CÁLCULO DE FRAÇÕES POR MEIO DE SEGMENTOS:

REALIZANDO EXPERIMENTOS MENTAIS

Janaína Lamas Santiago

Willian José da Cruz

Este trabalho está licenciado com uma Licença <u>Creative Commons – Atribuição –</u> NãoComercial 4.0 Internacional.

br />Este trabalho está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial 4.0 Internacional

Apresentação

Este material constitui o Produto Educacional, resultado da dissertação intitulada "Uma proposta de ensino de frações por meio de cálculos de segmentos: desvendando o objeto por meio dos Experimentos Mentais", desenvolvida no Programa de Pós-Graduação em Educação Matemática da Universidade Federal de Juiz de Fora.

A concepção deste material insere-se no campo da Educação Matemática e visa complementar as práticas de ensino já utilizadas por professores que ensinam Matemática, por meio de uma abordagem metodológica chamada Experimentos Mentais. Essa metodologia auxiliará os estudantes a construírem fatos sobre um determinado objeto da matemática, a partir do desenvolvimento contínuo do objeto, dentro do próprio contexto da matemática e das relações de seus contrários. Nos Experimentos Mentais são utilizados diagramas que ao serem modificados, a partir da utilização de deduções e abduções, ampliam a possibilidade de interpretações e significações sobre o objeto do conhecimento.

Nesse material foram desenvolvidas atividades com foco no objeto do conhecimento chamado fração e para representá-lo foram utilizados segmentos realizando uma complementaridade entre a geometria e a álgebra. Nessas atividades, além de trabalhar a construção de frações por meio dos segmentos, oferece-se também a possibilidade de realizar as operações soma, subtração, multiplicação e divisão de frações.

Nos Experimentos Mentais propostos foram pensados para serem construídos no Geogebra e para o 9º ano do Ensino Fundamental. Porém, podem ser adaptados para que sejam realizados utilizando-se régua (esquadros) e compasso.

Sumário

Conceitos fundamentais na semiótica de Peirce	3
A Matemática como uma atividade semiótica	5
Complementaridade entre geometria e aritmética	6
Experimentos Mentais na Matemática	7
Frações	8
ATIVIDADE 1: Construindo frações por meio de segmentos	10
ATIVIDADE 2: Somando frações por meio de segmentos	14
ATIVIDADE 3: Subtraindo frações por meio de segmentos	18
ATIVIDADE 4: Multiplicando frações por meio de segmentos	21
ATIVIDADE 5: Dividindo frações por meio de segmentos	25
Considerações	28
Referências	29
Nota para o professor: Heurística do Experimento Mental sobre a soma de frações por meio de segmentos	30

Conceitos fundamentais na semiótica de Peirce

A semiótica é o estudo de como os signos de todos os tipos referem-se aos seus objetos por meio de uma ideia a qual é reconhecida pelo sujeito.

Signo é algo que representa algo para alguém.

O signo é dado por meio de uma relação triádica entre o representamen (símbolo ou sinal), o objeto (o que está sendo representada) e o interpretante (o sentido que o intérprete produz na relação entre o representamen e o objeto). Observe um exemplo na figura 1.

INTERPRETANTE

SIGNO

REPRESENTAMEN

O

U

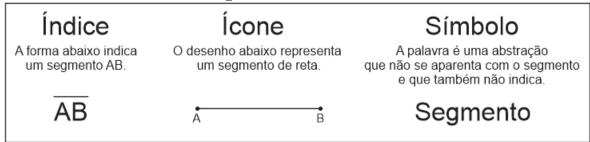
Minha unidade!

SIGNO

OBJETO

Segmento

Figura 1: Signo.


Fonte: Elaborada pela autora no paint em 2024.

O signo pode ser classificado quanto ao seu objeto em:

- <u>Índice:</u> refere-se ao objeto. Podendo ser utilizado para particularizar.
- **<u>icone</u>**: é um signo diagramático que se assemelha ao objeto.
- Símbolo: consiste em uma regra.

Observe exemplos de índice, ícone e símbolo na figura 2.

Figura 2: Índice, ícone e símbolo.

DURANTE O PROCESSO DE DESENVOLVIMENTO DO EXPERIMENTO MENTAL, OS DIAGRAMAS VÃO SOFRENDO MODIFICAÇÕES E A REPRESENTAÇÃO DO OBJETO OCORRERÁ TANTO POR MEIO DE ÍCONES QUANTO DE ÍNDICE E DE SÍMBOLOS.

Peirce também classificou os argumentos com base no tipo de raciocínio.

- <u>Abdução</u>: é o início de um processo, pois envolve a formulação de hipótese, mas também sendo usado para explicar um conjunto de observações. É esse o processo responsável por novas ideias.
- Indução: é o raciocínio utilizado para generalizar.
- <u>Dedução</u>: esse tipo de raciocínio utiliza-se uma ou mais premissas para se obter uma conclusão. E ela tem como característica unir os processos abdutivos e intuitivos.

Acesse a dissertação intitulada "Uma proposta de ensino de frações por meio de cálculos de segmentos: desvendando o objeto por meio dos Experimentos Mentais" para se aprofundar no assunto.

A Matemática como uma atividade semiótica

> O que significa essa concepção?

Significa que a Matemática é construída por meio de diagramas e experimentações.

> Qual é o pilar dessa concepção?

O pilar dessa concepção está no fato de que a Matemática pode ser acessada por meio do uso de diagramas geométricos e/ou algébricos.

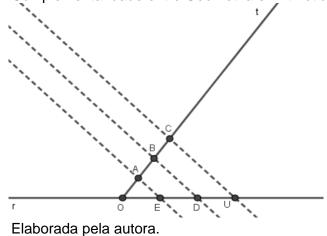
> O que são diagramas?

Os diagramas são predominantemente um ícone regido por regras e convenções de um sistema de representações consistente e fundamentado sobre uma ideia básica.

- ➤ E quais são as vantagens de acessar os objetos matemáticos por meio de diagramas?
 - Reduz o custo cognitivo na solução de problemas e nos conflitos.
 - Verificação de resultados que ampliam as possibilidades e significações.
 - Auxiliam na compreensão do objeto matemático.

O PILAR DOS EXPERIMENTOS MENTAIS É O RACIOCÍNIO DIAGRAMÁTICO E A SEMIÓTICA DE PEIRCE!

Complementaridade entre geometria e aritmética


O princípio da complementaridade é uma teoria instituída por um matemático alemão chamado Michael Otte, em que o conceito está na dualidade que se tem na relação do sujeito com o objeto, pois o sujeito busca integrar as informações obtidas por meio de uma atividade e operatividade do pensamento (Otte, 1993).

Para Otte, a aritmética e a geometria se complementam em simbologia e em sistema de representação. Combinadas, elas servem como instrumentos e campos de interpretação e, assim, representam um modo de geração de pensamento matemático (1990).

Na aritmética um argumento pode ser utilizado para generalizar, porém a propriedade perde seu real significado. Enquanto na geometria há limitações, porém, a propriedade ganha significado. Logo, apesar de suas diferenças elas podem se complementar, pois uma permite atribuir significado enquanto a outra permite generalizar (Wielewski, 2008).

Observe na figura 2, um exemplo da Geometria e da Aritmética se complementando.

Figura 3: Complementaridade entre Geometria e Aritmética.

$$\overline{OU} = 1$$

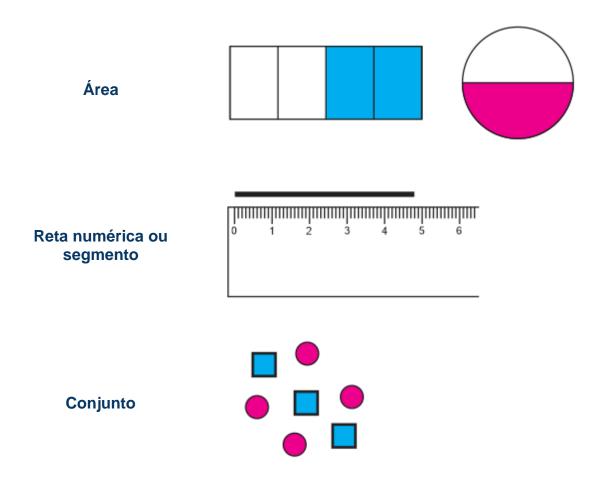
$$\overline{OE} = \frac{1}{3}$$

$$\overline{OD} = \overline{OE} + \overline{OE} = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

Experimentos Mentais na Matemática

Os Experimentos Mentais são "formas de representar o objeto do conhecimento, por meio de um diagrama, e de desenvolver certas deduções e abduções no referido diagrama, a ponto de modificá-lo, para que seja possível chegar a novos conceitos e/ou generalizações" (Cruz, 2024, p. 5)

Essa metodologia se ancora na concepção histórico-dialética da educação, ou seja, está baseada na concepção de dialética com base no materialismo de Marx. Segundo Gadotti, a teoria é um guia para ação, em que por meio da prática tem-se base para construção da teoria, afinal, é por meio do conhecimento obtido pela prática que ela é dialeticamente construída (1997).


Os Experimentos Mentais podem auxiliar os estudantes a construírem fatos sobre um determinado objeto da matemática, a partir do desenvolvimento contínuo do objeto, dentro do próprio contexto da matemática e das relações de seus contrários.

Essa metodologia possui algumas características fundamentais.

- Forma: a conjectura, a hipótese e as suposições que são desenvolvidas em uma representação particular do objeto geral (Cruz, 2021; 2022).
- <u>Estrutura:</u> permite que novas ideias sejam introduzidas, criando-se, assim, uma síntese abdutiva (Cruz, 2021).
- <u>Compreensão</u>: utilização do processo dedutivo no desenvolvimento da experimentação mental (Cruz, 2021), permitindo perceber relações que não estão explicitamente apresentadas nos diagramas.
- <u>Dependência:</u> sistema de representação. Baliza a aplicação de novos conceitos e de objetos.
- Revelação: revela contradições e apresenta novas leis (Cruz, 2021).

Frações

As frações podem ser representadas por três modelos.

Os significados gerados pelos contextos em que as frações são empregadas.

- Razão: parte de uma parte.
- Quociente: uma divisão.
- Operador: indica uma transformação.
- Parte e todo: particionar.
- Medida: Subdividir a unidade.

PROPOSTAS DE ATIVIDADES DE FRAÇÕES UTILIZANDO-SE DOS EXPERIMENTOS MENTAIS

ATIVIDADE 1: Construindo frações por meio de segmentos

Objetivo	Compreender o que é fração como parte de um segmento unitário.		
Recursos necessários	Geogebra, lápis e borracha.		
Construção da atividade	https://www.geogebra.org/m/yjnmzchr (Utilize as setas no canto inferior direito para avançar o protocolo de construção).		
Orientações Gerais	1 '		

CONSTRUINDO FRAÇÕES POR MEIO DE SEGMENTO

1) O que é fração para você?
2) Convido você a fazer um Experimento Mental de construção da fração $\frac{1}{3}$.
a) Iniciamos construindo, no Geogebra, duas retas fixas r e t que intersectam em um
ponto O.
 Os segmentos que serão construídos terão início em um ponto O e terão
extremidades sobre essas retas fixas e serão associadas frações a esses
segmentos.
 O segmento que representa o 0 pode ser simbolicamente representado por
$\overline{OO} = 0$.
b) Escolher um ponto qualquer sobre a reta r e denominá-lo de U. Esse segmento OU
será chamado segmento 1 ou unidade. Simbolicamente representado por $\overline{OU} = 1$.
c) Marcar um ponto A sobre a reta t.
d) Criar uma circunferência com centro em A de raio equivalente à medida do
segmento OA e marcar o ponto B, intersecção da circunferência com a reta t.
e) Criar uma nova circunferência com centro em B e raio equivalente ao segmento
OA e marcar o ponto C, interseção da circunferência com a reta t.
f) Qual é a relação entre o segmento OA e o segmento OB? E a relação entre a o
segmento OA e do segmento OC?

Retomando ao Experimento Mental no Geogebra!

- g) Traçar uma reta passando pelos pontos U e C.
- **h)** Traçar uma reta paralela à reta UC passando pelo ponto B e marcar o ponto de interseção D com a reta r.

i) Traçar uma reta paralela à reta UC passando pelo ponto A e marcar o ponto de
interseção E com a reta r.
j) Pelo teorema de Tales, podemos concluir que o segmento unitário foi dividido em
três partes iguais. Sabendo disso, relacione o segmento AE com a unidade e o
segmento AD com a unidade?
O que diz o teorema de Tales?
k) Explique com suas palavras o que é o segmento AE.
I) Explique com suas palavras o que é o segmento AD.
m) Arraste o ponto B, para alterar o tamanho da unidade. Com essa alteração, o que podemos afirmar sobre o segmento AE, em relação a essa nova unidade?
n) Agora, construa o segmento $\frac{4}{3}$ no Geogebra.

o) A partir desses Experimentos, como você explicaria a alguém o que é fração?			

ATIVIDADE 2: Somando frações por meio de segmentos¹

Objetivo	Compreender a soma entre frações.		
Recursos necessários	Geogebra, lápis e borracha.		
Construção da atividade	https://www.geogebra.org/m/ybadthhe (Utilize as setas no canto inferior direito para avançar o protocolo de construção). Observação: Para reduzir a quantidade de elementos da construção e essa ficasse mais clara de ser observada pelo protocolo do Geogebra, foi utilizada o recurso de ponto médio para obter a metade da unidade, mas é possível essa seja obtida com o auxílio da reta suporte.		
Orientações Gerais	da reta suporte. Nessa atividade foi proposto um Experimento Mental el que é utilizada a complementaridade entre a geometri e a aritmética para somar frações. Para isso, foral construídos segmentos e, a partir de um segmento chamado unidade, foram associadas frações. Nesse Experimento Mental é realizada a soma de $\frac{1}{3}$. Para isso, foi construído um segmento que representa $\frac{1}{3}$ da unidade considerada e um segmento $\frac{3}{2}$, em seguida, o segmento $\frac{3}{2}$ foi transladado, obtendo um novo segmento que representa a soma de $\frac{1}{3}$ e $\frac{3}{2}$. Em seguida, foi realizada uma subdivisão da unidade revelando, assim, o resultado da soma $\frac{1}{3} + \frac{3}{2}$.		

¹ Veja a nota ao professor ao final deste Produto Educacional para compreender a heurística do Experimento Mental sobre a soma de frações por meio de segmentos.

SOMANDO FRAÇÕES POR MEIO DE SEGMENTOS

1) Como você realizaria a soma $\frac{1}{3} + \frac{4}{3}$?

2) E agora, $\frac{1}{3} + \frac{3}{2}$?

- 3) Convido você a somar $\frac{1}{3}$ e $\frac{3}{2}$ por meio de um Experimento Mental.
- **a)** Iniciamos construindo, no Geogebra, duas retas fixas r e t que intersectam em um ponto O.
 - Os segmentos que serão construídos terão início em O e terão extremidades sobre essas retas fixas e serão obtidas as medidas desses segmentos.
 - O segmento que representa o 0 pode ser simbolicamente representado por $\overline{OO} = 0$.
- **b)** Escolher um ponto qualquer sobre a reta r e denominá-lo de U. Esse segmento OU será chamado segmento 1 ou unidade. Simbolicamente representado por $\overline{OU} = 1$.
- c) Construir um segmento OE que representa $\frac{1}{3}$ e um segmento OG que representa
- $\frac{3}{2}$, sobre a reta r. (Observação: Utilizar a reta suporte para dividir o segmento).
- **d)** Com o auxílio de uma circunferência centralizada no ponto O, criar um ponto U' sobre reta t, em que o segmento OU' seja equivalente a unidade.
- e) Traçar uma reta paralela à reta t passando por G.
- f) Traçar uma reta paralela à reta r passando por U' e marcar o ponto H de intersecção.
- g) Traçar a reta que passa pelos pontos E e U'.
- h) Traçar uma reta paralela a essa última reta construída passando pelo ponto H e marcar o ponto de intersecção J com a reta r.

i) Nesse Experimento, foi realizada uma transformação geométrica denominada
translação. Você consegue identificar em qual segmento foi aplicado o movimento de
translação? Explique sua resposta.

O que é uma transformação geométrica de translação?	
	-
	-

j) Considerando o segmento OE e o segmento OG, qual é a relação que descreve o segmento OJ?

k) É possível representar OJ por meio de uma única fração?

Vamos continuar nosso Experimento Mental!

- I) No Geogebra, marcar na reta r, o ponto que demarca o segmento que representa a fração unitária que deu origem à fração $\frac{3}{2}$.
- **m)** Marcar um círculo de raio igual a diferença entre as frações unitárias que deram origem às frações $\frac{1}{3}$ e $\frac{3}{2}$ com centro em O.
- n) Replicar circunferências de raio igual a diferença entre as frações unitárias que deram origem às frações $\frac{1}{3}$ e $\frac{3}{2}$ de forma a dividir todo o segmento OJ. Essa divisão deve ser feita por meio de pontos que são interseção da circunferência com a reta r. A primeira circunferência será centralizada no ponto marcado no passo anterior e as subsequentes nos próximos pontos até que a interseção da última circunferência seja o ponto J.
- o) A unidade foi subdividida em novas partes, em quantas partes ela foi subdividida?

p) Com essa nov	a subdivisão da unidade, qual é a fração que representa o segmento
AE? E o segmen	to AC?
q) O que significa	a duas frações serem equivalentes?

ATIVIDADE 3: Subtraindo frações por meio de segmentos²

Objetivo	Compreender a subtração entre frações.		
Recursos necessários	Geogebra, lápis e borracha.		
Construção da atividade	https://www.geogebra.org/m/nkzmqerc (Utilize as setas no canto inferior direito para avançar o protocolo de construção).		
	Observação: Para reduzir a quantidade de elementos da construção e essa ficasse mais clara de ser observada pelo protocolo do Geogebra, foi utilizada o recurso de ponto médio para obter a metade da unidade e a quarta parte da unidade, mas é possível que essas sejam obtidas com o auxílio da reta suporte.		
Orientações Gerais	Nessa atividade foi proposto um Experimento Mental em que é utilizada a complementaridade entre a geometria		
	e a aritmética para subtrair frações. Para isso, foram		
	construídos segmentos e, a partir de um segmento chamado unidade, foram associadas frações.		
	Nesse Experimento Mental realizamos a operação		
	$\frac{3}{2} - \frac{1}{4}$. Para isso, foi construído um segmento que		
	representa três meio da unidade considerada e um		
	segmento que representa um quarto da unidade		
	considerada. Em seguida, o segmento que representa $\frac{1}{4}$		
	foi transladado, obtendo um novo segmento que		
	representa a operação $\frac{3}{2} - \frac{1}{4}$.		

_

² Veja a nota ao professor ao final deste Produto Educacional para compreender a heurística do Experimento Mental sobre a subtração de frações por meio de segmentos.

SUBTRAINDO FRAÇÕES POR MEIO DE SEGMENTOS

1) Como você realizaria a subtração $\frac{3}{2} - \frac{1}{4}$?

- 2) Convido você a realizar o cálculo $\frac{3}{2} \frac{1}{4}$ por meio de um Experimento Mental.
- **a)** Iniciamos construindo, no Geogebra, duas retas fixas r e t que intersectam em um ponto O.
 - Os segmentos construídos terão início em O e extremidades sobre essas retas fixas. Serão associadas frações a esses segmentos.
 - O segmento que representa o 0 pode ser simbolicamente representado por OO = 0.
- **b)** Escolher um ponto qualquer sobre a reta r e denominá-lo de U. Esse segmento OU será chamado segmento 1 ou unidade. Simbolicamente representado por $\overline{OU} = 1$.
- c) Construir um segmento OD que representa $\frac{3}{2}$ e um segmento OE que representa
- $\frac{1}{4}$, sobre a reta r. (Observação: Utilizar a reta suporte para dividir o segmento).
- d) Criar um ponto U' sobre reta t equivalente ao segmento 1 (\overline{OU}). Assim o segmento OU' pode ser representado simbolicamente por $\overline{OU'}$ = 1.
- e) Traçar uma reta paralela à reta t passando por E.
- f) Traçar uma reta paralela à reta r passando por U' e marcar o ponto K de intersecção.
- **g)** Traçar a reta que passa pelos pontos D e K.
- h) Traçar uma reta paralela a essa última reta construída passando pelo ponto U' e marcar o ponto de intersecção L com a reta r.
- i) Você consegue identificar em qual segmento foi aplicado o movimento de translação? Explique sua resposta.

j) Considerando o segmento OE e o segmento OD, qual é a relação que descreve o segmento OL?

k) É possível representar OL por meio de uma única fração?

- I) Marcar um círculo de raio equivalente ao do segmento OE com centro em E.
- **m)** Replicar circunferências de raio equivalente ao do segmento OE de forma a dividir todo o segmento OL. Essa divisão deve ser feita por meio de pontos que são interseção da circunferência com a reta r. A primeira circunferência será centralizada no ponto marcado no passo anterior e as subsequentes nos próximos pontos até que a interseção da última circunferência seja o ponto D.
- n) A unidade foi subdividida em novas partes, em quantas partes ela foi subdividida?

3) Você acha que é possível, seguindo os passos da atividade anterior, encontrar um segmento que represente $\frac{1}{4} - \frac{3}{2}$?

ATIVIDADE 4: Multiplicando frações por meio de segmentos³

Geogebra, lápis e borracha.		
https://www.geogebra.org/m/s3tykkzk (Utilize as setas no canto inferior direito para avançar o protocolo de construção).		
Observação: Para reduzir a quantidade de elementos da construção e essa ficasse mais clara de ser observada pelo protocolo do Geogebra, foi utilizada o recurso de ponto médio para obter a metade da unidade e a quarta parte da unidade, mas é possível essas sejam obtidas com o auxílio da reta suporte.		
Nessa atividade foi proposto um Experimento Mental em		
que é utilizada a complementaridade entre a geometria		
e a álgebra para multiplicar frações. Para isso, foram		
construídos segmentos e foram associadas frações a		
partir de um segmento chamado unidade.		
Nesse Experimento Mental foi realizada a multiplicação		
entre $\frac{1}{4}$ e $\frac{3}{2}$. Para isso, foi construído um segmento que		
é um quarto da unidade considerada e um segmento que		
é três meio dessa unidade. Em seguida foi construído		
dois triângulos que são semelhantes, permitindo ao		
aplicar a relação de proporção entre os lados obter o		
resultado da multiplicação entre $\frac{1}{4}$ e $\frac{3}{2}$.		

³ Veja a nota ao professor ao final deste Produto Educacional para compreender a heurística do Experimento Mental sobre a multiplicação de frações por meio de segmentos.

MULTIPLICANDO FRAÇÕES POR MEIO DE SEGMENTO

1) Ao multiplicar as frações $\frac{1}{3}$ e $\frac{1}{2}$, você espera que o resultado seja maior do que $\frac{1}{3}$, menor do que $\frac{1}{3}$ ou maior do que $\frac{1}{2}$?

2) Ao multiplicar as frações $\frac{1}{4}$ e $\frac{3}{2}$, você espera que o resultado seja maior do que

 $\frac{1}{4}$, menor do que $\frac{1}{4}$ ou maior do que $\frac{3}{2}$?

3) Ao multiplicar as frações $\frac{4}{3}$ e $\frac{3}{2}$, você espera que o resultado seja maior do que $\frac{4}{3}$, menor do que $\frac{4}{3}$ ou maior do que $\frac{3}{2}$?

4) Convido você a realizar a multiplicação entre $\frac{1}{4}$ e $\frac{3}{2}$ por meio de um Experimento.

- **a)** Iniciamos construindo, no Geogebra, duas retas fixas r e t que intersectam em um ponto O.
 - Os segmentos que serão construídos terão início em O e terão extremidade sobre essas retas fixas. Além disso, esses segmentos serão associados às frações.
 - O segmento que representa o 0 pode ser simbolicamente representado por OO = 0.
- **b)** Escolher um ponto qualquer sobre a reta r e denominá-lo de U. Esse segmento OU será chamado segmento 1 ou unidade. Simbolicamente representado por $\overline{OU} = 1$.
- c) Construir um segmento OE que representa $\frac{1}{4}$ de \overline{OU} e um segmento OD que representa $\frac{3}{2}$ de \overline{OU} , sobre a reta r. (Observação: Utilizar a reta auxiliar para a divisão do segmento).

- **d)** Com o auxílio de uma circunferência centralizada no ponto O, criar um ponto E' sobre reta t, cujo o raio da circunferência é o segmento OE.
- e) Traçar uma reta que passa pelo ponto E' e pelo ponto U.
- f) Traçar uma reta paralela à última reta construída passando pelo ponto D e marcar o ponto F de intersecção com a reta t.

g) Os triângulos OUE' e ODF são semelhantes pelo caso ângulo-ângulo (AA). Qual				
a rela	ção de proporção en	tre os lados dess	e triângulo?	

O que são triângulos semelhantes?	

Retornando ao Experimento Mental!

- h) Com o auxílio de uma circunferência centralizada no ponto O, criar um ponto F' sobre a reta r, que cujo o segmento OD seja o raio da circunferência.
- i) Marcar um círculo de raio igual a diferença entre os segmentos OF' e OE com centro em O.
- j) Replicar circunferências de raio igual a diferença entre os segmentos OF' e OE de forma a dividir todo o segmento 1. Essa divisão deve ser feita por meio de pontos que são intersecção da circunferência com a reta r. A primeira circunferência será centralizada no ponto marcado no passo anterior e as subsequentes nos próximos pontos até que a interseção da última circunferência seja o ponto D.
- k) Qual é a fração que indica o segmento OF'?

5) Agora, vamos realizar a multiplicação entre $\frac{1}{2}$ e $\frac{1}{3}$ por meio de um Experimento Mental!

ATIVIDADE 5: Dividindo frações por meio de segmentos⁴

Objetivo	Compreender o significado da divisão entre frações.		
Recursos necessários	Geogebra, lápis e borracha.		
Construção da atividade	https://www.geogebra.org/m/a7wtzntr (Utilize as setas no canto inferior direito para avançar o protocolo de construção).		
	Observação: Para reduzir a quantidade de elementos da construção e essa ficasse mais clara de ser observada pelo protocolo do Geogebra, foi utilizada o recurso de ponto médio para obter a quarta parte da unidade, mas é possível essa seja obtida com o auxílio da reta suporte.		
Orientações Gerais	Nessa atividade foi proposto um Experimento Mental em que é utilizada a complementaridade entre a geometria e a álgebra para dividir frações. Para isso, foram construídos segmentos e, a partir de um segmento chamado unidade, foram associadas frações. Nesse Experimento Mental foi realizada a divisão de $\frac{1}{4}$ por $\frac{1}{3}$. Para isso, foi construído um segmento que é um quarto da unidade considerada e um segmento que é um terço dessa unidade. Em seguida, foi construído dois triângulos semelhantes, permitindo, ao aplicar a relação de proporção entre os lados obter o resultado da divisão entre $\frac{1}{4}$ e $\frac{1}{3}$.		

⁴ Veja a nota ao professor ao final deste Produto Educacional para compreender a heurística do Experimento Mental sobre a divisão de frações por meio de segmentos.

DIVIDINDO FRAÇÕES POR MEIO DE SEGMENTO

1) Como você faria a divisão de $\frac{1}{4}$ por $\frac{1}{3}$?

- 2) Convido você a dividir $\frac{1}{4}$ por $\frac{1}{3}$ por meio de um Experimento Mental.
- **a)** Iniciamos construindo, no Geogebra, duas retas fixas r e t que intersectam em um ponto O.
 - Os segmentos que serão construídos terão início em O e terão extremidade sobre essas retas fixas. Além disso, serão associadas frações a esses segmentos.
 - O segmento que representa o 0 pode ser simbolicamente representado por
 OO = 0.
- **b)** Escolher um ponto qualquer sobre a reta r e denominá-lo de U. Esse segmento OU será chamado segmento 1 ou unidade. Simbolicamente representado por $\overline{OU} = 1$.
- c) Construir um segmento OD que representa $\frac{1}{3}$ do segmento OU e um segmento OG que é $\frac{1}{4}$ do segmento OU, sobre a reta r.
- **d)** Com o auxílio de uma circunferência centralizada no ponto O, criar um ponto U' sobre reta t, em que o segmento OU' seja equivalente a unidade.
- e) Traçar uma reta que passa pelo ponto D e pelo ponto U'.
- f) Traçar uma reta paralela à última reta construída passando pelo ponto G e marcar o ponto J de intersecção com a reta t.
- **g)** Os triângulos ODU' e OGJ são semelhantes pelo caso ângulo-ângulo (AA). Qual é a relação de proporção entre os lados desse triângulo? Desenvolva a igualdade.

- h) Com o auxílio de uma circunferência de raio OJ centralizada no ponto O, criar um ponto J' sobre a reta r.
- i) Marcar um círculo de raio igual a diferença entre os segmentos OD e OG com centro em O.
- j) Replicar circunferências de raio igual a diferença entre os segmentos OD e OG de forma a dividir todo o segmento 1. Essa divisão deve ser feita por meio de pontos que são intersecção da circunferência com a reta r. A primeira circunferência será centralizada no ponto marcado no passo anterior e as subsequentes nos próximos pontos até que a interseção da última circunferência seja o ponto U.

k) Qual a fração que representa o segmento OJ'?

4) Vamos agora realizar a divisão de $\frac{1}{3}$ por $\frac{1}{4}$ utilizando-se do Experimento Mental!

Considerações

Essas atividades foram pensadas com o intuito de criar um ambiente construtivo, dentro do próprio contexto da matemática, que possibilite os alunos a interpretar e criar significados para as operações com frações e estimulando o aluno a vivenciar uma relação dialética com o conhecimento, apresentando-o uma Matemática dinâmica e não mecanizada.

Durante sua elaboração, buscou-se apoiar na semiótica pierciana e no princípio da complementaridade de Otte e utilizou-se como metodologia os Experimentos Mentais aplicados à Matemática trazendo uma perspectiva de ensino inovadora que se ancora na concepção histórico-dialética da educação.

Embora esse Produto Educacional não tenha sido aplicado, o desenvolvimento deste representa uma contribuição para o avanço do processo educacional, com o intuito de enriquecer as práticas pedagógicas e facilitar o acesso ao conhecimento de maneira mais dinâmica.

Por fim, espera-se que este produto continue a contribuir para o aprimoramento da educação, com a possibilidade de expansão e adaptação a diferentes contextos e necessidades pedagógicas.

Referências

- CRUZ, W. J. Experimentos mentais: uma nova metodologia para o ensino de Matemática. Rio de Janeiro: Editora Ciência Moderna, Ltda., 2022a.
- CRUZ, W. J. DA. Experimentos mentais como metodologia de ensino: perspectivas teóricas para a soma dos ângulos externos de um triângulo euclidiano. **Revista Internacional de Pesquisa em Educação Matemática**, v. 14, n. 2, p. 1-15, 24 ago. 2024. Acesso em 29 ago. 2024.
- CRUZ, W. J. *O uso dos experimentos mentais como possível metodologia de ensino da matemática: um olhar epistemológico*. REVEMAT: Revista Eletrônica de matemática, [s. l.], 16, p. 1-26, 2021. Disponível em: https://periodicos.ufsc.br/index.php/revemat. Acesso em: 7 jan. 2023.
- GADOTTI, M. Concepção dialética da educação: um estudo introdutório. 10. ed. São Paulo: Cortez, 1997
- OTTE, M. Arithmetic and Geometry: Some Remarks on the concept of complementary. **Study in Philosophy and Education,** v.10, p. 37-62. Netherlands: Kluwer Academic Publishers, 1990.
- OTTE, M. O formal, o social e o subjetivo: uma introdução à filosofia e à didática da matemática. Tradução: Raul Fernando Neto. São Paulo: Editora da Universidade Estadual Paulista, 1993.
- WIELEWSKI, S. A. **Pensamento instrumental e pensamento relacional na Educação Matemática.** 2008. Tese (Doutorado em Educação Matemática) Pontifícia Universidade Católica de São Paulo, São Paulo, 2008.

Nota para o professor:

Heurística do Experimento Mental sobre a soma de frações por meio de segmentos

O objetivo desse Experimento Mental é somar $\frac{1}{3}$ e $\frac{3}{2}$. Do ponto de vista semiótico, essas frações serão representadas como partes de segmentos de reta, a partir de um segmento considerado, o qual será indicado por unidade. Este experimento pode ser dividido em duas partes, a primeira tem como objetivo encontrar as frações como partes do segmento unidade e a segunda de desenvolver a soma.

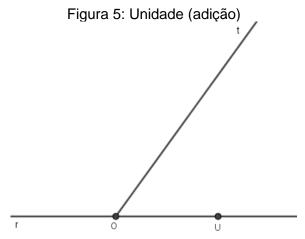
PRIMEIRA PARTE:

Obter a fração um terço da unidade considerada e a fração três meios da unidade considerada.

<u>Forma:</u> Parte-se de uma hipótese ou suposição por meio de uma representação do objeto considerado.

• Considerar duas retas fixas, r e t, que intersectam em um ponto O.

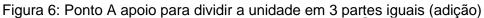
Figura 4: Retas r e t intersectadas em O (adição)

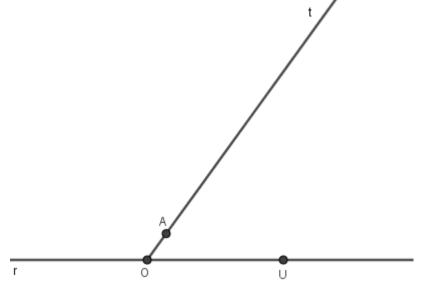

Fonte: Elaborada pela autora em 2023 no Geogebra.

- Construir segmentos que tenham início em O e extremidades em um ponto sobre essas retas fixas e serão associadas frações a esses segmentos.
- O segmento que representa o 0 pode ser simbolicamente representado por:

$$OO = 0$$
 ou $0 = OO$

• Escolher um ponto qualquer sobre a reta r e denomina-lo de U. Nomeá-lo de segmento OU de segmento 1 ou unidade, simbolicamente, representado por:

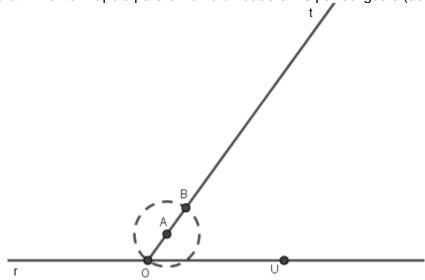

$$OU = 1$$



Fonte: Elaborada pela autora em 2023 no Geogebra.

Estrutura: Uma ideia nova que, ainda, não está contida nos dados do problema. É o processo abdutivo no desenvolvimento do Experimento.

Marcar sobre a reta t um ponto A.


Fonte: Elaborada pela autora em 2023 no Geogebra.

<u>Compreensão e dependência:</u> Neste momento, será desenvolvido um processo dedutivo para encontrar a fração $\frac{1}{3}$, isto é, o segmento sobre a reta r que corresponderá a um terço da unidade considerada. O sistema de representação, neste caso, será a divisão de segmentos pela geometria euclidiana.

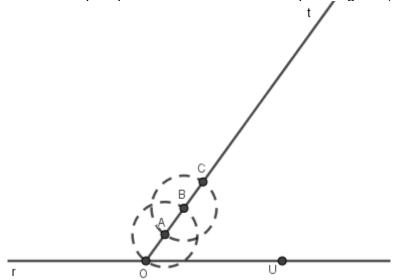
 Criar uma circunferência com centro em A de raio equivalente à medida do segmento OA e marcar o ponto B, interseção da circunferência com a semirreta t.

$$\left. \begin{array}{l} AB = OA \\ OB = OA + AB \end{array} \right\} OB = OA + OA \Longrightarrow OB = 2 \times OA$$

Figura 7: Ponto B apoio para dividir a unidade em 3 partes iguais (adição)

Fonte: Elaborada pela autora em 2023 no Geogebra.

 Criar uma nova circunferência com centro em B e raio equivalente à medida do segmento OA e marcar o ponto C, interseção da circunferência com a semirreta t.


$$BC = OA$$

$$OC = OB + BC$$

$$OC = OB + OA$$

$$Como OB = 2 \times OA \ então OC = 2 \times OA + OA \Rightarrow OC = 3 \times OA$$

Figura 8: Ponto C apoio para dividir a unidade em 3 partes iguais (adição)

Fonte: Elaborada pela autora em 2023 no Geogebra.

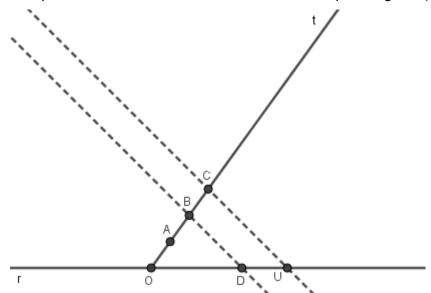

Agora, traçar uma reta passando pelos pontos U e C.

Figura 9: Reta UC apoio para dividir a unidade em 3 partes iguais (adição)

Fonte: Elaborada pela autora em 2023 no Geogebra.

• Traçar uma reta paralela à reta UC passando pelo ponto B e marcar o ponto de interseção D com a reta r.

Figura 10: Reta BD paralela à reta UC: dividindo a unidade em 3 partes iguais (adição)

Fonte: Elaborada pela autora em 2023 no Geogebra.

• Traçar uma reta paralela à reta UC passando pelo ponto A e marcar o ponto de interseção E com a reta r.

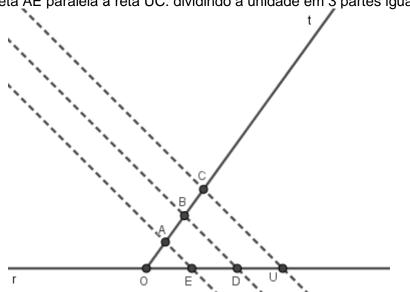
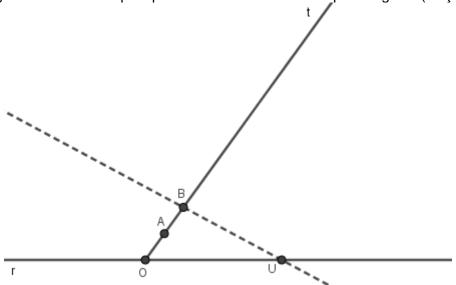


Figura 11: Reta AE paralela à reta UC: dividindo a unidade em 3 partes iguais (adição)

Fonte: Elaborada pela autora em 2023 no Geogebra.

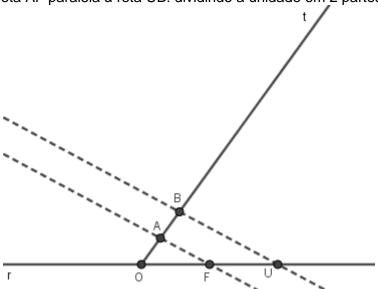
 Os triângulos OAE, OBD e OCU são semelhantes pelo caso ângulo, ângulo, pois eles possuem um ângulo em comum e pelo fato de AE, BD e CU serem paralelos, os ângulos OAE, OBD e OCU são correspondentes, ou seja, são congruentes. Assim:


$$\frac{OE}{OA} = \frac{OU}{OC} = \frac{OD}{OB}$$

- Da igualdade $\frac{OE}{OA} = \frac{OU}{OC}$, tem-se que $OE = \frac{OU \times OA}{OC}$, como $OC = 3 \times OA$, então $OE = \frac{OU \times OA}{3 \times OA} = \frac{OU}{3} = \frac{1}{3} \times OU$, como OU = 1, $OE = \frac{1}{3} \times 1 = \frac{1}{3}$.
- Da igualdade $\frac{OU}{OC} = \frac{OD}{OB}$, tem-se que $OD = \frac{OU \times OB}{OC}$, como $OC = 3 \times OA$ e $OB = 2 \times OA$, então $OD = \frac{OU \times 2 \times OA}{3 \times OA} = \frac{OU \times 2}{3} = \frac{2}{3} \times OU$, como OU = 1, $OD = \frac{2}{3} \times 1 = \frac{2}{3}$.

<u>Compreensão e dependência:</u> Um novo processo dedutivo será desenvolvido para encontrar, dessa vez, a fração $\frac{3}{2}$, isto é, o segmento sobre a reta r que corresponderá a unidade mais um meio dela. O sistema de representação, neste caso, também será a divisão de segmentos pela geometria euclidiana.

• Começar traçando uma reta passando pelos pontos B e U.


Figura 12: Reta UB apoio para dividir a unidade em 2 partes iguais (adição)

Fonte: Elaborada pela autora em 2023 no Geogebra.

 Em seguida, traçar uma reta paralela à reta BU, passando pelo ponto A e marcar o ponto F.

Figura 13: Reta AF paralela à reta UB: dividindo a unidade em 2 partes iguais (adição)

Fonte: Elaborada pela autora em 2023 no Geogebra.

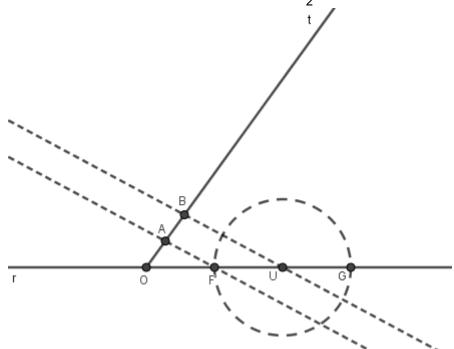
 Os triângulos OAF e OBU são semelhantes pelo caso ângulo, ângulo, pois possuem um ângulo em comum e pelo fato de AF e BU serem paralelos, os ângulos OAF e OBU são correspondentes, ou seja, são congruentes. Assim:

$$\frac{OF}{OA} = \frac{OL}{OE}$$

• Dessa igualdade, tem-se que $OF = \frac{OU \times OA}{OB}$, como $OB = 2 \times OA$, então:

$$OF = \frac{OU \times OA}{2 \times OA} = \frac{OU}{2} = \frac{1}{2} \times OU, \text{ como } OU = 1, OF = \frac{1}{2} \times 1 = \frac{1}{2}.$$

 Agora, traçar uma circunferência com centro no ponto U e de raio equivalente ao segmento OF, em seguida, marcar o ponto G de interseção com a reta r.


$$\left. \begin{array}{l} OF = FU \\ OU = OF + FU \end{array} \right\} OU = OF + OF \Longrightarrow 2 \cdot OF,$$

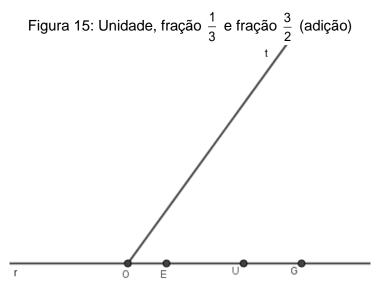
е

$$\begin{array}{l} UG = OF \\ OU = 2 \cdot OF \\ OG = OU + UG \end{array} \\ OG = 2 \cdot OF + OF \Longrightarrow OG = 3 \cdot OF.$$

Como, OF =
$$\frac{1}{2}$$
, então OU = $2 \cdot \frac{1}{2} = \frac{2}{2}$ e OG = $3 \cdot \frac{1}{2} = \frac{3}{2}$.

Figura 14: Segmento OG: fração $\frac{3}{2}$ (adição)

Fonte: Elaborada pela autora em 2023 no Geogebra.


Revelação: Realizar descobertas ou contradições na forma de pensar. Na atividade em questão, algumas conclusões foram obtidas e foram feitas generalizações desses resultados.

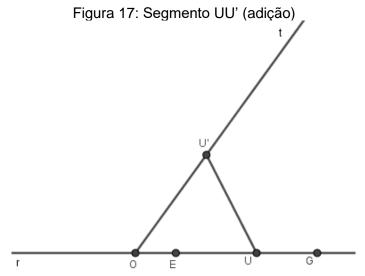
- Uma fração unitária, ou seja, que representa uma fração com numerador igual
 a 1, indicada por 1/n, pode ser representada por um segmento que é uma parte
 da subdivisão em n partes da unidade, ou seja, a fração é uma subunidade da
 unidade considerada.
- Já uma fração não unitária indicada por $\frac{m}{n}$, pode ser representada por um segmento que é "m" partes da subdivisão da unidade em n partes.
- Visto que $OE = \frac{1}{3}$ e $OG = \frac{3}{2}$ então os segmentos OE e OG representam respectivamente as frações $\frac{1}{3}$ e $\frac{3}{2}$.

Segunda Parte:

Desenvolver um processo para se chegar à soma das frações $\frac{1}{3}$ e $\frac{3}{2}$.

Forma: Tomar como hipótese a unidade e as frações $\frac{1}{3}$ e $\frac{3}{2}$ obtidas sobre a reta r no Experimento anterior e a reta t para auxiliar na construção.

Fonte: Elaborada pela autora em 2023 no Geogebra.


<u>Estrutura:</u> Uma ideia nova surge, um pensamento abdutivo de traçar retas paralelas, circunferências, modificando o diagrama.

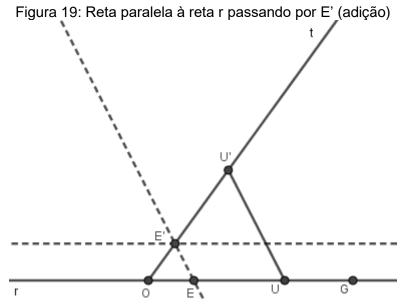
 Com o auxílio de uma circunferência centralizada no ponto O, criar um ponto U' sobre reta t, que equivalente ao segmento 1 (OU), assim o segmento OU' pode ser representado simbolicamente por:

OU' = 1
Figura 16: Unidade de apoio (adição)
t

Fonte: Elaborada pela autora em 2023 no Geogebra.

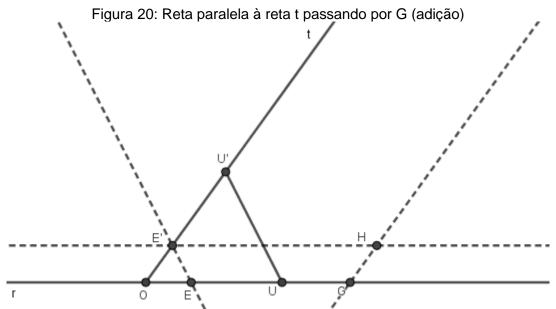
• Ligar os pontos U e U', obtendo assim o segmento UU'.

Fonte: Elaborada pela autora em 2023 no Geogebra.

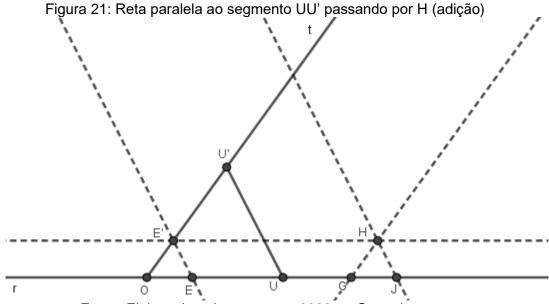

<u>Compreensão e Dependência:</u> Início do processo dedutivo, por meio da geometria euclidiana, mais especificamente, levando em consideração o postulado das paralelas.

 Traçar uma reta paralela a UU' passando pelo ponto E e marcar o ponto E' de intersecção com a reta t.

Figura 18: Reta paralela ao segmento UU' passando por E (adição) t


Fonte: Elaborada pela autora em 2023 no Geogebra.

- Por construção os triângulos OEE' e OUU' são semelhantes pelo caso ângulo,
 ângulo. Como OU = 1 e OU' = 1 então OE = OE'.
- Traçar uma reta paralela à reta r pelo ponto E'.



Fonte: Elaborada pela autora em 2023 no Geogebra.

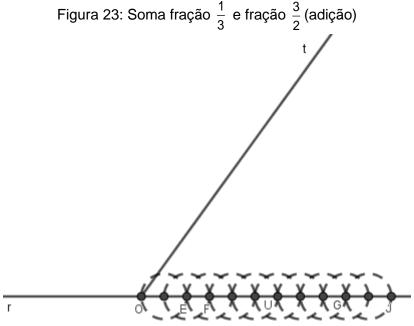
 Traçar uma reta paralela à reta t passando pelo ponto G e marcar o ponto H onde essa reta e a reta traçada anteriormente se intersectam.

 Traçar uma reta paralela ao segmento UU' pelo ponto H e marcar o ponto de intersecção com a reta r.

Fonte: Elaborada pela autora em 2023 no Geogebra.

- Note que por construção OG é paralelo a E'H e OE' é paralelo a GH, formando, assim, um paralelogramo OE'HG, então a fração OG é equivalente a E'H.
- Por construção EE' é paralelo a UU' e HJ é paralelo a UU', logo, EE' é paralelo a HJ, assim, EE'HJ é um paralelogramo, com isso, tem-se que E'H é equivalente a EJ.

 Como a fração OG é equivalente E'H e E'H é equivalente a EJ, então a fração OG é equivalente à EJ. Portanto, a fração OE mais a fração OG é igual a fração OJ.


Revelação: Por meio do processo abdutivo de tomar uma circunferência específica e por meio de realizações de alguns processos dedutivos, pode-se revelar quanto mede o segmento equivalente à soma das frações $\frac{1}{3}$ e $\frac{3}{2}$.

• Marcar um ponto sobre a reta r que represente uma fração que é a diferença entre as frações unitárias que deram origem às frações $\frac{1}{3}$ e $\frac{3}{2}$. Para isso, utilizar uma circunferência de raio igual à diferença entre as frações unitárias que deram origem às frações $\frac{1}{3}$ e $\frac{3}{2}$ com centro em O (Processo abdutivo).

Figura 22: Medida de subdivisão (adição)

Fonte: Elaborada pela autora em 2023 no Geogebra.

Por meio de um processo dedutivo, replicar circunferências de raio igual a diferença entre as frações unitárias que deram origem às frações 1/3 e 3/2 de forma a dividir todo o segmento OJ. Essa divisão deve ser feita por meio de pontos que são interseção da circunferência com a reta r. A primeira circunferência será centralizada no ponto marcado no passo anterior e as subsequentes nos próximos pontos até que a interseção da última circunferência seja o ponto J.

- Note que o segmento unidade está dividido em 6 partes iguais, como a fração OE é composta por duas partes dessa, então, OE é ²/₆ da unidade OU. Já a fração OG é composta por 9 partes, logo OG é ⁹/₆ da unidade e a fração OJ é composta por 11 partes, ou seja, OJ e ¹¹/₆ da unidade.
- Com isso, conclui-se que $OE + OG = OJ : \frac{2}{6} + \frac{9}{6} = \frac{11}{6}$.

Comparação:

- As frações equivalentes representam a mesma parte do segmento 1.
- As frações são partes de subdivisões de unidades, que são subunidades dessa unidade. Assim, para que se obtenha o resultado da soma dessas frações é necessário que elas sejam representadas em uma mesma subunidade. Por exemplo: o milímetro e o centímetro são subunidades do metro, para que se possa somar centímetro com milímetro é necessário transformar um deles para que ambos estejam representados em uma mesma unidade. Na fração acontece a mesma coisa, ou seja, para somar duas frações é necessário que elas estejam representadas em uma mesma subdivisão da unidade considerada, assim, a transformação necessária para que elas estejam

representadas em uma mesma subdivisão da unidade é obter frações que sejam equivalentes a elas, em outra subunidade da unidade considerada.

Heurística do Experimento Mental sobre a subtração de frações por meio de segmentos

O objetivo desse Experimento Mental é realizar o cálculo $\frac{3}{2} - \frac{1}{4}$. Do ponto de vista semiótico, essas frações serão representadas como partes de segmentos de reta, a partir de um segmento considerado, o qual será indicado por unidade. Este experimento pode ser dividido em duas partes, a primeira tem como objetivo encontrar as frações como partes do segmento unidade e a segunda de desenvolver a subtração.

PRIMEIRA PARTE:

Obter a fração três meio da unidade considerada e a fração um quarto da unidade considerada.

<u>Forma:</u> Parte-se de uma hipótese ou suposição por meio de uma representação do objeto considerado.

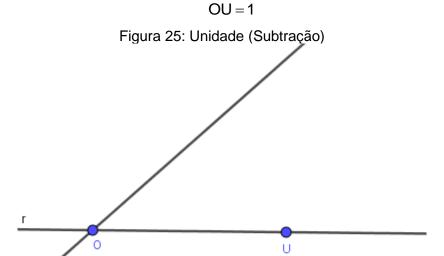
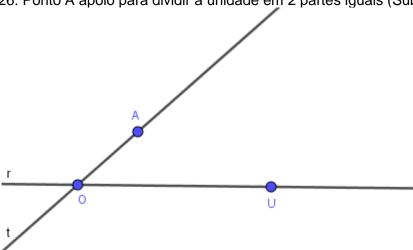

• Considerar duas retas fixas, r e t, que intersectam em um ponto O.

Figura 24: Retas r e t intersectadas em O (Subtração)

Fonte: Elaborada pela autora em 2025 no Geogebra.

- Construir segmentos que tenham início em O e extremidades em um ponto sobre essas retas fixas. Serão associadas frações a esses segmentos.
- ullet O segmento que representa o 0 pode ser simbolicamente representado por: OO=0

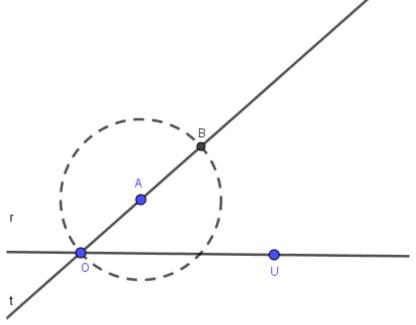

• Escolher um ponto qualquer sobre a reta r e denomina-lo de U. Nomeá-lo de segmento OU de segmento 1 ou unidade, simbolicamente, representado por:

Fonte: Elaborada pela autora em 2025 no Geogebra.

Estrutura: Uma ideia nova que, ainda, não está contida nos dados do problema. É o processo abdutivo no desenvolvimento do Experimento.

Marcar sobre a reta t um ponto A.
 Figura 26: Ponto A apoio para dividir a unidade em 2 partes iguais (Subtração)

Fonte: Elaborada pela autora em 2025 no Geogebra.


<u>Compreensão e dependência:</u> Neste momento, será desenvolvido um processo dedutivo para encontrar a fração $\frac{3}{2}$, isto é, o segmento sobre a reta r que corresponderá a três metades da unidade considerada ou a unidade considerada

mais meio dela. O sistema de representação, neste caso, será a divisão de segmentos pela geometria euclidiana.

 Criar uma circunferência com centro em A de raio equivalente à medida do segmento OA e marcar o ponto B, intersecção da circunferência com a semirreta t.

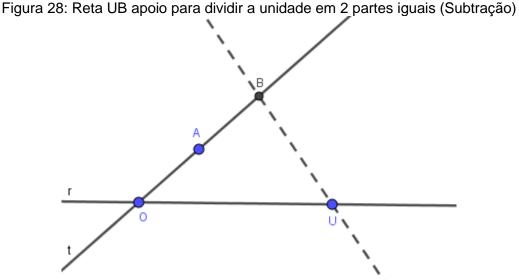
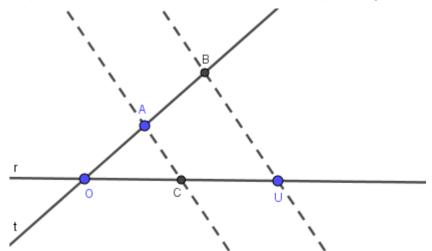

$$\left. \begin{array}{l} AB = OA \\ OB = OA + AB \end{array} \right\} OB = OA + OA \Longrightarrow OB = 2 \times OA$$

Figura 27: Ponto B apoio para dividir a unidade em 2 partes iguais (Subtração)

Fonte: Elaborada pela autora em 2025 no Geogebra.


Agora, traçar uma reta passando pelos pontos U e B.

Fonte: Elaborada pela autora em 2025 no Geogebra.

 Traçar uma reta paralela à reta UB passando pelo ponto A e marcar o ponto de interseção C com a reta r.

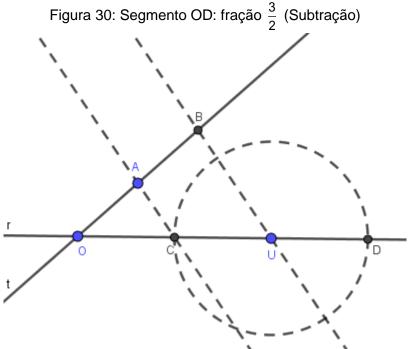
Figura 29: Reta CA paralela à reta UB: dividindo a unidade em 2 partes iguais (Subtração)

Fonte: Elaborada pela autora em 2025 no Geogebra.

 Os triângulos OAC e OBU são semelhantes pelo caso ângulo, ângulo, pois eles possuem um ângulo em comum e, pelo fato de AC e BU serem paralelos, os ângulos OAC e OBU são correspondentes, ou seja, são congruentes. Assim:

$$\frac{OC}{OA} = \frac{OU}{OB}$$

• Da igualdade $\frac{OC}{OA} = \frac{OU}{OB}$, tem-se que $OC = \frac{OU \times OA}{OB}$, como $OB = 2 \times OA$, então $OC = \frac{OU \times OA}{2 \times OA} = \frac{OU}{2} = \frac{1}{2} \times OU$, como OU = 1, $OC = \frac{1}{2} \times OU = \frac{1}{2} \times 1 = \frac{1}{2}$.


 Agora, traçar uma circunferência com centro em U e de raio equivalente ao segmento OC, em seguida, marcar o ponto D intersecção da circunferência com a reta r.

$$\begin{array}{l} OC = CU \\ OU = OC + CU \end{array} \} OU = OC + OC \Rightarrow OU = 2 \times OC,$$

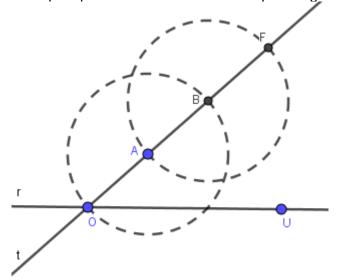
e

$$\begin{array}{l} UD = OC \\ OU = 2 \times OC \\ OD = OU + UD \end{array} \\ OD = 2 \times OC + OC \Longrightarrow OD = 3 \times OC.$$

Como, OC =
$$\frac{1}{2}$$
, então OU = $2 \times \frac{1}{2} = \frac{2}{2}$ e OD = $3 \times \frac{1}{2} = \frac{3}{2}$

<u>Compreensão e dependência:</u> Um novo processo dedutivo será desenvolvido para encontrar, dessa vez, a fração $\frac{1}{4}$, isto é, o segmento sobre a reta r que corresponderá a quarta parte da unidade. O sistema de representação, neste caso, também será a divisão de segmentos pela geometria euclidiana.

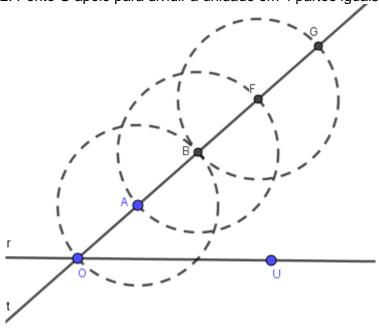
 Criar uma circunferência com centro em B de raio equivalente à medida do segmento OA e marcar o ponto F, intersecção da circunferência com a semirreta t.


$$BF = OA$$

$$OB = 2 \times OA$$

$$OF = OB + BF$$

$$OF = 2 \times OA + OA \Rightarrow OF = 3 \times OA$$


Figura 31: Ponto F apoio para dividir a unidade em 4 partes iguais (Subtração)

 Criar uma circunferência com centro em F de raio equivalente à medida do segmento OA e marcar o ponto G, intersecção da circunferência com a semirreta t.

$$\left. \begin{array}{l} FG = OA \\ OF = 3 \times OA \\ OG = OF + FG \end{array} \right\} OF = 3 \times OA + OA \Longrightarrow OF = 4 \times OA$$

Figura 32: Ponto G apoio para dividir a unidade em 4 partes iguais (Subtração)

Fonte: Elaborada pela autora em 2025 no Geogebra.

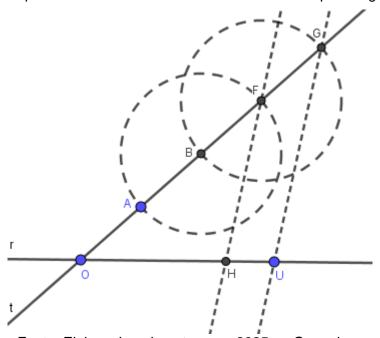

• Agora, traçar uma reta passando pelos pontos U e G.

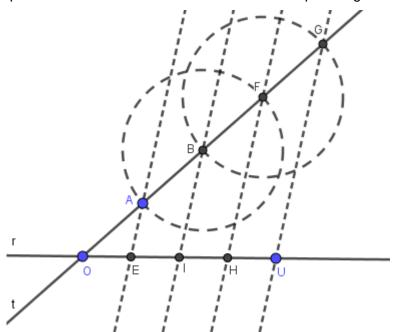
Figura 33: Reta UG apoio para dividir a unidade em 4 partes iguais (Subtração)

Fonte: Elaborada pela autora em 2025 no Geogebra.

 Traçar uma reta paralela à reta UG passando pelo ponto F e marcar o ponto de intersecção H com a reta r.

Figura 34: Reta HF paralela à reta UG: dividindo a unidade em 4 partes iguais (Subtração)

Fonte: Elaborada pela autora em 2025 no Geogebra.


 Traçar uma reta paralela à reta UG passando pelo ponto B e marcar o ponto de intersecção I com a reta r.

B H U

Figura 35: Reta BI paralela à reta UG: dividindo a unidade em 4 partes iguais (Subtração)

 Traçar uma reta paralela à reta UG passando pelo ponto A e marcar o ponto de intersecção E com a reta r.

Figura 36: Reta AE paralela à reta UG: dividindo a unidade em 4 partes iguais (Subtração)

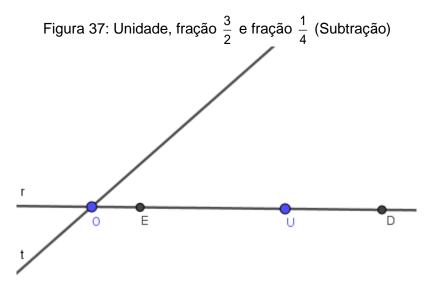
Fonte: Elaborada pela autora em 2025 no Geogebra.

Os triângulos OAE, OIB, OHF e OUG são semelhantes pelo caso ângulo,
 ângulo, pois eles possuem um ângulo em comum e, pelo fato de AE, BI, FH e

UG serem paralelos, os ângulos OAE, OBI, OFH e OGU são correspondentes, ou seja, são congruentes. Assim:

$$\frac{OE}{OA} = \frac{OI}{OB} = \frac{OH}{OF} = \frac{OU}{OG}$$

- Da igualdade $\frac{OE}{OA} = \frac{OU}{OG}$, tem-se que $OE = \frac{OU \times OA}{OG}$, como $OG = 4 \times OA$, então $OE = \frac{OU \times OA}{4 \times OA} = \frac{OU}{4} = \frac{1}{4} \times OU$, como OU = 1, $OE = \frac{1}{4} \times OU = \frac{1}{4} \times 1 = \frac{1}{4}$.
- Da igualdade $\frac{OI}{OB} = \frac{OU}{OG}$, tem-se que $OI = \frac{OU \times OB}{OG}$, como $OG = 4 \times OA$ e $OB = 2 \times OA$, então $OI = \frac{OU \times 2 \times OA}{4 \times OA} = \frac{2 \times OU}{4} = \frac{2}{4} \times OU$, como OU = 1, $OI = \frac{2}{4} \times OU = \frac{2}{4} \times 1 = \frac{2}{4}$.
- Da igualdade $\frac{OH}{OF} = \frac{OU}{OG}$, tem-se que $OH = \frac{OU \times OF}{OG}$, como $OG = 4 \times OA$ e $OF = 3 \times OA$, então $OH = \frac{OU \times 3 \times OA}{4 \times OA} = \frac{3 \times OU}{4} = \frac{3}{4} \times OU$, como OU = 1, $OH = \frac{3}{4} \times OU = \frac{3}{4} \times 1 = \frac{3}{4}$.

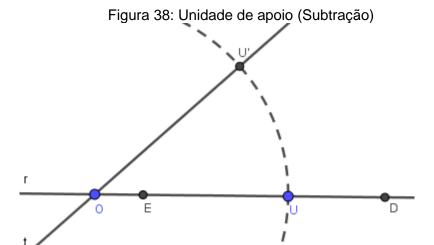

Visto que $OD = \frac{3}{2}$ e $OE = \frac{1}{4}$, então os segmentos OD e OE representam respectivamente as frações $\frac{3}{2}$ e $\frac{1}{4}$.

Continuando o Experimento Mental, a segunda fase é desenvolver um processo para se chegar à subtração das frações $\frac{3}{2}$ e $\frac{1}{4}$.

Segunda Parte:

Desenvolver um processo para se chegar à subtração das frações $\frac{3}{2}$ e $\frac{1}{4}$.

Forma: Tomar como hipótese a unidade e as frações $\frac{3}{2}$ e $\frac{1}{4}$ obtidas sobre a reta r no Experimento anterior e a reta t para auxiliar na construção.

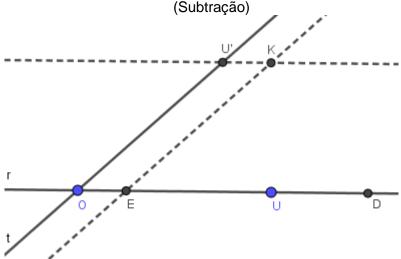


Fonte: Elaborada pela autora em 2025 no Geogebra.

<u>Estrutura:</u> Uma ideia nova surge, um pensamento abdutivo de traçar retas paralelas, circunferências, modificando o diagrama.

 Com o auxílio de uma circunferência centralizada no ponto O, criar um ponto U' sobre reta t, que equivalente ao segmento 1 (OU). Assim, o segmento OU' pode ser representado simbolicamente por:

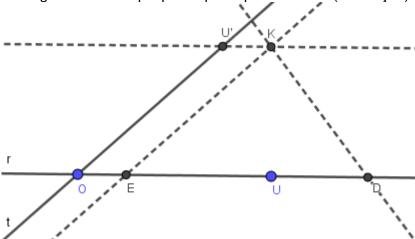
OU' = 1



Fonte: Elaborada pela autora em 2025 no Geogebra.

<u>Compreensão e Dependência:</u> Início do processo dedutivo, por meio da geometria euclidiana, mais especificamente, levando em consideração o postulado das paralelas.

 Traçar uma reta paralela a reta t passando pelo ponto E e uma reta paralela à reta r passando por U' e marcar o ponto K de intersecção entre elas.


Figura 39: Reta paralela à reta t passando por E e reta paralela à reta r passando por U'

Fonte: Elaborada pela autora em 2025 no Geogebra.

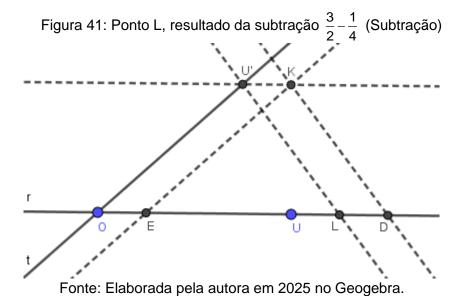
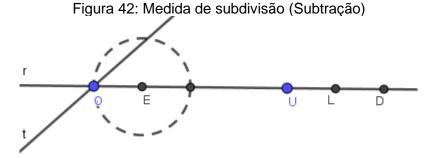

- Por construção, OEKU' é um paralelogramo, logo OE = U'K e OU' = EK.
- Traçar a reta que passa pelos pontos D e K.

Figura 40: Reta que passa pelos pontos D e K (Subtração)

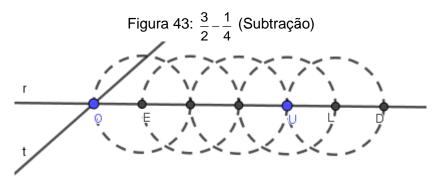
Fonte: Elaborada pela autora em 2025 no Geogebra.

 Traçar uma reta passando por U' que seja paralela à reta que passa pelos pontos D e K e marcar o ponto de intersecção L com a reta r.


 Como OU' = EK, os ângulos U'OL e KED são iguais (paralelogramo OEKU') e, por construção, os ângulos OU'L e EKD são correspondentes, então os triângulos OU'L e EKD são congruentes pelo caso ângulo, lado, ângulo. Logo, OL = ED.

$$\left. \begin{array}{l}
OL = ED \\
OD = OE + ED
\end{array} \right\} OD = OE + OL \Rightarrow OL = OD - OE$$

• Portanto, como OD = $\frac{3}{2}$ e OE = $\frac{1}{4}$, então OL = $\frac{3}{2} - \frac{1}{4}$.


Revelação: Por meio do processo abdutivo de tomar uma circunferência específica e por meio de realizações de alguns processos dedutivos, pode-se revelar quanto mede o segmento equivalente à subtração $\frac{3}{2} - \frac{1}{4}$.

 Marcar um círculo de raio equivalente ao do segmento OE com centro em E e marcar a interseção com a reta r (Processo abdutivo).

Fonte: Elaborada pela autora em 2025 no Geogebra.

Por meio de um processo dedutivo, replicar circunferências de raio igual ao segmento OE de forma a dividir todo o segmento OD. Essa divisão deve ser feita por meio de pontos que são interseção da circunferência com a reta r. A primeira circunferência será centralizada no ponto marcado no passo anterior e as subsequentes nos próximos pontos até que a interseção da última circunferência seja o ponto D.

Fonte: Elaborada pela autora em 2023 no Geogebra.

- Note que o segmento unidade está dividido em 4 partes iguais, como a fração OE é composta por uma parte dessa, então, OE é ¹/₄ da unidade OU. Já a fração OD é composta por 6 partes, logo OD é ⁶/₄ da unidade e a fração OL é composta por 5 partes, ou seja, OL e ⁵/₄ da unidade.
- Com isso, conclui-se que $OD OE = OL : \frac{6}{4} \frac{1}{4} = \frac{5}{4}$.

Heurística do Experimento Mental sobre a multiplicação de frações por meio de segmentos

O objetivo desse Experimento Mental é realizar a multiplicação entre $\frac{1}{4}$ e $\frac{3}{2}$. Do ponto de vista semiótico, essas frações serão representadas como partes de segmentos de reta, a partir de um segmento considerado, o qual será indicado por unidade. Este experimento pode ser dividido em duas partes, a primeira tem como objetivo encontrar as frações como partes do segmento unidade e a segunda de desenvolver a multiplicação.

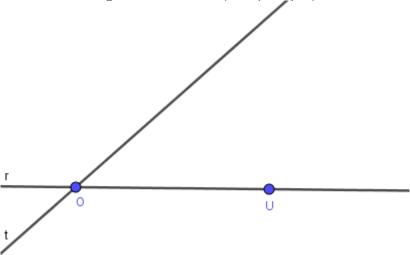
PRIMEIRA PARTE:

Obter a fração três meio da unidade considerada e a fração um quarto da unidade considerada.

<u>Forma:</u> Parte-se de uma hipótese ou suposição por meio de uma representação do objeto considerado.

• Considerar duas retas fixas, r e t, que intersectam em um ponto O.

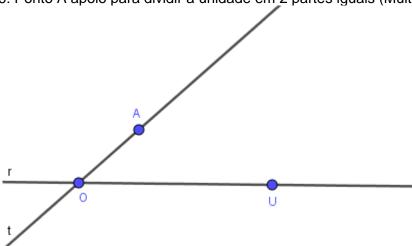
Figura 44: Retas r e t intersectadas em O (Multiplicação)


Fonte: Elaborada pela autora em 2025 no Geogebra.

- Construir segmentos que tenham início em O e extremidades em um ponto sobre essas retas fixas. Serão associadas frações a esses segmentos.
- O segmento que representa o 0 pode ser simbolicamente representado por:
 OO = 0

• Escolher um ponto qualquer sobre a reta r e denomina-lo de U. Nomeá-lo de segmento OU de segmento 1 ou unidade, simbolicamente, representado por:

Figura 45: Unidade (Multiplicação)



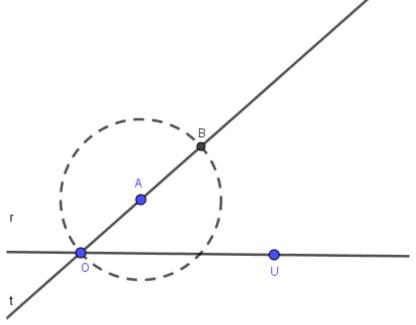
Fonte: Elaborada pela autora em 2025 no Geogebra.

Estrutura: Uma ideia nova que, ainda, não está contida nos dados do problema. É o processo abdutivo no desenvolvimento do Experimento.

Marcar sobre a reta t um ponto A.

Figura 46: Ponto A apoio para dividir a unidade em 2 partes iguais (Multiplicação)

Fonte: Elaborada pela autora em 2025 no Geogebra.


<u>Compreensão e dependência:</u> Neste momento, será desenvolvido um processo dedutivo para encontrar a fração $\frac{3}{2}$, isto é, o segmento sobre a reta r que corresponderá a três metades da unidade considerada ou a unidade considerada

mais meio dela. O sistema de representação, neste caso, será a divisão de segmentos pela geometria euclidiana.

 Criar uma circunferência com centro em A de raio equivalente à medida do segmento OA e marcar o ponto B, intersecção da circunferência com a semirreta t.

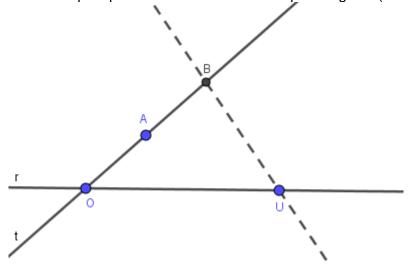
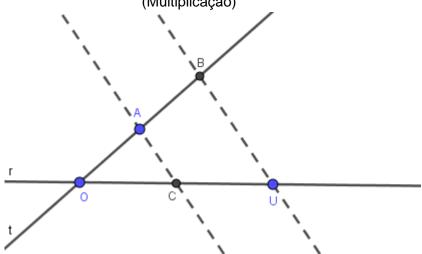

$$\left. \begin{array}{l} AB = OA \\ OB = OA + AB \end{array} \right\} OB = OA + OA \Longrightarrow OB = 2 \times OA$$

Figura 47: Ponto B apoio para dividir a unidade em 2 partes iguais (Multiplicação)

Fonte: Elaborada pela autora em 2025 no Geogebra.


Agora, traçar uma reta passando pelos pontos U e B.
 Figura 48: Reta UB apoio para dividir a unidade em 2 partes iguais (Multiplicação)

Fonte: Elaborada pela autora em 2025 no Geogebra.

 Traçar uma reta paralela à reta UB passando pelo ponto A e marcar o ponto de interseção C com a reta r.

Figura 49: Reta AC paralela à reta UB: dividindo a unidade em 2 partes iguais (Multiplicação)

Fonte: Elaborada pela autora em 2025 no Geogebra.

 Os triângulos OAC e OBU são semelhantes pelo caso ângulo, ângulo, pois eles possuem um ângulo em comum e, pelo fato de AC e BU serem paralelos, os ângulos OAC e OBU são correspondentes, ou seja, são congruentes. Assim:

$$\frac{OC}{OA} = \frac{OU}{OB}$$

- Da igualdade $\frac{OC}{OA} = \frac{OU}{OB}$, tem-se que $OC = \frac{OU \times OA}{OB}$, como $OB = 2 \times OA$, então $OC = \frac{OU \times OA}{2 \times OA} = \frac{OU}{2} = \frac{1}{2} \times OU$, como OU = 1, $OC = \frac{1}{2} \times OU = \frac{1}{2} \times 1 = \frac{1}{2}$.
- Agora, traçar uma circunferência com centro em U e de raio equivalente ao segmento OC, em seguida, marcar o ponto D intersecção da circunferência com a reta r.

$$\left. \begin{array}{l} OC = CU \\ OU = OC + CU \end{array} \right\} OU = OC + OC \Longrightarrow OU = 2 \times OC \,,$$

е

$$\left. \begin{array}{l} UD = OC \\ OU = 2 \times OC \\ OD = OU + UD \end{array} \right\} OD = 2 \times OC + OC \Longrightarrow OD = 3 \times OC.$$

Como, OC =
$$\frac{1}{2}$$
, então OU = $2 \times \frac{1}{2} = \frac{2}{2}$ e OD = $3 \times \frac{1}{2} = \frac{3}{2}$

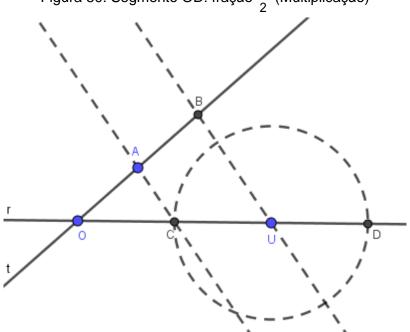
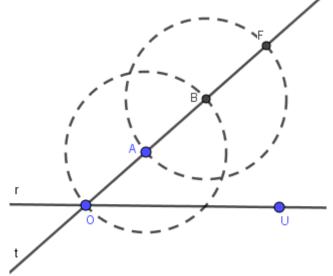


Figura 50: Segmento OD: fração $\frac{3}{2}$ (Multiplicação)

Fonte: Elaborada pela autora em 2025 no Geogebra.

<u>Compreensão e dependência:</u> Um novo processo dedutivo será desenvolvido para encontrar, dessa vez, a fração $\frac{1}{4}$, isto é, o segmento sobre a reta r que corresponderá a quarta parte da unidade. O sistema de representação, neste caso, também será a divisão de segmentos pela geometria euclidiana.

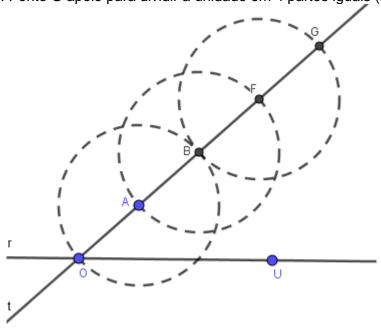
 Criar uma circunferência com centro em B de raio equivalente à medida do segmento OA e marcar o ponto F, intersecção da circunferência com a semirreta t.


$$BF = OA$$

$$OB = 2 \times OA$$

$$OF = OB + BF$$

$$OF = 2 \times OA + OA \Rightarrow OF = 3 \times OA$$


Figura 51: Ponto F apoio para dividir a unidade em 4 partes iguais (Multiplicação)

 Criar uma circunferência com centro em F de raio equivalente à medida do segmento OA e marcar o ponto G, intersecção da circunferência com a semirreta t.

$$\left. \begin{array}{l} FG = OA \\ OF = 3 \times OA \\ OG = OF + FG \end{array} \right\} OF = 3 \times OA + OA \Longrightarrow OF = 4 \times OA$$

Figura 52: Ponto G apoio para dividir a unidade em 4 partes iguais (Multiplicação)

Fonte: Elaborada pela autora em 2025 no Geogebra.

• Agora, traçar uma reta passando pelos pontos U e G.

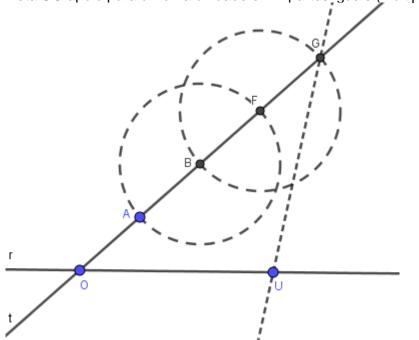
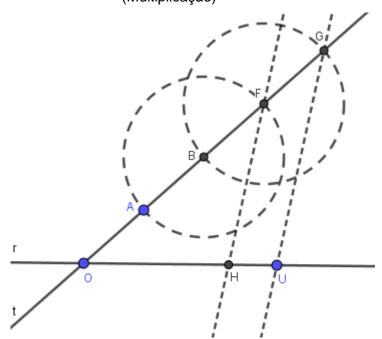



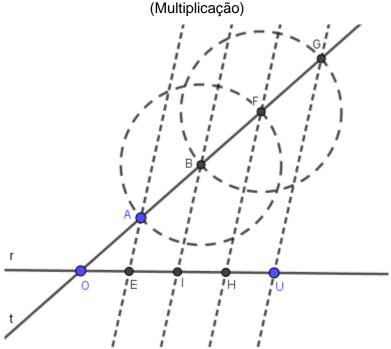
Figura 53: Reta UG apoio para dividir a unidade em 4 partes iguais (Multiplicação)

Fonte: Elaborada pela autora em 2025 no Geogebra.

 Traçar uma reta paralela à reta UG passando pelo ponto F e marcar o ponto de intersecção H com a reta r.

Figura 54: Reta FH paralela à reta UG: dividindo a unidade em 4 partes iguais (Multiplicação)

Fonte: Elaborada pela autora em 2025 no Geogebra.


 Traçar uma reta paralela à reta UG passando pelo ponto B e marcar o ponto de intersecção I com a reta r.

B H U

Figura 55: Reta BI paralela à reta UG: dividindo a unidade em 4 partes iguais (Multiplicação)

 Traçar uma reta paralela à reta UG passando pelo ponto A e marcar o ponto de intersecção E com a reta r.

Figura 56: Reta AE paralela à reta UG: dividindo a unidade em 4 partes iguais

Fonte: Elaborada pela autora em 2025 no Geogebra.

• Os triângulos OAE, OIB, OHF e OUG são semelhantes pelo caso ângulo, ângulo, pois eles possuem um ângulo em comum e, pelo fato de AE, BI, FH e

UG serem paralelos, os ângulos OAE, OBI, OFH e OGU são correspondentes, ou seja, são congruentes. Assim:

$$\frac{OE}{OA} = \frac{OI}{OB} = \frac{OH}{OF} = \frac{OU}{OG}$$

- Da igualdade $\frac{OE}{OA} = \frac{OU}{OG}$, tem-se que $OE = \frac{OU \times OA}{OG}$, como $OG = 4 \times OA$, então $OE = \frac{OU \times OA}{4 \times OA} = \frac{OU}{4} = \frac{1}{4} \times OU$, como OU = 1, $OE = \frac{1}{4} \times OU = \frac{1}{4} \times 1 = \frac{1}{4}$.
- Da igualdade $\frac{OI}{OB} = \frac{OU}{OG}$, tem-se que $OI = \frac{OU \times OB}{OG}$, como $OG = 4 \times OA$ e $OB = 2 \times OA$, então $OI = \frac{OU \times 2 \times OA}{4 \times OA} = \frac{2 \times OU}{4} = \frac{2}{4} \times OU$, como OU = 1, $OI = \frac{2}{4} \times OU = \frac{2}{4} \times 1 = \frac{2}{4}$.
- Da igualdade $\frac{OH}{OF} = \frac{OU}{OG}$, tem-se que $OH = \frac{OU \times OF}{OG}$, como $OG = 4 \times OA$ e $OF = 3 \times OA$, então $OH = \frac{OU \times 3 \times OA}{4 \times OA} = \frac{3 \times OU}{4} = \frac{3}{4} \times OU$, como OU = 1, $OH = \frac{3}{4} \times OU = \frac{3}{4} \times 1 = \frac{3}{4}$.

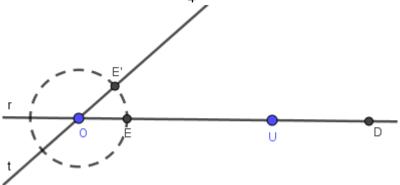
Visto que $OD = \frac{3}{2}$ e $OE = \frac{1}{4}$, então os segmentos OD e OE representam respectivamente as frações $\frac{3}{2}$ e $\frac{1}{4}$.

Continuando o Experimento Mental, a segunda fase é desenvolver um processo para se chegar à multiplicação das frações $\frac{1}{4}$ e $\frac{3}{2}$.

Segunda Parte:

Desenvolver um processo para obter à multiplicação entre as frações $\frac{1}{4}$ e $\frac{3}{2}$.

Forma: Tomar como hipótese a unidade e as frações $\frac{1}{4}$ e $\frac{3}{2}$ obtidas sobre a reta r no Experimento anterior e a reta t para auxiliar na construção.


Figura 57: Unidade, fração $\frac{3}{2}$ e fração $\frac{1}{4}$ (Multiplicação)

Estrutura: Uma ideia nova surge, um pensamento abdutivo de traçar retas paralelas, circunferências, modificando o diagrama.

Com o auxílio de uma circunferência centralizada no ponto O, criar um ponto E' sobre reta t, que equivalente à fração ¹/₄ (OE). Assim, o segmento OE' pode ser representado simbolicamente por:

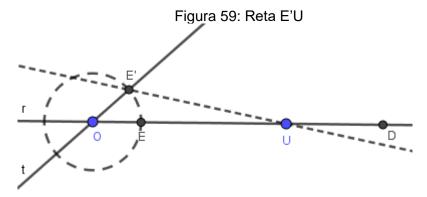
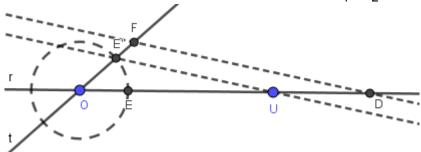

$$OE' = \frac{1}{4}$$

Figura 58: Fração $\frac{1}{4}$, reta suporte (Multiplicação)

Fonte: Elaborada pela autora em 2025 no Geogebra.


Traçar a reta uma reta que passa pelo ponto E' e pelo ponto U.

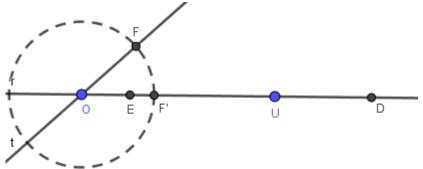
<u>Compreensão e Dependência:</u> Início do processo dedutivo, por meio da geometria euclidiana, mais especificamente, levando em consideração o postulado das paralelas.

 Traçar uma reta paralela à reta determinada pelos pontos E' e U passando pelo ponto D e marcar o ponto F de intersecção com a reta t.

Figura 60: Segmento OF, resultado da multiplicação entre $\frac{1}{4}$ e $\frac{3}{2}$ na reta suporte

Fonte: Elaborada pela autora em 2025 no Geogebra.

 Note que os triângulos OEU e OFD são congruentes pelo caso ângulo, ângulo, pois possuem um ângulo em comum e, por construção, os ângulos OE'U e OFD são correspondentes. A partir disso, tem-se que:


$$\frac{OE'}{OF} = \frac{OU}{OD}$$

• Substituindo OE' = $\frac{1}{4}$, OD = $\frac{3}{2}$ e OU = 1 em $\frac{OE'}{OF}$ = $\frac{OU}{OD}$, obtêm-se:

$$\frac{\mathsf{OF}}{\frac{1}{4}} = \frac{\frac{3}{2}}{1} \Rightarrow \mathsf{OF} \times 1 = \frac{1}{4} \times \frac{3}{2} \Rightarrow \mathsf{OF} = \frac{1}{4} \times \frac{3}{2}$$

• Marcar um círculo de raio equivalente ao do segmento OF com centro em O e marcar a intersecção F' com a reta r, ou seja, o segmento OF', também representa a multiplicação entre $\frac{1}{4} \times \frac{3}{2}$.

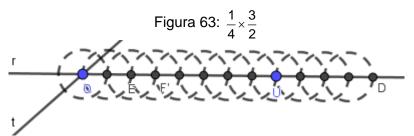
Figura 61: Segmento OF', resultado da multiplicação entre $\frac{1}{4}$ e $\frac{3}{2}$

Fonte: Elaborada pela autora em 2025 no Geogebra

Revelação: Por meio do processo abdutivo de tomar uma circunferência específica e por meio de realizações de alguns processos dedutivos, pode-se revelar quanto mede o segmento equivalente à multiplicação entre $\frac{1}{4}$ e $\frac{3}{2}$.

 Marcar um círculo com centro em O e raio equivalente a diferença entre os segmentos OF' e OE e marcar a interseção com a reta r (Processo abdutivo).

Figura 62: Medida de subdivisão (Multiplicação)


r

D

t

Fonte: Elaborada pela autora em 2025 no Geogebra.

Por meio de um processo dedutivo, replicar circunferências de raio equivalente a diferença entre os segmentos OF' e OE de forma a dividir todo o segmento OD. Essa divisão deve ser feita por meio de pontos que são intersecção da circunferência com a reta r. A primeira circunferência será centralizada no ponto marcado no passo anterior e as subsequentes nos próximos pontos até que a intersecção da última circunferência seja o ponto D.

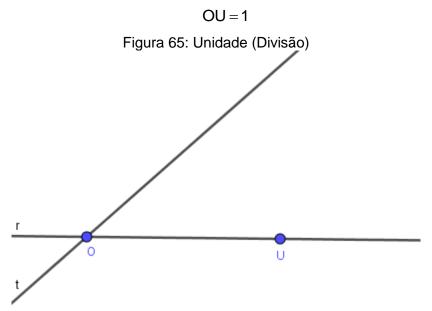
- Note que o segmento unidade está dividido em 8 partes iguais, como a fração OE é composta por duas partes dessa, então, OE é ²/₈ da unidade OU. Já a fração OD é composta por 12 partes, logo OD é ¹²/₈ da unidade e a fração OF' é composta por 3 partes, ou seja, OF' e ³/₈ da unidade.
- Com isso, conclui-se que $OE \times OD = OF' \therefore \frac{2}{8} \times \frac{12}{8} = \frac{3}{8}$.

Heurística do Experimento Mental sobre a divisão de frações por meio de segmentos

O objetivo desse Experimento Mental é realizar a divisão de $\frac{1}{4}$ por $\frac{1}{3}$. Do ponto de vista semiótico, essas frações serão representadas como partes de segmentos de reta, a partir de um segmento considerado, o qual será indicado por unidade. Este experimento pode ser dividido em duas partes, a primeira tem como objetivo encontrar as frações como partes do segmento unidade e a segunda de desenvolver a divisão.

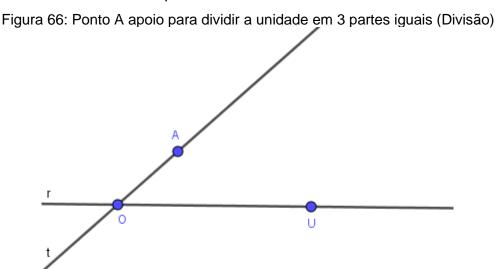
PRIMEIRA PARTE:

Obter a fração um terço da unidade considerada e a fração um quarto da unidade considerada.


<u>Forma:</u> Parte-se de uma hipótese ou suposição por meio de uma representação do objeto considerado.

• Considerar duas retas fixas, r e t, que intersectam em um ponto O.

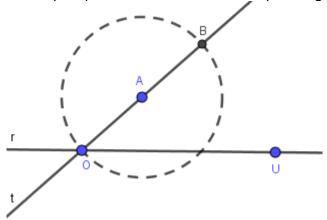
Figura 64: Retas r e t intersectadas em O (Divisão)


Fonte: Elaborada pela autora em 2025 no Geogebra.

- Construir segmentos que tenham início em O e extremidades em um ponto sobre essas retas fixas. Serão associadas frações a esses segmentos.
- ullet O segmento que representa o 0 pode ser simbolicamente representado por: OO=0
- Escolher um ponto qualquer sobre a reta r e denomina-lo de U. Nomeá-lo de segmento OU de segmento 1 ou unidade, simbolicamente, representado por:

Estrutura: Uma ideia nova que, ainda, não está contida nos dados do problema. É o processo abdutivo no desenvolvimento do Experimento.

• Marcar sobre a reta t um ponto A.


Fonte: Elaborada pela autora em 2025 no Geogebra.

<u>Compreensão e dependência:</u> Neste momento, será desenvolvido um processo dedutivo para encontrar a fração $\frac{1}{3}$, isto é, o segmento sobre a reta r que corresponderá a dois terços da unidade considerada. O sistema de representação, neste caso, será a divisão de segmentos pela geometria euclidiana.

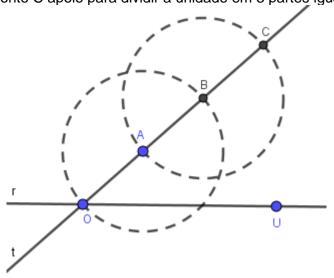
 Criar uma circunferência com centro em A de raio equivalente à medida do segmento OA e marcar o ponto B, intersecção da circunferência com a semirreta t.

$$\left. \begin{array}{l} AB = OA \\ OB = OA + AB \end{array} \right\} OB = OA + OA \Longrightarrow OB = 2 \times OA$$

Figura 67: Ponto B apoio para dividir a unidade em 3 partes iguais (Divisão)

Fonte: Elaborada pela autora em 2025 no Geogebra.

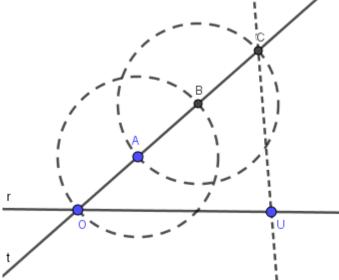
 Criar uma circunferência com centro em B de raio equivalente à medida do segmento OA e marcar o ponto C, intersecção da circunferência com a semirreta t.


$$BC = OA$$

$$OB = 2 \times OA$$

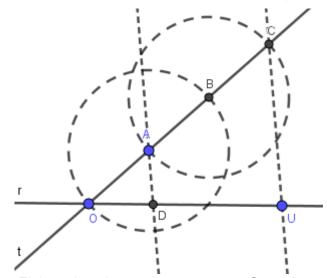
$$OC = OB + BC$$

$$OC = 2 \times OA + OA \Rightarrow OC = 3 \times OA$$


Figura 68: Ponto C apoio para dividir a unidade em 3 partes iguais (Divisão)

Fonte: Elaborada pela autora em 2025 no Geogebra.

Agora, traçar uma reta passando pelos pontos U e C.


Figura 69: Reta UC apoio para dividir a unidade em 3 partes iguais (Divisão)

Fonte: Elaborada pela autora em 2025 no Geogebra.

 Traçar uma reta paralela à reta UC passando pelo ponto A e marcar o ponto de intersecção D com a reta r.

Figura 70: Reta AD paralela à reta UC: dividindo a unidade em 3 partes iguais (Divisão)

Fonte: Elaborada pela autora em 2025 no Geogebra.

 Traçar uma reta paralela à reta UC passando pelo ponto B e marcar o ponto de intersecção E com a reta r.

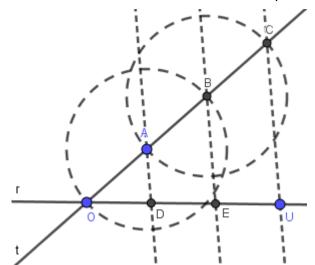
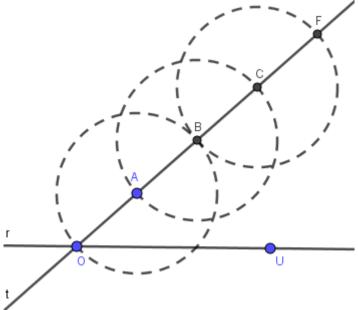


Figura 71: Reta AE paralela à reta UC: dividindo a unidade em 3 partes iguais (Divisão)

 Os triângulos OAD, OBE e OCU são semelhantes pelo caso ângulo, ângulo, pois eles possuem um ângulo em comum e, pelo fato de AD, BE e CU serem paralelos, os ângulos OAD, OBE e OCU são correspondentes, ou seja, são congruentes. Assim:

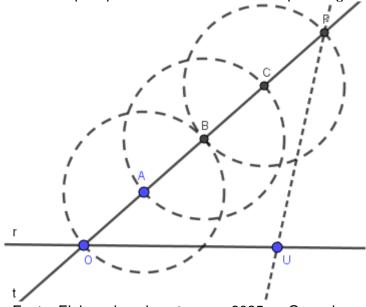
$$\frac{OA}{OD} = \frac{OC}{OU} = \frac{OB}{OE}$$


- Da igualdade $\frac{OA}{OD} = \frac{OC}{OU}$, tem-se que $OD = \frac{OU \times OA}{OC}$, como $OC = 3 \times OA$, então $OD = \frac{OU \times OA}{3 \times OA} = \frac{OU}{3} = \frac{1}{3} \times OU$, como OU = 1, $OD = \frac{1}{3} \times OU = \frac{1}{3} \times 1 = \frac{1}{3}$.
- Da igualdade $\frac{OC}{OU} = \frac{OB}{OE}$, tem-se que $OE = \frac{OU \times OB}{OC}$, como $OC = 3 \times OA$ e $OB = 2 \times OA$, então $OD = \frac{OU \times 2 \times OA}{3 \times OA} = \frac{2 \times OU}{3} = \frac{2}{3} \times OU$.

<u>Compreensão e dependência:</u> Um novo processo dedutivo será desenvolvido para encontrar, dessa vez, a fração $\frac{1}{4}$, isto é, o segmento sobre a reta r que corresponderá a quarta parte da unidade. O sistema de representação, neste caso, também será a divisão de segmentos pela geometria euclidiana.

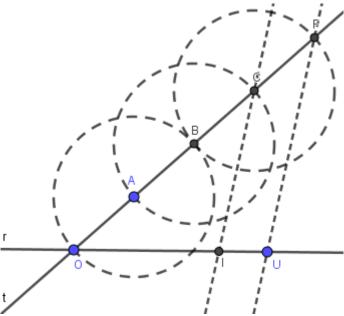
 Criar uma circunferência com centro em C de raio equivalente à medida do segmento OA e marcar o ponto F, intersecção da circunferência com a semirreta t.

$$\begin{array}{l} \text{CF} = \text{OA} \\ \text{OC} = 3 \times \text{OA} \\ \text{OF} = \text{OC} + \text{CF} \end{array} \right\} \text{OF} = 3 \times \text{OA} + \text{OA} \Rightarrow \text{OF} = 4 \times \text{OA}$$


Figura 72: Ponto F apoio para dividir a unidade em 4 partes iguais (Divisão)

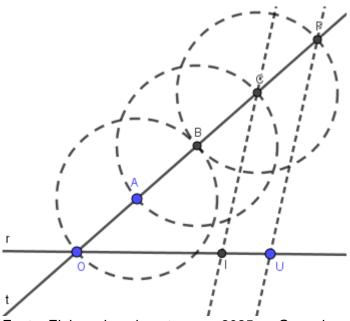
Fonte: Elaborada pela autora em 2025 no Geogebra.

• Agora, traçar uma reta passando pelos pontos U e F.


Figura 73: Reta UF apoio para dividir a unidade em 4 partes iguais (Divisão)

Fonte: Elaborada pela autora em 2025 no Geogebra.

 Traçar uma reta paralela à reta UF passando pelo ponto A e marcar o ponto de intersecção I com a reta r.


Figura 74: Reta CI paralela à reta UF: dividindo a unidade em 4 partes iguais (Divisão)

Fonte: Elaborada pela autora em 2025 no Geogebra.

 Traçar uma reta paralela à reta UF passando pelo ponto B e marcar o ponto de intersecção H com a reta r.

Figura 75: Reta BH paralela à reta UF: dividindo a unidade em 4 partes iguais (Divisão)

Fonte: Elaborada pela autora em 2025 no Geogebra.

 Traçar uma reta paralela à reta UF passando pelo ponto A e marcar o ponto de intersecção G com a reta r.

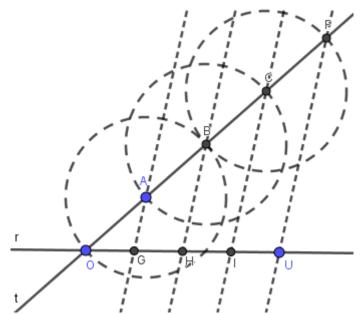


Figura 76: Reta AG paralela à reta UF: dividindo a unidade em 4 partes iguais (Divisão)

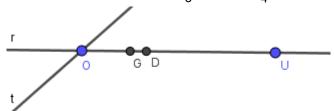
Os triângulos OAG, OBH, OCI e OFU são semelhantes pelo caso ângulo, ângulo, pois eles possuem um ângulo em comum e, pelo fato de AG, BH, CI e UF serem paralelos, os ângulos OAG, OBH, OCI e OFU são correspondentes, ou seja, são congruentes. Assim:

$$\frac{OG}{OA} = \frac{OH}{OB} = \frac{OI}{OC} = \frac{OU}{OF}$$

- Da igualdade $\frac{OG}{OA} = \frac{OU}{OF}$, tem-se que $OG = \frac{OU \times OA}{OF}$, como $OF = 4 \times OA$, então $OG = \frac{OU \times OA}{4 \times OA} = \frac{OU}{4} = \frac{1}{4} \times OU$, como OU = 1, $OG = \frac{1}{4} \times OU = \frac{1}{4} \times 1 = \frac{1}{4}$.
- Da igualdade $\frac{OH}{OB} = \frac{OU}{OF}$, tem-se que $OH = \frac{OU \times OB}{OF}$, como $OF = 4 \times OA$ e $OB = 2 \times OA$, então $OH = \frac{OU \times 2 \times OA}{4 \times OA} = \frac{2 \times OU}{4} = \frac{2}{4} \times OU$, como OU = 1, $OH = \frac{2}{4} \times OU = \frac{2}{4} \times 1 = \frac{2}{4}$.

• Da igualdade
$$\frac{OI}{OC} = \frac{OU}{OF}$$
, tem-se que $OI = \frac{OU \times OC}{OF}$, como $OF = 4 \times OA$ e $OC = 3 \times OA$, então $OI = \frac{OU \times 3 \times OA}{4 \times OA} = \frac{3 \times OU}{4} = \frac{3}{4} \times OU$, como $OU = 1$, $OI = \frac{3}{4} \times OU = \frac{3}{4} \times 1 = \frac{3}{4}$.

Visto que $OD = \frac{1}{3}$ e $OG = \frac{1}{4}$, então os segmentos OD e OG representam respectivamente as frações $\frac{1}{3}$ e $\frac{1}{4}$.


Continuando o Experimento Mental, a segunda fase é desenvolver um processo para se chegar à divisão da fração $\frac{1}{3}$ pela fração $\frac{1}{4}$.

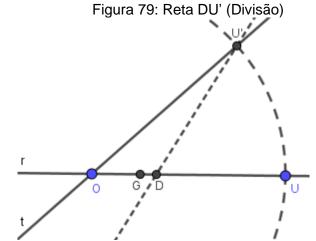
Segunda Parte:

Desenvolver um processo para obter à divisão entre as frações $\frac{1}{3}$ e $\frac{1}{4}$.

Forma: Tomar como hipótese a unidade e as frações $\frac{1}{3}$ e $\frac{1}{4}$ obtidas sobre a reta r no Experimento Mental anterior e a reta t para auxiliar na construção.

Figura 77: Unidade, fração $\frac{1}{3}$ e fração $\frac{1}{4}$ (Divisão)

Fonte: Elaborada pela autora em 2025 no Geogebra.

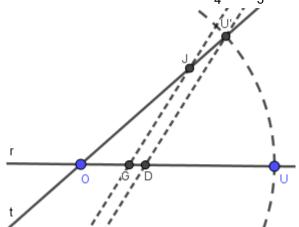

<u>Estrutura:</u> Uma ideia nova surge, um pensamento abdutivo de traçar retas paralelas, circunferências, modificando o diagrama.

 Com o auxílio de uma circunferência centralizada no ponto O, criar um ponto U' sobre reta t, em que o segmento OU' seja equivalente a unidade. Assim, o segmento OU' pode ser representado simbolicamente por:

$$OU' = 1$$

Figura 78: Unidade, reta suporte (Divisão)

• Traçar uma reta que passa pelo ponto D e pelo ponto U'.



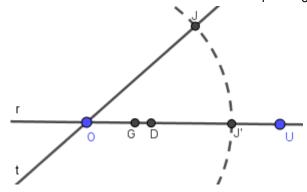
Fonte: Elaborada pela autora em 2025 no Geogebra.

Compreensão e Dependência: Início do processo dedutivo, por meio da geometria euclidiana, mais especificamente, levando em consideração o postulado das paralelas.

• Traçar uma reta paralela à reta determinada pelos pontos D e U' passando pelo ponto G e marcar o ponto J de intersecção com a reta t.

Figura 80: Segmento OJ, resultado da divisão de $\frac{1}{4}$ por $\frac{1}{3}$ na reta suporte (Divisão)

 Note que os triângulos ODU' e OGJ são congruentes pelo caso ângulo, ângulo, pois possuem um ângulo em comum e, por construção, os ângulos OĴG e
 OU'D são correspondentes. A partir disso, tem-se que:

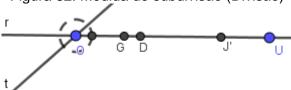

$$\frac{OJ}{OG} = \frac{OU'}{OD}$$

• Substituindo OU' = 1, OD = $\frac{1}{3}$ e OG = $\frac{1}{4}$ em $\frac{OJ}{OG}$ = $\frac{OU'}{OD}$, obtêm-se:

$$\frac{OJ}{\frac{1}{4}} = \frac{1}{\frac{1}{3}} \Rightarrow OJ \times 1 = \frac{1}{4} \div \frac{1}{3} \Rightarrow OJ = \frac{1}{4} \div \frac{1}{3}$$

Marcar um círculo de raio equivalente ao do segmento OJ com centro em O e marcar a intersecção J' com a reta r, ou seja, o segmento OJ', também representa a divisão ¹/₄ ÷ ¹/₃.

Figura 81: Segmento OJ', resultado da divisão $\frac{1}{4}$ por $\frac{1}{3}$ (Divisão)



Fonte: Elaborada pela autora em 2025 no Geogebra

Revelação: Por meio do processo abdutivo de tomar uma circunferência específica e por meio de realizações de alguns processos dedutivos, pode-se revelar quanto mede o segmento equivalente à divisão de $\frac{1}{4}$ por $\frac{1}{3}$.

 Marcar um círculo com centro em O e raio equivalente a diferença entre os segmentos OD e OG e marcar a interseção com a reta r (Processo abdutivo).

Figura 82: Medida de subdivisão (Divisão)

Fonte: Elaborada pela autora em 2025 no Geogebra.

Por meio de um processo dedutivo, replicar circunferências de raio equivalente a diferença entre os segmentos OD e OG de forma a dividir todo o segmento OU. Essa divisão deve ser feita por meio de pontos que são intersecção da circunferência com a reta r. A primeira circunferência será centralizada no ponto marcado no passo anterior e as subsequentes nos próximos pontos até que a intersecção da última circunferência seja o ponto U.

Figura 83: $\frac{1}{4} \div \frac{1}{3}$

Fonte: Elaborada pela autora em 2023 no Geogebra.

- Note que o segmento unidade está dividido em 12 partes iguais, como a fração OG é composta por três partes dessa, então, OG é 3/12 da unidade OU. Já a fração OD é composta por 4 partes, logo OD é 4/12 da unidade e a fração OJ' é composta por 9 partes, ou seja, OJ' e 9/12 da unidade.
- Com isso, conclui-se que $OG \div OD = OJ' \therefore \frac{4}{12} \div \frac{3}{12} = \frac{9}{12}$.