, compared

to the continuous model.

Next, after establishing its effectiveness, a larger pool of models was trained, with
the extra constraint, in order to produce the smallest and most efficient models possible.
A set of small two-layer models was considered, generated with permutations of the
layers: [(nn.SiLU, 16),(nn.Tanh, 16),(nn.SiLU, 8),(nn.Tanh, 8),(nn.ELU, 8),(nn.ELU, 16)],

resulting in models with only 16 to 32 neurons. The results notably show great variation
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in model performance, with the best model [(ELU,16), (SILU,8)] having an average error
of 0.0043 and the worst model [(ELU,8),(ELU,16)] having 0.162 for the whole time domain
validation set -a difference of more than 40 times- while having the same neuron count.
Additionally, although the error in the single time point and whole time domain validation
sets are highly correlated, results show that if one model has a lower mean error over a
single iteration than another model, it does not necessarily mean it will have a smaller error
over the whole domain. Table 9 highlights the best-performing models. Notably, smaller
iterator models were not able to beat models trained with a smaller window accuracy
wise, seen as a 16 neuron iterator model achieved around 2 - 10~2 of mean error while a

continuous model with the same neuron count handling a small time window achieved
9-1073.
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Figure 34 — Model accuracy over both validation sets (single time step, and whole time

domain solution) after training end for models trained with and without the extra data

constraint in the high error region. Models along the same y-axis share the same neuron
count.

Table 9 — Summary of notable models for Problem B¢ based on their mean error and
neuron count. The table includes the smallest models for two error thresholds, the latter
one also being the best overall model.

Layers Mean err Neuron count Note
(TANH-8, SILU-8) 2.78e-02 16 Smallest model
< 0.1
(ELU-16, SILU-8) 4.36e-03 24 Smallest model
< 0.01
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Figure 35 — Best Iterator Model error in some cuts of the parameter space. Results show

regions at the border (first and last rows) and within the region of highest error (middle

row). Notably, results show a maximum error of similar scale as the continuous model,
but more spread through the domain.
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Figure 36 — High error solution achieved with the best trained iterator model. Plot

exemplifies decoupling occurring near the high error region.
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4.3 Problem C

In this final problem, the task involves learning multiple families of solutions for
different configurations of the FHN model, specifically by varying the model parameter K.
This parameter, in the cyclic formulation, regulates the applied current I,,,, controlling
both the size and frequency of the oscillations. K is normalized such that I,,, = 0.08
when K = 0, and I,,, = 0.12 when K = 1, with a linear scaling between these two
extremes. The solution behavior within these boundaries is illustrated in Figure 4. This
parametrization introduces the most complex scenario tested in the study, as the network
must learn solutions for any initial conditions (Uy, Wy), across the entire range of K, and

throughout the full time domain.

To further enhance model performance in this complex scenario, the increased cloud
point density technique was applied in this problem in the form of an extra data constraint
with only points in high error regions. An initial study assessed the effectiveness of this
technique before conducting the full architecture grid search. The high-error regions were
identified by training a model, with a base set that uniformly explored the parameter space,
and selecting points (Uy, Wy, K') where the solution had a mean error exceeding 0.1. A new
set was then created by sampling the region around these points. Figure 37 demonstrates
the accuracy of models trained with and without the extra constraint, showing that the
best-performing models were trained with the extra constraint, validating its inclusion
in the grid search process. Furthermore, the use of physics-informed constraints was
tested—either across the entire domain or limited to the high-error region. However, they

did not yield any significant improvement in model performance.

The grid search was conducted on both 2- and 3-layer models, using combinations
of the following activation functions and layer sizes: (nn.SiLU, 8), (nn.SiLU, 16), (SIN, 8),
(nn.Tanh, 8), (nn.Tanh, 16), (SIN, 16), (nn.ELU, 8), and (nn.ELU, 16). These models were
categorized according to their shape, based on previously defined classifications. Figure
38 displays the performance of all trained models on the validation set. Once again, the
optimization of architecture yielded models with widely varying performances, despite
having the same neuron count. In this instance, however, architecture shape was less
influential than in previous cases; models with identical shapes demonstrated significant
performance variation depending on the choice of activation functions. A notable exception
was the Bowtie architecture, which produced a few models that outperformed any other
architectures with the same neuron count (32). Table 10 summarizes the best models
identified for this problem.
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Mean Validaton Error

Max Err Extra data constraint
® Mean Err ® No
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° ® * Newron count ? 0

Figure 37 — Accuracy for multiple models trained for Problem C' with and without the

extra data constraint. Models along the same x-axis have the same neuron count. For ease

of visualization, different categories have been slightly displaced on the x-axis. Results
show that the best-generated model is trained with the extra constraint.

Table 10 — Summary of selected models based on their mean error and neuron count for
Problem C'. The table includes the smallest models under various error thresholds and
the best performing models.

Layers Mean Err Neuron| Note
Count

(ELU-8, SILU-16, TANH-8) 9.08e-03 32 Smallest
model <
0.01

(ELU-8, TANH-38) 2.80e-02 16 Smallest

model <
0.1

(ELU-8, SILU—-16, TANH-8) 9.08e-03 32 Best model
(neuron
count less
than 32)

(ELU—16, TANH—16, SIN—16) 5.42e-03 48 Overall
best model
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Model Accuracy for Multiple Architechtures

Number of layers Model Architechture Type
® Three @0 Bottleneck
Two ® o Rectangle
®® Funnel
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Figure 38 — Accuracy for multiple models trained for Problem C with the extra data

constraint. Models along the same x-axis have the same neuron count but have different

activation functions and model architectures. For ease of visualization, different categories

have been slightly displaced on the x-axis. Results show great variation for the same
architecture and a clear advantage for three-layered models.
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4.4 Inference

To assess the viability of using trained models as substitutes for numerical solvers,
it is crucial to consider not only accuracy but also computational efficiency. The goal is to
develop neural network surrogate models that are less computationally expensive than their
numerical counterparts while maintaining similar levels of error. For this reason, model
inference performance was compared to a CUDA-optimized implementation of the Euler
method. Table 11 provides benchmark results for the Euler CUDA implementation, which
serve as the baseline for comparison. The reference performance is based on processing
a set of 16,000,000 samples with a time step At = 0.1, running until £ = 10. Neural
network inference performance was measured using the same sample set, following batch

size optimization.

Table 11 — Total runtime results of the Cuda implementation of the Euler method applied
to the FHN model with dt=0.1 . Since the base model is the same, the runtime results for
the numerical method are also the same for Problems A B and C.

Set size Cuda Time (s)
16000000 1.325e-01
32000000 2.621e-01
64000000 5.270e-01

In the first set of results, we examine how model size and architecture affect
inference performance, including the effectiveness of tensor core utilization. A large pool
of untrained models was generated using permutations of SiLU layers: [(SiLU, 8), (SiLU,
16), (SiLU, 32), (SiLU, 64), (SiLU, 128)], with up to 5 layers. Only the SiLU activation
function was used because activation functions had little impact on inference cost, as
detailed in Figure 42. The resulting models ranged from 8 to 640 neurons and had 1 to
5 layers. Figure 39 illustrates the relationship between neuron count, number of layers,
and inference cost. The plot suggests a linear relationship between neuron count and cost,
with a smaller yet significant effect from the number of layers. To further explore this

relationship, we consider the explicit model:
Q(Inference time) ~ Nyeuron * C(MNiayer), (4.3)

where the inference time is explained by the number of neurons and the number of layers
(as a categorical variable with 5 levels). Results in Table 12 show that inference time
can largely be explained by the number of neurons, as indicated by the high F-value,
while subdividing the same number of neurons into additional layers incurs only a small
additional cost. This contrasts with the accuracy improvements observed from increasing

the number of nonlinear activation functions, as discussed in previous sections.
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Next, we assessed the impact of utilizing Tensor Cores across different models.
Tensor Cores primarily accelerate linear transformations, and their performance is highly
sensitive to matrix sizes that align with their optimal dimensions. As a result, the
effectiveness of Tensor Cores varies significantly based on the architecture of each model.
Figure 40 illustrates the speedup obtained when running models with TensorRT (leveraging
Tensor Cores) compared to PyTorch (using only CUDA cores), with all other variables
kept constant. The results indicate that Tensor Cores provide greater benefits in larger
models (up to almost twice as fast), although with diminishing returns as the model
size continues to increase. Interestingly, for a given neuron count, models divided into
more layers exhibited reduced benefit from Tensor Cores, suggesting that architectural

complexity plays a role in limiting the efficiency gains from Tensor Cores in deep networks.

An ANOVA analysis, using a model similar to Equation 4.3 but with speedup as the
response variable, confirmed these observations. The F-value for the number of layers was
a much larger proportion of the total variance compared to the ANOVA for inference time,
indicating a stronger influence on speedup. The fitted coefficients, which were positive for
neuron count and negative for layer count, further supported the observed trend: models
with a higher neuron count benefit more from Tensor Cores, while deeper models with
more layers show diminished performance improvement. This suggests that while Tensor
Cores excel at accelerating models with large matrix operations, their advantage decreases

in deeper architectures where other computational bottlenecks may arise.

Inference primarily consists of two operations: linear transformations and the
evaluation of non-linear activation functions, each of which occurs once per layer. Deeper
architectures, as opposed to wider ones, tend to have a higher percentage of their inference
cost dominated by the evaluation of activation functions. Since TensorRT does not
accelerate the execution of these functions, its overall benefit is reduced for deeper models.
This explains the observed trend, where deeper models receive less acceleration from

Tensor Cores due to the unchanged cost of non-linear operations.

Table 12 — ANOVA summary showing the impact of the number of layers and neuron

count on model inference performance. Results demonstrate a significant effect of both

the number of layers and neurons, with both fitted coefficients being positive, indicating

an increase in cost for increasing either, although neuron count has a clearly dominant
influence indicated by the larger F-value.

Source Fitted Coef Sum Sq F-value P-value
layers 0.0128 3.14 x 1072 171.0 7.22 x 10736
neuron 0.0015 1.29 x 10* 70300.0 0.00
layers:neuron > 107° 1.72 x 1073 9.33 2.32 x 1073

Residual 1.66 x 107!
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Figure 39 — Inference time for the reference set for multiple untrained models with various

architectures. Inference is done using TensorRT. Results show a linear increase in cost as

neuron count increases. Dotted grey line shows the Euler implementation results for the
same set.

Table 13 — ANOVA summary showing the impact of the number of layers and neuron
count on the speedup due to running inference with tensor cores as opposed to only cuda
cores. The results indicate significant effects of both layers and neurons, with a high
F-value. With a positive coefficient, a higher neuron count increases the efficacy of the
tensor cores, while with a negative coefficient, a higher number of layers decreases it.

Source Fitted Coef Sum Sq F-value P-value

layers —0.0122 1.91 x 10° 129.0 5.85 x 1072
neuron 0.0043 4.80 x 10* 3230.0 9.23 x 107301
layers:neuron > 107° 6.15 x 107! 41.4 2.01 x 10719

Residual 905 1.35 x 10!
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Figure 40 — Speedup in inference due to the use of TensorRT and tensor cores as opposed

to only CUDA cores. Models are divided by the number of layers and organized by neuron

count. The plot suggests a strong positive relation for neuron count and a negative relation
for the number of layers.
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Next, we take the best-performing models in terms of accuracy, i.e., mean error,
across all the previous problems and evaluate each model’s balance between accuracy and
inference performance relative to the numerical implementation. Figure 5 shows that, for
all problems tackled, several neural networks achieved both higher accuracy and faster
inference times compared to the baseline numerical solver. Furthermore, models up to
1.8x faster than the numerical counterpart can be utilized when a certain error tolerance
is acceptable. Finally, it is notable that as the complexity of the problem increases,
the models become more computationally expensive, especially when higher accuracy is

required.

Mean Error and Inference time for multiple models trained

Smallest Model <0.1 for C @ Bs
Smallest Model® 0.1 for Iterator B
e O B
@ lterator Bc
@® C
—==- Euler Method Accuracy
Cuda implementention perfomance

Smallest Mo% <0.01 fo

2 rBe
1072 4 allest Model "< 0.01 for C

_______________________ Smallest Model < Q.01Lfor Bs. — —
Overall Bes&Model for C

Best ModelL for Iterator

Mean Error

Best Two-LayS Model for B¢
Best Mo&el for Bc

10-3 4 Best Two eyer for Bs

Smallest Model.< 0.001 for Bs

Best Mogel for B4

T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Inference time (s)

Figure 41 — Model error and Model inference performance for multiple models trained
during this work. Numerical solution for the model using the Euler method and dt= 0.1 is
show for reference with the grey doted lines.
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4.5 Discussion

This study investigated the use of neural networks to solve complex differential
equations in the context of modeling action potentials. Several key observations emerge
from the results, highlighting the effectiveness of the approaches taken and the implications
for future research. The results demonstrate that neural networks can offer some advantages
over traditional numerical solvers, particularly when optimized to leverage modern hardware
like Tensor Cores. These advantages are most notable when the complexity of the problem
is managed through proper model design and optimization techniques. Overall, neural

networks can provide faster solutions while maintaining the accuracy of traditional methods.

The incorporation of physical constraints through PINNs proved to be highly
beneficial, especially in scenarios where data was scarce. By embedding physical laws
directly into the loss function, PINNs demonstrated superior accuracy when trained
with a scarce dataset, as shown for Problem A in Figure 17. This aligns with existing
literature, such as (BHATNAGAR; COMERFORD; BANAEIZADEH, 2023), suggesting
that PINNs are particularly effective in modeling complex physical systems with limited
data availability. However, it is also clear from the results that the use of PINNs comes at
significant computational cost, with iterations nearly 10 times more expensive than regular
data-driven models, as shown in Figure 23. Training with these constraints required
significantly more resources in terms of iteration time and offers little benefit if the training
set is abundant, as shown in Figure 21, thus our results show that PINNs should be
relegated to only data scarce scenario, or when the cost to produce the data surpass the

cost of training with it.

Two specific techniques were employed in this study: increasing cloud point density
and time domain splitting, both yielding meaningful results. The idea behind increasing the
cloud point density is to enhance the model’s ability to learn complex regions by introducing
more training points in areas of interest. This technique effectively allowed the model
to focus on regions where greater accuracy was required, improving overall performance.
Notably, this technique only worked when the additional constraint incorporated new data
of that specific region, as shown in Figure 34, specially reducing the max error. When
the additional constraint included only physics for those regions, Figure 26 shows that
it did not yield any benefit. However, the process of identifying these high-error regions
and generating high-resolution data for them comes at a substantial computational cost,
particularly when large datasets or complex models are involved. The other technique
employed, time domain splitting, has the objective of reducing the complexity of the
solution space. By breaking down the temporal domain into smaller subdomains, the
model has a reduced mapping of inputs to outputs to learn, allowing for better accuracy
results. As shown in Table 7 with a reduction of the time domain to a tenth of the

original size, yielded an improvement in accuracy of 5x in average. Both techniques
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yielded meaningful results, enabling the use of smaller, and thus faster, models than
would otherwise be possible, highlighting their use in applications focused on inference

performance as wells as for improving training.

The architecture and optimization of the neural networks played a pivotal role
in their performance. As shown in your results, models with the same neuron count
achieved up to 10x less error when optimized with specific structures. Figure 30 illus-
trates that smaller models with carefully optimized architectures, such as the bowtie
structure, achieved competitive accuracy with significantly fewer parameters than other
top-performing models. This underscores the importance of selecting the right architecture
for specific tasks, as larger models with more neurons and layers did not always lead to
improved performance. However, it is important to acknowledge the high computational
cost of model optimization. Since the ideal architecture is not known beforehand, multiple
models must be trained, which is computationally expensive. To address this challenge,
optimization techniques such as adaptive learning rates (e.g., the Adam optimizer) and
parallel training with two A-100 GPUs were employed to ensure timely completion of the
training process. Furthermore, our results suggest that, for this particular problem, the
bowtie and simple rectangular shapes should be prioritized. A promising avenue for future

research would be to verify if these patterns hold for other ODEs.

The comparison between the neural networks and traditional numerical solvers,
particularly in terms of inference time, demonstrated that while it is possible to achieve an
advantage for the former in some cases, some restrictions apply. Problem complexity is a
significant one, with neural networks trained on smaller problems being able to match the
accuracy of traditional numerical solvers while achieving up to 1.8x faster inference times
(Figure 5). This performance boost is particularly relevant for real-time or large-scale
simulations where computational efficiency is critical. However, as problem complexity
increased, larger models were required to achieve levels of accuracy similar to the numerical
method, and the advantage diminished, even after applying techniques to significantly
reduce problem complexity or improve training. This highlights the possibilities and
limitations of using neural networks for solving ODEs. For small parametrization of the
models, small and very cheap models can be trained that beat their numerical counterparts,
but as more parameters are considered, larger and more expensive models are required,

and the numerical solution becomes cheaper, since it is not affected by parametrization.

When considering both the FHN model and neural networks as surrogates for
the complex Hodgkin-Huxley model, it is clear that for most applications requiring full
parametrization, the numerical solution of the ODE model is the better choice. This is
particularly true for reduced-order models like FHN, which reduce the number of equations,
using prior mathematical insights. However, in cases where problem complexity can be
controlled, neural networks can offer significant speedups, especially when utilizing modern

hardware like tensor cores. With careful handling, neural networks could also tackle more



complex models, providing even greater benefits.
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5 CONCLUSION

This work aimed to evaluate the effectiveness of Physics-Informed Neural Networks
(PINNs) and data-driven models as efficient alternatives to traditional numerical solutions
in modeling cardiac action potentials. The FitzHugh-Nagumo model was chosen to test
the neural networks across various complexity levels, starting with only the independent
variable as a parameter, followed by the inclusion of initial conditions, and finally expanding
to additional model parameters. Multiple techniques were employed to improve training

and speed up inference.

The neural networks were trained using a combination of numerical data and
physical laws derived from the underlying ODEs. By embedding physical constraints
through PINNs, we achieved significant gains in data-scarce scenarios. However, our results
show the substantial cost of training PINNs and the lack of benefit in abundant data
settings. Thus, our work demonstrates a key advantage of PINNs over purely data-driven
approaches when data is scarce, while emphasizing the costly trade-off that makes their

use situational.

Techniques were employed to enhance training, improve model accuracy, and
reduce problem complexity. Architecture optimization played a crucial role in balancing
the trade-off between model size and performance, leading to faster and more accurate
predictions. Additionally, time-domain splitting divided the temporal domain into smaller
segments significantly reducing problem complexity, while increasing the cloud point
density in high-error regions ensured better training for stiff regions. These techniques
allowed the neural networks to efficiently handle the complexities of the action potential
model, maintaining a good balance between model size and accuracy even as the problem’s

complexity increased.

Moreover, significant improvements in model inference were achieved through
the use of the TensorRT SDK, which leveraged specialized tensor cores to accelerate
matrix calculations present in neural network inference. This optimization resulted in
faster inference times, up to twice as fast when compared to standard PyTorch-based
implementations, making the neural networks more viable for real-time applications. The
improvements in speed due to the use of the tensor cores were essential for some networks

to be up 1.8x faster than the numerical counterparts.

In conclusion, this work demonstrated the potential of PINNs and data-driven
neural networks as powerful tools for modeling excitable cells in cardiac electrophysiology,
offering surrogates for HH model as good as the phenomenological FHN model. The neural
networks showed improvements in efficiency over FHN in many scenarios, as shown , though
the computational advantages diminished as problem complexity increased. However,

this work also demonstrated that complexity can be effectively managed through proper
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formulation of the problem and model design. With well-structured problem design, it is
likely that for more computationally expensive models than FHN, the improvements could
be even more substantial, possibly achieving up to 10x speedup. Future work should focus
on further optimizing neural network architecture and hardware acceleration, tackling
more complex ODE or PDE models such as the Ten Tusscher (TUSSCHER; PANFILOV,
2006) and Monodomain (FRANZONE; PAVARINO, 2004) respectively, and exploring
integration with traditional solvers to enhance the scalability and applicability of these

neural network models.
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Table 14 — Accuracy of models for the Problem A, with trained with a scarce set after 2

million iterations. Results show that the employ of a PINN constraint is beneficial for all

models in this scarce data scenario. .

Layers Mean err | Max err PINN
(SILU">-16), (SILU’>-16) 3.17e-04 1.63¢-03 | True
(SILU'>-16), (SILU'>-16) 2.07¢-02 3.87c-01 | False
(SILU'>-16), (SILU'>-16), (SILU'>-16) | 4.38¢-04 2.80e-03 | True
(SILU’>-16), (SILU'>-16), (SILU'>-16) | 1.92e-02 3.450-01 | False
(SILU'>-16), (SILU'>-16), (SILU'>-32) | 2.37e-04 1.88¢-03 | True
(SILU'>-16), (SILU'>-16), (SILU'>-32) | 2.25¢-02 3.55¢-01 | False
(SILU’>-16), (SILU’>-16), (TANH’>-8) | 1.79¢-04 2.55¢-03 True
(SILU’>-16), (SILU’>-16), (TANH'>-8) | 1.93e-02 4.11e-01 False
(SILU'>-16), (SILU">-32) 7.65¢-04 1.36e-02 | True
(SILU’>-16), (SILU’>-32) 1.66e-02 3.68e-01 False
(SILU’>-16), (SILU’>-32), (SILU’>-16) | 3.93e-04 8.45e-03 True
(SILU’>-16), (SILU'>-32), (SILU'>-16) | 8.02¢-02 1.78¢-+00 | False
(SILU’>-16), (SILU'>-32), (TANH'>-8) | 1.66e-04 | 2.12¢-03 | True
(SILU'>-16), (SILU’>-32), (TANH'>-8) | 2.58¢-02 5.78-01 | False
(SILU’>-32), (SILU’>-16) 1.310-04 2.060-03 | True
(SILU’>-32), (SILU’>-16) 1.97e-02 4.15e-01 False
(SILU’>-32), (SILU’>-16), (SILU'>-16) | 1.10e-03 5.40e-03 True
(SILU’>-32), (SILU’>-16), (SILU’>-16) | 2.99¢-02 4.29¢-01 False
(SILU'>-32), (SILU'>-16), (SILU'>-32) | 2.03e-04 1.15¢-03 | True
(SILU’>-32), (SILU’>-16), (SILU’>-32) | 4.37e-02 9.74e-01 False
(SILU'>-32), (SILU'>-16), (TANH'>-8) | 1.08¢-04 1.666-03 | True
(SILU’>-32), (SILU’>-16), (TANH'>-8) | 1.49¢-02 3.73¢-01 | False
(SILU’>-32), (SILU’>-32) 9.57e-04 4.20e-02 True
(SILU’>-32), (SILU’>-32) 3.370-02 5.960-01 | False
(SILU’>-32), (SILU’>-32), (SILU’>-16) | 1.50e-03 2.64e-02 True
(SILU’>-32), (SILU’>-32), (SILU'>-16) | 1.77e-02 4.09e-01 False
(SILU'>-32), (SILU'>-32), (SILU'>-32) | 1.47e-04 2.01e-03 | True
(SILU'>-32), (SILU’>-32), (SILU'>-32) | 2.24e-02 4.00e-01 | False
(SILU'>-32), (SILU'>-32), (TANH'>-8) | 1.17-04 1.546-03 | True
(SILU’>-32), (SILU'>-32), (TANH'>-8) | 2.30e-02 | 4.83¢-01 | False
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Table 15 — Accuracy of models for the Problem A, with trained with a very dense complete
set after 2 million iterations. Results show that the employ of a PINN constraint slightly
beneficial for some models and not for others, the difference is not larger enough to be

significant.
Layers Mean err | Max err PINN
(SILU’>-16), (SILU’>-16) | 2.39e-04 1.64e-03 True
(SILU’>-16), (SILU’>-16) | 9.27e-04 8.34e-03 False
(SILU’>-16), (SILU’>-32) | 2.47e-04 4.24e-03 False
(SILU">-16), (SILU>-32) | 1.02e-03 7.23¢-03 | True
(SILU’>-32), (SILU’>-16) | 2.74e-04 5.23e-03 False
(SILU'>-32), (SILU'>-16) | 4.97e-04 327603 | True
(SILU>-32), (SILU'>-32) | 1.66e-04 1.36e-03 | True
(SILU’>-32), (SILU’>-32) 3.63e-04 1.16e-02 False
(SILU’>-32), (TANH’>-8) 3.66e-04 2.72e-03 True
(SILU’>-32), (TANH’>-8) | 1.04¢-03 7.71e-03 False
(TANH’>-8), (SILU’>-16) | 3.39e-04 4.92¢-03 False
(TANH’>-8), (SILU’>-16) | 3.70e-04 2.05e-03 True
(TANI'>-8), (SILU'>-32) | 3.64e-04 5.52¢:03 | False
(TANH’>-8), (SILU’>-32) | 5.05e-04 7.50e-03 True
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Table 16 — Best performing models in terms of medium accuracy over the validation set,
trained for Problem Bg. Results show that all best performance are three layers models,
and that while larger models in terms of neuron count also dominated the chart, smaller
models with 96 and 72 neurons were able to be trained with good results trough model

optimization.
Layers Mean err Neuron count class
(SILU-32, TANH-32, SILU-32) 0.00038831 96 rectangle
(TANH-64, TANH-32, SILU-64) | 0.00039900 160 bowtie
(SILU-64, SILU-64, SILU-64) 0.00040598 192 rectangle
(SILU-32, TANH-64, SILU-8) 0.00042069 104 diamond
(TANH-32, TANH-64, SILU-64) | 0.00042301 160 bottleneck
(SILU-32, SILU-64, SILU-32) 0.00043483 128 diamond
(TANH-32, TANH-32, SILU-64) | 0.00044650 128 bottleneck
(SILU-64, SILU-64, SILU-32) 0.00045884 160 funnel
(SILU-32, TANH-32, ELU-8) 0.00046274 72 funnel
(TANH-64, TANH-64, SILU-64) 0.00046464 192 rectangle
(TANH-32, TANH-32, SILU-32) | 0.00046883 96 rectangle
(SILU-32, TANH-64, SILU-32) 0.00047633 128 diamond
(TANH-64, SILU-64, SILU-64) 0.00048618 192 rectangle
(TANH-64, SILU-32, SILU-64) 0.00048809 160 bowtie
(ELU-8, TANH-64, SILU-32) 0.00048935 104 diamond
(SILU-64, TANH-32, ELU-8) 0.00049106 104 funnel
(SILU-64, SILU-64, SILU-8) 0.00049591 136 funnel
(SILU-64, TANH-32, SILU-64) 0.00049913 160 bowtie
(ELU-8, TANH-32, SILU-32) 0.00050388 72 bottleneck
(SILU-8, TANH-32, SILU-8) 0.00050557 48 diamond
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Table 17 — Model performance in terms of mean error over the validation set for models
with 48 neurons and different three layers architectures in Problem Bg. Results show that
models with the same size had vastly different performance depending on architecture,
showcasing importance of model optimization. In this case, bowtie models were the best

performing.

Layers Mean err Neuron count | class
(SILU-8, TANH-32, SILU-8) | 0.00050557 48 bowtie
(SILU-8, TANH-32, SILU-8) | 0.00057729 48 bowtie
(ELU-8, SILU-32, ELU-8) 0.00068503 48 bowtie
(SILU-8, TANH-32, SILU-8) | 0.00070264 48 bowtie
(ELU-8, ELU-8, SILU-32) 0.00081290 48 funnel
(SILU-8, SILU-32, SILU-8) 0.00082717 48 bowtie
(SILU-32, SILU-8, SILU-8) 0.00087317 48 diamond
(TANH-32, ELU-8, SILU-8) 0.00089392 48 bowtie
(TANH-32, SILU-8, SILU-8) | 0.00090197 48 diamond
(SILU-8, SILU-32, ELU-8) 0.00090502 48 bowtie
(SILU-8, SILU-32, SILU-8) 0.00090711 48 bowtie
(TANH-32, ELU-8, SILU-8) 0.00097331 48 bowtie
(TANH-32, SILU-8, ELU-8) 0.00111592 48 diamond
(SILU-32, ELU-8, SILU-8) 0.00121844 48 bowtie
(ELU-8, SILU-8, SILU-32) 0.00122527 48 funnel
(SILU-32, SILU-8, ELU-8) 0.00126189 48 diamond
(ELU-8, SILU-8, SILU-32) 0.00126918 48 funnel
(ELU-8, SILU-8, TANH-32) 0.00127633 48 funnel
(ELU-8, ELU-8, TANH-32) 0.00135926 48 funnel
(SILU-32, SILU-8, ELU-8) 0.00147253 48 diamond
(ELU-8, ELU-8, TANH-32) 0.00200439 48 funnel
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Figure 42 — Model inference performance for multiple models sizes, models have an

homogeneous architecture, i.e. with all layers equal, and use one of multiple activation

functions. Results shows that the activation function has a very minor effect on inference
cost when compared to model size.



