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RESUMO

Ao longo dos anos, diversos esforcos foram feitos para reinterpretar a mecanica
quantica a partir de novas perspectivas. Este trabalho baseia-se na abordagem que
enquadra a teoria quantica como um formalismo generalizado para a inferéncia Bayesiana.
Embora esse ponto de vista reavive o antigo debate sobre a logica quantica, ele leva a sério
a ideia de que existem outras formas de atribuicao probabilistica — além das classicas.
Nosso estudo insere o problema convencional de coarse-graining dentro de um contexto
de inferéncia Bayesiana. Investigamos se técnicas de inferéncia generalizadas podem
ser empregadas para estabelecer condi¢oes necessarias e suficientes para o surgimento
de dindmicas quanticas macroscopicas. Como este resumo ja sugere, veremos que o
arcaboucgo de inferéncia quantica, tal como geralmente proposto, possui suas limitagoes.
Além disso, exploraremos como os mapas de recuperacao de Petz podem, potencialmente,
contornar essas limitagdes, a fim de encontrar um mapa emergente 6timo (em certo
sentido) que permanega consistente com o problema em praticamente qualquer cendrio de

coarse-graining.

Palavras-chave: Quantica; Fundamentos; Inferéncia; Bayes.



ABSTRACT

Throughout the years, various efforts have been made to reinterpret quantum
mechanics from new perspectives. This work relies upon the approach that frames quantum
theory as a generalized formalism for Bayesian inference. Although this standpoint revives
the old debate about quantum logic, it nonetheless takes seriously the idea that there
are other forms of probabilistic assignments—other than the classical ones. Our study
embeds the conventional coarse-graining problem within a Bayesian inference setting. We
investigate whether generalized inference techniques can be employed to establish necessary
and sufficient conditions for the emergence of macroscopic quantum dynamics. As this
abstract already hints, we will see that the quantum inference framework, as usually
proposed, has its limitations. Furthermore, we will explore how Petz’s recovery maps can
potentially circumvent these limitations, to find an optimal (in a certain sense) emergent

map that remains consistent with the problem across virtually any coarse-graining scenario.

Keywords: Quantum; Foundations; Inference; Bayes.
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1 INTRODUCAO

Desde o surgimento da mecanica quantica, no inicio do século XX, destaca-se
seu carater probabilistico e consequentemente sua intrinseca conexao com a teoria de
probabilidades [1, 2, 3]. Apoiando-se em tal aspecto, Leifer e Spekkens, publicam, em
2013, o trabalho, “ Towards a formulation of quantum theory as a causally neutral theory of
Bayesian inference” [4], onde uma formulagao operacional da teoria quantica causalmente

neutra, e ancorada na perspectiva da inferéncia Bayesiana [5, 6, 7], ¢ proposta.’

Diversos autores, além de Leifer e Spekkens, revisitaram os fundamentos da teoria
quantica ao longo dos séculos XX e XXI, destacando possiveis conexdes com a teoria
de probabilidades classica. Em particular, Dénes Petz, em seu trabalho “Sufficient
Subalgebras and the Relative Entropy of States of a von Neumann Algebra” [8], introduz o
chamado Mapa de Recuperacao de Petz, que mais tarde seria relacionado ao conceito de
retrodi¢ao na inferéncia Bayesiana. No artigo “Bayes’ theorem and quantum retrodiction”
[1], Barnett, Pegg e Jeffers, estabelecem uma formulagao simples, baseada no teorema de
Bayes, para a obtencao do estado quantico anterior a medicao. Posteriormente, Caves,
Schack e Fuchs, em “Quantum probabilities as Bayesian probabilities” [9], defendem que as
probabilidades em sistemas quanticos podem ser interpretadas no contexto da inferéncia
Bayesiana, aprofundando-se nas implicagoes dessa proposta. Embora diversas contribuicoes
significativas tenham sido fornecidas para o estabelecimento da conexao entre mecénica
quantica e inferéncia Bayesiana, esta dissertacao se concentrara nos trabalhos de Leifer e
Spekkens, que propoem um formalismo operacional ao explorar a interrelagdo entre as

duas teorias.

Dessa forma, o Formalismo de Estados Condicionais fundamenta-se na premissa
de que [1, 3, 4, 10] a teoria quantica pode ser interpretada como uma generalizagdo nao
comutativa de probabilidade classica, onde os operadores densidade associados com os
estados do sistema, sdo agora vistos como distribui¢oes de probabilidade mais generalista.
Diferente da mecanica classica, onde é possivel descrever completamente o estado de um
sistema, de uma unica particula, conhecendo sua posicdo z(t) e seu momento p(t), a
mecénica quantica, segundo seus postulados [11, 12, 13], estabelece que o estado de um
sistema é representado por um vetor de estado (ou funcao de onda) em um espago de
Hilbert. Este vetor, por si s, ndo possui uma representacao fisica direta, e as grandezas
fisicas — como posi¢ao e momento — sao acessadas por meio de medigoes, as quais sao

representadas por operadores chamados observaveis.

Considere, por exemplo, a prepara¢ao de um conjunto de estados puros (um
ensemble) de um dado sistema fisico. Em geral, ao realizarmos esse procedimento, nao

podemos afirmar com certeza — isto é, com probabilidade igual a um — que o sistema esta

! Usualmente ao longo do texto tal formalismo serd chamada de Formalismo de Estados

Condicionais (FEC).
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em um unico estado especifico. Nesse caso, uma descri¢cao mais adequada seria representar
o sistema sob andalise por uma mistura estatistica dos possiveis estados preparados, cada
um com um peso (probabilidade) associado. Entretanto, ao tentarmos expressar essa
mistura como uma combinacao linear dos vetores de estado individuais de cada estado
puro preparado, o resultado, no geral, é inconsistente com os postulados da mecanica
quantica, isto ¢, a combinacao resultante nao corresponde a um vetor de estado valido,

pois, por exemplo, pode nao estar normalizado.

Para contornar essa limitacao, é introduzido o formalismo de matrizes densidade
[14, 15], que permite representar tanto estados puros quanto estados mistos de forma
consistente. A matriz densidade, que representa a mistura completa, é vista agora como a
média ponderada das matrizes densidade de outros estados preparados, e incorpora de
maneira correta as informagoes probabilisticas da preparagao do sistema. Além disso, esse
formalismo acomoda tanto a estrutura probabilistica classica quanto a quantica dentro do

mesmo arcabougo matematico.

O centro dessa argumentacao estd no seguinte ponto: em sistemas quanticos,
os estados sao representados por operadores densidade — que, por exemplo, podem
ser computados em uma base fixa, como a base referente dos autovetores de um certo
observavel. Tais operadores podem apresentar elementos fora da diagonal (os chamados
termos de coeréncia [16]), sem correspondentes na teoria cléssica. Estes termos refletem
superposicoes entre diferentes configuragoes do sistema. Consequentemente, estados
oriundos de preparacoes distintas podem nao comutar entre si, o que é a base da teoria de
probabilidade nao comutativa. Ja no contexto classico, geralmente pode-se encontrar uma
base na qual todos os operadores densidade sao simultaneamente diagonalizdveis (embora

existam casos especiais onde classicamente a nao comutatividade seja possivel [17]).

Entao, sobre a perspectiva do FEC fornecida por Leifer e Spekkens, iremos analisar
um sistema quantico submetido a uma evolucao unitaria — tal qual a evolucao temporal,
onde o sistema ocupa a mesma regiao espacial, mas ¢ analisado em tempos distintos — e
um detector com defeito é utilizado na tentativa de acessar todos os graus de liberdade
disponiveis. Assim, na presenca de um detector que nao consegue acessar completamente
o sistema sob andlise, uma descrigdo completa (completa no sentido de tentar descrever
todos os graus de liberdade) torna-se supérflua ou impossivel e uma descri¢ao efetiva se
mostra necessaria. Logo, utilizamos o conceito de coarse-graining como uma ferramenta
matematica com intuito de realizar uma descricao efetiva do sistema. E uma vez diante
desse cendrio, nos perguntamos: quais sao as condigdes necessarias e suficientes para a
emergéncia de uma dindmica quantica quando analisamos uma situagao tal qual a descrita

acima? Este serd o foco deste trabalho.

A presente dissertacao esta estruturada da seguinte maneira: no Capitulo 2, concen-

tramos nossa atencao na analise do FEC, discutindo a defini¢ao de estados condicionais e os
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principais teoremas utilizados na investigagao subsequente. Exploramos também a conexao
entre esses estados e as dindmicas quanticas por meio do isomorfismo de Jamiotkowski, o
qual desempenha um papel central ao longo de toda a analise. No Capitulo 3, aplicamos
o FEC a diferentes cendrios. Na Secao 3.1, utilizando as ferramentas fornecidas pelo
FEC, analisaremos, com base em um exemplo, a reprodutibilidade da inferéncia classica
quando os estados condicionais sao postos sob certas exigéncias. Em seguida, na Secao 3.2,
voltamo-nos para um cenério andlogo ao experimento EPR [18], no qual o FEC é aplicado
a um sistema em que medigoes sao realizadas em duas regides quanticas espacialmente
separadas. Por fim, na Secao 3.3, analisamos uma releitura do experimento do gato de
Schrédinger, interpretado como um problema de quantum steering. O Capitulo 4 é dedicado
a investigacao central deste trabalho: identificar as condi¢oes necessarias e suficientes para
a emergéncia de uma dinamica quantica efetiva a partir de uma descricao coarse-grained
do sistema sob analise. Finalmente, no Capitulo 5, apresentamos as conclusoes deste

trabalho e sugerimos possiveis desdobramentos para pesquisas futuras.
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2 ESTADOS CONDICIONAIS

A teoria de probabilidades, remonta historicamente a meados do século XVI,
quando o médico, matematico e filosofo italiano Girolamo Cardano tem seu tratado Liber
de Ludo Aleae (“Ao Lancar o Dado”) [19, 20] publicado postumamente. Motivado por
sua participacao em jogos de azar, Girolamo apresenta estudos sobre as probabilidades
nos jogos de aposta. No século XVII, na célebre “Correspondéncia sobre o problema
dos pontos”, Blaise Pascal e Pierre de Fermat discutem como dividir de forma justa os
ganhos de um jogo interrompido, estabelecendo principios que fundamentariam a teoria
da probabilidade moderna [21]. Ainda nesse século, influenciado por essa correspondéncia,
o matematico e fisico holandés Christiaan Huygens publica o primeiro livro dedicado ao
tema, De ratiociniis in ludo aleae (“Sobre o Raciocinio nos Jogos de Azar”) [22]. Essas
contribuigoes pioneiras seriam aprofundadas nos séculos seguintes por estudiosos como

Jakob e Daniel Bernoulli, Laplace, Poisson e Gauss.

No século XVIII, Thomas Bayes — fil6sofo, matematico e pastor presbiteriano
— redige An Essay towards Solving a Problem in the Doctrine of Chances (“Um Ensaio
para a Solugao de um Problema na Doutrina das Chances”) [6, 23|, no qual apresenta
pela primeira vez o que mais tarde seria conhecido como Teorema de Bayes. Apds sua
morte, Richard Price edita e publica o manuscrito na Royal Society. Independentemente,

Pierre-Simon Laplace desenvolve resultados semelhantes.

Deixando de lado esta curta digressao histérica, damos um salto aos dias atuais
quando Leifer e Spekkens passam a caracterizar a mecanica quantica como uma generali-
zagao da teoria classica das probabilidades, formulando um novo arcaboug¢o matematico
baseado nas contribuigoes conceituais introduzidas pelas obras historicas anteriormente
mencionadas. Os autores observam que a formulacao matematica tradicional da teoria
quantica estd intrinsecamente vinculada a estrutura causal subjacente, o que resulta em
descrigoes distintas para experimentos envolvendo dois (ou mais) sistemas espacialmente
separados e para um mesmo sistema considerado em diferentes instantes temporais. Moti-
vados por esse contraste, propoem um formalismo operacional alternativo para a mecanica
quantica, com o objetivo de unificar, em um tnico arcabouco matematico, a descricao de

experimentos independentemente da estrutura causal em que estejam inseridos.

Sendo assim, o Isomorfismo de Choi-Jamiotkowski [24, 25] é empregado de modo
que o mapeamento que descreve a evolugao de um sistema quantico passe a ser representado
por um estado condicional, ou seja, uma matriz positiva semidefinida de trago igual a
identidade. Ao mesmo tempo que, por meio do isomorfismo, o estado condicional, associado
a experimentos envolvendo dois sistemas quanticos espacialmente separados, passe a ser
associado a um mapeamento. Dessa maneira, conforme discutido anteriormente, o FEC

busca unificar ambas as descrigdes em uma unica estrutura matematica. A Figura 1
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Causal
EBJA——> 0B|A

EBlA«———PBlA
Acausal

Figura 1 — Diagrama representando a relacao entre mapas e estados condicionais. No

caso causal assumimos que inicialmente temos o mapa como dado e via o isomorfismo de

Jamiotkowski obtemos o estado condicional. No caso acausal assumimos que inicialmente

temos o estado da regiao composta e via o isomorfismo de Jamiotkowski obtemos o mapa
associado.

Fonte: Autoria Prépria, 2025

apresenta uma esquematizacao das relagoes conceituais que serao detalhadas nas se¢oes

seguintes.

2.1 BREVE RESUMO DE PROBABILIDADE CLASSICA

Antes de introduzirmos as principais propostas do formalismo formulado por Leifer
e Spekkens em [4], faremos uma breve recapitulacao de alguns elementos da teoria de
probabilidade cléssica. Considerando R uma varidvel aleatéria discreta,! a probabilidade
de um evento arbitrario R = r acontecer é denotado por P(R = r). A soma sobre todos

os valores possiveis da variavel aleatoria R é,

> P(R) =1 (2.1)

Quando temos duas varaveis aleatérias R e S podemos caracterizar a probabilidade
conjunta dos eventos aleatérios que estas representam. A probabilidade conjunta de R e

S é dada como P(R,S). E a probabilidade marginal sobre S é definida como,

P(S)=> P(R,S). (2.2)

Uma observacao deve ser feita antes de avancarmos. Serd adotado durante o texto
a convencao de se somar sobre os outputs da variavel aleatoria, ou como veremos mais

adiante, do rétulo da regido quantica. Desse forma, a expressiao (2.1) é representada como,

> P(R)=1. (2.3)

L Por definicao, uma varidvel aleatdria é uma funcao que associa os resultados de experimentos

aleatérios a valores reais [5].
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Assim, partindo das probabilidades marginas sobre R e S e supondo que tenhamos

acesso a P(R,S), podemos, entao, definir a probabilidade condicional sobre estas varidveis.

A probabilidade de S dado R é definida como,

P(R,S)
P = —" 2.4
onde também podemos representar,
P(R,S) = P(S|R)P(R). (2.5)

O produto é feito elemento por elemento, isto é, Vr,s P(R =1,S =s) = P(S = s|R =
r)P(P =r). Além disso, a expressao (2.4) somente define uma probabilidade condicional

quando P(R =r) # 0.

2.2 SOBRE REGIOES

Um conceito fundamental e que utilizaremos durante toda a nossa discussao, e
exposicao de resultados, é o que chamamos de regidgo. Como apresentada em [4], uma regido
¢ um conceito elementar que pode ser entendido como uma pequena por¢ao do espago-
tempo onde um observador pode realizar uma unica intervencao durante um experimento,
como, por exemplo, realizar uma medi¢ao ou preparar um estado especifico. Cada regiao

elementar denominada A é associada a um espaco de Hilbert H 4.

Quando trabalhamos com varias regioes, a regiao associada a composicao destas
regides ¢ definida como o produto tensorial dos espagos de Hilbert associados a cada uma
delas. Em particular, o espaco de Hilbert associado a composicao de duas regioes disjuntas
A e B é representado como Hap = Ha ® Hp, sendo também os espacos, Hag € Hpa,

isomorfos.

Assim, quando temos regides compostas, podemos classificar a relacao causal

estabelecida entre estas de duas maneiras distintas.

o Regides casualmente relacionadas: aquelas onde uma tem uma influéncia causal

sobre a outra.

» Regides acausalmente relacionadas: aquelas onde uma nao tem influéncia causal na

outra, embora possam ter uma causa em comum.

No presente trabalho, representamos esquematicamente as regioes que sao acausalmente
conectadas por uma seta tracejada, enquanto as regioes que sao casualmente conectadas
sao representadas por uma seta continua, como apresentado na Figura 2. Como veremos
a seguir, neste formalismo a relacao de causalidade entre duas ou mais regidoes tem um

carater central.
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Figura 2 — Diagrama representando as relagoes de a) causalidade entre as regies. Uma

seta continua direcionada da regido A para a regiao B. Setas de linha continua serao

utilizadas para representar relagbes causais entre as regioes. b) Uma seta pontilhada entre

as regioes A e B. Linhas pontilhadas conectando duas ou mais regioes serao utilizadas
para representar relagoes acausais entre as regioes.

Fonte: Autoria Prépria, 2025

Em consonancia com [4], utilizamos a convencao de representar regides quanticas
com as letras que compoe o inicio do alfabeto A, B, C),.... As regides classicas, associadas
as variaveis aleatérias, sdo representadas pelas letras R, S, T, ... e as regioes classicas
associadas com procedimentos de preparacao de estados ou medi¢ao sao representadas
pelas letras X,Y, Z, ...

2.3 ESTADOS CONDICIONAIS ACAUSAIS

Uma vez estabelecidos esses conceitos, apresentamos a primeira analogia [4] relaci-
onando a teoria de probabilidade classica e o FEC. Seja R uma variavel aleatoria, a distri-
buicdo de probabilidade sobre ela é definida como P(R) da forma que ), P(R=r)=1e
Vr P(R =r) > 0. Logo, sendo a probabilidade classica dotada de tal comportamento,
esperamos que o operador andlogo quantico analogo tenha o mesmo comportamento.
Sendo assim, o operador andlogo é um estado quantico respeitando ps € Pos(Ha) e
Tr(pa) = 1, ou seja, é um operador positivo semidefinido® com traco 1. A exigéncia do ope-
rador ser positivo semidefinido decorre do fato da distribuicao de probabilidade respeitar
Vr P(R=7r)>0 e a exigéncia de Tr(ps) = 1 decorre do fato de que >, P(R=1r) = 1.

Dada uma distribuicao de probabilidade conjunta de duas variaveis aleatérias R e .S,
P(R, S) seu analogo quantico é um operador densidade pap € L(Hap), e a marginalizagao
é representada como o trago parcial sobre uma das regioes, definida da seguinte maneira:
pa = Trp(pap).

Portanto, associando a probabilidade classica aos operadores densidade, tal qual

Leifer e Spekkens em [4], estabelecemos as primeiras analogias, compiladas na tabela 1.

2 Um operador positivo semidefinido é tal que dado p € L(H) eV |[¢) € H, entdo (Y| p|) >0
[26].
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Probabilidade Classica Teoria Quantica

P(R) PA
P(R7 S) PAB
P<S) = ZR P(37 S) pPB = TTA(PAB)

Tabela 1 — Analogia entre teoria de probabilidade classica para duas variaveis aleatorias e
para teoria quantica com duas regioes.

Fonte: Autoria Prépria, 2025

Classicamente, P(S|R) ¢ uma funcdo positiva que satisfaz Y P(S|R) = 1. Analo-

gamente, no FEC temos,

Definicao 2.3.1. Um estado condicional acausal de B dado A é um operador positivo

semidefinido ppja € L(Hap) que satisfaz,

TrB(pB|A) :[A, (26)

onde I4 € L(Ha) é o operador identidade.

A conexao da defini¢ao 2.3.1 com a expressao (2.5) é estabelecida da seguinte

maneira,

pag = (p’ @ Ip)ppa(p{’ ® I), (2.7)

onde expressao (2.7) combina duas construgoes. A primeira, plA/ “e pB|A Sao combinados
via produto, entretanto tais operadores moram em espacos de Hilbert distintos. Para
contornar este problema, p4 é expandido para um operador p4 ® Ig € L(H ap) via uma
identidade® em L(Hp). E a segunda é, ao invés de apenas multiplicar pPBlA COM py, €
utilizado pz/ ? no intuito de garantir que o operador p4p seja positivo, pois expressoes da
forma ApA*, quando A*A = I, preservam a positividade (ver [26]). A expressao (2.7)
motiva definir uma operacao auxiliar, usualmente referenciada como produto estrela ou

link product [4].

Definicao 2.3.2. Seja M, N operadores pertencentes a L£L(H), o produto estrela entre M

e N é definido como,

() x () L(H) x L(H) = L(H)

(2.8)
(M,N)+— M+ N = NY2M N2,

Observacao: o produto estrela é ndo comutativo e ndo associativo.

3 Durante o texto algumas identidades serao omitidas. Por exemplo, o produto dos operadores

pag € L(Hag) e pp € L(Hp) deve ser entendido como papps = pajp(la ® pp). A notacio
assim torna-se mais compacta e nao traz prejuizos para a compreensao do texto.
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Probabilidade Classica Teoria Quantica

P(R,S) = P(S|R)P(R) PAB = PB|A X PA
P(S|R) = P(R,S)/P(R)  ppja = pap*py

Tabela 2 — Analogia entre distribui¢oes de probabilidade conjunta e condicionais classicas
e os estados quanticos equivalentes.

Fonte: Autoria Proépria, 2025

Com a definigdo do produto estrela, reescrevemos a expressao (2.7) como,
PAB = PB|A* PA- (2.9)

E, equivalentemente, se tivermos acesso inicialmente ao estado conjunto pap e seu estado

marginal ps = Trg(pag), o estado condicional é definido como,

PBIA = PAB * P4 - (2.10)

A tabela 2 estabelece as analogias entre a teoria de probabilidade classica e o FEC. A
distribuicao de probabilidade conjunta entre duas variaveis aleatérias é associado a um
estado conjunto da regiao composta Hp. Ao mesmo tempo, a probabilidade condicional
de duas variaveis aleatérias é associado a um estado condicional pertencente a regiao
composta H 4g. Assim, via o produto estrela, estabelecemos a conexao entre os operadores

quanticos e suas respectivas correspondéncias na teoria de probabilidade classica.

Observacao: tal qual a expressdao (2.4), que s6 estd definida quando P(R =) # 0,
o seu andlogo no FEC, a expressao (2.10) esta definida em L(supp(pa) ® Hp), onde
supp(pa) é o espago gerado pelo autovetores de ps que possuem autovalor diferente de

Zero.

2.3.1 PROPAGACAO DE CRENCA ACAUSAL

Dadas duas variaveis aleatorias R e S, considere que dispomos da probabilidade
condicional P(S|R) e da probabilidade marginal P(R). Podemos utilizar a propagagao de

crenca’ [4, 5] no intuito de caracterizar a distribuicio de probabilidade sobre S, isto é,

4 A crenga [27], como referida no texto, pode ser caracterizada como uma quantificagdo que
alguém que analisa um certo sistema atribui a probabilidade de um evento ocorrer. Uma
analogia que podemos usar para tornar esse conceito mais acessivel é: o autor desta dissertagao
tem uma crenga muito fraca de que ele seja um astronauta cantor de sertanejo, entretanto,
cré fortemente que esta vivo. Como dito na frase anterior, as crengas também podem ser
classificadas como fortes ou fracas. No contexto deste trabalho, as crencas sdo interpretadas,
analogamente ao que foi citado acima, como a probabilidade de que determinado evento ocorra
no sistema em analise.
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/S\
P(S) =) _P(S|R)P(R)

R

ACSW(P(R)) =) P(S|R)P(R)
R

Figura 3 — Diagrama representado um mapa linear que se assemelha a propagacao de

crenca na teoria de probabilidade classica, onde a variavel aleatéria R pode ser interpretada

como o input de um canal classico e a variavel aleatéria S pode ser interpretada como o
output do referido canal classico.

Fonte: Autoria Propria, 2025

P<S>7
P(S) =) _P(R,S)

=Y " P(SIR)P(R). 210

A expressao (2.11) assemelha-se com a especificagdo de um mapa linear da distribuigao de
probabilidades sobre a variavel aleatéria R para uma distribuicao de probabilidade sobre

a variavel aleatoria S, ou seja, (gr, definido por,
Csir(P(R)) = ) P(S|R)P(R) (2.12)

A Figura 3 esquematiza a semelhanga entre a propagacao de crenga classica e o mapa

linear.

Entao, a propagacao de crenca de uma regido quantica A para uma regiao quantica

B ¢ definida de maneira analoga,
pB = Tra(pap) = Tra(ppja* pa). (2.13)
Utilizado a identidade (A.15) do apéndice, a expressao (2.13) toma a forma,
pB = Tra(pplapa)- (2.14)

Ainda mais, de forma equivalente ao que foi feito acima, a propagacao de crenca no FEC

pode ser vista como a especificacdo de um mapa CPTP Epja : L(Ha) — L(Hp) tal que,
Epla(pa) = Tra(pplapa). (2.15)

Mapas CPTP sao aqueles que sao completamente positivos e preservam o traco.

Formalmente temos as seguintes defini¢oes [26],
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Defini¢ao 2.3.3. Seja um mapa linear & : L(H4) — L(Hp) onde H4 e Hp sao espagos
de Hilbert de dimensao finita. Dizemos que ® é completamente positivo (CP) quando,
para todo espaco de Hilbert de dimensao finita arbitraria Hz; e para todo operador
p € Pos(Haz), entao ® @ I4(p) € Pos(Hpz), onde Iz é a identidade em L(Hz).

Defini¢ao 2.3.4. Seja um mapa linear ¢ : L(H,) — L(H¢) onde Hy e He sao espagos
de Hilbert de dimenséo finita. Dizemos que ® preserva o trago (TP) quando Tr(p) =
Tr(®(p)) para todo p € L(H ).

Ainda mais, podemos estabelecer uma conexao entre o mapa CPTP Eg|4 e o estado
condicional pp|a, que aparecem na expressao (2.15), via o Isomorfismo de Jamiotkowski
[4]. Tal qual esquematizado na Figura 1, o isomorfismo associa mapas a operadores, ao

mesmo tempo que associa operadores a mapas.

Quando os mapas sao CPTP, o isomorfismo, tal qual sera enunciado no teorema
2.3.1, associa estados condicionais acausais a estes mapas ao mesmo tempo que mapas
CPTP sao associados a estados condicionais acausais. O Isomorfismo de Jamiotkowski

possui o seguinte enunciado [4],

Teorema 2.3.1. Isomorfismo de Jamiotkowski. Seja Epja : L(Ha) — L(HB) um
mapa linear e seja um operador Mac € L(Hac) onde He é um espaco de Hilbert de
dimensao arbitrdria. Entdo, a a¢io de Egja em L(Ha)(expandido com a identidade em
L(Hc)) € dada por,

(€pja ®@ ) (Mac) = Tra(ppaMac), (2.16)

onde ppja € L(Hap) € dado por
ppla = (Eplar ® HA))(Z 17} (Kl 4 @ [k) (Glar)- (2.17)
.k
A’ representa uma cdpia de A, Iy € L(Ha) € a identidade e {|j)} € uma base ortonormal
de Ha. Ainda mais, o operador ppa € um operador condicional acausal se, e somente

se, Eglao Ty ¢ CPTP, onde Ty : L(Ha) — L(Ha) denota a transposta parcial relativa a

alguma base.

Demonstragio. A relagdo entre a expressao (2.16) e a expressao (2.17) é dada da seguinte
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maneira,

(€A @ 1) (Mac) = (Epjar @ 1) ((Iar @ L) Marc(Ia @ Ie))
= (€pa ® HC)(Z k) (k| p Marc Z 17) (Gl ar)
= (Epja ® HC)(Z (k| Marc|5) ar [K) (Gl ar)

ij

= (Epa @Le) (D Trar(lf) (k| y Marc) k) (Glu)-

k’j

Considerando A = A’
= (Epa @ 1) Tra(d (15) (k4 @ ) (] 1) Mac)

= Tra((€plar ® HC)(Z(W (k|4 @ [k) (jla)Mac))
= Tl"A(pB|AMAC)- (218)

Agora, suponha que ppa seja um estado acausal. Logo ppa € Pos(Hag) e
Trp(ppja) = La4. Para mostrar que Epja 0Ty ¢ CPTP, primeiramente mostramos que tanto
Epja quanto T4 sao TP. Assim, sendo Muc =) la) (a'| ® |¢) {¢|, entdo,

aa’cc’

Tr(Mac) = Y Mawee (a]a) (d]a") @ ("|c) ('|")

aa’a cc'c’

== E Maa’ce! 5a//a5a’a” 50”050’0”

(lala”CC/C”

— Z ma”a”c“c”- (219)
Por outro lado,

Tr[(Ta ® Ie)Mac] = Tr[ ) maweeTa(la) (']) ® |c) (]

aa’cc’

E Maa’ce! 6(1”(1/ 5aa“ 60”050’0”

G/G/IQHCCIC”

= Z ma//a//cuc//, (220)
E portanto, concluimos que,
TI‘(MAc) = TI‘[(TA X IC)MAC]' (221)
Logo a transposta parcial ¢ TP. Agora, para mostrar que g4 ¢ TP fazemos,

Trp[€pja(Ma)] = Trp[Tra(ppaMa)l
= Tra[Trp(ppa) M4
= Tr(I4Mp,)
= Tr(Ma)

(2.22)
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Assim, concluimos que Epj4 é TP.

Para mostrar que £ o Ty é CP, notamos que esta composicao é justamente o mapa
de Choi [4, 25], ou seja, egja = £ o T4. Por definicao, o mapa de Choi isomorfo a um

estado acausal pp|a €,

(epla o Lo)(Mac) = (9" |y u PBIar @ Mac [67) 4 a0, (2.23)

onde [¢) =, ]jj) € o estado de Bell maximamente emaranhado e ndo normalizado e

Hce € um espacgo de Hilbert de dimensao arbitraria.

Para mostrar que o mapa de Choi é CP, nos voltamos a sua defini¢ao [4]. Sendo

epja = Epja 0 Ty, tomando pac € Pos(Hac) e um estado acausal ppja € L(Hap) temos,

(epaole)(pac) = (0" [au PB4 @ pac[6™) 4u - (2.24)

Por defini¢ao, um operador Mo € L(H ac) ¢ positivo semidefinido se para qualquer vetor
arbritario ) € Hac, (Y| Mac |10) > 0. Logo, o operador resultante na expressao (2.24) é

positivo semidefinido e, portanto, o mapa de Choi é CP.

Agora, assumimos que Egjq 0 Ty seja CPTP. Consequentemente g4 é TP, entao

pBla € um estado acausal valido. De fato,

Trp(ppa) = TTB[Z 17) (Kl @ Epar([k) (5] 40)]
= Z 17) (k|4 @ Trar(Epar(lk) (Gl 1))
= Z|j> (k|4 0

=31 Gl

= Ia. (2.25)

E por fim, notamos que,
pria = (epa @ La)(107) (67 [ 4a0)- (2.26)
O

Via o teorema 2.3.1, é possivel estabelecer uma conexao importante, o isomorfismo
de Jamiotkowski entre o mapa CPTP £pj4 074 com o estado condicional acausal ppj4. Tal
estado é responsavel por, no FEC, realizar a propagacao de crenca entre regides quanticas.

Isto é, tal qual (2.15), temos que,

Epla(pa) = pp = Tra(pplapa). (2.27)
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2.4 ESTADOS CONDICIONAIS CAUSAIS

Quando estamos interessados em caracterizar as probabilidades condicionais de,
digamos, duas variaveis aleatorias R e S, classicamente, nao temos nenhuma exigéncia
de estabelecer uma relacao causal entre elas. Ou seja, independente se ha ou nao relacao
causal entre as variaveis, a descricdo que a teoria de probabilidade usual oferece é neutra.

No intuito de transportar essa neutralidade para o FEC, define-se entao [4],

Definigao 2.4.1. Um estado condicional causal de B dado A é um operador 0B|A € L(Hap)

que pode ser escrito como,
T
OB|A = PEla> (2.28)

para algum estado condicional acausal pp4. A transposta parcial T4 é tomada com relacio

a alguma base de H 4.

Dado duas regioes quéanticas, uma no futuro da outra, por exemplo, considerando
a regiao B no futuro causal de A, tal relagao pode ser descrita por um mapa CPTP
epja s L(Ha) = L(Hp). Entao, tendo o mapa que conecta as regides causais, o seguinte

teorema caracteriza a conexao de g4 com um estado condicional causal.

Teorema 2.4.1. Seja epja : L(Ha) = L(Hp) um mapa linear e seja opja € L(Hap) 0
operador Jamiotkowski isomorfo ao mapa. Entdo, opa € um estado condicional causal se,

e somente se, epja for CPTP.

Demonstragio. Definimos ppja = Qg‘l‘ ', e consideramos Ep|4 0 mapa que é Jamiotkowski
isomorfo a pp4. Por hipotese temos que epj4 = Epja 0 T4. Da defini¢ao 2.4.1, gopja ¢ um
estado condicional se, e somente se pp4 for um estado condicional causal. Pelo teorema
2.3.1 ppja € um estado condicional se, e somente se Epjq 0 Ty for CPTP. Entao sendo

epja = Epja © Ty, decorre que pp4 € um estado condicional valido se, e somente se €p|4
for CPTP. n

Uma vez que gpj4 € o estado Jamiotkowski isomorfo ao mapa €4, sendo p4 um

estado inicial na regiao A, entao,

pB = €pja(pa) = Tra(opjapa)- (2.29)

A expressao (2.29) é o que chamamos de propagagao de crenga causal quantica.

Analogamente ao cenario acausal, pode-se definir um estado conjunto causal, tal

qual representado na expressao (2.9). Define-se entao [4],

Definicao 2.4.2. Um estado conjunto causal de duas regides casualmente relacionadas A

e B é o operador em L(H 5) dado por,

OAB = OB|A * PA- (2.30)
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A

P(T) = ) P(T|S)P(S)

A P(T) = Y P(T|S)P(S|R)P(R)

A

P(S) =Y P(S|R)P(R)

/R

Figura 4 — Diagrama representando a propagacao de crencga na teoria de probabilidade
classica. As probabilidades P(T') e P(S) sao combinadas a fim de se obter a probabilidade
condicional relativa a propagagao de crengas entre as regioes classicas R e T', isto é P(T|R).

Fonte: Autoria Prépria, 2025

A marginalizacao do estado conjunto causal ocorre tal qual o definido para o caso

acausal sendo,

p = Tra(oan) = Tra(opjapa)- (2.31)

2.5 COMPOSICAO DE ESTADOS CONDICIONAIS

Vamos supor agora 3 regioes associadas as variaveis classicas R, S e T, tal qual
ilustra a Figura 4. Assumimos que S esta no futuro de R, T esta no futuro de S e que
desejamos caracterizar a propagacao de crencas de R para T'. Classicamente, a propagacao

de crenga é representada da seguinte maneira. Inicialmente propagamos as crencas de R

e P(S)=>_P(S|R)P(R), (2.32)
e de S para T, T
P(T) =Y _P(T|S)P(S)
— Z P(T|S)P(S|R)P(R). (2.33)
Definindo,
P(T|R) =) P(T|S)P(S|R), (2.34)

podemos reescrever (2.33) como,

P(T) =Y _P(T|R)P(R). (2.35)
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Ainda mais, P(T'|R) define uma probabilidade condicional vélida, pois

Y P(TIR) =) P(T|S)P(S|R)

_ Z <; P(T!S)> P(S|R) (2.36)
=> P(S|R)
=1.

Além disso P(T|S) > 0 e P(S|R) > 0, assumindo que essas distribui¢oes de probabilidade

condicional sdo validas.

Nesse sentido, podemos naturalmente nos perguntar: qual o andlogo quantico da
propagacao de crenga quando analisamos um cenario semelhante ao descrito acima, isto é,
quando desejamos caracterizar a propagacao de crenca entre mais de duas regioes quanticas

casualmente relacionadas? O teorema abaixo d& uma resposta para essa questao.

Teorema 2.5.1. Sejam cpja, €c|p € €cja mapa lineares tal que ecja = cip © €pja. Entdo

o0s operadores Jamiotkowski isomorfos opa, 0c|p € 0c|a satisfazem,

ocia = Trp(oc|poB|a)- (2.37)

Por outro lado, se trés operadores satisfazem a expressio (2.37), entao os mapas Jamiol-

kowski isomorfos satisfazem ecja = €c|p © €p|a-
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Demonstragio. Pelo teorema 2.4.1 e considerando A’ uma cépia da regiao A, temos que,

ocia = (ecia ® HA/)(; 15) (kla © [K) (i].a0)
= z};ecm(Lﬁ <ZIA) ® k) (G0
= §;€C|B o epialli) (kl4) @ [k) (Gl
- éeo,B(m(@BM 17) (kL) @ [k (ilar
= i;eC|B(<k| esjali)a) @ [k) (il
_ ijwm (k| 0514 17) 4) © k) il
— ng (k| Trp(ociopia) [7)4 @ k) (Glar -

Considerando A = A’,
= Z k) (k| s Trp(ocioBia) |7) (514

ik
= O Ik) (kl, ® Ie)Trp(ociposa) (O 15) (i, @ 1)
k J
= (Ia ®Ie)Trp(ocipopia)(la ® Ic)
= Trp(oc|poB|a)- (2.38)

Por outro lado, temos que, para M4 € L(H4) arbitrério,

ecia(Ma) = Tra(ociaMa)
= Tra[Trp(oc|BoB|a)Ma]
= TrplociTra(opaMa)]
= Trploc|pepja(Ma)]
= €C|B(€B|A(MA))
= e 0 epja(Ma). (2.39)

]

O teorema 2.5.1 nos fornece o andlogo quantico da expressao (2.34). Um resultado

que pode ser diretamente derivado do teorema 2.4.1 é o seguinte corolario,

Corolario 2.5.1. Sejam ecja, €c|p, €p|B € €Bja mapas lineares tal que ecj4 = €c|p©Ep|B©

epja- Entdo os operadores Jamiotkowski isomorfos ocia, 0c|p, 0p|B € 0B|a satisfazem,

ocia = Trpe(0c|ipop|BOB|A)- (2.40)
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Por outro lado, se quatro operadores satisfazem (2.40) entdo os mapas Jamiotkowski

isomorfos satisfazem €cja = €c|p © €p|B © €BA-
Demonstracao. Partindo do teorema 2.4.1, temos que

€C|A = EC|B © €B|A (2.41)
¢é isomorfo a,
ocia = Trp(oc|B0B|A). (2.42)

Considerando ec|p = €¢|p © €p B, novamente pelo teorema 2.4.1, temos,

ociz = Trp(ocipop|B)- (2.43)

Assim, substituindo (2.43) em (2.42), encontramos,

ocia = Trep(0c|pop|BOB|A)- (2.44)
Por outro lado, para M4 € L(H 4) arbitrario,

ecia(Ma) = Trpp(ocipopiposaMa)
= Trp(ocipTre(op|BoBia)Ma)
= Trp(ocipopjaMa) (2.45)
=ecip o €pja(My)

=ecipoepipoepa(Ma).

2.6 OPERADORES HIBRIDOS

Quando consideramos a preparacao de ensembles ou medigoes em sistemas quanticos,
ou seja, processos fisicos, entdo, os mapas que representam tais processos sao CPTP. A
Figura 5 fornece um exemplo de medigao e outro de preparacao de estados. Sob a luz do
FEC, apresentamos aqui os operadores hibridos, que serdo os responsaveis por representar

tais processos. Utilizando o teorema 2.3.1 definimos,

Defini¢ao 2.6.1. Um operador hibrido sobre L(Hx4) é um operador da forma,

Mxa =Y |z) (x]x ® M, (2.46)

onde {|z)} é uma base preferencial em Hy e {M*} é um conjunto de operadores atuando
sobre L£(H ) rotulados por valores da varidvel aleatéria X associada a regiao cléssica
representada pelo espaco de Hilbert Hy. Os operadores M sdo referidos como os

componentes de Mx 4.
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Fonte Preparador Ensemble

a) 10)(0] @ pi Q

Sistema Medidor Pos Medigao
1)
, 1)(1
b) @ |10><10| E]M, A
o

Figura 5 — Diagrama representando os processos de medicao e preparacao de ensemble.
a) Uma fonte emite f6tons que passam por um polarizador. O polarizador por sua vez
rotaciona lentamente. Dessa forma os fétons que passam pelo polarizador em diferentes
instantes de tempo sao levados a estados distintos resultando em um ensemble. b) Um
sistema emite, ou nao, pares de fétons em tiques de tempo. Cada estado emitido em um
certo tique é representando por um qubit onde |0) significa que nao houve emissao e |1)
significa que houve emissdao. Os estados entdao sao enviados a um detector que realiza uma
medicao sobre eles e resulta em um outro estado.

Fonte: Autoria Prépria, 2025

Quando se trata de estados condicionais hibridos, estes podem ser vistos como de
dois tipos, que dependem diretamente de qual variavel sera condicionada. Para os sistemas
que serao analisados neste trabalho, utilizaremos somente o condicionamento na variavel
classica. Tais estados, representados da forma ox|4, sdo os estados associados ao processo
de medicao de um sistema quantico. Assim, o seguinte teorema caracteriza essa classe de

estados hibridos.

Teorema 2.6.1. Seja ox)4 um operador hibrido da forma,
oxia= Y _|z) (zly @ B (2.47)

para algum conjunto de operadores {EZ'}. Entdo, ox|a satisfaz tanto a definigdo de estado

acausal quanto de estado causal se, e somente se {EX} for um POVM sobre L(H.).

Demonstragio. Seja o estado hibrido ox|a,

oxia =Y _|) (x| ® B, (2.48)
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onde {E#} é um POVM. Entdo,
Trx(oxia) = > Tr(lz) () @ B!
— Z EA
— I, (2.49)

Ainda mais, para qualquer vetor arbitrario |¢) € Hax temos que (1| ox(a |¢)) > 0. Logo
o x4 satisfaz a definicao 2.3.1 e, portanto, ¢ um estado condicional acausal. Uma vez que

ox|4 ¢ um estado acausal valido, entao pela definicao 2.4.1,
oy =Y |x) (x| @ (BH)™, (2.50)

é um estado causal vélido. E uma vez que se {4} é um POVM entao {(E2)%4} também

forma um POVM, temos que,

Trx(oyity) = Y (EN™ = L. (2.51)

T

Supondo agora que ox|a ¢ um estado acausal, portanto oxja € Pos(Hxa) €
Trx(0xja) = Ia. Como ox|a é positivo semidefinido, isso implica que, para qualquer [1))
arbitrario em Hx 4,

(Yloxialy) > 0. (2.52)

Logo, pela arbitrariedade da escolha de |¢)) concluimos que cada um dos componentes de
o x|a devem ser localmente positivo semidefinidos, logo E? € Pos(H,). Como Tr x(oxa) =
Yow E# = I,, logo concluimos que EZ é um POVM. Pela definicdo 2.4.1, uma vez que

, . . 771 ~ T , 7
ox|a ¢ um estado condicional acausal valido, entao o X‘|‘ ', € um estado causal valido. [

2.7 TEOREMA DE BAYES QUANTICO

Dadas duas variaveis aleatérias R e .S, sua probabilidade conjunta, como apresentado
em (2.5), é da forma,
P(R,S) = P(R|S)P(9), (2.53)

ou ainda,
P(R,S) = P(S|R)P(R). (2.54)
Igualando as expressoes (2.53) e (2.54) obtemos

S|R)P(R)

PRIS) = 2 S (2.55)

A expressao (2.55) é o que chamamos de teorema de Bayes classico. O principal ponto

que nos interessa na expressao originalmente fornecida por Thomas Bayes [6, 23| é a
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possibilidade de reverter probabilidades condicionais. Por exemplo, ao considerarmos
a variavel S associada ao ato “fumar” e a variavel R for associada a “ter um ataque
cardiaco”, sendo a probabilidade condicional relacionada a estas varidveis “ter um ataque
cardiaco dado que fumou” P(R|S), além de considerar que temos acesso as probabilidades
marginais P(S) e P(R) e que ambas sao diferentes de zero, entdo, via (2.55), conseguimos

computar a probabilidade condicional “de ter fumado dado que teve um ataque cardiaco”
P(S|R).
O andlogo quéntico do teorema de Bayes pode ser definido de maneira similar ao

caso cldssico. Recordando a expressao (2.9), temos que,

PAB = PA|B * PB; (2.56)
ou ainda,
PAB :PB\A*PAo (257)
Logo, combinando as expressoes (2.56) e (2.57), obtemos,
pas = pia* (papp'). (2.58)

A expressao (2.58) é o que chamamos teorema de Bayes quantico para estados condicionais

acausais. Para os estados causais, temos similarmente,
oAl = 0B * (papp). (2.59)

Por fim, a tabela 3 sintetiza uma visao geral da estrutura do Formalismo de Estados

Condicionais e as suas analogias com a teoria classica de inferéncia Bayesiana.

Classico Quantico
Estado P(R) pA
Estado Conjunto P(R,S) TAB
Marginalizacao P(S)=> ,P(R,S) pg =Tra(oag)
Estado condicional P(S|R) oBlA

ZSP(S‘R):l TrB(O'B\A):[A
Relacao entre estados P(R,S) = P(S|R)P(R) 0B =0pja*pa

P(S|R) = &) OBlA = A * P4
Teorema de Bayes P(R|S) = % oaB = 0pa* (paps’)
Propagagao de crenga P(S) =), P(S|R)P(R) pp=Tra(opapa)

Tabela 3 — Tabela exemplificando a relagao entre a teoria de inferéncia Bayesiana classica
e o seu analogo quantico. A letra grega o foi utilizada como forma de mostrar a validade
de dadas expressoes tanto para estados causais quanto acausais.

Fonte: Esta tabela foi retirada diretamente da referéncia [4]

Terminamos esta secao recapitulando o que foi exposto aqui. Exploramos a proposta

de Leifer e Spekkens de um novo arcabouc¢o matematico que interpreta a mecanica quantica
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como uma generalizagdo da teoria de probabilidades classica [4]. A respeito do agora
intitulado FEC, explicitamos as defini¢oes fornecidas pelos autores. Partindo da ideia
primitiva de regiao, tal como elaborada no trabalho supracitado, introduzimos os estados
condicionais e as relagoes de causalidade que os permeiam. Em seguida, precisamos como
se d& a propagacao de crenca no FEC e apresentamos o isomorfismo de Jamiotkowski, que
nos permite associar os mapas CPTP a seus respectivos estados condicionais e vice-versa.
Por fim, com base nas defini¢cbes apresentadas, introduzimos o teorema de Bayes para

operadores condicionais.
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3 APLICACOES DO FORMALISMO DE ESTADOS CONDICIONAIS

Uma vez que temos o arcabougo necesséario para dar continuidade a nossa investi-
gacao, neste capitulo nos voltaremos a aplicar a estrutura anteriormente introduzida para

certos cendrios.

3.1 COMPARANDO A PROPAGACAO DE CRENCA

Como preludio da investigagao central que desenvolveremos neste trabalho, e que o
motiva, analisamos aqui o cenério esquematizado na Figura 6. Isto ¢, vamos supor que tudo
a que temos acesso sejam mapas CPTP conectando os espagos de Hilbert associados as
regioes classicas R, S, X e Y. Sob a perspectiva do FEC, como se estabelece a propagacao
de crenga entre as regioes X e Y7 Com base nesse mesmo exemplo, ao final desta secao
comparamos o resultado obtido via FEC com aquele derivado da teoria de probabilidades

classica.

Em consonancia com [4], para as varidveis aleatérias R, S, X e Y, na perspectiva
do FEC, escolhemos espacos de Hilbert com bases preferenciais, de tal forma que todos
os operadores podem assumir uma representacao diagonal. Assim, temos os espacos
Hr. Hs, Hx e Hy com as respectivas bases g = {[r)},21, Bs = {|s) 125, Bx = {|2)};2)
e fBy = {|y)}LE:Y1‘ A dimensao de cada espago de Hilbert corresponde a quantidade de
valores que a variavel aleatoria que rotula cada regiao classica pode assumir.

Sendo assim, embutimos a probabilidade classica conjunta de duas variaveis aleato-

rias R e S nos estados conjunto da seguinte maneira,

prs = ) P(R,S)|r) (r|®|s) (s|. (3.1)
PX|R |EX|R €y|S| PY|S

ES|IR
A/

Figura 6 — Diagrama esquematizando quatro regioes classicas e os estados condicionais.
Estao representadas as dinamicas que conectam casualmente as regioes, isto € ex|r, €g|r,
€y|s e seus respectivos estados condicionais associados px|r, ps|r € py|s.

Fonte: Autoria Prépria, 2025
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Conforme as regras estabelecidas na tabela 2, obtemos probabilidade marginal como,
ps = Tra(prs) Z P(S (3:2)

e a probabilidade condicional como,

psie = Y P(SIR)|r) {r| ®s) (s] . (3-3)

T8

Inicialmente, supomos que temos acesso as dindmicas que conectam as regides,’
isto é, conhecemos ex|r, €sir € €y|s. Temos assim os estados isomorfos® px|r, psir €
py|s. Além disso, dispomos de um estado inicial pr. Com isso podemos continuar a
busca do estado py|x (aqui pedimos que Vz,y P(X = z|Y =y) # 0). Precisamos entéo
determinar o estado conjunto pxg, andlogo a probabilidade conjunta P(X, R), conforme

definido na expressao (3.1). Logo,

PXR = PX|R* PR

= (P}gﬂ ® IX)ﬂX\R(/O}{/Q ® Ix)

= ZP P(X|R) |r) {r| @ |) (2] (3.4)
= ZP(X, R)|r) (r| ® ) (a].

Via marginalizagao,
px = Trr(pxr) ZP (3.5)

E pelo teorema de Bayes quantico, dado pela expressao® (2.58),
prix = Pxir* (PrOX')
= (0if* © L) (I @ px ) pxin(pif* © L) (I @ px"?)

- > AP0 b o k) o a0

= Y P(RIX)|r) (7] ® |2) (a]

L0 leitor pode se questionar o motivo dessa escolha. Justificamos: no nosso problema central,

tudo o que temos sdo as dindmicas causais que conectam regides distintas. Aqui, nesta secao,
queremos analisar o resultado considerando a mesma estrutura, porém aplicada a regides
classicas.

Como os estados condicionais cldssicos, no exemplo que escolhemos retratar aqui, sdo definidos
em uma base preferencial onde os operadores sdo diagonais, estes, por sua vez, sdo invariantes
sobre transposicao parcial. Portanto, os estados causais e acausais classicos tém a mesma forma.
Por isso que, mesmo assumindo que temos inicialmente acesso as dinamicas, representamos os
estados como p(.y.

Para evitar divisdes por zeros na solugao proposta, excluimos os casos em que P(X = x) =0
para um dado X = x.
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Como estamos tratando de probabilidade classica imersa no Formalismo de Estados
Condicionais, a inversao Bayesiana que fizemos acima nao traz muitos problemas, uma
vez que todos os operadores envolvidos permanecem positivo semidefinidos sobre todas
as operagoes que realizamos. Entretanto, nem sempre esta inversao é possivel quando
tratamos de estados causais mais gerais do que os classicos. Veremos uma discussao mais

ampla sobre este fato na secao seguinte.

Sendo assim, uma vez que possuimos acesso aos mapas CPTP que conectam as

regioes, via o teorema 2.4.1, temos

psin =Y P(S|R)[s) (s| @ |r) (|, (3.7)
pyis = Y P(Y[S)|y) (yl @ |s) (s]. (3.8)

Logo, via o corolario 2.5.1, conseguimos encontrar quem ¢ o estado que procuramos, isto é,
quem ¢ py|x, o estado que representa a propagacao de crenca da regiao X para a regiao

Y no diagrama 6. Sua forma é dada por,

py|x = TTrs(py|sps|RPR|x)- (3.9)
De modo que,

pyix = Trrs( ) P(Y|S)P(S|R)P(RIX) |y) (y| © |z) (x| @ [r) (r| @ |s) (s])

78,2,y

= Y PYIS)P(SIR)P(RIX)Tras(y) (yl @ [2) (x| @ |r) (r| @ ]s) (s]) (5.1

T?'S?x?y

= Y P(YIS)P(SIR)P(RIX)(y) (4] @ |1} (a]).

T7S7z7y

Por fim, verificamos se py|x ¢ um estado acausal. Pela defini¢ao 2.3.1 temos,

Try(pyix) = ) P(Y[S)P(S|R)P(RIX)|z) (x]. (3.11)
T,8,2,Y
Fixando S = s € I's e somando sobre todos os Y =y € I'y temos que ) P(Y[S) =1,
analogamente para R =7 € I'r e X =2 € I'y fixados, ), P(S|R) =1e ) P(R|X)=1.
Portanto,
Try(pyix) = _ |2) (x| = Ix. (3.12)

E assim concluimos que o estado py|x ¢ um estado acausal valido. Pela definicao 2.4.1
sabemos que gy|x = py|x, onde notamos que os estados puramente classicos sao invariantes

por transposicao parcial e, portanto, gy|x € também um estado causal vélido.

A expressao (3.10) é andloga a propagagao de crenga cléssica. Para evidenciar
essa conexao, tal qual foi feito na secao 2.5 para 3 regioes, vamos revisitar brevemente a

propagacao de crenca classica num cenario semelhante de 4 regioes.
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P(Y|X)?

/N

P(X) =) P(X|R)P(R)
)

>

P(Y) =) P(Y[S)P(S)

P(R) = Z P(R|X)P(X

>

) =) P(S|R)P(R)

:q@
W

Figura 7 — Diagrama representando a propagacao de crenca na teoria de probabilidade
classica entre as 4 regioes classicas R, S, X e Y. Buscamos qual a probabilidade condicional
responsavel por realizar a propagacao de crenga direta entre as regioes classicas X e Y.

Fonte: Autoria Proépria, 2025

Para isso, consideremos o diagrama contido na Figura 7. Temos,

P(Y)=>_ P(Y|S)P(S), (3.13)
P(S)=>_ P(S|R)P(R), (3.14)
P(R) =) _P(R|X)P(X). (3.15)
Substituindo (3.14) em (3.13) e depois sjbstituindo (3.15) em (3.13) obtemos,
P(Y)=> P(Y|X)P(X), (3.16)
onde,
P(Y|X)=) P(Y|S)P(S|R)P(R|X). (3.17)

Portanto, é possivel notar uma conexao entre a teoria de probabilidades classicas
com o FEC uma vez que voltamos as expressoes (3.17) e (3.10). Mais especificamente,

notamos que a expressao (3.17) aparece no estado condicional py|x dado pela expressao
(3.10).

Assim respondemos a pergunta inicial desta secdo. Quando embutimos as probabili-
dades classicas nos operadores condicionais associados ao exemplo que utilizamos, notamos,
via as expressoes (3.10) e (3.17), que a estrutura dos estados condicionais reproduz a
propagacao de crenca. Ainda mais, quando trabalhamos com estados condicionais classicos,
dada a escolha de uma base preferencial para o espaco de Hilbert associado, notamos
ainda que estes estados sao invariantes por transposicao parcial, nos permitindo inferir que
os estados causais e acausais tém a mesma forma, mantendo a neutralidade em relacao a

causalidade na inferéncia cléssica.
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Figura 8 — Diagrama representando medi¢oes simultaneas em duas regides A e B espa-

cialmente separadas. Onde representamos o estado conjunto das regides espacialmente

separadas A e B e os estados condicionais hibridos responsaveis pelas respectivas medigoes.
Tal cenario pode ser utilizado para representar experimentos do tipo EPR.

Fonte: Autoria Proépria, 2025

3.2 PROPAGACAO DE CRENCA EM SISTEMAS HIBRIDOS

Vamos nos voltar agora a para analise de um cenario no qual existem duas regioes
quanticas, A e B, acausalmente correlacionadas, e sao performadas medigoes simultanea-
mente nas respectivas regioes. As medi¢oes, como exposto na secao 2.6, sdo representadas
por estados condicionais hibridos causais ox|a € oy|p. Quando trabalhamos com cendrios
tal qual a Figura 8 apresenta, e buscamos correlacoes entre medicoes realizadas nas regioes
acausalmente relacionadas, estamos esquematizando experimentos do tipo EPR [18], que
serao explicados na préoxima secdo. Assim, buscamos aqui encontrar quem é o canal

associado a propagacao de crenga entre as regioes X e Y.

Como as regioes A e B sao acausalmente relacionadas, isto é, duas regioes espacial-

mente separadas, entao o sistema fisico das duas regioes é descrito por um estado conjunto

4
PAB-

Olhando para a probabilidade conjunta de duas varidveis aleatérias X e Y, podemos
a representar como,
P(X,Y) =) P(X,Y|A B)P(A,B), (3.18)
a,b
desde que assumamos a existéncia de uma distribuigao P(X,Y, A, B) [5]. Analogamente a

expressao (3.18) e considerando que duas medigoes conjuntas sao realizadas nas regioes

4 Como introduzido na secao 2.2 a representacao de experimentos espacialmente separados no

formalismo usual da teoria quantica é dado via um estado pertencente & regido composta. No
Formalismo de Estados Condicionais, modelamos tais experimentos espacialmente separados
como regioes acausalmente correlacionadas. Dessa forma, quando nos deparamos com essa
estrutura, o que temos inicialmente é um estado conjunto acausal entre as regides. Quando
temos a mesma regido em dois instantes distintos, o que temos no formalismo usual é uma
dindmica CPTP, assim, no Formalismo de Estados Condicionais, via o teorema 2.3.1 e 2.4.1,
obtemos inicialmente um estado condicional causal.
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quanticas A e B, entdo, pxy é entdao dado como

pxy = Trap((ox|a0v|B)paB). (3.19)

Poderiamos buscar uma representacao da expressao (3.19) onde tivéssemos uma depen-
déncia direta de ppj4. Assim, para isso, escrevemos o estado conjunto das regides A e B

COMO pap = pPB|A * Pa € via teorema de Bayes,

ox14 = 0ax * (pxpa')- (3.20)

Substituindo a expressao para pap € a expressao (3.20) na expressao (3.19) e utilizando

as propriedades apresentadas no apéndice , obtemos,

pxy = Trap{[oax * (pxpx )ovislppia* pal}

2 1/2 —1/2 1/2 1/2
/ QA|XPX/ Pa / QY|B/0A/ pB\ApA/ }

1/2 —1
= Trap{p¥’pa
= TrAB{p;(/ZQA\XP;(/QQY\BPBM}
= Trap{oy|BPBlAOAIX } * Px - (3.21)

Analisando a expressao (3.21), podemos constatar que, como supracitado, ela nos entrega,

em funcao dos estados condicionais que temos acesso, o estado conjunto.

Além disso, quando nos voltamos a expressao (3.21), notamos a emergéncia de um

estado condicional. Isto é, pelo corolario 2.5.1 obtemos,

pyvix = Trap{ov|spBjaoaix} (3.22)

Do teorema 2.3.1, sabemos que py |y é isomorfo a dindmica Ey|x.” Por fim, mais uma vez

pelo corolario 2.5.1, temos
Ey|x =¢€y|poEplacEax. (3.23)

O estado condicional associado em (3.23) é o responsavel por propagar as crencas do lado

direito do diagrama na Figura 8 para o lado esquerdo.

Caso tivéssemos escolhido trabalhar sobre o estado gy|p, realizando cdlculos seme-

lhantes aos descritos acima, obteriamos o estado conjunto,

pxy = Trap{oxjapasopy } * py. (3.24)

E, analogamente ao que foi feito acima, encontramos o estado condicional responsavel por

realizar a propagacao de crenca da direita para a esquerda como,

pxly = Trap{oxjapaposy}- (3.25)

5 Recordamos aqui que a letra £ é utilizada para representar dindmicas que sio relacionadas a

estados condicionais acausais.
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Figura 9 — Diagrama representando a propagacao de crenga da regidao X para a regiao Y,
ou seja, a propagacao de crenca da esquerda para a direita.

Fonte: Autoria Proépria, 2025

ii Exiy =€xjac€apoepy iz

0Xx|A oBly || QY|B

ol

Figura 10 — Diagrama representando a propagacao de crenga da regiao Y para a regiao X,
ou seja, a propagacao de crenca da direita para a esquerda.

Fonte: Autoria Prépria, 2025

Sendo o estado (3.25) isomorfo a dindmica Exy : L(Hy) — L(Hx), que tem sua forma
como,

Exly =exjac€apoep)y. (3.26)

As Figuras 9 e 10 exemplificam esses dois casos de propagacao de crenga. Tanto o caso da

esquerda para a direita quanto da direita para a esquerda.

Como trabalhamos com o estado condicional acausal pp|4 e com os estados hibridos
0x|4 € Oy|p hao tivemos nenhuma restricio na obtencao de py|x, uma vez que a inversao
bayesiana nao encontra limita¢oes quando consideremos tais estados (nas préximas segoes

analisaremos um caso em que as inversoes bayesianas encontram uma limitagao).

Assim, concluimos esta secao, ao analisar, sob a perspectiva do FEC, quais a
correlagoes que obtemos quando consideramos, por exemplo, cenarios que podem ser
utilizados para simular experimentos do tipo EPR, isto é, duas medic¢oes sao realizadas
conjuntamente em duas regides quatnicas. Tendo conhecimento do estado conjunto das

regides acausais A e B e dos estados hibridos associados as medic¢oes respectivas medigoes,
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obtivemos o estado conjunto relativo aos outcomes das medigoes, as expressoes (3.21) e
(3.24) os explicitam, onde também consideramos a propagacao de crenga da esquerda para

a direita e da direita para a esquerda.

3.3 O GATO DE SCHRODINGER

Nesta secao, utilizaremos uma releitura do experimento do gato de Schrédinger,
proposto em 1935 por Erwin Schrodinger [28], sob a perspectiva do quantum steering [4,
29, 30] e do Formalismo de Estados Condicionais. Considerando um sistema emaranhado,
que serda modelado como um estado conjunto de duas regioes quanticas espacialmente
separadas, estudaremos como a atualizacdao das crencas de uma regiao ocorre quando
evidéncias sao adquiridas a partir das crengas de outra regiao. Em outras palavras, como
enunciado por Schrodinger [29], estudaremos como “o estado de um sistema é direcionado

por experimentos realizados em outro sistema”.

O experimento original consiste num cenario hipotético no qual um gato é colocado
em uma caixa hermeticamente fechada (hermeticamente no sentido de nenhuma influéncia
externa afeta o interior da caixa) com um mecanismo que depende de um evento quantico
aleatorio. Como proposto por Schrodinger, o gato encontra-se dentro da caixa e, junto
dele, um frasco com veneno, um martelo e um detector do tipo Geiger. Caso o detector
registre o decaimento radioativo de um atomo, ele dispara o martelo que quebra o frasco
com veneno e o gato morre; caso contrario, o gato continua vivo. Na interpretacao de
Copenhague [13], enquanto nao se observa o sistema, nada se pode inferir com certeza
sobre seu estado. O gato entdo encontra-se em uma superposicao quantica dos estados
“gato vivo” e “gato morto”, até que ocorra uma medi¢gao, momento em que a funcao de

onda colapsa [11]. Formalmente o estado do gato é representado como
|¥) = a |vivo) + [ |morto) , (3.27)

e a abertura da caixa forga o sistema a um dos estados.

Sendo assim, a nossa releitura se estrutura da seguinte maneira. Em duas salas,
espacialmente separadas, encontra-se, em uma, Alice e na outra, Bob. Na sala de Alice,
a qual chamaremos de regiao A, ha um gato. J4 na sala em que Bob se encontra, a
qual chamaremos de regiao B, ha uma caixa fechada com o mesmo aparato interno do
experimento original. As duas regioes A e B, as quais associamos os espacos de Hilbert
H 4 e Hp respectivamente, sdo entdao vistas como regides acausalmente relacionadas. Além
disso, ha um tubo conectando a boca do gato a caixa da forma que, caso o frasco de
veneno se quebre, este chegue até o gato. Bob, entao, decide realizar uma medicao na
caixa a fim de constatar se o detector acusou o decaimento do atomo e o frasco de veneno

foi quebrado.®

6 Realizar uma medicao aqui pode ser visto como olhar para um mostrador que acusa qual a



43

Figura 11 — Diagrama esquematizando duas regioes quanticas acasaulmente relacionadas

e uma regiao classica. No cenario da releitura do gato de Schrodinger sob a perspectiva

de quantum steering, Alice e o gato se encontram na regiao A enquanto Bob e a caixa

se encontram na regiao B. A regiao classica Y é a responsavel por capturar o estado da
regiao quantica B apés a medigao.

Fonte: Autoria Prépria, 2025

Portanto, considerando o experimento do gato como um problema de quantum
steering [31], o ponto central da discussao torna-se: utilizando o FEC [4], quando Bob
escolhe certas medigoes sobre o sistema em sua regiao, ele consegue predizer com certeza

os resultados das medicoes realizadas por Alice em sua regiao?

Discussoes profundas ainda ocorrem, até os dias de hoje, sobre a natureza desse
fendmeno. Em um breve contexto histérico, como explicam Einstein, Podolsky e Rosen no
classico artigo “Can Quantum-Mechanical Description of Physical Reality Be Considered
Complete?” [18], a teoria quantica, conforme interpretada, ndao fornece os chamados
“elementos de realidade” Segundo os autores, os elementos de realidade sdo caracterizados
como: “Se, sem de forma alguma perturbar um sistema, podemos prever com certeza
(isto é, com probabilidade igual a um) o valor de uma grandeza fisica, entdao existe um
elemento da realidade fisica correspondente a essa grandeza”. Ainda no mesmo trabalho, os
autores fornecem um exemplo onde os referidos “elementos de realidade” sao violados, ao
considerarem um estado envolvendo duas particulas, observa-se que, dadas as correlagoes
entre seus estados, medigoes realizadas em uma das particulas poderiam ser usadas para

prever os resultados de medigdes na outra particula [32].

Logo depois, Schrodinger [28] discute esse fendmeno e observa que, ao se considerar
sistemas compostos por duas (ou mais) partes correlacionadas, medigoes realizadas em

uma parte “direcionam” o estado das demais partes.

Diante de tais fenémenos, Einstein, Podolsky e Rosen argumentavam, ainda no
artigo EPR [18] que qualquer descrigao fisica valida deveria conter elementos de realidade;
do contrario, a teoria estaria incompleta. Para superar essa limitacao, os autores sugeriram

a introducao de variaveis ocultas.

leitura do contador Geiger que estd dentro da caixa ou abrir a caixa e verificar em qual estado
esta se encontra.
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Em 1964, John S. Bell, no artigo “On the Einstein—Podolsky-Rosen Paradox” [33],
derivou uma desigualdade que toda teoria realista local de variaveis ocultas deveria satis-
fazer, mas que é violada pela mecanica quantica. Experimentos subsequentes confirmaram
essas violacoes, e, em 2022, Alain Aspect, John F. Clauser e Anton Zeilinger receberam o

Prémio Nobel de Fisica por evidenciarem experimentalmente as viola¢oes das desigualdades

de Bell [34, 35, 36, 37, 3.

Entao, para analisar tal fendmeno a luz do FEC, a regido A onde se encontra o gato
associamos um espago de Hilbert bidimensional H 4 com uma base 3, = {|M),|V)}, onde
|M) (]V')) descreve o estado do gato morto (vivo). Analogamente, a regidao B onde esta a
caixa associamos um espago de Hilbert bidimensional Hp com uma base Sy, = {|1), [4)}
onde |1) (]4)) corresponde ao estado do 4tomo quando este nao decaiu (decaiu). Dessa

forma, podemos descrever o estado conjunto do gato-caixa em H 4p como,

1

WJ)AB \/5

Partindo da expressio (3.28) podemos obter o operador densidade referente ao estado do

(N M) +[1V)). (3.28)

gato pertencente ao L(Hap),
pag = |¥) (V] 5 (3.29)

Isto é,
pan = 514 M)+ [T V) M + {1 V)

= %(H) (Ha [M) (M| + 1) (1@ [M) (V] + 1) (@ |V) (M| +[1) (T @ [V) (V]).
(3.30)

Assim, pela expressao (2.10), o estado condicional é da forma,

PBIA = PAB* P4 - (3.31)

Para determinamos a forma explicita da expressao (3.31), uma vez que temos pap, neces-

sitamos ainda obter p4. Para isso realizamos a marginalizacao,

pa=Trp(pan) (3.32)
Uma vez que,
Tr([t) (1) =Tr(lh) () =1, (3.33)
Tr(|t) (L) = Tr(l) (1) =0,

obtém-se que,
1
pa=5(IM) (M| + V) (V]). (3.34)

E a expressao (3.31) toma a forma,

puia = pap*pat = (g ® " pas(Is @ py"?). (3.35)
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Como ps € Pos(H,), entdo,

pa"t = (pi*) 7t = V2(M) (M| + V) (V). (3.36)
Na forma matricial, temos,

- “12 V2 0
PA—( %>, Pa _<O \/5>, (3.37)

substituindo (3.36) em (3.35), obtemos,

O NI
@)

pia = (1) (H@[M) (M|+[]) (t|@[M) (V]+1) (V) (M]+[1) (T [V) (V]). (3.38)

Da defini¢ao 2.3.1 podemos verificar se ppj4 ¢ um estado acausal vdlido entre as regioes A
e B,

Trp(ppa) = |M) (M| + V) (V] = L. (3.39)
Conclui-se que de fato pp|4 ¢ um estado valido. Pela caracterizagao fornecida via o teorema

2.6.1 sabemos que o estado condicional hibrido gy|p ¢ da forma,
ovis= Y, WL, (3.40)
ye{y1,y2}

onde {Ef } é um POVM. Para a regido cldssica Y associaremos um espago de Hilbert
Hy bidimensional com uma base Sy, = {|v1),|y2)}. A escolha de Hy ser bidimensional
justifica-se no fato de que a caixa possui dois tnicos estados: decaiu e ndo decaiu. Assim,

pelo teorema 2.5.1, isto é, ao realizar a composicao dos estados condicionais,
pyvia = Trp(oyv|BpBla)- (3.41)
Avaliando o termo, oy|gpp|a,

ovispBIA = (0vis ® L4)(Iy @ pp)a)
= > (I») Wl E} @ L)y @ paa). (3.42)

ye{y1,y2}

O que nos leva a,

pria= D )yl (Tr(B] 1) (L) IM) (M| + Tr(E] 1) (1) M) (V] +
ye{y1,y2} (3.43)

+Tr (B, 1) (L) [V) (M| + Tr(E] 1) (1) [V) (V]).

Via o teorema de Bayes no FEC, tal qual explicitado em (2.58), fazemos a inverséo,

paly = pyja* (papy’). (3.44)

Para calcular a expressao (3.44), precisamos obter py, uma vez que ja temos py(a € pa.

Obtemos py aplicando a propagacgao de crenga da regiao B para a regiao Y, assim,

py = Trp(ov|Bpn), (3.45)
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onde pp pode ser obtido via marginalizacao do estado conjunto,

o = Tealpas) = 5 (1) {1+ 1) (1) (3.46)

Entao,
py = Tre(ov|rB)
=Top(5( 3 ) ol @ BRI © (1) (1 +14) (1)

ye{y1,y2}

= D 1v) W T(E ps).

ye{y1,y2}

(3.47)

O termo P, = Tr(E;/B pp) € a probabilidade de se obter cada uma das possiveis saidas, de
medi¢oes do POVM {E[}. Assim,

py =Y. Pl l, (3.48)

ye{y1,y2}

e a forma matricial de py é,

Py 0 (B0
= y prm— . 3.49
Py ( 0 Py2> Py ( 0 Plgl ( )

Na expressao acima ambas as probabilidades P, e P,, sao exigidas como nao nulas.

Finalmente, obtemos,

payy = pyja* (papy’)
-1

P
= D 5l Wl Tr(E] 1) (L) IM) (M| +Tr(E] ) () [M) (VI + (3.50)

2
ye{y1,y2}

+Tr(E] 1) () V) (M]+Tr(E] 1) (1) [V) (V]

Nossa tarefa agora é encontrar qual é o POVM responsavel por sinalizar corretamente
o estado da caixa que Bob presenciou. Para isso, de acordo com [39], tendo o vetor de

estado (3.28), podemos determinar o POVM da seguinte maneira,

1(Try @ La) [U) 45 17 = %Ki M[+ (t VI[[(Tyy @ L) (Tyy @ L[} M) + [t V)]. (3.51)

Onde,
Toy="Tp+7, =1 (T + 1) - (3.52)

Os termos T’(*,)T(.) sa0 0s nossos respectivos elementos de POVM. E em consequéncia de
(3.51), temos
Y, =) | = EZ,
=1 = B )
T, = 1) (1] = L.
E como deve ser,
> EY=1Is (3.54)

yE€{y1,y2}
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Agora que temos pay e o POVM correspondente, podemos responder a pergunta que
iniciou esta secao. Quando Bob realiza uma medicao sobre a caixa e, digamos, o outcome 1,
é selecionado como deve se atualizar o estado do gato a luz de novas evidéncias? Tomando
o elemento de POVM EZ

y=yb»

-1

PAY =y = P% ly1) (al @ (Tr([4) (L) M) (M +Tr([4) () [M) (V)

Pfl (355)
= =5~ lyn) {pil @ [M) (M].
Sendo o estado de A apos a atualizacao,
P—l
_
pa =~ M) {M], (3.56)
e quando P, = P, =1/2,
pa = |M) (M]. (3.57)

Assim, constatamos que, uma vez que Bob infere que o estado da caixa foi atualizado para
“decaiu”, entao ele consegue predizer que o estado do gato que esta na presenca de Alice
¢ “morto”. Caso Bob tivesse inferido que o estado da caixa fosse “nao decaiu”, ele entao

conseguiria predizer que o estado do gato é “vivo”, ou seja,
pa=IV)(V]. (3.59)

Por fim, nesta secao estudamos o problema do gato de Schrodinger modelado como
um caso de quantum steering, sob a perspectiva do Formalismo de Estados Condicionais.
Uma vez que Bob constata que o 4tomo radioativo decaiu’ e tem acesso ao estado do
sistema composto gato-caixa, como observado por Schrodinger [29], sua medigdo sobre
a caixa “pilota o estado do gato” para o estado morto. Isto é, sem sequer interagir com
o sistema que estéd na presenca de Alice, Bob é capaz de determinar o estado em que o
gato se encontra. Essencialmente, o que mostramos nesta se¢do é como o FEC reproduz o

problema de quantum steering.

7 Considera-se que, em 100% das vezes em que ocorre o decaimento, este é detectado pelo
contador Geiger presente na caixa, acionando o martelo que quebra o frasco de veneno.
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4 O PROBLEMA DE COARSE-GRAINING

Quando uma medicao é realizada sobre um sistema quéntico e o aparato de medicao
que o acessa apresenta limitagoes, surge a necessidade de uma descrigio efetiva que auxilie
a contornar tal obstdculo. Nesse contexto, estrutura-se nossa investigagao central e
que sera discutida neste capitulo. Buscamos quais a condigoes necessarias e suficientes
para emergéncia de uma dindmica entre as regides coarse-grained. Para elaborar essa

investigagdo, recorremos ao FEC.

Mais especificamente, nos voltaremos a investigar um sistema, associado a um
espago de Hilbert Hp (dim Hp = D), que é acessado por detectores incapazes de distinguir
todos os graus de liberdade disponiveis [40]. Logo, surge a necessidade de uma descrigao
efetiva, e entao utilizamos o método de coarse-graining [40, 41, 42, 43] como uma ferramenta
matematica para obter dada descricao. Apds o processo de coarse-graining, a analise passa
a ser realizada em um espago de Hilbert Hy (dim#Hy = d), onde d < D. Formalmente,
essa transi¢ao é representada por um mapa CPTP Acg : L(Hp) — L(H4). O diagrama

da Figura 12 mostra de forma esquematica a situacao.

Um exemplo de coarse-graining [40] til para visualizar e compreender tais processos
é o seguinte: em um laboratério ha um emissor de fétons com duas saidas, podendo emitir
ou nao fétons simultaneamente. Cada saida do emissor gera um qubit, onde |1) representa
emissao e |0) a auséncia dela. O sistema conjunto dos dois emissores ¢ descrito como um
sistema bipartite qubit-qubit e pode ser representado pela base {|00),|01),|10),|11)}.
Esse sistema é medido por um detector borrado, incapaz de distinguir qual saida emitiu
(ou nao) o féton, tratando os estados |01) e |10) como equivalentes. Além disso, ao receber

um féton vindo de um tinico emissor, o detector se satura, e a leitura de duas emissoes

Figura 12 — Diagrama da representacao do problema de coarse-graining e dinamica

emergente. As duas regides inferiores conectam-se por uma evolucao unitaria Uy e as

regioes superiores sao atingidas pela a acao do coarse-grainig Acg. A dindmica efetiva 'y
conecta as regioes coarse-grained.

Fonte: Autoria Prépria, 2025
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Figura 13 — Diagrama representando de forma esquematica a emissao de um estado
bipartite |10), e da leitura deste estado pelo detector borrado e saturado, levando a saida

).

Fonte: Autoria Propria, 2025

|11), ou a leitura de uma tnica emissdo, |10) ou |01), acusam o mesmo output. Como
consequéncia, o detector nao acessa todos os graus de liberdade disponiveis no sistema,
assim, os estados bipartite |10) ,|01),|11) apresentam leitura |1) e o estado bipartite |00)
tem leitura |0). A Figura 13 esquematiza esse cenario. Nesses casos, justifica-se a utilizagao
de coarse-graining, uma vez que uma descricao efetiva se faz necessaria para lidar com as

limitagoes de medigao impostas pelo detector [40].

Dessa maneira, o cenario que sera investigado aqui é tal qual o apresentado na
Fig. 12, isto é, considerando que na parte inferior do diagrama temos uma evolugao unitaria
Ur e nos bragos verticais temos o coarse-graining Acg, desejamos encontrar uma dindmica

Up: L(Ha) = L(Ha) tal que o diagrama da Figura 12 comute. Isto é,

FT o} AC’G = ACG o) Z/{T. (41)

O subscrito T' que se apresenta tanto em 'y quanto em Ur, na expressao (4.1),
¢é justificado pelo seguinte fato: quando trabalhamos com duas regioes casualmente
conectadas, tal qual a Figura 14 esquematiza, podemos interpreta-las como a mesma
regidao em dois instantes de tempo distintos.! Formalmente, evolucdo temporal de sistemas
quénticos é descrita pelo operador unitario Uy : L(Hp) — L(Hp), definido no espago das
transformacoes lineares de ‘Hp. Assim, dado um estado inicial py € L(Hp), sua evolugido
temporal é dada como pr = Ur(py) = e~ i poe¥, onde h é a constante de Planck
reduzida. Essa formulagao assegura que a dinamica preserva a completa positividade e a
normalizagdo do estado pr [26, 39], caracteristicas fundamentais para a consisténcia fisica

da descricao quantica.

Assim, construimos nossa solugao assumindo que temos o conhecimento das dinami-
cas causais que conectam as regioes, sendo a evolugao unitaria e o coarse-graining, tal qual
ilustra a Figura 12. Utilizando os resultados derivados do FEC [4, 26, 39], estabelecemos os

estados condicionais associados a cada dindmica e buscamos encontrar o estado condicional

I Uma evolugao unitdria é mais geral do que somente a evolu¢ado temporal. Mais adiante

veremos o caso da unitaria SWAP.
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Figura 14 — Diagrama esquematizando duas regioes quanticas. A regiao B é obtida como
a acado de uma evolucao unitaria sobre a regiao A.

Fonte: Autoria Prépria, 2025

associado a propagacao de crencga entre as regioes coarse-grained. Consequentemente,
propomos 't como a composi¢cao das dindmicas isomorfas a cada estado condicional, ou
seja, 't = epjc = ep|poepjaocac. Entretanto, o formalismo apresenta limitacoes quando
necessitamos computar €4 [4]. Para lidar com esse desafio, derivamos, dentro do FEC, o

analogo ao mapa de Petz [8] que auxiliard para contornar as dadas limitacoes.

4.1 MODELANDO O PROBLEMA DE COARSE-GRAINING NO FEC

Efetivamente, qual é o cendrio que trataremos? Este se estrutura da seguinte
maneira. Consideremos duas regides quanticas A e B descritas, respectivamente, por
espacos de Hilbert H4 e Hp. Por simplificagdao, tomaremos H, = Hp. As regides A e
B sdo conectadas por uma dindmica unitdria que é dada como Uy : L(Ha) — L(HB).
Essencialmente o que temos aqui é a regiao B no futuro causal da regiao A, tal qual ilustra

a Figura 14.

Esse sistema ¢, entao, medido por um detector incapaz de acessar todos os graus
de liberdade disponiveis, tornando a descricdo completa do sistema supérflua ou mesmo
inacessivel.? Para contornar essa limitacdo, recorremos ao coarse-graining, com o objetivo
de obter uma descrigdo efetiva. Para isso, aplicamos a dindmica Acg : L(Hp) — L(Ha)
sobre as regioes A e B, mapeando-as para novas regioes que denominamos C' e D. A

Figura 15, esquematiza a aplicagdo desta dindmica sobre as regides A e B.

Uma vez que o sistema em analise esta sujeito a evolucao unitaria e ao coarse-
graining, nos perguntamos quais sao as condi¢oes necessarias e suficientes para garantir
a existéncia de uma dindmica® 'y que faca o diagrama comutar? Como explicitado na
expressao (4.1). A Figura 16 esquematiza essa dindmica emergente junto ao mapa de

coarse-graining e da evolugdo unitaria.

Uma observacao deve ser feita antes de avancarmos em nosso trabalho. Quando
nos voltamos para investigacoes focadas em encontrar as condigoes necessarias e suficientes

para emergéncia de dinamicas como ', podemos observar que nem sempre tais condigoes

2 E importante frisar que usamos o problema da medi¢do aqui como uma motivagao para

estabelercemos nosso problema de coarse-graining.
Recordamos o leitor, que, como introduzido no inicio deste capitulo, o subindice T é utilizado,
pois a evolucdo unitaria utilizada é a evolugao temporal.

3
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Figura 15 — Diagrama esquematizando a atuacao da dinamica de coarse-graining nas
regides A e B e obtendo como consequéncia respectivamente as regides C' e D.

Fonte: Autoria Prépria, 2025
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Figura 16 — Diagrama esquematizando as quatro regioes quanticas, as dindmicas quanticas
e os estados isomorfos. Novamente a dinamica emergente 'y conecta as regides apds o
coarse-graining.

Fonte: Autoria Proépria, 2025

existem. Para endossar esse fato, trazemos como exemplo o sistema esquematizado no
diagrama da Figura 17. Tal sistema consiste, por um lado, na realizacao do traco parcial
sobre B (o que deve ser entendido como a eliminagao da segunda entrada). Por outro
lado, é aplicado um SW AP entre os estados |00) e |01), os levando para |00) e |10),
respectivamente. Dessa forma, conforme esquematiza a Figura 17, encontrar uma dinamica

I'r implicaria encontrar, simultaneamente,

(4.2)

O que é um absurdo, pois I'r sequer é uma funcao. Concluimos, assim, que I'r nao existe

para certas escolhas de dinamicas CPTP que atuardo sob o sistema em analise.
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--------------- >|0)
|O>=3:: _________________ >|1>
Trp Trp
00) 00)

01)" SWAP |10

Figura 17 — Diagrama representando o SW AP nas entradas de um vetor de um sistema

bipartite e o Trp é o traco parcial na segunda entrada. Sendo tais escolhas de coarse-

graining e de unitaria, e dado os estados da regiao inferior, nota-se que neste caso nao ha
dindmica emergente que faz o diagrama comutar.

Fonte: Autoria Prépria, 2025

Nosso problema se configura da seguinte forma. Tudo o que temos acesso, como
ilustrado no diagrama da Figura 16, sao as dinamicas causais que conectam as regioes
quanticas. Isto é, temos como dados iniciais ecja,€pja € €p) 5. Uma vez que aplicamos
o isomorfismo de Jamiotkowski para estados causais tal qual explicita o teorema 2.4.1,
encontramos os estados isomorfos as respectivas dinamicas, denotados por oc(a, 0Bja €

opip- Além disso, temos como dado inicial um estado de A, ou seja, temos um p4.°

Uma vez que temos acesso aos estados condicionais causais que conectam as regioes,
podemos analisd-los com mais detalhes. Pela definicao 2.4.1 de um estado causal, temos

que estados causais sao dados pela transposta parcial do estados acausais, ou seja,
T
oB|lA = PBTA- (43)

Entretanto, quando nos voltamos a expressao (4.3), nos deparamos com algumas
limitagoes. E estas, por sua vez, tém impacto direto no desenvolvimento da nossa proposta.
A transposicao parcial de operadores positivos semidefinidos, pode, em alguns casos,
levar o operador a perder sua completa positividade, embora este permaneca localmente
positivo. Para visualizar melhor esse argumento, analisemos brevemente o seguinte estado

condicional acausal,

ppja = [1) (1] @ |1) (1] + 1) (0] © [1) (O] + [0) (1] @[0) (1] + |0} (O] @ [0) (O], (44)

Aqui, iremos nos referir as dindmicas causais de forma genérica, ou seja, quando escrevemos
£(.)|()> estamos tratando de mapas CPTP. No diagrama representado na Figura 16, a dindmica
£p|a € equivalente a evolugdo unitéaria Uy .

5 Também iremos nos referir a estados desta forma como estados input.
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e sua representacao matricial,

pB|A = (45)

_ o O =
o O O O
o O O O
_ o O =

O operador acausal representado em (4.4) pertence aos Pos(H ap) e pode-se constatar que
todos os seus autovalores sdo nao negativos, isto é, spec(ppja) = {0,0,0,2}. Ja o operador

causal, que é obtido tal qual a expressao (4.3), é da forma,
oBia = pgia = 1) (L@ 1) (1] +[1) (0] @[0) (1] + 10) (1| @ [1) (0] + |0) (0] @ [0) (O], (4.6)

e tem sua representacao matricial como,

084 = (4.7)

o O O =
o = O O
S O = O
_ o O O

Quando computamos seus autovalores, encontramos spec(opja) = {1,1,1, —=1}. Portanto,
concluimos que o5 ¢ Pos(Hag).

Utilizando os dados que temos disponiveis, nossa sugestao se configura da seguinte
maneira. Estabeleceremos o estado causal gop|c e iremos utilizar o isomorfismo de Jamiot-
kowski para estados causais, tal qual explicita o teorema 2.4.1, para encontrar a dinamica
associada a este estado. Tal dindmica, representada como p|¢, ¢ quem sugerimos como

um possivel candidato para I'r.

Para isso, uma vez que temos posse dos estados op|B, 0Bja € 0cja. Propagamos as

crencas entre as regioes D e C como,

opjc = Tra(opjaoaic)- (4.8)

Na expressao (4.8) nao temos a regido B aparente, e de fato podemos omitir sua presenga.

Entretanto, se considerarmos,

opja = Tr(0p|BOB|A); (4.9)

e substituirmos em (4.8), obtemos uma expressao para op|c que explicita a regido B. Ou

seja, obtemos,
opjc = Trap(op|BOBIAOAIC); (4.10)

tal qual o corolario 2.5.1 estrutura. Assim, utilizamos mais uma vez o teorema 2.4.1 e o

coroldrio 2.5.1, a fim de encontrar a dindmica ¢p|c, isomorfa ao estado causal opc, €,

ED|C = ED|B O €BJA © E4|C- (4.11)
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Figura 18 — Diagrama representando trés regidoes quanticas conectadas via dindmicas
quanticas. Onde a regido B estd no futuro causal da regiao A e a regido C' esta no futuro
causal da regiao B.

Fonte: Autoria Proépria, 2025

A expressao (4.11) é explicitamente a nossa sugestao para a dindmica emergente.

Observando (4.10), notamos que esta envolve o estado causal pc. No entanto,
inicialmente, todo o nosso conhecimento reside na dindmica €4 e em seu estado isomorfo

oc|a- Entao, para resolver essa inconsisténcia, poderiamos construir o estado conjunto,

0AC = 0C|A * PA; (4.12)

e tomando o traco em A obteriamos,

TTA(QAC) = pPc, (413)

e, portanto, poderfamos inverter oc|a via Bayes, resultando em,

0A|lc = Oc|A * (pA,O(_;I)- (4.14)
Entretanto, como estamos lidando com estados causais, a inversao representada em (4.14)

nem sempre resulta em um estado causalmente valido. Para compreender melhor essa

limitacao, analisaremos o seguinte cenario.

Supondo que temos 3 regides quénticas sendo elas A, B e C' e que estas estao
relacionadas umas as outras via dindmicas causais epa @ L(Ha) — L(Hp) € eqp -
L(Hp) = L(Hc), ou seja, B estd no futuro de A e C estd no futuro de B. Os estados
isomorfos correspondentes sao gpja € ocip. O diagrama na Figura 18 exemplifica este

cenario. Considerando o estado p4 como o estado input, temos,

pPB = €B\A(,0A) (4 15)
= Tra(oBlapa).

Atuando com a segunda dinamica,

pc = ecip(pB)
= Trp(oc|spB) (4.16)
= Trp(ocisTra(0B1apa)).
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Por outro lado, poderiamos tentar encontrar um estado conjunto causal para as
trés regioes, isto é, um® papc tal que, ao tomarmos o traco sobre AB, obtivéssemos um
estado marginal po consistente com aquele obtido pela aplicacao das dindmicas, conforme
representado na expressao (4.16). Sabemos que, em cendrios acausais, tal estado conjunto
pode sempre ser construido; assim, seria natural esperar que um procedimento analogo
fosse possivel em cenarios causais, de modo a manter o formalismo neutro em relagao a

causalidade. Em termos formais, teriamos,
pc = Trap(0anc)- (4.17)
E para manter a consisténcia da descricao realizada, esperariamos que,
Trp(ociBTraloBlapa)) = pc = Trap(eapc). (4.18)
Entao, um candidato para este estado conjunto seria,
0aBc = 0c|B * (0B|A * Pa). (4.19)

Entretanto, a expressio (4.19) falha em representar um estado valido,” pois OB|A* pA NAO &
completamente positivo, sendo apenas localmente positivo. Tal qual foi explicitado acima

na matriz que representa o estado causal (4.7). Explicitamente,

OABC = \/OB|A * PAOC|BA/OB|A * PA. (4.20)

Na expressao (4.20), temos a raiz quadrada de um operador que pode apresentar autovalores
negativos. Dessa forma, nao é possivel estabelecer uma igualdade entre as expressoes
(4.16) e (4.17), o que revela uma limitagao para o estado pc quando tratamos de regioes

causalmente relacionadas. Mais especificamente, temos que, em geral,

Trp(ocisTralopapa)) # Tras(oasc). (4.21)

Além disso, dada limitagao vai em contraste com a ideia do formalismo ser neutro em
relacdo a causalidade. Uma vez que é possivel obter o estado conjunto para as trés regides

no caso acausal mas nao no caso causal.

A limitacao supracitada é justamente o que impede a realizagao direta da inversao
no lado esquerdo do diagrama na Figura 16, que exemplifica o cenario que analisamos.
Ao partirmos da dindmica ¢4 e tentarmos encontrar a dindmica equivalente a inversao

bayesiana do estado condicional causal isomorfo, ou seja, determinar € 4)¢, de forma que

6 Quando temos trés regides quanticas espacialmente separadas (acausalmente correlacionadas),

e A e C sado condicionalmente independentes de B, é possivel encontrar um estado acausal
paBc = pc|B * (PB|a * pa). Com base nessa construgao, propomos um anélogo para o caso
causal (ver [4]).

Quando consideramos cenarios acausais, a expressao (4.19) nao encontra limitagdes e é um
estado acausal valido [4].
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pp = epa(pa)

€B|A :AC(’HA) — L(HB) REB\AaPA : ‘C(HB) — ‘C(HA)

®

Figura 19 — Diagrama esquematizando a dindmica quantica epj4 € 0 mapa de Petz

REB|A19A('>' O mapa de Petz ¢ o responsavel por reverter a dinamica ep|4.

Fonte: Autoria Prépria, 2025

os estados marginais permanecam consistentes, nos deparamos com a mesma limitacao.
Entao, como superar essa limitagao? Como podemos garantir uma forma de capturar as
crencas da regiao A dadas as crengas da regiao C'?7 Nesse contexto introduzimos o mapa
de Petz [4, 44, 8].

O mapa de Petz é definido a partir de uma dindmica causal ega : L(Ha) = L(Hp)
e um estado inicial p4 € L(H4). A atuagao da dindmica causal sobre ps é tal que
epla(pa) = pp. A Figura 19 esquematiza essa estrutura. Sendo assim, o mapa de Petz

tem a forma,
1/2 * —1/2 —1/2 1/2
Repnra() = pd 1052 (o5 )10, (4.22)

Onde 5’;” 5 ¢ 0 mapa adjunto de epj4. Uma vez que possuimos acesso a £p|4 entre duas
regides quanticas A e B e um estado inicial p4, o que o mapa de Petz faz, como definido
em (4.22), é justamente reverter essa dinamica de forma quase 6tima. Isto é, quando
temos cenarios tal qual esquematiza a Figura 19, a otimalidade reside no fato do mapa de
Petz ser o responsavel por reverter a dinamica inicial com o minimo de perda e informacao
possivel [44]. Essencialmente, ndo temos um tnico mapa em (4.22), mas sim uma familia

de mapas indexada pela dindmica quantica a ser revertida e pelo estado inicial.
Podemos avaliar o que acontece quando o input no mapa de Petz é justamente

pB = €Bja(pa), assim temos,

1/2 * —1/2 —1/2 1/2
Repiapalpp) = p {eqs(rp Ppppg*) ol

1/2 * 1/2
= i ey plls)}oY

(4.23)
= p*Lapl{?

Utilizamos o fato de, uma vez que g4 ¢ TP, entao 82‘ p € unital, isto ¢, leva identidade

em identidade (ver [26]). A (4.23) aflora um fato importante deste mapa, quando aplicado
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no estado pp = epja(pa), que é justamente o estado atingido pela dindmica. O mapa

recupera o estado inicial.

O mapa de recuperacao de Petz é CPTP, pois é uma composicao de mapas CPTP,

explicitamente, R. BlAP ,(+) pode ser visto como uma composicao dos seguintes mapas,

1/2 1/2 * —1/2 —1/2
PP () e 5P (4.24)

O primeiro e ultimo mapa estdo na forma de Kraus e logo sao CPTP, o mapa 5f4| g €o
adjunto de ep(4 e é também CPTP (ver [4]).

Com o mapa de Petz em maos voltamos ao nosso problema inicial esquematizado
na Figura 16. O estado condicional representado por (4.14) faz emergir naturalmente
dentro do formalismo o mapa de recuperacao, isto é, a expressao para o estado condicional

é transformada na expressao (4.22), para isso notamos que,

pc = Tralociapa). (4.25)

Partindo do estado (4.14) e utilizando o isomorfismo de Jamiotkowski podemos estabelecer
a relacao entre o mapa (4.22) e estados condicionais. Assim, sendo 9ajc = 0cja * (papct)

e o € L(Hc), obtemos,

cac(0) = Trel(pd” © 1o)(La @ po ) acia(p” © 1e)(La @ pa'"*)o]

= :0,14/2TT’C[<IA ® P51/2)90|A(P,14/2 ®Ic)Ia® pEI/Q)a]

= PP Trc(Ia ® pg"?)o(In ® pa?)ocia(p? ® Ic)]

= PZ/QTTC[(IA ® PEl/Q)U(IA ® PEl/Q)QqA]PXZ

= o {eeloe Popc )}l (4.26)

Da primeira para a segunda linha da expressao (4.26) utilizamos a propriedade II do
Apéndice. Igualmente, na terceira linha aplicamos a propriedade III e na quarta linha
aplicamos a propriedade I. Para a igualdade da tltima linha utilizamos o fato que g4 €
um mapa CPTP, entdo (€% ®15)(Mcg) = Trc(Mpcocia) (ver [4]). Com isso a expressao

(4.26) se transforma na expressao (4.22). Explicitamente,

6A|C(') = REC\A,/JA(')' (4.27)

O teorema de Bayes no FEC (e o mapa de Petz), como na expressao (4.26), nos entrega
uma formulagao de inferéncia de estados causais de forma retroditiva [4, 1, 10, 45]. Para
entendermos melhor esse assunto, vamos brevemente revisitar um caso de inferéncia classica

e tragar o analogo para o caso quantico.

Suponha que tenhamos duas variaveis aleatorias classicas R e S, e que os eventos

que R representa precedem os eventos que S representa. A probabilidade conjunta é entao,

P(R,S) = P(S|R)P(R) = P(R|S)P(S). (4.28)



o8

As probabilidades condicionais preditiva e retroditiva sao, respectivamente,

P(S|R) = %, (4.29)
P(R|S) = %. (4.30)

Além disso, é importante ter clareza sobre os termos que utilizamos [1]. Por predigao,
denotamos a determinacao de crencgas de eventos futuros a partir da crenca de eventos
iniciais. Por retrodi¢cdo, denotamos as crengas sobre eventos iniciais, dadas as crencas sobre

eventos futuros. Podemos ilustrar melhor estes conceitos com um exemplo.

Em um dia tipico de outono em uma cidade com clima tropical de altitude, um
estudante gostaria de saber, ao observar a formacao de nuvens de tempestade no céu,
se ha possibilidade de ocorrer queda de granizo. Assim, o estudante deseja calcular a

probabilidade condicional dada por,
P(Chover | Existéncia de nuvem de tempestade no céu), (4.31)

onde “chover” é representado pela variavel aleatéria C' e “existéncia de nuvem de tempestade
no céu” é representado pela varidvel aleatéria N.8 Além disso, consideramos que em um

dia pode ter nuvem ou nao ter nuvem no céu, entao,
P(N)+ P(—-N) = 1. (4.32)

A chance total de chover em um certo dia, pode ser estimada pelo estudante preocupado,

via propagacao de crencga. Portanto,
P(C) = P(C|N)P(N) + P(C|-N)P(—=N), (4.33)

onde P(C|N) e P(C|—N) sao, respectivamente, as probabilidades condicionais preditivas
de chover dado que ha nuvens de tempestade, e de chover dado que nao ha nuvens de
tempestade. Considerando que em um certo dia tenha chovido, o estudante poderia, via
teorema de Bayes, calcular a probabilidade de que uma nuvem de tempestade tenha sido
avistado no céu. Formalmente tal probabilidade pode ser obtida, tal qual a expressao
(4.28) explicita,

PCIN)P(N) P(CIN)P(N)

PO ==5(c) = BEINP(V) + PICT-N)P(=N)

(4.34)

O que a expressao (4.34) entrega é justamente a probabilidade retroditiva de ter tido
nuvem no céu dado que choveu. E uma vez tendo conhecimento de P(N|C'), o estudante

poderia estimar P(—=N|C) como,

P(=N|C) =1 — P(N|C). (4.35)

- N significa “N&ao hé a existéncia de nuvem de tempestade no céu”

8
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Com isso, retornamos ao Formalismo de Estados Condicionais. Analogamente ao
caso classico exemplificado acima, consideramos que uma dada regiao quantica B esta
no futuro de uma regiao quantica A. O Teorema de Bayes quantico, tal qual definido na

secao 2.7, estabelece que o estado conjunto das duas regioes é da forma,
OAB = OB|A* PA = QA|B * PB- (4.36)
Sendo os estados condicionais preditivo e retroditivo, respectivamente,
OBIA = 0AB * P4 (4.37)

0A|B = 0AB * P5- (4.38)

Via o teorema 2.4.1, temos a conexao destes estados condicionais com suas respectivas
dindmicas, sendo epja : L(Ha) — L(Hp) associada a expressdo (4.37), e g5’ : L(Hp) —
L(H4) associada a expressao (4.38). Assim, epja propaga estados de regioes iniciais para

.-~ retro .~ -~ . . . .
regioes futuras, enquanto Alp Propaga estados de regioes futuras para regioes iniciais. Isto
é, quando consideramos, por exemplo, cendrios de preparar e medir [46, 45] a retrodigao

A . t 1 /. . ~
quantica, dada por ENE envolve encontrar as probabilidades das possiveis preparagoes
de um sistema, dado os resultados das medicoes realizadas. Formalmente, o mapa de Petz
pode ser visto como um mapa responsavel por fazer a retrodicao em sistemas quanticos,
isto é,

retro o 1/2 x —-1/2 -1/2 1/2
€AB () =pa {5B|A<PB (Dpp " )tpa (4.39)

Podemos entao concluir que o mapa de Petz nao é somente a melhor forma de capturar as
crencas de uma regiao B dado uma regiao A mas é também o mapa que faz isso de forma

retroditiva.

Por fim, garantimos que gp|c representado como,

opjc = Trap(0p|BOBIACAIC), (4.40)

é consistente e estd bem definido. Dentro das limita¢des que o FEC apresenta, quando
se tratando do estado p4|c, constatamos que este estado é o estado isomorfo a dinamica
responsavel por trazer estados de uma regiao posterior C' para uma regiao anterior A.

Consequentemente, obtemos a dindmica isomorfa a opjc como,

ED|C = ED|B O €BJA © E4|C- (4.41)

A expressao (4.41) é a sugestao para a dindmica emergente I'7.

Quando consideramos um sistema sob andalise de um detector que é incapaz de
acessar todos os graus de liberdade disponiveis, o coarse-graining ¢ utilizado como uma
forma de descrever efetivamente o sistema. Assim, buscamos as condi¢oes necessarias e

suficientes para a emergéncia de uma dinamica efetiva entre as regides “coarse-grained”
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Ep|c = ED|BC€B|4° Ry

O—®

EclA R ac €D|B

® (®)
E€B|A

Figura 20 — Diagrama das quatro regides quanticas e os respectivos canais quanticos.

Onde a dinamica epjc € a sugerida com o intuito de fazer o respectivo diagrama comutar.

No brago esquerdo do diagrama é representado também o mapa de Petz responsavel por
reverter a dinamica €¢|4.

Fonte: Autoria Prépria, 2025

que faga o diagrama da Figura 20 comutar, formalmente representado na expressao (4.1).
Modelando este cenario no FEC, encontramos uma sugestao para a dindmica emergente
I'r, como

FT:5D\C:5D|B053\A05A|C~ (4.42)

Ou ainda,
I'r(-) = epipoepia o Recpal)- (4.43)

A dindmica emergente I'r, tal qual representada pela expressao (4.43) comuta o
diagrama, como ilustra a Figura 20, ponto a ponto. Ou seja, ndo é um mapeamento geral
(no sentido de independer de pontos do dominio), mas diretamente vinculado a cada ponto

do dominio.
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5 CONCLUSAO

O presente trabalho teve como objetivo, sob a perspectiva do Formalismo de
Estados Condicionais (FEC), investigar a emergéncia de dindmicas quinticas macroscopicas

consistentes em cendrios com ruido ou perda de informacao.

Mais detalhadamente, quando um sistema quantico sujeito a uma evolucao unitaria
Ur é analisado por meio de um aparato de medi¢ao com limitagoes (ruido ou perda de
informacao), nem todos os graus de liberdade do sistema sao acessados. Nesse contexto, o
coarse-graining Aog surge como um arcabougo matematico fundamental para a formulagao
de uma descricao efetiva do sistema ao nivel macroscopico. Diante dessa nova representagao,
coloca-se uma questao central: quais as condigdes necessarias e suficientes para existéncia
de uma dindmica efetiva I'r que seja consistente? Formalmente, tal consisténcia é expressa
pela seguinte relacao:
FT 9} ACG = AC’G 9 L{T. (51)

Sendo assim, sobre a luz do Formalismo de Estados Condicionais, fornecido por
Leifer e Spekkens [4], neste trabalho, buscamos estabelecer uma expressao para a dindmica

I'r. De modo geral,

« Comecamos associando as regides quanticas seus respectivos espagos de Hilbert.

o Tendo acesso aos mapas CPTP que conectam as regides, via o isomorfismo de Jami-
otkowski, caracterizado pelo teorema 2.3.1, os associamos aos estados condicionais

causais respectivos.

o Via a estrutura de propagacao de crenca fornecida pelo FEC, especialmente o
corolario 2.5.1, encontramos uma possivel sugestao para a dindmica emergente. Isto
é, a nossa sugestao inicial reside na dindmica isomorfa ao estado condicional dado
pela expressao (4.10). Entretanto, dada sugestao depende diretamente do estado
causal 04c. Uma vez que temos ¢ nos fornecido somente o estado ¢4, 0 revertemos

utilizando o teorema de Bayes quantico.

» Quando se tratando do estado g4c, o formalismo se depara com limitagoes. Via
mapa de Petz [4, 8], superamos estas limitagoes e mostramos, tragando um paralelo
com o caso cldssico, que a dinamica associada a ¢4/c ¢ também o responsdvel por
fazer a retrodicao de estados da regido C' para a regiao A. Ou seja, aliando o mapa
de Petz com a retrodicdo quéantica fornecida pelo teorema de Bayes para estados
condicionais, estabelecemos que, g4 ¢ o estado condicional responsavel por obter

as crencas da regiao “passada” dado as crencas da regiao “futura’.

o Utilizamos o isomorfismo de Jamiotkowski e o0 mapa de Petz para encontrar a nossa

sugestao para a dindmica emergente I'r quando um cenario com coarse-graining
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¢ considerado. Isto é, I'r(-) = epjp oepja © REA‘CM(-) é a nossa sugestao para a

dindmica, como esquematizado na Figura 20.

e Os resultados obtidos indicam nao uma tnica dindmica, mas sim uma familia de
dindmicas efetivas, pois a solugdo proposta depende tanto da dindmica original
que se deseja reverter quanto do estado inicial do sistema. Em termos formais,
obtivemos um mapa que faz o diagrama comutar ponto a ponto, ou seja, um mapa
cuja aplicagao depende diretamente do ponto do dominio — caracterizando-o como

ponto-dependente.

Como desdobramentos futuros, temos a proposta de utilizar técnicas de semi-
definite programming (SDP) [26, 47] com o objetivo de investigar a existéncia de um
mapa 6timo que satisfaca as mesmas restrigoes consideradas na construgao da dinamica
emergente. Uma vez identificado tal mapa, pretendemos compara-lo com a proposta
desenvolvida neste trabalho, visando avaliar qual das abordagens atende de forma mais

eficiente as restrigoes impostas.
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APENDICE A - ALGUMAS IDENTIDADES

Neste apéndice iremos provar 4 identidades que utilizamos para a demonstracao de
algumas expressoes que compoe este trabalho. Seja A € L(Ha), B € L(Hp)eo € L(Hap).
Sendo {|a)} e {|b)} bases ortonormais de H4 e Hp. E sendo {|a) (a'|} e {|b) (V'|} bases
ortonormais de £(H4) e L(Hp), temos

(Propriedade I) Trploc(A® Ig)(Ix ® B)] = Trg[(Ia ® B)o(A® Ip)]. (A.1)

Demonstracao. Por um lado,

Trplo(A® I5)(Ia ® B)) = Trp Y Gaun |a) (| @ [b) (V'] (A @ Ip)(1a © B)]

aa’bb’ (AQ)
= Z O aa’bb/ |CL> <CL/| ATT(|b> <b/| B)

aa’bb’
Por outro lado,
Trpl(Is® B)o(A® Ip)] = Trp[(Ia© B) Y ouwn |a) (| @ [b) (V| (A® I5)]

aa’bb’ (A3)
= " e b € AT ) ),

aa’bb’
Pela propriedade ciclica do trago, Tr(B |b) (b'|) = Tr(|b) (V| B) e comparando as equagoes
(A.2) e (A.3) concluimos que,

T’I"B[O'(A & ]B)(IA & B)] = TT‘B[(IA & B)O'(A & IB)] (A4)

Passemos a segunda propriedade.

(Propriedade IT)  Trp[(A® Ig)o] = ATrg[(I4 ® Ip)o]. (A.5)

Demonstracao.

A= "Awla)(d]| e 0= oy la) (d]| & [b) (V/]. (A.6)

a,a’b,b’

Entéo, sendo o trago parcial de um operador yap € L(Hap) calculado por,

Tro(xas) = ) (L1 ® (B))xan(la @ b)), (AT)

temos,

Tre[(A® Ig)o] = Z Gaarsty (1 @ (0" (A]a) {d| @ [BY (0]) (14 ® |0"))
aa’bb’
= > GawmwAla) (@] Gydy

aa’bb'b"”

= Z O'aa/b//b//A ’CL> <a/‘ . (Ag)

aa/b//
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Por outro lado,

AT?"B[([A & [B)O'] = ATTB( Z O aa’ bt/ ‘CL> <a,| ® ’b> <b1’)

aa’bb’

=A ) Gaww(La® (V")(la) (@] @ |0) (') (La @ 1))
aa’bb'b"”

= Z Taarvr A @) {a’| Oy Oprpr

aa’bb’' b’

= Z O-aa’b”b”A |CL> <a,/| . (Ag)

aa/b//

Assim, comparando as equacoes (A.8) e (A.9) concluimos que,

TTB[(A®[B)O'] :ATTBK]A@IB)U]. (AlO)

Passemos a terceira propriedade.
(Propriedade IIT)  Trplo(A® Ig)] = Trplo(I4 ® Ig)]A. (A.11)
Demonstracao. Por um lado, temos,

Trelo(A®@Ip)] = Y (La® (V") (0awsy |a) (@] © b) (V])(La @ [V"))

aa’bb’'b"’

= Z Taarvy |@) (a'| AdyrOprr

aa’bb’'b"’

— Z Taa’b'b" |a,> <CLI| A (A]‘2)

aa/b//
Por outro lado,

Trolo(la® Ip)]JA= Y (1a® (W) (awsy |a) (0| @ b) (t']) (1 @ [V"))

aa’bb’ b’

= Z Taarvy @) ('] Ay Oy

aa’bb’ b’

= Z Oaqa'b!'y’ |CL> <(1/’ A. (Al?))

aalb//

Assim, comparando as equagoes (A.12) e (A.13) concluimos que,

TTB[O'(A@]B)] :TT’B[O'<]A®IB)]A. (A14)

Passemos a quarta propriedade.

(Propriedade IV)  Tru[(A® Ig)o(A® Ig)] = Tralo(AA ® Ip)]. (A.15)
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Demonstragao.

Tra{(A® Ip)o(A® I5)} = Tra{(A® Ip) ijb Taar |a) (a'| ® [b) (V] (A® Ip)}
= % am/bbfTr{Zla |a) (a'| A} [b) (V']
- be Gaarmy Tr{|a) (a'| AA} D) (V]
g 5 v} (]2 1) 0] (44 & 1)

= Tralo(AA® Ip)]. (A.16)
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