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ABSTRACT

Fuzzy Set Based Time Series (FTS) prediction techniques offer potential advantages
in efficient and intuitive data partitioning and the effective handling of uncertainty
in the data. However, such prediction models are commonly challenging to design,
requiring careful and application-specific tuning of hyperparameters to provide competitive
forecasting performance. Conventional F'T'S models often rely on predefined partitioning
schemes and user-specified hyperparameters, which may introduce subjectivity and limit
their adaptability to complex datasets. This thesis presents novel data-driven interval type-
2 fuzzy set based time series models — SODA-T2FTS, ADP-T2FTS, and ADP-T2LIMG
— that integrate interval type-2 fuzzy logic with advanced partitioning techniques, namely
the Self-Organized Direction Aware Data (SODA) and Autonomous Data Partitioning
(ADP) algorithms. These approaches handle epistemic uncertainty and improve predictive
performance while reducing reliance on user intervention. The models were evaluated on
financial, benchmark, and energy time series datasets, and evaluation was overall performed
in terms of the average number of rules (c.f. interpretability), error metrics, execution time,
model complexity and noise sensitivity. Results showed that the proposed models presented
superior accuracy, lower forecasting errors, and competitive interpretability compared
to state-of-the-art forecasting techniques, also highlighting that data-driven approaches
significantly enhance fuzzy set based time series forecasting by improving partitioning

accuracy, reducing subjectivity, and increasing adaptability to different datasets.

Keywords: Type-2 Fuzzy Systems. Forecasting. Time Series Analysis. Type-2 Fuzzy Set

Based Time Series. Data-driven partitioning.



RESUMO

As técnicas de previsao de séries temporais fuzzy (FTS) oferecem vantagens po-
tenciais na realizacdo de um particionamento de dados eficiente e intuitivo, além do
tratamento eficaz da incerteza presente nos dados. No entanto, esses modelos de previsao
geralmente apresentam desafios em seu desenvolvimento, exigindo um ajuste cuidadoso e
especifico de hiperparametros para garantir um desempenho competitivo na previsao. Os
modelos convencionais de FTS frequentemente dependem de esquemas de particionamento
predefinidos e pardmetros especificados pelo usuario, o que pode introduzir subjetividade
e limitar sua adaptabilidade a conjuntos de dados complexos. Esta tese apresenta novos
modelos de séries temporais fuzzy intervalares do tipo-2 baseados em particionamento
orientado por dados — SODA-T2FTS, ADP-T2FTS e ADP-T2LIMG — que integram a
logica fuzzy intervalar do tipo-2 com técnicas avangadas de particionamento, especifica-
mente os algoritmos Self-Organized Direction Aware Data (SODA) e Autonomous Data
Partitioning (ADP). Essas abordagens capturam a incerteza epistémica e melhoram o
desempenho preditivo, reduzindo a necessidade de intervencao do usuéario. Os modelos
foram avaliados em séries temporais financeiras, de referéncia e de energia, e a comparacao
foi realizada, de forma geral, em termos do nimero médio de regras (interpretabilidade),
métricas de erro, tempo de execucao, complexidade do modelo e sensibilidade ao ruido.
Os resultados mostraram que os modelos propostos apresentaram maior precisdo, menores
erros de previsao e interpretabilidade competitiva em comparagao com as técnicas de
previsao mais avancadas da literatura. Além disso, os resultados destacam que abordagens
baseadas em dados melhoram significativamente a previsao de séries temporais fuzzy
(FTS) ao aprimorar a precisao do particionamento, reduzir a subjetividade e aumentar a

adaptabilidade a diferentes conjuntos de dados.

Palavras-chave: Sistemas Fuzzy do Tipo-2. Previsao. Analise de Séries Temporais. Séries

Temporais Baseadas em Logica Fuzzy do Tipo-2. Particionamento baseado em dados.
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1 Introduction

Time series forecasting is a technique widely studied in academic research, which
consists of analysing data and the sequence of time in order to predict future events.
Shumway and Stoffer (2017) describe the twofold purpose of time series prediction, which
is to understand or model the mechanism that gives rise to an observed time series and to
predict or forecast its future values based on historic values. However, uncertainty, chal-
lenging behaviors, and patterns within specific time series data might make it challenging
to examine and forecast. Dealing with the uncertainty in time series data, in particular,
is a recurrent problem in forecasting and decision-making, especially in complex systems

where data is often imprecise, incomplete, or affected by noise.

In real-world applications, uncertainties may arise due to various factors, including
measurement errors, missing data, and the intrinsic variability of the observed phenomenon
(Box et al., 2015), and can be categorized as aleatoric and epistemic uncertainty (Kiureghian;
Ditlevsen, 2009). Aleatoric uncertainty (also known as irreducible uncertainty), originates
from the inherent randomness in the data generation itself and represents variability that
cannot be reduced, even with more data collection or improved models. In financial markets,
for instance, price fluctuations due to investor sentiment, geopolitical events, or unforeseen
economic changes introduce aleatoric uncertainty that no model can eliminate entirely,
making precise prediction inherently difficult. Similarly, in climate science, turbulence in
atmospheric dynamics introduces natural variability that limits forecast precision. On
the other hand, Epistemic uncertainty arises due to a lack of knowledge about the true
data-generating process. This type of uncertainty is associated with the limitations of the
chosen model, insufficient training data, or incorrect assumptions about the system being
modeled. Unlike aleatoric uncertainty, epistemic uncertainty can be reduced by improving
the model, incorporating more representative data, or refining feature selection techniques.
For instance, an energy time series may summarize all daily energy production into energy

per second, minute, or hour, introducing the epistemic uncertainty on data.

Addressing these uncertainties requires forecasting models to be capable of accoun-
ting for vagueness, imprecision, and randomness in time series data. Due to this fact,
several models have been used in the literature to predict variables, such as traditional
time series regression, exponential smoothing, ARIMA, ensemble learning techniques, such
as random forests and boosting, and more recently, deep learning models employed to
generate probabilistic forecasts, capturing both aleatoric (data-related) and epistemic

(model-related) uncertainties.

Fuzzy Set Based Time Series (FTS) models have emerged as an effective forecasting
approach to handling uncertainty by representing time series data in linguistic terms and

incorporating fuzzy logic principles. Unlike conventional statistical models, which rely on
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precise numerical values, FTS models define time series observations using type-1 fuzzy
sets, allowing for a more flexible representation of uncertainty (Singh, 2017). It combines
performance and low computational costs and has been used to solve numerous forecasting
problems such as environment-related issues (Koo et al., 2020; Dec et al., 2021; Wang; Li;
Lu, 2018a), stock market (Shafii et al., 2019; Wu et al., 2021; Musikasuwan; Septiarini,
2020; Cheng; Chen; Jian, 2016), solar energy (Orang et al., 2020), enrollments (Hieu; Ho;
Lan, 2020) and even COVID cases (Tinh, 2020; Kumar; Susan, 2021). The main reason
for F'T'S popularity is that linguistic values or fuzzy sets are used to generate the desired

output rather than crisp numbers (Zhang et al., 2020).

Fuzzy logic was first proposed in 1965 by Zadeh (1996). Song and Chissom (1993)
introduced the FTS method by implementing it on the data of student enrollments at the
University of Alabama. Later, Chen et al. (1996) introduced a method using simplified
arithmetic operations instead of the complex max-min composition operations proposed
by Song and Chissom. This model is considered as the milestone in this research area
(Bose; Mali, 2019). FTS was proposed to overcome the limitations of statistical time
series models, such as the autoregressive (AR), moving average (MA), and autoregressive
moving average (ARMA) models, that have limitations in dealing with uncertainty in
time series (Dincer; Akkug, 2018). On the other hand, FTS achieves realistic results with
higher accuracy rates in forecast output (Gupta; Kumar, 2019). In terms of research
advancements, F'TS early works mainly focused on improving the basic FTS model, but
over the years, the research and application of FTS have expanded significantly. FTS
theory has been combined with machine learning techniques to create forecasting models
that aim to leverage the strengths of both methodologies: fuzzy logic for interpretability
and uncertainty handling and machine learning for pattern recognition and predictive
accuracy (Zhan et al., 2024; Panigrahi; Behera, 2020; PhamToan; VoThiHang; PhamThi,
2024).

Epistemic uncertainty in FTS models is primarily introduced by the modeling
assumptions, particularly in the data partitioning step, which defines how the time series
data is divided into intervals for the creation of fuzzy sets. For this, some hyperparameters
must be defined mainly the partitioning method, the number of partitions and model order
(Gao; Duru, 2020). Thus, one major source of epistemic uncertainty in FTS partitioning
is the subjective determination of the number and shape of fuzzy intervals. Classical
approaches, such as equal-length and equal-frequency partitioning, assume a fixed number
of intervals based on heuristic rules, which may not always capture the true data distribution.
Since these methods do not adapt to the underlying variability of the data, they may
introduce uncertainty due to misrepresentation of time series dynamics. Besides that,
partitioning or clustering techniques that require user interference may introduce subjective
bias and may not adapt well to dynamic datasets. To mitigate this, researchers have

proposed data-driven partitioning strategies, such as entropy-based, clustering-based, and
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optimization-based methods, to reduce epistemic uncertainty by adapting the partitioning
structure to the actual statistical properties of the data. These approaches dynamically
adjust the number of partitions based on measures such as information entropy, data
density, or prediction errors, ensuring that the fuzzy sets better represent the variability

in the time series.

Since F'TS models rely on linguistic representation through fuzzy sets, the choices
regarding the hyperparameters for this partitioning procedure significantly impact model
accuracy and robustness (Huarng, 2001). If the partitioning is not optimally determined,
it introduces epistemic uncertainty due to incorrect assumptions about the structure of
the data. For example, using an overly coarse partitioning may lead to a loss of important
details, whereas an excessively fine partitioning can lead to overfitting and an increase in
computational complexity (Chen; Tanuwijaya, 2011). Another important consideration
in reducing epistemic uncertainty is the shape of the membership functions used in FTS
data partitioning. Improper selection of membership functions can introduce additional
uncertainty, as different shapes influence the degree of membership in which input values
are assigned to fuzzy sets (Dixit; Jain, 2023). As epistemic uncertainty is reducible, by
refining both the partitioning process and membership function design, researchers can
systematically reduce epistemic uncertainty and improve the forecasting performance of
FTS models.

Although many improvements have been made in F'TS forecasting models, there
are limitations of type-1 fuzzy sets to model and minimize the impact of uncertainties
expected in some applications. Therefore, type-2 fuzzy sets were presented by Zadeh (1975)
as an extension of the concept of a conventional fuzzy set, providing an additional degree
of freedom to model uncertainty and imprecision in a better way (Castillo et al., 2007
Pinto et al., 2021). The key advantage of type-2 fuzzy sets (T2FS) over type-1 fuzzy sets
(T1FS) is their ability to model uncertainty within the membership functions themselves.
In a T1FS, each input value is assigned a crisp membership degree, whereas in a T2F'S,
the membership function is itself fuzzy, meaning that each input has a range of possible
membership values (Abhishekh; Gautam; Singh, 2018). This capability is particularly
useful in FTS models, where epistemic uncertainty arises from imperfect knowledge of
the system, subjective partitioning choices, and unknown relationships between past and
future values. Thus, type-2 fuzzy sets allow for a more adaptive modeling approach by
incorporating an additional level of uncertainty in the decision-making process, enabling
better handling of noisy, incomplete, or sparse data, as well as improved robustness when

forecasting time series with sudden fluctuations (Mendel, 2007).

Despite significant improvements published in the type-2 FTS literature in the
past years, much still needs to be studied. There are several hyperparameters to be
defined in the type-2 FTS design; however, one of the most recurrent challenges in the

FTS literature is defining the number and length of intervals of the universe of discourse
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- UoD in the model as these are parameters that directly impact in model’s accuracy
(Singh, 2017), also considering that most of the partitioning/clustering methods used for
this task often rely on user-defined parameters for partitioning, introducing subjectivity
and limiting adaptability to complex datasets. Therefore, to address the difficulty in the
FTS universe of discourse partitioning and uncertainty handling, this research aims to
investigate F'TS forecasting model design by understanding the importance of key design
hyperparameters, to propose new accurate and effective type-2 FTS methods and to

validate their performance in different appropriate case studies, as illustrated in Figure 1.
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Figure 1 — Overall forecasting process in this research.

1.1 Main Contributions

This thesis presents contributions to the Time Series Forecasting research field,

summarized below:

 Introduction of fully data-driven partitioning algorithms (SODA and ADP) that
remove reliance on manual heuristics, thereby addressing a key source of epistemic

uncertainty in type-2 FTS model design.

o Development of the SODA-T2FTS and ADP-T2FTS models to address the limitations
of user-dependent partitioning methods in conventional FTS, enabling more adaptive,

accurate, and uncertainty-aware forecasting for univariate time series.

o Extension of ADP-T2FTS into ADP-T2LIMG to capture deeper structural informa-
tion from the data, improving fuzzy set definition and enhancing forecast accuracy

in complex time series.
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o Comprehensive evaluation of the proposed models on complex financial, energy and
benchmark time series, also analyzing their performance in terms of the average
number of rules (c.f. interpretability), error metrics, execution time, model complexity

and noise sensitivity.

o Empirical benchmarking against diverse state-of-the-art FT'S and machine learning
methods to validate the effectiveness of the proposed data-driven type-2 FTS models

across different modeling strategies.

1.2 Publications

The following papers have been published by the author throughout the course.
The items marked with a (*) indicate the publications not related to the thesis itself.

A.1 Journal Publications

1. VARGAS PINTO, A. C., SILVA, L. C. C. SILVA, P. C. L., GUIMARAES, F. G.,
WAGNER, C., PESTANA DE AGUIAR, E. Autonomous data partitioning for type-2
fuzzy set based time series. Evolving Systems, v. 15, n. 2, p. 575-590, 2024.

2. *DIAS, U. R. F., VARGAS PINTO, A. C., MONTEIRO, H. L. M., PESTANA
DE AGUIAR, E. New perspectives for the intelligent rolling stock classification in
railways: an artificial neural networks-based approach. Journal of the Brazilian

Society of Mechanical Sciences and Engineering, v. 46, n. 4, p. 230, 2024.

3. VARGAS PINTO, A. C., FERNANDES, T. E., SILVA, P. C. L., GUIMARAES, F. G.,
WAGNER, C., PESTANA DE AGUIAR, E. Interval Type-2 Fuzzy Set Based Time
Series Forecasting Using a Data-driven Partitioning Approach. Evolving Systems, v.
13, 1. 5, p. 703-721, 2022.

4. *OLIVEIRA, J. V. P., COELHO, A. L. F., SILVA, L. C. C., VIANA, L. A., VARGAS
PINTO, A. C., PINTO, F. A. C., Filho, D. O. Using image pre-mapping for
applications of monitoring electrical switchboards. Automation in Construction, 112,
103091. 2020.

A.2 Conference Publications

1. VARGAS PINTO, A. C., ORANG, O., GUIMARAES, F. G., PESTANA DE
AGUIAR, E. A new data driven forecasting approach for time series forecasting. In:
IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZIEEE),
2025. - Accepted (To be presented in July/2025).

2. VARGAS PINTO, A. C., SILVA, P. C. L., GUIMARAES, F. G., WAGNER, C.,
PESTANA DE AGUIAR, E. Self-Organised Direction Aware Data Partitioning for
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Type-2 Fuzzy Time Series Prediction. In: IEEE INTERNATIONAL CONFERENCE
ON FUZZY SYSTEMS (FUZZIEEE), Luxembourg. p. 1-6, 2021.

3. VARGAS PINTO, A. C.,SILVA, P. C. L., GUIMARAES, F. G., PESTANA DE
AGUIAR, E. Séries Temporais Fuzzy do Tipo-2. In: ANAIS DO CONGRESSO
BRASILEIRO DE AUTOMATICA (CBA), v. 2, n. 1, 2020.

4. VARGAS PINTO, A. C., SANTA MARIA, T. H., OLIVEIRA, J. G., MARCATO,
A. L. M., PESTANA DE AGUIAR, E. Controlador MPPT baseado em Logica Fuzzy
Aplicado a um Sistema Fotovoltaico Conectado a uma Rede. In: ANAIS DO 14°
SIMPOSIO BRASILEIRO DE AUTOMACAO INTELIGENTE (SBAI), Ouro Preto,
2019.

1.3 Work Structure

This thesis is organized as follows:

o Chapter 2 — Theoretical Foundations: explores the fundamental concepts of Fuzzy
Set Based Time Series forecasting, also discussing type-2 fuzzy sets and detailing
partitioning methodologies in FTS, providing the necessary background for the

proposed methodologies.

o Chapter 3 — The SODA-T2FTS Approach: presents the SODA-T2FTS forecasting
model, explaining its training and forecasting procedures. It describes how SODA is
used to partition the UoD and details the experimental results obtained for multiple

financial time series datasets, comparing its performance to existing state-of-the-art
FTS models.

o Chapter 4 — The ADP-T2FTS Approach: introduces ADP-T2FTS and describes the
model training procedure, fuzzy rule extraction, and forecasting steps. A detailed
comparative analysis with other partitioning methods shows that ADP-T2FTS
achieves lower RMSE values and superior robustness against noise, making it a
highly effective data-driven F'T'S model.

o Chapter 5 — The ADP-T2LIMG Approach: presents ADP-T2LIMG, an improved
version of ADP-T2FTS that extracts additional structural information from ADP-
generated data clouds. This enhanced method allows for more accurate fuzzy set
design, further improving forecasting precision. The chapter outlines the training and
forecasting procedures of ADP-T2LIMG, as well as comprehensive computational
experiments that validate its superior performance compared to state-of-the-art

machine learning and deep learning models.
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o Chapter 6 — Conclusion and Future Works: This final chapter summarizes the key
findings of this research, emphasizing the benefits of data-driven partitioning and
type-2 fuzzy logic in time series forecasting. It also discusses potential research

future directions.
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2 Theoretical Foundations

This chapter presents the theoretical background necessary to support the develop-
ment of the models proposed in this research. It begins by introducing the fundamentals
of type-2 fuzzy sets, with a focus on interval type-2 fuzzy sets (IT2FS), highlighting their
advantages in managing epistemic uncertainty. Then there is a review of Fuzzy Set Based
Time Series Prediction (FTS) forecasting, outlining the key concepts, procedures, and
motivations behind its use in modeling uncertain and imprecise temporal data. Next,
it explores the importance of partitioning the Universe of Discourse (UoD), discussing
how partitioning choices directly influence model performance and uncertainty handling.
Finally, it reviews the data-driven partitioning approaches to be used in the models

proposed in subsequent chapters.

2.1 An overview of Interval Type-2 Fuzzy Sets

The very nature of time series causes its analysis and forecast to be affected by
numerous variables that add uncertainties to the model. Factors such as trend, seasonality
and cyclical movements end up making it difficult to build an accurate forecasting model.
In this sense, the operating structure of type-2 fuzzy sets, first proposed by Zadeh (1975),
can contribute to the construction of a more robust and tolerant system to noise and
uncertainties in the data.

Type-2 fuzzy logic extends traditional (Type-1) fuzzy logic by incorporating an
additional level of uncertainty, making it particularly useful for handling imprecise and
highly uncertain data. Formally, a type-2 fuzzy set A in a domain X is characterized by a
type-2 membership function p4(x,u), which is defined as shown in Equation (2.1). This

function maps each element x to a fuzzy set in the interval [0, 1].

A={((z,u), pi(x,u) | ze X,ue J, C|0,1]}, (2.1)

where:

e x is an element in the universe X;
 u is a secondary variable that belongs to the primary membership domain J, C [0, 1];

e 1j(x,u) represents the secondary membership function, which determines the degree

of membership of u for a given z.

Researchers have proposed adjustments to improve the level of accuracy or per-
formance of fuzzy systems. There is a substantial computational bottleneck since the

primary membership of type-2 F'T'S may be infinite in number because it is represented
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by a subinterval in [0, 1]. Hence, in order to solve this issue, Liang and Mendel (2000)
proposed a theory of a type-2 fuzzy set as interval type-2 fuzzy set (IT2FS) by considering
the secondary membership function to be 1. Subsequently, this concept emerged as the

most broadly used because of its successful utilization in several decision-making problems
(Biswas; De, 2018).

As seen, Interval Type-2 Fuzzy Sets (IT2FS) are then a special case of general
Type-2 Fuzzy Sets (T2FS), where the secondary membership functions are always equal
to 1,1i.e. pi(x,u) =1, Vu € J,. This simplification reduces computational complexity
while still capturing uncertainty more effectively than traditional Type-1 Fuzzy Sets. Thus,
an interval type-2 fuzzy set can defined by an upper membership function (UMF) and
lower membership function (LMF), both equivalent to a traditional type-1 membership
function. The lower membership function is less than or equal to the upper membership
function for all possible input values, as shown in Figure 2. The blue region between
the UMF and LMF is the footprint of uncertainty (FOU), which can be expressed as
Equation (2.2), where z is a variable in X, u is the primary membership of z and p 3 and
fi7 represent the lower and upper membership functions of A, respectively (McCulloch;
Wagner, 2020).

FOU(A) = {(x,u) | « € X,u € [ uz(x), fiz()]} (2.2)

The FOU is what provides interpretability to type-2 fuzzy sets when dealing
with uncertainties, especially when defining the end-points for the membership functions,
providing a direct way to model and quantify epistemic uncertainty, which arises due to

incomplete or imprecise knowledge.
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Figure 2 — Type-1 and type-2 triangular fuzzy sets (third dimension not shown for I'T2
case).

While in type-1 fuzzy sets the degree of membership is characterized by a single
crisp value; in type-2 fuzzy sets, the degree of membership is considered a fuzzy set, which

allows incorporating the treatment of uncertainties in the data and in the construction of
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the fuzzy sets, making it more suitable to deal with variations in the noise at the inputs
(Shukla; Muhuri, 2019).

Regarding the use of type-2 fuzzy logic in FTS models, Huarng and Yu (2005)
proposed its use to enrich the fuzzy relationships obtained from type-1 models and then
to improve the forecasting performance of the Taiwan stock index. Bajestani and Zare
(2011) proposed a new method to forecast the Taiwan stock index based on optimized
high-order type-2 FTS. A weighted type-2 FTS forecasting method to enhance the model’s
performance was proposed by Abhishekh, Gautam and Singh (2018). Furthermore, Mittal
et al. (2020) discussed the essential work in the field of type-2 FTS, including its theoretical

and practical implications.

2.1.1 Fuzzy logic systems

Fuzzy logic systems - FLS use type-1 or type-2 fuzzy sets to produce output crisp
values from input crisp values. As shown in Figure 3, a type-2 FLS is similar to a type-1
FLS. The main difference between type-2 FLS and type-1 FLS is the type-reducer, which
converts the output type-2 fuzzy set for later defuzzification. The complete structure of a
type-2 FLS includes a fuzzifier, the fuzzy rule base, the fuzzy inference engine, and the
output processing block, which is composed of a type-reducing mechanism followed by a
defuzzifier. The output processing block is responsible for performing the operations that

will convert the resulting fuzzy set into a crisp value that can be used.

In a Fuzzy Logic System, rules serve as the foundation for decision-making in the
inference engine. These rules can either be derived from expert knowledge or extracted
directly from numerical data. In both cases, they are usually represented as a series of
[F-THEN statements that consists of two main components: the antecedent (the IF-part),
which defines the conditions for the rule activation, and the consequent (the THEN-part),
which specifies the outcome of the given rule. Fuzzy sets (FSs) are associated with the
linguistic terms used in these rules, influencing both the inputs and outputs of the FLS.
By structuring decision-making through these fuzzy rules, a FLS can handle uncertainty

and approximate reasoning effectively.

The two most widely used types of fuzzy inference systems are the Mamdani and
Sugeno, which differ primarily in their rule structure, output calculation, and defuzzification
methods. The Mamdani inference system operates in four main stages: fuzzification, rule
evaluation, aggregation, and defuzzification. In fuzzification crisp inputs are converted
into fuzzy sets using predefined membership functions. Then, fuzzy rules, often expressed
in an "[F-THEN"format, are applied. Once all the rules are evaluated, their outputs are
aggregated into a single fuzzy set. Defuzzification is then required to convert this fuzzy set
into a crisp value. The Sugeno inference system differs from the Mamdani model primarily

in its output structure. Instead of fuzzy sets, the Sugeno model generates outputs in the
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Figure 3 — (a) Components of a FLS, and (b) nature of the output processor for T1 and
T2 FLSs (Aguiar et al., 2021).

form of mathematical functions, eliminating the need for a separate defuzzification step,
making the Sugeno approach computationally more efficient but less interpretable than

Mamdani models.

Processing the input values in the Inference Engine involves several computational
steps, that rely on rules that consist of the antecedent and the consequent. After the
input data is fuzzified, the antecedent is processed using fuzzy logical operators. If the
rule contains multiple antecedents connected by AND, the system typically applies the
minimum operator, selecting the lowest membership value among the conditions. If the
antecedents are connected by OR, the mazimum operator is used, choosing the highest
membership value. After evaluating the antecedent, the consequent processing begins.
The rule strength obtained from the antecedent is used to modify the fuzzy set in the
consequent. This step, known as implication, adjusts the membership function of the
consequent based on the degree of membership of the antecedent. The implication method
clips (min implication) or scales (prod implication) the UMF and LMF of the output
type-2 membership function using the rule firing range limits. This process produces an
output fuzzy set for each rule. When multiple rules are active, their consequents must
be aggregated to derive a single type-2 fuzzy set from the rule output fuzzy sets. This
process combines the truncated fuzzy sets using the mazimum operator, ensuring that the

final fuzzy output encompasses contributions from all relevant rules.
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2.2 Fuzzy Set Based Time Series Prediction

The values of a fuzzy set based time series are represented by fuzzy sets and there
is a relationship between current and previous observations. There are different fuzzy
methods proposed to solve time series forecasting problems, from the simplest to the most
advanced ones, which involve weighting mechanisms, probabilistic, among others, that

improve model performance.

If a conventional time series is composed of observations represented by real
numbers, fuzzy set based time series are composed of fuzzy sets, which are all within
the universe of discourse - UoD, defined by the range of the values in the original time
series. According to Lee et al. (2006) consider that Y'(t) (¢t = 0, 1,2, ...) represents the crisp
(numerical) values of the original time series. After fuzzification, Y () is converted into
F(t), which is a collection of A;(t) (i = 1,2,...) fuzzy sets. Then, F(t) is called a fuzzy set
based time series on Y (t) (t = 0,1,2,...). The group of fuzzy sets A;(t) (i =1,2,...) can
also be understood as a linguistic variable A and each fuzzy set A; is a linguistic term of

that linguistic variable.

The initial model proposed by Song and Chissom (1993) is computationally costly
due to its complex matrix max-min operations. Chen et al. (1996) later created a simpler
model that is considered to be the milestone of FTS prediction. Chen’s method helped
defining FTS forecasting models as a sequence of steps, usually followed by researchers in
the field, whose main objective is to create a knowledge representation of the time series
temporal dynamics. FTS forecasting models procedure can be divided into training and
forecasting procedures. The training procedure aims to create the linguistic variable A and
a knowledge representation of the time series dynamics, both represented by the learned
model M, and involves the following steps: (1) Data transformation (2) Definition of the
UoD, (3) Partition of the UoD into intervals, (4) Fuzzification of the dataset, and (5)
Establishment of fuzzy logical relationships (FLRs) and fuzzy logical relationship groups
(FLRGs). The forecasting procedure is (1) Input value fuzzification, (2) Finding compatible
rules, and (3) Defuzzification. The partitioning of the dataset, the identification of fuzzy
logical relationships, and the defuzzification are essential in the forecasting performance of
the model (Bose; Mali, 2019; Singh, 2017). Each step is described below:

o Step 1: Data transformation

Raw time series data is usually non-stationary, where the statistical properties, such
as mean and variance, change over time. They often exhibit trends, seasonality,
and noise, which can hide underlying patterns and make it difficult to establish
meaningful fuzzy relationships. Many real-world datasets, such as stock prices,
temperature variations, and economic indicators, exhibit non-stationarity, which

can lead to inaccurate predictions if left unaddressed. Transformations such as
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normalization, smoothing, and differentiation help mitigate these issues by making

the data more suitable for fuzzy modeling.

Differentiation, in particular, is widely used when dealing with non-stationary time
series. It refers to computing the difference between consecutive values to capture
the rate of change rather than absolute values, reducing non-stationary effects and
making it easier to define fuzzy relationships that remain valid across different time
periods. Differentiation is applied in pre-processing as Ay(t) = y(t — 1) — y(t) and
in post-processing as y(t) = y(t — 1) + Ay(t), considering a time series Y.

Step 2: Definition of the UoD

The UoD defines the boundaries within which the time series data is analyzed and
processed. Thus, the UoD refers to the range of all possible values that the time
series can assume, providing a structured framework for fuzzification. The UoD is
defined using the minimum (min(Y (t))) and maximum (max(Y (t))) values observed
in the historical time series data, with an additional margin added to accommodate

potential fluctuations, usually defined to extend from 10% to 20% the original UoD.

Considering the time series represented by Y (t), the UoD is defined in Equation
(2.3):

UoD = [Lboundv Ubound] (23)

The lower bound is calculated as Lyoung = 0.9 min(Y (t)) if min(Y (t)) is larger than
zero and Lpoyng = 1.1 min(Y(t)) if it is not. The upper bound is calculated as
Uouna = 1.1 max(Y (t)) if max(Y (t)) is larger than zero and Uppyna = 0.9 maz (Y (t))

if it is not.

Step 3: UoD partitioning

The UoD is partitioned into k intervals and to each interval a fuzzy set A; (i =
0,1,...,k) is assigned, creating the linguistic variable A used to describe Y. The
correct number of intervals (hence fuzzy sets) for FTS models is one of the most
important parameters to be defined as it directly affects the model’s accuracy. Thus it
has been a hot research topic for many researchers that use partitioning and clustering
algorithms to fulfill this task. Clustering is the task of dividing data samples into
several groups. Data samples in the same groups are more similar to other data
samples in the same group and dissimilar to those in other groups. Clustering is
widely used in many fields of study, including natural language processing, pattern
recognition, image analysis, among others; hence being a relevant topic in the data
analytics field. Established clustering techniques require proper parameter settings

that can vary significantly across datasets, and their performance heavily depends
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on prior knowledge and assumptions. Nevertheless, uncertainties about the problem
are high in real situations, prior knowledge is usually very limited, and assumptions
are rarely met. Thus, for time series forecasting, it is important to find partitioning
or clustering algorithms independent of user interference that can analyze the data
and partition it according to its structure. This topic will be addressed in details in
Subsection 2.2.

Step 4: Fuzzification of time series data

The fuzzification process is the method to convert the crisp input values of the time
series into a linguistic representation, where each f(t) € F' is the fuzzification of
y(t) € Y. For every instance in the time series training data, the membership values
are calculated considering all fuzzy sets A, (i =1,2,...,k) generated in the previous
step. A fuzzy set A; in the UoD is defined by Equation (2.4).

~ i lu ilu i \Up
A= f4, (ur) n p4,(u2) T 14, (un) (2.4)
Uy (%) Un

where 414, is the membership function of a fuzzy set A; and p 4,(u;) indicates the

membership degree of u; in A;.

The fuzzy sets may be designed using different membership functions. Although the
membership function has a minor impact on model forecasting accuracy, it is still an
important parameter to be defined. In general, membership functions are usually

triangular, trapezoidal, or gaussian.

Step 5: Extraction of temporal patterns

After the fuzzification process, fuzzy logical relationships (FLR) can be established.
FRLs are used to represent the temporal patterns between lags in F' and relate
previous and current states. Suppose a first ordel model and that A; is the fuzzified
value of period t and Ay, is the fuzzified value of period ¢ + 1. In that case, the
fuzzy logical relationship FLR is defined as flj — Ay, where, flj (left hand-side) is
the current state and A (right hand-side) is the next state of time series historical
data. A simple and generic understanding of the F'TS process is represented in
Figure 4, in which the instances of a time series are fuzzified into fuzzy sets and then
the temporal patterns from one instance to the next are identified. After all FLRs
have been identified for all the time series instances, the knowledge rule-base can be
generated by the creation of the fuzzy logical relationship groups (FLRG). All the
rules which share the same antecedent (left hand-side) can be grouped in a FLRG
that can be interpreted as the possible future states (right hand-side) for a given
antecedent, as exemplified in Figure 5. For example, The FLRG flj — A, A, flg
implies that IF f(t) € F is A THEN f(t+1)is A, OR A, OR A,.
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Figure 4 — Generic example of F'T'S process.

After the training procedure is over, the forecasting procedure happens as follows:

e Step 1: Input value fuzzification
The learned model is then used in the training procedure to forecast the next values
of the time series using the values in the test dataset as input. An input value y(t)

is converted into fuzzy values of the linguistic variable A.
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Figure 5 — Generic example of FLRGs definition.

Step 2: Finding compatible rules Knowing which fuzzy sets were activated by
the test sample, one can find the rules that are associated with these fuzzy sets and
have them as their antecedent. The consequent of these rules will be the possible
forecast values f(t 4 1), considering that the rule structure is the representation of
the temporal patterns of consequent instances A; — flj, where A; is on the left-hand

side of time ¢ and flj is on the right-hand side of time ¢ 4 1.

Step 3: Defuzzification

The min operator is used for antecedent processing (t-norm), which is applied to
select the minimum values of the Lower Membership Functions - LMFs and Upper
Membership Functions - UMFs of all antecedents for every rule, and the output
result of antecedent processing is applied to consequent LMFs and UMFs. When
the fuzzy sets are triangular membership functions, and when the min operator is
used, the result is a trapezoidal consequent FOU. Consequent processing (s-norm)
is performed using the max operator. Aggregation is then performed, which is a
process that aims to generate a single interval type-2 fuzzy set from the rule output

fuzzy sets.

Defuzzification is the last step in type-2 FTS models and obtains a crisp number
from the output of the aggregated fuzzy set. In type-2 FTS models, defuzzification
involves two phases. The first one is the type reduction, which is a conversion of the
T2FS, resulting from inference, into a T1FS, and then a conventional defuzzification
method is applied. There are several methods of defuzzification, such as the centroid

method, bisector method, and mean of maxima (MOM) method, to name a few. In
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this present research, type-reduction was performed using the Enhanced Iterative
Algorithm with Stop Condition - EIASC method. According to Wu and Nie (2011)
and Liu and Lin (2021), the EIASC is the most efficient method to use in practice.
The approach to be chosen depends on the need of the application (Islam; Hossain;
Haque, 2021). The aggregated T2FS is reduced to a T1FS, which is a range with
lower limit cp¢ and upper limit cgg, which are calculated using Equations (2.5) and
(2.6), where N is the number of samples taken across the output variable range, y; is
the ith output value sample, x5 (y;) is the LMF, fi5(y;) is the UMF, and Lf and Rg
are estimated switch points. When defuzzification is performed using the Centroid
method (Mendel; Liu, 2007; Mendel et al., 2014; Liu; Wan, 2019), it returns the
center of gravity of the type-1 fuzzy set along the z-axis, and is calculated using
Equation (2.7).
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The FTS forecasting model described above will be reviewed and explored in

Chapters 3, 4 and 5, with numerical examples and case studies.

Existing FTS methods basically vary by their order and amount of input variables
used. Regarding their order, FT'S models can be of h — th order, divided into first and
high order models. Model order represents the number of past lags that are used in the
forecasting process. The number of lags indicate how much past information is available
to the model to recognize the possible temporal patterns and make a forecast. Considering
the fuzzy set based time series F'(t), in first order models only one past lag from the time
series is used to forecast the future values and the rule structure is F'(t — 1) — F(¢). In a
second order model, two past instances are used in the pattern recognition procedure and
the rule structure is F'(t —2), F'(t — 1) — F(¢). For higher order models, h past instances
are used to predict F(t) as: F(t—h),..., F(t—2),F(t—1) — F(t). It is important to note
that computational costs are usually higher for high order models. Representing F'(t — 1)
and F(t) by A; and Aj, respectively, a first order model can be expressed as A; — A;
(Bose; Mali, 2019). Considering their number of input variables, a time series with a single

time-dependent variable is called a univariate time series. In multivariate time series more
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than one variable is varying over time and its forecasting is based on the assumption that

each variable is dependent on its past instances as well as the behaviour of other variables.

FTS literature focuses on addressing its disadvantages, such as high computation
when the fuzzy rule matrix is large, and the lack of persuasiveness in determining the
UoD and the length of intervals (Tinh, 2020; Liu et al., 2010). Hence, researchers have
proposed, from different aspects, diverse models based on the FTS theory to enhance
forecasting accuracy. Some adjustments are proposed to improve the interval lengths, the
order of the fuzzy logical relationships, and defuzzification methods in order to achieve an

accurately forecasted output (Dincer; Akkusg, 2018; Jiang et al., 2017).

Specifically, during the fuzzification process, the algorithm needs to perform a
division for the UoD, and consequently, construct fuzzy sets. These interval lengths directly
influence the forecasting performance. Firstly, Huarng (2001) proposed a distribution-based
and average-based to improve forecasting results significantly. Huarng and Yu (2006b)
introduced ratio-based lengths of intervals instead of equal lengths of intervals. Afterwards,
Yolcu et al. (2009) improved this method by implementing optimization to determine
the ratio. Later on, dynamic interval length has also been studied in other research. For
example, a hybrid forecasting model which combines particle swarm optimization (PSO)
with fuzzy set based time series was proposed by Kuo et al. (2009) to forecast enrollments
of students. Kumar and Susan (2021) also proposed a method based on PSO, namely
nested FTS-PSO and exhaustive search FTS-PSO for defining the optimal interval length
to forecast COVID-19. A model based on a tree partitioning method (TPM) was used for
determining the optimal partitions of intervals by Alyousifi, Othman and Almohammedi
(2021). This method simplifies the partitioning of the UoD and minimizes the undesirable
influences of abnormal data points. It showed the capability to deal with forecasting

problems to achieve higher model accuracy successfully.

Concerning the process of establishing fuzzy relationships, Yu (2005) argued that
recurrent fuzzy relationships, which were simply ignored in previous studies, should be
considered in forecasting. They suggested that different weights should be attributed
to different fuzzy relationships. A method based on feed forward neural networks to
define fuzzy relationships in high order FTS models was proposed by Aladag et al. (2009),
and this proposed method produced better forecasts than the other methods compared.
Later, Chen and Wang (2010) introduced a method to forecast the Taiwan Capitalization
Weighted Stock Index (TAIEX) based on a fuzzy forecasting method based on fuzzy-trend
logical relationship groups. Fuzzy logical relationships were divided into fuzzy logical
relationship groups based on the trend of adjacent fuzzy sets emerging in the precursors

of fuzzy logical relationships.

Regarding the defuzzification method, Chen et al. (1996) discussed that the mid-

points values of the intervals corresponding to the fuzzy sets of the forecasted state are
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essential information that should be studied to determine the predicted value. Many
studies have proved the benefits of this method and its applications (Jiang et al., 2017;
Yolcu et al., 2009). Patki et al. (2015) studied the centroid, bisector, and mean of maxima
(MOM) methods for defuzzification to predict water quality index.

2.3 Universe of Discourse Partitioning

Partitioning can be performed using equal-width intervals, unequal-width intervals,
or autonomous methods like clustering-based approaches. In the context of FTS, where
appropriate partitioning is essential for model accuracy and performance, data-driven
methods for dividing data into distinct intervals without requiring manual intervention are
particularly useful as they work directly from the analysis of data distribution. For a given
time series Y (t), the linguistic variable A is used to describe Y (t) by assigning a type-2
fuzzy set A; (1=0,1,..., k) to each interval of the UoD. These intervals may be generated
dynamically based on the distribution of the data, ensuring that the partitions capture

meaningful patterns or structures in the dataset while minimizing information loss.

Once the UoD has been defined, the creation of the linguistic variable A is governed
by three hyperparameters: the number of partitions (k), the partitioning method and the

membership function (u).

2.3.1 The number of partitions

The number of partitions k in fuzzy set based time series plays a crucial role in
determining the effectiveness of the forecasting model. Partitioning refers to dividing the
UoD into intervals, with each interval corresponding to a fuzzy set. The choice of the
number of partitions directly influences the precision, interpretability, and computational
efficiency of the FTS model.

Selecting an appropriate value for k is essential because it affects how well the
fuzzy model captures patterns and relationships in the data. There is a trade-off between

model performance and k, which can be summarised as:

o If k is too small

— Broad fuzzy sets, leading to loss of information due to excessive generalization.

— Limits the model’s ability to distinguish subtle fluctuations in the data.

Higher ambiguity in fuzzy relationships.

Leads to generalized forecasts with limited accuracy.
o If £ is too large

— The model may become overly sensitive to minor fluctuations in the data.
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— Can lead to overfitting, where the model captures noise rather than true

patterns.
— Increases computational complexity and reduces interpretability.

— Narrow membership functions, increasing sensitivity but reducing robustness

to small variations.

Studies (Guo; Pedrycz; Liu, 2019; Chen; Phuong, 2017; Vamitha, 2021; Askari;
Montazerin; Zarandi, 2020) have proved that efficient partitioning significantly impacts
the predictive accuracy of FTS models. As seen above, if partitions are too coarse,
the model cannot capture fine-grained variations. Conversely, excessive partitions may
lead to unnecessary complexity without substantial accuracy improvements.The number
of partitions of the UoD must be correctly defined along with another very important
hyperparameter, the partitioning method, which will define how the UoD will be partitioned

in terms of the length of the partitions, as will be seen in the next subsection.

2.3.2 The partitioning method

The partitioning method in FTS models will define how the UoD will be divided
into intervals and consequently, the length and midpoints for each fuzzy set created. The
simplest way of performing this task is using equal-length intervals, a method called Grid
Partitioning, where the UoD is divided into k intervals of uniform size (Gao; Duru, 2020).
Then, k overlapping fuzzy sets are created on each of these intervals. This method is
easy to implement and computationally efficient, being a popular choice for early FTS
models. Cheng et al. (2008) later introduced equal-frequency partitioning, where each
interval contains approximately the same number of data points, ensuring a more balanced

distribution of data across partitions.

Partitioning the UoD in uneven intervals has also been proposed in many works in
the literature. Clustering algorithms, such as Fuzzy c-Means (FCM) (Song et al., 2019;
Askari; Montazerin, 2015; Sun et al., 2015) and K-Means (Cheng; Chen; Jian, 2016;
Mukminin et al., 2021), determine optimal partitioning based on the intrinsic patterns of
the dataset (Huarng; Yu, 2005). These techniques allow for a more adaptive partitioning
strategy, where intervals are shaped according to the density and distribution of data
points. This approach has demonstrated improved accuracy in applications where data
contains multiple modes or irregular distributions. However, clustering-based partitioning
methods require parameter tuning, such as selecting the number of clusters, which can

introduce additional computational complexity.

Entropy (Wang; Li; Lu, 2018b; Chen; Chen, 2015) has also been an option for
UoD partitioning, which leverages information theory to identify partitions that maximize

information gain and minimize uncertainty. By selecting intervals based on entropy
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measures, this method enhances the model’s ability to capture significant changes in the

time series while avoiding redundant or irrelevant partitions.

Metaheuristic optimization techniques (Izakian; Pedrycz; Jamal, 2015; Ewbank et
al., 2020) have also been been successfully implemented for partitioning in FTS models,
with genetic algorithm (GA)-based (Ye et al., 2016; Aladag et al., 2014) and particle swarm
optimization (PSO)-based methods (Kumar; Susan, 2021; Askari; Montazerin; Zarandi,
2020; Chen; Phuong, 2017) gaining popularity. Genetic algorithms optimize the number
and width of partitions by evolving candidate solutions over multiple generations, leading
to an optimal partitioning strategy (Cai et al., 2013). Similarly, PSO-based partitioning
optimizes interval boundaries using swarm intelligence, enabling dynamic adaptation to
complex time series patterns. Markov weighted fuzzy time-series model based on the
optimum partition method was proposed by Alyousifi et al. (2020) to partition the UoD.
In addition, an adaptive model is introduced to calculate the final forecasted result in the
defuzzification phase. In short, model order and the UoD partitioning method are two
major aspects influencing the forecasting accuracy. By analysing existing methodologies, it

can be concluded that an accurate UoD partitioning can yield better forecasting accuracy.

Figure 6 shows how different partitioning methodologies split the UoD for the same

data.
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Figure 6 — Partitioning results for (a) Grid, (b) c-Means and (c¢) Entropy partitioning
methods.
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2.3.3 The membership function ()

In the fuzzification process the numerical time series data is transformed into fuzzy
values. This transformation relies on membership functions (), which define the degree
to which a numerical value belongs to a particular fuzzy set. They are mathematical
representations that map crisp input values to a fuzzy scale, typically within the range
[0,1]. A value closer to 1 indicates a higher degree of membership to a fuzzy set, while
a value closer to 0 suggests minimal or no membership. The selection of a membership
function affects the way data is fuzzified into fuzzy sets and, consequently, influences
both the fuzzification and defuzzification processes in a FTS framework. Thus, the choice
of an appropriate membership function may influence in accuracy, interpretability, and
effectiveness of the F'T'S model.

There are several types of membership functions, but the most commonly used

membership functions in FTS model design include (Zadeh, 1996):

o Triangular membership functions: Simple, computationally efficient, and widely
used due to their linear structure. Defined by Equation (2.8), where a and ¢ are the

lower and upper bounds, and b is the peak value.

0, r<aorzr>c
plr) ==t 4 <z <b (2.8)
ez p<zg<ece

Y

o
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« Trapezoidal membership functions: A generalization of the triangular function
that allows for a plateau region, providing more flexibility. It is similar to the
triangular membership function but with an additional flat-top region, defined by

four parameters (a, b, ¢, d), as given by Equation (2.9).

0, r<agorz>d
=, a<zr<bh
) = (2.9)
1, b<z<c¢
%, c<zx<d

o Gaussian membership functions: Smooth and continuous, often preferred when
handling real-world time series data with gradual transitions and controlled by two

parameters: the mean m and the standard deviation §, as shown in Equation (2.10).

202
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Figure 7 shows an example of UoD partitioning, where eight evenly distributed
triangular, trapezoidal and gaussian type-2 fuzzy sets are created. In the next section, the

structure and definition of type-2 fuzzy sets will be explored.
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Figure 7 — Example of UoD partitioning using different membership functions.

2.4 Data-driven Partitioning Approaches

The exposed scenario showed that the appropriate number of fuzzy sets for F'TS
prediction models has been investigated by many researchers (Gao; Duru, 2020; Hua et
al., 2019; Silva et al., 2020b) and is an important parameter that needs to be defined as it
directly affects the accuracy of the model. Data-driven methods are preferred over the ones
that require user interference, as those may introduce subjective bias in model design. In
this work, two data-driven partitioning algorithms are explored for UoD partitioning: the
Self-Organised Direction Aware algorithm - SODA (Gu et al., 2018) and the Autonomous
Data Partitioning - ADP (Gu; Angelov; Principe, 2018), to be defined in the following

sections.

2.4.1 Self-organised Direction Aware Data Partitioning Algorithm - SODA

Recent research has focused on data-driven models in an effort to make machine
learning more autonomous and less reliant on human intervention. SODA is a data
partitioning algorithm that relies on Empirical Data Analytics (EDA) operators to identify
input data distribution peaks/modes, then uses them as focal points to associate with

other points, forming data clouds that resemble Voronoi tessellation. Data clouds can
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be understood as a special class of clusters but with a few key differences. They are
non-parametric and their shape is not predefined by the type of distance metric used.

Data clouds directly represent the properties of the observed input data samples.

SODA approach employs:

« A distance component based on a distance metric: The Minkowski, Euclidean (which
is a special case of the Minkowsky distance) and Mahalanobis distances, traditional
distance metrics broadly used in the literature that measure the magnitude difference

between vectors.

o A directional/angular component based on the cosine similarity: The cosine similarity

focuses on the directional similarity.

Thus, SODA is able to take advantage of the information extracted within a
metric space and within a pseudo-metric, similarity oriented one, namely, the spatial
and directional divergences, resulting in a deeper understanding of the properties of the
dataset.

Assuming the real data space R™ and considering a dataset {x1, 2, x3, ...}, where
T = [Ti1, Tiz, .., xi,m]T is a m dimensional vector, ¢ = 1, 2, 3, ...; indicate the time instances
and m is the dimensionality. Then, the magnitude component dj; can be expressed as

shown in Equation (2.11), considering the Euclidean metric:

dy (i, ) = || — x5]| = JZ(%I —z51)% (2.11)

The angular component d 4, based on the cosine similarity, can be expressed as

(2.12):
da(x;, zj) = \/1 — cos(0p;a;);%,5 = 1,2,...,m (2.12)
where Cos(exl.@j) = %, (9%%. is the angle between x; and x;. In the Euclidean
i ]
space, (x;, ;) = >y ix;, and ||z;|| = 1/ (@i, x;), so the directional component d4(x;, x;)

can be rewritten as follows:

i, j=12....n (213)
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Empirical Data Analytics (EDA) is a non-parametric and assumption-free technique
that consists of clustering algorithms focused on data. It is conducted based on the empirical
observation of the data alone, with no previous knowledge or definitions required. EDA
resembles statistical learning in its nature but is free from the range of assumptions made
in traditional probability theory and statistical learning approaches. One of the main EDA
operators is the Global Density, which is defined for unique data samples together with
their respective number of repeats { fi, fa, ..., fn,} in the dataset. The Global Density is
expressed using two other EDA operators: Cumulative Proximity and Local Density. The
Cumulative Proximity 7 of &; (i = 1,2, ...,n) is initially defined by Equation (2.14), where
x; and x; are different instances from the time series and d(x;, ;) denotes the Euclidean

distance between «; and x; (Gu et al., 2018).

n

=1

With the Euclidean component d;;, the Cumulative Proximity can be calculated

recursively as:

" 2 2
w2 (@) = - (i) = (s — [+ X2 = ) (215)
j=1
where puM is the mean of {x, T, ..., x,} and XM is the mean of {||x:||? ||x2]|?, - - ., [|[Za||*};
they can be updated recursively as:
n—1 1
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Using the angular component, the Cumulative Proximity can be rewritten as:

2
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where p?! is the mean of {IIQH’ AR IIZH} and X =1fori=1,2,...,n, and

similarly:
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The Local Density D of x; (i = 1,2,...,n; n, > 1) (Equation (2.20)), is defined
as the inverse of the normalized cumulative proximity and directly indicates the main

pattern of the observed data.
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For the case of Euclidean distance, the Local Density can be reduced to the following

expression:
M 1
Dy () = ———— 0 (2.21)
1+ Jzimmll
XA =[]
And for the angular component, the Local Density has a similar form:
A 1
DNx) = ———5 (2.22)
B 27
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Since both magnitude and angular components are equally important, the Local
Density of @; (i =1,2,...,n; n, > 1) is defined as the sum of the metric/Euclidean-based
Local Density (DM (zx;)) and the angular-based Local Density (D2 (x;)):
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(2.23)

After that, the Global Density of a particular unique data sample, u; (i =
1,2,...,ny; n, > 1) can be expressed as the product of its Local Density and its number

of repeats considered as a weighting factor, as denoted in Equation (2.24):

D (w;) = f;Dn(u;) (2.24)

These characteristics also make SODA suitable for streaming data, being capable of
continuously processing data streams based on the offline processing of an initial dataset.
According to Gu et al. (2018), it has to be stressed that the concept of “non-parametric”
means SODA algorithms is free from user or problem specific parameters and presumed
models imposed for the data generation, but this does not mean that SODA algorithms

do not have hyperparameters to achieve data processing.

The performance of SODA partitioning algorithm was assessed by Gu et al. (2018) in
a number of benchmark clustering problems and then compared to "state-of-art"clustering
algorithms such as the DBScan, Density Peak and Random Swap clustering algorithms.
They showed that SODA is able to perform clustering with very high computation efficiency
and produces high quality clustering results in various benchmark problems. SODA results

are generated based entirely on the ensemble properties of the input data.
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2.4.2  Autonomous Data Partitioning Algorithm - ADP

The second method used in this work as a tool for finding the optimal number of
partitions for the time series is the Autonomous Data Partitioning algorithm - ADP (Gu;
Angelov; Principe, 2018), which is a fully autonomous local-modes-based data partitioning
algorithm. Local modes are akin of the peaks of the local data density. The method
is free from the user and problem-specific parameters and prior assumptions. It also
utilizes parameter-free operators to disclose the underlying data distribution and ensemble
properties of the empirically observed data using the natural distance metric. According to
these operators, the local modes representing the local maxima of the data density can be
automatically determined. The proposed approach uses these local modes to partition the
data space in shape-free data clouds (Angelov; Yager, 2012) (a kind of Voronoi tessellation).
As seen, data clouds can be understood as a particular type of cluster but with several
distinctive differences. They are non-parametric, and the type of distance metric they use

has no bearing on their shape.

Data clouds directly represent the properties of the local set of observed input
data samples. The strong performance of the ADP algorithm comes from a fundamentally
different data processing approach based on rank operators. Rank operators are usually
avoided in clustering because of their non-linearity, and so most clustering algorithms use
the linear mean operator (Gu; Angelov; Principe, 2018). The ADP algorithm can identify
prototypes from the data samples based on their ranks in terms of the data densities and
mutual distances instead of the commonly used means and variances. These prototypes

are then used to aggregate data samples around them, forming Voronoi tessellations.

Numerical experiments performed by Gu, Angelov and Principe (2018) based
on benchmark clustering problems were used to evaluate the performance of the ADP
clustering algorithm, and the results were compared to well-known clustering algorithms
such as the Self-organizing map (Kohonen, 1998), Non-parametric mixture model-based
clustering (Blei; Jordan, 2006) and DBSCAN (Ester et al., 1996). They showed that
ADP could achieve excellent clustering performance very fast without prior knowledge
about the dataset. Moreover, in Angelov and Gu (2019) the authors further compared
ADP in four different datasets using advanced classification approaches: i) Support vector
machine (SVM) classifier with Gaussian kernel; ii) k-nearest neighbor (KNN) classifier
with k& = 10; ii) Neural network (NN) with three hidden layers of size 20; iv) Decision tree
classifier. The results indicated that the ADP algorithm is able to provide highly accurate
classification metrics with much less supervision compared with other approaches. This is
of paramount importance to real applications since the labels of training data are often
very expensive to obtain. ADP has been used by researchers in a number of recent papers,
as in Souza, Ponce and Lughofer (2020), Gu and Angelov (2020), Huang et al. (2022),
Souza and Lughofer (2022) and Svetlakov and Hodashinsky (2021).
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Like SODA, the ADP algorithm is based on the Empirical Data Analytics (EDA)
method (Angelov, 2014; Angelov; Gu; Kangin, 2017). EDA measures play an instrumental
role in the ADP approach for extracting the ensemble properties from the observed data
and frees the ADP algorithm from the requirement of making prior assumptions on the
data generation model parameters. Most importantly, they ensure the objectiveness of the
partitioning results. The main EDA operators for ADP are defined by Gu, Angelov and
Principe (2018) as the Local Density ALD and Global Density AD®.

Local Density is a measure within the EDA framework identifying the main local
mode of the data distribution and is derived empirically from all the observed data samples
in a parameter-free way. The Local Density, ALD of the data sample x;, is expressed as
follows (k=1,2,...,K;Lg > 1):

Z]K:1 leil dQ(mja ml)

ALD =
K(mk) QKZ{il d2(wk,wl)

(2.25)

where d(xy, x;) is the distance between data samples @y and @;; the coefficient 2 is
used in the denominator for normalization (because each distance is counted twice in the

numerator).

For the case of Euclidean distance, the calculation of S5 | d?(xy, ;) = S5, ||lxx —

x;||* and ZJKZI YK Bz, = ZJK:1 S |l — ||? can be simplified by using the mean

of {x}k, pmx and the average scalar product, Xy, as:
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i and Xk can be updated recursively as:

k—1 1
M = — uk,l—l—%wk; w=x; k=12,... K (2.28)
k-1 1 ,
Xk:TXk,l—i—%HzckH; Xy =zl kE=1,2,... K (2.29)

The recursive calculation of pux and Xx allows for “one pass” calculation, thus
ensuring computational efficiency because only the key aggregated /summarized information
has to be kept in memory. It is possible then to re-formulate the Local Density - ALD in

a recursive form:

1
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The global density, AD estimated at the unique data sample u; is a weighted
sum of its local density by the corresponding occurrence, fi (k=1,2,...,Lg; Lx > 1),

expressed as follows:

ADG (uy) = —2*— Diyc(uy)

Tk
D
232(1 f J

= 3
1 llug—pkl
T Xkl

(2.31)
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3 The SODA-T2FTS Approach

As shown in Chapter 2, conventional FT'S models typically rely on static or heuristic
partitioning strategies, which may not align well with the underlying structure of the data
and often require user intervention. These limitations may introduce epistemic uncertainty
and hinder generalization across datasets. To address this, in this chapter SODA-T2FTS
is introduced, a data-driven interval type-2 FTS model that leverages the Self-Organized
Direction Aware (SODA) algorithm to automatically partition the UoD. This method
seeks to reduce subjectivity in the model design, improve the representation of uncertainty,
and enhance forecasting accuracy when compared to state-of-the-art partitioning-based

FTS approaches.
SODA-T2FTS receives as input the time series data and then all the steps necessary

for training and testing the model are performed in order to obtain error metrics and
forecasting results. The summarized process is shown in Figure 8. For illustration purposes
of the following procedures, this chapter will be analysed using the Taiwan Stock Exchange
Capitalization Weighted Stock Index - TAIEX time series, which is composed of 5200

samples and will be later discussed along with other financial time series.
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Figure 8 — SODA-T2FTS training and forecasting procedure.

3.1 Training Procedure

y(t+1)

The training procedure aims to learn the temporal patterns of the time series

training data thus building the model that will be used in the forecasting phase. The steps

for the training procedure are listed in the following subsections.
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3.1.1 Definition of the UoD

Assuming that the time series is represented by Y(t), the UoD is defined as
UoD = [Liound, Usound), as demonstrated in Section 2.2. The lower bound is calculated as
Liouna = 0.9 min(Y (t)) if min(Y (t)) is larger than zero and Lppyna = 1.1 min(Y (¢)) if it
is not. The upper bound is calculated as Uppyng = 1.1 maz(Y (t)) if max(Y (t)) is larger
than zero and Uppyng = 0.9 max (Y (t)) if it is not.

3.1.2  SODA Algorithm for Data Partitioning

The main steps of the SODA algorithm include: firstly, form a number of Direction-
Aware (DA) planes from the observed data samples using both, the magnitude-based and
angular-based densities; secondly, identify focal points; finally, use the focal points to
partition the data space into data clouds and then find the optimal number of partitions
for the input data. The detailed procedure of the proposed SODA partitioning algorithm
is as follows (Gu et al., 2018):

o Stage 1: Preparation. The process begins with the calculation of the square
Euclidean components, d,;, and square angular components, d4, between every pair

of data samples, {x1, x2,...,x,} using Equations (2.11) and (2.12):
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Using both dj; and d4 the data samples can be visualized in 2D planes, called DA
planes. The z-azis of the DA plane represents the magnitude component and the
y-azis the angular component. Figure 9 shows an illustrative example where the
data sample x; is selected as the origin and the other data samples x5, x3 and x4

are projected based on their magnitude and angular components.

Then, it is possible to obtain the global density DS (u;)(i = 1,2, ..., n,) of the unique
data samples {uy, us, ..., u,, } using Equation (2.24). After the global densities of
all the unique data samples are calculated, they are ranked in a descending order

and renamed as {@y, 4o, ..., Uy, }-

o Stage 2: DA Plane Projection. The DA projection operation begins with the 4,
which is the unique data sample that has the highest global density. It is initially
set to be the first reference, py < 4, which is also the origin point of the first DA
plane, denoted by P;. Figure 10 illustrates an example of independent DA planes
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Figure 9 — Illustrative example of a DA plane (Adapted from Gu et al. (2018)).

0.0

dividing the whole data space, where the black dots stand for each data sample and

the coloured squares represent the DA planes.

Some data samples are located in several DA planes at the same time, and their
affiliations are decided by the distances between them and the origin points of the
nearby DA planes. In this stage there is a hyperparameter called gridsize which is
set to decide the granularity of the clustering results and relates to the Chebyshev
inequality (Angelov; Gu; Principe, 2018). After all the unique data samples are

projected onto the DA planes, the next stage can start.

Stage 3: Identifying the Focal Points. In this stage, find the neighbouring DA
planes denoted by {P}"(l = 1,2, ..., L,l # e) for each DA plane P, by evaluating the
condition in Equation (3.3), which takes into account the magnitude and angular
components and the gridsize value as part of the distance threshold. By examination
of all existing DA planes, it is possible to find all the modes/peaks of the data
density.

Condition 1 :

IF(dM(“e’“l) < 2) AND (df“(‘“’“’“) < 2) (3.3)
dm Y Y

THEN ({P}! « {P}! UP)

Where ~ corresponds to the gridsize and P, (I = 1,2, ..., L) represents all the possible
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Figure 10 — Example of DA planes (Adapted from Gu et al. (2018)).

neighbouring DA planes, with L being the total number of existing DA planes in
the data space.

o Stage 4: Forming Data Clouds. After all the DA planes standing for the
modes/peaks of the data density are identified, consider their origin points, denoted
by u°, as the focal points and use them to form data clouds as a Voronoi tessellation
(Okabe et al., 1993). It is worth to mention that the concept of data clouds is quite
similar to the concept of clusters, but differs in the following aspects: i) data clouds
are non-parametric; ii) data clouds do not have a specific shape; iii) data clouds

represent the real data distribution.

SODA-T2FTS uses the number of data clouds that SODA generated from the time
series to define the number of partitions for the UoD. The final number of data clouds is
directly related to the Gridsize hyperparameter « as presented in Equation (3.3). Thus it

should be optimally chosen for each dataset to achieve better forecasting results.

Let C' be the number of data clouds formed by SODA from the time series. The
number of partitions is used to define the linguistic variable A. For a C' number of
partitions, create C' overlapping fuzzy sets A;, for i = 1,...,C. Each fuzzy set A4, is a
linguistic term of the linguistic variable A. Figure 11 shows examples of UoD partitioning

using SODA outputs generated from different Gridsizes. Considering that SODA output for
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a certain input data is the number seventeen, then the UoD is partitioned into seventeen
equal-length intervals and seventeen overlapping interval type-2 triangular fuzzy sets are

created from these intervals: A;, Ao, As, ..., Ay

@ 4 partitions
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Figure 11 — Examples of UoD partitioning using SODA output.

3.1.3 Fuzzification and Identification of Fuzzy Logical Relationship Groups

Each sample from the Y'(¢) time series is inserted into the model and the membership
values are calculated for all the fuzzy sets in the fuzzification procedure. Thus, for each
input, an interval-valued degree of membership is obtained: [p;(z), fiz(z)], crisp values
that correspond to the degrees of membership for both lower and upper membership
functions for each fuzzy set, respectively. In Table 1 are listed some TAIEX samples and

their respective fuzzy sets.

As a time series is a sequence of samples, the relationship between one sample and
the next can be analysed and identified as a fuzzy rule, which also represents the temporal
patterns between sequential samples. For example: if a random sample y(t) from Y (¢) is
fuzzified as A; and y(t + 1) is fuzzified as flj, then a fuzzy rule can be created: A; — flj,
where A; is called the antecedent and flj is the called the consequent. This fuzzy rule can
also be read as IF y(t) is A; THEN y(t + 1) is A;. The rule extraction can be done for
every sample in the fuzzified time series. Referring to the samples from 708 to 711 in
Table 1 for example, Table 2 lists the fuzzified TAIEX instances and the respective fuzzy

rules generated from them.
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Table 1 — TAIEX samples and correspondent fuzzy sets.
N Date TAIEX Fuzzy Sets

703 06/16/1997 8621.02  Ag,Ag
704 06/17/1997 871585  Ag,Ag
705 06/18/1997 8705.69  Ag,Ag
706 06/19/1997 8730.22  Ag,Ag
707 06/20/1997 8820.11  Ag, A,
708 06/21/1997 891320  Ag,Ag
709 06/23/1997 8894.43  Ag,Ag
710 06/24/1997 8955.63 Ay, Ay
711 06/25/1997 8950.07 Ay, Ay
712 06/26/1997 8943.88 Ay, Ay
713 06/27/1997 894224 Ay, Ay
714 06/28/1997 9043.55 Ay, Ay
715 06/30/1997 907559 Ay, Ay
716 07/02/1997 905622 Ay, Ay
717 07/03/1997 9029.56 Ay, Ay
718 07/04/1997 9168.73 Ay, Ay

Table 2 — Fuzzification and rules generated for the TAIEX time series.
Date TAIEX Fuzzy sets Rules
06/21/1997 | 8913.2  As, Ay -

Ag — Ag, Ag — Ag

Ag — Ag, Ay — Ay

AS — Ag,Ag — AlO
1219 — Ag,zzlg — AlO
Ag — Ag,Ag — AIO
Ao — Ag, Aro — Ao

06/23/1997 | 8894.43  Ag, Ay

06/24/1997 | 8955.63 Ay, Ayg

06/25/1997 | 8950.07 Ay, Ajg

It is important to mention that as the fuzzy sets overlap, each sample from each
day may activate several fuzzy sets at the same time. Repeated rules are considered unique

for simplicity and to reduce computational costs.

The next step is to group all the rules with the same antecedent, and create a
Fuzzy Logic Relationship Group (FLRG) for every fuzzy set. FLRGs can be interpreted
as the possible future states for the consequent when a given antecedent is identified.
For example, The FLRG 4; — flj,flk,zzlg implies that IF y(t) is A; THEN y(t + 1) is
Ay OR A, OR A,
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3.2 Forecasting Procedure

Once the linguistic variable A is defined and the FTS model M is learned, the
test samples can be presented to produce a forecast. The forecasting procedure takes as
input a sample from the time series test dataset y(¢) and the output is generated using
the model learned in the training procedure. The complete forecasting procedure happens

to each sample of the time series and is presented below:

o Step 1: Fuzzification

For a given sample from the time series y(t) € Y, calculate the degrees of membership

for both lower and upper membership functions for each fuzzy set.

o Step 2: Rule Matching

The rule matching procedure consists in finding the rules that are activated by each
of the fuzzified samples and their respective FLRGs and is strongly related to the
learned model. The aim in this procedure is to produce f(t+ 1) to represent the
future crisp value y(t 4+ 1). In this procedure, there is a combination of rules and a
mapping from input to output type-2 fuzzy sets. Antecedent processing is executed
using the min operator, which is applied to select the minimum values of the UMFs
and LMFs of all antecedents for each rule. The result of antecedent processing is
applied to consequent LMF and UMF functions. As explained in Section 2.2, for
the case of triangular membership functions and when the min operator is used, the
result is a trapezoidal consequent FOU. Consequent processing is performed using
the max operator and then after aggregation, a single interval type-2 fuzzy set from

the rule output fuzzy sets is generated.

o Step 3: Type-reduction

To complete the forecasting process, a final crisp output value must be obtained for
each test value. This is accomplished by the output processor. The aggregated type-2
fuzzy set is first reduced to a type-1 fuzzy set. There exist several type-reduction
methods in literature. In this work, the Enhanced Iterative Algorithm with Stop
Condition - EIASC (Wu; Nie, 2011) was used to perform type-reduction because
of its reduced computational costs in comparison to other methods such as the
Karnik-Mendel - KM (Karnik; Mendel, 2001) and the Iterative Algorithm with Stop
Condition - TASC (Duran; Bernal;, Melgarejo, 2008).

o Step 4: Defuzzification

The defuzzification procedure is the last part of the forecasting process, where the
values obtained by the type reduction algorithm are defuzzified and crisp values are

generated. Defuzzification is performed using the Centroid method, which returns
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the center of gravity of the type-1 fuzzy set along the z-axis, and is calculated using
Equations (2.5), (2.6) and (2.7), explained in Section 2.2.

3.3 Sliding window method

In this chapter, a sliding window method was applied as a comparison procedure,
working in terms of the obtained forecasting error metrics. In this method, a dataset Y
of size T is sliced into overlapping sequences of W (called data windows) of fixed size
and with each shifted from the previous one by a constant D. Each data window has its
training and testing divisions and then the model is trained and tested, as exemplified in
Figure 12. When defining the best values for data window size W and window offset D,
it is advisable that for a dataset Y of size T', the data window, and the data shift result
in at least 10 experiments, well distributed over the total dataset. Most importantly, it
is crucial that each window contains enough information about the time series temporal
patterns and covers different behaviors such as falling and rising patterns, so that the
training procedure has enough information to build the knowledge base. It was defined
a window size of W = 1000 instances that was shifted by D = 200 instances along the
time series data. The data for each window was divided into two sets; the training set
which contained 80% of the data and the test set, with the remaining 20% of the data.
Considering a time series composed of 5200 instances, the sliding window method would
create 22 experiments (windows) and for each window, training and testing are performed

out of sample and then error metrics are calculated.

Y(t)

t

( 1° Window )
Training | Testing

( 2° Window )
Training | Testing |

Figure 12 — Sliding window method example.

SODA-T2FTS overall training and forecasting processes are summarized in Algo-
rithm 1, which take as input the time series data and then error metrics are calculated by

following the sliding window procedure.
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Algorithm 1: SODA-T2FTS training and forecasting method
1 while Not at the end of time series data Y do

2 Remove chunk from time series data according to window size W
3 Divide time series data window into training and forecasting sets;
4 for The training data Yy, do
5 Calculate UoD;
6 Input Yy, into SODA and get as result the number C of data clouds
identified;
7 Use C' as the number of partitions for the UoD to be split;
8 To each partition assign an interval type-2 fuzzy set A; (i = 1,2,...C);
Fuzzify each instance y(t) into f(t);
10 Identify temporal patterns (FLRs) between consequent instances from Yy, ;
11 Group FLRs into FLRGs and build the model M;
12 end
13 for The forecasting data Y ¢; do
14 Fuzzify each instance y(t) into f(t);
15 for FLRG € M do
16 if f(t) matches the LHS then
17 ‘ activated__rules < FLRG;
18 end
19 end
20 Use activated_rules in the fuzzy inference procedure;
21 Compute f(t+ 1);
22 Apply type-reduction and deffuzification to obtain y(t + 1);
23 Calculate and store RMSE metrics;
24 end
25 Slide the window along time series data by a number of D instances;
26 end

In the next section the proposed SODA-T2FTS model is evaluated by forecasting
financial time series and the results obtained are compared to "state-of-art"F'TS forecasting
methods. The models are compared in terms of error metrics, execution time, model

complexity and noise sensitivity.

3.4  Experimental Results

3.4.1 Case Studies and Experimental Settings

The National Association of Securities Dealers Automated Quotations - NASDAQ),
the Standard & Poor’s 500 - S&P500 and the Taiwan Stock Exchange Capitalization
Weighted Stock Index - TAIEX, three time series usually used in forecasting literature
(Tak, 2020; Zhang; Wang; Li, 2016; Tsai; Cheng; Tsai, 2019; Zhao; Gao; Guan, 2020;
Lahmiri, 2020) were chosen to assess the proposed model. Financial datasets are important
for understanding market behavior, and accurate forecasts can help businesses and indi-
viduals anticipate market movements, allocate resources wisely, and respond proactively

to economic shifts. The three datasets are shown in Figure 13 and Table 3 presents a
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preliminary statistical analysis.

The NASDAQ time series is composed of 4000 instances, sampled from 2001 to
2016 and is non-stationary with an ADF' test statistic (Dickey; Fuller, 1979) of 0.47. After
differentiation, the ADF test statistic was -17.35. The S&P500 is a non-stationary time
series with an ADF test of -1.74 and is composed of 4500 instances, sampled from 1995 to
2013. After differentiation, the ADF test statistic was -11.81. The TAIEX dataset is a non
stationary time series with an ADF test of -2.70, composed of 5200 instances, sampled from
1995 to 2015. After differentiation, the ADF test statistic was -20.93. All three datasets
were trained and tested with original and first order differentiated data, in order to make
the time series stationary (or at least closer to stationary). The models trained with
original data obtained higher error metrics than the ones trained with differentiated data,
therefore they have not been mentioned to avoid redundancy and for better visualization

and understanding.

Table 3 — Descriptive statistics for TAIEX, NASDAQ), and S&P500 datasets
Parameter TAIEX NASDAQ SP500

Data points 5200 4000 4500

Mean 7071.34 2685.56 1158.51
Std. deviation 1475.13 1046.29 241.00
Minimum 3473.81 1123.98 576.5

1st quartile 5920.04 1989.8 1000.68
Median 7200.24 2344.14 1181.97
3rd quartile 8233.76 3036.00 1338.19
Maximum 10227.91 5226.75 1706.98

Evaluation of machine learning models usually requires a training set and a test
set. In general, 80% of the data is randomly chosen to compose the training set and the
remaining 20% are used for testing. But when evaluating a time series forecasting model,
one must take into account that there is a relationship between the observations, which
means that they are time-dependent so cannot be randomly divided into groups. Thus,
data must be split respecting the temporal order in which values were observed to provide

statistically robust model evaluation and best simulate real-life scenarios.

All experiments have been carried out in Python 3.7 in an Intel i5-8265U 1.6 GHz
with 8 GB DDR4. All the data and source codes are available on: https://github.com/arthur
caio92/SODA-T2FTS.

3.4.2 SODA partitioning

The UoD is partitioned using the SODA algorithm. SODA output defines the
optimal number of fuzzy sets to be created for partitioning. As mentioned earlier, there is
a hyperparameter named gridsize that can be changed in SODA to increase or decrease

the granularity of the clustering results. Table 4 shows how increasing the granularity
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Figure 13 — Datasets for SODA-T2FTS.

of the SODA algorithm affects the partitioning scheme of the TAIEX time series sliding

windows.

It can be observed that considering the same data, the higher the gridsize, more
focal points are identified therefore more partitions are generated for the same input
data. Increasing the number of partitions of the UoD translates into a higher number
of membership functions in the model, which may affect its accuracy and precision,
but also increases the computational costs associated to the forecasting process. The
'Average'values in Table 4 correspond to the average number of partitions (rounded)
considering all windows, and will be the values used in further analysis. In order to assess
model performance, the comparison metric chosen is the Root Mean Squared Error -
RMSE value of the current model, which is the standard accuracy metric used to evaluate

the performance of time series forecasting methods and is described in Equation (3.4).

S (actual value — forecast value)?

RMSE = J (3.4)

number of observations

The results SODA-T2FTS obtained for the TAIEX time series are presented in
Table 5. The RMSE values obtained for each window in the sliding method vary according
to the gridsize value. The greater the gridsize, the lower the RMSE value considering the

same data samples (each window).
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Table 4 — TAIEX time series UoD partitions according to SODA gridsize.

. Gridsize

Window 1 23 4 5 6 7 8 9 10
1° ([0:1000)) [1 4 8 11 14 18 23 33 42 49

2° ([200:1200]) |1 2 6 9 17 21 28 36 45 54
3° ([400:1400]) |1 5 7 10 18 20 26 38 43 52
4° ([600:1600]) |1 4 8 10 16 21 28 40 49 59
5° ([800:1800]) |1 3 6 12 14 18 34 41 53 62
6° ([1000:2000)) |1 3 7 11 16 25 28 41 49 60
7° ([1200:2200]) |1 2 6 10 15 22 27 31 42 52
0([14002400]) 1 3 5 10 14 17 25 30 37 45
9° ([1600:2600]) |1 3 5 12 14 18 23 32 39 51
10° ([1800:2800]) |1 2 6 8 11 15 18 25 29 39
11° ([2000:3000]) |1 4 8 10 12 18 26 26 32 39
12° ([2200:3200]) |2 2 5 12 16 20 25 33 36 44
13° ([2400:3400]) 1 5 6 10 16 19 23 27 34 41
14° ([2600:3600]) 2 4 7 &8 15 21 30 39 44 57
15° ([2800:3800]) 1 2 4 9 14 18 28 36 43 55
16° ([3000:4000]) |1 2 7 10 16 25 30 40 50 58
17° ([3200:4200) |1 3 5 8 12 19 25 39 47 55
18° ([3400:4400)) |1 3 6 9 14 18 24 33 41 47
19° ([3600:4600]) |1 4 6 8 17 20 28 36 49 54
20° ([3800:4800]) 2 3 6 10 14 19 21 33 38 43
21° ([4000:5000]) |1 3 7 11 13 17 25 32 41 48
22° ([4200:5200]) |1 4 5 11 11 18 20 26 31 36

Average 1 3 6 10 15 19 26 34 42 50

Tables 4 and 5 show that there is a strong relationship between the RMSE fore-
casting values and the number of partitions of the UoD. There is a trade off between
model performance and complexity related to the number of membership functions. Fewer
partitions may lead to poor performance and under-fitting, whereas increasing the number
of partitions increases model’s accuracy until it over-fits. Thus, it is possible to observe
that a higher number of partitions translates into a higher number of membership functions,
making SODA-T2FTS perform better as the RMSE values decrease until a certain point
(over-fitting).

3.4.3 Time series forecasting

The best fit for model parameters was found by the implementation of a gridsearch
algorithm, a method that tests every possible combination and finds the optimal parameters
for the model. Each model was trained and tested using the Gridsize on the [1:10] range for
both original and differentiated data and model order varied on the [1:3] range. The results
of this gridsearch procedure for the TAIEX, NASDAQ, and S&P500 time series are shown
in Figure 14 and Table 6, in which the best performing models are highlighted in bold.
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Table 5 — RMSE values for each window according to SODA gridsize.

Gridsize
1 2 3 4 5 6 7 8 9 10
1° ([0:1000]) 118.67 118.67 110.52 123.38 125.29 115.53 119.01 114.22 111.47 104.61
° ([200:1200]) 127.19 127.19 119.25 106.09 12837 117.33 111.04 101.21 101.92 107.27
3° (]400:1400]) 145.08 132.76 129.94 135.38 146.96 14893 146.25 144.43 135.02 133.42
4° ([600:1600]) 139.18 139.18 129.66 116.41 113.70 115.68 110.62 112.96 113.70 109.56
5° ([800:1800]) 92.00 92.00 92.00 90.60 82.27 74.07 75.84 69.89 65.85 68.38
]
]
]
]

Window

2

o

6° ([1000:2000]) 98.69 98.69 97.68 7091 6555 61.99 58.03 63.78 56.50 57.22
7° ([1200:2200]) | 134.14 134.14 134.14 11847 94.56 71.30 36.13 70.39 64.27 56.81
8° ([1400:2400)) 68.60 68.60 68.60 53.17 50.06 52,52 51.70 56.50 58.48  66.50
9° ([1600:2600]) | 124.57 124.57 124.57 83.91 79.39 69.31 61.58 57.49 5584 5247
10° ([1800:2800]) | 114.63 114.63 114.63 66.52 79.50 50.70 43.53 47.38 44.84 39.23
11° ([2000:3000]) | 125.91 125.91 84.83 77.14 64.74 6444 65.09 65.09 5847  60.66
12° ([2200:3200]) | 136.42 136.42 136.42 91.33 76.97 80.84 81.46 6147 66.90 67.19
13° ([2400:3400]) | 163.12 148.21 153.65 128.68 121.65 122.70 117.21 115.55 120.21 117.65
14° ([2600:3600]) | 118.98 118.98 112.02 120.42 134.28 133.73 125.03 122.88 118.86 117.12
15° ([2800:3800]) | 96.27  96.27 96.27 93.79 127.42 123.02 112.08 117.86 112.10 100.19
16° ([3000:4000]) | 86.86 86.86 86.86  99.77 107.78 105.11 109.04 96.26 92.55  93.93
17° ([3200:4200]) | 90.46 90.46 90.46 98.75 120.51 100.12 101.16 102.46 97.64 94.22
18° ([3400:4400]) | 114.34 114.34 11495 103.48 99.56 91.73 86.95 94.05 94.24 84.54
19° ([3600:4600]) | 95.71  95.71 87.71 77.05 53.40 5844 57.68 51.33 57.69 49.65
20° ([3800:4800]) | 107.85 107.85 94.95 84.31 64.74 57.17 7587 55.23 57.05 53.65
21° ([4000:5000]) | 108.23 108.23 103.85 63.36 77.69 64.52 65.65 55.49 48.01 48.22

22° ([4200: 5200]) | 79.56  79.56  75.69 69.63 69.63 65.08 67.57 68.15 67.92 67.26

This way, it was possible to analyze the performance of different parameter combinations
and find the best one according to the calculated RMSE value. For the TAIEX, using
Gridsize = 10 (which created 50 partitions) and the number of lags = 1 generated the
lowest RMSE value. For NASDAQ), the combination was Gridsize = 8 (which created 27
partitions) and number of lags = 1 and for S&P500, it was Gridsize = 9 (which created
28 partitions) and number of lags = 1. In Table 6, the columns "Partitions (avg.)"and
'"RMSE (avg.)"corresponds to the average of the number of partitions and RMSE values
obtained for all windows in the sliding window method, respectively, and "Time"indicates

the execution time of all windows in seconds.

For the three datasets, first order models outperformed second and third order
ones. This can be understood considering the random walk theory and analysing the
autocorrelation function (ACF) of the TAIEX time series, shown in Figure 15, which
finds the correlation coefficient between a time series and its lagged version at each lag,
describing how the present value of a time series is related with its past values (Box
et al., 2015). The = — axis contains the values for the lag, the y — azis contains the
values for the Pearson’s correlation coefficient at each lag and the blue shaded region
is a confidence interval. If the height of the bars is outside this region, it means the
correlation is statistically significant. The random walk theory suggests that stock prices
in financial time series are similar to random walk stochastic processes, acting as a sum of

small normally-distributed random steps. Despite its long-term memory, for short term
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Table 6 — Number of partitions, RMSE values and execution times obtained in the
Gridsearch procedure.

TAIEX NASDAQ S&P500
Gridsize | Order Partitions RB'ISE Time(s) Partitions RB'ISE Time(s) Partitions | RMSE Time(s)
(avg) | (avg) (avg) | (avg) (avg) | (avg)

1 113.02 | 30.38 27.69 22.61 10.67 26.82

1 2 1 151.38 | 31.84 3 41.87 25.39 4 16.86 32.02
3 182.33 | 33.40 51.81 30.62 21.09 42.88

1 111.78 | 33.30 27.01 25.60 9.44 30.88

2 2 3 150.19 | 38.33 6 41.12 31.55 8 16.46 39.20
3 181.57 | 48.64 51.67 43.93 20.39 56.44

1 107.21 38.58 26.68 28.13 8.47 32.74

3 2 6 140.00 | 47.43 8 39.96 35.85 9 16.02 41.11
3 171.38 | 66.27 50.81 50.89 20.29 60.01

1 94.21 44.40 26.16 31.14 8.79 35.10

4 2 10 134.04 | 55.08 11 39.99 38.57 12 16.45 43.89
3 164.99 78.16 50.20 54.35 20.31 64.23

1 94.73 49.91 25.79 33.15 8.49 38.25

5 2 15 132.93 | 60.67 15 40.18 40.06 15 16.33 47.00
3 160.59 | 87.85 50.18 58.24 19.88 69.44

1 88.38 54.57 25.09 36.25 8.70 39.87

6 2 19 126.10 | 66.06 19 38.60 43.41 18 16.10 49.07
3 155.24 | 97.26 48.03 62.26 19.74 74.32

1 85.39 61.22 24.51 39.05 8.73 42.63

7 2 26 123.06 73.44 23 38.29 48.78 21 15.83 52.36
3 151.38 | 107.96 47.43 69.02 19.25 79.65

1 83.82 69.24 24.20 43.40 8.21 44.88

8 2 34 121.93 | 82.08 27 37.94 50.47 24 15.71 55.37
3 149.00 | 116.26 47.57 72.80 18.96 84.54

1 81.80 76.99 24.91 46.14 8.13 48.01

9 2 42 119.95 | 88.91 32 38.21 54.47 28 15.62 58.81
3 147.82 | 122.93 46.95 76.07 18.85 88.30

1 79.53 | 85.40 24.39 49.23 8.14 51.79

10 2 50 119.05 | 96.79 37 38.13 57.76 32 15.39 62.51
3 146.01 | 129.74 46.09 77.23 18.39 92.39

forecasting the last lag is enough. The ACF plot also shows that each lag from the time
series has a strong correlation to the previous one, as commonly observed in financial
time series. This indicates that a first order model would perform better in a forecasting
method and also explains why SODA-T2FTS first order models outperformed higher order

models.

SODA-T2FTS results are then compared to other models from literature: Naive
(last value repeated), ARIMA (Chatfield, 2001), Hwang (Hwang; Chen; Lee, 1998),
traditional FTS - FTS (Song; Chissom, 1993), Conventional FTS - CFTS (Chen et al.,
1996), Weighted FTS - WFTS (Yu, 2005), Improved Weighted FTS - IWFTS (Ismail;
Efendi, 2011), Exponentially Weighted FTS - EWFTS (Sadaei et al., 2014), High Order
FTS - HOFTS (Severiano et al., 2017), Trend Weighted FTS - TWFTS (Cheng; Chen;
Chiang, 2006) and the recently introduced Probabilistic Weighted FTS - PWFTS (Silva
et al., 2019). Considering all models, the comparison was performed on the same design

approach, using as gridsearch parameters model order on the [1:3] range and number of
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Figure 14 — RMSE values for the TAIEX (a), NASDAQ (b) and S&P500 (c) time series.
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Figure 15 — ACF plot for the TAIEX time series.

partitions on the [1:50] range. All models were trained and tested following the same

approach for the gridsearch, using the sliding window method and ranked according to

their RMSE mean values, for all methods in the comparison in Table 7. Aiming a better

visualization and understanding, instead of showing all the gridsearch results as done in

Table 6, only the best performing results are reported in Table 7.
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Table 7 shows that SODA-T2FTS is computationally heavier than the other models
as it presents longer executions times but despite that, partitioning the UoD using SODA
improved accuracy of the model which made SODA-T2FTS be ranked as number 1 for all
test datasets in Table 7. The Friedman Aligned Ranks test - FRA (Silva et al., 2020a) was
used to evaluate the RMSE values obtained by each model for each dataset. The FRA test
is a nonparametric statistical test in which the default assumption, or null hypothesis Hy,
is that the multiple paired samples have the same distribution, meaning that the models
are indistinguishable. A rejection of the null hypothesis indicates that one or more of the

paired samples has a different distribution, meaning that the models can be differentiated
from one another (Mahmoudi; Mahmoudi; Pak, 2019).

To carry out pairwise comparisons, a post-hoc procedure is applied. The Finner
method was used with SODA-T2FTS as the control method. The null hypothesis Hy
implies that the control and test models are equal and the hypothesis H; denotes that
control and test models are statistically different (Ng; Lee; Lee, 2020). The significance
level « is a measure of the strength of the evidence that must be present in the sample
for the null hypothesis to be rejected and was chosen to be a = 0.05. Results from the
Friedman Aligned Ranks test rejected Hg with a statistic of 25.427 and p-value of 0.004592,
and results from the Finner post-hoc test in Table 8 show that SODA-T2FTS is statiscally
different from Naive, Hwang and CF'TS methods.

3.4.4 Model Complexity

One of the challenges in machine learning is building forecasting algorithms with
high accuracy while keeping them "simple'enough to make them interpretable. Although
complex models usually achieve better accuracy, interpreting them is more difficult. When
working on any forecasting problem it is important to understand the trade-off between
model interpretability and model performance. Table 9 shows the average number of rules
generated by each model in the training procedure and the corresponding average RMSE
value obtained, considering the same number of partitions for the TAIEX dataset. Observe
that SODA-T2FTS presents a slightly higher number of rules than the other methods,
showing an even closer number to PWFTS number of rules. As the number of partitions
increases, SODA-T2FTS’s RMSE values decrease and the model outperforms the other
methods. This shows an important advantage of SODA-T2FTS, which is obtaining better
performance requiring almost the same number of rules as type-1 FTS methods, indicating
that SODA-T2FTS can obtain lower error metrics without the need of increasing model

complexity.
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Table 7 — Calculated RMSE values.

Dataset Model Order Part. AV(P; MSETD Rank Time(s)
ARIMA 1,00 - 8732 2815 5 1.11
CFTS 1 31 9508 31.11 10  9.17
EWFTS 1 7 8870 3080 8 297
FTS 1 10 88.68 2838 7  4.42
o0 HOFTS 3 5 91.06 3055 9  8.20
2 Hwang 3 5 10554 4275 11 0.87
= IWFTS 1 4 8742 2804 6 173
Naive 1 - 12724 4068 12 0.04
PWEFTS 3 3 8372 2763 2 32.65
TWFTS 1 10 8514 2860 3  3.95
SODA-T2FTS | 1 50° 79.53 26.80 1  85.40
WEFTS 1 4 8721 2771 4 244
ARIMA 1,00 - 2853 11.07 6  0.59
CFTS 1 10 31.89 11.02 10  2.73
EWFTS 1 10 2901 11.02 7 159
o FTS 1 15 2950 9.67 8 481
= HOFTS 2 10 3026 1094 9 568
7 Hwang 2 10 3611 1479 11 081
B IWFTS 1 5 2831 1068 5 1.45
Naive 1 - 4124 1515 12 0.03
PWFTS 3 3 2738 1043 2 19.68
TWFTS 1 8 2764 1065 3 2.00
SODA-T2FTS | 1 27 2420 835 1  43.40
WFTS 1 4 2822 1080 4 1.60
ARIMA 1,00 - 1179 400 10 057
CFTS 1 7 1165 355 9  2.33
EWFTS 1 2 1032 368 7  1.09
FTS 1 18 954 303 2 5.02
= HOFTS 2 6 11.18 303 8  3.37
2 Hwang 3 29 1211 426 11 3.77
= IWFTS 1 2 1026 365 6  0.65
Naive 1 1531 520 12 0.02
PWFTS 1 3 9.60  3.21 3 3.88
TWFTS 1 9  10.14 356 4 1.94
SODA-T2FTS | 1 28 8.13 356 1  48.01
WFTS 1 2 1019 365 5 1.10

& For Gridsize = 10.
b For Gridsize = 8.
¢ For QGridsize = 9.

3.4.5 Footprint of uncertainty in results

To investigate the actual importance of the footprint of uncertainty (FOU) size

when constructing the interval type-2 fuzzy sets in the model, nine FOU levels were
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Table 8 — RMSE post-hoc tests using SODA-T2FTS as control method.

Comparison Statistic  p-value  Hypothesis
SODA-T2FTS vs Naive 3.40993 0.00712 Rejected Hy
SODA-T2FTS vs Hwang | 3.17744 0.00814 Rejected Hy
SODA-T2FTS vs CFTS | 2.75119 0.02160 Rejected Hy
SODA-T2FTS vs HOFTS | 1.97621 0.12685 Accepted Hy

SODA-T2FTS vs FTS 1.93746  0.12685 Accepted Hg
SODA-T2FTS vs EWFTS | 1.27872 0.33726 Accepted Hy
SODA-T2FTS vs IWFTS | 1.16248 0.35707 Accepted Hy
SODA-T2FTS vs ARIMA | 1.12373  0.35707 Accepted H
SODA-T2FTS vs WETS | 1.08498 0.35707 Accepted Hy
SODA-T2FTS vs TWFTS | 0.73624 0.49391 Accepted Hy
SODA-T2FTS vs PWFTS | 0.65874 0.51006 Accepted Hy

Table 9 — Average number of rules and RMSE obtained by each model.

Partitions TWEFTS WFTS IWFTS EWFTS CFTS PWFTS SODA-T2FTS

Rules RMSE | Rules RMSE | Rules RMSE | Rules RMSE | Rules RMSE | Rules RMSE | Rules RMSE

1 1 410.6 1 410.62 1 410.6 1 410.6 1 410.6 1 410.62 1.14 113.02
3 3 106.6 3 92.41 3 92.54 3 95.43 3 126.1 3 83.94 3.18 111.78
6 6 86.36 6 87.30 6 87.46 6 90 6 102.5 6 85.10 6.18 107.21
10 9.65 85.15 9.65  88.98 9.65 88.78 9.65 91.04 9.65 101.7 10.00 86.97 9.86 94.21
15 13.13  86.13 13.13  89.71 13.13  89.86 13.13  91.38 13.13  99.69 14.70  87.93 14.09  94.73
19 15.83  86.66 15.83  89.93 15.83  89.87 15.83  91.53 15.83  96.17 18.22  88.28 18.32  88.38
26 20.65 88.19 20.65 91.25 20.65 91.04 20.65 91.78 20.65 94.95 2391  88.92 23.77  85.39
34 25.57  89.37 25.57  91.98 25.57  91.65 25.57 92.84 25.57  94.89 29.39  88.95 29.55  83.82
42 30.52  91.38 30.52  93.89 30.52  93.41 30.52  94.11 30.52  95.01 34.83  89.29 | 34.77  81.80
50 3474 92.09 34.74 9442 34.74  93.98 34.74  94.68 3474 94.8 40.26  89.36 | 40.50  79.53

defined: from 0.1 to 0.9. Table 10 shows the standard deviation of RMSE values for all
gridsize tested using different FOU levels for the TAIEX time series. Due to the low
standard deviation values, it can be observed that for this dataset, changing the FOU
size of the membership functions does not play a significant role in the forecasting output.
Type-2 itself already presents great improvement compared to type-1 models, but changing
the FOU parameter within the interval type-2 fuzzy logic did not change the output
significantly.

3.4.6 Noise Response

White gaussian noise was added to the TAIEX time series in order to challenge the
proposed model and analyse how the forecasting models would perform when dealing with
increasing noise rates in the original data. Gaussian noise represents a close approximation
of noise in real world scenarios and consequently is one of the common noise adding proce-
dures in the literature. The variance, or equivalently the standard deviation, completely
characterizes the noise. The standard deviation may be thought of as a measure of the
expected “amplitude” of the noise; its square captures the expected power. Noise was
added to the original time series according to the Signal-to-Noise Ratio (SNR), which can

be defined as the ratio of signal power to noise power, and allows for artificially adding
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Table 10 — RMSE values and their standard deviation for TAIEX time series forecasting
using different FOU levels.

o FOU

Gridsize | —57 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 | 5TP
1 113.02 113.02 113.02 113.02 113.02 113.02 113.02 113.02 113.02 | 0.00
9 111.87 111.83 111.78 111.78 111.87 111.83 111.78 111.83 111.78 | 0.04
3 107.79 107.59 107.21 107.21 107.79 10.59 107.21 107.59 107.21 | 0.25
4 9556 95.01 9421 9421 9556 9501 9421 9501 9421 | 0.58
5 9591 9539 9473 9473 9591 9539 9473 9539 94.73 | 0.50
6 89.16 8875 88.38 88.38 80.16 8875 88.38 88.75 88.38 | 0.33
7 85.74 8554 8539 8539 85.74 8554 8539 8554 8539 | 0.15
8 84.02 8390 83.82 83.82 84.02 8390 83.82 8390 83.82 | 0.08
9 82.07 81.95 81.80 81.80 82.07 81.95 81.80 81.95 81.80 | 0.12
10 7979 79.65  79.53 7953  79.79  79.65 79.53 79.65 79.53 | 0.11

noise to a clean signal in a controlled manner. To generate noise based on a desired SNR,
the power of the original signal is first calculated, and then noise is added with a power
level determined by the target SNR. This ensures that the resulting noisy signal has a
specific ratio of signal power to noise power, often expressed in decibels (dB). A high SNR
corresponds to a clear signal (low noise) and a low SNR corresponds to a noisy signal (high
amounts of noise). Figure 16 shows the original TATEX time series in comparison to itself
after white noise was added (SNR = 20%). Table 11 shows the RMSE values obtained
when SODA-T2FTS, PWFETS and HOFTS were used to forecast the TAIEX time series
with different noise ratios. It can be observed that SODA-T2FTS handles the increasing
noise in data better than PWFTS and HOFTS for SNR values ranging from 80% to 50%.
From 45% to 35%, PWFETS performs better and from 30% to 20%, the highest added
noise rates, SODA-T2FTS obtained the lowest RMSE values.
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Figure 16 — TAIEX original data samples (a) and after noise was added (b).

In conclusion, this chapter discussed a univariate interval type-2 FTS prediction

model, SODA-T2FTS, that combines the capacity of interval type-2 fuzzy sets to effectively
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Table 11 — RMSE values and their standard deviation for TAIEX time series with added
noise.

PWFTS SODA-T2FTS HOFTS
[0 ] 7
SNR (%) Part. Order AVP({}I\/ISETD Gridsize Order AVP({}MS];)TD Part. Order AVP({;MS]STD
80 3 3 84,44 28,80 10 1 79,84 28,03 | 5 3 92.29 31.73
75 3 1 84,55 28,67 10 1 80,17 28,33 | 5 3 92.42 31.20
70 3 3 84,47 28,80 10 1 80,37 26,66 | 5 3 92.43 31.58
65 3 3 84,66 28,87 9 1 79,90 2822 | 5 3 92.49 31.59
60 3 3 84,69 28,66 10 1 79,41 2767 | 5 3 93.11 31.58
55 3 3 85,52 28,63 10 1 80,59 26,96 | 7 3 94.11 31.16
50 3 3 87,97 28,20 10 1 83,47 26,79 | 5 3 95.92 31.93
45 3 3 93,96 27,06 10 1 99,15 27,78 | 5 3 99.94  30.96
40 3 3 111,95 23,65 4 1 119,24 20,05 | 5 3 116.22  23.99
35 3 1 155,19 12,39 1 1 166,27 18,77 | 7 3 164.97 21.10
30 3 1 254,12 21,43 1 1 251,73 1794 | 7 3 268.60 25.96
25 3 3 428,15 29,50 2 1 417,81 16,58 | 33 3 466.47 21.03
20 3 1 772.32 41.08 2 1 749.35 55.26 | 33 3 800.81 41.81

model variations in uncertainty, to a data-driven partitioning algorithm called SODA.
SODA is used to define the number of membership functions in the model, ensuring that
this important hyperparameter is selected based on the ensemble properties of the input
data rather than user definitions. Results revealed that SODA-T2FTS obtained the lowest
errors in all experiments, including those in which noise was added to the original time
series, indicating that the proposed forecasting model can predict complex time series with
high accuracy using a data-driven approach independent of user interference. In addition
to outperforming in accuracy, the proposed approach presented a similar number of fuzzy
rules compared to other FTS methods, thus, delivering better performance for comparable

interpretability.
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4 The ADP-T2FTS Approach

While Chapter 3 introduced SODA-T2FTS as a data-driven solution to reduce
subjectivity in F'TS partitioning, it represents just one pathway to address the broader
challenge of automatic and adaptive fuzzy set generation. As discussed in Chapter 2,
conventional partitioning methods are often limited by fixed heuristics or require user-
defined parameters, leading to models that may struggle to generalize across diverse
datasets. In this regard, in this chapter an alternative approach named ADP-T2FTS is
explored, which employs the Autonomous Data Partitioning (ADP) algorithm to define the
UoD based on local and global data density. Moreover, it presents a numerical illustration

of the model procedure, for clarity.

ADP-T2FTS receives as input the time series data and then all the steps necessary
for training and testing the model are performed in order to obtain error metrics and
forecasting results. For illustration purposes of the following procedures, this chapter
is analysed using the EBOP dataset, which contains information about daily historical
Brent Oil Prices in Europe and will be deeply discussed in Section 4.3.1, along with other

datasets.

4.1 Training Procedure

The objective of the forecasting method is to learn the patterns from the time
series training data, thus generating the model M to predict future data. The exemplified

steps for training are listed as follows.

4.1.1 Universe of Discourse

First, the highest and the lowest prices of the Brent Oil Prices training dataset
are determined. According to Table 13, which describes the data, min(Y'(t)) = 26.01 and
max(Y (t)) = 86.07. Considering Equation (2.3) and an expansion of 10%, the UoD is
UoD = [23.409,94.677].

4.1.2 ADP Algorithm for UoD Partitioning

Considering the time series data as input, the summarized procedure of the ADP

partitioning algorithm is as follows (Gu; Angelov; Principe, 2018):

o Stage 1: Rank order the samples with regards to the distance to the
global mode

The process begins by organizing the unique data samples {u}x into an indexing

list, denoted by {u*}x based on their mutual distances and global density values
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ADEC. Firstly, calculate the global densities of the unique data samples AD% (u;)(i =
1,2, ..., Li) using the following Equation defined in Chapter 2:

[

2
1+ |ur —pkll
Xg—|lux|l®

ADE (') = (4.1)
The unique data sample with the highest global density is then selected as the first
element of the indexing list {u*} . u*! is set as the first reference point: u*" < u*!
and u*! is removed from {u} . Then, by selecting out the unique data sample
which is nearest to w*", the second element of {u*},- denoted by u*? is identified
and it is set as the new reference point u*" +— w*? and is also removed from {u}y ..
This procedure is repeated until {w} , is empty, and the rank ordered list {w*}/

is finally derived. Based on this list, the global density of the unique data samples
can be ranked as {AD% (u*)} = {AD% (u*!), AD% (u*?), ..., AD% (ulx)}.

Stage 2: Detecting local maxima (local modes)

Based on the list {u*};, and the ranked global density {AD%(u*)}, one can
identify all the data samples with the local maxima of AD®. The collection of

data samples with the local maxima of AD is denoted as {u™} . = {u*/ | j =

Stage 3: Forming data clouds

The local peaks found and stored in {u**}: are then used to attract the data
samples {x} that are closer to them utilizing a min operator as shown in Equation
(4.2). As all the data samples are assigned to the closest local maxima, a number
of Voronoi tessellations are naturally formed, and data clouds are built around the

local maxima. It is important to note that this process is free from any threshold.

winning cloud = arg 2inL (sz — u**jH) , i=12.. K; Li>1 (4.2)
e

*
Ty k

After the data clouds are formed, one can easily calculate the actual center (mean)
w?, the standard deviation 07(j = 1,2, ..., L% ) and the support S7, which represents
the number of data samples within the data cloud, for every data cloud. This
procedure is determined from the data without any prior assumption, except the

selection of the metric.

Stage 4: Filtering local modes

In this stage, the initial Voronoi tessellations are filtered and combined into larger,

more meaningful data clouds, as the data clouds formed in Stage 3 may contain
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some less representative ones. The global densities at the data clouds centers {g}z:

are firstly calculated as follows (j = 1,2, ..., L%):

Sj
o
1 | — i
T Xl

In order to identify the centers with the local maxima of the global density, the
following three objectively derived quantifiers of the data pattern are introduced in
Equations (4.4), (4.5) and (4.6).

L3 —1 L3
?7C — 2 Zpi{l qup—i-l ||ILLp - /’Lq“ (4 4)
" Lic(Lic = 1)

T,y € {M}L}(7$ #vax_yH < 77;{

Vi = i (4.5)
n
T,y € L y [T — <5
Y

n% is the average Euclidean distance between any pair of existing local modes. ~f is
the average Euclidean distance between any pair of existing local modes within a
distance less than 7, and M, in Equation (4.5) is the number of such local mode
pairs. A} is the average Euclidean distance between any pair of existing local modes
within a distance less than v, M, in Equation (4.6) is the number of such local
mode pairs. The quantifier A% can be viewed as the estimation of the distances
between the strongly connected data clouds condensing the local information from
the whole dataset. Moreover, instead of relying on a fixed threshold, which may
frequently fail, %, i, and A% are derived from the dataset objectively and according
to the Granularity hyperparameter G. Each center p? (7 = 1,2, ..., L%/) is compared
with the centers of neighboring data clouds in terms of the global density, and the

following condition is evaluated using Equation (4.7).

Ak
2

IF ||| = || <

(4.7)
THEN (14 is neighbouring i)

A% is the average distance between the centers of any two potentially relevant
data clouds. Therefore, when the condition in Equation (4.7) is satisfied, both
p' and i/ are highly influencing each other and, the data samples within the two
corresponding data clouds are strongly connected. Therefore, the two data clouds
are considered neighbors. This criterion also guarantees that only small-size (less
critical) data clouds that significantly overlap with large-size (more important) ones

will be removed during the filtering operation.
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After the filtering operation (Stage 4), the data cloud centres with local maximum
global densities denoted by {pt*} e = p*7 | j = 1,2,..., L¥, LiF < Lj} are obtained. After
that, {p*} =+ are used as local modes for forming data clouds in stage 3 and are filtered
in stage 4. Stages 3 and 4 are repeated until all the distances between the existing local
modes exceed % Finally, it is possible to obtain the remaining centers with the local
maxima of ADY, denoted by {u°}, and use them as the local modes to form data clouds.
After the data clouds are formed by all the identified local modes, the algorithm identifies
the ones with support equal to 1, meaning that there is no sample associated with these
data clouds except for the local modes. This kind of local modes are considered to be
outliers so their data clouds are removed and these local modes are assigned to the nearest
normal data cloud. Once this process is over and all data clouds have been identified, their
corresponding centers, supports, standard deviations, members, and other parameters can

be extracted.

The UoD needs to be partitioned for the the fuzzy sets to be created, and ADP
is used for that. The number of data clouds that ADP generated from the input data,
which is the time series training data, represents the optimal number of partitions for
the UoD and is the number that is used for this parameter in the model. The number
of partitions is used to define the linguistic variable A to describe the time series Y.
For a k number of partitions, create k evenly distributed overlapping fuzzy sets A; (
i =1,...,k). Each fuzzy set A; is a linguistic term of the linguistic variable A. Using
the default Granularity value of G = 3, ADP splits the EBOP dataset’s previously
defined UoD = [23.409,94.677] into k = 23 partitions. Therefore, there were twenty-three
equal-sized intervals: u; = [23.409,29.348], uy = [26.379, 32.318], uz = [29.349, 35.287],
uy = [32.318,38.257], ... , ugy = [85.769,91.708] and wuss = [88.738,94.677]. From the
intervals u; (i = 0,1,...,23) obtained, to each interval a fuzzy set 4; (i = 1,2,...,23)
is assigned, as shown in Figure 17. For this example, it is assumed that the model’s

membership functions are triangular.
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Figure 17 — Fuzzy sets creation from intervals
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Every sample from the historical training data is fuzzified, and membership values

are calculated for all the fuzzy sets. The fuzzification of the Brent oil Prices time series
values from July 2nd, 2019 to July 31st, 2019 are shown in Table 12.

Table 12 — Fuzzification and FLR extraction of Brent oil prices for July, 2019

Date Brent Oil Prices Fuzzy Set FLR

07/02/2019 62.72 A, Ags -

07/03/2019 63.53 Az, Ay Ay — Ajs, Ay — A, Ay — Avg, Ay — Ay
07/04/2019 63.62 A, Ay Ay — Ay, Ay — Ay, Ay — Avs, Ay — A
07/05/2019 64.23 Ay, Ay Ay — AB, Az — ,2114, Ay — Ajs, Ay — Ay
07/08/2019 64.89 Az, A Ay — Aug, Ay — A, Ay — Ays, Ay — Ay
07/09/2019 64.3 Az, Ay Ay — Ayg, Ay — Ay, Ay — Ay, Ay — Ay
07/10/2019 66.41 A, Ay Ay — Ay, Ay — Ay, Ay — Avs, Ay — A
07/11/2019 67.64 Ay, Ay Ay — AM, Az — [115, Ay — Ay, Ay — Ay
07/12/2019 66.65 AM, A15 A14 — A14, A14 — A15 A15 — A14, A15 — A15
07/15/2019 66.86 A, Ais A — Ay, Ay — A, Ay — Ay, A — Ags
07/16/2019 65.87 A, Ay Ay — Ay, Ay — Ags, Ay — Agg, Ay — A
07/17/2019 63.67 Ay, Ay Ay — 2114, Ay — Ags, Ay — Ay, Ay — Ags
07/18/2019 60.7 Alg, A14 A14 — A13, A14 — A14 A15 — Alg, A15 — A14
07/19/2019 61.04 A, Ay Ay — Ayg, Ay — Ay, Ay — Ay, Ay — Ay
07/22/2019 61.96 Aig, A1z Ary — Ajg, Ajg — Ars, Aig — Ag, Ayz — A
07/23/2019 62.28 A, A1y Ay — Am, Ay — A13, Az — Ajg, Ay — Ay
07/24/2019 63.83 Alg, AM A12 — A13, A12 — A14 A13 — Als, Alg — A14
07/25/2019 63.47 Az, Ay Ay — Ayg, Ay — Ay, Ay — Ay, Ay — Ay
07/26/2019 62.46 A3, Ay Ay — A13, Az — A14, Ay — Alg, Ay — A
07/29/2019 62.29 A3, Ay Ay — A13, A13 — A14, Ay — Ay, Ay — Ay
07/30/2019 62.55 Alg, AM A13 — A13, A13 — A14 A14 — Als, A14 — A14
07/31/2019 64.07 A, Ay Ay — Ay, Ay — Ay, Ay — Avs, Ay — A

4.1.4 Fuzzy relationships

Fuzzy Logical Relationships (FLRs) are then used to relate previous and current

states of the time series instances. Considering for example Table 12 where the oil price
for 07/17/2019 is fuzzified as Ay, and A5 and the next instance relative to 07/18/2019

is fuzzified as /113 and 12114. One can then establish the four fuzzy relationships between

these consequent instances:

Ay — A
Ay — Ay
A5 — Ag
Ay — Ay

(4.8)

Table 12 also shows all the FLRs identified from the time series values of July,

2019. For this time frame, the following FLRGs are generated:
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Ay — 12112, 12113, Ay

Az — 12113, 12114, Ass

Ay — 12112, A13, 12114, Ass
Ay = A Ay, Ass

4.2 Forecasting procedure

4.2.1 Input value fuzzification

After the rule base is built, the model learned is used to forecast future values of
input test values. Consider, for example, that there is a need to forecast the EBOP value
for 07/08/2019 in Table 12. An input value y(¢) needs to be converted into fuzzy values of
the linguistic variable A. For that, the previous instance y(t) = 64.23, relative to the date
of 07/05/2019, will be used, which is fuzzified into the fuzzy sets A3 and Ay,

4.2.2  Finding compatible rules

The input value was fuzzified into the fuzzy sets A5 and A4, so now it is necessary
to map the rules that have these two sets as antecedent. For the activated rules, the
antecedent represents the fuzzy set that the input value was fuzzified into and consequent
will be the possible forecast values f(t 4 1). The procedure explained in "Subsection 3.1.4:
Fuzzy relationship'was performed for the entire time series and then FLRs were generated
for all the fuzzy sets. After all FLRs have been identified for all the time series instances,
the knowledge rule-base can be generated by the creation of the fuzzy logical relationship
groups (FLRG). All the rules which share the same antecedent (left hand side) can be
grouped in a FLRG that can be interpreted as the possible future states (right hand side)
for a given antecedent. The following rules could be identified after the rule extraction

procedure using the entire training dataset:
Az — 121117 121127 12113712114, A5 and

12114 — 12112, /I137 12114, zzhs, 12116

Now that the associated rules are defined, one can use their corresponding degrees of

membership and fuzzy operators to obtain a crisp value.

4.2.3 Defuzzification

For the initial test value y(t) = 64.23, fuzzified into the A5 and Ay fuzzy sets,
antecedent processing is performed using the min operator and then consequent processing
is done using the max operator. Aggregation is then performed, generating a single interval

type-2 fuzzy set from the rule output fuzzy sets. Using Equations (2.5) and (2.6) it is
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possible to find the lower and upper limits crs and cgg for the type-reduced fuzzy set,
which are calculated to be cp¢(64.23) = 63.71 and crg(64.23) = 65.38. The final forecast
value y(t + 1) is then the centroid of this fuzzy set, calculated by Equation (2.7). Then,
the forecast value for 07/08/2019 is y(t + 1) = 64.54, as seen below

y(z) = ;[ch(y(t)) + eng(y(8)] = ;[63.71 4 65.38] = 64.54 (4.10)

ADP-T2FTS overall training and forecasting procedures are summarized in Algo-
rithm 2.

Algorithm 2: ADP-T2FTS training and forecasting procedures

1 Split time series data Y into training and test sets;

2 for Training data Y4y do

3 Compute the UoD:;

4 Use ADP to partition Y, into de distinct data clouds;

5 Split this UoD into dc partitions;

6 Assign an IT2FS A4 (1 =1,2,...dc) to each partition;

7 Fuzzify each instance from Y,z by computing membership values across all fuzzy
sets;

8 Detect temporal patterns (FLRs) between consecutive instances from Y'yg;
9 Organize FLRs into FLRGs;

10 Build the model M;

11 end

12 for The test data Y joss dO

13 Fuzzify each instance y(t) from Yiest by computing membership values across all

fuzzy sets;

14 for FLRG € M do

15 if f(t) matches the LHS then

16 ‘ rules _matched < FLRG;

17 end

18 end

19 Use rules_matched in the fuzzy inference procedure and compute f(t + 1);

20 Obtain y(t + 1) after type-reduction and defuzzification;

21 Compute error metrics;

22 end

4.3 Experimental Results

4.3.1 Case Studies

The EBOP! dataset contains daily historical Brent Oil Prices in Europe and is
composed of 1277 instances sampled from January/2016 to December/2020. Table 13
presents preliminary statistical analysis, and the behavior of the time series historical
values can be observed in Figure 18. Data was divided into a training set containing the
first 70% of the data and a test set with the remaining 30% of the data.

b https://www.eia.gov/dnav/pet /hist/RBRTED.htm. Access in 16/08/2022
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Table 13 — EBOP Statistical analysis

Parameter Complete data Train set Test set
Data 1277 893 384
Mean 55.076 57.715 48.94

Standard deviation 13.651 12.657 13.921
Minimum 9.120 26.01 9.12
First quartile 45.700 48.42 40.892
Median 54.800 55.92 48.825
Third quartile 65.030 68.01 61.068
Maximum 86.070 86.07 70.25
a0
;-
]
£ 5]

10 1

2016 2017 2018 2019 2020 2021

Date

Figure 18 — EBOP dataset

Initially, the EBOP dataset was used to evaluate the forecasting performance
of the proposed method, comparing it to existing forecasting models of different orders
and design mechanisms. The experiments were run using a laptop with an Intel i5-
8265U 1.6 GHz and 8 GB DDR4. All the data and source codes are available on:
https://github.com/arthurcaio92/ADP-T2FTS.

The comparison metrics applied to evaluate the performance of time series prediction
methods were the root mean-square error (RMSE), defined in Chapter 3 as Equation (3.4),
the mean absolute percentage error (MAPE) and the symmetric mean absolute percentage
error (SMAPE), expressed by Equations (4.11) and (4.12) respectively, where y; represents

the forecast values and g; corresponds to the actual values.

MAPE = Z |y‘ % 100 (4.11)

1 &2 i — Ui
SMAPE = Z(w—w (4.12)
n= |yl + |4l
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4.3.2 Parameter Optimization

In the process of building the best-performing forecasting model possible, three key
parameters must be defined in ADP-T2FTS before the model can be compared to other
methods: the Granularity hyperparameter GG, the membership function (MF) that will be
used, and model order. The G hyperparameter is set to regulate the level of detail of the
clustering results of the ADP algorithm, directly interfering in the partitioning output.
Additionally, the MF also affects the model’s accuracy by affecting the way the fuzzy sets
cover the UoD, and model order dictates how many lags (instances) of the time series are
used in the forecasting process. Several tests were performed to find their best values for
all parameters based on the RMSE forecasting error metrics obtained from the models
generated. The G hyperparameter ranged from 1 to 5, the MF for triangular, trapezoidal,
and gaussian MFs, and model order ranged from 1 to 3. Thus, it was possible to find the
best values of G and model order and the best MF to be implemented, shown in bold in
Table 14. Tt is also possible to understand how G influences the partitioning ADP output
by noting that as GG increases, more fuzzy sets are generated, meaning that UoD is being
partitioned into more intervals. Another information learned from Table 14 is that the
MF has a minor impact on model forecasting accuracy, as the RMSE and MAPE values

for triangular, trapezoidal, and gaussian MFs are similar.

4.3.3 ADP Partitioner

The use of ADP for the UoD partitioning is evaluated by comparing the forecasting
performance of the ADP generated models to other models that use other partitioning
methodologies from the literature. In this present study, the partitioning methods used
were SODA (Gu et al., 2018), Entropy (Cheng; Chang; Yeh, 2006), FCM (Li; Cheng; Lin,
2008), c-Means (Zhang; Zhu et al., 2012) and DBSCAN (Ester et al., 1996). Table 15 shows
the results for all the models generated using the different partitioning methodologies.
Results show that partitioning the UoD with ADP generates the lowest RMSE and MAPE
values, confirming that it is an efficient tool for autonomous data partitioning and is

completely capable of being used with F'T'S models.

4.3.4 Model Performance Comparison

ADP-T2FTS model performance was compared to type-1 fuzzy forecasting models
in the literature. All models were used to predict the Brent Oil dataset and the forecasting
occurred under the same circumstances for all of them. For the comparison, the following
models were used: Hwang (Hwang; Chen; Lee, 1998), traditional FTS (FTS), Conventional
FTS (CFTS) (Chen et al., 1996), High Order FTS (HOFTS) (Severiano et al., 2017),
Weighted High Order FTS (WHOFTS) (Severiano et al., 2017), Weighted FTS (WFTS)
(Yu, 2005), Exponentially Weighted FTS (EWFTS) (Sadaei, 2013), Improved Weighted



Table 14 — Parameter optimization.

Partitions Order MF RMSE MAPE

TRI 1.5561 2.9060
1 TRAP 1.5582  2.9087
GAUS 1.6222  2.9965
TRI 22118 4.0753
6 2 TRAP 2.2039 4.0486
GAUS 22715 4.1181
TRI 25857  4.8241
3 TRAP 25954  4.8496
GAUS 2.8522  5.2461

TRI 1.7352  3.2770

1 TRAP 1.7103  3.2353

GAUS 1.6918  3.1039

TRI 22856  4.2553

11 2 TRAP 2.2935 4.2635
GAUS 23715  4.3293

TRI ~ 2.6906  5.0204

3 TRAP 26892 4.9711

GAUS 29421  5.3320

TRI  1.8213  3.3663

1 TRAP 1.8445  3.4780

GAUS 1.7686  3.0744

TRI 22315  4.1807

23 2 TRAP 23297  4.4175
GAUS 2.5467  4.5195

TRI  2.6021  4.9784

3 TRAP 26225 5.0932

GAUS 3.0283  5.8287

TRI  1.7967  3.3390

1 TRAP 1.8204  3.3861

GAUS 1.7736  3.2526

TRI 22174  4.1588

33 2 TRAP 2.2290 4.2283
GAUS 24523  4.4368

TRI ~ 2.5399 4.8714

3 TRAP 25364  4.8820

GAUS 2.8001  5.4160

TRI  1.7984  3.4242

1 TRAP 1.7958  3.4028

GAUS 1.7614  3.2472

TRI  2.0938  3.9236

36 2 TRAP 21268  3.9678
GAUS 2.4054  4.4666

TRI 25014  4.7429

3 TRAP 25438  4.8402

GAUS 2.6756  5.2456
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Table 15 — Performance comparison of partitioners

Partitioner MF G Order Part. RMSE MAPE
SODA Triangular 1 1 5 1.5896  2.9541
FCM Trapezoidal - 1 7 1.5874  2.9385

ENTROPY | Triangular - 1 ) 1.5881  2.9400

CMEANS Triangular - 1 5) 1.5879  2.9455
DBSCAN Triangular - 1 2 1.5896  2.9540
ADP Triangular 1 1 6 1.5561 2.9060

FTS (IWFTS) (Ismail; Efendi, 2011), Trend Weighted FTS (TWEFTS) (Cheng; Chen;
Chiang, 2006), Probabilistic Weighted FTS (PWFTS) (Silva et al., 2019) and Markov
Weighted FTS (MWFTS) (Alyousifi et al., 2020). According to Table 16, the results

confirm that the ADP-T2FTS achieves better performance and lower error metrics in
terms of RMSE and MAPE, for the Brent Oil dataset.

Table 16 — Model Performance Comparison

Model Order Partitions RMSE MAPE
MWEFTS 1 36 2.16 4.42
ADP-T2FTS 1 6 1.56 2.91
PWEFTS 3 7 4.17 9.08
WHOFTS 3 7 4.29 8.9
HOFTS 3 8 5.25 10.92
IWFETS 1 36 2.16 4.42
TWEFTS 1 33 2.17 4.46
WETS 1 34 2.18 4.53
EWFTS 1 36 2.19 4.52
CFTS 1 35 2.19 4.61
FTS 1 7 9.33 20.84
Hwang 2 ) 12.94 31.18

Two more time series were used to evaluate model’s performance: the University of
Alabama enrollments time series ((Chen et al., 1996)) and the Yearly Sunspot number from
1700 to 1987 dataset ((Kim; Chung, 2005)). In Table 17 ADP-T2FTS forecasting metrics
were compared to results presented by Pattanayak, Behera and Panigrahi (2021), where a
probabilistic intuitionistic fuzzy set based model for high order fuzzy set based time series
forecasting was proposed and compared to advanced probabilistic FT'S models. In this
model, PIFTSF, statistical and non-statistical uncertainty are handled using probability
and intuitionistic fuzzy elements, which are then aggregated to obtain the probabilistic
intuitionistic fuzzy element. It was also included in this comparison the model proposed
in Chapter 3: SODA-T2FTS and for the sake of fairness, the experiment settings were
defined to be the same from Pattanayak, Behera and Panigrahi (2021): the first 70% of

time series data is considered for training, next 15% is considered for validation, and the
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recent 15% is considered for testing. Table 17 shows that ADP-T2FTS obtained the lowest

SMAPE metric among all models for both Enrollments and Sunspot time series.

Table 17 — SMAPE results for Sunspot and Enrollments datasets

Model Sunspot Enrollments
Aladag et al. (2009) 99.89 199.90
Aladag (2013) 68.72 14.69
Kumar and Gangwar (2015) 67.08 2.80
Bisht and Kumar (2016) 72.61 3.03
Bas et al. (2018) 7.7 14.69
Gupta and Kumar (2019a,b,c) 70.96 6.76
Panigrahi and Behera (2020) 31.42 6.23
PIFTSF 30.71 2.18
SODA-T2FTS 25.97 2.25
ADP-T2FTS 25.27 1.23

ADP-T2FTS was later used to forecast the well-known Taiwan Stock Exchange
Capitalization Weighted Stock Index - TAIEX time series and was compared to state-
of-the-art forecasting models designed using type-2 fuzzy logic, neural networks and
regression algorithms, studied in Jiang et al. (2018). The models used in the comparison
were the univariate conventional regression model (U_R model) (Yu; Huarng, 2008), the
univariate neural network model (U_NN model) (Yu; Huarng, 2008), the univariate neural
network-based FTS model (U_NN_FTS model) (Huarng; Yu, 2006a; Yu; Huarng, 2008),
the univariate neural network-based FTS model with substitutes (U_NN_FTS S model)
(Huarng; Yu, 2006a; Yu; Huarng, 2008), the bivariate conventional regression model
(B_R model) (Yu; Huarng, 2008), the bivariate neural network model (B__ NN model)
(Yu; Huarng, 2008), the bivariate neural network-based FTS model (B__NN__FTS model)
(Huarng; Yu, 2006a; Yu; Huarng, 2008), the univariate neural network-based FT'S model
with substitutes (U_NN_FTS S model) (Huarng; Yu, 2006a), the type-2 neurofuzzy
modeling method (T2NFS) (Liu; Yeh; Lee, 2012), the complex neurofuzzy system and
autoregressive integrated moving average models (CNFS-ARIMA) (Li; Chiang, 2012), the
direct and iterative local modeling based on the neuro-fuzzy forecasting model (LMNF-
D/I) (Peng et al., 2015), the new FTS model combined with ant colony optimization and
auto-regression proposed by Cai et al. (2015) and the interval type-2 fuzzy logic model
based on a Fuzzy Logical Relationship Map proposed by Jiang et al. (2018).

All models were used to forecast the TAIEX "close" index from 1999 to 2004. For
every year, the data from January to October were used for training and from November to
December for testing. The RMSE was the comparison metric chosen for this experiment,
and the results for all models can be seen in Table 18, with the best-performing ones
highlighted in bold. ADP-T2FTS outperforms other models for the years 1999, 2000, 2001,
and 2004. For 2002, the T2FNS (Liu; Yeh; Lee, 2012) obtains the lowest RMSE values
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and for 2003, LMNF-D/I (Peng et al., 2015) is the best performing model.

Table 18 — RMSE values for TAIEX forecasting

Methods 1999 2000 2001 2002 2003 2004
U_ R model 164.00 420.00 1070.00 116.00 329.00 146.00
U__NN model 107.00  309.00 259.00 78.00 57.00  60.00

U NN FTS model 109.00 255.00 130.00 84.00 56.00 116.00
U NN FTS S model | 109.00 152.00 130.00 84.00 56.00 116.00
B R model 103.00 154.00 120.00 77.00 54.00  85.00
B NN model 112.00 274.00 131.00 69.00 52.00 61.00
B NN _FTS model 108.00 259.00 133.00 85.00 58.00 67.00
B NN FTS S model | 112.00 131.00 130.00 80.00 58.00 67.00
Cai et al.’s method 102.22  131.53 112.59 60.33 51.54 50.33

CNFS-ARIMA 100.01 122,58 11582 64.34 57.69  55.56
LMNF-D/I 92.19 123.33 116.73 63.66 50.90 53.63
T2NFS 97.30 120.90 103.84 58.10 51.00 51.73
Jiang’s et al.’s model 97.61 119.73 113.26 67.39 54.95 56.21
ADP-T2FTS 91.37 118.81 100.91 65.91 57.81 45.88

Results reported in this chapter showed that ADP is entirely suitable for studying
the universe of discourse partitioning, besides being an autonomous partitioning method
that does not depend on user interference. In the experiments type-2 FTS models
outperformed type-1 FTS and other advanced forecasting models, showing that type-2
fuzzy logic may be able to model epistemic uncertainty better and minimize its influence

in the forecasting process and model design, hence providing higher accuracy.
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5 The ADP-T2LIMG Approach

The previous models proposed so far, SODA-T2FTS and especially ADP-T2FTS
already present advancements in F'T'S model design, but the partitioning method can
still be more explored in order to better define the UoD intervals. The results reported
in Chapter 4 indicate that ADP-T2FTS outperformed other state-of-the-art forecasting
models in the literature, including those based on different mechanisms such as type-1
and type-2 fuzzy logic, neural networks, and regression algorithms. However, it is worth
observing that only the number of data clouds identified by the ADP partitioning algorithm
was employed to partition the UoD and generate the fuzzy sets. Essential information
on shape, endpoints, minimum and maximum values, and other characteristics of the
data clouds remained unused, leaving valuable information untapped. To bridge this gap,
an updated version of the previous model, termed ADP-T2LIMG, is introduced in this
chapter. This new model leverages the parameters from ADP’s output, utilizing this
enriched information to more accurately design and define the fuzzy sets in the forecasting

model, aligning them more closely with the data distribution.

The architecture of ADP-T2LIMG consists of different stages including: data
cloud identification, partitioning, fuzzification, extraction of fuzzy patterns, Fuzzy Logical
Relationships matching, defuzzification, and accuracy measurement. The complete training

and forecasting procedures for ADP-T2LIMG are summarised in Algorithm 3. All source
codes and data are available at: https://github.com/arthurcaio92/ADP-T2LIMG.

5.1 Training

5.1.1 Data clouds identification

Input the time series Y (¢) into ADP for its data to be analyzed and partitioned.
ADP works by identifying clusters based on local density maxima and partitioning the
data into "data clouds'without requiring user-defined parameters. The procedure, which
involves the four primary stages: calculating global densities, identifying local modes,
forming data clouds, and filtering clusters, is performed according to definitions set in
Section 2.4.2 and 4.1.2.

The output of the ADP algorithm is a set of data clouds, each represented by a
center (ur), its standard deviation (o), and its support (S57), which is the number of
data points assigned to the cluster. These data clouds objectively reflect the natural data
distribution without user intervention or reliance on prior assumptions. Figure 19 shows

an example of ADP partitioning of a time series.
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Algorithm 3: ADP-T2LIMG training and forecasting method
1 while Not at the end of time series data Y do

2 Extract a segment from Y according to a window size W
3 Split time series data window into training and test sets;
4 for Training data Y 4y do
5 Compute the UoD;
6 Use ADP to partition Y, into de distinct data clouds;
7 for Fach data cloud do
8 Create an UoDg,;, using the minimum and maximum values of the data
cloud;
9 Split this UoDgy into subg. = de/2 partitions;
10 Assign an IT2FS 4; (i = 1,2, ...dc) to each partition ;
11 end
12 Match all UoDyg,;, and their respective fuzzy sets into the original UoD:;
13 Filter the fuzzy sets and remove all that are fully overlapped by another set;
14 Fuzzify each instance from Y, by computing membership values across all
fuzzy sets;
15 Detect temporal patterns (FLRs) between consecutive instances from Y ;
16 Organize FLRs into FLRGs;
17 Build the model M;
18 end
19 for The test data Y jes; doO
20 Fuzzify each instance y(t) from Yiest by computing membership values across
all fuzzy sets;
21 for FLRG € M do
22 if f(t) matches the LHS then
23 ‘ rules _matched < FLRG;
24 end
25 end
26 Use rules_matched in the fuzzy inference procedure and compute f(t + 1);
27 Obtain y(t + 1) after type-reduction and defuzzification;
28 Compute and save RMSE metrics;
29 end
30 Slide the window across Y by D instances;
31 end

5.1.2 Partitioning

First, define the original UoD using the highest and lowest values in the time
series Y, considering an expansion of 10%. ADP outputs the dataset partitioned into
a dc number of data clouds, along with their respective information regarding shape,
endpoints, minimum and maximum values, and other important characteristics. Unlike
what happens for ADP-T2FTS, for ADP-T2LIMG the properties of all data clouds are
explored by taking the minimum and maximum values of each data cloud identified by
ADP and creating an Internal Universe of Discourse UoDy,,;, for each of them. Then, this
UoDyg,yp is split into subg. = dc/2 intervals, and to each partition an interval type-2 fuzzy

set (IT2FS) A; (i = 1,2,...dc) is assigned. After that, all UoDy,;, and their associated
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Figure 19 — ADP data cloud partitioning for the DEOK dataset.

fuzzy sets are matched into the original UoD. For some datasets, one can observe that
at this point there might be highly overlapping fuzzy sets, so to avoid any harm to the
model’s interpretability, a filter function is applied to remove fuzzy sets that are fully
overlapped by another set, according to the rule presented in Equation (5.1), where A, is
a fuzzy set that is compared to all other fuzzy sets in the model. When the domain of
the fuzzy set fully belongs to the domain of another fuzzy set, it means that the former is
fully overlapped and can be removed from the model. This way, the UoD is designed with

fuzzy sets that better represent the time series data.

If domain(A) € domain(A,), then remove A, (5.1)

Figure 20 illustrates the difference in executing the partitioning step of the training
procedure (partitioning the UoD) between ADP-T2FTS and ADP-T2LIMG. For a visual
understanding of the partitioning procedure, Figure 21 shows a given time series (after
differentiation) and the respective ADP output. Then, considering inverted axes in the
ADP output plot, Figure 22 exemplifies the creation of an UoDy,, for each data cloud and
the creation of the fuzzy sets. After all UoD,,;, are matched into the original UoD and

the filter function is applied, the final partitioning is obtained, as shown in figure 23.

5.1.3 Fuzzification and extraction of fuzzy patterns

Each interval is associated with a fuzzy set represented by its membership function.
The membership function of each fuzzy set assigns a degree of membership to every value
in the UoD). The entire training set from the historical time series data is converted
into fuzzy values using the defined fuzzy sets in the UoD. For a given crisp input value
from the time series Y, an interval-valued membership degree is obtained for each input,
ranging from p+(x) (the membership degree for the lower membership function) to fiz(x)

(the membership degree for the upper membership function).
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Figure 20 — Procedures for partitioning of the UoD in the previous and currently proposed
model
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Figure 21 — Original time series and the respective ADP output.

Once the training set is fuzzified, temporal relationships between consecutive fuzzy
values are analyzed to establish Fuzzy Logical Relationships (FLRs). For instance, if a data
point at time t—1 is fuzzified to the fuzzy set A, and another data point at time ¢ is fuzzified
to fL, the following logical relationship is formed: Ay — A;. These relationships are then
grouped into Fuzzy Logical Relationship Groups (FLRGs), simplifying the forecasting
process by consolidating all possible future states for a given current state. For example,
the FLRG ﬁ4 — ﬁg,ﬁ4,ﬁ7 indicates that the current state ﬁ4 has historically been
followed by the states 1212, ﬁ4, and fL in the dataset.



81

Membership Degree

—-672 -535 -397 -260 -122 15 153 290 428 565
Universe of Discourse

Figure 22 — Internal UoD and fuzzy sets for each data cloud.

8 partitions

=
=]

Membership Degree
o
w

o
=)

-611 -505 -368  -269 -15825 -33 104
Al A5 A2 A6 A4A3 A7 A8
Universe of Discourse

Figure 23 — Final ADP-T2LIMG partitioning.

5.2  Forecasting

The forecasting phase in F'TS procedure involves predicting future values for all

data points in the test dataset.

5.2.1 Fuzzification

All data points y(t) € Y,t — 1,...,n from the time series test dataset are fuzzified

and their fuzzy values are calculated in respect to the linguistic variable A.

5.2.2  Fuzzy Logical Relationships matching

After all test samples are fuzzified, their corresponding fuzzy logical relationship
group (FLRG) can be retrieved based on their fuzzy state (i.e. fuzzy set). An FLRG
contains all possible future states for a given current state of the test sample, learned from

the training historical data during the training phase.
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5.2.3 Type-reduction and defuzzification

The FLRG is used to compute the forecast fuzzy set. As the fuzzy sets overlap,
antecedent and consequent processing are carried out using the min and max operators.
After that, a single I'T2FS is generated through the process of Aggregation. This IT2FS is
then reduced to a T1FS in the type-reduction process, which is executed using the EIASC
procedure (Wu; Nie, 2011). Centroid defuzzification is then performed to convert the

forecast type-reduced fuzzy set into a crisp numerical value.

5.2.4 FEvaluating Forecast Accuracy

In this step, the model performance is evaluated by comparing the predicted values

with the actual observations.

5.3 Computational Experiments

ADP-T2LIMG is compared to the other two proposed models in this thesis: SODA-
T2FTS and ADP-T2FTS. The datasets used were the TAIEX time series and the solar time
series from SONDA! - Sistema de Organizagao Nacional de Dados Ambientais (Brazilian
National System of Environmental Data Organization). Results shown in Table 19 highlight
ADP-T2LIMG's performance compared to the other two methods for both financial and
energy datasets, also showing ADP-T2LIMG’s longer execution time.

Table 19 — RMSE values for TAIEX and SONDA datasets.

Dataset Model Gridsize Order Part. RMSE Time(s)
ADP-T2FTS 4 1 615  62.63 43.19
TAIEX SODA-T2FTS 10 1 20 79.53 85.4
ADP-T2LIMG ) 1 232 59.86 580.16
1 132 104.23  132.07
1
1

ADP-T2FTS )
SONDA SODA-T2FTS 3 6 140.11  56.03
ADP-T2LIMG 3 043 99.76 1112.87

Five univariate time series from two datasets, the PJM hourly energy consumption
dataset, and the Global Energy Forecasting Competition 2012 (GEFCom 2012) dataset
were then used to verify the performance of the proposed model against advanced FTS
methods. For the PJM dataset?, 8,000 hourly energy consumption samples were selected
from Ohio/Kentucky’s Duke Energy (DEOK) and American Electric Power (AEP). The
GEFCom 2012 dataset, a well-known source available on Kaggle?, includes data from 20

zones, with hourly energy consumption recorded between January 1, 2004, and July 7,

1 <http://sonda.ccst.inpe.br/>
2 <https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption>
3 https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting
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2008. 8,000 samples from zones 1, 2, and 3 were utilized in this investigation. Table 20
presents a preliminary statistical analysis of the datasets. Energy datasets are relevant
in forecasting literature at the moment as accurate forecasts may help balance supply
and demand, prevent energy shortages, and support the efficient integration of renewable

energy into existing energy systems, ultimately contributing to a greener and more reliable

energy scenario.

Table 20 — Descriptive statistics for PJM and GEFCom datasets

Parameter AEP DEOK Zonel Zone 2 Zone 3
Data points 8000 8000 8000 8000 8000
Mean 15567.67 3056.21 17477.74 163801.62 176747.22
Std. deviation | 2594.37  640.06  5189.69  36241.20 36123.22
Minimum 9823 1870 8688 8672 9060
1st quartile 13703 2261 13644.25 135660.00 147385.50
Median 15494 3021 16445 161617.50 170498.55
3rd quartile 17339.50 3663 19364.25 194861.50 206905.15
Maximum 24015 5445 39584 270013 291344

Forecast accuracy is evaluated using the sliding-window cross-validation technique.
For this case, the method employs a window size of 2000 instances, shifted by 200 instances
(10% of the window size) along the time series. Thus, each dataset is divided into 30
windows such that 80% of each window is used for training and the remaining 20% for
testing. Root Mean Square Error (RMSE) is applied to calculate the accuracy of the
model, which is calculated as the average of performance metrics across all 30 windows.

Table 21 showcases the forecasting accuracy of the proposed ADP-T2LIMG model
alongside several baseline models, including ARIMA, Long Short-Term Memory (LSTM),
Probabilistic Weighted FTS (PWFTS), Randomized High-Order Fuzzy Cognitive Maps
(R-HFCM), Convolutional Neural Networks (CNN), and CNN-LSTM, as detailed in Orang
et al. (2024). The best-performing model in each case is highlighted in bold for clarity.

Table 21 — Model performance comparison (RMSE)

Method Zone 1 Zone 2 Zone 3 DEOK AEP
R-HFCM 716.364 | 5531.027 | 5837.610 | 136.783 | 624.151
PWFTS 939.671 | 6826.440 | 7359.919 | 134.861 | 662.849
LSTM 4932.353 | 32610.370 | 36592.800 | 2862.968 | 679.392
CNN 611.859 | 4685.848 | 5193.894 94.662 377.457
CNN-LSTM 650.442 5847.702 5935.384 95.021 421.745
ARIMA 5274.916 | 42207.760 | 39253.070 | 603.279 | 3005.837
ADP-T2LIMG | 487.466 | 3654.046 | 4056.288 | 71.865 | 316.445

Based on this table, ADP-T2LIMG consistently achieves the lowest RMSE values
across all regions, outperforming all other models under the same sliding window method

and settings. This highlights its robustness in handling complex time series data compared
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to R-HFCM and PWF'TS, which show moderate performance, and models like LSTM,
CNN, and CNN-LSTM, which perform better but still lack ADP-T2LIMG’s precision. The
poor performance of ARIMA further underscores the limitations of traditional statistical
methods. The superior results of ADP-T2LIMG can be attributed to its deeper exploration

of ADP data clouds and their properties, which significantly enhances forecasting accuracy.

To statistically compare the performance of the models, a Kruskal-Wallis test was
conducted with a confidence level of a = 0.05, considering the average RMSE. In this
analysis, the null hypothesis (Hy) asserts that the average RMSE errors are equal across all
methods, while the alternative hypothesis (H;) indicates that at least one of the averages
is different. If Hj is rejected, a post hoc test is applied to compare the differences between

each pair of means, utilizing the Wilcoxon test in this study.

Table 22 — Statistical Ranking of The Forecasting Methods

Dataset R-HFCM | PWFTS | LSTM | CNN | CNN-LSTM | ARIMA | ADP-T2LIMG
AEP 4 5 6 2 3 6 1
DEOK 4 5 7 2 2 6 1
Zonel 4 ) 6 2 3 6 1
Zone2 3 5 6 2 4 6 1
Zone3 3 5 6 2 3 6 1
Avg. Rank 3.6 5 6.2 2 3 6 1

Since Hj is rejected, the Wilcoxon test was conducted, with the results presented
in Table 22. This table showcases the statistical ranking of the proposed ADP-T2LIMG
against other competing methods across five datasets. ADP-T2LIMG consistently outper-
forms the other models, achieving the top rank (rank 1) across all datasets. CNN also
shows strong performance, securing the second-best rank in most cases, followed closely by
CNN-LSTM. Meanwhile, R-HFCM generally ranks in the middle, with a slightly better
performance than PWFTS, LSTM, and ARIMA, which typically occupy the lower ranks.
The average ranking highlights ADP-T2LIMG as the top performer with an average rank
of 1, while CNN and CNN-LSTM follow with average ranks of 2 and 3, respectively. In
contrast, LSTM and ARIMA rank lower, reflecting less competitive performance across
the datasets.

As a final comparison, ADP-T2LIMG was used to forecast the TAIEX time series
and was compared in Table 23 to state-of-the-art forecasting models. The models used in
the comparison were some of the ones already presented and used in Section 4.3.4: Cai
et al.’s model (Cai et al., 2015), CNFS-ARIMA (Li; Chiang, 2012), LMNF-D/I (Peng
et al., 2015), T2NFS (Liu; Yeh; Lee, 2012), Jiang et al.’s model (Jiang et al., 2018) and
ADP-T2FTS. The RMSE was the comparison metric chosen for this experiment, and the
results for all models can be seen in Table 23, with the best-performing ones highlighted
in bold.
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Table 23 — Forecasting performance for the TAIEX time series (per year)

Methods 1999 2000 2001 2002 2003 2004
Cai et al.’s method 102.22  131.53 112.59 60.33 51.54 50.33
CNFS-ARIMA 100.01 12258 115.82 64.34 57.69 55.56
LMNF-D/I 92.19 123.33 116.73 63.66 50.90 53.63
T2NFS 97.30  120.90 103.84 58.10 51 51.73
Jiang’s et al.’s model | 97.61  119.73 113.26 67.39 54.95 56.21
ADP-T2FTS 91.37 118.81 10091 6591 57.81 45.88
ADP-T2LIMG 76.37 12749 67.47 49.78 33.07 4594

5.3.1 Noise Response

This time, non-gaussian noise was added to datasets for testing the resilience of the
proposed models when dealing with increasing noise rates in the original data. Laplacian
noise is a type of non-Gaussian noise that follows a double-exponential distribution,
introducing abrupt variations that simulate real-world uncertainties, such as sudden
market shifts or unexpected external influences. Similar to carried out in Section 3.4.6,
noise was added to the original time series according to the Signal-to-Noise Ratio (SNR).
A high SNR corresponds to a clear signal (low noise) and a low SNR. corresponds to a noisy
signal (high amounts of noise). Datasets used in this experiment were the Yearly Sunspot
number from 1700 to 1987 dataset ((Kim; Chung, 2005)) also used in Section 4.3.4 and
the NREL* solar energy time series, obtained from the United States National Renewable
Energy Laboratory, with added SNR values ranging from 50% to 20%. Tables 24 and 25
show the RMSE values obtained when SODA-T2FTS, ADP-T2FTS and ADP-T2LIMG
were used to forecast these time series with different noise ratios. It can be observed that
ADP-T2LIMG obtained the lowest RMSE values in most SNR scenarios, handling well

the increasing noise rate.

Table 24 — RMSE values and their standard deviation for Sunspots time series with added
laplacian noise.

ADP-T2FTS SODA-T2FTS ADP-T2LIMG
9 y 7 "
SNR (%) Grid. Order Part. AvféhrlngD Grid. Order Part. AVP({}MS]STD Grid. Order Part. AVP({}MSSTD
50 1 1 5 22.73 271 1 1 4 2245 287 1 1 5 21.02 3.29
45 1 1 5 22.74  2.75 1 1 4 22.61 2.87 1 1 8 21.16 3.17
40 1 1 5 22.50 221 1 1 4 22.40 2.25 5 1 867  24.42 218
35 4 1 7™ 2394 265 1 1 4 23.52  3.59 1 1 7 21.01 3.28
30 1 1 5 2230 3.08 1 1 4 2224 297 1 1 5  21.05 2.57
25 1 1 5 23.81 2.25 1 1 4 23.73  2.36 1 1 5 21.98 1.26
20 1 1 4 25.59  0.57 1 1 4 25.59  0.57 1 1 4 22.83 2.13

4 https://midcdmz.nrel.gov/apps/html.pl?ite=oahugrid;page=instrumentsGH10
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Table 25 — RMSE values and their standard deviation for NREL time series with added

laplacian noise.

ADP-T2FTS SODA-T2FTS ADP-T2LIMG
07 ] 7 ]
SNR (%) Grid. Order Part. AVP({}MS}STD Grid. Order Part. AV%MS];TD Grid. Order Part. AVIZMSESTD
50 5 1 163 908,44 319 | 1 1 9 14942 290 | 3 1 760 90,00 2,44
45 5 1 166 99,14 5,76 2 1 4 149,33 2,42 3 1 608 98,06 3,87
40 4 1 124 9851 343 | 2 1 3 14737 220 | 3 1 653 93,12 4,88
35 4 1 121 98,03 3,51 5 1 13 151,11 3,03 3 1 668 93,53 3,80
30 4 1 123 98,97 5,95 5 1 12 150,57 7,12 3 1 610 99,92 5,71
25 5 1 196 99,75 4,03 5 1 12 146,33 4,00 3 1 597 99,62 4,74
20 5 1 205 117,35 5,62 | 1 1 1 15121 094 | 3 1 643 115,79 5,98

In conclusion, ADP-T2LIMG was proposed as an update to ADP-T2FTS, where

more information from ADP’s output would be utilized to more accurately create the

fuzzy sets in the forecasting model, aligning them more closely with the data distribution.

The results obtained indicate that ADP was being sub-utilized, as there was information

unused that could improve the model’s performance.

In this approach, a lot more

information provided by ADP was used to split the Universe of Discourse and create
fuzzy sets respecting data distribution. ADP-T2LIMG outperformed SODA-T2FTS, ADP-
T2FTS AND advanced FTS models from the literature in datasets from different domains,

including in noise response experiments, showing it could be a viable option for time series

forecasting.
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6 Conclusions

This research introduced three novel forecasting models — SODA-T2FTS, ADP-
T2FTS, and ADP-T2LIMG — each designed to improve fuzzy set based time series (FTS)
forecasting through advanced autonomous data partitioning algorithms and type-2 fuzzy
logic. These models enhance traditional forecasting approaches by leveraging data-driven
partitioning techniques, reducing reliance on predefined parameters, and improving the

handling of epistemic uncertainty in time series data and model design.

In Chapter 3 SODA-T2FTS was presented, which utilizes the Self-Organized
Direction Aware (SODA) partitioning algorithm,to determine the optimal partitions. Ex-
perimental results showed that SODA-T2FTS improves forecast accuracy while maintaining
model interpretability, also outperforming conventional type-1 FTS models and statistical

approaches in forecasting accuracy, interpretability and noise resistance.

The Autonomous Data Partitioning algorithm (ADP) improves SODA’s ability
to partition datasets autonomously, and hence was used in Chapter 4 for the creation
of ADP-T2FTS, a forecasting model that demonstrates superior performance compared
SODA-T2FTS and to state-of-the-art type-1 and type-2 FTS models, as well as neural

networks and regression-based approaches.

ADP-T2LIMG further refines the ADP-T2FTS approach in Chapter 5 by extracting
deeper structural information from ADP-generated data clouds, improving the definition
of fuzzy sets. This enhanced partitioning method enables the model to more accurately
capture data patterns, leading to the lowest RMSE values across multiple datasets,

outperforming traditional machine learning and statistical models such as LSTM, CNN,
and ARIMA.

Results have shown that data-driven approaches significantly enhance FTS forecas-
ting by improving partitioning accuracy, reducing subjectivity, and increasing adaptability
to different datasets. Traditional F'T'S models rely on user-defined partitioning strategies,
such as equal-length and clustering-based methods, which introduce epistemic uncertainty
due to subjective parameter selection. By contrast, the proposed models—SODA-T2FTS,
ADP-T2FTS, and ADP-T2LIMG—eliminate the need for manual tuning by employing
autonomous, data-driven partitioning algorithms, making them more robust and adaptive

to complex time series data.

Among the data-driven methods explored, the Self-Organized Direction Aware
(SODA) and Autonomous Data Partitioning (ADP) algorithms provided a powerful al-
ternative to traditional approaches. SODA’s self-organizing structure enabled effective
data-aware partitioning, while ADP further improved partitioning flexibility by adapting
to data cloud structures using rank operators. The models developed using these methods

consistently outperformed conventional F'T'S models in terms of forecast accuracy, inter-
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pretability, and resilience to noise, proving the superiority of data-driven partitioning over

heuristic methods.

Additionally, the integration of interval type-2 fuzzy logic greatly contributed to
enhancing forecasting performance. Traditional type-1 F'T'S models suffer from limited
uncertainty representation, making them less effective when dealing with noisy or highly
variable time series. In contrast, type-2 fuzzy sets provide an additional degree of freedom,
allowing for better uncertainty modeling through the footprint of uncertainty (FOU). This
capability enabled the proposed models to capture variations more effectively, resulting
in improved prediction accuracy without a significant increase in model complexity. The
experiments confirmed that type-2 fuzzy logic consistently produced more stable and

reliable forecasts for the financial and energy datasets applied.

As a direct outcome of this research, an open-source Python library, pyT2FTS!,
was developed to provide a flexible and accessible framework for fuzzy set based time series
forecasting. This library integrates the data-driven partitioning techniques (SODA and
ADP) and interval type-2 fuzzy logic methodologies explored in this study, offering users
the ability to easily modify key parameters and build forecasting models. By automating
complex tasks such as data partitioning, fuzzification, and rule extraction, pyT2FTS
simplifies the development of accurate and robust forecasting models while maintaining a

high degree of interpretability.

6.1 Summary of methods limitations

This research focused exclusively on rule-based, time-invariant models, which limits
the applicability of the proposed methods primarily to stationary or well-behaved time
series, particularly those that have undergone appropriate pre-processing. Besides that,
all proposed models are designed for univariate time series forecasting. This may limit
their effectiveness in domains where variables exhibit strong interdependencies, and a

multivariate framework would yield better performance

Regarding model complexity, although ADP-T2LIMG achieved the best forecasting
accuracy among all tested models, it also presented significantly higher execution time
compared to SODA-T2FTS and ADP-T2FTS. This increased computational cost may

limit its applicability in real-time or resource-constrained environments.

Moreover, SODA-T2FTS, ADP-T2FTS, and ADP-T2LIMG, are designed for batch
processing, where the entire dataset must be available before training and testing can
occur. This limits their applicability in real-time or streaming contexts where data arrives

continuously and models must adapt incrementally.

1 <https://github.com/arthurcaio92 /py T2FTS>
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6.2 Future Research Directions

SODA-T2FTS, ADP-T2FTS, and ADP-T2LIMG demonstrate clear advantages
in data-driven partitioning and type-2 F'TS forecasting. To further build upon these

contributions, future research could explore:

« Extension to multivariate fuzzy set based time series: The current models
focus on univariate time series forecasting, where predictions are made based on a
single variable. However, many real-world applications, such as economic forecasting,
climate modeling, and stock market analysis, require the consideration of multiple
interdependent variables. A natural next step would be to extend the proposed
models to multivariate FTS models, incorporating intervariable dependencies to

enhance forecasting accuracy.

e General type-2 fuzzy sets for Enhanced Uncertainty Modeling: While
interval type-2 fuzzy sets have been proven effective in handling uncertainty, they
still rely on fixed lower and upper membership function bounds, which may not fully
capture higher-order uncertainty variations. Future research could explore general
type-2 fuzzy sets (GT2FS), which allow for more flexible and adaptive uncertainty
representation. Implementing GT2FS in FTS models could provide even greater

robustness in noisy, imprecise, and highly uncertain environments.

o Exploring hybrid approaches: Recent advancements in artificial intelligence
have highlighted the power of hybrid models that integrate fuzzy logic with machine
learning techniques, thus, future research could investigate adapting the proposed
models to these machine learning techniques: (a) Deep learning-assisted type-2 FTS
models, where neural networks (e.g., LSTM, CNN, or Transformers) help refine fuzzy
membership functions or optimize rule extraction; (b) Neuro-fuzzy architectures that
combine data-driven partitioning with adaptive learning mechanisms to improve
forecasting accuracy. (c¢) Fuzzy ensemble methods, leveraging multiple FTS models

to improve prediction reliability.

o Adaptive and real-time fuzzy set based time series Forecasting: Most
existing F'T'S models, including those proposed in this study, rely on static training
data. However, many real-world forecasting problems require real-time learning and
adaptation. Future research could focus on online learning techniques that allow
FTS models to continuously update based on new data, dynamically adjusting the

rule base as patterns change over time.
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