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ABSTRACT

The present study investigates the use of unsupervised Machine Learning (ML) tech-
niques applied to the Structural Health Monitoring (SHM) of railway wheels with different
stages of polygonalization in the running band. The proposed methodology is based on a com-
parative study of different AutoEncoder (AE) architectures, including the Variational AutoEn-
coder (VAE), the Sparse AutoEncoder (SAE), and the Convolutional AutoEncoder (CAE). The
models are trained using vertical acceleration data from a virtual track monitoring system, and
their performance is evaluated in distinguishing between normal and abnormal structural con-
ditions, as well as in the processing time of input data. The integration of AE models with
Hotelling’s T? control charts is explored as a strategy to enhance anomaly detection. The study
highlights the potential of these approaches for predictive maintenance applications, contrib-

uting to greater efficiency and safety in railway operations.

Keywords: Structural Health Monitoring, Railways, Damage Detection, Out-Of-Roundness,

Sparse AutoEncoder, Convolutional AutoEncoder, Variational AutoEncoder.



RESUMO

O presente estudo investiga o uso de técnicas de Aprendizado de Maquina nao super-
visionado (ML, do inglés “Machine Learning”) aplicadas ao Monitoramento da Integridade
Estrutural (SHM, do inglés “Structural Health Monitoring”) de rodas ferroviarias com distintos
estagios de poligonalizagao na banda de rodagem. A metodologia proposta baseia-se em um
estudo comparativo entre diferentes arquiteturas de AutoEncoders (AE), incluindo o AutoEn-
coder Variacional (VAE, do inglés “Variational AutoEncoder’), o AutoEncoder Esparso (SAE,
do inglés “Sparse AutoEncoder”) e o AutoEncoder Convolucional (CAE, do inglés “Convolu-
tional AutoEncoder”). Os modelos sdo treinados com dados de aceleracao vertical provenientes
de um sistema virtual de monitoramento em via, e seus desempenhos sao avaliados na diferen-
ciacdo entre condigdes estruturais normais e anormais, € no tempo de processamento dos dados
de entrada. A integra¢do dos modelos AE com graficos de controle de Hotelling T? é explorada
como uma estratégia para aprimorar a detec¢ao de anomalias. O estudo destaca o potencial
dessas abordagens para aplicagdes de manutengao preditiva, contribuindo para maior eficiéncia

e seguranga na operacao ferroviaria.

Palavras-chave: Monitoramento de Integridade Estrutural, Ferrovias, Detec¢do de danos, Ova-
lizagdo, Autocodificador Esparso, Autocodificador Convolucional, Autocodificador Variacio-

nal.
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1 INTRODUCTION

1.1 Contextualization

Since its beginning, railway transportation has played a vital role in improving the
living conditions of developing societies. This mode of transportation is characterized by its
efficiency and versatility, serving both passenger and freight transport, covering different cargo
volumes and distances [1,2]. The growing need for efficient transportation between countries
has become a central challenge for developed nations, as modern and sustainable transportation
systems are essential for structuring advanced economies [3].

In the context of an increasingly interconnected world, the continuous upgrading and
expansion of railway networks are fundamental, given their relevance to the economic progress
of these nations [1,3]. In the United States, the total length of the railway network exceeds
250.000 km [3], while in Brazil, this value is approximately 30.660 km, corresponding to 15.1%
of the country’s transportation modal share [4].

The railway mode offers numerous advantages compared to road and waterway trans-
portation, such as high cargo capacity, lower cost per ton transported, safety, and the long ser-
vice life and durability of the infrastructure. These factors have driven the expansion of railway
systems globally over recent years. However, a significant portion of existing railway networks
were designed for demands that are vastly different from current ones, highlighting the need for
constant monitoring and modernization of the infrastructure [5]. Currently, railways face chal-
lenges associated with higher axle loads, increased speeds, and greater frequency of use [3]. In
addition to operational demands, railway infrastructure is significantly impacted by climate
change, facing risks such as erosion, landslides, and flooding, as well as other biophysical ef-
fects. These issues lead to service disruptions, increased operational costs, and the compromise
of the safety and durability of the entire railway structure [4].

Although rails are one of the main components of railway systems, whose monitoring
and interventions are of greater interest to concessionaires, the structural condition of the wheels
plays a fundamental role in the safety of railway vehicle operations. Wheels deteriorate over
time due to wear and fatigue, potentially developing various defects, such as Out-Of-Roundness
(OOR), commonly represented by polygonal wheels and wheel flats, which substantially alter
the wheel-rail contact characteristics [1,6]. These scenarios are illustrated in Figure 1, where
(a) represents a wheel flat and (b) depicts a polygonal wheel. Wheel defects are identified as

one of the main causes of railway accidents [7,8], and although polygonal wheels generate



fewer negative effects on the track compared to wheel flats [9], these defects can cause severe
damage to both the track and the vehicle due to the excitation induced by such phenomena.
These defects also increase noise emissions inside and outside the vehicle and considerably

reduce railway safety and comfort levels.

()

Figure 1. Common Out-Of-Roundness (OOR) defects in railway wheels: (a) wheel
flat and (b) polygonal wheel.

The wheel-rail impact loads caused by wheel defects exhibit significantly higher val-
ues than those observed under normal operating conditions [10,11]. These high impacts sub-
stantially contribute to the accelerated wear of both vehicle components and railway infrastruc-
ture, inducing issues such as abnormal vibrations in axles, rail abrasion, and fractures in fasten-
ers. To mitigate these effects, railway operation departments frequently implement preventive
measures and carry out periodic renewals of defective elements. Among the preventive
measures, the adoption of advanced anti-slip systems in most passenger trains stands out, as
they help reduce the frequency of wheel-rail slips, one of the main causes of wheel flats [12,13].
However, in scenarios with high operating speeds and increased axle loads, the occurrence of
wheel defects still persists. In contrast, freight trains, which often lack anti-slip technologies
and are subjected to more severe traffic conditions, present even more critical wheel conditions,
significantly compromising railway infrastructure [10].

Given this context, the need to implement effective methodologies for monitoring rail-
way infrastructures and vehicles arises. This monitoring aims to assess operational conditions
and safety limits, as well as to identify faults or defects at early stages, seeking to minimize
damage and its consequent impacts [14,15]. In this regard, Structural Health Monitoring (SHM)
emerges as a promising technological alternative, enabling the automatic and continuous as-

sessment of the structural integrity of various railway components, including wheels.



SHM is a field of study dedicated to the continuous evaluation of structural conditions,
aiming to ensure performance, safety, and integrity. This methodology relies on a comprehen-
sive set of technologies, equipment, and data analysis techniques, often integrated with predic-
tive models, to effectively monitor and assess the state of structures [16]. The implementation
of SHM systems enables more efficient management of repairs and maintenance, establishing
itself as an essential tool in multiple application fields. Traditionally, SHM relied on visual
inspections and non-destructive techniques, processes that, although effective, present limita-
tions related to high costs and long durations. However, advancements in computational tech-
nologies and data acquisition systems have transformed this landscape, allowing SHM meth-
odologies to process and analyze a significant volume of information more quickly and accu-
rately [16]. Consequently, techniques such as Machine Learning (ML) have emerged as poten-
tial solutions to enhance the effectiveness of these systems.

Among the Machine Learning techniques applied to SHM, AutoEncoders (AEs) [17]
stand out, demonstrating great potential in identifying anomalous patterns and detecting signs
of structural degradation or damage. AEs are a type of unsupervised Artificial Neural Network
(ANN) specialized in learning compact and efficient data representations by compressing in-
formation into a lower-dimensional space and subsequently reconstructing it. This dimension-
ality reduction capability, combined with appropriate evaluation metrics, enables the identifi-
cation of structural changes that indicate the presence of damage. Thus, AEs constitute a robust
tool for SHM applications, contributing to the optimization of monitoring processes and the
maintenance of monitored infrastructures.

Although significant advances have been made in the use of AEs for SHM strategies,
there is a notable gap in research exploring their application in monitoring railway wheels for
defects associated with Out-of-Roundness. This study aims to address this gap by investigating
the performance of Sparse AutoEncoder (SAE), Variational AutoEncoder (VAE), and Convo-
lutional AutoEncoder (CAE) models in identifying and quantifying OOR wheels. To enhance
the effectiveness of the analyses, the integration of AE models with Hotelling’s T? Control
Chart is proposed, a technique that allows for the quantification and monitoring of structural
changes in railway wheels subjected to different levels of damage associated with OOR and
defect evolution.

It is noteworthy that this study is part of the CNPq/MCT Project 407256/2022-9 in
partnership with Rumo Logistica S.A., which aims to develop SHM strategies for railways.



1.2 Objectives

The main objective of the study presented in this dissertation is to conduct a compara-

tive analysis of three AutoEncoder models—Variational Autoencoder, Sparse Autoencoder,

and Convolutional Autoencoder—to detect and quantify structural anomalies associated with

the Out-of-Roundness in railway vehicle wheels. The expected results include the identifica-

tion of a robust and effective methodology for assessing the structural integrity of the wheels,

contributing to improved safety, optimization of maintenance and repair procedures, and cost

reduction associated with these activities.

As specific objectives, complementary to the main objective, we have:

Analysis of optimized SAE, CAE, and VAE models capable of learning high-quality
latent representations from simulated railway vibration data.

Estimation of the computational cost, in terms of processing time, to assess the feasibility
of using the considered AutoEncoder methodologies.

Conducting a comparative analysis in terms of input data reconstruction capability and
computational cost in terms of processing time to evaluate the feasibility of using the

Autoencoder methodologies considered in the study.

1.3 Study Structure

This study is organized into four chapters, which are briefly described below:
Chapter 1: Explores the importance of the addressed topic, the motivation that drove
the realization of this study, and details the objectives set to be achieved by the end of
the research.

Chapter 2: Presents a preliminary review of the literature, analyzing several relevant
studies on SHM strategies. Then, the focus is directed to the railway context and to
ORR-type wheels, highlighting their contributions to the deepening of the discussion
on the topic and the identification of the existing gap that motivated the development
of this study.

Chapter 3: Presents the paper entitled “Out-of-roundness damage wheel identification
in railway vehicles using autoencoder models”, accepted for publication in the journal
Applied Sciences.

Chapter 4: Presents the final considerations and proposes future studies that would

contribute to the development of SHM strategies in the railway context.
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2 BIBLIOGRAPHICAL REVIEW

In recent years, SHM methodologies have advanced significantly, driven by the incor-
poration of ML techniques. The integration of these approaches has led to substantial improve-
ments in the detection and assessment of structural damage in various types of infrastructure.
Among these techniques, AutoEncoders have emerged as a promising solution, providing
greater efficiency and autonomy in structural monitoring processes. This literature review ex-
plores the concept of damage detection, key studies and the techniques developed in this field
over time, subsequently giving particular focus to its application in railway engineering and in

the detection of OOR wheels.

2.1 Damage Detection

The concept of damage, in general, refers to a change or alteration occurring in a struc-
ture, which negatively impacts its current or future performance. This definition assumes that
damage can only be quantified or assessed by comparing two distinct states of the structure: an
initial state, considered intact or as a reference, and a subsequent state, which reflects the pres-
ence of alterations or degradations [18].

Most damage detection methods are based on the premise that the occurrence of dam-
age in a structural system leads to changes in its physical properties, such as stiffness, mass, or
energy dissipation capacity. These changes, in turn, affect the dynamic properties of the struc-
ture, such as natural frequencies, vibration modes, and damping [19]. However, mass variation
tends to be insignificant compared to stiffness loss and can therefore be disregarded in most
cases, as demonstrated in the studies by Adams ef al. (1978) [20] and Hearn & Testa (1991)
[21].

Thus, conducting dynamic tests at different moments throughout the service life of a
structure allows for monitoring possible changes in its condition. In other words, if changes in
the structure’s dynamic pattern are observed at regular time intervals, this may indicate the
existence of a problem. In this sense, identifying behavioral patterns plays an important role in
structural integrity assessment, as the presence of damage directly affects the structure’s modal
characteristics. For this process to be effective, the precise extraction of these parameters is

essential, as inaccuracies in the data may compromise damage detection and diagnosis [19].
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The application of damage detection methods in real structures is often limited by
practical factors. The spatial discretization required to capture localized phenomena, combined
with the inevitable presence of noise in data collection, demands the development of robust
signal processing techniques. Additionally, the appropriate selection of sensors and the defini-
tion of an effective instrumentation strategy are critical for obtaining reliable data, especially in

large-scale structures with complex geometries [22].

Methods Based on Neural Networks and Artificial Intelligence

Conventional methodologies for damage detection in structures, based on time-domain
analysis of modal characteristics, have demonstrated their effectiveness in various applications,
as previously discussed. However, as also observed, these techniques have presented some lim-
itations. The main drawback lies in their sensitivity to noise and variations in environmental
conditions, which can lead to false positives. Additionally, the modal identification process, by
filtering the data, may result in the loss of relevant information for an accurate assessment of
the structure’s condition [16].

Given these limitations, with the advent of new technologies and increased computa-
tional capacity, the development of innovative approaches for damage detection has been driven
forward. Artificial Neural Networks and genetic algorithms, for example, have shown great
potential in this context [23]. ANNs can learn complex and nonlinear patterns in the data, al-
lowing damage detection in less detailed structural models [19]. However, training these net-
works requires a representative dataset covering different damage conditions, which can be a
challenge in practical applications.

In recent studies on SHM methodologies, techniques based on Machine Learning have
been widely explored due to their robustness in analyzing large volumes of data and automati-
cally extracting relevant features. ML encompasses neural architectures composed of multiple
layers, enabling a hierarchical representation of data and enhancing the detection of complex
patterns. These approaches offer significant advantages, such as greater resistance to high-di-
mensional data and the ability to generalize across different application domains [24]. Wang &
Cha (2021) [25], for example, proposed a hybrid methodology that combines AutoEncoders
and one-class support vector machines to detect damage in numerical and scaled models. Com-
plementarily, Finotti (2022) [24] implemented Sparse AutoEncoders for unsupervised detection
of structural changes in different experimental contexts, including a monitored laboratory

frame, the Z24 bridge, and an instrumented tower in Italy, achieving satisfactory results in
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anomaly identification. Pollastro et al. (2023) [26] explored semi-supervised methods based on
dynamic data for structural irregularity detection, employing ANNs and Variational AutoEn-
coders. Meanwhile, Spinola Neto ef al. (2024) [27] analyzed the effectiveness of four AutoEn-
coder architectures (AE, SAE, CAE, and VAE) in combination with Hotelling’s T? control chart
for identifying and quantifying structural variations in different engineering systems.
Considering the relevance and promising results of techniques based on ANNs and
AEs, which stand out among ML methods applied to structural change detection through vibra-
tion analysis, this work adopts SAE, VAE, and CAE architectures for developing an approach
in the SHM context. The choice of these models is based on their proven effectiveness, as ob-
served in the aforementioned studies, and their ability to capture structural patterns and detect
subtle changes in the dynamic behavior of structures, contributing to the advancement of struc-

tural monitoring and diagnostic methodologies.

2.2 State of the Art of SHM Strategies in the Railway Context

Railway instrumentation dates back to the 19th century, with the development of the
first track monitoring circuit by William Robinson in 1872, a system still widely used today
[28]. Since then, sensor technology has evolved significantly, enabling the precise monitoring
of parameters such as track deflection and variations in superstructure stiffness, which were
previously assessed using invasive methods [29]. Although modern and non-destructive sys-
tems, such as the track inspection train, provide detailed data, their high acquisition and mainte-
nance costs limit large-scale application [30]. Consequently, the demand for more accessible
and efficient solutions is increasing, driving research on distributed sensors and Artificial Intel-
ligence (Al)-based monitoring systems.

Traditional railway monitoring methods include visual inspections and test vehicles
equipped with sensors, allowing the identification of both apparent and non-apparent structural
failures [31,32,33]. However, these approaches have limitations, such as evaluator subjectivity,
high operational costs, and the need to interrupt railway operations [34,35,36]. Additionally,
they are not part of continuous monitoring strategies that provide real-time data, reinforcing the
need for more efficient alternatives [37,38]. In this context, technological advancements have
enabled the development of smaller, more accurate, and cost-effective sensors [28], fostering
research on Structural Health Monitoring (SHM), particularly in high-speed railway infrastruc-
ture [29]. As a result, current investigations explore SHM applied to tracks, wheels, bridges,

and tunnels, aiming for greater efficiency and reliability in structural monitoring.
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Although railway wheels have historically received less attention than other structural
components, recent studies highlight their relevance to the safety and efficiency of railway sys-
tems. Advances in monitoring technologies have enabled the detection and characterization of
failures in these components, contributing to predictive maintenance and track integrity. Guedes
et al. (2023) [1] investigated the identification of polygons in railway wheels using artificial
intelligence, analyzing the dynamic responses induced in the track by the passage of freight
wagons. The study compared feature extraction techniques, such as the AutoRegressive with
Exogenous input (ARX) model and Continuous Wavelet Transform (CWT), using Principal
Component Analysis (PCA) to reduce external interference. Additionally, a data fusion model
based on Mahalanobis distance and outlier analysis was implemented to distinguish wheels in
normal conditions from those with defects.

Complementing these advances, Jorge ef al. (2024) [39] developed an unsupervised
artificial intelligence-based method for the early detection of wear phenomena such as
polygonization and flats in railway wheels. The system analyzes dynamic responses generated
in the tracks by freight railway vehicles, covering stages such as data collection and prepro-
cessing, feature extraction, and information fusion. The methodology stands out for using a
Stacked Sparse AutoEncoder for feature compression and extraction, combined with Mahalano-
bis distance to enhance fault detection accuracy. The results indicate significant potential for
reducing maintenance costs and increasing operational safety in the railway sector.

Based on the previously discussed studies and supported by prior investigations, it has
been found that the use of ML techniques has significantly expanded within SHM applications
in the railway sector. Given the promising results obtained so far, this research aims to employ
SAE, VAE, and CAE autoencoders in SHM analysis of railway wheels with different stages of
polygonal wear. These algorithms are recognized for their ability to provide greater autonomy
and accuracy to Structural Health Monitoring methods based on Al Table 1 presents a summary
of some of the main studies developed so far in the context of monitoring and identifying OOR

wheels.

Table 1: Summary of the main studies involving SHM techniques in railway wheels.

Year Authors Contribution
) Investigation of the human response to impact noise gener-
Kaku & Yamashita o o
1988 (401 ated by flattened wheels and rail joints of electric trains in a

laboratory experiment. Compared the sound of the train
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noise containing impact components with the noise of the

train without impact components.

1991

Kumagai et al. [41]

Pioneering study on the identification of preventive
measures against wheel flattening, including the influence
of factors affecting adhesion and the relationship with mile-
age. Proposal of a new classification to assess the severity

of the problem.

1997

Bracciali & Cascini

[42]

Development and validation of an original experimental and
numerical procedure for detecting corrugation and wheel
misalignment in trains through the processing of track ac-
celeration signals using combined energy criteria and

cepstral analysis.

1999

Morys [43]

Analysis of the impact of radial wheel deviations on the
short-term dynamics of a high-speed wagon, considering its
interaction with the track. Identification of the impact of
OOR wheel shapes on normal force and their potential ef-

fect on vertical wheel acceleration and wear.

2000

Nielsen & Johansson

[6]

State-of-the-art analysis of the causes and consequences of

railway wheels with OOR defects.

2003

Johansson & Nielsen

[44]

Analysis of the influence of different types of wheel out-of-
roundness (OOR) on the vertical wheel-rail dynamic contact

force and track response.

2007

Stratman et al. [45]

Proposal of two quantitative criteria for the removal of
wheels from service, with SHM trends in real-time, devel-
oped using data collected from trains in operation. The data

are gathered using Wheel Impact Load Detectors (WILDs).

2012

Wei et al. [46]

Development of a real-time monitoring system for defects
in railway wheels using fiber Bragg grating sensors. Meas-
urement and processing of rail track deformation response
during wheel-rail interaction to generate a condition index

that directly reflects wheel status.

2017

Jing & Han [47]

Detailed numerical simulation of the dynamic wheel-rail in-

teraction response due to the impact of a flat defect on the
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wheel, considering a three-dimensional rolling model. Fac-
tors such as wheel and rail structural inertia, material defor-
mation rate, and thermal stress due to sliding friction were

considered.

2020

Wang et al. [48]

Development of a methodology for detecting defects in
high-speed train wheels in real-time, based on the Linear
Dynamic Bayesian Model (DLM). The methodology in-
cludes logic for: (i) prognosis; (ii) detection of possible out-

liers; (iii) identification of occurrence.

2021

Ni et al. [49]

Development of a probabilistic Bayesian method for online
quantitative assessment of wheel conditions in railways, us-

ing track stress monitoring data.

2023

Guedes et al. [1]

Presentation of a methodology for detecting polygonal
wheels in freight trains based on artificial intelligence tech-
niques ARX model and CWT, using dynamic responses
from a train-track interaction model that simulates train pas-
sage over a set of accelerometers installed on the rail and

sleepers.

2024

Jorge et al. [39]

Identification and classification of defects using an unsuper-
vised methodology for detecting flat and polygonal wheels
in freight rail vehicles, based on numerical dynamic re-

Sponses.

Based on the thorough review conducted, it is observed that although a wide range of

studies have been carried out on OOR wheels and, specifically, on polygonalization, there re-

mains a gap to be explored in this context. Therefore, this study presents a comprehensive com-

parative analysis of the main AutoEncoder models for damage identification in OOR wheels.

The primary objective is to provide researchers with a clear reference for selecting the most

suitable model for this application. While several studies have investigated individual autoen-

coder models, there is a lack of direct comparisons between them, making it challenging for

researchers and professionals to determine the most effective approach.
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Abstract

This study presents a comparative analysis of three AutoEncoder (AE) models — Var-
iational AutoEncoder (VAE), Sparse AutoEncoder (SAE), and Convolutional AutoEncoder
(CAE) - to detect and quantify structural anomalies in railway vehicle wheels, such as polygoni-
zation. Vertical acceleration data from a virtual wayside monitoring system serve as input for
training the AE models, which are coupled with Hotelling’s T? Control Charts to differentiate
normal and abnormal railway component behaviors. The results indicate that the SAE-T> model
outperforms its counterparts, achieving 16.67% higher accuracy than the CAE-T? model in
identifying distinct structural conditions, although with a 35.78% higher computational cost.
Conversely, the VAE-T? model is outperformed in 100% of the analyzed scenarios when com-
pared to SAE-T? in identifying distinct structural conditions, while also exhibiting a 21.97%
higher average computational cost. Across all scenarios, the SAE-T? methodology consistently
provided better classifications of wheel damage, showing its capability to extract relevant fea-
tures from dynamic signals for Structural Health Monitoring (SHM) applications. These find-
ings highlight SAE's potential as an interesting tool for predictive maintenance, offering im-

proved efficiency and safety in railway operations.



23

Keywords: Structural Health Monitoring, Railways, Damage Detection, Out-Of-Roundness,

Sparse AutoEncoder, Convolutional AutoEncoder, Variational AutoEncoder.

1. Introduction

Under normal operation, railways are subjected to traffic loads that may lead to geo-
metric wear and tear of the track and its components. When irregularities exceed design thresh-
olds, the track is deemed defective, posing risks of failure or service disruption. Such incidents
can result in high maintenance costs, economic losses, material damage, and even accidents
that threaten human lives.

Railway wheels, which bear loads, transmit traction, and guide vehicles, are subjected
to severe operating conditions that can lead to Out-Of-Roundness (OOR) or polygonization,
characterized by tread irregularities along the wheel’s circumference [1]. OOR affects wheel-
rail interaction by causing sudden changes in normal forces, increasing rolling and impact noise,
compromising comfort and safety, and potentially resulting in freight movement issues, wheel
or rail cracks, and tie damage [2,3]. Previous research indicates that hot spots, hardening effects
from brake blocks, wheel fragmentation, and eccentricity are major contributors to polygonal
wear [4,5], and manufacturing processes can also induce eccentricities [3,6]. Furthermore, high-
order polygonization at high speeds can significantly amplify axle box acceleration, wheel-rail
normal forces, and even cause wheel-rail separation when resonance occurs [7].

Traditionally, verifications related to the assessment of the degradation process of rail-
way structures are performed through visual inspections and manual measurements using de-
vices such as tachometers and leveling instruments. These techniques present significant eco-
nomic and technical challenges, particularly when applied on a large scale. Moreover, these
methods often fail to detect internal and complex anomalies, notably in the case of initial dam-
age [8], such as those associated with internal rail cracks and wheel polygonalization, compro-
mising the safety and efficiency of railway operations [9]. Early detection of these problems is
important, as the damage worsens, leading to gradual deterioration of structural functionality,
potentially exceeding acceptable safety limits and significantly increasing the likelihood of crit-
ical failures or collapses [10].

Automated railway monitoring techniques have significantly advanced in recent years,
enhancing safety and efficiency in rail operations. Advances in sensor technology [11] and

modal identification [12], which allow for feature extraction from vibration signals and data



24

processing [13], have brought new possibilities for improving structural and railway monitor-
ing, offering more precise and financially sustainable solutions [9,14,15]. A recent systematic
review highlights the growing application of Wireless Sensor Networks (WSNs) in railway
infrastructure monitoring, emphasizing their role in real-time data collection and analysis [16].
Wu et. al. (2023) [17] reviews three wheel-rail force measurement Methods - Instrumented
Wheelset (IWS), ground-based sensors, and indirect estimation - highlighting IWS as the most
mature technique, with future advancements focusing on non-destructive, wireless, and contin-
uous measurement for improved accuracy. Furthermore, the development of Al-based track-
side monitoring systems has enabled the unsupervised detection and classification of train
wheel defects, contributing to more effective maintenance strategies [2,18,19].

Specifically, a significant amount of recent research focuses on the application of ML-
assisted data-driven SHM techniques for railway wheel polygonalization detection [3,20-23].
Unsupervised Machine Learning techniques, particularly Physics-Informed Generative Adver-
sarial Networks (PI-GANSs), have shown significant promise in SHM of Vehicle-Bridge Inter-
action (VBI) systems. For instance, Zhou et al. (2025) [24] proposed a Physics-Constrained
Generative Adversarial Network (PC-GAN) for accurately estimating bridge surface roughness
from vehicle vibration responses, demonstrating its adequacy under challenging conditions and
its potential for rapid bridge pavement inspection. Moreover, Lee et al. (2025) [25] proposed
an image-to-image Generative Adversarial Network (GAN) to estimate temporal frequency
variations in Vehicle-Bridge Interaction systems, with validation through experiments confirm-
ing its effectiveness for bridge condition assessment.

Among those, particularly AutoEncoders (AEs) [13,26] have shown significant prom-
ise. AEs are a type of unsupervised ANN that learns efficient data representations by compress-
ing input into a lower-dimensional space and subsequently reconstructing it. By employing AEs
as dimensionality reduction techniques and combining them with appropriate metrics, it be-
comes possible to identify structural behaviors indicative of damage.

According to Spinola Neto et al. (2024) [27], the three most prominent AE approaches
in SHM problems are Sparse AutoEncoders (SAEs) [28], characterized by sparsity constraints;
Variational AutoEncoders (VAEs) [29], featuring probabilistic representations of the data; and
Convolutional AutoEncoders (CAEs) [30], which incorporate convolutional layers. In their
work, Spinola Neto et al. (2024) [27] compared the performance of these AEs in SHM problems
applied to structures such as frames and bridges, concluding that VAEs exhibited superior per-

formance for the analyzed structural types.
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This paper presents a comprehensive comparative study of the main AutoEncoder
models for OOR wheel damage identification. Our primary goal is to provide researchers with
a clear reference for selecting the most suitable model for this type of application. While nu-
merous studies have explored individual AutoEncoder models, there is a lack of direct compar-
isons among them, making it challenging for researchers and practitioners to determine the most
effective approach. To address this gap, this study evaluates the effectiveness of SAE, VAE,
and CAE for detecting stages of polygonization. Furthermore, to enhance the detection capa-
bilities, this paper employs an approach that combines these AE models with Hotelling's T?
Control Chart to capture and quantify structural variations in railway wheels at different stages
of polygonization.

This paper utilizes simulated data generated using computational models implemented
in ANSYS® [31], based on the Finite Element Method (FEM). This methodology is commonly
adopted in research [3,32,33] due to the significant challenges associated with instrumenting
trains with sensors such as accelerometers. As highlighted by Castillo-Mingorance et al. (2020)
[34], the harsh railway environment, characterized by vibrations, temperature fluctuations, hu-
midity, and dust, poses significant challenges to the deployment and reliable operation of elec-
tronic sensors. Moreover, the installation of these sensors often requires access to difficult-to-
reach locations and necessitates robust mounting mechanisms to ensure their integrity. Consid-
ering this scenario, numerical studies can also provide valuable insights into the robustness of

the methodology at different levels of damage or noise in the data.

2. Theoretical Conceptualization

The SHM strategy implemented in this work encompasses two main techniques:

e Unsupervised Machine Learning using AutoEncoders: This step involves the appli-
cation of VAE, SAE, and CAE models to the dynamic data. The models extract features
that effectively characterize the monitored vibration signals and serve as a dimension-
ality reduction tool. It is important to mention that the application of AEs in SHM tasks
has been showing promising results, as reported in [27].

e Hotelling's T Control Chart: This chart displays the values of the T? statistical met-
ric, which is computed from the reduced parameters obtained through the VAE, SAE,
and CAE models. The present study uses the T> Control Chart to visually and objec-
tively assess the AutoEncoder models' capability to detect structural changes in railway

wheels.
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AutoEncoders are neural network models designed to learn compact latent representa-
tions of input data to reconstruct the original data accurately. Their architecture consists of two
main parts: an encoder and a decoder. This design enables AEs to capture the data's intrinsic
features and statistical patterns. The encoder maps the input to a lower-dimensional latent space
h = f(x), trying to preserve the most relevant data features. On the other hand, the decoder
reconstructs the original data from this latent representation, denoted as r = g(h). Essentially,

it learns to reverse the transformation performed by the encoder [35], as shown in Eq. 1:

L(x,g(f(x)) (1)

where is L a loss function that penalizes the output g(f (x)), for deviating from the original
input x.

The following subsections will provide the main principles of the aforementioned tech-
niques. For further information on AutoEncoders, the reference Goodfellow et. al. (2016) [35]
is advised. Additional details on the Shewhart Control Chart (T?) can be found in Montgomery
(2009) [36].

2.1. Sparse AutoEncoder

Sparse AutoEncoders incorporate a sparsity penalty (h) into their cost function, as
shown in Eq. 2, to create sparser latent representations and increase network robustness by
focusing on distinct data features. Goodfellow ef al. (2016) [35] note that this sparsity enhances
anomaly detection. Moreover, Finotti ef al. (2023) [37] show that SAEs effectively detect be-
havioral changes in structural systems, simplifying data analysis and improving sensitivity to

relevant patterns.

Lsae = L(x, g(f(x)) + Q(h) 2)

As described in [35], the Mean Squared Error (MSE) in Eq. 3 computes the average of
the squared differences between the original values (x;) and their reconstructions ();). Its quad-
ratic penalization of larger errors makes it particularly effective for detecting anomalies, where

identifying significant deviations is fundamental.
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N
1
MSE = Nz(yi — x;)? 3)

A typical SAE network (Figure 1) features a symmetric arrangement of two encoding
and two decoding layers, with a central layer defining the latent representation h. Both the first
(encoder) and last (decoder) layers contain M neurons, matching the length of each sampled
signal, while the central layer has k neurons (k < M), thus reducing the dimensionality. The
feature vector (h) captures essential information about structural behavior and is subsequently

used as input to the T? Control Chart for structural novelty detection.
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Figure 1: Example of an SAE network structure (Finotti et al. (2021) [13]).

2.2. Variational AutoEncoder

A Variational AutoEncoder extends a standard AutoEncoder by employing a regular-
ized latent space based on principles of probabilistic Machine Learning. Instead of encoding an
input x as a single point, the encoder q4 = (f (x)| x) receives the input as a distribution char-
acterized by its mean (u,) and standard deviation (o,), from which a sample is drawn f(x)
and subsequently decoded. The decoder pgy = (x | f(x)) receives the latent variables f(x) and
the probabilistic density function provides the matrices containing the mean and covariance of
the model g(f(x)). The weights ¢ need to be learned by the ANN so that it can configure a

loss function and generate both the latent space and the output. As shown in Eq. 4, the loss
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function combines a reconstruction term, L(x, g( f (x)), and a Kullback-Leibler (KL) diver-
gence term Lg; . This regularization component organizes the latent space by aligning it with a
standard normal distribution. Similar to the SAE, in this work, the VAE models also incorporate

MSE as its loss function for comparative reasons. Figure 2 shows the structure of a general

VAE network.

Lyag = L(x, g(f(0)) + Liy, (4)

Figure 2: Example of an VAE network structure.

2.3. Convolutional AutoEncoder

Convolutional Neural Networks (CNNs) are specially tailored for grid-structured data,
including time series and images, by replacing at least one layer’s matrix multiplication with
convolution [35,38]. A Convolutional AutoEncoder applies this principle to encode and decode
data, achieving success not only in image-based tasks but also in time series analysis [27].
Through 1D convolutional layers and max-pooling (Conv + Max), the encoder extracts and
compresses relevant features; flattened and dense layers (Flat + Dense) then prepare the data
for reconstruction. The decoder reverses this procedure using up-sampling and convolutions
(Up + Conv) to restore the original data. Feature extraction in CAEs is performed through 1D

convolutions applied to each input channel, and max-pooling preserves the most informative
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responses while reducing dimensionality [27,39]. Figure 3 provides a schematic representation
of a CAE network, illustrating its encoding and decoding processes.

Like other AutoEncoders, CAE training iteratively minimizes the discrepancy between
the reconstructed and original data. The Mean Absolute Error (MAE) is commonly used as the
loss function to quantify this difference. As expressed in Eq. 5, the MAE calculates the mean
of the absolute differences across all samples in the dataset. As highlighted by Spinola Neto et
al. (2024) [27] and Jun Qi et al. (2020) [41], the MAE has been widely employed in CAE

applications, demonstrating its effectiveness in capturing complex patterns within the data.
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Figure 3: Example of a CAE network structure (Adapted from Cataltas e Tutuncu (2023) [40]).
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To conclude the AE background, Table 1 provides an overview of the characteristics that dis-

tinguish the three AutoEncoder models, allowing for a direct comparison.

Table 1: Feature analysis across different AutoEncoder implementations evaluated.

Key Features of

Model Use in SHM Advantages Disadvantages
SHM
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- Feature extraction
from vibration,
acoustic, or strain

signals.

- Promotes a com-
pact,  interpretable
feature space.

- Reduces overfitting

- Requires careful

tuning of sparsity

penalties (too
strong can lose
key information,

- Particularly good for
applications
where explainability or

interpretability of sensor

- Identifying rele- | by forcing many hid- | too weak can yield ' ‘
SAE o ' ‘ features is desired.
vant features indic- | den units to stay near | irrelevant repre- ‘ '
‘ o ' - Works well in combi-
ative of damage | zero activation. sentations). . '
. . . . nation with other mod-
through sparse acti- | - Relatively simple - Not specifically _ .
. . ' . els for dimension reduc-
vations. to implement and tailored to spatial/ |
tion.
train. temporal correla-
tions.
- Provides a probabil- | - More complex to
- Anomaly detec- | istic framework. train due to KL di- | - Enables thresholding
tion by learning a | - Good for assessing | vergence term & | onreconstruction proba-
probabilistic latent | the likelihood of | reparameteriza- bility (not just recon-
space. damage scenarios. tion trick. struction error).
A - Estimating uncer- | - The latent space can | - May produce | - Helpful for tasks
VAE
tainty in sensor sig- | capture  underlying | smoother/less where uncertainty quan-
nals. structural variability. | sharp reconstruc- | tification is important in
- Generative model- | - Can generate syn- | tion outputs, espe- | decision-making (e.g.,
ing of normal struc- | thetic "normal" data | cially for highdi- | high-stakes infrastruc-
tural behavior. for comparison or | mensional signals | ture).
data augmentation. / images.
- Learns translation- ' -Particularly wellsuited
-Image-based SHM _ ' - Less straightfor- _ _ _
ally invariant fea- ‘ | for visual inspection or
(e.g., thermo- _ ward if data is ‘
) tures, good for imag- 2D representations of
graphic ] purely 1D (e.g., )
. ing tasks. . o structural signals (e.g.,
images, structural | single vibration
CAE - Handles highdi- | spectrogrambasemeth-
surface crack detec- _ signals),  unless
mensional data more ods).

tion).
- Potentially ap-
plied to 2D/3D data

efficiently  (weight
sharing, local recep-

tive fields).

converted to 2D
representations

(spectrograms,

- Commonly used in
damage segmentation

or crack detection tasks.
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(e.g., wavefields, | - Often provides | wavelet tran
damage higher-fidelity recon- | forms).
scans). structions for visual | - Network can be-
data. come large, re-
quiring more
computational re-
sources.

2.4. Shewhart T? Control Chart

The Shewhart (T?) Control Chart is a visual statistical tool that monitors the stability
of parameters over time. Its graphical representation, consisting of data points and horizontal
control limits, allows deviations from the normal condition to be identified. When a point ex-
ceeds these limits, it indicates the presence of external factors affecting data variability, signal-
ing an out-of-control condition. In addition to its early detection capability, T? is widely recog-
nized in the scientific community for its clear and intuitive interpretation, facilitating decision-
making. Its applicability across various fields makes it a valuable tool for identifying structural
changes in data, contributing to quality and reliability improvements in SHM systems [36].

In this study, the T statistic is employed to evaluate the integrity of railway wheels
based on features extracted from AE models. This metric quantifies the distance of a new ob-
servation from the historical data mean, allowing the detection of anomalies that may indicate
damage. The magnitude of T? is directly related to data variability and correlation. By compar-
ing the calculated value to a statistically established Upper Control Limit (UCL), it is possible
to determine whether the structure operates within its normal conditions [36,37].

Although other metrics exist, such as the MSE and the Original to Reconstructed Sig-
nal Ratio (ORSR), T? proved to be more effective in identifying anomalies in the analyzed data.

Eq. 6 presents the mathematical formulation of T*:
T? = R(h—h) s~ '(h—h), (6)

where h represents the sample mean vector, while h and S are the reference mean vector and

the reference covariance matrix, respectively. The UCL was defined as the value that exceeds
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95 % of the T? values of the training data, establishing a threshold for anomaly detection
[27,37].

Thus, T? values above the UCL indicate significant changes in the data, suggesting the
presence of structural damage or other irregularities. This approach allows for continuous mon-
itoring of the structure’s condition and the implementation of corrective actions before cata-
strophic failures occur. It is important to emphasize that, by definition, 5% of the T? values from
the training data will exceed the UCL, which is not a cause for concern if they remain close to

the threshold [27,37].

3. Methodology

This work proposes an unsupervised learning approach based on three different AE
models to investigate their ability to detect and isolate simulated vibration signals from different
stages of railway wheel polygonization. These models are trained with a subset of the data to
learn the most informative latent representation for each class. When confronted with new data,
the models reconstruct a given signal and compare it with its original input. The magnitude of
the difference between these two representations, known as reconstruction error, serves as a
metric to quantify the dissimilarity between the analyzed signal and each reference class, e.g.,
“undamaged wheel", **damaged wheel level 1", etc.

As with any unsupervised AutoEncoder model-based approach for SHM, it is essential
to first establish a baseline behavior - whether normal or not - by assessing the structure’s initial
health condition. Once this baseline is defined, the monitoring procedure in our approach oper-
ates in an unsupervised manner. As new data are acquired, the Shewhart T? statistic is evaluated.
If its value exceeds a predefined threshold, the new data is considered significantly different
from the baseline, indicating a potential change in the structure’s behavior. To evaluate the
effectiveness of the proposed methodology, the data are divided into three sets: training, vali-
dation, and monitoring. Specifically, 70% of the data representing the undamaged structural
state are used for training, enabling the AE models to learn to accurately reconstruct the vibra-
tion signals associated with this condition. The remaining 30% of the undamaged state data
form the validation set, which is used to fine-tune the model’s hyperparameters and assess its
generalization capability. Finally, the model performance is evaluated using a monitoring set
composed of data from two damaged structural states. The T? statistic is employed as a metric
to quantify the distance between the latent representation new set of signals and the distribution

learned during training. The model is expected to yield significantly higher T? values for the
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monitoring data, indicating the presence of damage in the structure and demonstrating the AEs
capability to distinguish among different structural states.

For all cases analyzed in this study, the simulated dynamic signals are directly used in
the time domain as input for the AE models due to its simplicity and effectiveness. Preliminary
tests showed that reconstruction errors in the time domain were similar to those in the frequency
domain, indicating that both approaches perform equally well. Consequently, using time do-
main data was preferred, as it eliminates additional transformations, easing the data prepro-
cessing without compromising signal compression and reconstruction accuracy. Besides, the
time-domain vibration signals are standardized using the z-score normalization to ensure com-
parability between different samples and facilitate the mapping performed by AEs. The z-score
transforms the original data into a common scale with zero mean and unit standard deviation,
and it is applied before AEs process data. Eq. 7 mathematically describes this transformation,
where z represents the standardized vector, x the original vector, x# the mean of the data, and o

the standard deviation.

()

The hyperparameters for the AutoEncoders - such as the learning rate, the number of
layers, and the latent representation dimensions - were optimized using Optuna, a Python library
that applies Bayesian optimization [42]. Optuna explores the hyperparameter space through
probabilistic methods, guiding its search based on previous results to identify the best configu-
ration for minimizing the loss function. Optimizing hyperparameters in AE models is particu-
larly challenging due to architectural complexity and the non-linear interaction among param-
eters. The Bayesian approach that Optuna uses differs from traditional methods, such as grid
search and random search, once it constructs iterative probabilistic models that guide the search
toward more promising regions of the hyperparameter space. This capability is enhanced by the
Tree-structured Parzen Estimator (TPE) algorithm, which employs non-parametric distributions
to estimate the probability of superior performance across different configurations [43]. Mini-
mizing the difference in T? values between the training and validation sets ensured that the
model could effectively discriminate between different structural states, promoting adequate

generalization. Optuna performs 50 iterations to minimize the reconstruction error.
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Figure 4 provides an overview of the proposed methodology. This graphical represen-
tation facilitates the understanding of the process of analyzing and quantifying structural mod-
ifications in railway wheels.

All the simulations performed in this study were conducted in a local environment set
up in Jupyter Notebook, implemented in version 1.93 of Visual Studio Code [44]. The code
used was developed in Python, version 3.10.11, ensuring compatibility with the necessary li-
braries and tools for performing the analyses. The machine used to run the simulations is
equipped with an AMD Ryzen 5 5500 processor, 6 cores, and 12 threads, operating at 3.6 GHz
(with a boost of up to 4.2 GHz), a 19 MB cache, and compatibility with the AM4 socket. The
installed RAM consisted of a 16 GB DDR4 Mancer Dantalion Z module, with a frequency of
3200 MHz and C19 latency. In addition, the simulations were accelerated by a Mancer Radeon
RX 5500 XT Streaky graphics card, equipped with 8 GB of GDDR6-128-bit memory.

The choice of a local infrastructure, as opposed to cloud-based platforms, was moti-
vated by several reasons. Firstly, cloud environments often require specific subscriptions for
access to more powerful Graphical Processing Units (GPUs) and Central Processing Units
(CPUs), which can result in significant recurring costs for long-term projects. Additionally,
such platforms may experience disconnections after prolonged continuous use, compromising
the execution of lengthy simulations and requiring manual restarts. With the local setup, it was
possible to ensure greater control over the execution environment, continuity in data processing,
and resource optimization while maintaining the reproducibility and computational efficiency

required for this study.
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Figure 4: Flowchart of the proposed methodology.

Validation data

4. Characterization of the Simulated Data

This study uses numerical simulations to investigate the identification of polygonal
wear in railway wheels. A detailed model of a Laagrss freight train interacts with a three-di-
mensionally modeled track, considering different levels of wheel [45]. The dynamic responses
of the system are obtained and analyzed to extract features that enable the identification of
polygonal defects.

Section 4.1 describes the vehicle model, while Section 4.2 details the track modeling.
The interaction between the two is presented in Section 4.3, with emphasis on the wheel-rail
contact model. In Section 4.4, the simulation scenarios and the virtual instrumentation used for
data collection are described. Finally, Section 4.5 presents the polygonal wear profiles consid-

ered in the studies, based on real wheel data.



4.1.Railway vehicle
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The present study employed a three-dimensional numerical model of the Laagrss freight train,

consisting of five wagons and capable of reaching speeds of up to 120 km/h [2,45]. The AN-

SYS® platform (2018) [31] was used to develop a detailed 3D multi-body model, simulating

the vehicle dynamics through spring-damper elements and lumped masses. The geometry and

material properties of the model, including a tare weight of 27 t per wagon and a load capacity

of 52 t, (detailed in Table 2 and Figure 5). The vehicle was calibrated based on real data and

modal parameters outlined in the work of Ribeiro et al. (2013) [46].

The interaction between wagon components was represented using rigid beam ele-

ments, enabling an accurate analysis of the vehicle's dynamic response. The modeling method-

ology adopted, as detailed in Braganca et al. (2022) [47], allows for a precise evaluation of the

interaction between vehicle components and its influence on the system's dynamic behavior.
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Figure 5: Graphical representation of the numerical model of the railway vehicle considered

(Guedes et al. (2023) [2]).

Table 2: Parameters and adopted values for the car-body, wheel-set, and suspensions.

Parameter Symbol (Unit) Adopted Value

Car-body
Mass Mep (t)
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Roll moment of inertia Lepx (t. m?) 49
Pitch moment of inertia Lepy (t. m?) 673
Yaw moment of inertia Lep- (t. m?) 665
Length Lep (M) 10
Wheel-set
Mass my (kg) 1247
Roll moment of inertia Lvx (kg . m?) 312
Yaw moment of inertia Lz (kg . m?) 312
Suspensions
Longitudinal stiffness kix (KN / m) 44,981
Lateral stiffness kiy (KN / m) 30,984
Vertical stiffness ki- (KN / m) 1860
Vertical damping ciz (kKN . s /m) 16,7

4.2. Railroad

The numerical modeling of the track employed in this study is based on the research
conducted by Montenegro ef al. (2020) [48] and is also implemented in the ANSYS® software
[31]. The model adopts a multilayer approach to represent the interaction between the track
components, including ballast, sleepers, rails, and foundation [2,45].

Figure 6 illustrates the discretization of the model, where the rails and sleepers are
modeled using beam elements with appropriate properties. The interfaces, such as ballast and
pads/fasteners below and above the sleepers, are considered using spring and pressure point
elements in all three directions. Finally, the foundation properties were considered by a simpli-
fied approach based on a Winkler model (presented in detail in Mosleh ef al. (2020) [49]). The
3D ballast track numerical model is validated with modal parameters as presented in Ribeiro et
al. (2021) [50]. The material and geometric parameters considered in the simulation are detailed

in Table 3.

Table 3: Parameters for the numerical model of the railway track structure.

Parameter Symbol (Unit) Value
Rail Area A4, (m?) 7,67 x 107
Rail Density pr (kg / m?) 7850




Rail Second Moment of Area
Rail Young’s Modulus
Rail Pad, Longitudinal Stiffness
Rail Pad, Longitudinal Damping
Rail Pad, Lateral Stiffness
Rail Pad, Lateral Damping
Rail Pad, Vertical Stiffness
Rail pad, Vertical Damping
Sleeper Density
Ballast, Longitudinal Stiffness
Ballast, Longitudinal Damping
Ballast, Lateral Stiffness
Ballast, Lateral Damping
Ballast, Vertical Stiffness

Ballast, Vertical Damping

Foundation, Longitudinal Stiffness

Foundation, Lateral Stiffness

Foundation, Vertical Stiffness

I (m*
E.(N/m?
kpx (N / m)

Cpx(N.s/m)
kpy (N / m)
Cpy(N.s/m)
kp,-(N / m)
Cp:(N.s/m)
ps (kg / m?)
kpx (N / m)
Crx(N.s/m)
kp,y (N / m)
Cpry(N.s/m)
kv, (N / m)
Cp-(N.s/m)
krx (N / m)
kry (N / m)
krz(N / m)

30,38 x 10°°
210 x 10°
20 x 10°
50 x 10°
20 x 10°
50 x 10°
500 x 10°
200 x 10°

2590
900 x 10°
15 x 103
2250 x 10°
15 x 10°
30 x 10°
15 x 103
20 x 10°
20 x 10°
20 x 10°
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Fastner interface

Figure 6: 3D graphical representation of the numerical model of the track adopted in the study

(Guedes et al. (2023) [2]).
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The geometric specifications and simulation parameters used for the tracks and trains
analyzed in this study are also presented in detail by Mosleh et al. (2020, 2021) [49,51]. It is

recommended to consult these works for additional information on the models adopted.

4.3. Dynamic Train-Rail Interaction

The methodology used for vehicle-structure interaction analysis, detailed and vali-
dated in Montenegro et al. (2015) [52] to take into consideration the lateral dynamics alongside
vertical interaction, has been widely applied in various contexts [49,51,53-55].

The coupling is established through a validated wheel-rail contact model [52], which
is formulated using a specially designed contact finite element. This element employs a struc-
tured approach consisting of three main stages:

¢ Geometric Contact Determination: The first stage involves identifying the precise
contact point between the wheel and rail at each computational step. This is achieved
using an online method [56], where a set of nonlinear equations is solved to ensure
compatibility between the contact surfaces. Further details on the parameterization of
these surfaces and the associated geometric equations can be found in Montenegro et
al. (2015) [52].

¢ Normal Contact Force Calculation: Once the contact point is determined, the sec-
ond stage focuses on computing the normal forces exerted at the interface. These
forces are obtained using Hertzian contact theory [57], which provides an analytical
approach to estimating pressure distribution and deformation within the contact patch.

e Tangential Contact and Creep Force Computation: The final stage deals with the
forces generated due to rolling friction between the wheel and rail. The creep forces,
which arise from relative motion at the contact interface, are evaluated using the
USETAB routine [58]. In this method, precomputed values for longitudinal and lat-
eral tangential forces are stored in a lookup table, allowing efficient interpolation dur-
ing dynamic simulations based on creepage values and the aspect ratio of the Hertzian
contact ellipse.

For the dynamic analysis solver, the system’s governing equilibrium equations are
supplemented by constraint equations that link the displacements of the vehicle’s contact nodes
to the corresponding nodal displacements of the track structure. These equations form a unified
system, with both displacements and contact forces as unknowns, which is then solved using

an optimized block factorization algorithm (further details available on Montenegro et al.
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(2015) [52]). Since the numerical framework is built on the finite element method, it allows for
the modelling of both structures and vehicles of varying complexity. The current formulation
has been implemented in MATLAB® [59], whereas the vehicle and track structures are mod-
elled in ANSYS® [31], as illustrated in Figure 7. A more in-depth discussion of the train-track
interaction tool and the wheel-rail contact model, along with their validation, is provided by

Montenegro et al. (2015) [52].
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Figure 7: Representation of the numerical modeling steps that form the study model, and the
wheels considered in the analysis highlighted. (Adapted from Mohammadi et al. (2023) [60]).

4.4.Simulated Scenarios

For the early detection of wheel polygonization stages, a virtual monitoring system
was implemented to acquire the dynamic data evaluated in this study. Following the recom-
mendations of Mosleh et al. (2022) [61,62], the instrumentation focused on the track, specifi-
cally the rail, as sensors placed near the rails are more promising in achieving satisfactory re-
sults. Six accelerometers were strategically positioned at the midpoint between sleepers, as
shown in Figure 8, to capture vibrations induced by train passages. This configuration enables
the precise identification of vibrational signatures characteristic of defective wheels, allowing
intervention before more severe damage occurs.

To evaluate the effectiveness of the proposed method for detecting polygonalized
wheels, numerical simulations were conducted under a variety of operating conditions. The
simulation dataset included both reference scenarios, characterized by the absence of defects,

and scenarios with two distinct stages of wheel wear. This approach enabled the validation of
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the method’s ability to accurately reproduce experimental data obtained under real-world con-
ditions, including cases involving multiple stages of polygonalization. The simulations were

performed considering a nominal speed of 80 km/h.

@ ®)
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Figure 8: Virtual wayside monitoring system with accelerometers positioned mid-span be-
tween sleepers: (a) Back view; (b) Top view. (Adapted from Magalhaes et al. (2024) [3]).

The analysis of the simulation data focused on three distinct cases: (i) a reference sce-
nario, characterized by the absence of defects in the front right wheel of the first wagon; (ii) a
polygonalization scenario in the rear left wheel of the third wagon (Damage 1); and (iii) a po-
lygonalization scenario in the rear right wheel of the fifth wagon (Damage 2). For each case,
10 numerical simulations were performed. The selection of these specific cases was driven by
the need to assess the method's ability to detect damage in different positions along the train.
Figure 7 provides a graphical visualization of the various wheel positions considered in the
simulated scenarios.

To prepare the simulation data for training the AE model, a preprocessing step was
carried out. Each complete simulation, consisting of 39.169 data points, represented the full
dynamic signal of the train in a given scenario. However, the high data volume and the limited
number of samples per scenario (only 10 simulations) could compromise training effectiveness
and increase computational costs. Given this context, each simulation of each of the scenarios
was segmented into 10 smaller parts, each containing 3.916 points. This strategy significantly
expanded the training dataset from 30 simulations to 300 simulations without compromising
the representativeness of the original data. Data segmentation is a common practice in Machine
Learning, especially when dealing with time series, as it aims to optimize the training process

and enhance the model's generalization capability. Table 4 presents a comparison of the number
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of signals per scenario before and after segmentation, highlighting the substantial increase in

the number of samples available for training, validation, and monitoring.

Table 4: Comparison of data before and after segmentation for each scenario.

Number of Number of Points per
Points per
Scenario Samples Samples Sample
Sample (After)
(Before) (After) (Before)
No Damage
10 100 39.169 3.916
(Reference)
Damage 1 (Left
Rear Wheel, 10 100 39.169 3.916
3rd Wagon)
Damage 2
(Right Rear
10 100 39.169 3.916
Wheel, 5th
Wagon)

The acceleration data, collected in baseline and damaged scenarios, were prepared for
numerical simulation through the application of a second-order Chebyshev type II low-pass
filter. With a cutoff frequency of 500 Hz, this filter attenuates high-frequency components,
isolating the dynamic characteristics of interest. To simulate real operating conditions, random
noise with a normal distribution was added to the filtered signals, representing the inherent
uncertainties and disturbances in the system. The 10 kHz sampling rate ensures adequate tem-

poral resolution for capturing the system's fast dynamics.

4.5.Wheel polygonization profiles

The wheels of railway vehicles, although designed to be circular, often present irregularities
that significantly affect the dynamic performance of the system. One such imperfection, known
as polygonization, consists of radial undulations along the tread. The severity of these undula-

tions, when greater than 0.2 mm, can induce considerable variations in the wheel-rail contact
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forces, generating vibrations and noise. The geometric characterization of polygonization in-
volves the calculation of the wavelength (1) of the irregularities, which is a function of the
wheel radius (Ry) and the harmonic order (6) of the undulation, as expressed by Eq. 8, where 6

takes positive integer values.

2R
A= HW, 0=1,23,..,n (®)

To cover a wide range of operating conditions, two sets of wheel profiles were gener-
ated for the numerical simulations. These profiles were constructed from real wheel data, both
under initial polygonization damage conditions (Damage 1) and under more severe polygoni-
zation damage conditions (Damage 2), with their respective irregularity spectra presented in

Figure 9.
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Figure 9: Amplitude spectra of wheel irregularity (Lw) and harmonic order (0) in: (a) undam-
aged polygonal wheel (Johansson et al. (2005) [63]), (b) damaged polygonal wheel (Cai et al.
(2019) [64]).

The measurement data used to characterize the wheel profiles were obtained from two
main sources: {i} Johansson et al. (2005) [63] provided data for intact polygonal wheels (dam-

age 1), with a wavelength spectrum extending across 20 harmonics, ranging from 0.135 to 2.7
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meters (Figure 9a); {ii} Cai et al. (2019) [64] provided data for polygonal wheels with damage
(damage 2), where the first 30 harmonics were considered. For these latter data, the 6th to 8th
harmonic orders were predominant, indicating a specific wear pattern.

A variety of wheel profiles with different levels of irregularities were numerically syn-
thesized. The methodology employed involved the superposition of multiple sinusoidal func-

tions (H=30), as described in Eq. 9.

H
2
W) = ) Agsin(S Xy + o) ©)
6=1

The amplitude of each sinusoidal component, Ay, was determined using Eq. 10, where

Wy, represents a reference wavelength.

Ly
Ap = V2.1020 . @, (10)

Figure 9 illustrates the irregularity spectra used to calibrate the numerical models, both
for the initial polygonization condition (Figure 9a) and for the severe polygonization condition
(Figure 9b). For each spectrum, a set of profiles was generated by randomly varying the initial
phases g of the sinusoidal functions within the range of 0 to 2r. This approach enabled the
simulation of the inherent randomness associated with wheel manufacturing and wear pro-
cesses. The high similarity between the acceleration signals obtained for healthy wheels and
those with different levels of polygonization can be verified in Figure 10. This figure illustrates
the complexity of the task of classifying defects in railway wheels using Machine Learning
techniques. The small variation in signal amplitude and the similarity between them make the
distinction between the classes a complex task, requiring the extraction of high-order features

for accurate classification.
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Figure 10: Original signals from accelerometer 1 for the conditions: (a) No damage; (b) Dam-
age 1; (c) Damage 2.

5. Application of the Proposed SHM Methodology to Numerical Data

5.1. Analysis of Reconstruction Results

The original vibrational response and its respective reconstruction made by VAE,
SAE, and CAE models for the first accelerometer of each simulated scenario are presented in
Figures Figure /1, Figure /2, and Figure 13, respectively. The results of the other accelerome-
ters were similar to those presented and thus, were omitted. The optimal hyperparameters for
the AutoEncoders, determined using Optuna, are listed in Table 5. They are applied in both the

training and validation of the models.
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Figure 11: Original and reconstructed signals by the CAE model for accelerometer 1: (a)
Training of damage class 0; (b) Validation of damage class 0; (c¢) Testing of damage class 1;

(d) Testing of damage class 2
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Figure 12: Original and reconstructed signals by the SAE model for accelerometer 1: (a)
Training of damage class 0; (b) Validation of damage class 0; (c) Testing of damage class 1;

(d) Testing of damage class 2.
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Figure 13: Original and reconstructed signals by the VAE model for accelerometer 1: (a)
Training of damage class 0; (b) Validation of damage class 0; (c¢) Testing of damage class 1;
(d) Testing of damage class 2.

Except for the VAE, which exhibited difficulties in fully reconstructing all signal clas-
ses, both SAE and CAE demonstrated a good ability to represent the original characteristics of
the data. A comparative analysis of the latent representations reveals a clear gradient in recon-
struction similarity relative to the original signal, with classes closer to Class 0 exhibiting higher
fidelity. This trend suggests that both the SAE and CAE can capture the structural nuances of

the data, enabling the accurate identification of anomalies and changes in behavioral patterns.

Table 5: Optimized hyperparameters used in autoencoder models.

Hyperparameter CAE SAE VAE
learning_rate 0.000688171 0.000690141 0.00000104471
epochs 283 306 140
batch_size 5 32 12
original dim 3916 3916 3916
intermediate_dim - - 2170
latent dim 157 345 214
optimizer adam adam adam

lambda_sparse - 0.00003972 -
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Visualization of the results obtained using Shewhart's T? Control Chart (Figure 14 to
Figure 16) confirms the effectiveness of the autoencoders in detecting anomalies. Analysis of
the data from accelerometers 1 to 4 reveals a clear separation among classes, indicating that the
models can discriminate between different operating conditions. This separability is particularly
evident for the SAE and CAE models, corroborating the results of the qualitative analysis of

the reconstructions.
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Figure 14: Shewhart T? Control Charts for the analysis of the CAE model. (a) Accelerometer
1; (b) Accelerometer 2; (¢) Accelerometer 3; (d) Accelerometer 4.
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Figure 15: Shewhart T? Control Charts for the analysis of the SAE model. (a) Accelerometer
1; (b) Accelerometer 2; (¢) Accelerometer 3; (d) Accelerometer 4.
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Figure 16: Shewhart T? Control Charts for the analysis of the VAE model. (a) Accelerometer
1; (b) Accelerometer 2; (c) Accelerometer 3; (d) Accelerometer 4.

The analysis of Figure 14 and Figure 15 reveals a good agreement between the T?

results obtained by the CAE and SAE models in both training and validation classes. This sim-

ilarity indicates a generalization capability of the models, i.e., their ability to accurately classify

data not used during training. The VAE model, as illustrated in Figure 16 and corroborated by

Figure 19, exhibits mixed results. In some cases, a less evident separation between validation

and monitoring data is observed, as indicated in Figure 16b and Figure 16c. In other cases, it is



50

possible to identify an overlap between damage classes 1 and 2, as evidenced in Figure 16a and
Figure 19a. Furthermore, the model suggests a convergence of damage classes 1 and 2 with the
training and validation data, as demonstrated in Figure 16d and Figure 19d. These mixed be-
haviors and inconsistencies highlight the difficulty of the VAE in capturing the intrinsic char-
acteristics of the data and, consequently, in generalizing to new datasets.

Except for the VAE model, all proposed methodologies demonstrated sensitivity to
structural changes, as evidenced by crossing the Upper Control Limit in the monitoring classes.
The VAE model, in none of the six evaluated scenarios, exhibited sensitivity to structural
changes, as previously discussed, showing varied behaviors and being outperformed in 100%
of the cases by the SAE methodology and in 83.33% of the cases by the CAE methodology.
However, the comparative analysis of the results indicates that the SAE methodology stands
out in precisely quantifying these changes. When comparing the performances of the CAE and
SAE models, the latter proved to be more effective in quantifying the magnitude of structural
changes. Although both models show an increase in T? values as damage severity increases, the
SAE provides a clearer separation between damage classes 1 and 2, indicating higher sensitivity
to subtle variations in the data. Furthermore, among the six accelerometers evaluated, the SAE
methodology did not present any overlap of the whiskers in the box-plots for monitoring data,
whereas the CAE methodology exhibited whisker overlap for accelerometer 4, as shown in
Figure 14d. These results reveal a 100% accuracy rate for the SAE model compared to 83.33%
for the CAE model.

For a more detailed visualization of the T? value distributions and to facilitate model
comparisons, box-plots were constructed (Figure 17, Figure 18, and Figure 19). These graphs
enable the identification of the variability in T? values for each model and scenario, as well as
highlight potential outliers. The analysis of the box-plots supports the previous conclusions,
emphasizing the superiority of the SAE methodology in detecting and quantifying structural

changes.
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When submitting an AutoEncoder trained with data representative of a healthy struc-
tural state to new data from the same state, it is expected that the latent representations exhibit
small variations around a central value, as evidenced by T? values close to the mean. This ob-
servation reflects the model's ability to capture the intrinsic characteristics of the healthy state.
However, when the model is exposed to data from a damaged state, the latent representations
tend to deviate significantly from the learned pattern, manifesting in high T2 values. This diver-
gence results from the model's inability to adequately reconstruct anomalous data, revealing the
presence of damage or anomalies in the structure.

The results obtained in this study support the theoretical expectations, with the excep-
tion of the VAE. Specifically, for the SAE and CAE models, damage classes 1 and 2, associated
with structural damage in railway wheels, exhibited significantly higher T? values, indicating a
clear correlation between the severity of the damage and the distance of the latent representa-
tions from the mean. This trend demonstrates the effectiveness of AutoEncoders in quantifying
structural damage severity, with SAE and CAE showing greater sensitivity to changes in data
characteristics.

The comparative analysis between the CAE and SAE models revealed good perfor-
mance in discriminating between different damage classes, with no overlap between the whisk-
ers of the box-plots corresponding to distinct classes. However, the SAE model proved to be

more sensitive to damage gradations, showing greater separation between damage classes 1 and
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2. This observation suggests that SAE may be more suitable for accurately quantifying degra-
dation stages.

In contrast to the results obtained for the CAE and SAE models, the VAE faced chal-
lenges in distinguishing between different levels of irregularities, as shown in Figure 19. The
significant overlap between the box-plots corresponding to validation data and damage class 1,
along with the deviation between training and validation data, indicates that the model failed to
effectively capture the distinctive features of these classes. Although the results for accelerom-
eters 2 and 3 were relatively acceptable, the same does not apply to accelerometers 1 and 4, as
their box plots showed significant overlap. This limitation may be attributed to various factors,
such as problem complexity, model architecture, and even the range of hyperparameters used

in optimization performed by Optuna.

5.2. Computational Processing Times

To ensure reproducibility, result accuracy, and feasibility verification for model application,
each stage of the experiment — from data loading to the final damage assessment using the T?
index — was timed. The systematic repetition of the training, validation, and testing stages,
along with the application of T?, the generation of box-plots, and damage index quantification,
guaranteed the reproducibility of the results. For each AE model, procedures were executed six
times using the available accelerometers. The average execution times obtained for each model

are presented in Table 6.

Table 6: Individual time per accelerometer and average execution time for each autoencoder.

Accelerometer CAE SAE VAE
1 3h27min33s 5h28minl7s 5h45min55s
2 3h34minlls 5h27min52s 6h53min19s
3 3h33minl2s 5h35min50s 6h55min36s
4 3h31min0O1s 5h19min23s 8h19min21s
5 3h36min28s S5h45min34s 7h20min29s
6 3h24min27s Sh15min52s 6h54min23s

Average Time

3h31min9s

S5h28min48s

ThO01min21s
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The evaluation of execution times across different methodologies revealed a clear hi-
erarchy of computational complexity. Variational AutoEncoder models exhibited the longest
processing time, averaging 7h01min21s. This characteristic is intrinsic to the probabilistic na-
ture of VAEs, which require inference of complex latent distributions. In contrast, Sparse Au-
toEncoder models demonstrated an average execution time of 5Sh28min48s, indicating a con-
siderable reduction compared to VAEs. Convolutional AutoEncoders emerged as the most ef-
ficient approach, with an average execution time of 3h31min9s, representing a 35.78% reduc-
tion compared to SAE and 50.11% compared to VAE. This computational performance ad-
vantage can be attributed to the convolutional architecture, which weights the hierarchical struc-
ture of the data and reduces the number of parameters to be estimated.

Despite the differences observed in execution times, it is interesting to highlight that,
in a practical context, the average values obtained for all methodologies were quite reasonable.
Furthermore, although the computational cost is relevant, it does not represent a hindering bar-
rier to the application of any of these techniques. Consequently, the choice between VAE, SAE
and CAE models should be guided mainly by the quality of the results produced and the suita-

bility of each model to the specific problem under investigation.

6. Conclusions

In this study, three AE-based methodologies, combined with Hotelling's T? statistics,
were compared to detect and quantify structural changes in railway wheels. SAE-T? stood out
for its accurate anomaly detection and computational efficiency, outperforming VAE-T? and
CAE-T2 VAE, on the other hand, faced challenges in generalizing and correctly classifying
data. While CAE-T? produced promising results, SAE-T? proved to be slightly more accurate
in distinguishing between different levels of damage analyzed. Hyperparameter optimization
proved to be important in enhancing models' performances, as evidenced by the variation in the
results obtained for each model and structure.

The choice between SAE and CAE methodologies depends on factors such as runtime
and available computational resources. SAE-T? is more accurate, while CAE-T? is faster. Con-
sidering current technological advances and available data processing capacity, runtime does
not necessarily constitute a significant impediment for SAE-T2. VAE, however, proved to be

less effective due to difficulties in adjusting the suggestion range of its hyperparameters.
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For future research, we propose the development of real-time monitoring systems cou-
pling IoT (Internet of Things) with cloud computing to detect anomalies in an automated man-
ner. Additionally, exploring advanced machine learning techniques, such as reinforcement
learning and generative adversarial networks, may lead to significant advancements in SHM.
Incorporating time-frequency analysis techniques may also enrich data analysis and enable the
detection of subtle changes in structural behavior. Furthermore, to validate the methodology
developed in this work, an experimental campaign will be planned, in which vehicles with

wheels defects properly characterized will pass through an instrumented section of the track.
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4 FINAL CONSIDERATIONS

This study focused on the comparison of three AutoEncoder (AE) architectures for de-
tecting and quantifying structural anomalies in railway vehicle wheels, highlighting the appli-
cation of Machine Learning techniques in Structural Health Monitoring. The results demon-
strated that the approach based on the Sparse AutoEncoder (SAE) model, combined with sta-
tistical analysis using the Hotelling T? control chart, exhibited superior performance in accu-
rately classifying the structural conditions of the wheels, despite a higher computational cost
compared to the Convolutional AutoEncoder (CAE) model.

The evaluation of the models revealed that VAE faced significant limitations in gener-
alizing damage patterns, resulting in lower efficiency in distinguishing between normal and
anomalous conditions. On the other hand, CAE showed potential for applications where com-
putational efficiency is prioritized, although its accuracy was slightly lower than that of SAE.
The optimization of hyperparameters proved to be a fundamental factor in enhancing model
performance, highlighting the need for careful calibration for each specific application.

Considering technological advancements and the increasing availability of computa-
tional resources, adopting more precise methodologies, such as SAE-T?, tends to be a viable
alternative for real-time structural monitoring applications. However, the choice between SAE
and CAE should consider specific processing demands and execution time. In particular, the
practical implementation of these models in real railway systems requires a thorough analysis

of operational conditions and the inherent challenges in acquiring vibration data in the field.

4.1 Future works

For future research, we propose:

e Integrate IoT and cloud computing solutions: Automate anomaly detection and
enhance the efficiency of structural monitoring.

e Explore advanced machine learning techniques: Investigate reinforcement learn-
ing and generative adversarial networks to improve the identification of complex
patterns.

e Conduct experimental validation: Perform controlled environment testing to con-

solidate the proposed methodology’s application in real-world scenarios.



