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RESUMO

Nas operagoes ferroviarias, diversos fatores criticos devem ser analisados, incluindo
custos operacionais, cronogramas de manutencao e falhas de componentes. Entre esses, a
analise das falhas em Hot Box e Hot Wheel é particularmente importante, pois tais falhas
podem comprometer toda a operacgao, levando a acidentes graves como descarrilamentos
de trens. Portanto, empregar um método robusto para classificar essas falhas é essencial

para a prevencao de acidentes.

Esta pesquisa introduz uma abordagem inovadora utilizando um Perceptron Multi-
camadas (MLP) combinado com Set-Membership para a classificagdo bindria de falhas em
Hot Box e Hot Wheel. A flexibilidade do MLP permite que ele aprenda de forma eficaz
com a natureza complexa e nao linear dos dados, enquanto a técnica de Set-Membership
contribui para a redugao da complexidade computacional, convergéncia rapida e alta

precisao.

O proposto Set-Membership Multilayer Perceptron (SM-MLP) se destaca dos
modelos existentes ao se destacar na aprendizagem de padroes intricados de dados e se
adaptar a novos dados sem a necessidade de re-treinamento frequente. Essa adaptabilidade
garante uma solucao mais eficiente e eficaz para a previsao de falhas. Além disso, o
algoritmo demonstra um desempenho superior em termos de precisao e outros métricos

em comparacao com métodos anteriormente relatados.

Para validar a eficacia da abordagem proposta, foi realizada uma analise compara-
tiva envolvendo doze algoritmos diferentes aplicados a oito conjuntos de dados distintos.
Sete desses conjuntos de dados sao benchmarks padrao, enquanto o oitavo é composto
por dados de falhas em Hot Box e Hot Wheel. Os resultados destacam as capacidades
preditivas aprimoradas do SM-MLP e seu potencial para melhorar significativamente a

seguranca nas operagoes ferroviarias.

Palavras-chave: Set-Membership. Multilayer Perceptron. Hot Box and Hot Wheel



ABSTRACT

In railway operations, several factors must be analyzed, such as operation cost,
maintenance stops, failures, and others. One of these important topics is the analysis of
the Hot Box and Hot Wheel due to the failure of these components. It can compromise
the entire operation, resulting in serious accidents, such as train derailments. Thus, the

use of a method that is able to classify a failure is essential for accident prevention.

The innovative use of Multilayer Perceptron combined with Set-Membership for
the Hot Box and Hot Wheel binary classification problem enhances failure prediction
and contributes to accident prevention. Unlike the reported models in the literature,
Set-Membership Multilayer Perceptron excels in learning from the non-linear and intricate

patterns of this dataset.

In addition, as aforementioned, its ability to update representations and patterns
with new data avoids frequent retraining, ensuring a more efficient and adaptable solution.
Besides that, the proposed work presents a better performance in terms of Accuracy
and other metrics compared to other literature works. To validate the performance, we
compare twelve algorithms applied in eight datasets, seven of which are benchmarks, and

one is composed of Hot Box and Hot Wheel problems.

Keywords: Set-Membership. Multilayer Perceptron. Hot Box and Hot Wheel
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1 INTRODUCTION

Rail transportation is an efficient and reliable mode of transportation that has been
used for centuries, making it an ideal choice for both passenger and cargo transportation
(CHONG; SHIN, 2010). Besides being efficient, rail transportation is also cost-effective. It
is often cheaper to transport goods and people by train than by air or road, for instance.
This makes rail transportation an attractive option for businesses that need to move large
quantities of goods over long distances. In this context, a great number of trains are
used constantly, which may promote stress in these trains’ components, causing a lifetime
reduction and, consequently, increasing the maintenance costs. An example is presented
in (TARAWNEH et al., 2020) and (TARAWNEH et al., 2009), which describe the heating

in the wheels and bearings, which can cause failure, resulting in catastrophic derailments.

Moreover, rail transport plays a crucial role in reducing environmental impacts
due to its lower greenhouse gas emissions compared to other modes of transportation
(AGENCY, 2019). The high energy efficiency of trains makes them a sustainable option
for mass transit and freight movement (WEE; BRINK; NIJLAND, 2010). According to
the International Energy Agency (IEA), rail accounts for only 2% of total transport energy
demand but carries 8% of the world’s passengers and 7% of freight transport (AGENCY,
2019). This highlights the significance of rail systems in global transportation networks.
Thus, it is essential to observe the components involved in rail transportation to decrease

maintenance costs and improve their performance.

Machine Learning models have been increasingly used by the railway industry as
a tool for detecting and predicting train failures, improving safety and reliability while
reducing costs. Such algorithms can analyze vast amounts of data from various sources
to identify patterns and anomalies that may indicate potential failures. This can enable
railroads to detect and address issues before they cause disruptions or safety incidents.
For example, logistic regression, random forest, and gradient boosting models were used
by (WANG; LIU; BIAN, 2022) to build a data-driven approach for broken rail prediction.
In (GUO; QIAN; SHI, 2021), the authors propose a real-time and cost-effective computer
vision-based framework to inspect track components, all based on the convolutional neural
network structure YOLOv4. Their model outperformed other models in terms of both
accuracy and processing speed. (AGUIAR et al., 2018a) proposed a model for classifying
faults in switch machines, which are devices that allow railway trains to be guided from
one track to another. Their model relied on interval singleton Type-2 fuzzy logic and was
compared to other models reported in the literature, demonstrating the effectiveness of

the proposed classifier.

Additionally, deep learning techniques such as Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) have been applied for fault diagnosis
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and predictive maintenance in rail systems (ZHENG et al., 2017a). These models can
handle complex data structures and temporal dependencies, making them suitable for
analyzing sensor data collected from various components of the railway infrastructure
(LIU; ZHANG; YANG, 2019). In (YANG; SUN; LI, 2018), a deep learning approach was
developed to detect anomalies in high-speed railways, achieving high detection accuracy

and timely identification of potential issues.

Regarding maintenance, (BUKHSH et al., 2019) states that railroad infrastructure
managers lack the tools and decision support models that could assist them in making
maintenance decisions effectively and efficiently. In this way, they propose the use of
decision trees, random forests, and gradient boosted trees to predict maintenance needs,
activity type, and trigger status of railway switches. (SHARMA et al., 2018) also address
this issue by developing a data-driven based on the Markov Chain and Bernoulli Process

model for the inspection and maintenance of track geometry.

Furthermore, the integration of Internet of Things (IoT) devices with machine
learning models has enabled real-time monitoring and predictive analytics in railway
maintenance (ALONSO et al., 2018). IoT sensors collect data on temperature, vibration,
and other critical parameters, which are then analyzed using machine learning algorithms
to predict failures before they occur (GHATE; DEOSKAR; GOHIL, 2020). This predictive
maintenance approach reduces downtime and maintenance costs while improving safety
and reliability (JAVED; LARIJANI; AHMADINIA| 2020).

Another approach found in the literature is the Set-Membership. This method is
derived from the adaptive filter theory and presents some important elements to be applied
in rail transportation classification, such as fast convergence, reduced computational
complexity, and high accuracy. In this context, several methods applying Set-Membership
(SM) and Fuzzy Logic Systems (FLS) have been proposed, as noted in (AGUIAR et al.,
2016; AGUIAR et al., 2017; AGUIAR et al., 2018b; AGUIAR et al., 2020; FONSECA;
AGUIAR, 2022). In (AGUIAR et al., 2016) is presented the method Type-1 Fuzzy
Logic System (FLS), and in (AGUIAR et al., 2017) is presented the FLS combined with
Set-Membership that provides a better classification ratio, fast convergence speed, and

low computational complexity.

Although the method presented some advantages, it could not model and minimize
the effects of some uncertainties. In (AGUTAR et al., 2018b), a Type-2 FLS method, also
combined with Set-Membership, was proposed that provided a more comprehensive model
of uncertainties. In order to reduce the computational complexity compared with Type-2
FLS in the training phase, under a number of epochs, the Mean Square Error Type-2
FLS (MSE T2-FLS) was presented in (AGUIAR et al., 2020). However, this method also
resulted in a high complexity due to a larger number of parameters and dimensions. To
overcome this issue, the Adam Upper and Lower Singleton Type-2 FLS (ULST2-FLS)
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method, based on the ULST2-FLS, was proposed in (FONSECA; AGUIAR, 2022). This
method is less complex, has fast convergence during the training phase, and requires
fewer hardware resources. Despite these advantages, these methods have limitations
such as difficulty in learning non-linear patterns in training data, lower ability to learn
complex patterns, and inability to update their representations and patterns with new

data obtained from learning.

Set-Membership methods have also been applied in other domains of railway
engineering. For instance, in (ZHAO; WANG; HO, 2015), a Set-Membership filtering
approach was utilized for fault detection in railway traction systems. The method
demonstrated robustness against uncertainties and disturbances, improving the reliability
of the fault detection process. Additionally, adaptive Set-Membership algorithms have
been developed for parameter estimation in dynamic systems within railway applications
(XU; WANG; HO, 2016).

One way to get around these problems may be through the use of Multilayer
Perceptron (MLP), which has good accuracy in classifying systems with complex patterns
and generates a model that can classify new data even if it has never seen it before,
thus making it more generalist than the other aforementioned models (WASSERMAN;
SCHWARTZ, 1988). In (GARDNER; DORLING, 1998) is described the MLP presenting
the concept and the applications in general, such as prediction, function approximation,

and pattern classification.

MLPs have been successfully applied in various railway-related problems. For
example, in (NunEZ; ROCCA; SCHUTTER, 2015), an MLP-based model was developed
for predicting train delays, utilizing historical data to improve the accuracy of predictions.
Another study (LIU; LIU; HUANG, 2018) employed MLPs for rail defect classification
using ultrasonic signal processing, achieving high classification accuracy. The capability
of MLPs to learn complex, non-linear relationships makes them suitable for modeling

intricate systems within the railway industry.

Based on the points described above, this work proposes a new classification
algorithm for complex patterns and generalist dataset, using Set-Membership and MLP
called Set-Membership Multilayer Perceptron (SMMLP). Thus, in addition to achieving
better performance, the approach has fast convergence and we also explore the potential for
complexity reduction. We also use the technique to classify binary classification datasets
from the UCI Machine Learning Repository (DUA; GRAFF, 2017) and the Knowledge
Extraction based on Evolutionary Learning (KEEL) Repository (DERRAC et al., 2015)
for the aim of evaluating performance. Additionally, they are employed to classify the
accuracy of Hot Box (HB) and Hot Wheel (HW) detection systems and identify false
indications in order to minimize unnecessary maintenance. The dataset used for this is

composed of temperature measurements taken on train wheels and bearings by Hot Box
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and Hot Wheel detection systems. MRS Logistica S.A., a Brazilian railroad company
(<https://www.mrs.com.br>), donated this dataset.

In the literature, numerous studies have been conducted; however, we have not come
across any papers utilizing hot box and hot wheel data for bearing failure classification
due to overheating, except for the work referenced in (FONSECA; AGUIAR, 2022). As
a result, in contrast to (FONSECA; AGUIAR, 2022), our technique introduces a novel
approach that can learn directly from data using backpropagation and gradient descent
without requiring human-defined rules and membership functions. In addition, it can
generalize well to unseen data if trained properly. Furthermore, our method demonstrates
exceptional performance compared to the approach presented in (FONSECA; AGUIAR,
2022).

Moreover, the integration of SM and MLP provides a robust framework for handling
uncertainties and non-linearities inherent in railway system data (CHEN; WANG; LI, 2020).
The proposed SMMLP technique leverages the advantages of both methods, resulting in
improved classification accuracy and computational efficiency. This hybrid approach is
expected to contribute significantly to predictive maintenance and fault detection in the
railway industry (LI; ZHOU; WANG, 2021).

1.1 MAIN CONTRIBUTIONS

Thus, the main contributions of this work are summarized as follows:

« We introduce the concept of SM, Mean Square Error (MSE), Variable Step Size
(VS), Modified Variable Step Size Adaptive (MVSA), and Nearest Neighbors (NN)
combined with MLP in order to reduce the hardware resource demand during the

training phase, increasing the accuracy and convergence speed.

» We propose the Enhanced Set-Membership (ESM) combined with the MLP, resulting
in an improved version of the SMMLP. This proposal is called Enhanced Set-
Membership Multilayer Perceptron (ESMMLP). We also propose an extended
enhanced implementation from MSE, MVS, MVSA, VS, Variable Step Size Adaptive
(VSA), and NN combined with SM, in order to obtain a training phase with increased

accuracy and convergence speed, requiring less use of hardware resources.

o We evaluate the performance of the proposed techniques by using binary classification
problem datasets from the UCI Machine Learning Repository (DERRAC et al., 2015)
and Knowledge Extraction based on Evolutionary Learning (KEEL) Repository
in terms of convergence speed, accuracy, Loss, Cohen’s kappa, and F-score. This

performance study allows for a comparison between the suggested techniques and
the MLP’s earlier model.
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We conduct extensive experiments on real-world railway data, specifically focusing
on Hot Box and Hot Wheel detection systems. Our technique demonstrates superior
performance in distinguishing between true and false alarms, thereby aiding in

reducing unnecessary maintenance actions.

We provide a comprehensive analysis of the computational complexity and resource
requirements of the proposed SMMLP and ESMMLP techniques, highlighting their

suitability for deployment in real-time railway monitoring systems.

We compare our proposed techniques with state-of-the-art machine learning, show-
casing the advantages of our approach in terms of accuracy, convergence speed, and

hardware efficiency.
Our major conclusions are as follows:

The integration of the Set-Membership (SM) concept with the Mean Squared Er-
ror (MSE) demonstrates a significant impact on improving the efficiency of the
Set-Membership Multilayer Perceptron (SMMLP) during the training phase. By
leveraging the selective update mechanism of SM, the model achieves effective
training within a constrained number of epochs, reducing unnecessary computa-
tions while maintaining high performance. This approach also opens the door to
studying the possibility of complexity reduction, as the selective updates ensure that
computations are performed only when the error exceeds a predefined threshold.
Notably, in certain instances, the technique achieved remarkable efficiency, with re-
duction percentages of up to 99.94%, suggesting its potential suitability for real-time

applications where computational efficiency is critical.

SM concept is highly applicable to the problem addressed, primarily due to the

improved classification ratios returned by the proposed technique.

The proposed SMMLP and ESMMLP techniques significantly outperform traditional
MLP models in terms of classification accuracy on both benchmark datasets and

real-world railway data.

The techniques exhibit fast convergence, making them ideal for applications where
quick learning from data streams is essential, such as online monitoring systems in

rail transport.

Our approach effectively handles the non-linear patterns and uncertainties present
in the railway datasets, leading to more reliable and robust predictive maintenance

strategies.
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1.2 WORK STRUCTURE

1. Chapter 2 presents a literature review along the concepts of Multilayer Percep-
tron, Learning Rate, Set-Membership, and the use of Artificial and Computational

intelligence in railway transportation.

2. Chapter 3 presents a problem formulation, providing full details on the real problem

treated in this thesis.
3. Chapter 4 describes the Set-Membership combined with Multilayer Perceptron.
4. Chapter 5 presents the results obtained in this thesis and discusses concerning these.

5. Chapter 6 presents the main conclusions and future works of this thesis.
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2 LITERATURE REVIEW

2.1 THE MULTILAYER PERCEPTRON AND SET-MEMBERSHIP

The Multilayer Perceptron (MLP) model is part of the Artificial Neural Network
(ANN) class (YEGNANARAYANA, 2009), along with the Convolutional Neural Networks
(CNN) (HENAFF; BRUNA; LECUN, 2015), Long Short-Term Memory (LSTM) (GRA-
VES; GRAVES, 2012), and Recurrent Neural Networks (RNN) (KATTE, 2018).

MLPs are universal function approximators, as proven by Cybenko (CYBENKO,
1989), which means they can approximate any continuous function given sufficient neurons
in the hidden layer. This property has made MLPs foundational in the development of
neural network theory and applications (HORNIK, 1991).

The MLP is a feedforward neural network architecture that consists of multiple
layers of nodes in a directed graph, with each layer fully connected to the next one (BISHOP,
1995). MLPs use supervised learning techniques for training, such as backpropagation, to
adjust the weights of the network in order to minimize the error between the predicted
and actual outputs (HAGAN; DEMUTH; BEALE, 1996). This architecture is particularly
effective for classification and regression tasks due to its ability to model non-linear
relationships (HORNIK; STINCHCOMBE; WHITE, 1989).

Each neuron in an MLP computes a weighted sum of its inputs and passes the
result through an activation function. Common activation functions include the sigmoid
function, hyperbolic tangent, and the Rectified Linear Unit (ReLLU) (NAIR; HINTON,
2010). The choice of activation function can significantly impact the performance and
convergence of the network (GLOROT; BORDES; BENGIO, 2011).

Since the release of the ANN class (MCCULLOCH; PITTS, 1943), several studies
have been proposed to improve it. (WANG; HAFSHEJANI; WANG, 2021) present
an improved Multilayer Perceptron (WASSERMAN; SCHWARTZ, 1988) approach to
predict the amount of sugar yield production in IoT agriculture. This approach enhanced
the factory’s output, increasing production, decreasing damages, less under-utilized
production lines, and high accuracy and precision of sugar production (TONG et al.,
2022). In (ALJARAH; FARIS; MIRJALILI, 2018), it was proposed a novel MLP training
approach for training a single hidden layer neural network based on the current Whale
Optimization Algorithm (WOA) (MIRJALILI; LEWIS, 2016). Due to its high exploration
rate and avoidance of local optima, the WOA outperformed both backpropagation (BP)
and the evolutionary algorithm in terms of performance. The outcomes demonstrated
that the faster convergence speed in WOA is unaffected by higher local optima avoidance.
In (FARIS; ALJARAH; MIRJALILI, 2016), a novel trainer based on the Multi-Verse
Optimizer (MVO) (MIRJALILI; MIRJALILI; HATAMLOU, 2016) for training MLP
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networks was introduced. The accuracy achieved for weights and biases outperformed
other well-known training methods such as BP, Levenberg-Marquardt (LM), Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Firefly,
and Cuckoo Search (CS).

Moreover, evolutionary algorithms like Genetic Algorithms (GA) (GOLDBERG,
1989) and Evolution Strategies (ES) (BEYER; SCHWEFEL, 2002) have been applied
to optimize MLP architectures and weights. These methods can escape local minima
and explore the search space more globally, which is beneficial for complex optimization
landscapes (YAO, 1999). Particle Swarm Optimization (PSO) (KENNEDY; EBERHART,
1995) has also been utilized to train MLPs, showing competitive performance in terms of
convergence speed and accuracy (EBERHART; SHI, 2000).

One of the significant milestones in the development of MLPs was the introduction
of the backpropagation algorithm by Rumelhart et al. (RUMELHART; HINTON; WIL-
LIAMS, 1986), which enabled the efficient training of deep neural networks by computing
gradients through the network layers. This breakthrough led to a resurgence of interest
in neural networks and spurred numerous advancements in the field (LECUN; BENGIO;
HINTON, 2015). Further enhancements to MLP training algorithms have focused on
optimization techniques to improve convergence speed and generalization performance.
For instance, LeCun et al. (LECUN et al., 1998) proposed the use of second-order
methods and adaptive learning rates to accelerate training. Additionally, the introduction
of regularization methods like dropout (SRIVASTAVA et al., 2014) has helped prevent

overfitting in neural networks, thereby improving their performance on unseen data.

Batch normalization, introduced by loffe and Szegedy (IOFFE; SZEGEDY, 2015),
is another technique that has improved the training of deep neural networks by reducing
internal covariate shift, allowing for higher learning rates, and reducing the sensitivity to
initialization. This method normalizes the inputs of each layer to have zero mean and

unit variance, which can accelerate training and improve overall performance.

The Learning Rate (LR) is an essential parameter for MLP (RUMELHART;
HINTON; WILLIAMS, 1986). Therefore, the choice of the learning rate demands new
models concerning the degree that will be updated. In this context, Quickprop was
proposed in (FAHLMAN; LEBIERE, 1989), and (FAHLMAN et al., 1988). Cascade-
Correlation initiates with a minimal network, then automatically trains and adds new
hidden units, creating a multilayer structure that increases the learning process speed.
The network determines its size and topology and retains its built structures even though

the training set changes.

Quickprop (FAHLMAN et al., 1988) is an optimization algorithm that accelerates
the convergence of backpropagation by using second-order derivative information to adjust
weights. On the other hand, the Cascade-Correlation algorithm (FAHLMAN; LEBIERE,



20

1990) is a self-constructing neural network that begins with minimal architecture and adds
hidden units one at a time, which allows the network to adapt its topology dynamically

during training. This approach reduces the need for manual selection of network size and
has been shown to speed up learning significantly (FAHLMAN; LEBIERE, 1990).

Another approach to dynamically adjusting the learning rate is the Delta-Bar-Delta
algorithm proposed by Jacobs (JACOBS, 1988). This method adapts the learning rate for
each weight individually based on the consistency of the gradient’s sign. If the gradient
consistently points in the same direction, the learning rate is increased; otherwise, it is
decreased. This allows for faster convergence and reduces the chance of oscillations during
training.

For tuning the learning rate, a named delta-bar was proposed in (JACOBS, 1988).
Four heuristics are offered by the authors in order to increase convergence rates while
still preserving the locality constraint. According to these rules, each weight in a network

should have a learning rate assigned to it, and these rates should change over time.

Another significant contribution to learning rate adaptation is the work by Darken
and Moody (DARKEN; MOODY, 1990), who explored heuristics for setting the initial
learning rates and their schedules for convergence in stochastic gradient descent. They
highlighted the importance of carefully selecting learning rate parameters to balance the
trade-off between convergence speed and stability. Adaptive learning rate methods such as
AdaGrad (DUCHI; HAZAN; SINGER, 2011), RMSProp (TIELEMAN; HINTON, 2012),
and Adam (KINGMA; BA, 2014) have been developed to adjust the learning rate during
training dynamically. These methods have shown to improve convergence by scaling the
learning rates based on past gradients, making them particularly useful for dealing with

sparse gradients and non-stationary objectives.

Adam (KINGMA; BA, 2014), in particular, combines the advantages of AdaGrad
and RMSProp by maintaining running averages of both the gradients and their second
moments. It has become one of the most widely used optimization algorithms due to
its ease of implementation, computational efficiency, and good performance in practice.
Nadam (DOZAT, 2016), an extension of Adam that incorporates Nesterov momentum,

has also been proposed to improve convergence speed further.

The method presented in (SILVA; ALMEIDA, 2005) performed a study on accele-
ration techniques for MLP algorithm based on the individual adaptation of the learning
rate parameter in each synapse. This method keeps the sensitivity to initial learning rate
parameters while increasing convergence speed in genuine Multilayer Perceptron problems.
In (RIEDMILLER; BRAUN, 1993) is introduced the Resilient Propagation (Rprop), which
performs a local adaptation of the weight updates according to the behavior of the error
function. The algorithm is easy to implement and computes a local learning scheme.

The number of learning steps is significantly reduced compared to the original MLP
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procedure as well as to other adaptive procedures. The Rprop improves determinism of
convergence to global minima (RIEDMILLER; BRAUN, 1993). However, it is slower than
the Quickprop but still faster than the original Multilayer Perceptron (SCHIFFMANN;
JOOST; WERNER, 1994).

Moreover, more advanced optimization algorithms like the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method (LIU; NOCEDAL, 1989) have been applied
to MLP training to leverage second-order information without the computational burden
of computing the full Hessian matrix. These methods have been effective in achieving

faster convergence rates for certain classes of problems (NGIAM et al., 2011).

Recently, stochastic optimization methods such as Stochastic Gradient Langevin
Dynamics (SGLD) (WELLING; TEH, 2011) and Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC) (CHEN; FOX; GUESTRIN, 2014) have been proposed to combine
optimization with Bayesian inference, which can improve generalization by exploring
multiple modes of the posterior distribution. These methods add noise to the gradient
updates in a principled way, allowing the optimizer to escape local minima and saddle

points more effectively.

We also have some other examples of using a Learning Rate Schedule, which
means updating the LR in each epoch to optimize the model, increasing performance, and
achieving a faster training process. Authors use an adaptive learning rate in (CHANDRA,;
SHARMA, 2016; GEORGAKOPOULOS; PLAGIANAKOS, 2017; SMITH et al., 2017;
XING et al., 2018). In (BENGIO, 2012), they discuss how to handle the situation where
allowing one to adjust the many hyper-parameters can lead to more interesting results; in
(LOSHCHILOV; HUTTER, 2016), Stochastic Gradient Descent (SGD) warm restarts can
be simulated in four different methods, each of which calls for initializing the learning
rate to some value and scheduling a decrease over time; (BELLO et al., 2017) considers
an approach to automate the process of designing update rules for optimization methods.
The method obtains competitive performance compared to common optimizers on various
tasks and models. In addition, it identified a new learning rate annealing scheme: The
Linear Cosine Decay, which generally leads to faster convergence than cosine annealing;
(GREYDANUS; LEE; FERN, 2021) use Piecewise Constant Decay schedule which can skip
over long durations of comparatively homogeneous change and focus on pivotal events as
needed; (XIONG et al., 2022) proposes a novel graph-network-based scheduler to control
the learning rate dynamically by reinforcement learning; in (MISHRA; SARAWADEKAR,
2019) it was suggested a different learning rate scheduler, called polynomial learning
rate policy with warm restart; (CHANDRA; SHARMA, 2016) proposed combining an
adaptive learning rate with the Laplacian score concept for changing the model’s weights.
Meanwhile, in (GEORGAKOPOULOS; PLAGIANAKOS, 2017), a convolutional neural

network is presented using an algorithm that computes the gradient vectors’ first-order
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information and calculates the learning rate during the training phase. Finally, (SMITH
et al., 2017) and (XING et al., 2018) proposed the use of Stochastic Gradient Descent.
In the former, the author decays the LR and increases the batch size to prove that we
can obtain the same learning curve in both cases. The latter paper presents a study of
how SGD guides the loss landscape in over-parameterized Deep Neural Networks (DNNs).
This analysis shows us the qualitatively distinct roles of learning rate and batch size in

DNN generation and optimization.

Cyclical learning rate schedules, such as the ones proposed by Smith (SMITH,
2017), have been shown to enable the model to converge to better minima by allowing the
learning rate to vary within a range instead of decaying it monotonically. This approach
can help the optimizer to escape shallow minima and saddle points, potentially improving

generalization performance.

Another interesting learning rate strategy is the use of learning rate warmup,
where the learning rate starts from a small value and gradually increases to a predefined
maximum (GOYAL et al., 2017). This technique is particularly useful when training
very deep networks or when using large batch sizes, as it helps stabilize the early stages
of training. Learning rate warmup has been instrumental in the successful training of
state-of-the-art models like BERT (DEVLIN et al., 2018) and GPT-3 (BROWN et al.,
2020).

In this work, we have a new proposal that is a combination of MLP and SM.
Set-Membership is proposed by (DINIZ, 2002). The central concept is an adaptive filter
algorithm, which presents a positive trade-off between speed and convergence for the
technique. It is also capable of automatically updating its hyperparameters, making the
model highly dynamic. The main point of this algorithm is to use the output error to find
the new values of the learning rate and update them. Since this proposal, it has been
regularly used for several problems solutions, as like: (LI; WANG; JIANG, 2016) where
the authors proposed a Set-Membership Normalized Least-Mean-Square (SM-NLMS) and
the Set-Membership Affine Projection (SM-AP) algorithms. This work shows that the
SM-NLMS technique is robust regardless of the parameters used and improves parameter
estimation in the majority of rounds when an update occurs, giving it two benefits over
the standard NLMS approach. In (ZHENG et al., 2017b), was presented a family of
robust Set-Membership Normalized Subband Adaptive Filtering (RSM-NSAF) algorithms
for Acoustic Echo Cancellation (AEC). Likewise, in (LASTIRI; CAPPON; KEESMAN,
2021), it was suggested to use a different Set-Membership strategy where mistakes are
unknown but bounded. Set-Membership estimation seeks to identify a Feasible Parameter

Set (FPS) that yields model outputs within specified error limits.

Set-Membership filtering has also been applied in networked systems where commu-
nication constraints exist. For example, in (ZHANG; WANG; HO, 2014), a Set-Membership
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filtering algorithm was developed for distributed systems with limited communication
bandwidth, ensuring estimation accuracy while reducing communication overhead. Addi-
tionally, SM methods have been used in state estimation for nonlinear systems, providing
robust performance in the presence of bounded noise (LI; ZHANG, 2018).

Nevertheless, some papers have also used the SM concept. For example, in
(AGUIAR et al., 2017), the authors suggested using Set-Membership in the training process
of Type-1 and singleton /non-singleton Fuzzy Logic Systems to decrease computational
complexity and increase convergence speed. Meanwhile, in (ALVES et al., 2020), the first
implementation of Set-Membership has an evolving Participatory Learning with Kernel
Recursive Least Squares. The second combines Enhanced Set-Membership, a better
version of the Set-Membership idea, Kernel Recursive Least Squares, and the evolving
Participatory Learning method. At last, a Type-2 Fuzzy Logic System’s training phase
incorporated a novel stochastic optimization algorithm and the Set-Membership concept
(FONSECA; AGUIAR, 2022).

In the context of neural networks, Set-Membership approaches can be used to define
bounds on the weights and outputs, leading to robust training algorithms that can handle
uncertainties and noise (WANG; HO; LIU, 2005). By incorporating Set-Membership
constraints into the training process, the network can achieve better generalization and
reliability, which is crucial in safety-critical applications (PARRADO-HERN’aNDEZ;
MEZA; CASTELLANOS-DOM1INGUEZ, 2020).

2.2 COMPUTATIONAL INTELLIGENCE IN RAILWAY TRANSPORT

Recent Computational Intelligence (CI) advancements have revolutionized many
industries, including railway transport. These technologies are increasingly being applied
to enhance railway systems’ safety, efficiency, and maintenance processes (TSELENTIS;
PAPADIMITRIOU; van Gelder, 2023). Comprehensive overviews have been provided
on the application of Artificial Intelligence (Al) in railway systems, highlighting roles
from machine learning models in predictive maintenance to operational management
enhancements (SINGH et al., 2022; TANG et al., 2022).

The detection of hot box and hot wheel is critical for preventing accidents caused
by bearing failures and wheel defects. Traditionally, this detection has relied heavily
on manual inspections and basic sensor technology. Recent studies have explored the
use of infrared thermal cameras combined with deep learning algorithms to accurately
identify potential failures from thermal images (DANIYAN et al., 2020; YIN; LI; CHENG,
2020). Additionally, predictive models using acoustic data have been developed to detect
anomalies in wheel bearings, showing high accuracy rates in early tests (PAPPATERRA
et al., 2021; HADJ-MABROUK, 2019).
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Machine learning algorithms have also been applied to optimize train scheduling
and reduce delays. In (CORMAN; MENG, 2018), the authors utilized reinforcement
learning to dynamically adjust train dispatching times, resulting in improved punctuality
and network capacity utilization. Moreover, Al-driven passenger flow prediction models
help in optimizing resource allocation during peak hours (LIU; WANG; GAO, 2019).

Advanced signal processing techniques combined with machine learning algorithms
have been utilized to detect anomalies in wheel bearings and wheels (DIAN et al., 2018).
Techniques such as Support Vector Machines (SVM), Random Forests, and Deep Neural
Networks have been trained on vibration and acoustic emission data to identify patterns
indicative of faults (WANG et al., 2018). These methods have demonstrated improved

accuracy over traditional threshold-based detection systems.

Practical applications of these technologies provide insight into their real-world
efficacy. Reported case studies where Al-driven systems were deployed across railway
networks have shown significant reductions in unscheduled maintenance activities. These
case studies demonstrate potential financial benefits and underscore safety improvements
through early detection of faults (BESINOVI¢ et al., 2022; SINGH et al., 2021; SIKORA
et al., 2021).

In the realm of energy efficiency, computational intelligence methods have been
used to optimize train control strategies. For example, (XIN; NING; SUN, 2016) proposed
an energy-efficient train operation model using particle swarm optimization, which resulted
in significant energy savings. Additionally, predictive models for energy consumption help
in planning and managing energy resources more effectively (ZHANG; YANG; WANG,
2018).

As computational technologies continue to evolve, their application in safety-critical
systems like railways presents both opportunities and ethical challenges (ALAWAD;
KAEWUNRUEN, 2021). Discussions on the ethical implications of autonomous Al
systems in railways include the need for robust safety protocols and transparency in Al
decision-making processes (ARSLAN; TIRYAKI, 2020; KHABAROV; VOLEGZHANINA,
2020).

Despite the benefits, the integration of Al into railway systems raises ethical and
safety concerns, particularly regarding the transparency and explainability of Al decisions
(GOODMAN; FLAXMAN, 2017). Ensuring that AI systems comply with regulatory
standards and that their decision-making processes are interpretable by human operators
is crucial for safety-critical applications (TJOA; GUAN, 2019).

Cybersecurity is another critical aspect, as the increased connectivity and reliance
on Al systems make railways potentially vulnerable to cyber-attacks. Strategies for

securing Al systems in rail transport include implementing robust encryption protocols
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and intrusion detection systems (ZHAO et al., 2018). Furthermore, the development of Al

ethics guidelines specific to transportation can help address concerns related to privacy,
data protection, and accountability (JOBIN; IENCA; VAYENA, 2019).

The literature indicates a strong trend toward the use of sophisticated Al tools
for fault detection, such as in the cases of hot box and hot wheel. However, continuous
research and development are essential to overcome the challenges associated with these
technologies, including ethical concerns and the need for improved accuracy and reliability
in Al applications (SINGHAL et al., 2020; WANG et al., 2022).

Overall, the adoption of computational intelligence in railway transport holds
significant promise for enhancing safety, efficiency, and reliability. Ongoing research is
focused on developing more advanced models, improving data integration from diverse
sources, and addressing the challenges related to scalability and real-time implementation
(YANG; WANG; NING, 2020). The future of railway transport is likely to be increasingly
shaped by these technological advancements, leading to smarter and more resilient railway

systems.
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3 PROBLEM FORMULATION

In any rail operation, Hot Wheel and Hot Box present a real threat. Wheels that
are overheated may experience increased wear and fatigue, which could result in failure
and possibly dangerous situations. In addition, a Hot Box can result in bearing failure and
fractures in the axle journals, costing trains loans and even causing derailments. There
were 119 railway derailments in the United States and Canada between 2010 and 2016,
according to the Federal Railroad Administration (FRA) (FRA, ¢) of the United States.
One example is a train derailment accident in 2013 near Sudbury, Ontario, Canada, caused
by the catastrophic failure of a roller bearing and subsequent burning axle journal. Six
cars carrying 12 car bodies and 20 containers derailed and collided with the railway bridge.
As shown in Figure 3.3 (T'SB, 2013), the impact caused the bridge to collapse, and seven

containers, some carrying dangerous goods, fell into the river.

Overheating in wheel bearings and wheels is often a result of insufficient lubrication,
mechanical defects, or excessive friction (BARTLETT et al., 2013). These conditions can
cause the temperature of the components to rise rapidly, leading to thermal expansion
and material degradation. In extreme cases, the high temperatures can ignite lubricants
or other flammable materials, posing a significant safety hazard (FERREIRA et al., 2017).
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Figure 3.1 — The railway bridge’s south end collapsed (TSB, 2013).

Furthermore, according to the FRA (FRA, b; FRA, a), the North American

railroad sector spends more than US$800 million per year on wheel removals. Bearing
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failures account for around 20% of this expense, while wheel failures account for more
than 60%), resulting in yearly costs of US$160 million and US$480 million, respectively.
These failures are, in most cases, the consequences of overheating, which is the primary

indicator of an impending failure.

The economic impact of these failures extends beyond direct maintenance costs.
Delays caused by unscheduled maintenance and derailments can disrupt supply chains,
leading to significant financial losses for industries relying on rail transport (CHOI et al.,
2018). Moreover, environmental damage resulting from accidents involving hazardous

materials can incur additional cleanup costs and legal liabilities (SONG et al., 2017).

According to the ANTF (National Association of Railway Carriers) (ANTF, 2022),
the number of products moved by railroads rose by 100.1% between 1997 and 2021. In
2019, about US$ 1.1 billion was committed to vastly increase the rolling stock fleet. As a
result, the number of locomotives on the railroads increased by 186% from 1,154 in 1997
to 3,297 in 2021. Furthermore, the number of wagons climbed by 162%, rising from 43,816
to 114,974. These figures show that the number of passenger trains is increasing, which

may lead to a rise in faults.

The increased traffic density on rail networks exacerbates the risk of equipment
failure due to higher operational stress on components (PAGANELLI; SANTINI, 2017).
Additionally, the aging infrastructure in some regions cannot accommodate the increased
load, further contributing to the likelihood of faults and accidents (MURRAY; PERERA,
2009). Therefore, improving monitoring and maintenance practices is essential to ensure
the safety and reliability of rail operations (MOLODOVA et al., 2014).

Figure 3.2 — Systems for detecting Hot Box and Hot Wheel (VOESTALPINE, 2023).

As a result, the railroad industry has been developing bearing and wheel health

monitoring systems to forecast and prevent the failures listed above. Figure 3.3 (VO-
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ESTALPINE, 2023) depicts the Hot Box Detector (HBD) and the Hot Wheel Detector
(HWD) as health monitoring systems. According to the Association of American Railways
(AAR) (AAR, 2015), North American railroads have installed over 6,000 HBDs to decrease
the danger of bearing failure due to overheating, resulting in one HBD system per about 25
miles on Class I freight rail networks (BRAREN; KENNELLY; EIDE, 2009). A warning
is given to draw attention to potential issues when HBD and HWD notice that the
temperatures of the bearings and wheels are higher than the temperature threshold. The
parts are taken out of operation as a precaution and stored for potential disassembly and

inspection.

Recent advancements in sensor technology and data analytics have led to the
development of more sophisticated monitoring systems (LI et al., 2014). Wireless sensor
networks (WSNs) and Internet of Things (IoT) devices are being integrated into railway
monitoring to provide real-time data on component health (PRASETIYO et al., 2017).
These systems enable predictive maintenance strategies, allowing for timely interventions
before a failure occurs (LIU et al., 2015).

Despite the fact that these detectors are widely used and have prevented accidents,
the technology has shortcomings. Many factors can influence temperature measurements,
including sensor failure, sun incidence, and longitudinal misalignment. As a result, an
HBD, for example, may considerably over-predict the bearing temperature, resulting
in several alerts for bearings with no obvious faults. These bearings are then labeled
"non-verified". Non-verified bearing removals generate rail line disruptions and network
congestion due to unnecessary train stoppages and delays, as well as the usage of excessive
maintenance time, parts, and supplies. The study of Amsted Rail reveals that from 2001
to 2007, over 40% of bearing removals were "non-verified"bearings, demonstrating these

wasteful costs (TARAWNEH et al., 2018).

Moreover, false positives from detection systems can erode confidence in monitoring
technologies and lead to complacency among operators (RODRIGUES et al., 2018). There
is also the issue of data overload, where vast amounts of sensor data can be challenging to
process and interpret effectively (GRIGORE et al., 2016). Implementing advanced data
analytics and machine learning algorithms can help mitigate these issues by improving

the accuracy of fault detection and reducing false alarms (HE et al., 2018).

According to this viewpoint, identifying the components that are indeed faulty

from the "non-verified"ones is critical to:

e limit the amount of unneeded maintenance;
o decrease the number of unnecessary railway stops and delays;

» reduce the replacement of defect-free components, resulting in lower costs for new
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parts and supplies;

« once the train network’s disruptions and congestion are eliminated, rail operations

may become more productive.

Advanced diagnostic techniques, such as vibration analysis and acoustic emission
monitoring, can provide additional data points to improve fault diagnosis (MISHRA
et al., 2017). Combining multiple data sources using data fusion methods enhances
the reliability of condition monitoring systems (PENG; DONG, 2016). Furthermore,
employing artificial intelligence and machine learning models enables the development
of predictive maintenance schedules, optimizing resource allocation and extending the
service life of components (ZHENG et al., 2017a).

Considering the situation presented in this section, this study attempts to distin-
guish between the warning signals of components that show Hot Box and Hot Wheel
issues (correct warnings) and the warning indicators of parts that do not offer evident
problems (improper alerts). Figure 3.3 depicts the actions used to achieve this aim. The
temperature data on the train’s right and left wheels and bearings comprise the input
matrix I. The median, mean, standard deviation, minimum value, and highest value
of these recorded temperatures were utilized for classification, yielding the extracted
characteristics K. Finally, in the Classification block, one of the classification approaches
presented in this work is used to generate the output vector s, allowing the correct or

improper warnings to be identified.

The proposed methodology leverages machine learning algorithms to analyze
the extracted features and classify the warning signals accurately (KANG et al., 2017).
Techniques such as Support Vector Machines (SVM), Decision Trees, and Neural Networks
are evaluated for their effectiveness in this classification task (LI et al., 2018). By improving
the accuracy of fault detection, the system aims to reduce false positives and enhance the

efficiency of maintenance operations (WANG et al., 2019).

In summary, the integration of advanced monitoring systems and intelligent data
analysis techniques is essential for modern rail operations. Addressing the challenges
associated with Hot Box and Hot Wheel detection not only improves safety but also
contributes to operational efficiency and cost reduction (ZHANG et al., 2019). This
study’s approach aims to provide a robust solution to differentiate between genuine faults
and false alarms, thereby optimizing maintenance schedules and enhancing the reliability

of railway transportation systems (LIU et al., 2019).
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Figure 3.3 — Block diagram representing the strategy for categorizing occurrences.
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4 SET-MEMBERSHIP COMBINED WITH MULTILAYER
PERCEPTRON

4.1 MUTILAYER PERCEPTRON

Artificial neural networks have emerged as powerful tools for solving complex
problems across various domains. Among these networks, the Multilayer Perceptron has
garnered significant attention due to its ability to model non-linear relationships and
capture intricate patterns in data (ADEDIGBA; KHAN; YANG, 2017). The Multilayer
Perceptron (MLP) is a fundamental structure within artificial neural networks (ANNs)
and deep learning. Its architecture forms the basis for many modern neural networks,
allowing the modeling of complex, non-linear relationships through layered, fully connected
neurons. While MLPs have been supplanted by more specialized architectures in tasks
such as image and sequence processing, they continue to serve as a critical foundation for
understanding more advanced models. The universal approximation theorem, proved by
(HORNIK; STINCHCOMBE; WHITE, 1989), asserts that MLPs, with sufficient neurons
in the hidden layers, can approximate any continuous function on a compact subset of

real numbers. This property underlines the theoretical strength of MLPs.

In this chapter, we will provide a comprehensive exploration of MLPs, their
architecture, and key components. We will delve into the influence of key parameters,
such as weights, biases, and the learning rate, and examine their role in training and

performance.

4.1.1 MLP Architecture and Structure

An MLP consists of an input layer, one or more hidden layers, and an output layer,
each composed of neurons. These layers are connected in a fully feedforward manner,
meaning information flows unidirectionally from the input to the output, without loops
or feedback (GOODFELLOW, 2016). The number of hidden layers and the number of

neurons per layer define the model’s capacity.

4.1.1.1 Input Layer

The input layer consists of neurons that accept raw data in the form of vectors.
The dimensionality of this layer corresponds to the number of features in the input data.
For instance, if the input is an image of 28x28 pixels, the input layer will consist of 784
neurons, each representing a pixel’s value (LECUN; BENGIO; HINTON, 2015).
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4.1.1.2 Hidden Layers

The hidden layers perform transformations on the input data by learning complex
patterns. Each neuron in a hidden layer applies a weighted sum and non-linear activation
function to capture non-linear relationships (RUMELHART; HINTON; WILLIAMS, 1986).
The number of hidden layers and the neurons in each layer are hyperparameters that

require tuning based on the complexity of the data.

4.1.1.3 Output Layer

The output layer produces the final prediction. The choice of activation function in
this layer depends on the task. For classification problems, softmax activation is commonly
used to produce a probability distribution over classes (BISHOP; NASRABADI, 2006).

For regression tasks, a linear activation function is often employed.

4.1.2 Neuron Model and Activation Functions

At the core of an MLP is the neuron, which computes a weighted sum of its inputs,
adds a bias term, and applies an activation function to produce the final output. The

mathematical operation performed by a neuron k is represented as:

i=1
where X1, X, ..., X, are the input signals; W1, Wgo, ..., Wiy, are the respective synaptic
weights of neuron k; by is the bias. The output of this weighted sum is passed through an

activation function to introduce non-linearity. The Figure 4.1 ilustrated the neuron.

Bias

= ilal

Figure 4.1 — Nonlinear model of a neuron (HAYKIN, 2009).
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4.1.2.1 Activation Functions

Activation functions are critical to MLPs as they enable the network to model

complex non-linearities. Common activation functions include:

o Linear: The linear activation function (also known as the identity function) is the
simplest form of activation function, where the output is directly proportional to

the input.

fla) == (4.2)

o Sigmoid: Traditionally used in earlier neural networks, the sigmoid function maps
inputs to a range between 0 and 1, but suffers from vanishing gradient problems in

deep networks (GLOROT; BENGIO, 2010).

B 1
143

o (vy)

o Tanh: The hyperbolic tangent function, similar to sigmoid but zero-centered, was

(4.3)

widely used before the advent of ReLLU. It maps inputs to a range between -1 and 1.

2

tanh(vk) = m —

(4.4)

o ReLU (Rectified Linear Unit): ReLU has become the de facto standard for hidden
layers in deep learning because it mitigates the vanishing gradient problem, making
learning faster and more efficient (NAIR; HINTON, 2010).

ReLU (vg) = max (0, vg) (4.5)
Figure 4.2 describes the examples of activation functions.

4.1.3 The Role of Weights and Biases

Weights and biases are critical learnable parameters in an MLP. These values
determine the strength of connections between neurons and are updated during training

to minimize the error between the predicted and actual outputs.

4.1.3.1 Weights

Weights are the core parameters that a neural network adjusts during training.
Larger weights increase the influence of a particular input, while smaller weights reduce
its impact. The initialization of weights can significantly affect the learning dynamics,
and strategies like Xavier initialization (GLOROT; BENGIO, 2010) and He initialization

(HE et al., 2015) are often employed to ensure weights start at appropriate values.
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Tanh RelLU

tanh(z) max (0, x)

v

\ 4

Sigmoid Linear

Sfo=x

»
>
L >

X X

Figure 4.2 — Examples of activation functions (OCEAN, 2020).

4.1.3.2 Biases

Biases shift the activation function of the neuron and allow the network to better
fit the data by translating the decision boundary. While often overshadowed by the focus

on weights, biases play an important role in increasing model flexibility.

4.1.4 Forward and Backward Propagation
4.1.4.1 Forward Propagation

During forward propagation, input data passes through each layer of the network,
and each neuron computes its output based on the weights, biases, and activation functions
(RUMELHART; HINTON; WILLIAMS, 1986).

4.1.4.2 Backward Propagation

Backward propagation, or backpropagation, is the core of the learning process in
an MLP. It calculates the gradient of the loss function with respect to each weight by
applying the chain rule of calculus (GOODFELLOW, 2016). Using these gradients, the

weights are updated to minimize the loss.

4.1.5 Learning Rate and Its Importance

The learning rate (n) is a critical hyperparameter that controls how much the

weights are updated during each iteration of training. The learning rate determines
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the size of the steps taken in the direction of the negative gradient of the loss function

(GOODFELLOW, 2016).

4.1.5.1 TImpact of Learning Rate on Training

The MLP algorithm has an essential hyperparameter: the learning rate - LR, which
is responsible for the speed of learning and can be configured for achieving faster rates of
the model’s convergence (RUMELHART; HINTON; WILLIAMS, 1986). On MLP, all
neurons have the same value of the increase for LR, meaning they should learn at the
same rate. For example, if LR is large, the model may not converge because the estimate
can overshoot the optimal value as you can see in Figure 4.3. Otherwise, if LR is small, it
either can provide an undesirable outcome and take a long time to converge or converge

to some local minimum. Of course, none of these behaviors are expected for a good result.

Too low Just right Too high

W———

aan -

0 0 0

Figure 4.3 — Learning Rate Influence (JORDAN, 2018).

The learning rate is responsible for updating the weights. Following (HAYKIN,
2009), the Equation for the new w is:

w(n+1) =w(n) —ng(n), (4.6)
where g is:

The gradient vector of the cost function is:

o o oc 1"

VE(w) = owl’ ow2’ " OowM

(4.8)

where n is the iteration, and M is the number of elements of synaptic weights of the

neuron.
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4.2 SET-MEMBERSHIP

The Set-Membership (SM) method is a powerful approach in adaptive filtering that
offers significant advantages in terms of computational complexity and robustness. The
concept of First introduced by (GOLLAMUDI et al., 1998) and expanded upon by Paulo S.
R. Diniz in his seminal book Adaptive Filtering: Algorithms and Practical Implementation
(DINIZ, 2008), the Set-Membership method has become an essential technique in adaptive
filter theory. The primary motivation behind this method is to reduce the computational
burden of adaptive filters while maintaining acceptable performance by only updating

filter parameters when necessary.

In contrast to traditional adaptive filtering techniques, such as the Least Mean
Squares (LMS) or Recursive Least Squares (RLS), which continuously update filter
coefficients, the Set-Membership method only updates coefficients when the error exceeds
a predefined threshold. This selective updating mechanism leads to significant reductions

in computational cost while maintaining effective filtering performance.

In this chapter, we will explore the Set-Membership method, including its formula-

tion, key properties, and advantages over conventional adaptive filters.

4.2.1 OVERVIEW OF ADAPTATIVE FILTERS

Adaptive filters are used in many applications, such as noise cancellation, channel
equalization, system identification, and echo cancellation. The primary goal of an adaptive
filter is to adjust its coefficients based on incoming data to minimize the error between the
filter’s output and a desired signal. Adaptive filters achieve this by continuously updating

their filter coefficients to respond to changes in the environment or system dynamics.

Conventional adaptive filters, like the LMS and RLS, update their coefficients at
every iteration regardless of the magnitude of the error. These filters offer robustness and
adaptability but at the cost of higher computational requirements, especially in high-order

filters or systems with large amounts of data.

4.2.2 SET-MEMBERSHIP METHOD

The SM method imposes the constraint that the absolute value of the error must
lie within the set membership boundary v is Equation 4.9. This constraint defines a
"feasibility set'for the filter coefficients. If the error exceeds ~, the filter coefficients are

updated to satisfy this constraint while minimizing changes to the filter’s coefficients.

The update mechanism for the Set-Membership method can be described as follows:

o Error Check: At each iteration, the error e(n) is computed. If the error is within

the acceptable bound ~, no update is made.
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Desired Signal
/ d(n)
Input Signal Adaptive Filt i T i
nput Sig ptive Filter Output Signal Z Emor Signal -
x(n) w(n) y(n) e(n)

Adaptive Algorithm [

y(n) = Filter (x(n))

e(n) = d(n) - y(n)

Figure 4.4 — Basic Structure of an Adaptive Filter (MISHRA; KUMAR, 2016).

» Selective Update: If the error exceeds -, the filter coefficients are updated in a way
that the new coefficients satisfy the constraint by Equation 4.9. The update typically
follows a gradient-based approach similar to that used in the LMS algorithm but is

constrained by the error bound.

4.2.3 ADVANTAGES OF THE SET-MEMBERSHIP METHOD

The Set-Membership method offers several advantages over traditional adaptive
filtering approaches, particularly in terms of computational efficiency and convergence

behavior.

4.2.3.1 Reduced Computational Complexity

One of the primary benefits of the Set-Membership method is that it does not
require the filter coefficients to be updated at every iteration. This selective update
mechanism significantly reduces the number of operations required during the filtering
process, especially in systems with high data throughput or large filter orders. The
reduction in updates leads to lower computational load and power consumption, making

the method suitable for real-time applications with limited computational resources.

4.2.3.2  Improved Robustness

The Set-Membership method enhances robustness by preventing unnecessary
updates when the error is within acceptable limits. This feature reduces the likelihood
of overfitting to noise in the input data and helps the filter maintain a stable set of
coefficients. The error bound ~ effectively acts as a regularization mechanism, preventing

small perturbations in the input from causing large changes in the filter coefficients.
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4.2.3.3 Faster Convergence

In many cases, the Set-Membership method converges faster than traditional
adaptive filters, particularly in systems where the desired signal is relatively stable over
time. The method avoids unnecessary updates when the system is close to optimal
performance, which can reduce oscillations in the filter coefficients and lead to faster

stabilization.

4.3 SET-MEMBERSHIP COMBINED WITH MLP

In both of the last papers reported on review (AGUIAR et al., 2016; AGUIAR et
al., 2017; AGUIAR et al., 2018b; ALVES et al., 2020; AGUIAR et al., 2020; FONSECA;
AGUIAR, 2022), we have seen an increase in accuracy just as reducing computational
complexity. That way, we propose using a Set-Membership concept combined with MLP,
aiming to increase accuracy and convergence speed, and a study of the possibility of

decreasing computational complexity.

In our proposal, we are using the Set-Membership to update the value of the
learning rate, making a new technique named Set-Membership Multilayer Perceptron.
We also propose the variants of the technique, changing the Equation and, in this way,

turning possible to deal with different problems.

The Set-Membership (SM) method offers a different approach to adaptive filtering
by incorporating a selective update mechanism. Unlike traditional methods, which update
filter coefficients at every iteration, the SM method updates them only when the error
surpasses a predefined threshold. This threshold is referred to as the error-bound constraint

and is expressed as follows:

le(n)] >~ (4.9)

where e(n) represents the error at time step n, and ~y is a predefined error bound. If the
magnitude of the error is less than or equal to v, the filter refrains from updating its

coefficients, thereby conserving computational resources.

In the context of adaptive filtering, the Set-Membership method can be formalized
as follows. The goal of an adaptive filter is to minimize the error between the desired
signal y(n) and the output generated by the combination of the Set-Membership method
and the Multilayer Perceptron (MLP), denoted as ypreq(n). We start by defining the
output of the SMMLP:

ypred(n) = WTX(”) (410)
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where x(n) = [xo(n)x;(n)..xy(n)]7 is the input signal, and w = [wOw1l..wN|T is the
parameter vector.
Given the availability of a desired signal sequence y(n) and a corresponding

sequence of input vectors z(n), both defined for n =0,1,2,..., 00, the estimation error

sequence e(n) is expressed as follows:

e(n) = y(n) — w'x(n) = y(n) — yprea(n) (4.11)
then, for n = 0,1,2,..., 00, the desired signal is represented as:
y(n) = wlx(n) (4.12)

The vectors x(n) and w € RV¥T! where R represents the set of real numbers, while

e(n) and ypreqa(n) denote the output error and the SMMLP output signal, respectively.

Given a set of data pairs {x(i),y(7)}, for i = 0,1,...,n, we can define H(n) as
the set of all vectors w such that the corresponding output error at time instant n is

constrained by an upper bound of magnitude . This can be expressed as:

H(n) = {w € R"": [y(n) — yprea(n)| < 7} (4.13)

The set H(n) is referred to as the constraint set. The boundaries of H(n) are
defined by hyperplanes. In the two-dimensional case, where the coefficient vector consists
of two elements, H(n) represents the region between the lines where y(n) — yprea(n) = £7,
as illustrated in Figure 4.5. For cases involving more than two dimensions, H(n) defines

the region between two parallel hyperplanes in the parameter space w.

Figure 4.5 — Constraint set in w(n) in a two-dimension (AGUIAR et al., 2017).
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Each data pair is associated with a corresponding constraint set. Consequently,
the intersection of all these constraint sets over the iterations ¢ = 0, 1,...,n is referred to

as the exact membership set ¢)(n). This set is formally defined as:

V) = () HG) (4.14)

The set 1(n) represents a specific region within the parameter space, and the
primary objective of the adaptive filtering process is to accurately determine the location

of this region.

The specific region in w(n), represented by 1 (n — 1), becomes small if the set of
data pairs includes substantial innovation. This condition is usually met after a large
number of iterations n, then most likely ¢(n) = 1(n — 1), where 1(n — 1) is already
placed inside the constraint set H(n), as depicted in Figure 4.6. In such a situation,
the parameters do not require updating since the current membership set is inside the

constraint set, giving rise to a data-dependent selection of updates.

Figure 4.6 — Exact membership set, 1)(n — 1), contained in the constraint set, ¥(n — 1) C
H(n) (AGUIAR et al., 2017).

The selective updating mechanism of the SMMLP offers significant opportunities
for reducing computational complexity, which is especially important in engineering
applications. It is important to note that, during the early iterations, it is highly likely
that the constraint set will shrink the size of the membership-set hypersurface, as shown
in Figure 4.7. In such cases, the exact membership set ¢ (n — 1) does not lie within the

constraint set H(n), necessitating an update to the parameters.

The core concept of the SMMLP is to conduct a test to determine whether w(n)
falls outside the constraint set H(n), i.e., |y(n) — yprea(n)| > . If the absolute value of the
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Figure 4.7 — Exact membership set ¢(n — 1) not contained in the constraint set ¢)(n—1) ¢
H(n) (AGUIAR et al., 2017).

error exceeds the specified bound, the vector w(n + 1) is updated by projecting it onto the
closest boundary of H(n). This update is achieved through an orthogonal projection of
w(n) onto the nearest boundary of the constraint set. Figure 4.8 illustrates the updating

procedure in the SMMLP.

Figure 4.8 — Parameters vector updating for the SMMLP algorithm (AGUIAR et al.,
2017).

As our focus is on the learning rate update, we will apply the equations suggested

on (AGUIAR et al., 2017):
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e SMMLP:
\e(nv)-lo\v it le(n)] >~

nn+1)= . (4.15)
0, Otherwise,
where e(n) = |y(n) — Yprea(n)|, Yprea is output vector of the MLP, and 7 is the upper

bound constraint. Consider a set of input-output pairs x(n) : y(¢)), where n denotes the

nth iteration.

« MSE MLP:
m7 1f |€(n>| > 5/
0, Otherwise,
where e(n) = 7]1\[:1 % [y(n) — ypred<n)]2'

4.4 VARIABLE STEP SIZE ADAPTIVE TECHNIQUES WITH SET-
MEMBERSHIP

In this subsection, we will discuss the use of the Variable Step Size (VS) techniques.
The technique was proposed on (HARRIS; CHABRIES; BISHOP, 1986) and is an extension
of prior concepts in stochastic approximation for changing the step size in the steepest
descent technique. In this, we multiply the current value of the n with « to increase the
new value of 7. On the other hand, we use the present value of the n divided by a to

decrease a new value of . We adopt the acronym VS MLP for this technique.

. VS MLP:
n(n) - a-103,ifled] > 5
n(n+1) = : (4.17)
07.(176)3, Otherwise

where e(n) = |y(n) — yprea(n)|, and o = 0.002.
For the following proposal, we have named MVSA MLP. The main idea behind this

is to propose a study of the potential decrease in the computational complexity without

updating the next weight when e(n) = |e9] > 7.
« MVSA MLP:
n(n) + 5, if e?] > 5
n(n+1)= . (4.18)
0, Otherwise
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where e(n) = |y(n) — Yprea(n)|, and a = 0.002.

Based on empirical analysis, we have realized that when the value of the new
learning rate is close to the initial value, the method produces good results for some
applications. For that reason, we have proposed a new technique, the SMMLP NN, that
employs Euclidean distance and utilizes a distance calculation technique similar to the

Nearest Neighbors algorithm.

. NN MLP:
n(n) + dist - (107%),if le(n)| > ¥
n(n+1)= : (4.19)
0, Otherwise.

where dist is:

distla,n(o) = (a— o
and e(n):

)= 3 37 ) )

4.5 ENHANCED SET-MEMBERSHIP WITH MLP

On the (ALVES et al., 2020), the author proposed an improved version of the
Set-Membership concept, named Enhanced Set-Membership. This idea consists of imple-
menting an inferior limit (IL), and a superior limit (SL). These parameters are predefined
to limit 7 and, consequently, to improve the results of the classification. Therefore, n does
not achieve values inconsistently, in other words, n € [IL, SL|, where IL > 0, SL < 1 and
IL < SL.

e ESMMLP:
Te(n)10] 10\ 1f|()|>:y
nn+1)= . (4.20)

0, Otherwise

where e(n) = [y(n) — gprea(n)|-

« EMSE MLP:
eyTor O le(n)] > 7
n(n+1) = : (4.21)

0, Otherwise
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where e(n) = S0 % [y(n) = Yprea(n)]”.

The EMVS MLP and EMVSA MLP are based on the MVSA MLP that has
been reported in the last subsection. For the first EMVS MLP, we will update the «
by multiplying the current n with the « for e(n) = |e?| > 7. Moreover, it becomes the
a = 0 when otherwise. For the EMVSA MLP, we will adding current n with the « for
e(n) = |e?] > 4. And also, the a = 0 when opposite.

. EMVS MLP:
n(n) - a-103ifled] > 5
nn+1)= : (4.22)
0, Otherwise

where e(n) = |y(n) — Yprea(n)|, and a = 0.002.

« EMVSA MLP:
n(n) + G, if[e?] > 7
nn+1) = . (4.23)
0, Otherwise

where e(n) = |y(n) — yprea(n)|, and a = 0.002.
On EVSA MLP, based on Variable Step Size Adaptive (VSA) (EVANS; XUE; LIU,
1993), this technique adapts the Variable Step (VS). It adds and subtracts a constant

value for the increase and the decrease of the new value of n, respectively.

« EVSA MLP:
n(n) + 5, if [e?] > 5
n(n+1) = : (4.24)

n(n) — {5, Otherwise

where e(n) = |y(n) — yprea(n)|, and o = 0.002.

. EVS MLP:
n(n) - a- 103 if[ed| > 5
nn+1) = : (4.25)
%, Otherwise

where e(n) = |y(n) — Yprea(n)|, and a = 0.002.
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« ENN MLP:
n(n) + dist - (1076),if le(n)| > ¥
nn+1)= , (4.26)
0, Otherwise.

where dist is:

and e(n): .
)= 3 3 )~ ean)

Algorithm 1 reproduces the VS MLP training process.

Algorithm 1 Training algorithm for VS MLP

1: Inputs:
2: Set number of hidden layers;
3: €Pmaz: Maximum number of epochs;
4: 7, 1L, and SL: Upper bound constraint, Inferior limit, and Superior limit;
5: «: Initial learning rate;
6: (x™ :y™): Set of input-output pairs;
T
8: Output:
9: accuracy(%): Accuracy of VS MLP;
10:
11: procedure SMMLP TRAINING
12: forep=1,... epne: do
13: forn=1,...,N do
14: Initialize value of the weight vector w using random-number generator;
15: Calculate ypred;
16: Evaluate (4.7) and (4.8);
17: Calculate the error e(n);
18: if |e?| > 7 then
19: n(n+1) =n(n)-a- 103
20: else
21: n(n+1) = I
22: end if
23: Update the w using (4.6);
24: Calculate accuracy(%)
25: end for
26: end for

27: end procedure
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5 EXPERIMENTAL RESULTS

We separate this Section into four subsections: the benchmarks, the Hot Box and
Hot Wheel problem, adaptive learning rate comparison, and CNN with MNIST dataset
comparison. This first is a set of commonly used datasets and will be used to analyze
the effectiveness of the proposed new method. The second comprises a Hot Box and Hot
Wheel problem provided by MRS Logistica S.A. In thirty, we compare our technique
with different ways of art state methods, like that: Time-based decay, Step decay, and
Exponential Decay schedules. Finally, we compare our proposed methods with the CNN
model on the MNIST dataset.

We evaluate a modified MLP and some variations to validate the proposed technique.
As a result, we show that the approach may efficiently tackle practical machine learning

issues involving large datasets widely utilized on cutting-edge platforms.

We compare all of the proposed techniques using identical initialization values.
The network has seven neurons in the hidden layer, Sigmoid activation on the hidden
layer, Softmax activation on the output layer, Cross-Entropy for the loss function, 1000

iterations, and an initial learning rate of 0.002.

In Table 5.11, we can see the adopted parameters of L, SL, and 7 for each dataset.
The 7 value was varied in the range between 0.0006 to 0.6, and the gamma chosen was
the best value out of 100 simulations. For /L and SL, we analyzed the interval of the
best results for 7 in each technique. These hyperparameters have been chosen using the
grid search algorithm (SHEKHAR; BANSODE; SALIM, 2021). It consists of exhaustively

generating candidates from a grid of parameter values.

We have used the same parameter to compare our proposed method with the work
done in (FONSECA; AGUIAR, 2022); The step size adopted for all classifiers was o = 0.001.
For Adam ULST2-FLS, the adopted settings were 3; = 0.9, 35 = 0.999 and € = 1078, as
suggested in (FONSECA; AGUIAR, 2022). Finally, the adopted settings for SM Adam
ULST2-FLS and MSE Adam ULST2-FLS were € = 1078, (1) = 0.9 and ps(1) = 0.999,
and these variables were limited by 0.8 < u1(q) < 0.999 and 0.85 < us(q) < 0.999.

We have carried out all simulations on Python language running in a cluster of
PCs running Linux. They run CentOS 7 in 64-bit mode and with around Puppet-managed
nodes of the same size, with 30 GB RAM, 10 GB swap, and 8 CPUs on hypervisors with

solid-state disks. Each of these nodes is shared on average by 27 users.

Each dataset has been presented 33 times for each classifier, with 5-fold cross-
validation for each presentation (REFAEILZADEH; TANG; LIU, 2009); that is, each
dataset is randomly divided into five subsets. Each subgroup serves as a test set for the

classifier, which is then trained using the remaining four. By eliminating the mean and
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Technique ‘ Gamma ‘ IL ‘ SL Technique ‘ Gamma ‘ IL SL
SMMLP 0.1459 : - SMMLP 0.0369 : :
MSE MLP 0.0490 - - MSE MLP 0.0369 - -
MVSA MLP  0.2065 - - MVSA MLP  0.0308 ; -
VS MLP 0.2609 - . VS MLP 0.4789 _ -
NN MLP 0.0611 - . NN MLP 0.0308 ; -
ESMMLP 0.3820  0.0429 0.0999 ESMMLP 0.1459  0.0800 0.1000

Appendicitis | EMSE MLP 02731 0.0070 0.0099 | /o | EMSEMLP 01459 0.0040 0.0097
EMVS MLP  0.3154  0.0005 0.0320 EMVS MLP  0.1459  0.0040 0.0080
EMVSA MLP 0.4244  0.0404 0.1100 EMVSA MLP 0.1459  0.0040 0.0080
EVS MLP 0.2731  0.0040 0.0160 EVS MLP 0.1459  0.0040 0.0160
EVSA MLP  0.3275  0.0462 0.1140 EVSA MLP  0.1459  0.0542 0.1160
ENN MLP 0.5334  0.0015 0.0025 ENN MLP 0.1459  0.0015 0.0025
SMMLP 0.0793 - - SMMLP 0.0550 - -
MSE MLP 0.2186 - - MSE MLP 0.0611 ; -
MVSA MLP  0.2307 - . MVSA MLP  0.1459 _ -
VS MLP 0.3578 - . VS MLP 0.3594 . -
NN MLP 0.1459 - - NN MLP 0.0732 ; -
ESMMLP 0.4789  0.0800 0.1000 ESMMLP 0.0853  0.0800 0.1000

Hoborman | EMSEMLP 04063 0.0040 0.0097 | .~ | EMSEMLP  0.3578  0.0040 0.0097
EMVS MLP  0.4486  0.0040 0.0080 EMVS MLP  0.1641  0.0040 0.0080
EMVSA MLP 0.5273  0.0040 0.0080 EMVSA MLP 0.1641  0.0040 0.0080
EVS MLP 0.4365  0.0040 0.0160 EVS MLP 0.3518  0.0040 0.0160
EVSA MLP  0.3820  0.0542 0.1160 EVSA MLP  0.5092  0.0542 0.1160
ENN MLP 0.0974  0.0015 0.0025 ENN MLP 0.1338  0.0015 0.0025
SMMLP 0.0732 - - SMMLP 0.0127 : -
MSE MLP 0.0611 - § MSE MLP 0.1580 _ -
MVSA MLP  0.0550 - . MVSA MLP  0.1822 . -
VS MLP 0.1580 - . VS MLP 0.4123 ; -
NN MLP 0.0732 - - NN MLP 0.3154 ; -
ESMMLP 0.0490  0.0800 0.1000 ESMMLP 0.3699  0.0800 0.1000
EMSE MLP 04063  0.0040 0.0097 A EMSE MLP  0.2973  0.0040 0.0097
HB_HW MRS | p\ivs MLP 04365 00040 00080 | ©™® | EMVS MLP  0.0550  0.0040 0.0080
EMVSA MLP 0.3941  0.0040 0.0080 EMVSA MLP 0.4668  0.0040 0.0080
EVS MLP 0.1883  0.0040 0.0160 EVS MLP 0.3820  0.0040 0.0160
EVSA MLP 04850  0.0542 0.1160 EVSA MLP 04910  0.0542 0.1160
ENN MLP 0.1943  0.0015 0.0025 ENN MLP 0.4244  0.0015 0.0025
SMMLP 0.1217 - - SMMLP 0.0853 _ _
MSE MLP 0.0550 - . MSE MLP 0.1701 . -
MVSA MLP  0.0974 - . MVSA MLP  0.3820 ; -
VS MLP 0.3941 - . VS MLP 0.4547 ; -
NN MLP 0.0732 - . NN MLP 0.2367 - -
ESMMLP 0.1641  0.0800 0.1000 ESMMLP 0.2488  0.0800 0.1000
lonosphere | EMSEMLP 04063 00040 00097 | g .~ |EMSEMLP 04063  0.0040 0.0097
EMVS MLP  0.0611  0.0040 0.0080 EMVS MLP  0.5758  0.0040 0.0080
EMVSA MLP 0.0490  0.0040 0.0080 EMVSA MLP 0.2428  0.0040 0.0080
EVS MLP 0.3630  0.0040 0.0160 EVS MLP 0.5697  0.0040 0.0160
EVSA MLP  0.0611  0.0542 0.1160 EVSA MLP  0.2670  0.0542 0.1160
ENN MLP 0.0793  0.0015 0.0025 ENN MLP 0.2549  0.0015 0.0025

scaling to unit variance, the input variables were standardized for all classifiers.

In order to analyze the numerical results, six performance metrics were used:

Accuracy, Loss, Cohen’s kappa coefficient (VIEIRA; KAYMAK; SOUSA, 2010), F-score
(SASAKTI et al., 2007), Time run, and Computation Complexity Reduction. A maximum
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value of 1000 epochs is assumed for the proposed techniques. Moreover, twenty percent
of all datasets were used for the testing phase and eighty percent for the training phase,

aiming for the highest accuracy of the models.

Finally, we are adopting the Scikit-learn (PEDREGOSA et al., 2011), a popular
open-source machine-learning library for Python, to compare our approach with other
models. Scikit-learn offers simple and efficient tools for data mining and data analysis.
Specifically, we have chosen to compare the following models: RBF SVM (VAPNIK, 2013),
Random Forest (BREIMAN, 2001), Naive Bayes (DUDA; HART et al., 1973), and QDA
(HASTIE et al., 2009).

The algorithm and datasets used in this study are publicly available at <https:
//github.com/ualisondias/SMMLP>.

5.1 BENCHMARKS

We employed some classifiers, where the performance was analyzed by applying
seven benchmarks consolidated and widely utilized in the literature, such as Parkinson,
Pima, and Ionosphere provided by UCI Machine Learning Repository (LICHMAN, 2008),
and Haberman, Monk-2, Appendicitis, and Sonar provided by KEEL (Knowledge Extrac-
tion based on Evolutionary Learning) (ALCAL&-FDEZ et al., 2010). The information

about the input features and the number of samples is presented in Table 5.2.

Table 5.2 — Details of datasets

datasets Number of Samples Input Features
Parkinson 195 22
Pima 768 8
[onosphere 351 34
Haberman 306 3
Monk-2 432 6
Appendicitis 106 7
Sonar 208 60

Although this work focuses on improving the training phase in the models, it is
essential to present a performance comparison with the MLP model for an investigative

purposes.

Results obtained by the twelve proposed classifiers and the original MLP are
presented in Tables 5.3, 5.4, 5.5, and 5.6.

First, analyzing these results, the proposed method has yielded the best accuracy
values in the test phase, considering the mean of the executions for all datasets except
Appendicitis and Ionosphere. In the same way, we have the lowest value of the loss except

for Monk-2. Moreover, we achieved better results for Kappa, except for Ionosphere. And
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for the F-Score, we have the highest results for Monk-2, Parkinson, and Sonar datasets.
The results were competitive for all classifiers compared with the original MLP and models

previously proposed in the literature.

Overall, we had some outstanding techniques compared to the original MLP, such
as MVSA MLP, which obtained higher accuracy values for Haberman and Monk-2 datasets.
Nevertheless, the technique also had a competitive performance, higher convergence speed
among the others when applied to other datasets, and a high computational complexity

reduction, in many cases over 90%, which is one of the main goals of this document.

It is also important to mention the high accuracy obtained by the ENN MLP
technique for the Parkinson dataset, which significantly outperforms the other models

and thus demonstrates its ability to handle specific problems very well.

5.1.1 Convergence Speed Analysis

An important characteristic when we are analyzing machine learning models is
speed convergence. In this Section, we will discuss this properly. As we have many

datasets, we have had to choose one datasets for this analysis: Ionosphere.

Figure 5.1 shows the convergence speed for the Ionosphere in the training phase.
In this dataset, we can see the same behavior for all datasets we used as benchmarks.
We have a fast convergence speed, high accuracy, and low loss value for our proposed
version compared to the original MLP. Furthermore, we have EVSA MLP as the faster

convergence speed, higher accuracy, and lower loss for this dataset, followed by EMVSA
MLP.

5.1.2 Statistical test

Tables 5.7 and 5.8 present the results of statistical tests comparing the performance

of different techniques proposed on various datasets.

The table columns include Dataset, G; and G, (the two techniques being compared),
H (hypothesis test result, where 1 indicates rejection of the null hypothesis and 0 indicates
failure to reject the null hypothesis), p-value (probability value indicating the significance
of the results, with lower values (< 0.05) indicating strong evidence against the null
hypothesis), and Lower Boundary and Upper Boundary (confidence interval boundaries

for the difference in performance metrics between the two techniques).

In the Appendicitis dataset, MLP showed significant differences (H = 1) with
most variants like EMSE MLP, EMVS MLP, etc., indicating improved performance with
modified techniques (p-values < 0.05). However, there was no significant difference (H = 0)

with techniques like EVS MLP, indicating similar performance (p-values > 0.05).



Table 5.3 — Performance comparison in terms of the mean and standard deviation for test process of Appendicitis and Haberman datasets.

Dataset Accuracy Loss ‘ Kappa ‘ F-Score ‘ Time Red. Complex
MLP 0,8881 + 0,0553 0,2129 + 0,0176 0,6236 + 0,1630 0,8094 £ 0,0831 0,6155 + 0,0417 -
SMMLP 0,8492 + 0,0458 0,1503 + 0,0022 0,3939 + 0,1949 0,6866 + 0,1059 0,6300 + 0,0359 0,9516 + 0,0215
MSE MLP 0,8770 £+ 0,0635 0,0840 + 0,0086 0,5916 + 0,1976 0,7949 + 0,0988 0,6326 + 0,0362 0,0310 + 0,0718
MVSA MLP 0,8621 + 0,0456 0,2115 &+ 0,0013 0,5115 %+ 0,1602 0,7523 + 0,0808 0,6260 % 0,0546 0,9179 + 0,0185
VS MLP 0,8089 =+ 0,0328 0,2052 % 0,0100 0,0821 =+ 0,1865 0,4976 + 0,1102 0,6345 + 0,0557 -

NN MLP 0,8729 4+ 0,0687 0,2104 + 0,0138 0,5811 + 0,2123 0,7885 + 0,1070 0,6572 + 0,0420 -
ESMMLP 0,7906 + 0,0589 0,0864 + 0,0133 0,3442 + 0,1669 0,6703 + 0,0841 0,6297 + 0,0407 -
Appendicitis | EMSE MLP 0,8504 + 0,0796 0,1664 + 0,0140 0,5079 + 0,2452 0,7529 + 0,1223 0,6187 + 0,0362 -
EMVS MLP 0,8415 + 0,0476 0,2617 + 0,0143 0,3850 + 0,2403 0,6853 + 0,1273 0,6248 + 0,0408 -
EMVSA MLP 0,8126 + 0,0618 0,0851 + 0,0155 0,4016 + 0,1662 0,6988 £ 0,0842 0,6289 £ 0,0405 -
EVS MLP 0,8825 + 0,0749 0,1865 + 0,0153 0,5999 + 0,2356 0,7989 + 0,1176 0,6252 + 0,0434 -
EVSA MLP 0,8090 £ 0,0741 0,0768 + 0,0132 0,4036 £ 0,1907 0,6993 £ 0,0972 0,6316 £ 0,0414 -
ENN MLP 0,8601 £+ 0,0667 0,2257 + 0,0143 0,5422 + 0,2035 0,7692 + 0,1026 0,6263 + 0,0408 -
MSE Adam ULST2-FLS (FONSECA; AGUIAR, 2022) 0,8700 + 0,0569 0,5200 £+ 0,2278 0,5201 + 0,1813 0,9217 £ 0,0359 0,5093 + 0,0498 -
SM Adam ULST2-FLS (FONSECA; AGUIAR, 2022)  0,8394 + 0,0668 0,6425 + 0,2673 0,4104 + 0,1821 0,9023 + 0,0443 0,4965 + 0,0461 -
Adam ULST2-FLS (FONSECA; AGUIAR, 2022) 0,8263 + 0,0666 0,6950 + 0,2663 0,3734 + 0,2235 0,8924 + 0,0459 0,4932 + 0,0481 -
ULST2-FLS (FONSECA; AGUIAR, 2022) 0,8526 + 0,0448 0,5898 + 0,1792 0,3977 + 0,2270 0,9138 + 0,0258 0,4700 + 0,0392 -
RBF SVM (PEDREGOSA et al., 2011) 0,8023 + 0,0147 0,1978 + 0,0147 0.0000 % 0.0000 0,4452 + 0,0046 0,0019 + 0,0003 -
Random Forest (PEDREGOSA et al., 2011) 0,8094 + 0,0611 0,1907 &+ 0,0611 0,2699 + 0,2494 0,6252 + 0,1326 0,0228 + 0,0021 -
Naive Bayes (PEDREGOSA et al., 2011) 0,8022 £+ 0,0891 0,1979 + 0,0891 0,3924 £ 0,2453 0,6957 £ 0,1227 0,0018 £ 0,0003 -
QDA (PEDREGOSA et al., 2011) 0,7939 £ 0,0810 0,2062 £ 0,0810 0,4265 £+ 0,1319 0,7092 £ 0,0709 0,0017 £ 0,0003 -
MLP 0,7356 + 0,0339 0,3417 + 0,0089 0,2225 + 0,0882 0,6040 + 0,0451 0,7094 + 0,0269 -
SMMLP 0,6827 + 0,0866 0,3375 + 0,01500  0,2605 + 0,1803 0,6254 £+ 0,0927 0,7235 + 0,0232 -
MSE MLP 0,7463 + 0,0193 0,2136 + 0,0056 0,1353 + 0,1145 0,5281 + 0,0842 0,7201 + 0,0322 0,9955 £ 0,0035
MVSA MLP 0,7631 £+ 0,0379 0,2914 £ 0,0271 0,2548 + 0,1438 0,6083 + 0,0920 0,7165 + 0,0339 0,4477 + 0,2399
VS MLP 0,7545 £ 0,0230 0,3247 £ 0,0320 0,1936 + 0,1297 0,5684 £ 0,0918 0,7181 £ 0,0301 -
NN MLP 0,7353 £ 0,0355 0,3415 + 0,0087 0,2138 + 0,0850 0,5987 + 0,0425 0,7499 + 0,0289 -
ESMMLP 0,6271 £+ 0,1618 0,3543 + 0,0217 0,0343 + 0,0746 0,4293 + 0,0733 0,7164 + 0,0197 -
Haberman | EMSE MLP 0,7290 + 0,0234 0,3341 + 0,0106 0,1954 + 0,0597 0,5894 + 0,0316 0,7221 + 0,0252 -
EMVS MLP 0,7267 + 0,0231 0,3344 + 0,0104 0,1890 + 0,0702 0,5857 + 0,0391 0,7272 + 0,0676 -
EMVSA MLP 0,7324 + 0,0213 0,3338 + 0,0106 0,2023 + 0,0562 0,5920 + 0,0314 0,7214 + 0,0310 -
EVS MLP 0,7297 + 0,0235 0,3332 + 0,0106 0,2025 + 0,0528 0,5934 + 0,0274 0,7181 + 0,0228 -
EVSA MLP 0,6214 + 0,1505 0,3522 + 0,0213 0,0425 + 0,0862 0,4417 + 0,0738 0,7235 + 0,0244 -
ENN MLP 0,7290 £+ 0,0378 0,3390 £+ 0,0084 0,2073 % 0,0960 0,5966 + 0,0486 0,7451 % 0,0207 -
MSE Adam ULST2-FLS (FONSECA; AGUIAR, 2022) 0,7159 + 0,0797 0,7502 + 0,1133 0,2424 + 0,1032 0,8173 + 0,0383 1,5490 £ 0,7204 -
SM Adam ULST2-FLS (FONSECA; AGUIAR, 2022)  0,7048 + 0,0784 0,7614 £+ 0,1401 0,2308 4+ 0,1144 0,7924 + 0,1122 1,2043 £ 0,0793 -
Adam ULST2-FLS (FONSECA; AGUIAR, 2022) 0,7259 + 0,0375 0,7373 + 0,0813 0,2362 + 0,1036 0,8198 + 0,0310 1,4530 £ 0,1269 -
ULST2-FLS (FONSECA; AGUIAR, 2022) 0,7402 + 0,0245 0,7434 + 0,0516 0,1232 + 0,0833 0,8441 + 0,0158 1,5419 + 0,8950 -
RBF SVM (PEDREGOSA et al., 2011) 0,7350 £ 0,0116 0,2651 + 0,0116 0,1216 + 0,0408 0,5328 + 0,0299 0,0042 + 0,0005 -
Random Forest (PEDREGOSA et al., 2011) 0,7256 + 0,0386 0,2745 + 0,0386 0,1637 + 0,0969 0,5675 + 0,0530 0,0225 + 0,0020 -
Naive Bayes (PEDREGOSA et al., 2011) 0,7586 + 0,0253 0,2415 + 0,0253 0,2283 + 0,0626 0,5970 + 0,0296 0,0018 + 0,0004 -
QDA (PEDREGOSA et al., 2011) 0,7555 + 0,0201 0,2446 + 0,0201 0,2200 % 0,0704 0,5923 + 0,0409 0,0019 % 0,0072 -

0¢



Table 5.4 — Performance comparison in terms of the mean and standard deviation for test process of lonosphere and Monk-2 datasets.

Dataset

Technique

Accuracy

Loss

Kappa

F-Score

Time

Red. Complex

lonosphere

MLP

SMMLP

MSE MLP

MVSA MLP

VS MLP

NN MLP

ESMMLP

EMSE MLP

EMVS MLP

EMVSA MLP

EVS MLP

EVSA MLP

ENN MLP

MSE Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
SM Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
ULST2-FLS (FONSECA; AGUIAR, 2022)

RBF SVM (PEDREGOSA et al., 2011)

Random Forest (PEDREGOSA et al., 2011)
Naive Bayes (PEDREGOSA et al., 2011)

QDA (PEDREGOSA et al., 2011)

0,8825 £ 0,0520
0,8574 + 0,0480
0,8600 % 0,0713
0,8665 + 0,0644
0,8518 =+ 0,0495
0,8731 + 0,0526
0,8539 & 0,0627
0,8729 & 0,0556
0,8882 + 0,0518
0,8860 % 0,0506
0,8863 + 0,0453
0,8663 =+ 0,0587
0,8816 =+ 0,0489

0,9377 + 0,0216

0,9274 + 0,0237
0,9274 + 0,0251
0,7802 =+ 0,0409
0,6411 + 0,0037
0,8961 + 0,0371
0,3590 =+ 0,0037
0,3590 & 0,0037

0,0796 £ 0,0103
0,1141 =+ 0,0070
0,0571 % 0,0007
0,1036 + 0,0010
0,2509 + 0,0535
0,0959 & 0,0042
0,0494 % 0,0527
0,0490 % 0,0071
0,0380 % 0,0053
0,0379 + 0,0053
0,0481 % 0,0070

0,0166 + 0,0057

0,0828 =+ 0,0092
0,2242 + 0,0803
0,2651 =+ 0,0914
0,2562 + 0,0845
0,5997 + 0,0743
0,3590 + 0,0037
0,1040 + 0,0371
0,6411 + 0,0037
0,6411 =+ 0,0037

0,7389 £ 0,1124
0,6693 £ 0,1120
0,6877 % 0,1575
0,7030 + 0,1407
0,6570 = 0,1200
0,7171 + 0,1141
0,6694 =+ 0,1518
0,7185 =+ 0,1168
0,7514 =+ 0,1098
0,7470 % 0,1084
0,7464 + 0,0973
0,7008 + 0,1242
0,7360 =+ 0,1052

0,8611 =+ 0,0470

0,8385 & 0,0513
0,8374 % 0,0539
0,5572 + 0,0751
0,0041 % 0,0086
0,7627 + 0,0888
0.0000 + 0.0000
0.0000 % 0.0000

0,8690 £ 0,0562
0,8323 + 0,0573
0,8435 + 0,0788
0,8512 + 0,0703
0,8261 =+ 0,0619
0,8582 % 0,0570
0,8314 =+ 0,0868
0,8588 & 0,0583
0,8752 =+ 0,0549
0,8731 + 0,0541
0,8727 + 0,0486
0,8495 + 0,0624
0,8675 + 0,0525

0,9084 + 0,0312

0,8937 % 0,0340
0,8921 + 0,0357
0,7377 £ 0,0451
0,3970 % 0,0139
0,8803 + 0,0455
0,2642 + 0,0020
0,2642 =+ 0,0020

0,7968 % 0,0790
0,8096 + 0,0701
0,8028 + 0,0372
0,8078 + 0,0494
0,8078 + 0,0605
0,8217 =+ 0,0724
0,8071 % 0,0659
0,7951 % 0,0586
0,8098 % 0,0583
0,7993 + 0,0400
0,8002 + 0,0350
0,7919 + 0,0299
0,8066 + 0,0356
3,3472 £ 1,4586
3,7849 + 0,2174
3,5089 + 1,2846
2,9060 =+ 0,0840
0,0150 % 0,0011
0,0236 + 0,0023

0,0028 + 0,0004

0,0204 + 0,0128

0,9881 = 0,0039
0,9597 + 0,0123
0,9430 + 0,0087

0,6550 + 0,0678

Monk-2

MLP

SMMLP

MSE MLP

MVSA MLP

VS MLP

NN MLP

ESMMLP

EMSE MLP

EMVS MLP

EMVSA MLP

EVS MLP

EVSA MLP

ENN MLP

MSE Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
SM Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
ULST2-FLS (FONSECA; AGUIAR, 2022)

RBF SVM (PEDREGOSA et al., 2011)

Random Forest (PEDREGOSA et al., 2011)
Naive Bayes (PEDREGOSA et al., 2011)

QDA (PEDREGOSA et al., 2011)

0,9762 £ 0,0638
0,9814 + 0,0168
0,9093 + 0,0647

0,9977 + 0,0066

0,7785 =+ 0,0670
0,9813 + 0,0613
0,8069 % 0,1960
0,9968 & 0,0092
0,9961 + 0,0112
0,9975 £ 0,0098
0,9961 % 0,0096
0,9209 + 0,0868
0,9868 + 0,0455
0,9788 + 0,0191
0,9809 & 0,0236
0,9965 & 0,0083
0,9725 + 0,0155
0,8402 + 0,0622
0,9728 + 0,0192
0,9142 + 0,0216
0,9293 + 0,0222

0,1623 £ 0,0332
0,0434 £ 0,0054
0,0671 % 0,0085
0,0539 + 0,0023
0,4100 + 0,0467
0,1668 = 0,0304
0,2137 + 0,1652
0,0697 =+ 0,0146
0,0428 =+ 0,0060
0,0558 % 0,0169
0,0378 + 0,0173
0,0857 + 0,0647
0,1575 + 0,0238
0,0591 + 0,0532
0,0511 =+ 0,0578

0,0161 + 0,0258

0,1075 £ 0,0545
0,1599 =+ 0,0622
0,0273 £ 0,0192
0,0859 + 0,0216
0,0708 + 0,0222

0,9524 £+ 0,1278
0,9627 £ 0,0335
0,8187 £ 0,1301

0,9954 + 0,0132

0,5499 + 0,1405
0,9625 =+ 0,1229
0,6055 =+ 0,4043
0,9935 =+ 0,0184
0,9921 + 0,0225
0,9949 + 0,0197
0,9921 + 0,0193
0,8415 + 0,1743
0,9736 = 0,0909
0,9572 % 0,0385
0,9616 =+ 0,0475
0,9929 =+ 0,0166
0,9450 % 0,0308
0,6793 £ 0,1222
0,9455 + 0,0385
0,8288 + 0,0435
0,8593 + 0,0439

0,9762 £ 0,0640
0,9814 =+ 0,0168
0,9091 + 0,0651

0,9977 + 0,0067

0,7684 + 0,0871
0,9812 =+ 0,0616
0,7571 + 0,2716
0,9968 % 0,0092
0,9961 =+ 0,0113
0,9975 % 0,0099
0,9961 + 0,0097
0,9202 + 0,0877
0,9868 =+ 0,0456
0,9775 + 0,0205
0,9798 & 0,0253
0,9963 % 0,0087
0,9719 =+ 0,0154
0,8386 % 0,0620
0,9728 + 0,0193
0,9140 + 0,0218
0,9293 + 0,0222

0,7907 £ 0,0236
0,8005 % 0,0193
0,8091 + 0,0206
0,8001 + 0,0219
0,7976 + 0,0224
0,8288 + 0,0211
0,8019 =+ 0,0181
0,8037 % 0,0253
0,8147 =+ 0,0610
0,8034 £ 0,0243
0,8011 + 0,0235
0,8027 + 0,0259
0,8228 + 0,0226
2,4306 =+ 0,9901
2,2888 + 0,0843
2,2812 + 0,6699
2,1143 + 0,1378
0,0102 % 0,0005
0,0226 + 0,0012
0,0019 + 0,0002

0,0018 =+ 0,0002

0,9257 £ 0,0124
0,5996 + 0,1307
0,8776 + 0,0118

0,0708 + 0,0796

h e}
L3




Table 5.5 — Performance comparison in terms of the mean and standard deviation for test process of Parkinson and Pima datasets.

Dataset ‘ Accuracy ‘ Loss ‘ Kappa ‘ F-Score ‘ Time Red. Complex
MLP 0,8549 + 0,0436 0,1694 + 0,0069 0,6078 £ 0,1171 0,8037 £ 0,0588 0,6450 + 0,0532 -
SMMLP 0,8785 + 0,0449 0,0664 + 0,0016 0,6414 + 0,1279 0,8184 + 0,0663 0,6655 + 0,0783 0,8573 + 0,0202
MSE MLP 0,8503 + 0,0547 0,0672 £ 0,0013 0,5914 + 0,1463 0,7954 + 0,0733 0,6683 £+ 0,0751 0,8076 + 0,0182
MVSA MLP 0,8380 & 0,0456  0,1532 + 0,0014  0,5503 &+ 0,1232  0,7739 + 0,0624  0,6570 &= 0,0571  0,8962 + 0,0092
VS MLP 0,7565 =+ 0,0209 0,3382 £ 0,0114 0,0119 + 0,0837 0,4372 £ 0,0517 0,6549 £ 0,0558 -

NN MLP 0,8565 + 0,0464 0,1672 £ 0,0075 0,6079 + 0,1260 0,8037 + 0,0632 0,7013 + 0,0866 -
ESMMLP 0,8652 + 0,0446 0,0524 + 0,0319 0,6293 + 0,1235 0,8139 + 0,0623 0,6626 + 0,0740 -
Parkinson | EMSE MLP 0,8672 + 0,0474 0,1237 + 0,0063 0,6336 + 0,1339 0,8161 + 0,0677 0,6671 + 0,0792 -
EMVS MLP 0,8816 + 0,0381 0,1060 + 0,0057 0,6673 £ 0,1098 0,8328 + 0,0558 0,6623 + 0,0641 -
EMVSA MLP 0,8744 + 0,0441 0,1066 + 0,0064 0,6511 + 0,1226 0,8248 + 0,0621 0,6654 + 0,0791 -
EVS MLP 0,8806 + 0,0387 0,1235 + 0,0086 0,6709 + 0,1044 0,8348 + 0,0528 0,6691 + 0,0760 -
EVSA MLP 0,8565 £+ 0,0497 0,0343 + 0,0159 0,6055 £ 0,1375 0,8021 £ 0,0691 0,6654 £ 0,0724 -
ENN MLP 0,8492 + 0,0495 0,1662 + 0,0065 0,5961 + 0,1315 0,7977 £ 0,0660 0,6837 &+ 0,0793 -
MSE Adam ULST2-FLS (FONSECA; AGUIAR, 2022) 0,8417 + 0,0498 0,5273 + 0,1552 0,5288 + 0,1198 0,6223 £ 0,1057 1,5907 £ 0,1239 -
SM Adam ULST2-FLS (FONSECA; AGUIAR, 2022)  0,8583 + 0,0456 0,4617 + 0,1415 0,5716 + 0,1391 0,6557 £ 0,1266 1,6220 £ 0,0859 -
Adam ULST2-FLS (FONSECA; AGUIAR, 2022) 0,8241 + 0,0659 0,5780 + 0,2042 0,4716 £ 0,1818 0,5651 + 0,1732 1,6668 + 0,1308 -
ULST2-FLS (FONSECA; AGUIAR, 2022) 0,7400 + 0,1116 0,7106 + 0,1017 0,0816 + 0,2017 0,5902 + 0,1650 1,6593 + 0,6243 -
RBF SVM (PEDREGOSA et al., 2011) 0,7652 + 0,0195 0,2349 + 0,0195 0,0600 + 0,1126 0,4696 + 0,0730 0,0048 + 0,0003 -
Random Forest (PEDREGOSA et al., 2011) 0,8552 + 0,0486 0,1449 + 0,0486 0,5614 + 0,1569 0,7773 £ 0,0820 0,0215 + 0,0014 -
Naive Bayes (PEDREGOSA et al., 2011) 0,7032 £ 0,0560 0,2969 £+ 0,0560 0,3731 £+ 0,1462 0,6708 + 0,0702 0,0018 £ 0,0003 -
QDA (PEDREGOSA et al., 2011) 0,8154 + 0,0692 0,1847 + 0,0692 0,3291 + 0,2902 0,6341 £ 0,1745 0,0021 £ 0,0002 -
MLP 0,7567 £ 0,0345 0,2846 + 0,0036 0,4502 + 0,0770 0,7245 + 0,0386 0,9745 + 0,0287 -
SMMLP 0,7339 + 0,0366 0,2666 + 0,0051 0,4284 + 0,0717 0,7129 + 0,0364 0,9865 + 0,0312 -
MSE MLP 0,7446 + 0,0152 0,1618 + 0,0004 0,4433 £ 0,0661 0,7146 + 0,0365 0,9831 + 0,0348 0,8176 + 0,0268
MVSA MLP 0,7347 + 0,0311 0,2636 + 0,0113 0,3759 + 0,1241 0,6741 £ 0,0867 0,9794 + 0,0398 0,1234 + 0,156
VS MLP 0,7099 £ 0,0487 0,3485 + 0,0278 0,2410 + 0,1941 0,5757 + 0,1423 0,9701 £ 0,0303 -
NN MLP 0,7742 + 0,0294 0,3172 + 0,0005 0,4831 + 0,0687 0,7404 £+ 0,0347 0,9746 £ 0,0278 0,9612 + 0,004
ESMMLP 0,6647 £ 0,0607 0,3340 £ 0,0677 0,1130 £ 0,1823 0,4767 £ 0,1384 0,9706 + 0,0302 -

Pima EMSE MLP 0,7426 + 0,0260 0,2691 + 0,0049 0,4255 + 0,0602 0,7123 + 0,0304 0,9769 + 0,0318 -
EMVS MLP 0,7416 + 0,0320 0,2619 + 0,0064 0,4067 £ 0,0747 0,7014 + 0,0381 0,9716 + 0,0300 -
EMVSA MLP 0,7417 £ 0,0289 0,2674 £ 0,0042 0,4202 + 0,0663 0,7095 + 0,0335 0,9729 + 0,0307 -

EVS MLP 0,7586 + 0,0328 0,2714 £ 0,0093 0,4580 + 0,0764 0,7284 + 0,0386 0,9862 + 0,0450 -
EVSA MLP 0,6912 + 0,0665 0,2929 + 0,0225 0,2926 + 0,1810 0,6110 £ 0,1311 0,9820 + 0,0627 -
ENN MLP 0,7613 + 0,0296 0,2905 + 0,0028 0,4587 + 0,0672 0,7287 £ 0,0338 0,9873 £ 0,0348 -

MSE Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
SM Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
ULST2-FLS (FONSECA; AGUIAR, 2022)

RBF SVM (PEDREGOSA et al., 2011)

Random Forest (PEDREGOSA et al., 2011)

Naive Bayes (PEDREGOSA et al., 2011)

QDA (PEDREGOSA et al., 2011)

0,7294 =+ 0,0360
0,7330 % 0,0305
0,7295 =+ 0,0422
0,7472 + 0,0341
0,6548 + 0,0068
0,7392 + 0,0241
0,7477 + 0,0135
0,7375 + 0,0317

0,7561 + 0,0798
0,7556 % 0,0697
0,7525 %+ 0,1017
0,6797 % 0,0674
0,3453 + 0,0068
0,2609 + 0,0241
0,2524 + 0,0135
0,2626 + 0,0317

0,4129 =+ 0,0691
0,4161 =+ 0,0662
0,4159 =+ 0,0704
0,4262 =+ 0,0809
0,0525 + 0,0157
0,3784 %+ 0,0607
0,4351 + 0,0274
0,4020 =+ 0,0681

0,7867 + 0,0403
0,7916 & 0,0324
0,7845 + 0,0499

0,8122 £ 0,0252

0,4601 £ 0,0115
0,6838 + 0,0322
0,7173 + 0,0136
0,7001 =+ 0,0338

3,9804 & 0,6979
4,0349 £ 0,8114
3,9434 & 0,7478
3,7261 & 0,4945
0,0317 £ 0,0023
0,0246 £ 0,0016

0,0021 + 0,0002

0,0023 £ 0,0076

¢S



Table 5.6 — Performance comparison in terms of the mean and standard deviation for test process of Sonar dataset.

Dataset

Technique

Accuracy

Loss

Kappa

F-Score

Time

Red. Complex

Sonar

MLP
SMMLP
MSE MLP
MVSA MLP
VS MLP

NN MLP
ESMMLP
EMSE MLP
EMVS MLP
EMVSA MLP
EVS MLP
EVSA MLP
ENN MLP

MSE Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
SM Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
ULST2-FLS (FONSECA; AGUIAR, 2022)

RBF SVM (PEDREGOSA et al., 2011)

Random Forest (PEDREGOSA et al., 2011)

Naive Bayes (PEDREGOSA et al., 2011)

QDA (PEDREGOSA et al., 2011)

0,7781 £ 0,0617
0,8094 + 0,0629
0,7779 £ 0,0447
0,7732 £ 0,0506
0,7731 + 0,0584
0,7867 + 0,0561
0,8195 =+ 0,0620
0,7849 & 0,0606
0,7900 % 0,0574
0,7811 + 0,0651
0,7803 % 0,0617

0,8235 + 0,0639

0,7779 + 0,0559
0,7326 + 0,0636
0,7432 £ 0,0683
0,7294 =+ 0,0597
0,6463 % 0,0760
0,5335 %+ 0,0089
0,7499 + 0,0631
0,7021 + 0,0304
0,7305 + 0,0343

0,0913 £ 0,0074
0,0816 =+ 0,0072
0,1625 £ 0,0043
0,3767 £ 0,0039
0,3748 + 0,0441
0,2443 + 0,0016
0,0317 =+ 0,0187
0,0475 & 0,0035
0,0510 =+ 0,0034
0,0456 & 0,0035
0,0508 % 0,0044

0,0109 + 0,0043

0,1071 =+ 0,0067
0,9506 =+ 0,2072
0,9325 + 0,2436
0,9754 + 0,2149
1,1660 + 0,2526
0,4666 % 0,0089
0,2502 + 0,0631
0,2980 + 0,0304
0,2696 + 0,0343

0,5559 £ 0,1210
0,6164 + 0,1258
0,5531 % 0,0897
0,5435 + 0,1018
0,5430 + 0,1160
0,5742 + 0,1087
0,6370 =+ 0,1232
0,5687 =+ 0,1185
0,5785 + 0,1137
0,5619 + 0,1273
0,5598 + 0,1212

0,6460 + 0,1266

0,5543 + 0,1104
0,4556 =+ 0,1355
0,4776 + 0,1306
0,4447 + 0,1140
0,2613 + 0,1601
0.0000 £ 0.0000
0,4930 + 0,1286
0,4090 + 0,0597
0,4419 + 0,0791

0,7764 £ 0,0623
0,8069 + 0,0637
0,7762 % 0,0449
0,7715 + 0,0510
0,7708 + 0,0581
0,7857 % 0,0558
0,8177 & 0,0620
0,7829 & 0,0607
0,7884 & 0,0577
0,7794 % 0,0653
0,7787 % 0,0618

0,8220 + 0,0640

0,7763 % 0,0561
0,7684 + 0,0545
0,7864 % 0,0566
0,7745 & 0,0570
0,7320 % 0,0876
0,3479 + 0,0038
0,7443 + 0,0652
0,7005 + 0,0315
0,7072 + 0,0501

0,7172 £ 0,0323
0,7330 & 0,0327
0,7341 + 0,0347
0,7251 + 0,0311
0,7308 =+ 0,0334
0,7372 + 0,0345
0,7343 & 0,0338
0,7268 & 0,0335
0,7281 + 0,0331
0,7368 % 0,0367
0,7344 £ 0,0372
0,7348 + 0,0355
0,7410 + 0,0327
3,1507 & 0,6067
3,1003 + 0,6148
3,1701 + 1,0998
3,4057 % 0,7570
0,0084 % 0,0005
0,0227 + 0,0014

0,0025 =+ 0,0003

0,0594 £ 0,0722

0,9674 % 0,0046
0,9931 + 0,0015
0,9847 = 0,0022

0,9250 & 0,0116

€q



o4

Figure 5.1 — Convergence speed for lonosphere dataset in the training phase.
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For the Haberman dataset, MVSA MLP showed significant differences with most
techniques, indicating its superior performance (p-values < 0.05), except with VS MLP
(p-value = 0.17).

In the Ionosphere dataset, EMVS MLP had mixed results, showing significant
differences with techniques like ESMMLP, MSE MLP, SMMLP, and VS MLP but not
with others like EMSE MLP, ENN MLP, etc.

1000
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In the Monk-2 dataset, MVSA MLP had significant differences with techniques like
ESMMLP, EVSA MLP, MLP, MSE MLP, SMMLP, and VS MLP but not with techniques
like EMSE MLP, EMVS MLP, and others.

For the Parkinson dataset, EMVS MLP showed significant differences with tech-
niques like ENN MLP, EVSA MLP, MLP, MSE MLP, MVSA MLP, NN MLP, and VS
MLP but no significant differences with techniques like EMSE MLP, EMVSA MLP, etc.

In the Pima dataset, NN MLP showed significant differences with all other techni-

ques listed (p-values < 0.05), indicating a noticeable performance difference.

In the Sonar dataset, EVSA MLP showed significant differences with most tech-
niques, indicating its distinct performance, except with techniques like ESMMLP and
SMMLP.

The hypothesis test result () indicates whether there is a statistically significant
difference between the performances of the two techniques, with H = 1 showing a
considerable difference and ‘H = 0 showing no significant difference. The p-value indicates
the significance of the results, with values < 0.05 showing strong evidence against the null
hypothesis and values > 0.05 showing weak evidence. The confidence interval (Lower and
Upper Boundaries) indicates the range of the difference in performance, with a positive
interval suggesting the first technique (G;) performed better, a negative interval suggesting
the second technique (G,) performed better, and an interval including zero suggesting no

significant difference.

The results indicate that specific proposed techniques consistently outperform
others and the original MLP across various datasets. For instance, MVSA MLP and
EMVS MLP often significantly improve over other variants in several datasets, indicating
robustness and better performance. Few techniques, like ENN MLP, show mixed results,
with significant differences in some datasets and not in others, suggesting dataset-specific
performance variability. These analyses help identify the best-performing techniques and
understand the conditions under which these techniques excel, providing crucial insights
for selecting appropriate machine-learning techniques for specific datasets. This approach
to statistical analysis is fundamental in ensuring the reliability and validity of technique
performance evaluations, as detailed in the seminal work (CORNELL, 1971).
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Table 5.7 — Statistical test of Apendicitis, Haberman, Ionosphere, and Monk-2 datasets.

Dataset g1 ‘ G ‘ H ‘ p-value ‘ Lower Boundary ‘ Upper Boundary

MLP EMSE MLP 1 0.01 0.01 0.06

MLP EMVS MLP 1 0.00 0.03 0.07

MLP EMVSA MLP 1 0.00 0.05 0.10

MLP ESMMLP 1 0.00 0.07 0.12

MLP ENN MLP 1 0.02 0.00 0.05

MLP EVS MLP 0 0.67 -0.02 0.03

Apendicitis MLP EVSA MLP 1 0.00 0.05 0.11
MLP MSE MLP 0 0.35 -0.01 0.03

MLP MVSA MLP 1 0.01 0.01 0.05

MLP SMMLP 1 0.00 0.02 0.06

MLP NN MLP 0 0.22 -0.01 0.04

MLP VS MLP 1 0.00 0.06 0.10

MVSA MLP EMSE MLP 1 0.00 0.02 0.05

MVSA MLP EMVS MLP 1 0.00 0.02 0.05

MVSA MLP EMVSA MLP 1 0.00 0.02 0.04

MVSA MLP ESMMLP 1 0.00 0.09 0.18

MVSA MLP  ENN MLP 1 0.00 0.02 0.05

MVSA MLP EVS MLP 1 0.00 0.02 0.05

Haberman | MVSA MLP EVSA MLP 1 0.00 0.10 0.19
MVSA MLP MLP 1 0.00 0.01 0.04

MVSA MLP  MSE MLP 1 0.01 0.00 0.03

MVSA MLP SMMLP 1 0.00 0.05 0.11

MVSA MLP NN MLP 1 0.00 0.01 0.04

MVSA MLP VS MLP 0 0.17 0.00 0.02

EMVS MLP EMSE MLP 0 0.16 -0.01 0.04

EMVS MLP EMVSA MLP 0 0.83 -0.02 0.02

EMVS MLP ESMMLP 1 0.00 0.01 0.06

EMVS MLP  ENN MLP 0 0.52 -0.01 0.03

EMVS MLP EVS MLP 0 0.85 -0.02 0.02

EMVS MLP EVSA MLP 0 0.05 0.00 0.04

Tonosphere | EMVS MLP MLP 0 0.59 -0.01 0.03
EMVS MLP MSE MLP 1 0.03 0.00 0.05

EMVS MLP MVSA MLP 0 0.07 0.00 0.04

EMVS MLP SMMLP 1 0.00 0.01 0.05

EMVS MLP NN MLP 0 0.15 -0.01 0.04

EMVS MLP VS MLP 1 0.00 0.02 0.06

MVSA MLP EMSE MLP 0 0.55 0.00 0.00

MVSA MLP EMVS MLP 0 0.37 0.00 0.01

MVSA MLP EMVSA MLP 0 0.88 0.00 0.00

MVSA MLP ESMMLP 1 0.00 0.14 0.25

MVSA MLP  ENN MLP 0 0.10 0.00 0.02

MVSA MLP EVS MLP 0 0.32 0.00 0.00

Monk-2 MVSA MLP EVSA MLP 1 0.00 0.05 0.10
MVSA MLP MLP 1 0.02 0.00 0.04

MVSA MLP  MSE MLP 1 0.00 0.07 0.11

MVSA MLP SMMLP 1 0.00 0.01 0.02

MVSA MLP NN MLP 0 0.06 0.00 0.03

MVSA MLP VS MLP 1 0.00 0.2 0.24




Table 5.8 — Statistical test of Parkinson, Pima, and Sonar datasets.

Dataset G1 ‘ Gy ‘ H ‘ p-value ‘ Lower Boundary ‘ Upper Boundary

EMVS MLP EMSE MLP 0 0.10 0.00 0.03

EMVS MLP EMVSA MLP 0 0.39 -0.01 0.02

EMVS MLP ESMMLP 0 0.05 0.00 0.03

EMVS MLP  ENN MLP 1 0.00 0.01 0.05

EMVS MLP EVS MLP 0 0.89 -0.01 0.02

EMVS MLP EVSA MLP 1 0.01 0.01 0.04

Parkinson | EMVS MLP MLP 1 0.00 0.01 0.04
EMVS MLP  MSE MLP 1 0.00 0.01 0.05

EMVS MLP MVSA MLP 1 0.00 0.03 0.06

EMVS MLP SMMLP 0 0.71 -0.01 0.02

EMVS MLP NN MLP 1 0.00 0.01 0.04

EMVS MLP VS MLP 1 0.00 0.11 0.14

NN MLP EMSE MLP 1 0.00 0.02 0.04

NN MLP EMVS MLP 1 0.00 0.02 0.04

NN MLP EMVSA MLP 1 0.00 0.02 0.04

NN MLP ESMMLP 1 0.00 0.09 0.13

NN MLP ENN MLP 1 0.03 0.00 0.02

NN MLP EVS MLP 1 0.01 0.00 0.03

Pima NN MLP EVSA MLP 1 0.00 0.06 0.10
NN MLP MLP 1 0.01 0.00 0.03

NN MLP MSE MLP 1 0.00 0.02 0.04

NN MLP MVSA MLP 1 0.00 0.03 0.05

NN MLP SMMLP 1 0.00 0.03 0.05

NN MLP VS MLP 1 0.00 0.05 0.08

EVSA MLP EMSE MLP 1 0.00 0.01 0.06

EVSA MLP EMVS MLP 1 0.01 0.01 0.06

EVSA MLP EMVSA MLP 1 0.00 0.02 0.07

EVSA MLP ESMMLP 0 0.75 -0.02 0.03

EVSA MLP ENN MLP 1 0.00 0.02 0.07

EVSA MLP EVS MLP 1 0.00 0.02 0.07

Sonar EVSA MLP MLP 1 0.00 0.02 0.07
EVSA MLP MSE MLP 1 0.00 0.02 0.07

EVSA MLP MVSA MLP 1 0.00 0.03 0.07

EVSA MLP SMMLP 0 0.27 -0.01 0.04

EVSA MLP NN MLP 1 0.00 0.01 0.06

EVSA MLP VS MLP 1 0.00 0.03 0.07

5.2 HOT BOX AND HOT WHEEL

57

The Hot Box and Hot Wheel issue will be handled in this subsection by using

classifiers to distinguish between valid and false warnings.

MRS Logistica S.A. (<https://www.mrs.com.br>) provided the data collection

used in this classification. It is effectively representing the complexity of the problem, so the

suggested techniques shouldn’t be updated regularly. Temperature measurements on the

right and left wheels and bearings are included in this data collection. The mean, median,

standard deviation, and the lowest and highest values of these measured temperatures

were used to classify them. Table 5.9 shows the results of the twelve suggested classifiers
and the original MLP for the Hot Box and Hot Wheel issue.

A total of 242 samples were collected using precise instruments: the Hot Wheel
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Detector Sub-System (100365-010 ABO) and the Micro Hot Bearing Detector (100600-010
AEO).

To collect this data, the equipment uses a sampling window set at a 10-millisecond
duration when the train reaches a speed of 193 kilometers per hour. Temperature
measurements for various components are taken using a pyrometer, which senses the

infrared radiation emitted by each wheel.

The dataset consists of 242 samples with 21 distinct features. Among these features,
20 are attributes, and 1 is a label. Key features include temperature measurements for
both right and left wheels and their respective bearings. Additional significant features
encompass information about the vehicle, the train’s speed, the specific type of occurrence,
the direction of the wagon, details about the train, the side and direction of travel, data

about the wagon’s axle, and records of solar incidence.

It is worth highlighting that 34 samples are categorized as proper warnings within
this dataset, while the remaining 208 are considered improper. This composition results

in the dataset being inherently unbalanced.

Firstly, to evaluate the results, we suggested techniques that produced the highest
accuracy values in the test phase, considering the mean of the executions for this dataset.
In the same way, we have the lowest amount of loss. Furthermore, the suggested techniques

yielded better Kappa and F-Score results. All classifiers produced comparable outcomes.

Concerning the HB and HW dataset results, we also have higher accuracy for
MVSA MLP, lower loss in EVSA MLP, Kappa, and F-Score by EMVS MLP, and the time
is again for MLP. For the complexity, we have higher by MVS MLP, although SMMLP,
MSE MLP, and MVSA MLP have a satisfactory reduction and competitive results face
other metrics when compared with the original MLP and models proposed previously in

the literature.

5.2.1 Convergence Speed Analysis

Regarding speed convergence, an essential factor to consider when studying artificial
intelligence will be thoroughly discussed in this part for the Hot Box and Hot Wheel

problem.

In this sense, we can see in Figure 5.2 fast convergence speed in the training phase,
high accuracy, and low loss value for our method. Additionally, the faster convergence
speed, higher accuracy, and lower loss are also EVSA MLP for HB and HW datasets,
followed by ESMMLP. This effect is significant for industrial application, which requires a

real-time application and a low-cost method.



Table 5.9 — Performance comparison in terms of the mean and standard deviation for test process of Hot Box and Hot Wheel datasets.

Dataset

Technique

Accuracy

Loss

Kappa

F-Score

Time

‘ Red. Complex

HB HW_MRS

MLP
SMMLP

MSE MLP
MVSA MLP
VS MLP

NN MLP
ESMMLP
EMSE MLP
EMVS MLP
EMVSA MLP
EVS MLP
EVSA MLP
ENN MLP

MSE Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
SM Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
Adam ULST2-FLS (FONSECA; AGUIAR, 2022)
ULST2-FLS (FONSECA; AGUIAR, 2022)

RBF SVM (PEDREGOSA et al., 2011)

Random Forest (PEDREGOSA et al., 2011)

Naive Bayes (PEDREGOSA et al., 2011)

QDA (PEDREGOSA et al., 2011)

0,8995 £ 0,0363
0,9139 + 0,0292
0,9041 + 0,0321

0,9214 + 0,0399

0,8887 + 0,0446
0,9007 + 0,0418
0,9046 + 0,0416
0,9148 £ 0,0354
0,9216 =+ 0,0377
0,9207 £ 0,0332
0,9133 £ 0,0330
0,9078 £ 0,0369
0,8894 + 0,0387
0,8444 + 0,1242
0,8579 %+ 0,0557
0,8261 =+ 0,1193
0,8668 £ 0,0129
0,8641 % 0,0093
0,8921 + 0,0579
0,1404 + 0,0080
0,1404 =+ 0,0080

0,1042 + 0,0111
0,0759 + 0,0021
0,0619 £ 0,0006
0,0649 + 0,0023
0,1323 + 0,0130
0,1058 & 0,0083
0,0234 + 0,0107
0,0800 & 0,0094
0,0797 £ 0,0084
0,0780 % 0,0083
0,0745 £ 0,0097

0,0211 + 0,0081

0,1110 £ 0,0098
0,5016 =+ 0,2876
0,4952 + 0,1986
0,5750 & 0,3362
0,5482 £ 0,0809
0,1360 % 0,0093
0,1080 % 0,0579
0,8597 = 0,0080
0,8597 & 0,0080

0,5509 = 0,1791
0,5316 £ 0,1778
0,4877 £ 0,2004
0,6032 + 0,2129
0,3674 + 0,2923
0,5530 + 0,2142
0,5779 & 0,1785
0,6052 + 0,1851

0,6312 + 0,2019

0,6289 + 0,1706
0,6025 + 0,1568
0,5890 + 0,1565
0,4673 + 0,2102
0,4472 + 0,1545
0,4194 + 0,1265
0,4492 + 0,1641
0,0572 % 0,1608
0,0470 % 0,0907
0,4800 £ 0,1895
0.0000 = 0.0000
0.0000 £ 0.0000

0,7735 £ 0,0916
0,7608 % 0,0929
0,7383 £ 0,1045
0,7988 + 0,1094
0,6703 + 0,1591
0,7740 + 0,1103
0,7874 % 0,0909
0,8003 & 0,0957

0,8132 £ 0,1047

0,8125 + 0,0881
0,7996 + 0,0801
0,7932 + 0,0790
0,7298 + 0,1091
0,5231 + 0,1204
0,4957 & 0,1065
0,5357 + 0,1217
0,3748 + 0,2275
0,4899 + 0,0525
0,7339 + 0,1012
0,1231 + 0,0062
0,1231 + 0,0062

0,6947 £ 0,0270
0,7043 + 0,0274
0,7220 + 0,0737
0,7038 + 0,0174
0,7184 + 0,0701
0,7287 =+ 0,0268
0,7132 + 0,0287
0,7059 =+ 0,0232
0,7013 £ 0,0253
0,7024 % 0,0253
0,7041 + 0,0238
0,7082 + 0,0244
0,7104 =+ 0,0246
1,0049 £ 0,0669
1,0649 + 0,2702
0,9779 % 0,0457
1,6149 + 0,0784
0,0059 % 0,0004
0,0225 + 0,0014

0,0019 + 0,0003

0,0021 £ 0,0002

0,9450 =+ 0,0314
0,9619 + 0,0154
0,8345 + 0,0239

0,1562 =+ 0,1423

69



60

Figure 5.2 — Convergence speed for HB and HW dataset in the training phase.
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5.2.2 Statistical test

Table 5.10 compares the MVSA MLP technique against several other techniques
using statistical tests. The columns in this table include the dataset, the first and second
groups/techniques being compared (G; and Gs), the hypothesis test result (H), the p-value
of the statistical test, and the lower and upper boundaries of the confidence intervals for

the performance difference. For these results, the degree of freedom is 98.



61

The hypothesis test result (H) is 1 for comparisons, indicating a statistically
significant performance difference. This is evident when comparing MVSA MLP with
ESMMLP, ENN MLP, MLP, MSE MLP, NN MLP, and VS MLP. The p-values for these
comparisons are all below the 0.05 threshold, underscoring the statistical significance of
these performance differences. The confidence intervals for these significant comparisons

do not cross zero, further confirming the existence of meaningful performance differences.

The statistical significance was determined using the ¢-test, a method commonly
employed to compare the means of two groups to see if they are statistically different from
each other. The t-test assesses whether the means of the two datasets differ statistically
significantly. According to Cornell’s "Introductory Mathematical Statistics: Principles
and Methods'"the t-test is a robust method for hypothesis testing, especially when dealing
with small sample sizes and unknown variances (CORNELL, 1971).

These findings suggest that the MVSA MLP technique significantly outperforms
several other techniques and the original MLP model on the HB. HW_ MRS dataset.

Table 5.10 — Statistical test of Hot Box and Hot Wheel datasets.

Dataset g1 ‘ G ‘ H ‘ p-value ‘ Lower Boundary ‘ Upper Boundary
MVSA MLP EMSE MLP 0 0.39 -0.01 0.02
MVSA MLP EMVS MLP 0 0.97 -0.02 0.02
MVSA MLP EMVSA 0 0.92 -0.01 0.02
MVSA MLP ESMMLP 1 0.04 0.00 0.03
MVSA MLP ENN MLP 1 0.00 0.02 0.05
MVSA MLP EVSMLP 0 0.27 -0.01 0.02
HB_HW_MRS | MVSA MLP EVSA MLP 0 0.08 0.00 0.03
MVSA MLP MLP 1 0.01 0.01 0.04
MVSA MLP MSE MLP 1 0.02 0.00 0.03
MVSA MLP SMMLP 0 0.29 -0.01 0.02
MVSA MLP NN MLP 1 0.01 0.00 0.04
MVSA MLP VS MLP 1 0.00 0.02 0.05

5.3 ADAPTIVE LEARNING RATE SCHEDULES

Since our proposal involves a method to calculate a new learning rate (LR) based
on the error and a parameter called Gamma, it becomes necessary to compare it with
other approaches that also use LR update techniques in MLP models, aiming to improve
performance and reduce convergence time. For this purpose, we selected models widely
used in the state of the art, such as: Time-based decay, Step decay, and Exponential

Decay schedules.

Time-based decay is a learning rate scheduling technique where the learning rate
decreases gradually over time. It reduces the learning rate at each epoch based on a
predefined decay rate (DUCHI; HAZAN; SINGER, 2011). This method is simple and
effective, allowing the model to take more significant steps early in training when the loss

landscape is rough and more petite and more precise steps as it converges toward the
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minimum. However, careful tuning of the initial learning rate and decay rate is required

to ensure optimal performance.

Step decay involves reducing the learning rate by a fixed factor after a certain
number of epochs or iterations (HE et al., 2018). For example, the learning rate might
be halved every 10 epochs. This approach is more structured than time-based decay. It
often leads to faster convergence, allowing the model to make significant progress initially
and refine its weights more carefully. Step decay is instrumental when the loss landscape
has distinct phases, but it requires prior knowledge or experimentation to determine the

optimal step size and decay factor.

Exponential decay schedules reduce the learning rate exponentially over time,
meaning the learning rate decreases faster initially and slows down as training progresses.
This highly flexible method can adapt well to different datasets and models. It is
particularly effective when the optimal learning rate changes rapidly during training
(REDDI; KALE; KUMAR, 2019). However, like the other methods, careful tuning of
the initial learning rate and decay rate is required to avoid underfitting or overfitting.
Exponential decay is often favored for its ability to balance aggressive early training with

fine-tuned convergence later.

The parameters used for this comparison were the same as those applied previously

to their respective datasets. They are as follows:

Table 5.11 — Parameters of the techniques

Technique ‘ Gamma ‘ IL ‘ SL Technique ‘ Gamma ‘ 1L ‘ SL
SMMLP 0.0732 ; - SMMLP 0.0127 - -
MSE MLP 0.0611 - . MSE MLP 0.1580 . .
MVSA MLP  0.0550 - - MVSA MLP  0.1822 - .
VS MLP 0.1580 - - VS MLP 0.4123 - -
NN MLP 0.0732 - § NN MLP 0.3154 . .
ESMMLP 0.0400  0.0800 0.1000 ESMMLP 0.3699  0.0800 0.1000
EMSE MLP  0.4063  0.0040 0.0097 | .. | EMSE MLP  0.2973  0.0040 0.0097

HB_HW MRS | p\ivs MLP 04365 00040 0.0080 | D™ | EMVS MLP  0.0550  0.0040 0.0080
EMVSA MLP 0.3941  0.0040 0.0080 EMVSA MLP 0.4668  0.0040 0.0080
EVS MLP 0.1883  0.0040 0.0160 EVS MLP 0.3820  0.0040 0.0160
EVSA MLP 04850  0.0542 0.1160 EVSA MLP 04910  0.0542 0.1160
ENN MLP 0.1943  0.0015 0.0025 ENN MLP 0.4244  0.0015 0.0025

5.3.1 Pima dataset

Below, in the Table 5.12 are the results obtained from the comparison performed

on the Pima dataset.

These results demonstrate that our technique achieves significant values when
compared to the aforementioned models, thus showcasing its superiority over classical

adaptive learning rate methods.



Table 5.12 — Performance comparison in terms of the mean and standard deviation for test process of Pima datasets.

Exponential Decay

0.6553 £ 0.0103

0.4336 & 0.0073

0.0240 £ 0.0431

0.4193 £ 0.0381

0.3770 & 0.0132

Dataset Technique ‘ Accuracy ‘ Loss ‘ Kappa ‘ F-Score ‘ Time ‘ Red. Complex
MLP 0.6933 4 0.0332 0.3499 + 0.0046 0.2970 4+ 0.0745 0.6469 + 0.0374 0.3758 + 0.0153 -
SMMLP 0.6820 + 0.0337 0.3389 + 0.0071 0.3061 + 0.0803 0.6513 + 0.0408 0.3898 + 0.0216 -

MSE MLP 0.6786 + 0.0311 0.1888 4+ 0.0036 0.3392 + 0.0942 0.6585 £+ 0.0540 0.3932 £ 0.0203 -
MVSA MLP 0.6506 £+ 0.0700 0.3437 £+ 0.0150 0.1611 £+ 0.1411 0.5252 + 0.1211 0.3808 £ 0.0126 -
VS MLP 0.6608 4+ 0.0210 0.3684 4+ 0.0210 0.0586 4+ 0.0994 0.4473 4+ 0.0865 0.3804 4+ 0.0165 -
NN MLP 0.6975 £+ 0.0376 0.3482 £ 0.0046 0.2970 4+ 0.0953 0.6437 4+ 0.0535 0.3924 + 0.0189 0.0099 + 0.0311
ESMMLP 0.6369 + 0.0629 0.3600 £ 0.0602 0.0223 + 0.0794 0.4074 4+ 0.0706 0.3817 + 0.0160 -

Pima | EMSE MLP 0.6786 4 0.0324 0.3350 4 0.0094 0.3060 + 0.0938 0.6428 + 0.0515 0.3837 &+ 0.0160 -
EMVS MLP 0.6964 + 0.0240 0.3381 4 0.0070 0.2837 4+ 0.0679 0.6347 4+ 0.0370 0.3863 + 0.0165 -
EMVSA MLP 0.6969 + 0.0376 0.3341 4+ 0.0065 0.3074 £+ 0.0907 0.6509 + 0.0462 0.3831 + 0.0162 -

EVS MLP 0.6917 4+ 0.0330 0.3398 £+ 0.0081 0.3030 £ 0.0830 0.6504 + 0.0423 0.3843 + 0.0182 -
EVSA MLP 0.6187 4+ 0.0816 0.3610 4+ 0.0191 0.1365 4+ 0.1399 0.4938 + 0.1194 0.3859 4+ 0.0196 -
ENN MLP 0.6912 + 0.0304 0.3533 4+ 0.0044 0.2919 4+ 0.0689 0.6443 + 0.0346 0.3806 + 0.0130 -
Time-Based Decay 0.6524 + 0.0068 0.4410 4+ 0.0065 0.0086 + 0.0270 0.4033 + 0.0240 0.3836 + 0.0168 -
Step Decay 0.6733 £+ 0.0291 0.4168 4+ 0.0115 0.1251 4+ 0.0944 0.5117 4+ 0.0716 0.3815 4+ 0.0151 -

€9
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5.3.2 HB HW MRS dataset

The results obtained from the comparison performed on the HB. HW MRS
dataset can be found in the Table 5.13 below.

Again, satisfactory results were achieved for this dataset, demonstrating that the

proposed model exhibits superiority over classical adaptive learning rate methods.

5.4 CNN WITH MNIST DATASET COMPARISON

One of the key comparisons we conducted was the use of our proposed methods in
contrast to a CNN model applied to the MNIST dataset. This implementation is crucial to
evaluate how our proposal performs when dealing with a large-volume and highly complex

dataset.

Convolutional Neural Networks (CNNs) are a class of deep learning models par-
ticularly well-suited for image recognition tasks, such as classifying handwritten digits
in the MNIST dataset. MNIST is a widely used benchmark dataset consisting of 28x28
grayscale images of digits (0-9), with 60,000 training samples and 10,000 test samples.
CNNs excel in this domain due to their ability to automatically learn spatial hierarchies
of features, such as edges, curves, and shapes, through convolutional layers. These layers
apply filters to the input image, capturing local patterns and reducing the need for manual

feature engineering.

In a typical CNN architecture for MNIST, the model starts with convolutional
layers to extract features, followed by pooling layers (e.g., max pooling) to downsample
the feature maps and reduce computational complexity. After several convolutional and
pooling layers, the output is flattened and passed through fully connected (dense) layers
to perform the final classification. The use of activation functions like ReLU (Rectified
Linear Unit) introduces non-linearity, enabling the network to learn complex patterns.
Dropout layers are often added to prevent overfitting, especially given the relatively small
size of the MNIST dataset compared to modern image datasets. In Table 5.14 you can

see the specifications of each model.

CNNs applied to MNIST have achieved remarkable performance, often reaching
accuracy rates above 95% on the test set. This success is attributed to the model’s ability

to capture intricate details in the images and generalize well to unseen data.

The Set-Membership Multilayer Perceptron introduces a novel adaptive learning
rate mechanism based on the Set-Membership method, which selectively updates the
learning rate only when the error exceeds a predefined threshold. This approach contrasts
with traditional methods that update weights at every iteration, offering a more efficient
and dynamic training process. When applied to the MNIST dataset, the SM-MLP

demonstrates its ability to handle structured data effectively, leveraging its adaptive



Table 5.13 — Performance comparison in terms of the mean and standard deviation for test process of HB_ HW__MRS datasets.

Dataset

Technique

Accuracy

Loss

Kappa

F-Score

Time

Red. Complex

HB_HW_ MRS

MLP
SMMLP
MSE MLP
MVSA MLP
VS MLP
NN MLP
ESMMLP
EMSE MLP
EMVS MLP
EMVSA MLP
EVS MLP
EVSA MLP
ENN MLP

Time-Based Decay

Step Decay

Exponential Decay

0.9011 £ 0.0482
0.8921 £ 0.0346
0.9072 £+ 0.0301
0.8776 £+ 0.0292
0.8955 £ 0.0490
0.9176 £ 0.0426
0.9118 £ 0.0373
0.9154 £ 0.0376

0.9200 £ 0.0416

0.9036 £ 0.0479
0.8935 £ 0.0477
0.8613 £ 0.0091
0.8602 £ 0.0086
0.8611 £ 0.0088
0.8602 £ 0.0086
0.8611 £ 0.0088

0.1062 £ 0.0095
0.0763 £ 0.0018

0.0618 £ 0.0005

0.1338 £ 0.0146
0.1063 £ 0.0077
0.0792 £ 0.0110
0.0785 £ 0.0078
0.0785 £ 0.0098
0.0771 £ 0.0090
0.0222 £ 0.0084
0.1123 £ 0.0097
0.2451 £ 0.0077
0.2180 £ 0.0088
0.2318 £ 0.0072
0.2180 £ 0.0088
0.2318 £ 0.0072

0.5587 £ 0.2267
0.4116 £+ 0.1713
0.5157 £ 0.1865
0.2684 £ 0.2388
0.5187 £ 0.2457
0.6209 £ 0.2098
0.5916 £ 0.1811
0.6074 £ 0.1799

0.6205 £ 0.2158

0.5873 £ 0.2036
0.4946 £+ 0.2402

0.0044 £ 0.0314

0.0044 £ 0.0314

0.7775 £ 0.1154
0.6973 £ 0.0909
0.7535 £+ 0.0975
0.6174 £+ 0.1340
0.7557 £+ 0.1265

0.8086 £ 0.1072

0.7938 £ 0.0923
0.8018 £ 0.0915
0.8076 £+ 0.1110
0.7925 £+ 0.1027
0.7444 £+ 0.1229
0.4627 £ 0.0026
0.4649 £ 0.0184
0.4627 £ 0.0025
0.4649 £ 0.0184
0.4627 £ 0.0025

0.3230 £ 0.0243
0.3285 £ 0.0258
0.3463 £ 0.0304
0.3268 £ 0.0230
0.3316 £ 0.0259
0.3272 £ 0.0268
0.3259 £ 0.0230
0.3235 £ 0.0246
0.3288 £ 0.0355
0.3264 £ 0.0252
0.3254 £+ 0.0274

0.3208 £+ 0.0196

0.3279 £ 0.0332
0.3242 £+ 0.0235
0.3279 £ 0.0332
0.3242 £ 0.0235

0.9388 £ 0.0354

0.9619 £ 0.0159

0.1375 £+ 0.1154

99
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Table 5.14 — Specifications.

Model ‘ Layer ‘ Specification ‘ Activation
Conv 2D Filters=32, Filter shape=3x3, stride=1, input_ shape= 28x28x1 ReLU
CNN Dense 256 ReLU
Dense 10 Softmax
Dense 256, input_shape= 784 x 1 ReLLU
Dense 256 ReLU
MLP Dense 256 ReLU
Dense 256 ReLU
Dense 10 Softmax

learning rate to achieve faster convergence and improved generalization. While CNNs are
inherently designed for image data like MNIST, the SM-MLP provides a unique perspective

by focusing on adaptive learning strategies rather than spatial feature extraction.

CNNs, on the other hand, excel in image recognition tasks like MNIST due to their
ability to automatically learn hierarchical features through convolutional layers. These
layers capture local patterns such as edges and curves, making CNNs highly effective for
datasets with spatial structure. However, CNNs often require significant computational
resources and careful tuning of hyperparameters, such as learning rate schedules. In
contrast, the SMMLP’s adaptive learning rate mechanism reduces the need for extensive
hyperparameter tuning, making it a more flexible and efficient alternative for certain tasks.
This comparison highlights the trade-offs between the two approaches: CNNs leverage
spatial hierarchies for feature extraction, while the SM-MLP focuses on optimizing the

learning process itself.

The importance of this comparison lies in understanding the strengths and limita-
tions of each approach. While CNNs are state-of-the-art for image datasets like MNIST,
the SM-MLP offers a compelling alternative for scenarios where computational efficiency
and adaptive learning are prioritized. By evaluating the SMMLP against CNNs on
MNIST, we demonstrate how adaptive learning rate strategies can complement traditional
architectures, potentially leading to hybrid models that combine the strengths of both
approaches. This comparison not only validates the effectiveness of the SMMLP but also
opens new avenues for research into adaptive learning techniques across different neural

network architectures.

Regarding the comparison performed, we obtained very similar results in perfor-
mance metrics between our proposed approach and the CNN. However, when evaluating
complexity reduction, our models achieved a reduction of close to 93%, along with a
significantly shorter execution time — approximately 60% faster compared to the CNN

approach. Below, in Table 5.15, you can see the result of this comparison.



Table 5.15 — Performance comparison in terms of the mean and standard deviation for test process of MNIST datasets.

Dataset Technique ‘ Accuracy Loss ‘ Kappa ‘ F-Score Time ‘ Red. Complex
MLP 0,9789 £+ 0,0014 0,3768 £+ 0,0276 0,9765 £+ 0,0016 0,9787 £+ 0,0014 214,97 4+ 2,7348 -
CNN 0,9802 £+ 0,0016 0,3555 £ 0,0362 0,9780 £+ 0,0018 0,9800 + 0,0016 359,99 + 3,8448 -
SMMLP 0,9737 + 0,0018 0,4918 + 0,0518 0,9708 + 0,0020 0,9735 + 0,0018 217,09 + 3,9886  0,0387 & 0,0034
MSE MLP 0,9794 + 0,0012 0,3738 + 0,0352 0,9771 + 0,0013 0,9792 + 0,0012 214,09 + 2,626 0,9258 £ 0,0041
MVSA MLP  0,9773 £ 0,0010 0,4150 + 0,0316 0,9747 + 0,0012 0,9771 + 0,0011 219,89 + 2,4492  0,8480 + 0,0046
VS MLP 0,9790 + 0,0017 0,3779 + 0,0347 0,9767 + 0,0019 0,9788 + 0,0017 216,28 + 1,9269  0,8895 + 0,0036
MNIST NN MLP 0,9760 + 0,0013 0,4321 + 0,0307 0,9734 + 0,0015 0,9758 + 0,0013 218,78 + 2,4240  0,8547 £+ 0,0042
ESMMLP 0,8825 + 0,2422 0,2359 + 0,5617 0,8695 + 0,2686 0,8768 + 0,2595 236,39 + 4,2176  0,0376 £+ 0,0039
EMSE MLP  0,9784 + 0,0013 0,3886 + 0,0333 0,9760 % 0,0015 0,9783 + 0,0013 214,65 + 3,2567 00,9404 £ 0,0033
EMVS MLP  0,9760 £ 0,0011 0,4328 + 0,0299 0,9733 + 0,0012 0,9758 + 0,0011 218,42 + 2,0133 -
EMVSA MLP 0,9773 £ 0,0010 0,4150 + 0,0316 0,9747 + 0,0012 0,9771 + 0,0011 219,89 =+ 2,4492 -
EVS MLP 0,9791 + 0,0013 0,3732 + 0,0365 0,9768 + 0,0015 0,9789 + 0,0014 215,72 + 1,5381 -
EVSA MLP 0,9791 + 0,0015 0,3766 + 0,0345 0,9767 + 0,0016 0,9789 + 0,0015 216,73 + 3,2590  0,9381 £ 0,0021
ENN MLP 0,9760 + 0,0013 0,4321 + 0,0307 0,9734 + 0,0015 0,9758 + 0,0013 218,78 + 2,4240  0,8351 + 0,0053

L9
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6 CONCLUSION

In this work, a new MLP technique and some variances have been proposed. We
have combined an adaptive filter concept, namely Set-Membership, with the Multilayer
Perceptron, focusing on treating a binary classification problem with non-linear charac-
teristics, considering that MLP is widely used for this kind of problem. Furthermore,
we aim to study the possibility for reducing computational complexity, increasing the
convergence speed and accuracy using the SM. In addition, we introduce twelve distinct
methods, consisting of five different techniques and seven enhanced versions, including
two entirely new and previously unseen models. Finally, we evaluate the performance of
these models using benchmark tests and a dataset comprising Hot Box and Hot Wheel

problems.

To compare these methods, we applied some metrics such as Accuracy, Loss, F-
Score, Kappa, time, and reduced complexity. The proposed techniques have shown better
results, considering the mean of the executions, for accuracy in all datasets except for one,
Appendicitis. We have a lower loss value when looking at all datasets. Except for the
Appendicitis dataset, we obtain behavior-like accuracy for Kappa and F-score, with higher
results. Regarding the time metric, we have the lowest value for the original MLP, except
for the Ionosphere and Pima datasets; however, a competitive value for our suggested
techniques. In addition, we have a potential complexity reduction of around 90%, reaching
out to 99% in some techniques, with competitive results for other metrics. Furthermore,
we can see faster convergence speeds and greater classification rates than the original
MLP. These findings demonstrated that all of the suggested approaches outperformed the
MLP for almost all datasets, particularly Hot Box and Hot Wheel problems, making them

appropriate to use in alert classification that may avoid catastrophic railway derailments.

In addition to these results, we compared our proposed methods with traditional
learning rate scheduling techniques, such as Time decay, Step decay, and Exponential decay.
Our models consistently outperformed these approaches in terms of convergence speed,
accuracy, and computational efficiency. For instance, when applied to the MNIST dataset,
our methods achieved results very similar to those of a CNN in terms of accuracy and
other performance metrics. However, our approach demonstrated a significant advantage
in execution speed, running much faster while achieving a potential complexity reduction
of more than 94%. This highlights the efficiency and scalability of our proposed techniques,

even when applied to larger and more complex datasets.

For future work, we propose designing a mechanism to dynamically adjust the
values of the Enhanced Set-Membership parameters 7, I L, and SL. This solution would
make the technique more adaptable to changes in input data, potentially improving

classification performance. Additionally, we suggest developing a method to calculate the
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optimal initial values for these parameters. We also plan to explore the applicability of

these techniques to other engineering challenges, further expanding their potential impact.

Other important directions include:

o Incorporating other optimization methods, such as AdaGrad, RMSprop, and Adam,
for comparison and potential integration with the proposed framework. These
methods are widely used in machine learning due to their efficiency in adaptively
adjusting learning rates, which could complement or enhance the Set-Membership-

based approach.

» Investigating the use of mini-batches in the proposed approaches. Utilizing mini-
batches can improve computational efficiency and training stability, especially for

larger datasets, by balancing gradient accuracy and execution time.

o Conducting a complexity reduction analysis without gradient calculation. This
approach could be explored to further reduce computational costs, particularly in
scenarios where gradient calculation is expensive. Methods that avoid direct gradient
computation, such as approximation-based or sparse update techniques, could be

investigated to optimize training.

o These investigations are important because they aim to increase the efficiency,
scalability, and applicability of the proposed techniques, making them more robust
and adaptable to different scenarios and datasets. Furthermore, the inclusion of
modern optimization methods and the exploration of mini-batches could lead to
significant improvements in performance and convergence speed, while complexity
reduction analysis without gradient computation could open new possibilities for

real-time applications or resource-constrained environments.
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APPENDIX A - PRODUCTION

Scientific Production during the Ph.D.:

LUNA, F.C, DIAS, U. R. F.; FILHO, LISBOA, P. H. B., PASCHOALIN, T. C. A,
QUIRINO, T. M., FILHO, L. M. A. Real-time fpga-based simulator for the tile
calorimeter readout system in the atlas experiment. In: XXVII Encontro Nacional
de Modelagem Computacional. Ilhéus-Bahia, 2024. (LUNA et al., 2024)

DIAS, U. R. F.; VARGAS E PINTO, A. C.; MONTEIRO, H. L. M.; AGUIAR,
E. P. New perspectives for the intelligent rolling stock classification in railways:
an artificial neural networks-based approach. Journal of the Brazilian Society of

Mechanical Sciences and Engineering, Springer, v. 46, n. 4, p. 230, 2024. Available
in: <https://doi.org/10.1007/340430-024-04769-2>. (DIAS et al., 2024)

AAD, G. et al. The atlas experiment at the cern large hadron collider: a description
of the detector configuration for run 3. Journal of Instrumentation, IOP Publishing,
v. 19, n. 05, p. P05063, may 2024. Available in: <https://doi.org/10.1088/1748-0
221/19/05/P05063>. (AAD et al., 2024)

DIAS, U. R. F.; FILHO, L. M. A.; SEIXAS, J. M.; AGUIAR, E. P. Self-organizing
fuzzy rule-based approach for muons classification in high energy physics. In:
Congresso Brasileiro de Automatica-CBA. [s.n.], 2022. v. 3, n. 1. Available in:
<https://doi.org/10.20906/CBA2022/3509>. (DIAS et al., 2022)
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