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RESUMO

H&a um interesse renovado no estudo do escoamento de espuma em meios porosos,
especialmente em aplicagoes de engenharia ambiental e de petréleo. Diversas observacoes
experimentais relatam perfis de saturacao que mantém uma forma consistente durante o
deslocamento no meio poroso, motivando a investigacao de solu¢oes na forma de ondas
viajantes para modelos de espuma. Neste trabalho, analisamos trés modelos de escoamento
de espuma com abordagens distintas para reologia e balanco de bolhas, incluindo um
modelo nao newtoniano para o qual demonstramos a existéncia de solu¢des em onda
viajante. Validamos nossa solugao semi-analitica por meio de simulagoes numéricas, que
apresentaram boa concordancia com os dados experimentais. Mostramos que, para meios
homogéneos em regime de espuma forte, todos os modelos resultam na mesma solucao
quando ajustados para condigoes experimentais tipicas. As diferencas entre os modelos
foram exploradas por meio de simulagoes bidimensionais em campos heterogéneos de
permeabilidade, revelando uma divergéncia significativa na descri¢ao da distribuicao de
bolhas. O modelo que incorpora uma taxa de destruicdo da espuma dependente da
permeabilidade apresenta maior densidade de bolhas em regides mais permeaveis, em
conformidade com observacoes reportadas na literatura. Apesar dessas diferencas, todos os
modelos preveem com precisao o tempo de breakthrough, as curvas de producao e o formato
da frente de gas. Nossos resultados confirmam a aplicabilidade da abordagem de onda
viajante para obtencao de solugoes semianaliticas em modelos de espuma newtonianos e nao
newtonianos e fornecem uma ferramenta para auxiliar na selecdo de modelos apropriados

para aplicacoes especificas.

Palavras-chave: Escoamento em meios porosos. Espumas. Ondas viajantes. Fluido nao

newtoniano. Permeabilidade.



ABSTRACT

There has been a renewed interest in studying foam flow in porous media, partic-
ularly in environmental and petroleum engineering applications. Several experimental
observations reported saturation profiles maintaining a consistent shape during displace-
ment through the medium, motivating the investigation of solutions for foam models in
the form of traveling waves. In this work, we analyze three foam flow models with distinct
approaches to rheology and bubble balance, including a non-Newtonian model for which
we demonstrate the existence of traveling wave solutions. We validated our semi-analytical
solution with numerical simulations, and both agreed well with the experimental data.
We show that, for homogeneous media under the strong foam regime, all models yield
the same solution when fitted to typical experimental conditions. We explored model
differences through two-dimensional simulations in heterogeneous permeability fields, re-
vealing a significant divergence in describing bubble distribution. The model featuring
a permeability-dependent foam destruction rate exhibits higher bubble density in more
permeable regions, consistent with observations reported in the literature. Despite these
differences, all models accurately predict breakthrough time, production curves, and the
shape of the foamed gas front. Our findings confirm the applicability of the traveling wave
approach in obtaining semi-analytical solutions for Newtonian and non-Newtonian foam

models and provide a tool to aid in selecting appropriate models for specific applications.

Keywords: Flow in porous media. Foam. Traveling waves. Non-Newtonian fluid. Perme-

ability.
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1 INTRODUCTION

The study of foam flow in porous media primarily finds application in environmental
remediation and reservoir engineering. In soil remediation, foam mobilizes hydrophobic
contaminants (Hirasaki et al., 1997; Mulligan and Eftekhari, 2003; Wang and Mulligan,
2004; Couto et al., 2009) and redirects groundwater flow to avoid contaminated areas
(Davarzani et al., 2021, 2022). Foam is also utilized in advanced agricultural practices
for delivering liquid fertilizers and agrochemicals (Shojaei et al., 2022), as well as for
improving the stability of solid waste landfills (Hu et al., 2023).

In the petroleum industry, foam is a valuable tool for enhancing the sweep efficiency
of oil recovery in reservoirs. Reservoirs are porous rock formations filled with hydrocarbons,
and maximizing oil recovery from these formations is challenging. Oil recovery methods
are generally classified into three main types (Lake, 1989). Primary recovery relies on the
reservoir’s natural pressure, typically recovering around 15% to 30% of the total oil in place
(Chen et al., 2006). Secondary recovery techniques, such as water or gas flooding, help
maintain reservoir pressure and extract additional oil. Tertiary or enhanced oil recovery
(EOR) methods are more advanced and include techniques such as thermal processes —
in situ combustion (Chapiro et al., 2012; Chapiro and Bruining, 2015), electromagnetic
heating (Abernethy, 1976; Paz et al., 2017), and steam injection (Willman et al., 1961;
Willhite, 1967) — as well as chemical methods like foam injection (Kovscek and Radke,
1994; Rossen, 1996; Ma et al., 2015; Hematpur et al., 2018), which is the focus of this
work.

Figure 1.1 — Representation of a secondary recovery
in oil reservoir.

i Injection Production T
i

well well

Source: Elaborated by the author (2020).

One of the challenges associated with multiphase flow in porous media is the fluid
dynamics involved in the process. In a porous medium, when a more mobile fluid displaces
a less mobile fluid, the more mobile fluid tends to flow through the least resistant pathways,
forming channels within the less mobile phase. This phenomenon is called fingering, as
the advancing front exhibits finger-like structures as it propagates through the media.
This phenomenon can significantly affect the efficiency of fluid displacement efficiency in

processes like enhanced oil recovery or groundwater remediation. Figure 1.1 illustrates
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water flooding in an oil reservoir for EOR applications, where oil trapped between the
gas fingers is not displaced and remains in the reservoir. Another issue to consider in
oil recovery applications is the density of the fluids involved in the process. A less dense
fluid injected into the reservoir tends to rise to the top due to the gravity effect, leaving
behind a layer of oil at the bottom. Similarly, fluids injected that are denser than those
present in the medium tend to move to lower regions of the reservoir. This phenomenon is
called gravity override and becomes more pronounced as the reservoir thickness increases
and the distance between the injection and production wells grows. As with fingering,
when the injected fluid reaches the production well, the efficiency of the process decreases
significantly (Lake, 1989; Bear, 2018).

Some EOR techniques aim to reduce the mobility of the injected fluid to avoid sweep
efficiency loss. One of them is water-alternating-gas (WAG) injection, which alternates
between injecting water (denser than oil) and gas (less dense than oil) into the reservoir
to yield a more uniform sweep, improving recovery efficiency. One strategy adopted in
WAG techniques is the re-injection of carbon dioxide (CO,), which is present in high
concentrations in many oil reservoirs. For example, some Brazilian pre-salt fields re-inject
about 45% of produced COy (Ministry of Mines and Energy et al., 2020). This technique
reduces greenhouse gas emissions, one of the main goals of the Paris Agreement, which
Brazil signed in 2016 (United Nations Framework Convention on Climate Change, 2020;
Ministry of the Environment, 2020). Additionally, reducing gas mobility makes foams
highly useful for carbon dioxide sequestration in natural rock formations (Rossen et al.,

2024), which also helps mitigate gas emissions by trapping them underground.

Even with superior efficiency compared to conventional injection techniques, WAG
methods are still limited by the gas’s high mobility and low density. One option that has
been studied is to inject surfactant diluted in the aqueous phase so that the flow within the
porous medium creates foam, hindering the gas flow and reducing its mobility (Ma et al.,
2015). This strategy is frequently referred to in the literature as foam injection or foam-
assisted WAG (FAWAG). Figure 1.2 illustrates the efficiency of foam injection, through
which the reservoir is swept more uniformly compared to, for example, gas injection. The
development of the injection techniques mentioned motivates the study of multiphase flow
dynamics in porous media and, in this particular work, the study of foam flow. While the
presence of oil and other nonaqueous phase liquids can significantly alter foam dynamics,
studying the displacement of water and foamed gas is a foundational scenario for all the

above-mentioned applications and is the focus of this work.

The necessity of precisely describing the behavior of foam in porous media has
led to the development of various mathematical models. Comprehensive reviews of these
models are available in the works by Ma et al. (2014a) and by Hematpur et al. (2018).

Equilibrium-type models consider that foam generation and destruction rates are equal,
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Figure 1.2 — Representation of a reservoir comparing recov-
ering through gas injection versus foam injection.

Gas Foam
, injection injection

Source: Cedro and Chapiro (2024).

i.e., foam is always in local equilibrium (LE). These models typically feature an algebraic
equation describing foam texture or an implicit-texture approach. In the latter, foam effects
are represented by a mobility reduction factor dependent on flow parameters, such as phase
saturations (Hematpur et al., 2018). Implicit-texture models are commonly employed in
most commercial simulators — e.g., STARS (CMG, 2019), UTCHEM (Cheng et al., 2000),
and ECLIPSE (Schlumberger, 2010). In contrast, mechanistic (or population-balance)
models describe foam texture using an independent variable governed by generation and
coalescence rates, as in the models presented by Falls et al. (1988); Kovscek et al. (1995);
Zitha and Du (2010); Kam (2008); Ashoori et al. (2011). This characteristic makes
mechanistic models more complex and accurate when describing transient scenarios (Kam
et al., 2007; Hematpur et al., 2018).

The mathematical modeling of foam displacement is challenging due to the complex-
ity of its governing partial differential equations (PDEs), which often prevent the derivation
of analytical solutions. As a result, researchers commonly use numerical methods to obtain
approximate solutions for these models. One approach to address specific PDEs is to
search for solutions in the form of traveling waves, which are static profiles that propagate
over time. This method introduces a symmetry that reduces the problem to a system of
ordinary differential equations (ODEs) connecting two equilibrium states (Volpert et al.,
2000; Ghazaryan et al., 2022). Several studies have applied this theory to specific EOR
methods (Rossen and Bruining, 2007; Rossen et al., 2011; Bruining and Van Duijn, 2000;
Chapiro and Bruining, 2015). Experimental studies have observed foam displacement
through porous media as a piston-like shape, with water saturation profiles maintaining
this form (Chen et al., 2010; Simjoo and Zitha, 2015; Janssen et al., 2020). These findings
motivated the search for analytical solutions in the form of traveling waves for foam flow in
porous media (Ashoori et al., 2011; Cedro et al., 2019; Lozano et al., 2021, 2022; Vasquez
et al., 2022; Zavala et al., 2022).

Additionally, foam flow in porous media was reported as non-Newtonian by Brether-
ton (1961) and later by several authors (Marsden and Khan, 1966; Heller and Kunta-
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mukkula, 1987; Falls et al., 1989; Rossen, 1991; Alvarez et al., 2001; Ferng et al., 2016).
Hirasaki and Lawson (1985) proposed a shear-thinning formulation for foam’s apparent
viscosity. In the context of fractional flow, this formula defines foam viscosity implicitly, as
it depends on gas velocity, which itself is a function of foam viscosity. That implicit relation
makes the traveling wave analysis challenging. Pereira and Chapiro (2023) addressed
this issue by expressing foam viscosity explicitly through a cubic equation, enabling the
authors to obtain traveling wave solutions for a non-Newtonian foam model in local
equilibrium. In the first part of this work, we derive a traveling wave solution for the
foam flow model proposed by (Kovscek et al., 1995; Chen et al., 2010), which describes
foam as a shear-thinning fluid following the formulation by Hirasaki et al. (1997). The
semi-analytical solution profiles closely align with the experimental data from Chen et al.
(2010), reproducing the same wavefront propagation velocity. This study was published in
(Cedro and Chapiro, 2022, 2024).

Despite the variety of approaches to modeling foam flow, several validated foam
models yield similar solutions when describing strong foam flow, typically exhibiting a
piston-like saturation profile. Lotfollahi et al. (2016) calibrated multiple implicit-texture
and mechanistic foam models using experimental data from Moradi-Araghi et al. (1997) and
Alvarez et al. (2001), demonstrating that these models effectively capture the steady-state
mobility of strong foam. In the field of analytical solutions, Ashoori et al. (2011) conducted
a traveling wave analysis for their first-order kinetic model, using parameters fitted to the
experimental data from Persoff et al. (1989), and the model by Kam (2008). Expanding on
this, Lozano et al. (2021) classified all possible traveling wave solutions of the first-order
kinetic model (for a given set of parameters) based on the equilibria of the system’s
ODEs, presenting the classification as a function of upstream saturation and the model’s
generation rate coefficient. In a subsequent study (Lozano et al., 2022), we explored how
simplifications in foam displacement through capillary pressure affected the results. Pereira
and Chapiro (2023) explored traveling wave solutions in a non-Newtonian adaptation of
the model by Ashoori et al. (2011), incorporating the shear-thinning behavior described
by Hirasaki and Lawson (1985). Zavala et al. (2022) analyzed traveling wave solutions
for a Newtonian variation of the model by Zitha and Du (2010), using experimental data
from Simjoo and Zitha (2015) and classifying traveling wave solutions. Building on these
contributions, Fritis et al. (2022) demonstrated that the models proposed by Ashoori
et al. (2011) and Zitha and Du (2010) yield identical solutions when both are fitted to the
experimental data by Simjoo and Zitha (2015). In the second part of this work, we adjust
the foam model by Chen et al. (2010) to the same experimental data to identify traveling
wave solutions under these parameters. We observe that all investigated models exhibit
the same classification of traveling wave solutions and piston-like saturation profiles. This

observation motivates us to explore the conditions under which these models diverge.

In the last part of this work, we focus on numerically studying the behavior of
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these three foam models (by Ashoori et al. (2011); Chen et al. (2010); and Zitha and Du
(2010)) in a two-dimensional heterogeneous porous medium, a scenario closer to practical
applications. Specifically, we investigate how the models describe bubble distribution in
heterogeneous media. Experimental studies face challenges in clearly visualizing foam
behavior in heterogeneous media. The contemporary approach to measuring foam flow in
porous media in laboratory coreflood experiments relies on a CT-scan technology (Chen
et al., 2010; Simjoo et al., 2013a; Shah et al., 2020; Zavala et al., 2022). However, a
CT scan cannot directly determine foam density, given that foam and gas exhibit nearly
identical densities. Consequently, most assessments of foam strength are carried out
indirectly by monitoring pressure drop, which provides only overall information across
the core or its regions, assuming homogeneity within these areas. Some authors opted to
approximate characterization of the foam present at the end of the core by connecting a
camera to the outlet of a core flooding system, as demonstrated by studies such as (Hou
et al., 2013; Li et al., 2019; Chen et al., 2010). However, this foam results from dynamics
occurring throughout the core, and specific contributions from different regions are not
easily distinguished. Despite this limitation, several authors have reported stronger foam
generation in higher permeable cores (Moradi-Araghi et al., 1997; Li et al., 2019; Zeng et al.,
2020; Shah et al., 2020), as reviewed by Abdelgawad et al. (2022). Coreflood experiments
were also employed to fit parameters of the foam model (CMG, 2019), resulting in higher
foam strength parameters in more permeable media (Farajzadeh et al., 2015; Kapetas
et al., 2017; Gassara et al., 2020). Microfluidic experiments, on the other hand, provide
complete visualization of foam generation and propagation throughout the media at the
cost of not representing the complexity of a realistic rock. In this context, Lv et al.
(2020) reported experiments within a chip featuring higher and lower permeability zones,
illustrating that higher permeable regions tend to exhibit more bubbles. Conn et al. (2014)
performed similar experiments with a microchip featuring a fracture between low and
high-permeability regions and observed that the high-permeability regions were more
gas-rich. In the same line, Li et al. (2021) reported that foams are denser in fractures,
which have significantly higher permeability compared to the matrix. The numerical
study we present in this work indicates that, despite variations in rheology, the foam
model that accounts for permeability in bubble generation and coalescence rates better
represents foam behavior in heterogeneous media, exhibiting a strong positive correlation
between bubble density and permeability. Nevertheless, even in heterogeneous media, all
simulated models successfully predict key quantities of interest under steady-state strong
foam conditions, such as breakthrough time, production curves, and foam front position.
For more details, see (Cedro et al., 2025).

Additionally, in Appendix A, we briefly present a study applying traveling wave
analysis to the model by Ashoori et al. (2011) to evaluate the impact of three simplifications

on capillary effects in foam displacement. We show that, although the simplifications
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result in significantly different foam texture profiles, the extent of the differences is not
measurable in laboratory experiments, meaning the results can be considered equivalent.
This study is not, however, in the main line of this thesis; for more details, see (Lozano
et al., 2022).

1.1 WORK STRUCTURE

This work is structured as follows. Chapter 2 introduces the key characteristics
of foam flow in porous media and presents the mathematical modeling approach for this
phenomenon. In Chapter 3, we investigate traveling wave solutions for a non-Newtonian
foam model with shear-thinning behavior presented by Chen et al. (2010). Chapter 4
compares the traveling wave solutions in foam models by Ashoori et al. (2011), Chen et al.
(2010), and Zitha and Du (2010), fitted to experimental data from Simjoo and Zitha (2015).
Chapter 5 describes the behavior of the above-mentioned models in two-dimensional
heterogeneous permeability media, focusing on bubble distribution. Finally, Chapter 6

presents discussions and conclusions.

In addition, Appendix A briefly discusses simplifications on capillary pressure in the
model by Ashoori et al. (2011). Appendix B presents the numerical approach employed in
one- and two-dimensional simulations. Appendices C to D provide further considerations
about Chapter 5.
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2 THEORETICAL FOUNDATION

2.1 FRACTIONAL FLOW THEORY

The fractional flow theory describes the flow dynamics of miscible and immiscible
fluids in porous media (Dholkawala et al., 2007; Buckley and Leverett, 1942). This name
is due to the analysis of functions that describe the fraction of the total flow corresponding
to each phase. The fractional flow theory has several constraints that do not apply to foam
flow (Collins, 1976; Lake, 1989). However, some works show how this theory is also useful
in explaining the complex mechanisms involved in foam flow in porous media (Rossen and
Zhou, 1995; Zhou and Rossen, 1995; Rossen et al., 1999).

This chapter elucidates the fundamental principles of multiphase flow in porous
media and introduces the governing equations of this phenomenon. We will also describe
the fundamental concepts of foam dynamics and explore their integration into multiphase
flow models. Finally, we present the typical modeling approach for foam flow, described in

terms of fractional flow functions.

2.1.1 Flow in porous media

Porous media refers to materials or substances that contain interconnected voids,
pores, or cavities, allowing the flow or passage of fluids or gases through them (Bear,
2018). Examples of porous media include soil, sand, rocks (such as sandstone or limestone),
sponges, and filters. Figure 2.1 shows some of these examples. Next, we will define some

essential physical quantities in modeling these phenomena.

Porous volume (V}) is the total volume of interconnected voids within a porous

Figure 2.1 — Examples of porous media. (a) Microscopic image of a ceramic.
(b) Simplified representation of a porous medium.

Source: Bear (2018).
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medium that fluid can occupy. Porosity (¢) in a specific region is the ratio of the porous

volume to the total volume (V') in that region:

¢ =L (2.1)

It is worth noting that the continuum hypothesis is commonly employed for mathematical
modeling and considering the scale of the problem domain to pore size (Bruining, 2021).
Under this assumption, porosity is treated as a point-wise property, assigning a porosity
value to each point within the physical domain. This implies that solid material and pores

coexist at any point in a proportion represented by ¢.

In this study, we aim to investigate the dynamics of multiphase flow involving
immiscible phases. Saturation (.S;) is defined as the ratio of the volume (V;) occupied by a

specific phase ¢ to the porous volume:

Assuming the continuum hypothesis, saturations are considered point-wise values, sug-
gesting that each portion of the domain contains a fraction of each phase. Full saturation
of a porous medium occurs when the porous volume is completely filled with the phases

included in the model, satisfying the condition:

Z(S,-) =1. (2.3)
However, it may not always be possible to displace a phase entirely from a region due to
various factors, including the medium’s and fluids’ properties. In such cases, the residual

saturation (S;.) describes the minimum amount of phase i.

Permeability (k), also known as absolute permeability, quantifies the medium’s
ability to facilitate fluid flow based on the geometric attributes of the pores. Similar to the
previous definitions, permeability is treated as a scalar point-wise quantity. In multiphase
flow scenarios, the permeability of a phase is generally lower compared to single-phase
flow (Chen et al., 2006). Thus, we define effective permeability (k;) as the flow capacity of
phase 7 in the presence of the other phases. Moreover, relative permeability (k,;) is the

ratio of the effective permeability to the absolute permeability, so that:

Several models of relative permeabilities describe them as functions of the phase satu-
rations (Brooks and Corey, 1966; Mualem, 1976; van Genuchten, 1980; Chierici, 1984;
Lomeland et al., 2005).

Viscosity (p;) characterizes the resistance a fluid presents to flow. Considering the

medium and all fluid properties involved in the flow, we describe the ability of phase ¢ to
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move through the medium as mobility (A;). Mobility is the ratio of effective permeability
k; to viscosity p;. Additionally, we define total mobility (A) and relative mobility (\.;) as
follows: )

A= Au=-2 and A=3 \. 2.5

Hi Hi XZ: (25)

Finally, we define fractional flow (f;) as the volumetric fraction of the displacement

in a specific direction composed of phase 7. This flow is equivalent to ratio of phase
mobility A; to total mobility (Buckley and Leverett, 1942; Lake, 1989):

fi:))\j =>Zfi=1- (2.6)

2.1.2 Darcy’s law

Darcy’s law is a constitutive equation experimentally inferred by Henry Darcy
(Darcy, 1856), which describes the hydrodynamic behavior of single-phase flow in porous
media. This equation establishes a proportional relationship between the flow velocity u
and the pressure gradient in the reservoir (Vp). In the absence of gravitational effects,

the relationship is given by:
u(x) = <Xy, (2.7)

where, for an n-dimensional medium, u(x) € R" is the velocity at a point x € R", and
k(x) € R* x R™ is the permeability tensor at x. Each component k;; in the tensor k
represents the ease of fluid displaces in the i direction due to a pressure gradient in the
J direction. In certain cases, it is possible to assume a diagonal tensor, i.e., k; ; = 0 for
i # j (Chen et al., 2006). In isotropic media, permeability is independent of direction,
resulting in k; = k. In homogeneous media, permeability is constant, meaning it does not

vary with x

The superficial velocity u, or Darcy velocity, is the effective fluid flow velocity
through a porous medium on a macroscopic scale. It represents the overall rate of mass
displacement across a section. On the other hand, interstitial velocity v, or actual velocity,

refers explicitly to the fluid movement occurring within the pores of the porous medium:

u=o¢v. (2.8)

Muskat and Meres proposed adapting Darcy’s law to describe the dynamics of
multiphase flows in porous media (Muskat and Meres, 1936). For each phase i, partial

Darcy velocity u; and partial pressure p; are defined. Thus, we have:

u;(x) = —k(x)\Vp;, u= Zul (2.9)
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The partial Darcy velocity u; considers only the portion of the interstitial phase velocity

(v;) corresponding to the volumetric fraction occupied by phase ¢ in the medium:

The relation between each phase pressure p; and global pressure P is presented by (Chavent
and Jaffré, 1986; Chen et al., 2006) and briefly discussed in Appendix B.2.

2.1.3 Conservation laws

A conservation law is a partial differential equation (PDE) that describes the
behavior of a specific quantity that remains constant over time (LeVeque, 2002). We can

express the conservation law for a quantity v as the following differential equation:

v

—+V-f(v)=0, 2.11
V) (211)
where, f is the volumetric flux of v per unit area. Equation (2.11) asserts that, in any
bounded region, the temporal variation of the quantity v depends solely on the flux of

this quantity entering or leaving that region.

The principle of mass conservation plays a crucial role in fluid dynamics. Regarding
flow in porous media, we can express this conservation law in terms of phase saturations.
Since we are dealing with immiscible fluids, there is no mass transfer between the phases.
Consequently, we can establish a separate conservation law for the mass of each phase.
Considering the mass m; of phase ¢ with density p; within the pores of a region with
volume V', we obtain:

m; = Pi(V¢Si) :
Hence, we can derive the conservation law for mass in porous media for phase ¢ from (2.11)
by setting v = m; and defining the mass flux per unit area as f(m;) = m;v;. Thus, we

have:

2 (pi68) + Y - (o) = 0. (212)

In the case of incompressible phases, the density p; remains constant and is
independent of position or time, simplifying the equation. Moreover, the porosity ¢ is also

constant for homogeneous media.

2.1.4 Two-phase flow

In this work, we use water-gas flow as the foundation for developing foam flow
models. This model considers i = w for the aqueous phase and ¢ = g for the gaseous phase.
According to (2.6) and (2.9):

fo+fu=1 and u,+u,=u. (2.13)



23

Figure 2.2 — Capillary effects in tubes of different thicknesses,
where the gray fluid is wetting on the red surface and non-wetting
on the blue surface.

Source:

https://commons.wikimedia.org/wiki/File:Capillary Action.svg

When dealing with multiphase problems, the interaction between the phases’ inter-
faces significantly influences the hydrodynamics. Different substances interact differently
with surfaces, exhibiting varying levels of molecular attraction to the surface. The wetting
phase, which experiences more significant attraction, tends to form a larger contact area
with the surface, causing it to move toward the non-wetting phase. This phenomenon,
known as capillarity, becomes more pronounced when the wetting fluid’s contact area
with the solid surface is larger compared to the total fluid quantity. Figure 2.2 illustrates
the intensified capillary action in narrower tubes, where the fluid portion is reduced in
relation to the contact surface area. This emphasizes the importance of capillary effects in
porous media flow, as they possess extensive surface contact with the fluid. Therefore, we
define capillary pressure (P.) as the difference between the pressures of the non-wetting
and wetting phases at these interfaces. A phase’s wetting or non-wetting nature depends
on the phases involved in the interaction and the medium with which they interact (Cassie
and Baxter, 1944; Hirasaki, 1991). In our problem, the aqueous phase is wetting, while

the gas phase is non-wetting. Hence:
P.=p;, — puw- (2.14)

Capillary pressure P, is commonly described as a function of saturation through the
Leverett J-function (Leverett, 1941), which incorporates porosity and permeability, thereby

connecting macroscopic properties of the porous medium to capillary behavior:

J(Sw) = i\/i (2.15)

where o, is the interfacial tension. This function provides a normalized framework to
analyze capillary pressure across different porous media. Later, in Section 2.4, we present

the J-function for the models we study in this work.
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Using the capillary pressure definition (2.14) we can derive the relationship between
the partial velocities u,, and u, and the total velocity u from Eqgs. (2.9) and (2.4)-(2.6)
(Chen et al., 2006):

u, =ufy, +k\gfu VP,

(2.16)
u, = uf, — kA, f(VFE..

By combining the mass conservation law (2.12) with the velocity expression (2.16), derived
from Darcy’s law, we obtain the following expression for the aqueous phase (Barenblatt
et al., 1989):

8815 (Pw®dSw) + V- (pwufu) + V- (pukg fuVE:) =0. (2.17)

There is no need to derive an equivalent expression for the gas phase in two-phase

flow through a saturated porous medium since S, + S, = 1.

2.2 FOAM FLOW IN POROUS MEDIA

This section highlights the main characteristics of foam flow in porous media. Its
modeling extends the fractional flow theory by incorporating the effects of foam on flow
behavior. This work defines foam as an aggregation of gas bubbles separated by a liquid
film called lamella (Bikerman, 1973; Hirasaki, 1989; Hematpur et al., 2018). However,
achieving this bubble structure is difficult when the lamellae consist solely of water because
water’s surface tension makes them kinetically unstable. To obtain stable bubbles in an

aqueous medium, surfactants are added to the solution, reducing surface tension (Wang

and Li, 2016).

2.2.1 Swurfactants

Surfactants are molecules that reduce the surface tension of aqueous solutions
(Evans and Wennerstrom, 1999). These molecules have a structure with one hydrophilic
and one hydrophobic end. This structural arrangement causes surfactants to accumulate at
the interface between the aqueous solution and other phases, reducing the surface tension
of water and facilitating the formation of stable lamellae (Ma et al., 2014b; Wang and Li,
2016). Figure 2.3 illustrates the composition of a lamella in a porous rock medium during
three-phase flow, showing surfactant molecules at the liquid film’s surface, which stabilize

the lamella structure.

Increasing the surfactant concentration in the medium decreases the solution’s
surface tension as the surfactant molecules deposit at the aqueous surface. However, when
the surface becomes saturated with the surfactant, the molecules aggregate within the liquid,

forming spherical conformations called micelles. We refer to the concentration at which
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Figure 2.3 — Representation of bubbles in a porous rock medium
with a three-phase flow of water, gas, and oil. Surfactant
molecules are at the interface between water and gas, based on
the properties of their hydrophilic and hydrophobic parts (Fara-
jzadeh et al., 2012; Fejoli and Romero, 2014).

Lamella

— Water

Gas

Rock
Oil

Surfactant
Source: Adapted from Farajzadeh et al. (2012).

this occurs as the critical micelle concentration (CMC). Concentrations above the CMC do
not significantly affect the surface tension (Kile and Chiou, 1989; Evans and Wennerstrom,
1999). Figure 2.4 illustrates the relationship between surfactant concentration and surface
tension.

Figure 2.4 — Water surface tension as a function of surfactant
concentration.
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Source: DataPhysics Instruments (2020).

2.2.2 Creation and destruction mechanisms

Foam flow in porous media applications involves the introduction of surfactant
solutions with gases to generate bubbles. This process can occur before injection (pre-

generated foam) or after surfactant injection (in-situ generation) (Zhang et al., 2009;
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Figure 2.5 — Bubble generation mechanisms in porous
media: (a) leave-behind, (b) snap-off, and (c) division
(Hematpur et al., 2018).

(a)

Source: Hematpur et al. (2018).

Afsharpoor et al., 2010; Hematpur et al., 2018). In porous media, we traditionally describe
bubble formation through three main mechanisms. The first mechanism, leave-behind,
occurs when the gas displaces the initially water-filled region, leaving a residual liquid
solution between the pores that form lamellae. The second mechanism, snap-off, happens
when an individual gas bubble detaches from a continuous gas phase. The third mechanism
is the lamella division, in which lamellae divide into smaller ones. Figure 2.5 illustrates
these three generation mechanisms. Researchers have recently observed two other lamellae
creation phenomena: neighbor-wall pinch-off and neighbor-neighbor pinch-off (Liontas
et al., 2013). These occur when a bubble splits in two due to pressure from pore walls or
other bubbles.

When the liquid film’s thickness becomes too thin to support the lamella structure,
the bubble collapses in a phenomenon called coalescence (Bikerman, 1973; Kovscek and
Radke, 1994; Rossen, 1996). The foam structure becomes unstable under high capillary
pressure, resulting in a sudden rupture of the lamellae. Various multiphase models assume
capillary pressure can be described based on phase saturations. Khatib et al. (1988)
demonstrated the existence of a limiting capillary pressure threshold (P.) beyond which
bubbles collapse. Consequently, a limiting water saturation value (S.,) is associated with
foam instability since capillary pressure can be described as a function of water saturation.

Figure 2.6 shows this behavior. It also follows that permeability should influence the rate
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Figure 2.6 — Relationship between capillary pressure and water
saturation. Bubbles become unstable below the limiting water
saturation S, (or above a limiting pressure P, ).
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Source: Adapted from Khatib et al. (1988).

of foam destruction, as lower permeability levels tend to elevate capillary pressure, thereby
facilitating foam destruction as it approaches the limiting capillary pressure. In Chapter 5,
we study the impact of permeability on foam generation rates driven by capillarity for the

foam models introduced in Section 2.4.

2.2.3 Foam texture

Some foam structures are more efficient than others in reducing gas mobility. In
general, foams with a higher number of bubbles and more lamellae are more effective in
reducing gas mobility (Afsharpoor et al., 2010). Hence, we classify foams with numerous
lamellae as strong and ones with few as weak (Figure 2.7). We define the concept of foam
texture (ny) to quantify the number of lamellae or bubbles per unit area or volume. Hence,
a higher foam texture (or finer texture) leads to a greater gas mobility reduction and a

stronger foam.

2.3 MODELING

There are two main types of models for foam flow dynamics: empirical and
mechanistic. Commercial software primarily employs empirical models (CMG, 2019; Cheng
et al., 2000; Schlumberger, 2010). These models mathematically define the foam quantity
using algebraic relationships derived from empirical correlations without considering it as
an unknown variable in the equations. In contrast, mechanistic models treat the foam
quantity as an independent variable and include it explicitly in the problem equations.

From a physical perspective, mechanistic models are considered more accurate (Hematpur
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Figure 2.7 — Representation of strong and weak foams in a porous
medium.

No foam Strong foam

Source: Dholkawala et al. (2007).

et al., 2018). However, some mechanistic models, when in local equilibrium (steady-state
foam), yield results similar to those of empirical models. In this work, we focus on

mechanistic models.

As mentioned, we can quantify foam’s strength by the foam texture (ny). However,
due to the high magnitude of bubble density in many applications, it is common to
represent foam texture normalized to a reference foam texture constant (nyay). We define

the dimensionless foam texture value (np) as follows:

np= 4 (2.18)

nmax

We can model foam transport using a balance law for the foam amount. Balance
laws differ from conservation laws in that they describe situations where a quantity may
not be conserved, resulting in the inclusion of a source term in the equation. In this case,
the source term is proportional to the bubble creation and destruction rate. Since np
represents the density of lamellae in the gaseous phase, we consider a balance law for the
product (Synp) with a source function ® describing the creation and destruction of bubbles
per unit gas volume (¢S,). Gathering Eqgs. (2.9) and (2.12) with a bubble balance equation
and assuming incompressible flow (constant phase densities), the governing equations for

water-gas foam flow in porous media are expressed as:

u; = —)\,Vpi, (219)
0
9,
ot (¢Sgnp) +V - (ugnp) = ¢S, @, (2:21)

where Eq. (2.19) is Darcy’s law adapted for multi-phase flow (with ¢ = w for the water
solution and i = g for the gaseous phase), Eq. (2.20) is the mass conservation of each phase,
and Eq. (2.21) is the population balance of foam texture. The partial Darcy velocities are

given in Eq. (2.16).
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The specifics of the foam generation rate ® vary depending on the model employed
to describe bubble generation and destruction mechanisms, as elaborated in subsequent
sections. Empirical models only consider foam texture in equilibrium, ¢.e., with ® = 0.
The models we deal with in this work assume a sufficiently high surfactant concentration

to ensure no interference in the foam dynamics.

The main purpose of using foams in porous media is the reduction of gas mobility.
This behavior is commonly incorporated into multiphase flow models by modifying either
the relative permeability of gas (k,4) or the gas viscosity (114) in the presence of foam. In
this work, we denote iy as the apparent gas viscosity in the presence of foam. Therefore,

in a foam flow, gas mobility ()\;) becomes dependent on the foam texture (np).

Another essential aspect in the physics of foam flow is the concentration of surfactant
in the aqueous phase, as it is one of the main factors determining foam creation. Some
mechanistic models consider surfactant concentration as a variable of the problem (Trogus
et al., 1977; Chen et al., 2010; Thorat and Bruining, 2016). Other models assume that
surfactant concentration is constant and sufficiently high not to affect the bubble creation
and destruction rate (Kovscek et al., 1995; Kam, 2008; Zitha and Du, 2010; Ashoori et al.,
2011), based on the concept of critical micelle concentration. Some models also consider
the transport of surfactant particles, including phenomena such as surfactant adsorption on
the walls of the porous medium, which influences foam generation and destruction (Thorat
and Bruining, 2016; Trogus et al., 1977). In this work, we neglect variations in surfactant

concentration in the flow.

Researchers often report the flow behavior of foam flow as shear-thinning (non-
Newtonian) in various studies (Bretherton, 1961; Hirasaki and Lawson, 1985; Khatib et al.,
1988; Falls et al., 1989; Alvarez et al., 2001). This means that foam’s apparent viscosity
should decrease as gas velocity increases. Several foam models in the literature account
for this behavior, e.g., Kovscek et al. (1995); Kam (2008); Chen et al. (2010); Thorat and
Bruining (2016). However, due to mathematical complexity, the non-Newtonian behavior
of foam flow is often neglected in analytical investigations. In Chapter 3, we address this
gap by employing an explicit formulation of foam apparent viscosity proposed by Hirasaki
and Lawson (1985).

2.4 FOAM MODELS

In this section, we present the foam models used in this work: Model A, introduced
by Ashoori et al. (2011); Model B, presented by Chen et al. (2010); and Model C, developed
by Zitha and Du (2010). In the following chapters, we study these models using the same
relative permeability and capillary functions described by Chen et al. (2010). The relative
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permeability is built upon Brooks and Corey (1964):

0 , 0< S, < Sue
— _ N , 2.22
(G2 seens e
X ng
k;gg(ng) . 0<S8,<1—Su
kg = 1 — Sue , S,=1-29,. (2.23)
0 ;o 1 =8ue <S5, <1

Parameters k¥ and k?g are the end-point relative permeabilities, while n,,, n, represent
model constants, and S, is the connate or residual water saturation. Model B incorporates
the fraction Xy, indicating the proportion of the gaseous phase that actively flows through
the pores, i.e., there is a fraction of gas X; = 1 — X; which remains immobile. This
fraction was introduced in the model by Kovscek et al. (1995) as depending on foam
texture and later assumed as constant by Chen et al. (2010). Models A and C do not

account for trapped foam; therefore, for these models, we assume X; = 1.

The capillary pressure between water and gas is based on the J-Leverett function
Eq. (2.15) (Leverett, 1941; Kovscek et al., 1995):

0.022 .
P.(S,) = awg\/% (%—015) , (2.24)

where 0,4 is the interfacial tension between water and gas. The above capillary pressure

function was fitted specifically for Boise sandstone, as reported by Kovscek et al. (1995).

Foam flow dynamics are incorporated into the model by defining the foam apparent
viscosity py and the source term @ in the population balance of foam texture. In the
following sections, we outline the definitions of these terms as presented in the foam models
by Ashoori et al. (2011), by Chen et al. (2010), and by Zitha and Du (2010), which we
denoted by models A, B, and C, respectively.

2.4.1 Model A

Ashoori et al. (2011) introduced the first-order kinetic model, referred to here as
Model A, which establishes a linear correlation between gas mobility reduction in the

presence of foam and foam texture. The apparent viscosity of foamed gas is defined as:

piy = pig (L + Currnp) (2.25)

where Cygr is a reference mobility reduction factor for strong foam. Since this model
does not consider the hypothesis of trapping gas, we take X; = 1 for the gas’ relative
permeability function (2.23).
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The generation and coalescence of foam are represented by the source term @ in
(2.21), which for Model A is given by:

® = K, (n (Sw) = np) | (2.26)

where nt denotes the local equilibrium foam texture, i.e., the value at which foam
generation and coalescence rates are equal, leading to a dynamic equilibrium state. The
constant K. controls how fast foam reaches equilibrium (the foam creation and destruction

rates).

Model A incorporates the concept of limiting capillary pressure (discussed in

Section 2.2.2) into the expression for the local equilibrium foam texture:

nIﬁE(Sw) _ tanh (A (iw o SZ’)) ’ zw z ?} , (2.27)

w

where S, is the limiting water saturation below which foams become unstable, and A
is a model parameter that controls the sharpness of the transition region from weak to
strong foam near S, . For higher values of A, such as adopted by Ashoori et al. (2011), the
transition zone of n%* becomes sharper, resembling a step function. Consequently, except

. * . . .
for a small region near S,, = S, , n is approximately either zero or one.

2.4.2 Model B

The foam model introduced by Chen et al. (2010), based on the earlier work by
Kovscek et al. (1995), is designated as Model B in this study. This model incorporates a

non-Newtonian behavior for foam flow by using the foam’s apparent viscosity as described
by Hirasaki and Lawson (1985):

N p Nmax . u,
Wi = g + a———— with v, = ,
R AR T95,X;

(2.28)

Here, a represents a proportionality constant. This relation indicates a shear-thinning
behavior for foam flow, as the foam apparent viscosity (i) decreases with the foamed gas

velocity (||v,]]).

The foam source term @ is expressed as:

S =r,—r,

K0 1
rg =~ (L=nd) [vul Ivll* (2.29)

max

P\
re=k2, (P*—P) gl D,

[
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where k¥ and £°, are model constants, and P: is the limiting capillary pressure above

which bubbles abruptly collapse.

In Eq. (2.29), the generation rate r, models bubble formation through snap-off,
with the bubble generation frequency in a pore being directly proportional to the liquid
velocity and to the gas velocity raised to the power of a third (Kovscek and Radke, 1994;
Kovscek et al., 1995). The factor (1 — n%) accounts for the limiting role of pre-existing
bubbles on foam-generation sites. The motivation is that more than one foam bubble per
pore is not typically expected (Bertin et al., 1998), and this one-bubble-per-pore limit
is represented by the reference foam texture n,.. that we used to normalize the foam
texture. Note that in both Eqgs. (2.28) and (2.29), the explicit appearance of np,y is due

to the normalization of foam texture np = nf/Nmax.

The coalescence rate . in Eq. (2.29) presents a pore-level factor for foam lamellae
destruction, where the destruction rate is proportional to their flux, ||v,|np (Kovscek
et al., 1995). The coalescence rate also asymptotically increases with capillary pressure
as predicted by Khatib et al. (1988). Notice that, in
contrast, Model A (Section 2.4.1) incorporates this concept indirectly through limiting

P, up the its limiting value P,
water saturation S, . That difference makes the presence of foam in Model B more sensitive
to changes in absolute permeability. Both Kovscek et al. (1995) and Chen et al. (2010)
consider P, to be dependent on surfactant concentration Cy. Following these authors,
we assume that the surfactant concentration is significantly above the critical micelle
concentration, meaning that Cs do not influence foam generation and stability (Kile and
Chiou, 1989). This hypothesis allows us to analyze the results, excluding the influence
of surfactant concentration leading to constant P.. Additionally, Khatib et al. (1988)
demonstrated that limiting capillary pressure can vary with permeability. However, we

follow Chen et al. (2010) and assume that P, is independent of permeability variation.

2.4.3 Model C

Model C, introduced by Zitha and Du (2010), describes foam flow as a yield stress
fluid following a Herschel-Bulkley rheological model. However, as discussed by the authors,
during transient foam flow, this behavior can be approximated using the Hirasaki and

Lawson relation (2.28).

Unlike Model B, Model C does not include an explicit term for the trapped foam
fraction. Consequently, for this model, we assume X; = 1 in the superficial velocity
expression (2.28) and in the gas relative permeability formulation in (2.23), following an

approach similar to Model A discussed in Section 2.4.1.

Following Zavala et al. (2022), foam texture source term proposed by Zitha and
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Du (2010) can be written as:

LE __ Kg

(b: (Kg+Kd)(nIbE—nD), Where nD = m

(2.30)

Following previous works (Zitha et al., 2006; Simjoo et al., 2013b; Simjoo and Zitha,
2015), we assume foam destruction is negligible by setting K; = 0. Under this assumption,
the local equilibrium foam texture simplifies to n = 1, reducing the complexity of bubble
generation dynamics and making the source term of Model C a particular case of Model A’s
source term (2.26)-(2.27). In this case, foam texture described by Model C always tends
to local equilibrium nk® = 1. In essence, Model C features a simpler source term than

Model A while retaining foam rheology as complex as Model B.
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3 TRAVELING WAVE SOLUTION FOR NON-NEWTONIAN FOAM

In this chapter, we find a traveling wave solution for the non-Newtonian proposed
by Chen et al. (2010), which incorporates the foamed gas apparent viscosity defined
by Hirasaki and Lawson (1985). We refer to this model as Model B, as described in
Section 2.4.2. We validate our semi-analytical solution with numerical simulations and
experimental data. The methodology and results presented in this chapter were published
in (Cedro and Chapiro, 2022, 2024).

3.1 FOAM FLOW MODEL

In this chapter, we deal with a one-dimensional form of governing equations (2.19)-
(2.21), assuming incompressible flow and constant total Darcy velocity in a rigid and
homogeneous porous matrix, where p,,, pg, u, ¢, and k are constants. Thus, we can write

the governing equations as:
0S5, n Oy,
ot or
0
5

(3.1)

0
Sgnp) + = (ugnp) = ¢S, ®.

¢ or

We seek to study solutions in the form of a traveling wave for Model B (see
Section 2.4.2). In Chen et al. (2010), the authors assumed a constant trapped gas fraction,
X;. In this chapter, we consider X; as increasing with foam texture, as proposed by
Kovscek et al. (1995):

pny

X=X max
t t, (1‘1'57%

), Xi+Xrp=1, ni=ny, (3.2)

where X; max is the maximum trapped gas fraction, n, is the trapped texture, and [ is a

trapping parameter.

3.1.1 Explicit foam’s apparent viscosity formula

A semi-analytical traveling wave solution for Model B described in Section 2.4.2
requires dealing with the foam’s apparent viscosity p; from Eq. (2.28). In this equation,
py depends on gas velocity vy, which itself depends on jif, making the foam’s apparent
viscosity formula (2.28) challenging to handle for both numerical and analytical studies.
Kam (2008) introduced an iterative loop to compute py and v, at each step of their
numerical simulations. This approach was later adopted in developing our in-house
numerical simulator (de Paula et al., 2020) (see Appendix B.2). Pereira and Chapiro
(2023) showed that it is possible to use the relations (2.5)-(2.6) and (2.16) to rewrite (2.28)
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as a cubic expression of jir, and explicitly obtain a single physical root s as function of
Sw, np and dP,/dz:

3a
nr =g+ 5 (e tem), o= VbEVP—dd,

Aw
13 (3.3)
a = C‘“/nf/\w ¢stg b — krg + )‘wﬂg
O Vv ) B s

Notice that 7 is not well defined for S,, = 1 in (3.3), since k,, = 0.

Pereira and Chapiro (2023) used Eq. (3.3) to find traveling wave solutions for a
variation of Model A in local equilibrium, modified by the inclusion of the non-Newtonian
foam’s apparent viscosity (2.28). Eq. (3.3) also enabled de Paula et al. (2023) to enhance
their numerical solver. In this work, we apply the formula (3.3) to find a traveling wave

solution in a more complex non-Newtonian foam model, Model B.

3.2 TRAVELING WAVE FORMULATION

As we introduced in this chapter, searching solutions in the form of traveling waves
means actively searching for a static profile U = (S, np) that displaces through the time

t over x-axis with a constant velocity v. For that, we define the change of variables:
n=x—vt, Ulz,t)=0U(nt), (3.4)

where v is the constant wave velocity and U represents the solution in the transformed
coordinates (1, t). Substituting (3.4) into the system of PDEs (3.1) and assuming 0U /0t =
0 (indicating that solution is stationary in the new coordinates) reduces the problem to a
system of ODEs in the variable U(n) (see Volpert et al. (2000); Ghazaryan et al. (2022)
for further details):

_ngdds’w + d;?w == 07
d" 1 ] (3.5)
—l/gzﬁd—n(SgnD) + d—n(ugnp) =05,

For simplicity, from Eq. (3.5) onward, we omit the notation “~”. To find traveling waves,
we assume the following asymptotic boundary conditions for the system:

lim U =U* = lim — =0. (3.6)

n—-+oo n—+co dn

From the point of view of the ODE theory, it means that the traveling wave solution
connects constant equilibria states U~ to U™ in the phase space S, X np. From now on,
we use indices + and — to denote that the function is evaluated at the states UT and

U~. To find these equilibrium states, we aim to write the ODEs (3.5) in the explicit form.
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From the first equation of (3.5), we obtain the invariant:

57( — Vgt ) =0 = —vdS, +uy = —voSS +uh = —veS, +uy,.  (3.7)

Notice that, applying the limits (3.6) to phase velocities equations (2.16) results u: = ufz.

w w

Thus, the traveling wave velocity v can be written as:

u S = fw
_ 2w T Jw 38
AT (38)
Substituting partial velocities (2.16) into (3.7) yields
dS,  vé(Sy — S5) +ul(fi — fu)

I = P . (3.9)

7 kfudgres

dSy

Notice that (3.9) is well defined since f,A\,dP./dS,, # 0 for P, from (2.24). Applying the

chain rule to the second equation of (3.5) and using (3.7), we obtain:

dnp 65,
dn  w(l— fF) —veSy’

(3.10)

To study the traveling wave solution, we use the phase space analysis, following
Lozano et al. (2021, 2022). Hence, we need the system (3.5) to be written in the standard
ODE form, i.e., dU/dn explicitly written as a function of U = (S,,np). The authors
Ashoori et al. (2011); Lozano et al. (2021, 2022); and Zavala et al. (2022) show how
to obtain this standard form for some Newtonian models. However, it is not trivial to
perform the same procedure for the present non-Newtonian model because of the intricate
dependency of p1y on dS,,/dn, see Eq. (3.3). A simplification we assume in this chapter
consists of considering an approximated value of y¢ by considering dS,,/dz = 0 only inside
the formula (3.3). Further, we show that this simplification does not affect the simulation

results for the experimental parameters.

A traveling wave solution for this foam model is defined as a solution U = (Sy,, np)
for the system of ODEs (3.9)-(3.10), which satisfies (3.6) for given constant states U~ and
U*. These states must be equilibria of that system, i.e., dU/dn (U*) = 0. From (3.9), we

know all possible equilibria must be on a straight line:

dSw fw - f:t V¢
e | IR S R TR 3.11
dn Sw—9SE w (3:11)
From (3.10), an equilibrium must also satisfy:
d
g‘i:o & S,=0 or ®=0. (3.12)

Points (S, np), where ® = 0, are called local equilibria because the rates of generation

and destruction of foam there are equal (Ma et al., 2014a). Differently from the Newtonian
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cases treated in (Lozano et al., 2021; Zavala et al., 2022) and in Appendix A (Lozano
et al., 2022), finding local equilibria as a function of S,, for the non-Newtonian model
studied here is challenging. That is why we numerically obtain a set of local equilibria
points (S, np)™. This set is a curve for applications studied in this chapter, similar to
what happens in other foam displacement models, as described by Kam (2008); Ashoori
et al. (2011); Lozano et al. (2021); and others. Notice that all equilibria of the System
(3.9)-(3.10) are located at the intersection of curve (S, np)'* with the straight line in
Eq. (3.11). The graphical representation of this intersection for the experimental data by
Chen et al. (2010) is shown in Section 3.3.1.

Remark: Chen et al. (2010) performed numerical simulations for a local equilibrium
version of Model B, presenting a formulation for nkF that depends on phase velocities
vy and vy, (which we also introduce later in Section 5.1.2). However, in the context of
this chapter, where we apply fractional flow theory, explicitly evaluating n%F using that

formulation is nontrivial, as v,, and v, are expressed as functions of np.

The existence of a traveling wave connecting U~ to U™ depends on the type of ODE
system’s equilibria, which are classified according to the eigenvalues of the corresponding
Jacobian matrix; for more details, see (Volpert et al., 2000; Lozano et al., 2021). In this
chapter, we only deal with two types of hyperbolic equilibria: the one with real and positive
eigenvalues is called a source (or repeller); the other one, presenting real eigenvalues with
opposite signs, is called a saddle; see (Guckenheimer and Holmes, 1986; Ghazaryan et al.,
2022) for details. In this chapter, a traveling wave connects the left source to the right
saddle.

In the next section, we follow the same procedure as Lozano et al. (2021) to
numerically obtain the traveling wave connection by integrating the ODEs (3.9)-(3.10).
A connection from equilibrium U~ to U™ exists if and only if there is a point Uy in
the phase space, such that the ODE solution starting at U, for positive n (i.e., when
n — +00) tends to U™T; and the ODE solution starting at Uy for negative n (i.e., when
n — —oo) tends to U~ (Volpert et al., 2000; Ghazaryan et al., 2022). For the case this
chapter investigates, U~ is a source, and U™ is a saddle. In the neighborhood of the
equilibrium U™, the direction of the solution approaching this equilibrium coincides with
the eigenvector of the corresponding Jacobian matrix at U™ associated with the negative
eigenvalue (Guckenheimer and Holmes, 1986). That is why the starting point for the
numerical integration is chosen close to U™ in the direction of the later eigenvector. The
solution is constructed by integrating the ODE until reaching neighborhoods of both

equilibria.

Finally, for each time ¢, we obtain the solution U = (S, np) changing back the
variable 7 to x using (3.4), with the velocity v given in (3.8).
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3.3 MATCHING THE LABORATORY EXPERIMENT

The experiment conducted by Chen et al. (2010) involves a continuous co-injection
of nitrogen gas and surfactant solution into a cylinder core of Berea sandstone, 5.08 cm
in diameter and L = 60 cm long. The core is quite homogeneous with average porosity
and permeability summarized in Table 3.1. The injecting surfactant solution is a 1.0 wt%
sodium C14-16 olefin sulfonate in a 0.5 wt% sodium chloride brine. The author obtained
the core characterization and the in-situ measurements of water saturation through an

X-ray CT scanner.

In the present chapter, we use the same parameter values as Chen et al. (2010),
except for P,. The constant value of P, was estimated using the limiting capillary pressure

equation provided by authors for high values of surfactant concentration. All parameter

values are summarized in Table 3.1.

Table 3.1 — Model parameters for foam flow simulation.

Two-phase flow Population balance
Parameter Value Parameter Value
o 0.18 o 7.4 -10718 Pas®/*m'"
fg 1.8-10°Pa-s 6] 107 m?
L 1.0-103Pa-s kY 1.65 - 101> s"#m ™
Owg 0.033N/m kY, 10m™!
k 310713 m? Nmax 102 m—3
k2, 1.0 P; 3-10*Pa
= 0.7 Xt max 0.78
ng 3
N 3
Swe 0.38
u 1.45-10"°m/s

3.3.1 Finding equilibria

As explained in Section 3.2, the first step to find a traveling solution is to identify
the equilibria of system (3.9)-(3.10), i.e., points (S,,np) that satisfy conditions (3.11)
and (3.12). Figure 3.1 presents the local equilibrium points (S, np)"* satisfying (3.12).

From experiments reported by Chen et al. (2010), we obtained the values of S
and S;. Since the system of ODEs is not well defined for S,, = 1 (see Eq. (3.3)), we
approximate the resident water saturation as S;) = 0.999. A similar approximation was

used by Zavala et al. (2022). Using the local equilibrium curve from Figure 3.1 together



Figure 3.1 — Local equilibrium points (S, np)"" satisfying (3.12).
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Figure 3.2 — Graphical representation of three equilibria of System (3.9)-
(3.10). The blue solid curve represents the fractional flow f,, for the local
equilibria (S, np)*® from Figure 3.1 (i.e., condition (3.11)). The black
traced line represents the condition (3.12). The black circle indicates
the third equilibrium.
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with S, and S we find nj, and nj):

U~ = (S;,np) = (0.550, 0.595)
Ut = (S}, n}) = (0.999, 1.000).
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(3.13)

Using (3.13) with condition (3.12), we obtain all possible equilibria of System

(3.9)-(3.10). Figure 3.2 shows three such equilibria.

3.3.2 Finding the traveling wave solution

Applying the procedure presented in Section 3.2, we numerically integrate the

ODEs (3.9)-(3.10) to find the traveling wave path connecting left and right equilibria
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Figure 3.3 — Solution of system of ODEs (3.9)-(3.10) for the case (3.13). In the left
figure, the system’s phase portrait shows a source-saddle connection from the left to
the right state. In the right figure, we show the profiles corresponding to the black
path found in the left figure.
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in the phase space. Figure 3.3 presents that solution both in the phase space and as a
function of the traveling variable 7. We also present this solution as a function of original
variables x and ¢ in Section 3.3.3. Using the expression (3.8), we calculate the traveling
wave velocity v = 1.4394 - 10~ m/s, which coincides with the wavefront velocity estimated
from the experimental data by Chen et al. (2010).

In this section, we validate the analytical estimates with direct numerical simulations
using the method described in Appendix B.1. In these simulations, we kept the term
dP./dx in Eq. (3.3) one timestep behind. Notice that this is not a simplification of the
model but rather a discretization choice made to align the model with the solver’s standards.
We set the initial and boundary conditions of the system to replicate the experiment
performed by Chen et al. (2010), with the values presented in (3.13). We defined the
constant initial condition (S, n},) of the reservoir, a Dirichlet boundary condition on
the left side to simulate a fixed injection value (S,,,n,) and a homogeneous Neumann

condition at the right side to simulate an infinite domain outlet condition.

3.3.3 Results and discussions

Figure 3.4 compares the water saturation profiles obtained from the semi-analytical
traveling wave solution, the numerical simulations, and the original experimental data
(Chen et al., 2010). The traveling wave solution used assumptions detailed in Section 3.2,
while the numerical simulation deals with the original model without simplifications. The

figure shows a perfect match between numerical and semi-analytical solutions, verifying
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Figure 3.4 — Water saturation profiles of experimental (Chen et al., 2010), semi-
analytical and numerical results.
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the existence of the traveling wave solution in this model. This match also evidences
that the traveling wave hypothesis and the simplification made in Eq. (3.3) do not affect
the solution of the model for the studied parameters. The agreement with the analytical
solution evidences that the chosen numerical method can solve the investigated model
accurately. On the other side, Fig. 3.4 shows good agreement of both mathematical and
numerical solutions with experimental data capturing piston-like water saturation profiles.
Notice that the simple incompressible one-dimensional model presented can describe the
experiment’s wavefront velocity. However, the model presents water saturation profiles
that are sharper than those of the experiments. This may be attributed to the diffusive
effects of heterogeneity, which are not captured in a one-dimensional model. The shock-like
profiles Model B presented in Figure 3.4 can be obtained through other simpler models
(e.g., Models A, C, and others).

Figure 3.5 compares numerical and analytical results for both water saturation
and foam density profiles. The latter we define as the number of bubbles per porous
volume (S, - np). There is no significant difference between analytical and numerical water
saturation and foam density profiles. State of the art in experimental measuring of the
foam flow in porous media involves the micro CT-scan (Simjoo et al., 2013a; Simjoo and
Zitha, 2015; Chen et al., 2010; Zavala et al., 2022), which cannot provide the foam density
directly as the latter presents the same density as the gas phase. Most estimations are
made indirectly by using the changes in pressure drop in the presence of foam. Figure 3.5
provides the foam density profiles inside the core; however, comparing them to experimental

data is currently impossible.

As stated above, the match between the semi-analytical and numerical water

saturation profiles evidences the existence of the traveling wave solution for the original
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Figure 3.5 — Numerical simulation and the traveling wave solutions for case (3.13).
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model. The same conclusion is not so obvious for the experimental data. We measure

the distance between the numerical and experimental profiles using the mean percentage
squared error (MPSE), defined as:

_ L (S —m@) 2w S (o
MPSE—\JL/O <—pl($) ) de,  pi(z) = Sw(x), (3.14)

where S, is the numerical solution and p; is the linear interpolation of experimental water
saturation S,,. Figure 3.6 shows that the most significant values of MPSE are located
close to the wavefront. Notice that the maximum relative difference is less than 6% and
remains stable over time, i.e., the experimental profile moves without changing its shape

and can be mathematically described as a traveling wave.

Figure 3.6 — Percentage squared differences between numerical results and experimental
data for water saturation.
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Finally, let us validate the simplification in foam apparent viscosity s r, presented
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Figure 3.7 — Comparison between the values of 11f for original and simplified versions
of Eq. (3.3), at 0.2 PV. At the right is the relative difference between the simplified
solution and the original formula.
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in Section 3.2, and used in the traveling wave analysis. We calculate the values of py with
and without such simplification for each numerical solution point and plot the results in
Figure 3.7. We see that the major relative difference is located at the wavefront, affecting
only a small domain region. The relative difference is lower than 2.03% except for the
wavefront. As the difference between semi-analytical and numerical profiles in Figure 3.4 is
negligible in most parts of the domain, this issue is not observed for the water saturation

profiles. However, it can be observed in Figure 3.5 for the foam texture profiles.

3.4 PARTIAL CONCLUSIONS

The study presented in this chapter shows that the non-Newtonian model commonly
used to describe the foam displacement in a porous medium presents a traveling wave

solution. Direct numerical simulations supported our analysis.

These results agree with the experimental observations, as we verified that the
experimental profile moves without changing its shape and can be mathematically described
as a traveling wave. The analytically obtained traveling wave velocity estimate coincides

with the experimentally obtained average wavefront velocity.

We noticed that the presented analytical solution is similar to the ones obtained

by solving simpler models. The analytical profile is sharper than the experimental one.

The results of this chapter might be a starting point in the study of traveling waves
for non-Newtonian foam in radial flow, which more resembles injection applications and

inherently features a flow velocity decaying with radial distance.
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4 COMPARING TRAVELING WAVE SOLUTIONS FOR THE THREE
MODELS

In Chapter 3 (Cedro and Chapiro, 2024), we obtained a traveling wave solution
for Model B, obtaining saturation and foam texture profiles similar to those reported by
Fritis et al. (2022) and Zavala et al. (2022) for Models A and C, respectively. These two
models, with parameters fitted to the experimental data from Simjoo and Zitha (2015),
yield traveling wave solutions characterized by a piston-like shape. In this chapter, we
adjust Model B to identify traveling wave solutions for this same data and compare them
with those in the literature. Our findings show that, for parameters in Simjoo and Zitha
(2015), all models present the same classification of traveling wave solutions and produce

similar solution profiles.

4.1 ADJUSTING MODEL B

Simjoo et al. (2013b) conducted foam coreflood experiments to investigate the
dependence of foam mobility on surfactant concentration and total injection velocity in
natural sandstones in the absence of oil. Simjoo and Zitha (2015) performed similar
experiments and fitted parameters of Model C (Section 2.4.3) to their data. In this
section, we also fit Model B (Section 2.4.2) to these experimental data by adjusting both

model descriptions on foam generation rate, gas trapping, and foam apparent viscosity.

4.1.1 Experimental data

Simjoo and Zitha (2015) conducted experiments using a Bentheimer sandstone
core, reported as quasi-homogeneous and isotropic, with dimensions of 38.4 cm in length,
and 3.8 cm in diameter. Core characterization and in-situ saturation measurements
were performed using an X-ray CT scanner. The foam was generated by co-injecting
nitrogen and a solution containing 0.5 mol/L sodium chloride and 1wt% C14-16 AOS
surfactant, with a CMC of 4.0 x 1072 wt%. The experiments were conducted at ambient
temperature (approximately 21°C) and backpressure of 20 bar, maintaining a constant
foam quality of 91%. The total superficial velocity at injection was 1.62 - 1075 m/s, and
the absolute permeability was 2.5 Darcy. The authors also fitted Model C parameters to

their experimental data, as summarized in Table 4.1.



Table 4.1 — Experimental and model parameters by Simjoo and Zitha (2015)

Parameter Value
a Viscosity proportionality const. 5.8 - 10716 Pa - s”*m'/
& Capillary pressure coefficient 0.5
0 Contact angle Orad
0] Porosity 0.21
w Pore-size-distribution parameter 5.0
Ig Gas viscosity 1.8-10°Pa-s
fe  Water viscosity 1.0-103Pa-s
owg  Gas-water interfacial tension 0.03N/m
k Absolute permeability 2.5-10712m?
k2,  Water endpoint relative perm. 0.75
k‘gg Foam endpoint relative perm. 1.0
K, Bubble coalescence coefficient 0s~!
K, Bubble generation coefficient 0.1s7!
Nmax  Maximum foam texture 25101 m™3
r Mean pore radius 5-107%m
Swe  Connate water saturation 0.10
Uy Gas velocity 1.471-10°m/s
u,  Water velocity 1.446 - 107 %m/s
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4.1.2 Relative permeability and capillarity

In this study, we adopt the same relative permeability as Simjoo and Zitha (2015),
given by:

3w+2

Sw_ch ? 1_Sw « .
k:m:k:fw(l_swc> and km:kfg(l_sw) Cowith w=5,  (41)

where w is the pore-size distribution parameter. The capillary pressure is defined based

on microscopic pore-fluid interactions:

P, = 2§O-wg (42)

cos(0) [ Sw — Swe ~1/w

(G=s2)
where ¢ is a proportionality coefficient, 0,4 is the interfacial tension between water and
gas, 0 is the contact angle between the wetting phase and pore walls, and r is the effective
pore radius. This radius is proportional to the macroscopic properties permeability (k)
and porosity (¢), with r o< /k/¢, which links Eq. (4.2) to the upscaled J-Leverett form
(2.15).
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4.1.3 Foam’s apparent viscosity

Models B and C share the shear-thinning behavior described by the Hirasaki-Lawson
relation (2.28). However, Model C does not incorporate trapped foam. The natural choice
to equate the apparent viscosity between these models is to consider Model C with a foam
flow fraction Xy = 1, i.e., a particular case of Model B. By doing this, the coefficient a
remains the same as fitted by Simjoo and Zitha (2015).

4.1.4 Foam generation and destruction rates

Following the approach of Model C’s authors (Zitha and Du, 2010), Simjoo and
Zitha (2015) also assumed a zero foam destruction rate (K,), considering it negligible
compared to the generation rate (K,) for strong foam. Although equating the complex
foam source term of Model B (2.29) with that of Model C (2.30) is challenging, we set the
coalescence rate to r. = 0 in Model B to match K; = 0. By doing this, we avoid the need
to fit a value for the limiting capillary pressure, P.. Notice that, in Model B, if k%, = 0,
then nkF = 1, just as Model C.

The generation rate in both models follows the idea of limiting bubble generation
using a logistic term. Model C employs a classical logistic model, while Model B uses a
generalized version with a cubic exponent for foam texture np. To ensure this adjustment
remains independent of np, we focus on fitting only the coefficients of the growth restriction
terms, (1 —np) in Model C and (1 — n%,) in Model B, rather than modifying the shape of

these logistic factors. Doing so, from (2.29) and (2.30), we can write:

Kn
pO — __~rgimax (4_ 3)
Fvall vl
Therefore, we fit the generation rate coefficient kY as a function of interstitial phase
velocities v, and v,,. The experimental data by Simjoo and Zitha (2015) were obtained
under fixed superficial velocities v, and u,, given in Table 4.1. Thus, v, and v,, can be

retrieved using Eq. (2.10), for a given water saturation S,,.

We choose the value of S, based on the steady-state water saturation predicted
by the model for the injection conditions reported in the experiments, fractional gas flow
fg = 91%. Thus we evaluate the local equilibrium fractional flow curve, following a similar
approach to Section 3.3.1, and obtain that, in local equilibrium, the experimental injection
condition corresponds to steady water saturation of S, = 0.4479, i.c., f¥¥(S,) =1 — fg.
For this water saturation, we obtain k¥ = 3.18425-10' sm'**. Notice that, since £, = 0,

the function fL¥(S,) does not depend on the parameter k¥, which we are fitting.
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4.2 TRAVELING WAVE SOLUTION

The procedure to find a traveling wave solution for Model B was described in
Sections 3.2 and 3.3. That solutions is described by the system of ODEs (3.9)-(3.10),
satisfying (3.11)-(3.12). However, in this section, we find a solution for the relative
permeability and capillary pressure functions given by (4.1) and (4.2), and for parameters
in Table 4.1. The first step in obtaining a traveling wave solution is to determine the
equilibrium points of system (3.9)-(3.10), i.e., the points U = (S,,np) that satisfy
conditions (3.11)-(3.12). Since k°, = 0, we know that nkF = 1 satisfies condition (3.12),

for any value of 9.

In our study, we assume that the porous medium is initially saturated with a
surfactant solution. However, since the system of ODEs is not well-defined for S, = 1
(see Eq. (3.3)), we approximate the downstream saturation as S, = 0.999, as done in our
analysis in Section 3.3.1 and by Zavala et al. (2022). Following the procedure presented
in that section, we seek traveling wave solutions for a given S, . Depending on the chosen
S, the set of equilibria and the existence of a solution may change. Figure 4.1 provides a
graphical representation of equilibria and traveling wave connections for some values of

S- (recall that n%f is always 1), illustrating four cases:

(a) In Fig. 4.1a, there are three equilibria: the left and right states, U~ and U™, and a
third equilibrium, U®°. The phase portrait shows that no connection exists between
U~ and UT.

(b) In Fig. 4.1b, the dashed black line is tangent to the fLE curve (blue line) at
S- = ST = (0.4468, meaning that the system has only the equilibria U~ and U™.

This scenario presents a saddle-saddle connection and marks the transition between
the cases shown in Figs. 4.1a (S, < SL) and 4.1d (S, > SI).

(c¢) In Fig. 4.1c, there are three equilibria, similar to Fig. 4.1b, but with the values of

S and S¢ swapped. In this case, a connection from U~ to U™ is possible.

(d) In Fig. 4.1d, only two equilibria exist with a source-saddle connection from U~ to
Ut.

To compare our semi-analytical solution to laboratory experiments, we set S, to
the steady-state value S, = 0.4479, corresponding to the reported injection fractional flow
fg = 91%. This case corresponds to the one shown in Fig. 4.1¢, where there is a traveling
wave connection. To validate our approach, we conducted numerical simulations replicating
the experiment by Simjoo and Zitha (2015), using the parameters from Table (4.1) — see

the numerical methodology in Appendix B. The initial condition was set as S, = 1 and
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Figure 4.1 — Graphical representation of equilibria in the traveling wave ODE system for
selected some of S at a fixed S = 0.999. The upper panels display the equilibrium
conditions (3.11) (blue line) and (3.12) (black dashed line) in the S,, x f,, plane. The lower
panels present the corresponding phase portraits in the S,, X np plane, indicating whether
a connection exists between U~ and U'. In some cases, there is a third equilibrium

denoted as U®.

(a) S; =0.2000  (b) S; =04468  (c) S = 0.5500

(d) S5 = 0.6000
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np = 0, with a fixed gas fractional flow fg at the left boundary and a homogeneous

Neumann condition at the right boundary to simulate an infinite domain outlet.

In Fig. 4.2, we present the water saturation profiles from the experiment alongside
the numerical results and the traveling wave solution, plotted in the original variable x,
with time ¢ represented by the injected porous volume (PV). In contrast to the experiment
shown in Fig. 3.4, which exhibits simple piston-like profiles, the experiment in Fig. 4.2
reveals a more complex behavior. It shows an initial water saturation decay to S, = 0.35
within the first 3 cm of core length, followed by a spreading wave reaching S,, = 0.45, and
then a traveling wave to S,, = 1. Both numerical and semi-analytical solutions successfully
capture this traveling wave and satisfactorily predict the gas front position. However, the
adjusted Model B is limited in representing the profiles upstream of the traveling wave,
overestimating the steady upstream water saturation. The same behavior is present in the
simulations of Model C reported by Simjoo and Zitha (2015). Additionally, Zavala et al.
(2022) presented numerical simulations of Model C that exhibit this spreading wave when

the injection condition is set to S, < 0.45.

Figure 4.3 present numerical profiles of water saturation (S,) and bubble density
(S, - np) for Models A, B, and C. To simulate Model A, we set S, = 0.37 and A = 400
based on Ashoori et al. (2011). The generation rate coefficient is taken to be the same
as in Model C, i.e., K, = K, = 0.1s7'. We estimate the mobility reduction factor by
equating the foam apparent viscosity p; in Egs. (2.25) and (2.28), following the approach
of Zavala et al. (2022). Thus, Cyrr = Qfmax/ (1 fU;/3) = 149, where v, is evaluated without
trapped gas (X; = 1) and with S,, = 0.4479, corresponding to the steady upstream water
saturation. The profiles in Figure 4.3 show that all models, with parameters from Table 4.1,
yield exactly the same solution, demonstrating the equivalence of these three models under

the adjustments performed in this study.

4.2.1 Solution classification

In this section, we expand on the examples from Fig. 4.1 and classify the possible
traveling wave solutions based on the number and type of equilibria of the system. Lozano
et al. (2022) and Fritis et al. (2022) previously classified equilibria in Model A as a
function of upstream water saturation S, and the kinetic parameter for foam generation
K. Similarly, Zavala et al. (2022) made the same classification for Model C in terms of
S, and the generation rate K,. For comparison, we follow this approach and present the

classification of Model B in the parameter space of S, and the generation coefficient £?.

Figure 4.4 displays the equilibria classification for all models fitted to the exper-
imental data from Simjoo and Zitha (2015). In Fig. 4.4a, the classification of Model A
(Fritis et al., 2022) is shown, with a small region near S, highlighted by a dashed rectangle,
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Figure 4.3 — Water saturation (5,,) and bubble density (S, - np) profiles of numerical
simulations for Models A, B and C, fitted to experimental data (Simjoo and Zitha, 2015).
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Table 4.2 — Classification regions based on equilibria types.

Region U~ U+
1 Real Source Saddle
1T Saddle Saddle

11 Complex Source Saddle
v Complex Sink  Saddle
\Y Real Sink Saddle

which is zoomed in Fig. 4.4b. Figure 4.4c presents the classification of Model C (Zavala
et al., 2022), while Fig. 4.4d shows the classification of Model B. The vertical axis in all
models, representing the generation rate coefficient, ranges from zero to the fitted value of

each parameter — K., K, and k¥ — in their respective models.

The classifications depicted in Fig. 4.4 define five regions, which we detail in
Table 4.2. In summary, all models exhibit nearly identical regions, with the exception of a
small interval near S:U in Model A, which includes Regions I, III, IV, and V. Models B and
C only feature Regions I and II, where a solution exists exclusively in Region I. A solution
is present in all models within Region I. In Fig. 4.4d, the solid black line represents the
boundary between Region I, where a traveling wave solution exists, and Region II, where
no solution is possible. This transition corresponds to the scenario illustrated in Fig. 4.1b.
The dashed black line represents the transition from a region with three equilibria (e.g.,
Fig. 4.1c) to a region with only two equilibria (e.g., Fig. 4.1d). Figure 4.4 also includes
points labeled with calligraphic letters to indicate numerical, analytical, or experimental
cases studied by the authors (Zavala et al., 2022; Fritis et al., 2022). The experiment we
investigate in this work (shown in Fig. 4.2) corresponds to point A4, near the transition

between Regions I and II.
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Figure 4.4 — Equilibria classification for Models A, B, and C fitted to the experimental data
from Simjoo and Zitha (2015). The green point A in panels (a), (c¢), and (d) corresponds
to their experiment.
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4.2.2 Summary of compared foam models

1.0

For a comprehensive overview of the foam flow models and analytical studies

considered in this work, we present a summary in Tables 4.3 and 4.4. Table 4.3 outline

the mathematical details of Models A, B, and C as proposed by the authors Ashoori et al.
(2011), Chen et al. (2010), and Zitha and Du (2010), respectively. It is worth noting

that we maintain the original equations governing bubble balance, foam rheology, and gas

trapping throughout all numerical and analytical investigations in this work. Only the

relative permeability (k,4, k) and capillary pressure (F,) functions are modified when
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adjusting a model to experimental measurements. For instance, in this chapter, we fitted
all models to the data from Simjoo and Zitha (2015) using the same k,,, k., and P, as
defined in Model C. Table 4.4 details the foam models considered in the traveling wave
classification by Lozano et al. (2021), Zavala et al. (2022), and Fritis et al. (2022), along

with the analyzed in the present work.



Table 4.3 — Details on foam flow Models A (Ashoori et al., 2011), B (Chen et al., 2010), and C (Zitha and Du, 2010), as
originally proposed by their authors.

Model A Model B Model C
Ty —Tg
Bubble K . L
Population K.(np — nk) "o = Moo ( B nD) v [Tl K,(1—-np) — Kynp

Balance (®)

P\
Te = ko—l <P* — Pc) ”V!JH np

n3 +ynp —1=0

Local Equilibrium % , ) K,
Foam Texture (nk") tanh(A(Sw — 5,)) y=n Ky [|vg |7 < I > Ky, + Ky
Rlvol \PZ— P
Mobility
Reduction 1 4+ Cyrenp 1+ ang/vy/3 1+ ang/v)/3
Factor
kpw = k2, Suwn™ Ko = KO, Supn™ Ky = kO, Sipn®
Relative 0 Bwt2
_ ng 1.0 ng . Bwt2
Permeabilities Firg = FngSon kirg = kg (XySgn) kg = kfgSgn w
nw:42,ng:13 nw:ng:3 w:5
Capillary 0 (1 =S, — Sy)001 ¢/ 0.022 \°2 cos(6) [/ Sw — Swe) V¥
Pressure (P.) Jwg\/;o'o22 Su — S Twg\[ 7. (Sw — ()_15> 210ug <0.5 — ch)
Gas trapping None None v, =u,/(65,X7)

Swn = (Sw - ch)/(l -

ch -

Sgr) and Sgp =1 — Syn.

€s



Table 4.4 — Details on foam models analyzed via traveling wave by Lozano et al. (2021), Zavala et al. (2022), Fritis et al. (2022), and
in this work. The columns represent the analytical works, while the rows correspond to foam flow modeling components described in

Table 4.3.
Lozano et al. (2021) Zavala et al. (2022) Fritis et al. (2022) This work
Bubble .
Population Ashoori et al. (2011)  Zitha and Du (2010) @ Ashoori et al. (2011) Chen et al. (2010) 2

Balance (®)

Zitha and Du (2010)*

Mobility
Reduction
Factor

Ashoori et al. (2011)

Ashoori et al. (2011)

Ashoori et al. (2011)  Hirasaki and Lawson (1985)

Relative

Permeabilities Ashoori et al. (2011)

Zitha and Du (2010)

Zitha and Du (2010) Zitha and Du (2010)

Capillary

Pressure (P,) Ashoori et al. (2011)

Zitha and Du (2010)

Ashoori et al. (2011) Zitha and Du (2010)

Gas trapping None

None

None None (X; =1)

Experimental

Data Reforence Persoff et al. (1989)

Simjoo and Zitha (2015)

Simjoo and Zitha (2015)

Simjoo and Zitha (2015)

LK;=0
210, =0

45
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4.3 DISCUSSIONS

In this work, we adjusted Model B so that its equations and parameters reproduce
the same behavior as Model C, allowing direct use of the experimental data provided by
Zitha and Du (2010). However, this approach limits the representational capacity of Model
B, as its underlying physics is more comprehensive than that of Model C. Consequently,

the adjusted Model B can be considered nearly equivalent to Model C.

Zavala et al. (2022) performed numerical experiments with Model C, imposing
different values of water saturation S, at the left boundary. They observed that for S,
in Region II (where no traveling wave exists), a spreading wave occurs from S, to an
intermediate saturation within Region I (where the traveling wave exists), followed by a
traveling wave to S;. This behavior is similar to the findings of Lozano et al. (2022) for
Model A. In contrast, in our numerical simulations, we did not fix the water saturation
at the left boundary. Instead, to replicate the experimental conditions, we conducted
a simulation fixing only the gas fractional flow f,;, which resulted in upstream water
saturation in Region I (point A in Fig 4.4d). Therefore, we only present results for S,
within Region I.

However, as we discussed in Section 4.2, the model was not able to capture the
steady upstream saturation precisely. In the experiments, this saturation is about 0.35,
while in the analytical and numerical results, it is approximately 0.45. Notably, 0.35 is in
Region II. In the experiments, a spreading wave from 0.35 to around 0.45 is observed. After
this wave, the saturation profile at all times maintains a nearly identical shape, displacing
with a nearly constant velocity, resembling a traveling wave. In other words, although the
model does not perfectly replicate the experiment, it still captures the observed traveling
wave and is able to identify the S, values for which traveling waves appear or not in the

experiment.

4.4 PARTIAL CONCLUSIONS

For the core flooding experimental data we investigated, all three models produce
identical results, showing piston-like traveling profiles. We observed this both through
mathematical classification and numerical simulation. The classification of traveling wave
solutions in Model B is nearly identical to those reported in the literature for Models A
(Lozano et al., 2021) and C (Zavala et al., 2022). Although none of the models accurately
captured the upstream water saturation, all exhibited a traveling wave consistent with

experimental observations.

To highlight the real differences between Models A, B. and C, we propose to study

their behavior in heterogeneous media, which will be explored in the next chapter.
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5 FOAM IN HETEROGENEOUS POROUS MEDIA

In previous chapters, we presented a semi-analytical solution for Model B and
compared the analytical classifications of Models A, B, and C, showing that they yield
identical results in a homogeneous one-dimensional domain with a fixed total velocity.
The semi-analytical solution for Model B, derived in this work, exhibits a piston-like
shape, similar to that reported for Models A and C in the literature (Lozano et al.,
2021; Zavala et al., 2022; Fritis et al., 2022). The natural question arising from these
studies is which foam flow regimes, described by these models, result in qualitatively
different behaviors. In this chapter, we show that the analyzed models describe foam flow
behavior in heterogeneous porous media differently, particularly in terms of spatial bubble
distribution. This difference arises primarily from the foam balance model rather than
the rheological models employed. The study presented in this chapter was published in
Cedro et al. (2025).

5.1 METHODOLOGY

We perform numerical simulations in a two-dimensional domain to study the
behavior of foam models presented in Section 2.4. For this purpose, we use an in-house
simulator (de Paula et al., 2020, 2023), which is detailed in Appendix B.2. Briefly, its
numerical methodology combines a hybrid finite element method to solve the elliptic
Darcy’s equation (2.19) and a high-order finite volume method to handle the hyperbolic
transport equations (2.20)-(2.21). Although the simulator can handle compressible phases
and gravitational effects, in this work, we neglected these phenomena to focus on foam
generation in the media. Since these effects influence fluid displacement, bubble density
observations could be biased by factors such as gravity override rather than permeability.
Nevertheless, numerical investigations conducted by de Paula et al. (2020) show that, in
the presence of strong foam, the saturation profiles were nearly identical in simulations with
and without considering gravitational effects. This suggests that the findings presented

here may extend to cases where gravity is taken into account.

In all numerical experiments, the reservoir is initially fully saturated with a surfac-
tant solution, and no foam is injected to ensure that any foam present arises solely from
the generation and coalescence mechanisms. The domain is rectangular, with injection
occurring along the entire left boundary, no-flow conditions enforced at the top and bottom
boundaries, and an out-flow condition applied at the right boundary. A fraction of gas
( fg = 90%) and surfactant solution is injected at a constant and uniform total velocity of
@ = 1.45-107°m/s along the border. This setup replicates the experiment conducted by
Chen et al. (2010). Thus, we adopt their same model parameters, detailed in Table 5.1.
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Table 5.1 — Parameters for foam flow simulation.

Two-phase flow Foam model parameters
0] 0.18 Model A Model B
py  18:-10°Pa-s | A 400 a  74-107% Pa.s/m"?
te ~ 1.0-1073Pa-s | Cyrr 239.88 or 511.68 kY 1.65 - 10" s'/m™/
Tug 0.033N/m | K, 6.87-103s7 " K, 10m~!
K, 1.0 S 0.1599 P; 3-10*Pa
K2, 0.7 Model C Xt 0.78
ng 3 2.35- 10716 Pa.s”/m'"/
- 3 “ 5.01 - 10~16 Pa . §m' s
Swe 0.38 K, 0s!
Nmax 102 m=3 K, 0.1s71
u 1.45-10°m/s
fy 90%

5.1.1 Permeability fields

In this study, we utilize two distinct permeability fields for numerical experimenta-
tion. Field 1 is an artificially generated field characterized by significant heterogeneity
similar to one used by Lovett et al. (2015) and by Pereira and Chapiro (2017). Field 2 is a
realistic benchmark from the literature (SPE10), featuring pronounced high permeability

regions.
Field 1 was generated from a two-point exponentially decaying covariance model,
where a field Z presents exponential spatial covariation expressed as

covy(r) = 0% exp (—;) : (5.1)

where o is the standard deviation of Z values, r represents the distance between two field
points, and the correlation length [ dictates the rate of covariance decay with distance.
Using this methodology, Lovett et al. (2015) generated the standard normally distributed
field Z (07 = 1), which we adopt in this work. We obtain the log-normal permeability
field k& [m?], using

k(x) = exp{—28.887 + 0.32459 Z(x)} , (5.2)

where the exponent coefficients were chosen to obtain a permeability field with a standard
deviation of o = 1.39 - 107 m? and a mean value of k; = 3 - 1073 m2. This mean
value aligns with the measurement Chen et al. (2010) reported in their experimental
investigations. We set the study domain with dimensions of 5.00m x 1.25m, and the grid
shape is 200 x 50.

Field 2 is sourced from the 10th SPE Comparative Solution Project (SPE10)
(Christie and Blunt, 2001). The SPE10 Project aims to compare multiscale approaches in
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a complex geological model described as a regular Cartesian grid with 220 x 60 x 85 cells.
The upper 35 layers out of 85 consist of a shallow-marine Tarbert formation characterized
by relatively smooth permeability. Field 2 corresponds to the first layer of the SPE10’s
permeability field, where the permeability mean value is ks = 4.3 - 1072 m?2, ranging from
8.1-107" to 3.9 - 10~ m2. The dimensions of the field were scaled to 3.67m x 1.00m, as
the focus is solely on the structure of a realistic permeability field rather than addressing
upscaling challenges. A similar idea was adopted by de Paula et al. (2020, 2023). The
chosen dimensions enable the numerical simulator to achieve more accurate solutions for
the specified grid. Table 5.2 summarizes the main quantitative characteristics of Fields 1

and 2. The next sections provide a graphical representation of Fields 1 and 2.

Table 5.2 — Permeability fields characteristics.

Field 1 Field 2
Dimensions 5.00m x 1.25m  3.67m x 1.00m
Grid size 200 x 50 220 x 60
Average value (k) 3.03-107¥m? 4331072 m?

Standard deviation (o}) 1.39-1073m?  4.11-107? m?

5.1.2 Adjusting models

In order to compare the foam models, we aligned the parameters of Model A (A,
S; . Curr, and K,.) and C (K, and [a]¢) with those of Model B. This task is challenging
due to each model’s distinct physics governing gas mobility and foam generation rates.
To facilitate the comparison, we assume that the foam texture is in local equilibrium
for each model individually. The local equilibrium foam texture for Model A ([n%F],)
and Model C([n%]¢) are expressed in Eqgs. (2.27) and (2.30), respectively. We present
[n%¥]g in the following paragraph. For parameters estimation, we utilize constant water
saturation S, = 0.55, based on the upstream result from the experiments of Chen et al.
(2010). Phase velocities |Ju,|| = 1.30-10"°m/s, ||u,|| = 1.45-10"%m/s is given by the

experiment injection condition.

Local equilibrium foam texture of Model B — [n%F]g

Let us first introduce the local equilibrium of Model B by considering that foam

generation and destruction rates are equal, i.e., ry = 1. in (2.29):

2/ 2
LE] \3 LE A /s P,
—1=0 = Npax - ) 5.3
([nD ]B) —|—’7[7”LD ]B ) Y="n kg”va P —P, (5.3)

Notice that one can approximate [n%F]g in Eq. (5.3) as (1 — )" for v < 1, and as 1/
for v > 1. Due to the non-negativity of 7, the depressed cubic equation (5.3) has only
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one real root [n%F|g > 0, given by:

1 1 3
D le = Ay + A, Aiziﬂ: 1—1—% (5.4)

Thus, it is possible to evaluate [n%F]g for given phase velocities and capillary pressure.
Equations (5.3)-(5.4) show that in this equilibrium model, there exists an algebraic
expression that correlates permeability to foam texture through capillary pressure. We
employ this expression to fit the parameters of Models A and C. In the numerical
experiments we perform in this study, we simulate the full Model B presented earlier

without assuming local equilibrium.

5.1.2.1 Adjusting Model A

Limiting water saturation — S,

We determine the limiting water saturation S, such that P.(S.,) = P., aligning
with the concept of limiting capillary pressure in both models. Using the P, = 3 - 10* Pa
(Chen et al., 2010) in Eq. (2.24) we obtain S, = 0.1599. Note that this value is lower than
connate water saturation S,. = 0.38, and it will result in the maximum local equilibrium
foam texture [nlﬁE] A = 1, since S, > Sy > S;Z. It is also worth mentioning that Model B
explicitly includes the limiting capillary pressure P. in the foam destruction rate. For
high values of S, which is the case, it may be effectively impossible for water saturation
to decrease sufficiently for P, to approach P: at some permeabilities. As a result, the
destruction rate r. in Eq. (2.29) can become small enough that local equilibrium foam

texture in Model B is achieved with r, = 0, i.e., [n}y]p ~ 1.

Remark: In this work, we choose to compute the limiting water saturation S, as

PC(SJ)) - Pc*?

as it is a justifiable and grounded way to adjust the parameter. We
recognize that this fitting may result in values lower than the connate water saturation
Swe, as is indeed the case here with S; = 0.1599 < 0.38 = S,.. This can arise due
to the specific combination of the P, function and the P, parameter. Ma et al. (2019)
have criticized this scenario as non-physical. Kovscek and Radke (1994) state that S,
may be either smaller or larger than S,., depending on the surfactant formulation and the
characteristics of the porous medium. However, whether S,, is smaller or greater than S,
did not impact our simulations, as changes in S,, would affect Model A only when S,, is
relatively close to S;, (as discussed in Section 2.4.1). In our case, we are not handling dry
foams, as S, remained consistently above 0.50 throughout all simulations, as we show later.
Furthermore, we also conducted additional simulations with S, varying up to 0.50 and

observed no significant change in the solution. We discuss this thoroughly in Appendiz D.
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Local-equilibrium sharpness parameter — A

The function of local equilibrium foam texture n¥® defined in (2.27) was designed
to resemble a step function at S, , transitioning between no foam and maximum foam
texture. The sharpness of this transition is governed by parameter A. One can see that
as S, is significantly lower than S,., the expected value for n% is close to 1 for A > 1.
That is why we maintained A = 400 defined by Ashoori et al. (2011).

Constant of mobility reduction factor — Cyrr

Zavala et al. (2022) proposed a formula for estimating Cyigp from the non-Newtonian
viscosity (2.28). Following this idea, we use (2.5), (2.23), (2.25), and (2.28) to equate the
foamed gas mobilities of Models A [A,]a and B [Aj]g, recalling that X; = 1 in Model A:

k‘? Sg \™ kg Xy¢Sg \"9
Pola =ls = s (=) oy = <> 5. (55
,Ug(l + Curr[np°]a) g + alnp ]BnmaXHVng &
yielding:
1 1 Oé[n%E]Bnmax
CMRF = ( - + m ——1]. (56)
[nIf)E]A X' Xy gNgHVg” &

Since [n}]p depends on permeability due to capillarity (see Eqs. (5.3)-(5.4)), we evaluate
Curr using the average permeability of Fields A (Cygrr = 239.88) and B (Cyrrp = 511.68).

Foam kinetic parameter — K.

In Model A, the kinetic parameter K, dictates the rate at which the foam texture
np tends to local equilibrium n%F, see Eqs. (2.21) and (2.26). To estimate K., we consider

Eq. (2.21) at a fixed position (null gradient term) and constant gas saturation, resulting
in the ODE:

dn
dTD:cb, np(0) =0. (5.7)

Solving the initial value problem (5.7) for Model A (2.26) we obtain:
np(t) = [0 - (1 — exp{—K.t}) . (5.8)
For Model B (2.29), we can approximate the ODE solution by:

np(t) = [np]e (1 —exp{-K.t}) ,

5.9)
39 L e 2 P\’ (
Ko = L el Il + 12 5 ) Il

Further details on obtaining Eq. (5.9) are provided in C. By comparing (5.8) and (5.9),
we approximate K. &~ K., ensuring that both models achieve their local equilibria in

approximately the same time. The derived K. also varies with absolute permeability due
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to P.. In our case, the IC. values for the average permeability in both Fields 1 and 2 are
similar. Therefore, we adopt K. = 6.87 - 1072s™! for both fields.

Let us summarize Section 5.1.2.1. We proposed a method to adjust the parameters
of Model A (Ashoori et al., 2011) (A, S,, Cyrr, and K.) based on the parameters of
Model B (Chen et al., 2010). The primary objective was to align similar behaviors across
both models, such as the limiting capillary pressure for S, , gas mobility for Cygrr, and the
time required for foam to reach local equilibrium for K.. However, this approach has some
limitations. The first one is that we must select a constant value for S,,, which, in our
case, was taken from the upstream experiments by Chen et al. (2010). Another limitation
to this adjustment is that it may result in the behavior of the limiting water saturation
SZJ being lower than the connate water saturation S,.. Nonetheless, the accurate value
of S, is not crucial for the phenomena investigated in this study. We focus on observing
models that describe bubble density in heterogeneous media and, in the model by Ashoori

et al. (2011), the foam texture reaches [n}]y ~ 1 for all S,, slightly greater than S .

5.1.2.2  Adjusting Model C

Rheological parameter — a

Models B and C share the foam apparent viscosity equation (2.28). However,
Model B incorporates the flowing foam fraction X into the superficial velocity v,, whereas
Model C assumes no explicit trapped foam, such that X;[v,|p = [v,]c. We establish an
equivalence between the gas mobilities of both models, analogously to the approach taken
in Section 5.1.2.1:

0 XfSA Ng 0 S, Ng
Dol = le = & <1‘i%> A = i (1‘%> A (010
fg + Nmax [ [Vol| P8 g + Mmax [anp” ||V [| =]
yielding:
X7 (1= X7
f 9 f LE
ol = o+ lan . 0.11
le = 77 (st + o) o
Notice that, in the case where X; = 1, the equation would yield [ani]g = [anl]c,

meaning that Models B and C would exhibit equivalent phase mobilities for the same nkE.

Equation (5.11) defines [ as a function of interstitial gas velocity, which in turn de-
pends on permeability (see Eq. (2.28)). To account for this dependence, we fitted [a]c sepa-
rately for each field using its average permeability, resulting in [a]¢ = 2.35 - 10716 Pa - s7*m""?
for Field 1 and [a]c = 5.01 - 107'% Pa - s”*m'”* for Field 2. For Model C, the parameter
« is approximately two orders of magnitude higher than for Model B. This difference
arises because the inclusion of a trapped gas fraction X; = 1 — Xy = 0.78 in Model B
reduces gas mobility by about a hundred times, as seen in Eq. (2.23). The magni-

tude of [a]¢ aligns with parameter fittings from models that employ the same Hirasaki-
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Lawson viscosity relation and do not account for gas trapping, such as those presented by
Kam (2008); Zitha et al. (2006); Simjoo and Zitha (2015)

Generation parameter — K

We adjust the foam generation parameter K, using the same approach described
in Section 5.1.2.1 for Model A’s kinetic parameter, i.e., comparing the characteristic
time required for foam to reach its local equilibrium value in each model by solving the
ODE (5.7). Substituting Model C’s source term (2.30) into (5.7) gives:

np(t) = [nHc - (1 — exp{—K,t}) . (5.12)

By comparing (5.12) to (5.9), we can estimate the generation parameter as K, = IC,.

5.1.3 Foam models’ rheology

In the literature, several authors characterize foam flow observed in experiments
or described by models using a plot of the steady-state flow apparent viscosity (jtapp) as
a function of gas fractional flow (f,), often referred to as foam quality (Alvarez et al.,
2001; Kam, 2008; Boeije and Rossen, 2015; Farajzadeh et al., 2015; Hematpur et al.,
2018). Following this approach, we use Egs. (2.27), (5.4), and (2.30) to evaluate the
local equilibrium apparent viscosity jih, = 1/A"" of Models A, B, and C, for a constant
interstitial velocity u = 1.45 - 1075 m/s, across different permeabilities, and for parameters
presented in Table 5.1. Figure 5.1 shows the behavior of y for Fields 1 and 2 in the
left and right panels, respectively. As previously detailed, for each field, we fitted the
parameters of Model A (Cyrr and K.) and Model C ([a]c and K) using the average field
permeability. Since local equilibria in models A and C are independent of permeability,
each panel in Figure 5.1 displays a single curve for these models (dashed lines) representing
,u{;pEp across the entire permeability range. In contrast, using the same set of parameters,
Model B exhibits u{;gp increasing with permeability (solid curves with different colors),
reflecting the behavior of foam apparent viscosity ¢ described in Section 2.4.2. The

LE
app

is nearly identical for k = 4.33 - 1072m? and k = 1.00 - 10! m?. Figure 5.1 also shows

that both models exhibit a region where apparent viscosity increases with f, (indicating

increase in 5 diminishes with higher permeabilities. As illustrated in Figure 5.1, p

a low-quality regime) and another where it decreases with f, (indicating a high-quality

regime), consistent with the behavior described in the literature above.

In addition to Figure 5.1, Figure 5.2 shows the maximum p> attained for the
models over f, € [0, 1] for the same range of permeabilities as in Figure 5.1, as well as for a
range of total interstitial velocity u. The figure shows that Model A’s maximum u{;fp does

not vary with permeability or total interstitial velocity once the parameters are fitted. In
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Figure 5.1 — Local equilibrium apparent viscosity piy, = 1/X* versus gas fractional flow

f, at interstitial velocity u = 1.45-107°m/s, for different permeabilities k, with parameters
given in Table 5.1. The left and right panels correspond, respectively, to Fields 1 and
2 (Section 5.1.1) where Models A and C were fitted (Section 5.1.2). The black circle
represents the constant values of f, and k assumed in the fitting (and consequently where
all models coincide). Models A and C were fitted with permeability reference values
ki =3-107"m? and ky = 4.3 - 10~'2m? for Fields 1 and 2, respectively.
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Source: Elaborated by the author (2025).
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with increasing velocity, exhibiting the shear thinning behavior incorporated in the model

contrast, Figure 5.2 shows that for Model B, u > increases with permeability and decreases
through Eq. (2.28). Additionally, propagation velocity’s effect on apparent viscosity
depends on permeability. For example, at k = 1- 1073 m?, velocity has minimal impact
on [tapp. However, as k increases, the influence of velocity becomes more pronounced. It is

worth also mentioning that within the velocity and permeability ranges shown in Figure 5.2,

LE
app

suggesting that both have comparable impacts on Model B’s foam flow mobility. Finally,

changes in both velocity and permeability lead to variations in > of similar magnitude,
Fig. 5.2 shows that Model C allows i, to vary with velocity due to foam’s shear-thinning
behavior, as in Model B. However, unlike Model B, the local equilibrium foam texture

(and consequently the apparent viscosity) does not depend on permeability.

Figure 5.3 presents a contour plot of the pressure gradient at steady-state foam
flow (Vp = pib, (uw + ug)/k) as a function of phase velocities u,, and ug, predicted by
Models A, B, and C at k = 3- 107 m? (Field 1 average permeability). The difference
between the contour lines for Models A, B, and C in Fig. 5.3 arises from discrepancies
between the models. However, all models exhibit a low-quality regime (low f,, where
Vp is nearly independent of u,,) and a high-quality regime (high f;, where Vp is nearly
independent of u,), although the high-quality regime is less pronounced for Models A
and C. The fitting procedure adopted for Models A and C, described in Section 5.1.2, is
based on constant values u and fg (Table 5.1). The black circle in the figure represents

this fitting reference and, consequently, the point where all models coincide.
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Figure 5.2 — Maximum local equilibrium apparent viscosity pih, = 1/A"", for different

permeabilities k£ and total interstitial velocities u. The left and right panels correspond,
respectively, to Fields 1 and 2 (Section 5.1.1). Parameters of Models A and C were fitted
from Model B in Section §.1.2.1. Models A and C were fitted with permeability reference

values k1 = 3- 1073 m? and ke = 4.3 - 1072 m? for Fields 1 and 2, respectively.
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Figure 5.3 — Contour of pressure gradients (kPa/m) of steady-state foam flow predicted
by Models A, B, and C for k = 3-107"® m? (Field 1 average permeability) with parameter
values from Table 5.1. The black circle represents the constant values « and fg assumed in
the fitting of Models A and C from Model B (and consequently where all models coincide).
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Figure 5.4 — Comparison of foam behavior for both models in Field 1 at 0.45PV.
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5.2 RESULTS

This section discusses the simulation results of foam models A, B, and C for
permeability fields 1 and 2 presented above. Figures 5.4 and 5.5 illustrate both fields
alongside the obtained bubble density (S, - np) for all models. Figure 5.4 shows the
simulated bubble density for Models A (Fig. 5.4b), B (Fig. 5.4c), and C (Fig. 5.4d) in
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Field 1 at 0.45PV injected. Figure 5.4b shows that Model A exhibits a constant bubble
density between the entrance region and the gas front. As the foam generation depends
on the difference between water saturation S,, and the limiting water saturation S , the
foam texture tends to its maximum value since S, is much lower than the connate water,
as pointed out in Sections 2.4.1 and 5.1.2.1. The absolute permeability did not directly

influence foam dynamics in this model.

In the simulation of Model B (Fig. 5.4c), it is evident that areas with more bubbles
correspond to regions with higher permeability in Fig. 5.4a, suggesting a correlation between
bubble density and permeability in this model. Furthermore, a high bubble density front
is aligned with the injected gas front, indicating that foam is primarily generated at this
location and subsequently tends to coalesce in regions with low permeability, as pointed
out in Section 2.4.2. This peak in foam front is also noticeable in the one-dimensional
simulation of Model B we performed in Chapter 3 (see Fig. 3.5) and in the simulations
reported by Chen et al. (2010). Appendix A shows this same peak in semi-analytical
solutions of Model A, for different simplifications of the capillary pressure gradient (Lozano
et al., 2022).

The simulation of Model C presents results similar to Model A, with an almost
constant upstream bubble density, due to the fact that foam texture tends over time to
the maximum value ni® = 1. However, a slight reduction in bubble density is noticeable
in regions with higher permeability. This effect can be attributed to the shear-thinning
behavior of foam. Under the same pressure gradient, fluids move faster in more permeable
regions. For a shear-thinning foamed gas, this results in reduced mobility and an increased
flowing gas fraction (f,). At higher f,, the steady gas saturation (5,) is also higher (see
Fig. 3.2). In all simulations of Model C, foam texture (np) remained nearly constant
upstream of the gas front. Therefore, we attribute the slight decrease in bubble density
(Sy - np) with permeability to the shear-thinning behavior of the foam. Although Model B
exhibits similar rheological behavior, its foam source term has a stronger influence on

bubble density variation with permeability.

Figure 5.5 presents Field 2 and all models’ simulated bubble density at 0.50 PV.
This field exhibits a more even distribution of high and low permeability regions across the
domain. It also features a large interconnected high permeability zone, with smaller low
permeability zones inside. In this field, the simulation results of Model A (Fig. 5.5b) and
C (Fig. 5.5d) are similar to the observed in Field 1, suggesting no significant correlation

between bubble density and permeability in these models.

The simulation of Model B on Field 2 presented an elevated bubble density in the
majority of the upstream domain, as depicted in Figure 5.5¢. This phenomenon occurs
because the field exhibits a high average permeability, resulting in lower capillary pressure.

As a result, there is a more prominent bubble density throughout the domain. Comparing
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Figure 5.5 — Comparison of foam behavior for both models in Field 2 at 0.50 PV.
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Table 5.3 — Mean and Standard Deviation of np/n¥ for Models A, B, and C in Fields 1
and 2 at 0.6 PV.

Mean (np/n%)  Standard deviation (np/n%E)
Field 1 Field 2 Field 1 Field 2
Model A 1.0000 1.0000 8.5837-10"° 2.9536-10~*
Model B 0.9975 1.0083 6.5284-1072  1.0892-107!
Model C 1.0000 1.0000 1.2594-10"* 6.0685-10~*

Foam model

Fig. 5.5¢ and 5.5a also reveals a clear correlation between bubble density and permeability.
This correlation can be attributed to the model’s representation of foam generation and
destruction mechanisms, as discussed in Section 2.4.2. Basically, low permeability slows
propagation velocity, which diminishes foam generation. It also increases capillary pressure,
bringing it closer to the threshold for foam instability. In contrast, high permeability
enhances foam generation by increasing phase velocities and reducing foam destruction
via lower capillary pressure. Model B captures this dependence of bubble density on
permeability due to its foam source term, which accounts for phase velocities, capillary

pressure, and absolute permeability.

5.2.1 Local equilibrium deviation

In all the experiments depicted in Figures 5.4 and 5.5, the foam texture remained
practically unchanged upstream the gas front, i.e., the foam was in local equilibrium.
Figure 5.6 presents a scatter plot of the foam texture (np) obtained from simulations
versus the local equilibrium foam texture (nk) of Models A (Eq. (2.27)), B (Eq. (5.4)),
and C (Eq. (2.30)). The figure shows that while Models A and C present np and nk®
as nearly constant and close to 1, Model B exhibits a linear correlation between np and
n¥E. The data presented in Figure 5.6 is summarized in Table 5.3 as mean and standard
deviations of np/nk values. The table shows that all models’ simulations presented foam
texture close to the local equilibrium (i.e., average close to one and a standard deviation
close to zero). This suggests that Model B can be closely approximated by the local
equilibrium model described in Section 5.1.2, consistent with the findings of Chen et al.
(2010). This approximation may explain the observed correlation between bubble density
and permeability in Model B, as the local equilibrium model presents a dependence of

n¥E on permeability.

5.2.2 Correlation between bubble density and permeability

Figure 5.7 displays scatter plots illustrating the relationship between bubble density
and permeability for all cases. In simulations, we observed a consistent entrance region

within the domain where foam still forms, leading to a bubble density that does not depend
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Figure 5.6 — Scatter plot depicting the correlation between simulated foam texture np
and local equilibrium foam texture n%® for Models A, B, and C. Each dot corresponds
to a mesh point, with np obtained from simulations at 0.6 PV and nk® determined by
applying Egs. (5.3)-(5.4) to the simulated data.
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Figure 5.7 — Scatter plots depicting the relationship between dimensionless bubble density
Sy - np and permeability k for every mesh point at 0.6 PV.
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solely on field properties. The entrance region extends approximately 0.1 m, as shown
in Figures 5.4 and 5.5. Hence, for the correlation analysis, we excluded the initial 0.2, m

length to better clarify the correlation in the remaining domain.

Figure 5.7 shows that bubble density increases noticeably with permeability in
Model B, while in Model C, it exhibits a slight decrease. In contrast, Model A shows

no variation in bubble density with permeability. We also observed that bubble density

2

in Model B tends to plateau for permeabilities higher than 107! m?, suggesting that

correlation diminishes for higher permeabilities.

Although the existence of a correlation between bubble density and permeability
is evident in Figures 5.4, 5.5, and 5.7, we decided to quantify it for a more accurate and

systematic analysis. To do this, we employ Spearman’s coefficient of rank correlation —
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see Kendall (1943). This coefficient is well-suited for detecting monotonic associations,
providing a measure that does not depend on linearity assumptions. It ranges from —1 to
1, where a value of 1 indicates a perfect positive monotonic correlation, —1 indicates a
perfect negative monotonic correlation, and 0 indicates no monotonic correlation. The
p-value associated with Spearman’s coefficient indicates the probability of obtaining that
coefficient for a selected sample when there is no correlation in the population. A low
p-value (typically less than 0.05) suggests that the observed correlation is statistically
significant, implying that a monotonic relationship between variables likely exists. We
computed Spearman’s coefficient to assess the correlation between permeability k£ and
bubble density S, - np for all simulations. These values are summarized in Table 5.4. The
data used for this analysis were obtained from simulations at 0.6 PV, which corresponds

to shortly after the breakthrough occurred in all cases.

Table 5.4 — Spearman’s correlation coefficient between perme-
ability k and bubble density S, - np for simulations at 0.6 PV,
using the parameters provided in Table 5.1.

Spearman’s coefficient p-value
Field 1 Field 2 Field 1  Field 2
Model A —0.18863 —0.22846 < 107® < 10715
Model B 0.98737 0.92538 <107 <1071
Model C —0.73587 —0.59442 <1071 <1071°

Foam model

For Model A, in both fields, the absolute value of the coefficient is less than
0.25, suggesting almost no correlation. For Model B, the coefficient exceeds 0.9 in both
permeability fields, indicating a strong positive monotonic relationship that supports the
consistent association between permeability and bubble density seen in Figure 5.7. For
Model C, there is a significant negative correlation (with the smallest coefficient around
—0.6). However, as shown in Figure 5.6 and Table 5.3, the variation in bubble density is
quite small, indicating that, despite the correlation, the overall impact on foam behavior
is less significant compared to Model B. Particularly, in Models A and C, n}f is generally
close to unity, leading np to be near unity. Consequently, the variations in bubble density,
Sy - np, observed in Table 5.4, primarily reflect variations in gas saturation, Sy. In Model

C, these variations are likely driven by its shear-thinning foam behavior.

In all cases, the associated p-value was less than the machine precision, indicating

a high level of statistical significance.

5.2.3 Water production

In Figure 5.8, we present the cumulative water production for simulations of

all models for both permeability Fields 1 and 2. In all these cases, the breakthrough



Figure 5.8 — Cumulative water production for Models A, B, and C for both
permeability fields.
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Source: Elaborated by the author (2025).

occurs approximately at the total injection of 0.5 PV. In simulations conducted in both
Fields 1 and 2, all models exhibit similar production, with Model C showing slightly higher
production and Model B slightly lower. In our examples, the maximum relative difference
between the models’ production curves until 1.0 PV is lower than 0.71%. Therefore, we
believe that the difference in productions, in this case, is more due to the fitting technique

than to the physical properties of each model.

This close resemblance of production curves suggests a good fit between the models.
However, it’s important to note that these curves do not capture the diverging behaviors
of the models with respect to permeability heterogeneity. Therefore, Models A and C are
capable of capturing this result of interest, similar to Model B, by appropriately adjusting

their parameters to reflect the physical characteristics of the models.

5.2.4 Pressure profiles

In this section, we show pressure profiles and pressure drops for all simulations.
This pressure data provides a meaningful connection between theoretical studies and
experimental data, as pressure drops are directly measurable in laboratory experiments.
Figures 5.9 and 5.10 display the pressure distributions for Fields 1 and 2, respectively. The
pressure profiles were obtained by averaging the pressure at each point x along the core
length. The pressure drop corresponds to the average inlet pressure, given that the outlet
pressure is set to zero. The figures show that the variations in bubble density profiles
(shown in Figs. 5.4 and 5.5) are also evident in the pressure profiles, with Models A and
C producing similar results, while Model B exhibits a significant deviation. The most
pronounced difference occurs in Field 2 (Fig. 5.10), which contains a large low-permeability
region near x = 3m. In this region, Model B predicts fewer bubbles, leading to reduced

gas mobility and a lower pressure gradient compared to Models A and C. Consequently,
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Figure 5.9 — Pressure profiles and pressure drop for Models A, B, and C in Field 1
corresponding to simulations in Figure 5.4.
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Figure 5.10 — Pressure profiles and pressure drop for Models A, B, and C in Field 2
corresponding to simulations in Figure 5.5.
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the pressure profile of Model B diverges from those of Models A and C when the gas front

reaches this region, shortly after 0.4 PV injected.

5.3 DISCUSSIONS

The key differences between the three foam models used in this work are foam

rheology and foam generation/coalescence. Model A treats foam as a Newtonian fluid,

adjusting gas mobility using a linear relationship defined by Eq (2.25). In contrast,
Models B and C describes foam as non-Newtonian through Eq. (2.28). As a consequence,
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in more permeable regions where flow velocity is higher, the foam exhibits lower viscosity,
leading to a greater fraction of flowing gas and higher gas saturation. Thus, our observations
indicate that shear-thinning behavior leads to increased gas saturation in highly permeable
regions. When it comes to foam generation and coalescence, Model A and C employ linear
functions of foam texture (Eqs. (2.26) and (2.30), respectively), whereas Model B uses a
more realistic nonlinear expression (Eq. (2.29)). The primary distinction between these
models in representing bubbles in heterogeneous porous media lies in the dependency of the
source term on permeability. In this context, Egs. (5.3)-(5.4) demonstrate that Model B,
in local equilibrium, correlates foam texture (nk) with permeability (k), regardless of
the p1y formulation. We can conclude that Model B’s source term significantly affects
the description of bubble distribution in heterogeneous porous media. To illustrate this,
consider a scenario where, initially, there is no foam in the reservoir. In heterogeneous
media, higher permeabilities lead to higher phase velocities. According to Eq. (2.29),
higher phase velocities and fewer bubbles result in foam generation (r,). Equation (2.28)
indicates that the apparent foam viscosity py increases with foam texture (np), which
reduces gas mobility and, consequently, gas velocity (vy). As shown in Eq. (2.29), a
decrease in gas velocity reduces bubble coalescence (r.). This means that once foam is
generated, it becomes difficult to destroy it through gas velocity (v,), as v, is lower in the
presence of foam. Another factor in bubble destruction is capillary pressure (P,), but P, is
low in high-permeability regions (see Eq. (2.24)). As a result, bubbles tend to be generated
more frequently in high-permeability zones, and once foam is present, it is difficult to
destroy it either through phase velocities or capillary pressure effects. This behavior leads

to foam formation in high-permeability areas, which can be interpreted as trapped foam.

Several authors have reported that the limiting saturation S varies with perme-
ability, including Khatib et al. (1988); Farajzadeh et al. (2015); Kapetas et al. (2017);
Gassara et al. (2020); Zeng et al. (2020), among others. Modifying Model A to allow the
foam source term (specifically S) ) to vary spatially with permeability may significantly
enhance its ability to represent bubble density in heterogeneous porous media, even with-
out incorporating the complex terms used in Model B. In Model C, the generation and
coalescence coefficients (K, and K;) could be modified to change with permeability. Zitha
and Du (2010) mention that, under certain circumstances, these coefficients are likely
to depend on variables such as phase velocities. These modifications could lead to more
accurate predictions of foam dynamics across diverse geological formations, improving the
model’s applicability to real-world scenarios where heterogeneity plays a crucial role in

fluid low dynamics.

The comparison we present in this work highlights the differences between the
models and may guide the selection of a model for specific applications. Model B provides
a stronger dependence of foam dynamics on phase velocities and permeability, making

it suitable for highly heterogeneous reservoirs. In contrast, Models A and C, with no
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direct dependence of foam on permeability and fewer parameters, are more practical for
situations with nearly homogeneous media or limited data, such as early-field assessments.
Factors to consider when employing one of these models include reservoir complexity, data
availability, and computational resources. Despite the differences between the models, the
results presented in Section 5.2 show that the simpler Models A and C, with the fitting
described in Section 5.1.2, were able to represent key application metrics, such as gas

front location and water production, in heterogeneous media, as effectively as Model B.

We performed simulations in two permeability fields, with Field 2 having a greater
variation in permeability than Field 1. In all simulations, the gas sweep front was relatively
regular. However, the shape of the front may be significantly different when studying
media with longitudinal strips with different orders of permeability, as shown in the work
by de Paula et al. (2023). In that study, Model B was simulated in a field featuring a
high-permeability longitudinal strip (SPE10, Layer 36), showing a non-uniform channeled
foam front. In this case, the pressure profiles presented in Figs. 5.9 and 5.10 may show
more significant differences between the models. Additionally, it is worth noting that
the permeability distribution in Field 2 originally spans hundreds of meters in length
(Christie and Blunt, 2001). In this work, this field was rescaled to a length of 3.67m
to simplify the numerical simulations for the given grid, focusing on the structure of a
realistic permeability field rather than addressing upscaling challenges. Consequently,
permeability variations that occur over meters in the original field occur over centimeters
in the scaled Field 2, leading to a tighter range for flow to reach a steady state in each
permeability region. Thus, the deviations from local equilibrium shown in Figure 5.6 and

Table 5.3 may be less pronounced in the original field.

In our simulations, despite the complexity of the foam dynamics in Model B, this
model exhibited the fastest simulation times among the models studied. We attribute
this performance to our numerical approach rather than to any numerical advantage of
Model B. Specifically, our nonlinear time-step solver (Newton-Raphson method — see
Appendix B.2) tends to be less efficient when handling sharper profiles, which are more
commonly observed in the simulations of Models A and C. Therefore, Model B’s faster
simulation times are primarily related to the type of solutions these models produce rather
than the complexity of their equations. Further investigations into the numerical efficiency

of these methods would be valuable for future studies.

5.4 PARTIAL CONCLUSIONS

One of the features of foam flow in porous media is elevated foam formation in
highly permeable regions and fractures. We show how different models deal with this

property. In particular, the model describing foam generation and coalescence through
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complex functions depending on the phase velocities and capillary pressure can capture
this phenomenon (Model B). On the other hand, simpler models (Models A and C) did
not produce qualitatively similar results. We believe other models with such simple foam
generation and coalescence functions will not describe this phenomenon either. Therefore,
when applied to heterogeneous cases, these functions must account for variations in
permeability. In Model A, this adjustment should likely be in the limiting water saturation,

while in Model C, it might be incorporated into the foam destruction coefficient.

Although the investigated models produce qualitatively the same solutions for
homogeneous media, suggesting no benefit from adopting more complex models in such
cases, the example provided in this work highlights differences between these models
in heterogeneous media. We stress that the more complex model produces results that
align with laboratory experiments for heterogeneous porous media, providing higher foam

texture in highly permeable regions inside the medium.

To compare Models A, B, and C, we proposed a workflow for fitting the model
parameters based on the foam equilibrium estimated for each model separately. As a result,
the models presented a good agreement between the gas front location, breakthrough time,

and production rates.

Model B presented a strong correlation between bubble density and permeability,
visually resembling trapped foam. This correlation is due to the intricate foam generation
and destruction mechanisms depending on phase velocities, capillary pressure, and, con-
sequently, absolute permeability. In our simulations, foam reached the local equilibrium
between the entrance region and the gas front. Consequently, the observed positive correla-
tion between permeability and bubble density aligns with the local equilibrium foam model.
In contrast, Model A maintained nearly constant bubble density regardless of permeability
heterogeneity, indicating no strong correlation between bubble density and permeability.
Model C exhibited a slight reduction in bubble density in more permeable regions, likely
due to its shear-thinning foam rheology, an opposite effect to that observed in Model B.
The pressure drop profiles capture the differences between models, which become more
pronounced in highly heterogeneous media. However, despite this discrepancy, these
models accurately predicted production rates comparable to Model B. Simulations of both
models rapidly achieved local equilibrium, supporting the applicability of local equilibrium

models in these cases.
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6 CONCLUSIONS

We developed a semi-analytical solution for a non-Newtonian foam flow model
validated through numerical simulations. By comparing it to the other two simpler foam
models, we showed that they all produce identical numerical and analytical results in
one-dimensional homogeneous media when fitted to typical experimental conditions (high-
quality strong foam). This suggests that in such cases, the choice of model has little

impact on the overall foam displacement behavior.

In contrast, our numerical simulations in heterogeneous media revealed key differ-
ences. The model incorporating a permeability-dependent foam destruction rate exhibited
higher bubble density in more permeable regions, aligning with experimental observations
reported in the literature. This suggests that such models may better capture foam
distribution in complex porous structures. Therefore, the simpler models, when applied to
heterogeneous cases, must consider foam generation and destruction varying permeability.
However, all models accurately predicted breakthrough time, production curves, and the

shape of the foamed gas front, reinforcing their reliability for practical applications.

Overall, our findings validate the use of the traveling wave in obtaining solutions for
both Newtonian and non-Newtonian foam models. Additionally, they provide a framework
for selecting appropriate models based on the desired level of detail in describing bubble
distribution in different geological formations. Furthermore, this study offers insights into
foam strength in heterogeneous media, potentially aiding in the calibration of parameters

in more realistic reservoir simulators.

6.1 FURTHER INVESTIGATIONS

Building on the methods and observations presented in this study, we outline some

directions that could be explored in future extensions:

« Investigate traveling wave foam flow with variable surfactant concentration. This
approach may be feasible when surfactant transport behaves as piston-like displace-
ment (e.g., Cedro et al. (2019), Chapiro and Lozano (2022), Zavala et al. (2024)).
Introducing additional equations for surfactant transport and/or adsorption would
increase the dimensionality of the traveling wave ODE system, requiring seeking
solutions in spaces of three or more dimensions, which is mathematically complex.
To reduce complexity, equilibrium models for foam texture and/or adsorption could

be considered.

« Explore the existence of traveling wave solutions for a non-Newtonian foam model

for radial flow, which better represents the injection conditions in applications.
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In this case, flow velocity naturally decreases with distance from the injection
point. A possible approach could involve identifying a geometric symmetry that
allows reformulating the governing equations to apply a conventional traveling wave
framework. A similar approach was adopted by Sumnu-Dindoruk and Dindoruk

(2006) for conservation laws.

o Study the ability of simple models, such as Models A and C, to represent bubble
distribution in heterogeneous media when the foam source term is sensitive to

permeability variations.

o Investigate the impact of bubble distribution in more realistic simulations incor-

porating, for instance, gravity effects, compressibility, or channelized permeability
fields.

o Given the varying complexity of foam apparent viscosity and foam generation
equations across models, it is worth further investigating their numerical efficiency.
Our preliminary observations suggest that computational effort may be more sensitive
to the sharpness of saturation and foam texture profiles than to the complexity of

rheology and balance equations.

6.2 CONTRIBUTIONS

Articles in scientific journals:

o Lozano, L. F., Cedro, J. B., Zavala, R. V. Q., and Chapiro, G. (2022). How simplifying
capillary effects can affect the traveling wave solution profiles of the foam flow in

porous media. International Journal of Non-Linear Mechanics, 139:103867

« Viésquez, A. J. C., Lozano, L. F., Pereira, W. S., Cedro, J. B., and Chapiro, G. (2022).
The traveling wavefront for foam flow in two-layer porous media. Computational
Geosciences, 26(6):1549-1561

e Cedro, J. B. and Chapiro, G. (2024). Traveling wave solutions for a realistic non-

newtonian foam flow model. Geoenergy Science and Engineering, 232:212478

o Cedro, J. B., de Paula, F. F., and Chapiro, G. (2025). On the modeling of the foam

dynamics in heterogeneous porous media. Advances in Water Resources, 196:104882
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International conference proceedings:

e Cedro, J. B. and Chapiro, G. (2022). Numerical observation of traveling wave
solution in a non-newtonian foam model. In XLIII Ibero-Latin-American Congress
on Computational Methods in Engineering (CILAMCE), Foz do Iguagu, Brazil

Presentations in conferences:

o XLIII Ibero-Latin American Congress on Computational Methods in Engineering
(CILAMCE), Foz do Iguagu, Brazil, November 2022. Presented work: “Numerical

observation of traveling wave solution in a non-Newtonian foam model”.

o SIAM Conference on Mathematical & Computational Issues in the Geosciences,
Bergen, Norway, June 2023. Presented work: “Foam traveling wave in porous
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o Oth Brazil InterPore Chapter Conference on Porous Media, Campinas, Brazil, August

2023. Presented work: “Foam traveling wave in porous media”.
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APPENDIX A - TRAVELING WAVE STUDY ON SIMPLIFYING CAPIL-
LARY EFFECTS IN MODEL A

In this appendix, we briefly present the findings we published in the article by
Lozano et al. (2022). In this paper, we mathematically investigate the consequences
of neglecting and simplifying capillary forces in the context of traveling wave solutions
applied to foam displacement in porous media. We analyze three physically admissible
possibilities for simplifying this term in the first-order kinetic model (Model A, presented
in Section A.2). Two of these simplifications yield qualitatively inaccurate solutions
regarding foam texture, while the third yields acceptable results. However, the extent of
this divergence can’t be measured through laboratory experiments. The results presented
here are further discussed by Lozano et al. (2022), which also addresses the existence and

classification of the analytical solutions presented in this chapter.

A.1 SIMPLIFYING THE CAPILLARY DIFFUSION

In mechanistic models, foam displacement in porous media is often treated as a
tracer in the gas phase (Kovscek et al., 1995; Kam, 2008; Zitha and Du, 2010; Ashoori
et al., 2011). Although it is common knowledge that foam affects gas mobility, the effect
of capillary forces on the foam flow is not evident and has not been widely addressed
in the literature. Figure A.1 depicts the foam geometry in a capillary tube, illustrating
the presence of a liquid film between the bubbles and the pore wall. Notice that the
yielding of capillary force due to the contact angle is not as evident as in the case shown
in Figure 2.2. This issue is also challenging in experimental studies as modern CT scans
can determine water/gas saturation profiles inside porous media but not the foam texture
(Simjoo and Zitha, 2015; Janssen et al., 2020). The focus in this chapter is to investigate
the influence of capillary pressure on saturation and foam texture profiles by employing

various simplifications in the context of mathematical analysis of traveling wave solutions.

The literature widely presents two common approaches to simplify the term involv-
ing capillary pressure. The first approach assumes that the partial pressures of the water
and gas phases are equal, equivalent to neglecting the capillary pressure term dP./dS,, = 0.
The second approach considers f,A\;dP./dS,, as a constant. Further details can be found in

Section A.2.2 and (Bedrikovetsky, 1993). This approach is commonly used in conservation
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Figure A.1 — Schematic representation of the gas-water flow in a pore
throat. The left panel presents a typical situation without foam (Chen
et al., 2006), where the arrow indicates the direction of resulting capillary
forces acting at the interface. The right panel shows what happens in the
presence of foam (Hematpur et al., 2018), where thin water film can form
between bubbles and the pore wall.

#_)' =

Source: Elaborated by the author (2022).

laws, such as in (Canié¢, 2002; Matos et al., 2015). In Lozano et al. (2022), we explore three
possibilities for these simplifications applied to the first-order kinetic model (Model A)

presented above.

A2 FIRST-ORDER KINETIC MODEL

The base of this study is Model A, presented in Section 2.4.1. However, we analyze
the model using the original relative permeability, capillary pressure, and parameter
definitions proposed by its authors Ashoori et al. (2011). The relative permeability
functions are based on the Brooks and Corey (1966), adjusted to experimental data (Zhou
and Rossen, 1995; Persoff et al., 1991):

0 ; 0<5, < Sye
krw(Sw) — S —8 4.2 s (Al)
2 — we w <1
00<1—ch—89r> , Swe < Sy <
1.3
. 0.94<M> , 0<8,<1-5,
k’rg(Sw) = 1— ch - Sgr . (AQ)
0 , 1=5,<85,<1
Capillary pressure function is defined as:
¢ (1 - S’w - S r)c
P.(Sy) = O’wg\/; 0.022 5 chg e ¢=0.01, (A.3)

where o, represents the interfacial tension between water and gas, and c is a parameter

used to ensure continuity of P. near S, = Sy..

Parameters, as defined by Ashoori et al. (2011), are presented in Table A.1.
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Table A.1 — Parameter values for the foam displacement model Ashoori et al. (2011).

Symbol Parameter Value
Swe Connate water saturation 0.2
Sqr Residual gas saturation 0.18
o Water viscosity 1-107% Pas
,ug Gas viscosity in absence of foam 2-107° Pa s
k Permeability of the medium 1-10712 m?
) Porosity of the medium 0.25
u Total superficial velocity 2.93-10° ms™!
Nmax Maximum foam texture 8108 m=3
Owg Water/gas superficial tension 0.03 N/m
s Limiting water saturation 0.37
A Foam parameter in the model 400

A.2.1 Adimensionalization of the model

To study capillary diffusion, we rewrite the system (3.1) for Model A in the

dimensionless form:

0Sy  Ofs 0 dP,
o e o (WMd@) ’
(A.4)
0 dP. .
5{(5 nD) a~(fgnD> = <¢ fw rg d~ ) +qu)7
with
= _ T ;o ut _ ks LE _ _ K.L¢
=7, t—L(b, w—uL, ¢ =K.(np —np), and K.= - (A.5)

From now on we omit the tildes in Z, £, and ®.

A.2.2 Simplification of diffusion

The simplifications we analyze involve approximating one or both of the following

functions as constants:
(SwanD) 1/}/\7"9 fw (Sw;nD) ¢>\rg fw (A6)

In these cases, we assume a constant value of ¢ = 1074, based on the typical magnitude

that the functions in (A.6) reach for a range of S,, when np is in local equilibrium.

A.2.3 Simplification 1 (¢ = €,, ¢, = 0)

Simplification 1 assumes constant diffusion in the water mass balance equation

and neglects diffusion in the foam balance equation. The motivation for this simplification
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arises from the fact that bubbles are significantly larger than water or gas molecules.
Therefore, the diffusion phenomenon, as it occurs in liquid mixtures, does not have the
same effect on gas-phase foams. Thus, we can consider the diffusion rate ¢, of the foam to

be zero. By adopting €, = 0 and € = ¢, for the non-dimensional model (A.4), we obtain:

89S, Ofu 825,

a "o o2

) ) (A.7)
57 (Smn) + o (fynp) = 5,

Following a procedure similar to presented in Section 3.2, we obtain the traveling

wave formulation for Simplification 1:

n
A.
dnB—(%—v)HnD+Sg¢) (A-8)
dn M ’
where:
ot _ o+
H(Sy,np) = Ju = fur = V(S = Su) and M (Sy,np) :f;—vS;—((;TJ;UnD. (A.9)
€ D

A.2.4 Simplification 2 (e = ¢, = ¢,)

Simplification 2 assumes constant and equal diffusion in both balance equations,
€., € = €, = €4:
0Sy  Ofw 928,
+ =€ )
ot Ox Ox?
0 0 9’np

@(SQTLD) + %(fgnl)) = EW

(A.10)
+ 8,0,

The traveling wave system of ODEs is formulated similarly as before; however, the

resulting ODE is of second order. Thus, we define the auxiliary function Z(S,,np) = dg—nD
to transform the system into three first-order ODEs:

dsS,

—v_H,

dn

an

rr =7, (A.11)

dz  ZM - (55 —v) Hnp — 8,®

dn € '

The traveling wave solution for Simplification 2 lays in a three-dimensional phase space;
see details in Lozano et al. (2022).
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A.2.5 Simplification 3 (¢ = ¢, e ¢, = npey,)

Simplification 3 considers a constant value for ¢, = € and define ¢, = npe,,
based on Eq. (A.6). This approach is inspired by similar simplifications in the literature
(Johansen and Winther, 1988). By applying this simplification to the dimensionless model
(A.4), we obtain the third simplification:

89S, Ofs %S,

ot o or  C 0a?’
0 0 0 0Su
5 Oann) + 5 (fgnp) = —eo- (”D 835) +5,®.

(A.12)

Developing the traveling wave ODEs in a similar way to previous simplifications,

we obtain the system:
dSy

—=H
dn
an . qu)
dn fi —vS}+eH

Y

(A.13)

A.2.6 Comparing simplifications

We derived the semi-analytical solution for the traveling wave ODEs of Model A
(3.9)-(3.10) and its three simplifications (A.8), (A.11), and (A.13), using the following

boundary conditions:

- = 0.372 = 0.72
{Sw 0.372, St =072, (A14)

np = 0.664, nh=1.
We validated these solutions through direct numerical simulations of the corresponding
PDEs, and the results agreed — see details in (Lozano et al., 2022).

Figure A.2 presents the simulations of these three simplifications and the original
Model A, proposed by Ashoori et al. (2011). The simulations show that all models have
the same propagation velocity for the traveling wave. It is noteworthy that simplifications
1 and 2 exhibit a sharp decrease in foam texture np in the region where water saturation
shock occurs. This phenomenon, often attributed to numerical approximation errors
(Rossen, 2013; Farajzadeh et al., 2016), can also be observed as a physical result in
local equilibrium foam population balance models (Kam et al., 2007; Kovscek et al.,
1995). In our case, we observe this phenomenon as a semi-analytical solution of the
model. Figure A.3 presents the numerical profiles of bubble density (S, -np) and apparent
viscosity (fapp) corresponding to the simulations in Fig.A.2. In all model simulations, a
peak in bubble density and apparent viscosity appears near the foam front, consistent with
the experimental findings of Chen et al. (2010) and our semi-analytical and numerical

observations in Chapters 3 and 5.
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Figure A.2 — Numerical solution profiles for different kinetic models corresponding
to a Riemann problem with K. = 1, for the Riemann problem (A.14). All profiles
present oscillations before the traveling wave. After it simplifications 1 and 2 present
a significant drop in the foam texture np. All traveling wave speeds are equal.

1.0 1
ml S,

0.8 A N
—— Ashoori et al. (2011)
— — Simplification 1

0.6 —- - Simplification 2
-------- Simplification 3

0.4 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2
€T [m] X10_3

Source: Elaborated by the author (2022).

In the presented example, the original model and its simplifications demonstrate
oscillations in their profiles. The oscillations are more prominent in the foam texture np
compared to the water saturation S,,. It is important to emphasize that directly measuring
the foam texture within the core is not feasible in coreflooding experiments. Consequently,
observing oscillations in np becomes challenging in laboratory experiments. From the
perspective of foam texture modeling, it is not trivial to determine which model is more
suitable to describe the behavior of foam within the core. However, the water saturation
profiles S, exhibit nearly identical behavior across all models. In summary, the original
model and its simplifications can be considered equivalent for validating experimentally

obtained saturation profiles.

A.3 DISCUSSION

In the context of fluid displacement in porous media, the simplification or neglect of
capillary pressure is a common practice in analytical estimates. We studied the impact of
these simplifications in the analysis of one-dimensional incompressible two-phase gas-liquid
flow in the presence of foam within a porous medium. We investigate the implications of

these simplifications, particularly in the context of traveling wave analysis.

We examine three simplifications and identify two physically valid ones that
result in solutions with qualitatively inaccurate foam texture profiles. These profiles
deviate from those obtained using the complete original model. Additionally, we propose
a simplification procedure that leads to a simplified model capable of approximating

solutions with qualitative accuracy, as demonstrated in Figure A.3.
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Figure A.3 — Profiles of bubble density (S, - np) and foam apparent viscosity
(ftapp) corresponding to simulations in Fig. A.2.
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Source: Elaborated by the author (2025).

From a physical perspective, even when capillary forces have minimal impact on
foam displacement in porous media, the resulting foam texture profile along the traveling
front may exhibit changes. This raises the question of whether such changes can be

observed in laboratory experiments.

It is worth noting that the traveling wave velocity remains constant in all simpli-
fications, and the differences in solution profiles are attributed to the system’s dynamic
behavior in the phase space. The traveling wave solutions were obtained through numerical
integration and analytical techniques. In all examples, the same set of parameters was

used, and the injection (left state) condition exhibited oscillatory solution behavior.
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APPENDIX B - NUMERICAL METHODOLOGY

In this appendix, we present the numerical simulators employed to study the foam
models introduced in Chapter 2.2. Two in-house software, RCD (Lambert et al., 2020) and
FOSSIL (de Paula et al., 2020), were used to perform two types of simulations. RCD was
employed for one-dimensional simulations with constant permeability, porosity, and total
velocity to investigate traveling wave solutions we present in Chapter 3. FOSSIL was used
for two-dimensional simulations, supporting the study of bubble density distribution in
heterogeneous porous media presented in Chapter 5. The numerical schemes implemented
in these simulators are briefly outlined in the following sections and further detailed in the
literature Lambert et al. (2020); de Paula et al. (2020)

B.1 REACTION-CONVECTION-DIFFUSION SIMULATOR — RCD

The Reaction-Convection-Diffusion simulator (RCD) (see Lambert et al. (2020) for

details) implements a finite difference scheme to solve the following system of equations:

Ia)+ Lru) = (,i (B(U)%S) L R(U), (B.1)

where U € R represents the d variables of the problem, and functions G,F,R : R? — R
B : R? — R%? denote the accumulation, convection, reaction, and diffusive terms,

respectively. These functions have the following discretization schemes:

oG _ Gn - Gr,

o ST AL (B2)
F - -
ca?x ~aF! 4+ (1 - a)F,
- . (B.3)
F _ m+1 — +£'m—1
" 2Ax ’
(B.4)
B _ (Berl + Bm)(Uerl - Um) - (Bm + Bmfl)(Um - Umfl)
" 2A 2 ’

R~ aRY + (1 - )R], . (B.5)



87

The indices m and n refer to the spatial and temporal discretizations, respectively, and
Az and At represent the spatial and temporal step sizes. Notice that the temporal
discretization is fully implicit for o = 1 and explicit for a = 0. In this work, we adopt
a = 1/2, which is also known as the Crank-Nicolson scheme (see Crank and Nicolson (1947);
LeVeque (2002)).

By substituting (B.2)-(B.5) into (B.1) and grouping the implicit and explicit terms

into F and Y, respectively, we obtain:

Gﬁf + ﬁ(mﬂl ~F) 4= (Z% O;A_;(Fgm —Fr ) +... (B.6)
Fon (U35, UL UL Y, (U")
For each meshpoint m, we define:
Gn=F,—-Y,=0 (B.7)

and numerically find the solution of the global system G(U™"!) = 0. Since G, F, B, and

R are nonlinear functions, we obtain the roots of G using the Newton-Raphson method.

Taking the foam flow system (3.1), we substitute the partial velocities from (2.16),
assuming a constant total velocity v and considering P, as a function of S,,, allowing us
to express the model in an extensive form:

98,  udfu kO <<f krgch> asw>

ot oor  dor \\"", a5, ) ox

0 w0 k O kyy AP, 0S,,
- 2 2 — | +S,®.
8t(SgnD) 10) G:U(fgnD) ¢ Ox <<fw g dSy, nD) ox ) &

(B.8)

The system above fits the general form given in Eq. (B.1) with the following matrices:

Sw Sw fw 0
U= , G(U)= , Fu)="Y , R(U)= ,
np SgnD ¢ fgnD qu) (Bg)
k. k.,dP.| -1 0
B(U) = = wﬂ ¢ .
( ) Qbf g dSw |np O]

B.2 FOAM DISPLACEMENT SIMULATOR - FOSSIL

We perform two-dimensional numerical simulations of foam models presented in
Section 2.4 by employing the in-house simulator named FOSSIL (de Paula et al., 2020,
2023). The numerical methodology of FOSSIL follows a staggered technique, employing a
hybrid finite element method to solve the elliptic problem (2.19) at a fixed time and a high-
order finite volume method to address the hyperbolic equations (2.20)-(2.21) for constant
total velocity and pressure. Additional details regarding the numerical methodology are
presented by de Paula et al. (2020, 2023).
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B.2.1 Hydrodynamic subsystem

The hydrodynamic equations describe the flow of foam in porous media using

Darcy’s law and the incompressibility condition:
u=—-k\Vp, V-u=0, (B.10)

where u is the velocity field, p is the global pressure, k is the permeability tensor, and A
is the total mobility, which depends on fluids and foam properties. To deal with phase
pressures, the simulator incorporates global pressure p as a new variable to replace the
gas and water pressure variables (py and py,). This variable P allows the total water-gas
flow to be expressed in terms of A(S,,np), u, and p alone. This reduces the number of
unknowns in the hydrodynamic problem to two: the global pressure p and the total Darcy
velocity u. We can define global pressure p mathematically as (Chavent and Jaffré, 1986;
Chen and Ewing, 1997; de Paula et al., 2020):

1
p= §(pw +pg)+’7(swanD)7 (Bll)

where the function v (S, np) is based on (Daripa and Dutta, 2017) and given by

B Sw 1 dPC np 8’”[) OnD
3 (Suwmp) = [ (5 o) ids+ [ ( 54+ dy>, (B.12)
with S of, dP
np _ v UJw A
" /1 s (B.13)

Physically, global pressure is defined as the pressure that drives the flow of a specific
fluid (with mobility A) in relation to the combined flow of water and gas, each with
their respective mobilities (Chavent and Jaffré, 1986). To solve the hydrodynamic system
(B.10), FOSSIL employs the Hybrid Mixed Finite Element Method introduced by Raviart
and Thomas (1977). This method provides naturally stable approximation spaces and
facilitates the use of locally conservative methods for transport equations, such as the

finite volume method described below. The weak formulation for (B.10) is:

Z [/ Auy, - vidx — / prV - vpdx +/ DPrVy - Ngds — / qnV - uhdx} =0,
reco UK K 0K K (B.14)

Z/ @huh'anSZ/ qn uds,
0K 'y

KeQ

where A = (kA)™!; the subindex & indicates functions belonging to an approximation
space; p represents a Lagrange multiplier that enforces pressure continuity at the interfaces;
Vi, qn, and @ are the test functions corresponding to uy, pp, and py; € and K denote the
problem domain and its elements, respectively; I'y is the boundary region subject to a

Neumann condition, where the velocity is prescribed as .
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The domain is represented using an unstructured grid, 2, where continuity at
element interfaces, 0K, is enforced through Lagrange multipliers, p,. This approach
enables FOSSIL to apply static condensation to the weak formulation (B.14), solving
only for the multipliers globally while approximating the primary variables, velocity, and
global pressure locally within each element K. By focusing on pj, the computational
cost of solving the global system of equations is significantly reduced, as it avoids solving
directly for u, and pj,. Additionally, this method facilitates parallelism, as evaluating
local unknowns u; and pj using pj, can be done independently for each element. Solving
Eq. (B.14) for u, and pj, yields approximations for global pressure p and total Darcy

velocity u at a fixed time.

The implementation of the finite element method is built using the deal Il library
(Arndt et al., 2020), which provides a comprehensive framework for developing finite
element applications. This library offers robust tools for managing grid structures, defining
function spaces, and implementing linear and nonlinear solvers. Additionally, deal.Il
supports parallel computing, ensuring scalability for large-scale problems, and includes

efficient utilities for data handling and post-processing.

B.2.2 Transport subsystem

The transport subsystem models foam flow is governed by:

ou
¢E+V-F:V~(BVU)+R, (B.15)
where, for the general foam model described in Section 2.3, these matrices are given by:
S fuua 0 kg dP, [ =1 0
U= , = = ., B=kf,2 (B.16)
SgTLD ngLDu qu) Hg dS’w np 0

Notice that (B.16) is a general form of the system of equations (B.9) which RCD solves in

the one-dimensional homogeneous case.

FOSSIL implements the conservative central-upwind scheme Kurganov-Noelle-
Petrova (KNP) (Kurganov et al., 2001), suitable for stability and handling sharp solutions.

The finite volume discretization for a cell [ is:

ou . HY o —HE ) n H?+1/2 - H?fl/Q _ Py . P}
ot Ax Ay Az?  Ay?

¢ +R,. (BI7)

where H;/, is numerical flux at the interface [ & 1/2 and P; is the diffusive numerical
flux at cell [. The upper index x and y represent the direction of the cell’s flux. The

numerical flux is given by:

(B.18)

at —a-

<a+F_ —a F+ata (Ut — U‘))
Hli1/2 = ’
1£1/2
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where a® and a~ are the interface’s maximum and minimum wave speeds. The diffusive

numerical fluxes P; are given by:

Pl - Bl+1Ul+1 - (Bl+1 + Bl)Ul + BlUlfl . (Blg)

The ODE in (B.17) is solved numerically using the Backward Differentiation
Formula (BDF), an implicit multistep method particularly suited for stiff differential
equations (Curtiss and Hirschfelder, 1952). BDF methods excel in maintaining stability for
problems where rapid changes in solution components could lead to numerical instabilities.
The nonlinear system generated by BDF' is solved using the Newton-Raphson method.
FOSSIL incorporated the BDF implementation available in the CVODE package from the
SUNDIALS library (Hindmarsh et al., 2019).
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APPENDIX C - SOLVING THE FOAM TEXTURE ODE FOR MODEL B

Substituting (2.29) into (5.7) we obtain the ODE:

dnp R ; PR P\’
= 8m0) = = (1= mb) Ivall a5 = k% { 55 ) IVl \
TLD<O):0,

which can be written, for simplicity, as:
n'(t) =an® +bn+c=®(n), n(0)=0, (C.2)

where the main variable is redefined as n = np and the constants are

al

max

a = —

2
1 Pc
Hmmmw,b:—&(P_P)nwm and c=-a.  (C3)

Equation (C.2) is a separable ODE rewritten as

/(D(ln)dn:/dt. (C4)

The integral in (C.4) can be rewritten using partial fraction decomposition as:

A B C

where Ny, Ny, and N3 are the roots of ®, and A, B, and C are constants to be determined.

After integrating (C.4) and applying the initial condition n(0) = 0, the result is:
Aln(1 —n/Ny) + Bln(l —n/Ny) +CIn(1 — n/N3) =t. (C.6)

That exact solution of (C.2) does not provide an explicit expression for n as a function of
t, making it difficult to compare with the solution (5.8) of Model A. To address this, we

approximate ® using the first-order Taylor expansion around its real root N, resulting in:
®(n) ~ ®(N) + ®'(N)(n — N) = (3aN* +b)(n— N). (C.7)

Substituting (C.7) into (C.4) and applying the initial condition n(0) = 0 results in:

In(1 —n/N) ~1

3aN? + b = n(t) = N (1= exp{(3aN*+0)t}) . (C8)
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Figure C.1 — Comparison between exact solution (C.6) and
the approximation (C.9) for the initial value problem (C.1)
with phase velocities, water saturation, and parameters
presented in Section 5.1.2.1 and Table 5.1.
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Source: Elaborated by the author (2025).

As discussed in Section 5.1.2, Model B (2.29) features a single real root for ®, given by
N = [n%F]g in (5.4). By defining K. = —3aN? — b, we write an approximate solution for
the original ODE (C.1) as:

np(t) = [np’ls (1 —exp{-K.t}) ,
(C.9)

3k9 ; 2 P\’
K. = —1vol IvollE[n¥ 08" + &, | =——] ||v.]|.
R [ 2 i C oy
Figure C.1 compares the exact solution obtained implicitly from (C.6) with the approxi-
mation (C.9). For the case shown in this figure, the relative error of the approximation in
L2-norm is 1.13%.

Notice that substituting Model A’s source term ¢ (Eq. (2.26)) into Eq. (C.2) yields
the coefficients a = 0, b = — K., and ¢ = K [n%]5. Consequently, the solution provided
by Eq. (C.2) is also valid for Model A, resulting in the exact solution given in Eq. (5.8).
Similarly, applying the source term of Model C (Eq. (2.30) with K; = 0) to Eq. (C.2)
vields the exact solution in Eq. (5.12), with a =0, b= —K,, and ¢ = K,[n}]c.
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APPENDIX D — MODEL A’S SENSIBILITY TO LOW S, VALUES

Chapter 5 introduced a method for fitting the limiting water saturation S, in
Model A based on the limiting capillary pressure P, of Model B, using the capillary pressure
function in (2.24) — see Section 5.1.2.1. This approach may result in S,, being lower than
the connate water saturation, i.e., S, < Sy, which is the case for the parameters in
Table 5.1 and the permeability fields described in Section 5.1.1. Although we can discuss
whether modeling S, < S, is nonphysical, this appendix demonstrates that variations in
S> do not significantly impact Model A when the simulation’s saturation range remains
sufficiently far from S, . Section 2.4.1 explains that the local equilibrium foam texture
n%E(S,) is approximately zero or one, except near S,, = S, . In the simulations presented
in Section 5.2, minimum water saturation values across the entire domain are 0.5341 and
0.5064 for Fields 1 and 2, respectively. These saturation levels are sufficiently high for
n%F to approximate one when S, < 0.50. Given that this study focuses on comparing the
effects of foam flow modeling on bubble distributions in heterogeneous permeability, we
retained the S, fitting approach described in Section 5.1.2.1, even with S < Sy, as it

does not significantly influence the results within the analyzed scenarios.

To exemplify how this range of S, values does not affect our observations in
Chapter 5, we conducted simulations of Model A in Fields 1 and 2 using three different
values of limiting water saturation: S, = 0.16 < 0.38 = Sy, S, = 0.38 = S, and
S: = 0.50 > 0.38 = S,,.. The bubble density profiles (S,-np) at 0.6 PV (after breakthrough
in all cases) are depicted in Figures D.1 and D.2, with no visual difference between them.
We compare these profiles quantitatively using the L?-norm distance, with the results
summarized in Tables D.1 and D.2. For reference, the tables also include the distances
between Models B and C, whose bubble density profiles are depicted in Figures 5.4 and
5.5.

Tables D.1 and D.2 demonstrate that Model A produces nearly identical results
for S, values of 0.16 and 0.38. A slight difference is observed when S is increased to
0.50. This small deviation arises because S, = 0.50 approaches the minimum water
saturation achieved during the simulations, which is 0.5341 in Field 1 and 0.5064 in Field 2.
The impact of using S;, = 0.50 is more noticeable in Field 2 due to its proximity to the
minimum saturation. Additionally, the tables show that the L2-distances in bubble density

profiles between different S, cases of Model A are at least two orders of magnitude smaller



Table D.1 — L%norm distance of bubble density (.5, -

on Field 1 at 0.45 PV.
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np) between models for simulations

Model A Model A Model A
(ST = 0.16) (S%=038) (3 =050 ModelB ModelC
Model A (S, = 0.16) 0
Model A (S =0.38) <1071 0
Model A (S, =0.50) 3.06-10"%  3.06-1073 0
Model B 3.03-10'  3.03-10'  3.03- 10 0
Model C 1.29 - 10° 1.29 - 109 1.29-10°  3.05-10! 0

Table D.2 — L%norm distance of bubble density (.5, -

on Field 2 at 0.5 PV.

np) between models for simulations

Model A Model A Model A
(S5 =0.16) (S"=038) (3 =050 ‘odelB ModelC
Model A (S, = 0.16) 0
Model A (S, =0.38) <107 0
Model A (S, =0.50) 4.03-10"!  4.03-107} 0
Model B 1.16 - 10" 1.16 - 10 1.15- 10 0
Model C 3.50-10°  3.50-10°  3.59-10°  1.19-10' 0

than those between Models A and B and one order smaller than between A and C. The

differences between all models are more pronounced in Field 1, as one can see by comparing

Figures 5.4 and 5.5.
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Figure D.1 — Comparison of foam behavior of Models A for some values of S, in Field 1
at 0.45PV.

(a) Bubble density S, - np predicted by Model A (S, = 0.16) for Field 1.
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(b) Bubble density S, - np predicted by Model A (S, = 0.38) for Field 1.
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(c) Bubble density S, - np predicted by Model A (S, = 0.50) for Field 1.
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Source: Elaborated by the author (2025).
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Figure D.2 — Comparison of foam behavior of Models A for some values of S, in Field 2
at 0.5PV.

(a) Bubble density S, - np predicted by Model A (S, = 0.16) for Field 2.
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(b) Bubble density S, - np predicted by Model A (S, = 0.38) for Field 2.
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(c) Bubble density S, - np predicted by Model A (S, = 0.50) for Field 2.
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