UNIVERSIDADE FEDERAL DE JUIZ DE FORA
INSTITUTO DE CIENCIAS EXATAS / FACULDADE DE ENGENHARIA

PROGRAMA DE POS-GRADUACAO EM MODELAGEM
COMPUTACIONAL

Caian Dutra de Jesus

Criacao de Base de Dados Inédita de Usinas Solares e Aplicacao em Previsao
de Geracao de Energia com Redes Neurais Otimizadas por Aprendizado por

Transferéncia

Juiz de Fora

2025



Caian Dutra de Jesus

Criacao de Base de Dados Inédita de Usinas Solares e Aplicagcao em Previsao
de Geracao de Energia com Redes Neurais Otimizadas por Aprendizado por

Transferéncia

Dissertagao Dissertacao apresentada ao Pro-
grama de Poés-Graduagao em Modelagem
Computacional da Universidade Federal de
Juiz de Fora, na area de concentracao em
Modelagem Computacional, como requisito
parcial a obtencao do titulo de Mestre em
Modelagem Computacional.

Orientador: Dr. Eduardo Pestana de Aguiar

Juiz de Fora

2025



Ficha catalografica elaborada através do Modelo Latex do CDC da UFJF

com os dados fornecidos pelo(a) autor(a)

de Jesus, Caian Dutra.

Criacdo de Base de Dados Inédita de Usinas Solares e Aplicagdo em
Previsdo de Geragao de Energia com Redes Neurais Otimizadas por Apren-
dizado por Transferéncia / Caian Dutra de Jesus. — 2025.

79 f. il

Orientador: Eduardo Pestana de Aguiar

Dissertagdo (Mestrado) — Universidade Federal de Juiz de Fora, Instituto
de Ciéncias Exatas / Faculdade de Engenharia. Programa de Pés-Graduagao
em Modelagem Computacional, 2025.

1. Base de Dados. 2. Usinas Solares. 3. Aprendizado de Maquina. I. de
Aguiar, Eduardo Pestana, orient. II. Titulo.




Caian Dutra de Jesus

Criacao de Base de Dados Inédita de Usinas Solares e Aplicacao em Previsao de Geracao de Energia com
Redes Neurais Otimizadas por Aprendizado por Transferéncia

Dissertacdo apresentada ao Programa de Pos-
Graduacao em Modelagem Computacional da
Universidade Federal de Juiz de Fora como requisito
parcial a obtencdo do titulo de Mestre em Modelagem
Computacional. Area de concentragdo: Modelagem
Computacional.

Aprovada em 25 de setembro de 2025.

BANCA EXAMINADORA

Prof. Dr. Eduardo Pestana de Aguiar - Orientador
Universidade Federal de Juiz de Fora

Prof. Dr. Petronio Candido de Lima e Silva
Instituto Federal do Norte de Minas Gerais - Campus Januaria

Prof. Dr. Arthur Caio Vargas e Pinto
Instituto Federal de Educacédo, Ciéncia e Tecnologia de Minas Gerais - Campus Itabirito

Juiz de Fora, 23/09/2025.

-

IE ei' . | Documento assinado eletronicamente por Eduardo Pestana de Aguiar, Professor(a), em 25/09/2025, as 11:56,
;:f"m; [ﬂ conforme horéario oficial de Brasilia, com fundamento no § 32 do art. 42 do Decreto n? 10.543, de 13 de novembro

| eletrbnica MQ
& eil _. | Documento assinado eletronicamente por Arthur Caio Vargas e Pinto, Usuario Externo, em 25/09/2025, as
A L‘i 14:21, conforme horario oficial de Brasilia, com fundamento no § 32 do art. 42 do Decreto n? 10.543, de 13 de

assinatura

| tetronica novembro de 2020.
e Eii _. | Documento assinado eletronicamente por Petronio Candido de Lima e Silva, Usuario Externo, em 25/09/2025,
ol 7} | as 14:31, conforme horério oficial de Brasilia, com fundamento no § 3¢ do art. 42 do Decreto n® 10.54 1
| cletrénica novembro de 2020.




AGRADECIMENTOS

A Universidade Federal de Juiz de Fora (UFJF) e ao Programa de Pés-Graduacio
em Modelagem Computacional, pela oportunidade de formacao e pelo ambiente académico

de exceléncia oferecido ao longo deste percurso.

A Coordenacio de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), pelo
apoio financeiro concedido por meio da bolsa de estudos, essencial para a realizacdao desta
pesquisa.

Ao Laboratoério de Automacao Industrial e Inteligéncia Computacional (LAIIC),
que acolheu e forneceu o suporte necessario para o desenvolvimento das investigacoes, em
especial ao meu orientador, Dr. Eduardo Pestana de Aguiar, pela orientagao criteriosa,

incentivo continuo e pela dedicacao a condugao deste trabalho.

A empresa TECSCI, pela parceria estabelecida que resultou na base de dados utili-

zada nesta dissertacdo e que possibilitou a consolidacao dos resultados aqui apresentados.

A todos que, de forma direta ou indireta, contribuiram para a concretizacao deste

trabalho, expresso minha sincera gratidao.



RESUMO

O crescimento acelerado da geracao de energia solar fotovoltaica no Brasil evidencia
a necessidade de bases de dados estruturadas e de alta qualidade, capazes de sustentar o
desenvolvimento de novas tecnologias e de aprimorar a confiabilidade dos estudos no setor.
Entre as principais demandas, destaca-se a criagao de conjuntos de dados que viabilizem a
comparacao e a avaliacdo de modelos de previsao de geracado com maior rigor cientifico.
Nesse contexto, este trabalho tem como objetivo principal a criacao e disponibilizacao da
base de dados BR-PVGen, composta por registros histéricos de geragao elétrica e variaveis
meteorologicas de 51 usinas fotovoltaicas em operacao real no territério brasileiro. A base
foi tratada segundo critérios de qualidade, completude e padronizagao, constituindo um
repositorio inédito voltado ao suporte de pesquisas em previsao, analise de desempenho e

otimizagao de sistemas fotovoltaicos.

Complementarmente, o trabalho apresenta uma aplicacdo de modelos de apren-
dizado de méaquina, em especial Redes Neurais Artificiais com arquiteturas otimizadas
por busca de hiperparametros e técnicas de Transfer Learning, aplicadas na mesma base
de dados BR-PVGen. Os experimentos realizados mostraram que o Aprendizado por
Transferéncia entre usinas com diferentes historicos de dados reduziu o erro médio de
previsao, superando modelos de referéncia como Gradient Boosting, Bayesian Ridge e
Kernel Ridge, com destaque para as métricas SMAPE e NRMSE.

Os resultados obtidos evidenciam que a BR-PVGen representa um avanco signifi-
cativo na consolidagao de dados fotovoltaicos no Brasil, promovendo reprodutibilidade e
padronizacao de estudos na area. Conclui-se que a combinacdo entre uma base de dados
multivariada, padronizada e de abrangéncia nacional, e o uso de técnicas modernas de
aprendizado de maquina, constitui um caminho promissor para o aprimoramento das

previsoes e para a integracao inteligente da energia solar ao sistema elétrico brasileiro.

Palavras-chave: Base de Dados; Usinas Solares; Aprendizado de Maquina; Apren-

dizado por Transferéncia.



ABSTRACT

The accelerated growth of solar photovoltaic generation in Brazil highlights the
need for structured and high-quality databases capable of supporting the development
of new technologies and improving the reliability of studies in the sector. Among the
main challenges is the creation of datasets that enable the comparison and evaluation of
generation forecasting models with greater scientific rigor. In this context, the primary
objective of this work is the creation and public release of the BR-PVGen database,
composed of historical records of electrical generation and meteorological variables from
51 photovoltaic power plants operating in real conditions across Brazil. The database was
processed according to criteria of quality, completeness, and standardization, constituting
an unprecedented repository designed to support research on forecasting, performance

analysis, and optimization of photovoltaic systems.

In addition, the study presents an application of machine learning models, partic-
ularly Artificial Neural Networks with architectures optimized through hyperparameter
search and Transfer Learning techniques, applied to the same BR-PVGen database. The
experiments demonstrated that Transfer Learning between plants with different data
histories reduced the average forecasting error, outperforming reference models such as
Gradient Boosting, Bayesian Ridge, and Kernel Ridge, with emphasis on the SMAPE and
NRMSE metrics.

The results show that BR-PVGen represents a significant advancement in the
consolidation of photovoltaic data in Brazil, promoting reproducibility and standardization
of studies in the field. It is concluded that the combination of a multivariate, standardized,
and nationwide database with modern machine learning techniques constitutes a promising
path for improving forecasting accuracy and for the intelligent integration of solar energy

into the Brazilian power system.

Keywords: Database; Solar Power Plants; Machine Learning; Transfer Learning.
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1 INTRODUCAO

O aumento constante da demanda mundial por energia, impulsionado pelo cresci-
mento populacional, mudangas no estilo de vida e avancos tecnologicos, tem levado paises
a diversificarem suas matrizes energéticas. Essa necessidade é reforcada pela urgéncia
em mitigar os impactos das mudancas climaticas, majoritariamente associadas a queima
de combustiveis fosseis e pela escassez progressiva desses recursos, agravada por fatores
geopoliticos. Nesse contexto, a energia solar se destaca como fonte limpa, renovavel e

abundante, com elevado potencial de aplicacdo em diferentes regives do mundo.

De acordo com o relatério Energy Transition Investment Trends 2024 (2), os
investimentos globais em energia solar atingiram US$ 1,8 trilhdao em 2023, representando
um crescimento expressivo em relagao a anos anteriores. A queda no custo dos médulos
fotovoltaicos e a crescente conscientizacdo sobre beneficios sustentaveis e econémicos
impulsionam esse avango, criando um cenario favoravel ao desenvolvimento e integragao

de novas tecnologias para o setor.

O Brasil se destaca no uso eficiente em energias renovaveis, dentro desse contexto,
a energia solar vem apresentando expansao significativa. Em 2023, a capacidade instalada
atingiu 37,8 GW, um aumento de 54,8% em relagdo ao ano anterior (3), como pode ser
visto na Figura 1. Minas Gerais, em especial, ocupa posicao de destaque, com mais de
5,5 GW de poténcia instalada, distribuidos entre Geracao Centralizada (GC) e Geragao
Distribuida (GD).

Figura 1: Capacidade Instalada no Brasil.

109,8 109,9 Capacidade Instalada Variacao da capacidade
em GW avaliada em 2022 e 2023 Instalada das fontes no parque gerador (MW)
2022
@ © 2023 Fonte 2022 | 2023 | A%23/22
Hidrelétrica 109.807 109.922 0,1%
Térmica® 46.440 = 47.515 2,3%
46,4 47,5
378 Nuclear 1.990 1.980 0,0%
23.8 28,7 245 Edlica 23.761 28.682 20,7%
Solar 24.453 37.843 54,8%
2,0 20 Capacidade disponivel = 206.451 = 225.952 9,4%
SRS (e ko3
4 =) >
e ) %) T 222
Hidrelétrica Térmica Nuclear Edlica Solar

Fonte: (3).

Apesar desse crescimento, desafios relacionados a confiabilidade e estabilidade da
rede permanecem, sendo a variabilidade climatica um fator determinante. A intermiténcia
da geragao fotovoltaica (FV), decorrente de variac¢oes de irradidncia e condigdes meteoro-

logicas, exige o uso de métodos preditivos capazes de estimar com precisao a producao
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de energia. Modelos de previsao de séries temporais tém sido amplamente estudados,
desde abordagens estatisticas, como o ARIMA, até técnicas avangadas de Aprendizado de
M4équina e sistemas fuzzy (4). Dentro deste contexto, as Redes Neurais Artificiais (RNAs)
se destacam pela capacidade de modelar relagoes nao lineares e complexas; porém, a falta
de dados abertos de usinas solares brasileiras e estudos consolidados ainda representam

um desafio.

Este trabalho insere-se nesse contexto, divulgando dados reais de operagao de usinas
fotovoltaicas no Brasil, se mostrando como fator determinante para auxiliar o processo de
desenvolvimento de tecnologias nacionais, incluindo modelos de Aprendizado de Maquina.
Além disso, o estudo propoe o uso de RNAs, com arquiteturas otimizadas por busca de
hiperparametros e Aprendizado por Transferéncia, para maximizar a acuracia e reduzir o

tempo de processamento de previsao de geracao de energia em usinas fotovoltaicas.

1.1 JUSTIFICATIVA

A geracao de energia elétrica por meio da irradiacao solar tem se tornado cada
vez mais relevante como uma fonte limpa e sustentavel de energia, principalmente diante
da necessidade de diversificagao da matriz energética e reducao das emissoes de gases de

efeito estufa.

De acordo com dados do Relatorio de Tendéncias Globais em Investimentos em
Energia Renovavel 2021, publicado pela Agéncia Internacional de Energia Renovavel
(IRENA), os investimentos globais em energia solar atingiram um recorde de US$ 160,8
bilhdes em 2020 (5), representando um aumento significativo em relagao aos anos anteriores.
Esse crescimento exponencial reflete o reconhecimento crescente de seu potencial como
uma fonte de energia confidvel, acessivel e sustentavel, sendo um dos pilares da transicao

energética.

Contudo, a natureza variavel e intermitente da energia solar, influenciada por fatores
como condic¢oes climaticas, sazonalidade e localizacao geografica, apresenta um desafio
significativo para a previsao confidvel (6). A falta de sincronia entre a oferta e a demanda
de energia resulta em custos adicionais associados a ativagdo de usinas termelétricas de
reserva e a compra de energia no mercado a precos mais elevados. Além disso, a operagao
ineficiente da rede elétrica devido a falta de previsao pode levar a problemas de qualidade

de energia, interrupg¢oes no fornecimento e perdas financeiras para as concessionarias.

A capacidade de antecipar flutuagoes na producao de energia é fundamental para
garantir a estabilidade e a confiabilidade do sistema elétrico. A implementacao eficaz
de modelos de previsao permite aos operadores de rede tomarem medidas para mitigar
impactos negativos, como cortes de energia, e assegura um fornecimento continuo e seguro

de eletricidade para consumidores e empresas.
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Nessa perspectiva, é fundamental aplicar a previsao de geracao de energia solar,

uma vez que isso implica em:

Aumento da confiabilidade operacional,

o Otimizacao da alocagdo de recursos;

Reducao de custos operacionais e de acionamento de reservas;
o Apoio & manutencao preventiva;

Melhoria da sustentabilidade do sistema elétrico.

1.2 FORMULACAO DO PROBLEMA

O setor de geracao de energia elétrica tem passado por uma transicao significativa
nas ultimas décadas, impulsionada pela necessidade de diversificar a matriz energética,
reduzir a dependéncia de combustiveis fésseis e mitigar as emissoes de gases de efeito estufa.
Nesse contexto, a energia solar fotovoltaica consolidou-se como uma das fontes renovaveis
de maior crescimento no mundo. De acordo com a Agéncia Internacional de Energia
Renovével (IRENA), a capacidade instalada global de geracgao fotovoltaica ultrapassou
1,6 TW em 2023, representando aproximadamente 5,5% da matriz elétrica mundial e

registrando um crescimento médio anual superior a 20% na tultima década.

O Brasil se destaca nesse cenério por conta de sua localizacao geogréfica, extensao
territorial e abundancia de recursos naturais, alcancando a marca de 89,2% de representacao

de energias renovaveis em sua matriz elétrica, um aumento de 11,1% em relacao a 2021
(3)-

Figura 2: Evolugdo da Participacao do Uso de Energias Renovaveis na Matriz Energética
Brasileira.
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Fonte: (3).
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Esse avanco decorre principalmente da expansao das fontes solar e edlica, conforme
pode ser observado na Figura 3, que evidencia a trajetéria exponencial da geracao dessas

fontes, que ja superior & producao nuclear em GWh nos ultimos anos (3).

Figura 3: Geracao de Eletricidade em GWh por Ano e Fonte Energética no Brasil.
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Fonte: (3).

Apesar do crescimento acelerado, a rede elétrica nacional ainda apresenta limitagoes
em absorver de forma eficiente essa nova configuracao de geragao. O aumento de fontes
renovaveis intermitentes, associado ao crescimento da demanda, tem contribuido para so-
brecarga do sistema e maior nimero de reclamacoes registradas por consumidores. Apenas
em 2023, foram contabilizadas 1.201.134 interagdes entre consumidores e a Ouvidoria da
ANEEL (Agéncia Nacional de Energia Elétrica), um aumento de aproximadamente 38%
em relacao a 2022. Dentre essas interacoes, mais de 250 mil corresponderam a queixas

sobre falta de fornecimento de energia, como descrito na Minuta do Relatério de Gestao
de 2023 da ANEEL (7).

Figura 4: Reclamagoes nas ouvidorias da ANEEL.
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Fonte: Minuta do Relatorio de Gestao de 2023 da ANEEL.
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Diante desse cenario, uma das principais barreiras enfrentadas no setor é a auséncia
de bases de dados nacionais de acesso aberto, com granularidade e detalhamento suficientes
para o desenvolvimento de solugoes baseadas em previsao e otimizacao. Embora existam
informagoes disponibilizadas por 6rgaos como a ANEEL e o ONS, estas sao limitadas
em termos de resolugao temporal e abrangéncia de variaveis, dificultando andlises mais
robustas de previsao de geracao e a implementagao de tecnologias de suporte a estabilidade

da rede.

1.3 OBJETIVOS

Com o intuito de superar a caréncia de bases publicas e estruturadas de dados
fotovoltaicos no contexto nacional, este trabalho, desenvolvido em parceria com a em-
presa TECSCI (Juiz de Fora-MG), teve como foco principal a construgao, tratamento
e disponibilizacao da base de dados BR-PVGen, composta por registros reais de 51
usinas solares distribuidas em diferentes regioes do Brasil. As séries temporais englobam
medicoes de operagao de inversores e variaveis meteorolégicas, devidamente anonimizadas
em conformidade com a Lei Geral de Protegao de Dados (LGPD), constituindo um dos

primeiros esforgos de abertura de dados dessa natureza no pafis.

As varidveis coletadas incluem medigoes de geragao elétrica (nivel de inversor),
irradiancia global no plano do mdédulo, temperatura do médulo e temperatura ambiente.
Esses atributos possibilitam tanto o calculo de indicadores de desempenho quanto a aplica-
¢ao de técnicas de modelagem preditiva, ampliando o potencial de utilizagdo do conjunto

em estudos de previsao, controle e otimizacao da operagao de sistemas fotovoltaicos.

A partir dessa base, foi conduzida uma investigagdo sobre métodos de previsao
de geracao de energia solar, definida como uma tarefa de previsao de séries temporais
multivariadas, cujo objetivo é estimar a geragao das usinas (P,4a) em um instante futuro
t + At, a partir de um vetor de caracteristicas x; formado por observacoes anteriores.
Foram consideradas diferentes configuragdes de defasagem temporal (lags) e varidveis

correlatas de desempenho e condi¢oes ambientais.
Objetivo Geral:

Consolidar e disponibilizar uma base de dados nacional de usinas solares fotovoltai-
cas (BR-PVGen) e, a partir dela, desenvolver e avaliar modelos de previsao baseados em
Redes Neurais Artificiais, com e sem Transferéncia de Aprendizado, aplicados & estimativa

da geracao de poténcia fotovoltaica.
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Objetivos Especificos:

Realizar a coleta, consolidacao, tratamento e anonimizacao de dados histoéricos de
geracao e variaveis meteorolégicas provenientes de 51 usinas fotovoltaicas distribuidas

no Brasil;

Estruturar e documentar a base de dados BR-PVGen, assegurando padronizacao,

integridade e potencial de reuso cientifico;

Implementar modelos de Redes Neurais Artificiais do tipo Perceptron Multicamadas
(MLP), com diferentes arquiteturas e configuragoes, variando o nimero de camadas,

neuronios e funcoes de ativacao;

Aplicar estratégias de Transfer Learning para aprimorar o desempenho preditivo em
usinas com menor historico de dados, avaliando diferentes abordagens de transferéncia

entre plantas;

Avaliar o desempenho dos modelos utilizando métricas quantitativas de erro, como
SMAPE e NRMSE;

Comparar o desempenho das arquiteturas propostas com métodos convencionais de
previsao baseados em aprendizado supervisionado, identificando ganhos de acuracia

e eficiéncia.
Hipdteses:

A consolidagao e disponibilizagdo de uma base de dados multivariada, abrangendo
variaveis de geracao elétrica e meteoroldgicas, contribui significativamente para
o avanco da pesquisa em previsao de geragao fotovoltaica no contexto brasileiro,

possibilitando maior reprodutibilidade e comparabilidade entre estudos.

Modelos de Redes Neurais Artificiais do tipo MLP sao capazes de representar relagoes
nao lineares complexas entre variaveis de geracao e clima, superando o desempenho

de modelos univariados e métodos tradicionais.

O uso de estratégias de Transfer Learning permite transferir conhecimento entre
usinas com diferentes volumes de dados, reduzindo o erro preditivo em cenarios com

amostras limitadas.

Além de validar essas hipoteses, este trabalho pretende fomentar a pesquisa na-

cional por meio da disponibilizacdo da base BR-PVGen, fortalecendo o ecossistema de

desenvolvimento de solugoes baseadas em dados para o setor fotovoltaico brasileiro.
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1.4 ESTRUTURA DO TRABALHO

Este trabalho esta estruturado da seguinte maneira: o Capitulo 2 apresenta a
revisao da literatura, abordando sobre trabalhos de referéncia na area de base de dados
de usinas fotovoltaicas e de técnicas de previsao de geracao de energia. O Capitulo 3
expoe a formulagdo dos modelos de Redes Neurais Artificiais, que foram utilizadas como
modelos de previsao de geracao fotovoltaica. O Capitulo 4 descreve a aquisi¢ao dos dados,
incluindo a coleta em usinas fotovoltaicas e a composicao da base proposta. Em seguida,
o Capitulo 5 apresenta as etapas de tratamento e organizacao dos dados. O Capitulo 6
discute a avaliacao dos modelos de aprendizado de maquina empregados. Posteriormente,
o Capitulo 7 apresenta e analisa os resultados obtidos. Por fim, o Capitulo 8 sintetiza

as conclusoes do estudo e aponta perspectivas para trabalhos futuros.

1.5 PUBLICACOES

Durante o desenvolvimento desta dissertagao, foram produzidos e publicados (ou

aceitos para publicagdo) os seguintes trabalhos:

1. ALVES, K. S. T. R.; DE JESUS, C. D.; AGUIAR, E. P. A new Takagi-Sugeno-Kang
model for time series forecasting. Engineering Applications of Artificial Intelligence,
v. 133, p. 108155, 2024. DOI: <https://doi.org/10.1016/j.engappai.2024.108155> .

2. CAMANDAROBA, C. G. M.; OLIVEIRA, C. V. M. B.; DE JESUS, C. D.;
FERREIRA, M. A. M.; PUSSENTE, G. A. N.; NETO, G. F.; AGUIAR, E. P.
Previsao de Geracao de Energia em Usinas Fotovoltaicas utilizando Redes Neurais
Artificiais e Aprendizado por Transferéncia. In: Congresso Brasileiro de Automdtica
— CBA 2024, Sociedade Brasileira de Automatica, 2024. Disponivel em: <https:
/ /www.sba.org.br/cba2024 /papers/paper_ 1047.pdf>.

3. CAMANDAROBA, C. G. M.; WERNECK, S. S. G.; MELLOS, J. Z. C.; DE JESUS,
C. D.; MALTA, M.; GUIMARAES, F. G.; AGUIAR, E. P. A Federated Learning
Approach for Distributed Solar Irradiance Forecasting. CBIC 2025 — Congresso
Brasileiro de Inteligéncia Computacional, 2025. (Artigo aceito para publica¢ao n®
1175590, submetido em 28/05/2025, Area Temética: Sistemas Neurais — 6).

4. DE JESUS, C. D.; FERREIRA, R. N.; AGUIAR, E. P. BR-PVGen - The
Brazilian Photovoltaic Generation Dataset. IEEE Access, 2025. (Artigo submetido

em setembro de 2025, em avaliagao).
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2 REVISAO DA LITERATURA

2.1 BASE DE DADOS DE USINAS FOTOVOLTAICAS

A disponibilidade de bases de dados publicas tem sido fundamental para o avancgo
da pesquisa em sistemas fotovoltaicos, permitindo estudos de desempenho, previsao de
geracao e integracao a rede elétrica. Ao longo dos anos, diversas iniciativas internacionais

foram estabelecidas, cada uma com suas particularidades, vantagens e limitagoes.

Um dos conjuntos de dados mais amplamente utilizados é o Pecan Street Dataport
(8), que disponibiliza medigoes de alta frequéncia, com resolu¢ao de até um minuto, sobre
consumo elétrico residencial e geracao fotovoltaica em diferentes regides dos Estados
Unidos. Embora seja valioso para estudos em sistemas de pequena escala, carece de

medig¢oes meteoroldgicas detalhadas e nao fornece dados no nivel de inversor.

O Photovoltaic Data Acquisition (PVDAQ) (9), mantido pelo National Renewa-
ble Energy Laboratory (NREL), retine dados sincronizados de desempenho e varidveis
meteoroldgicas de diferentes instalagoes fotovoltaicas nos Estados Unidos, permitindo
analises comparativas e modelagem de desempenho em condigoes reais. Apesar de incluir
irradiancia e temperatura de médulo, frequentemente nao contempla medigoes detalhadas

por inversor ou metadados consistentes.

Outro exemplo de destaque é o Desert Knowledge Australia Solar Centre (DKASC)
(10), que oferece dados de mais de 150 sistemas fotovoltaicos operando em clima desértico.
O conjunto inclui medi¢des de saida de inversores e varidveis meteorolégicas, predomi-
nantemente com resolu¢ao de cinco minutos e cobertura temporal de aproximadamente
nove anos. Entretanto, esté restrito geograficamente a zonas aridas e a sistemas de menor

porte, com capacidade média de 416 kWp e maxima de 1,8 MWp.

O FAIR PV (11) representa outra iniciativa relevante, contendo dois anos de dados
de 316 usinas comerciais em diferentes zonas climaticas dos Estados Unidos. O diferencial
estd na padronizagao e organizagao dos dados segundo os principios FAIR (Findable,
Accessible, Interoperable, and Reusable). Apesar de incluir medigoes no nivel de inversor,
as variaveis meteoroldgicas sao obtidas de bases externas, e nao por estacoes locais, o que

pode limitar a precisao de analises ambientais especificas.

Apesar das contribuicoes dessas bases, ainda ha lacunas significativas, especialmente
no contexto de usinas fotovoltaicas com capacidade acima de IMW. Além disso, boa parte
dos conjuntos de dados disponiveis nao oferece medigoes simultaneas de variaveis elétricas

e meteorologicas e ¢ restrita a pequenas regioes.

Para mitigar essas limitagoes, este trabalho apresenta um novo conjunto de dados
composto por 51 usinas fotovoltaicas de Geragao Distribuida, o BR-PVGen. O banco

contempla tanto sistemas com rastreadores de eixo tnico quanto sistemas de estrutura
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fixa, com medigoes sincronizadas no nivel de inversor e dados meteorolégicos coletados
por estagoes solarimétricas instaladas na propria usina e com dados de diferentes regices
do Brasil. As variaveis incluem poténcia ativa e reativa, poténcia em corrente continua,
temperatura interna dos inversores, irradiancia no plano do arranjo, irradiancia global
inclinada, temperatura de modulo, temperatura ambiente, velocidade e direcdo do vento,
precipitacao acumulada, indice de albedo, coeficientes de bifacialidade e de temperatura,

além de dados estruturais como tipo de suporte e area de modulos.

Os dados foram capturados de 4 em 4 minutos e sao registrados no banco com
resolucao de 15 minutos e organizados em trés arquivos principais: metadados, medic¢oes
de inversores e dados solarimétricos. O processo de aquisi¢ao de dados é explicitado no
Capitulo 4.

A Tabela 1 apresenta uma comparacao entre o conjunto BR-PVGen e bases de
referéncia, como DKASC, FAIR PV, PVDAQ e Pecan Street Dataport, destacando as
caracteristicas que o tornam especialmente relevante para pesquisas de previsao, deteccao
de falhas e modelagem de séries temporais em sistemas de GD de grande porte em regioes

tropicais.

Tabela 1: Comparacao entre os conjuntos de dados: BR-PVGen, DKASC, FAIR PV,
PVDAQ e Pecan Street Dataport

Propriedade / Caracte-| BR-PVGen Conjunto DKASC Conjunto FAIR PV Conjunto PVDAQ Pecan Street Dataport
ristica

Registro temporal
Poténcia ativa

Poténcia reativa

Poténcia CC

Temperatura do inversor
Trradidncia POA
Irradidncia GRI
Irradidncia GHI
Temperatura do médulo
Temperatura ambiente
Velocidade do vento
Direcao do vento
Precipita¢ao acumulada
Indice de albedo

Pressdao atmosférica
Actimulo de granizo
Indicador de médulo bifa-
cial

Coeficiente de temperatura
do médulo

Coeficiente de bifacialidade
do médulo
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Area do médulo

Eficiéncia do médulo

Ntimero de médulos

Tipo de estrutura (trac-

ker/fixa)

Dados separados por inver-

sor

Cobertura temporal 1 ano 9 anos 2 anos Nao especificado 3 anos

5 minutos (inversor),
15 minutos (clima)

Ntmero de usinas fotovol- 51 9 316 Nao especificado 60

taicas

Capacidade média das usi- ~3 MWp ~416 kWp Nao especificado Nao especificado Nao especificado

nas

N NENENEN
|
|
|
|

- v v v

Resolugoes de amostragem | 15 minutos 5 minutos 15 minutos 15 minutos
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2.2 TECNICAS DE PREVISAO DE GERACAO FOTOVOLTAICA

A previsao de geragao de energia é componente central para a operagao segura e
econdmica de sistemas elétricos com alta penetracao de fontes renovaveis. A literatura
recente tem se consolidado em torno de modelos baseados em Aprendizado de Maquina
(em inglés, Machine Learning ou ML), capazes de lidar com relagbes nao lineares e com
a variabilidade inerente as condi¢bes meteorologicas. Nesta dissertacao, a revisao foi
fundamentada em trabalhos de referéncia que reiinem e analisam estudos representativos
da area, com destaque para Machine Learning Based Solar Photovoltaic Power Forecas-
ting: A Review and Comparison, que apresenta um resumo das principais metodologias,
tratamentos de dados, métricas de avaliagdo e abordagens para comparacao. A Tabela 2,

adaptada deste mesmo estudo, sintetiza pesquisas relevantes e praticas atuais (1).

Nos tltimos anos, o estado da arte em previsao fotovoltaica tem avancado significa-
tivamente com o uso de arquiteturas neurais profundas, métodos hibridos e estratégias
de aprendizado por transferéncia. Modelos hibridos combinando Redes Neurais Recorren-
tes (RNN, LSTM, GRU) com redes convolucionais (CNN) tém apresentado resultados
superiores em horizontes de curto e médio prazo ao capturar simultaneamente padroes
temporais e espaciais de irradiagdo. Além disso, técnicas de ensemble learning, como
XGBoost, consolidaram-se como alternativas robustas em cenarios com alta variabilidade
e dados ruidosos. Estudos recentes também exploram a utilizacdo de Transfer Learning
e Domain Adaptation para reduzir a necessidade de grandes volumes de dados locais,
facilitando a generalizacao entre plantas com diferentes perfis climaticos. Apesar desses
avancos, ainda hé desafios relevantes relacionados a padronizacao de bases publicas, a
interpretacao dos modelos de ML e a integracao de previsoes probabilisticas para uso

operacional em sistemas elétricos.
2.2.1 Tratamento e preparagao de dados
A etapa de preparagao de dados é decisiva para o desempenho de modelos de

previsao de poténcia fotovoltaica e envolve:

1. Controle de qualidade e tratamento de faltantes: remocao ou imputacao de

valores ausentes, detecgao e correcao de outliers;

2. Normalizacao e escalonamento: padronizacao de variaveis para estabilizar o

processo de treinamento e evitar dominancia de atributos com maior amplitude;

3. Engenharia de atributos: extragao de informagoes temporais (més, dia do ano,
hora solar, feriados), meteoroldgicas (GHI, DNI, DHI, nuvens, temperatura do ar,

vento, pressao) e atrasos temporais (lags) do proprio valor de geracao;
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4. Selecao de variaveis: redugao de colinearidade e custo computacional por meio de

métodos de feature selection (12);

5. Divisao de dados e horizonte de previsao: separacao adequada em conjuntos
de treino, validacao e teste, respeitando a natureza temporal dos dados para evitar

vazamento de informacao, e defini¢do do horizonte de previsao conforme a aplicacao.

2.2.2 Modelos de previsao: metodologias e familias

Modelos fisicos e hibridos. Baseiam-se na modelagem termoelétrica dos modulos
e inversores, associando parametros de campo (dngulo, azimute, perdas e temperatura)
com variaveis meteorolégicas previstas. Esses modelos apresentam boa interpretabilidade e
desempenho consistente quando a calibragdo dos parametros é precisa, mas sao suscetiveis

a erros de previsao meteoroldgica e a desvios de medigao (12, 13, 14).

Abordagens estatisticas classicas. Métodos como Multiple Linear Regression
(MLR), ARIMA e modelos em espago de estados continuam amplamente empregados como
referéncias de baixo custo computacional. Sado normalmente utilizados como baselines,
mas sua capacidade de generalizacao é limitada em contextos com forte nao linearidade
e alta variabilidade climéatica (15, 16, 17). Trabalhos recentes exploram decomposigoes

sazonais e estruturas hierarquicas, aprimorando a estabilidade desses modelos.

Métodos de vizinhanca e kernel. Técnicas baseadas em similaridade, como
k-NN e SVR, tém sido aplicadas para capturar nao linearidades locais de forma eficiente,
com boa relagdo entre desempenho e custo de processamento. A Support Vector Regression
(SVR), especialmente com kernel radial, figura entre os melhores resultados para previsoes
de curto prazo quando bem ajustada (18, 19, 17). Sua limitacdo principal estd na

escalabilidade para grandes volumes de dados e na sensibilidade a hiperparametros.

Arvores e ensembles. Familias como Random Forest (RF), Gradient Boosting
(GB), XGBoost e Extra Trees apresentam excelente desempenho em contextos ruidosos
e de multiplas variaveis correlacionadas (13, 20). Os modelos baseados em boosting tém
se destacado por combinar interpretabilidade com alta precisao e baixa necessidade de
normalizagao. Abordagens recentes incluem stacked ensembles e blending, combinando

preditores heterogéneos para melhorar a robustez das previsoes.

Redes Neurais Artificiais. As RNAs do tipo Perceptron Multicamadas (MLP)
continuam sendo amplamente utilizadas pela simplicidade e flexibilidade na modelagem
de relagoes nao lineares (21, 22). No entanto, as arquiteturas recorrentes, especialmente
LSTM e GRU, se tornaram o padrao-ouro para previsao fotovoltaica em horizontes de 1 a
24 horas, por sua capacidade de capturar dependéncias temporais de longo alcance (23, 24).
Além disso, estratégias de Transfer Learning vém sendo aplicadas para adaptar modelos
pré-treinados a usinas com poucos dados, reduzindo o tempo de treinamento e melhorando

a generalizacao.



Tabela 2: Resumo de estudos representativos de previsao de poténcia fotovoltaica usando técnicas de aprendizado de maquina (1)

Trabalho Horizonte | Resolugao Periodo de da-| Local Pré-processamento Método
de Previ- dos
sao
Huang e Perry | 1-24h 1h 01/04/2012 a | NA Filtros passa-baixa Gradient Boosting
(2016) (18) 31/05/2014 (Fourier) para tendéncias | (deterministica) e k-NN
(probabilistica)
Li et al. | 24h 24h 01/01/2011 a | Macau NA RNAs, ARIMA,
(2016) (15) 30/06/2012 ARMAX, média movel
Nespoli et al.| 24h 1h 2017 Italia Normalizagao MLP ANN Selective
(2017) (25) aprimorada Ensemble
Mellit et al. | 24h 1h 01/01/2011 a | Italia NA RNA com classificacao
(2018) (21) 31/12/2011 de dias (previsao GHI)
Lin e Pai | 1 més 1 més 01/01/2010 a | Taiwan Decomposi¢ao sazonal Previsao sazonal
(2018) (19) 30/04/2014 evolutiva LS-SVR para
previsao mensal da
poténcia FV
Ramsami e Oree | 24h 1h 03/02/2012 a | Reino Unido | Stepwise Regression e Rede Neural Hibrida
(2018) (26) 30/12/2013 remogao de registros
ausentes
Gao et al. | 24h 1h 01/11/2016 a | China Classificagao de dias por | LSTM
(2019) (23) 28/10/2017 clima/estacao
Mohammed et al.| 1-24h 1h 01/04/2012 a | NA NA Previsao probabilistica
(2019) (27) 31/05/2014 baseada em técnicas
estatisticas
Pretto et al. | 24h 1h 2017 a 2019 [talia Agrupamento por Ensemble probabilistico
(2020) (13) previsao de irradiacao
Abdellatif et al.| 24h NA 01/01/2018 a | Malésia Normalizagao por RF, XGBoost, AdaBoost,
(2022) (20) 31/12/2021 desvio-padrao Extra Trees
Khan et al. | 1h 1h 4 anos Holanda Limpeza e escalonamento | ANN, LSTM, XGBoost
(2022) (24)
Wang et al. | 72h 1h 2018 a 2020 China Escalonamento e CNN + LSTM hibrido
(2023) (28) extracao de padroes para previsao
espaciais fotovoltaica
Alves et al.| 1h 1h 2016 a 2020 Brasil Normalizagao e selecao Novo modelo

(2024) (4)

de atributos

Takagi-Sugeno-Kang
para séries temporais

qc
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3 REDES NEURAIS ARTIFICIAIS

As Redes Neurais Artificiais (RNAs) constituem uma classe de modelos computaci-
onais inspirados na estrutura e funcionamento do cérebro humano. A formulacao inicial
foi apresentada por McCulloch e Pitts (29) em 1943, que introduziram o primeiro modelo

de neuronio artificial. Esse trabalho estabeleceu as bases tedricas da computacao neural.

Valor de Funcao de
Ativacao Ativacao

Entrada

Figura 5: Representacdo de um neurdnio artificial com pesos, soma ponderada e funcao
de ativagao.

Fonte: Adaptacao de (1) .

Cada neurénio recebe um vetor de entradas x = [z, x9, . . ., ], ponderadas por

pesos W = [wy, we, . .., wy,|, e soma ainda um termo de polarizagao (bias) b.

A Figura 5 ilustra o funcionamento interno de um neurdnio artificial, evidenciando

a soma ponderada das entradas e a aplicagdo da funcao de ativacao.

O valor de ativagdo u do neurénio é dado por:

n
u=> wz;+b. (3.1)
i=1
Esse valor é entdao transformado por uma funcao de ativagdo nao-linear F(-),

resultando na saida do neurdnio:

y = F(u). (3.2)

Posteriormente, Frank Rosenblatt (30) em 1958 propos o perceptron, no qual os
neurénios eram dispostos em uma unica camada, conectados diretamente aos nos de
entrada e aos de saida, sendo assim um modelo de neurénio treindvel capaz de resolver
problemas lineares por meio do ajuste iterativo de pesos. Este modelo representou a

primeira aplicagao pratica do aprendizado supervisionado em redes neurais.
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Camada de Camada de
Entrada Saida

y"nut

|

Figura 6: Estrutura de uma Rede Neural Artificial do tipo Perceptron com tnica camada).

Fonte: Adaptacao de (1).

Décadas depois, David Rumelhar, Geoffrey Hinton e Ronald Williams, (31) intro-
duziram o algoritmo de retropropagagao (backpropagation) em 1986, que permitiu treinar
redes multicamadas ao propagar o erro da saida de volta as camadas anteriores. Esse
avanco viabilizou a aplicacdo em problemas nao lineares e complexos, consolidando o

modelo do perceptron multicamadas (MLP).

Camada de Camada Camada de
Entrada Oculta Saida

y"unl

~

Figura 7: Estrutura de uma Rede Neural Artificial do tipo (MLP).

Fonte: Adaptacao de (1).

De forma mais abrangente, Simon Haykin (32) em 1999 sistematizou o campo das
RNAs em um arcabougo matemético e computacional, discutindo topologias, fungoes de

ativagao, regras de aprendizado e aplicagoes.
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3.1 Funcao de Ativagao

As funcgoes de ativagao tém papel central na capacidade de aprendizado da rede,

pois introduzem nao-linearidade ao modelo. Entre as mais utilizadas estao:

o Sigmoide: F(u) = E til em contextos probabilisticos, pois restringe a

_ 1
14e-u"
saida em [0, 1]. Contudo, apresenta saturacdo para valores muito positivos ou muito
negativos de u, situagdo em que a derivada F'(u) torna-se préxima de zero. Esse
fenomeno é chamado de gradiente desvanecente, em que os gradientes se propagam

de forma cada vez menor pelas camadas, dificultando o ajuste eficaz dos parametros.

« Tangente Hiperbdlica: F'(u) = tanh(u). Fornece saidas no intervalo [—1,1] e é
centrada em zero. Entretanto, ainda suscetivel a gradientes pequenos em valores

extremos.

« ReLU (Rectified Linear Unit): F(u) = max(0,u). Amplamente empregada
em redes profundas por sua simplicidade computacional e por reduzir parcialmente
o problema do gradiente desvanecente, ji que sua derivada é constante (1) para
u > 0. No entanto, pode levar ao problema do neurénio morto, quando unidades

permanecem com saida zero e deixam de contribuir para o aprendizado (33).

3.2 Propagacao Direta

O célculo da saida da rede é realizado por meio do processo de propagacao direta
(forward propagation), no qual as entradas percorrem sequencialmente as camadas até a

obtenc¢ao da saida final.

Seja uma rede neural com L camadas, em que a entrada é representada por h(® = x.

Para cada camada [ = 1,2, ..., L, a transformacao é dada por:
2z = WOR=D 4 pO, (3.3)
h® — p® (Z(l)) : (3.4)
em que:

o WW ¢ a matriz de pesos da camada [ e b®) é o vetor de vieses:

« 2z representa a combinacio linear dos sinais da camada anterior;

Apos atravessar todas as camadas ocultas, a saida final da rede é dada por:

y =h®), (3.5)
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3.3 Retropropagacao e Treinamento

A etapa de retropropagacao (backpropagation) é responsavel por calcular os gradi-
entes da funcdo de custo em relacdo aos parametros da rede (pesos e vieses), permitindo a

atualizacdo iterativa desses pardmetros durante o treinamento (31).

O objetivo do treinamento ¢é ajustar os pesos w e vieses b de modo a minimizar
uma fungao de custo J(w,b), que quantifica o erro entre a saida prevista y e a saida

desejada y.

3.3.1 Funcao Custo:

Em problemas de regressao, uma fungdo amplamente utilizada é o erro quadratico
médio (Mean Squared Error, MSE):

= 2y -5

J=1

JMSE W b s (36)

1
T m
onde m é o nimero de exemplos no conjunto de treinamento.

No entanto, em cenérios de previsao de geracao fotovoltaica, valores extremos e
periodos de baixa produgao (préximos de zero) podem distorcer o ajuste. Para mitigar
esse efeito, adota-se a fungao de custo Huber, que combina as propriedades do MSE e do

erro absoluto médio (MAE), sendo mais robusta a outliers (34). A formulagao é dada por:

L se [r| <6,
Js(r) = (3.7)
) <|r| — %5) , caso contrario,
em que r =y — 4 é o residuo, e > 0 é um hiperparametro que controla a transicao

entre o regime quadratico (MSE) e o linear (MAE).

3.3.2 Algoritmos de Otimizacao

O célculo do gradiente fornece apenas a direcao de ajuste; a forma como os
parametros sao atualizados depende do otimizador adotado, podendo empregar diferentes
estratégias de otimizacao para melhorar a convergéncia, estabilidade e velocidade de

aprendizado (33). Entre os mais utilizados destacam-se:

« Stochastic Gradient Descent (SGD): Atualiza os pardmetros a partir do gradi-

ente estimado em uma iteracao da propagacao direta:

0.
beb—n2? (3.9)

ngv
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em que 7 é a taxa de aprendizado (learning rate). O SGD é simples e eficiente, mas

sensivel a escolha de 1 e pode apresentar oscilagdoes durante a convergéncia.

Adam (Adaptive Moment Estimation): O Adam combina os conceitos de
Momentum e ajuste adaptativo de taxas de aprendizado. Ele mantém médias méveis

do gradiente e do quadrado do gradiente para cada parametro:

my = ﬂlmt,1 + (1 — ﬂl)VJ(W, b), (310)
Vs = 621}1571 + (1 - BQ)VJ(W, b)2, (311)

onde:
— my é a média moével de primeira ordem (gradiente acumulado, similar ao
momentum);
— vy é a média modvel de segunda ordem (estimativa da varidncia do gradiente);
— (1 e [y sao hiperparametros de decaimento exponencial tipicos (51 = 0.9,

By = 0.999).

Como essas estimativas iniciais sao enviesadas em direcdo a zero, aplica-se uma

correcao de viés:

My = — (3.12)

Uy = : (3.13)
A atualizacdo final dos parametros é dada por:

my
00 —n——o>r 3.14
Uy (3.14)
em que:

— 7 é a taxa de aprendizado;

— € é um termo pequeno (ex.: 10_8) para evitar divisao por zero.

O Adam apresenta bom desempenho em uma ampla gama de aplicagdes, pois adapta
dinamicamente a taxa de aprendizado de cada pardmetro e incorpora inércia (via ;).
Essa combinagao torna-o particularmente indicado para MLPs aplicadas a regressao,

pela robustez, estabilidade e baixa necessidade de ajuste fino de hiperparametros.
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Regularizagao e Controle de Treinamento

O treinamento de uma rede neural ocorre de forma iterativa em épocas, nais quais
podem ser definidas como quantidade de processamentos completos de todas as amostras

do conjunto de treinamento.

Durante o treinamento, é recomendado utilizar também um conjunto de validacao,
composto por exemplos nao vistos durante o ajuste dos pesos. Apds cada época, a
rede é avaliada no conjunto de validagao, fornecendo uma estimativa da capacidade de

generalizagdo. Essa métrica é fundamental para a avaliacao do treinamento.

Para reduzir o risco de sobreajuste (overfitting) e melhorar a capacidade de genera-

lizacdo da rede, foram incorporadas as seguintes estratégias:

 Regularizacao L2:

Consiste em adicionar um termo de penalizagao proporcional a norma quadratica

dos pesos a funcao de custo. A funcao de custo regularizada é dada por:
o L
Jreg(W,b) = J(w,b) + o3 [ WO, (3.15)
mai=

em que o > 0 é o parametro de regularizacio e ||[IW®||z denota a norma de Frobenius

da matriz de pesos W©.

A norma de Frobenius é definida como:

n; Njp—1
WO = JZ > (WY (3.16)

i=1 j=1

Essa penalizagao desencoraja pesos excessivamente grandes, promovendo solucoes

mais suaves e generalizaveis.

e Dropout: Durante o treinamento, em cada iteragao e para cada camada oculta,
neuronios individuais sao desativados com probabilidade p. Essa técnica promove
diversidade e reduz a dependéncia da rede em neurdnios especificos, aumentando

sua robustez (35). Para esse estudo foi utilizado uma probabilidade de 10%.

« Early Stopping: Monitora a funcao de custo no conjunto de validacao ao longo das
épocas. Seja Jv(g o valor da funcao de custo de validagdo na época t. Se nao houver
melhora em J\E?l ao longo de T}, épocas consecutivas (neste trabalho, T}, = 20), 0
treinamento é interrompido:

parar se JU) > min J.,. (3.17)

TE€[t—Thac,t]

Essa estratégia evita sobreajuste e reduz o custo computacional (36).
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e ReduceLROnPlateau: Ajusta dinamicamente a taxa de aprendizado quando a
funcao de custo de validacao entra em um plato. Seja 1, a taxa de aprendizado na
época t. Se nao houver melhora em .J. (t)l por Tpas €épocas consecutivas, a taxa de

va.

aprendizado é reduzida por um fator v € (0, 1):

v -m, se estagnado por T, épocas,
M1 = N P (3.18)
Tt caso contrario.

Essa adaptagao permite ajustes mais finos dos parametros sem necessidade de

redefinir manualmente o learning rate.

3.4 Aprendizado por Transferéncia

O aprendizado por transferéncia ( Transfer Learning, TL) é uma abordagem que visa
reaproveitar o conhecimento adquirido por uma rede neural treinada em uma tarefa-fonte
(Tr) com maior volume de dados, para melhorar o desempenho em uma tarefa-alvo (74),
com menor volume de dados, otimizando os resultados e tempo de treinamento para este
fim (37).

Seja uma rede neural treinada na tarefa-fonte com pardmetros (Wg, br), ajustados
a partir de uma base de dados Dg. O objetivo do TL é inicializar os parametros da rede

na tarefa-alvo, para toda camada transferida [ € {1,2,..., L}:

wlo)y =w, W)=Y, vie{1,2... L} (3.19)

A partir dessa inicializacao, duas estratégias sao possiveis:

1. Extragao de caracteristicas: as camadas transferidas da (Tr — T4) sdo mantidas
congeladas, ou seja, os pesos dessas camada nao sao atualizados com o treinamento
e suas ativagoes sao utilizadas como representagoes de entrada para novas camadas

especificas da tarefa-alvo.

2. Fine-tuning: os pesos transferidos servem como inicializagdo, mas continuam sendo
atualizados durante o treinamento na tarefa-alvo. Dessa forma, as representagoes

aprendidas sao ajustadas as especificidades da nova base de dados.

O TL apoia-se no conceito de que a fungao de representacao aprendida pela rede
na tarefa-fonte aproxima-se da funcao ideal desejada para a tarefa-alvo. Assim, ao invés de
iniciar o treinamento de forma aleatoria, parte-se de um espaco de hipoteses mais préximo

da solugao 6tima (33).

Esse paradigma é particularmente util quando:
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o ha escassez de dados rotulados na tarefa-alvo;
« a tarefa-fonte e a tarefa-alvo compartilham dominios semelhantes;

« deseja-se acelerar a convergéncia e reduzir custos computacionais.

No contexto de previsao de geragao fotovoltaica, o TL permite treinar modelos
em usinas com bases de dados histéricas extensas (Dp) e transferir o conhecimento para

plantas com poucos dados disponiveis (Dy).

As camadas iniciais, que aprendem padroes gerais de sazonalidade e resposta a
irradiacao, podem ser mantidas fixas ou levemente ajustadas, enquanto as camadas finais
sao re-treinadas para refletir as condigoes especificas da planta-alvo. Essa estratégia resulta

em modelos mais robustos em cenarios de disponibilidade limitada de medigoes.

3.5 DEMAIS MODELOS DE REGRESSAO UTILIZADOS

Para fins de comparacao com os modelos otimizados propostos, foram selecionados
quatro algoritmos cléssicos de regressao amplamente utilizados em aprendizado de ma-
quina supervisionado: Linear Regression, Gradient Boosting Regressor, Bayesian Ridge
Regression e Kernel Ridge Regression. Todos os modelos utilizados estao disponiveis na
biblioteca Scikit-learn e representam abordagens com diferentes fundamentos matematicos
e propriedades preditivas. A seguir, apresentam-se as fundamentacoes tedricas e principais

caracteristicas de cada um.

e Linear Regression

A regressao linear é um dos modelos mais antigos e fundamentais para problemas
de regressao (38). Assume-se que a relacdo entre as varidveis independentes e a
variavel dependente é linear, buscando-se estimar os coeficientes que minimizam o

erro quadratico médio (Mean Squared Error, MSE). Sua formulagao bésica é:

y = Bo+ Brrr + fara + ...+ Buzn + e, (3.20)
em que:

— y € a variavel resposta;

— X1,%9,...,T, SA0 as variaveis explicativas;
— [y é o intercepto;

— (1, B2, ..., By 80 os coeficientes;

— € é 0 termo de erro aleatério.
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Apesar de sua simplicidade, é eficaz quando a relacao entre varidveis é aproximada-
mente linear. Entretanto, apresenta limitagoes em presenca de nao linearidades ou

multicolinearidade, que podem resultar em estimativas instaveis.

Gradient Boosting Regressor

O Gradient Boosting é uma técnica de ensemble baseada no principio de boosting,
no qual modelos fracos (tipicamente arvores de decisao rasas) sao treinados sequen-
cialmente, de modo que cada modelo subsequente busca corrigir os erros residuais
do anterior (39). O método constréi o modelo de forma aditiva, minimizando

iterativamente uma funcao de perda, como MSE ou erro absoluto.

Sua capacidade de modelar relagdes nao lineares e lidar com alta dimensionalidade faz
com que seja amplamente utilizado em problemas de previsao continua e classificacao,
apresentando, em geral, alta acuracia.

Bayesian Ridge Regression

A Bayesian Ridge Regression é uma versao probabilistica da regressao ridge tradi-
cional (40). Em vez de estimar coeficientes como valores fixos, assume-se que eles
seguem distribuicoes a priori, geralmente gaussianas. O ajuste dos pardmetros ¢ feito

considerando a distribuic¢ao a posteriori, incorporando incerteza nas estimativas.
Essa abordagem fornece intervalos de confianca para os coeficientes e tende a ser mais
robusta a sobreajustes, especialmente em conjuntos de dados com multicolinearidade.
Kernel Ridge Regression (KRR)

O Kernel Ridge Regression combina a regressao ridge, que aplica regularizacao L2
para reduzir a variancia do modelo, com o kernel trick, permitindo projetar os dados
para um espago de caracteristicas de maior dimensionalidade (41). Isso possibilita

capturar relagoes nao lineares de forma eficiente.

A regressao ridge resolve o problema de minimizagao:

min [|y — XBI* + al 8] (3:21)
em que:

— « é o parametro de regularizacao;
— X é a matriz de preditores;
— [ é o vetor de coeficientes.
No KRR, a escolha do kernel (linear, polinomial, RBF, etc.) define como os dados

sao mapeados para o novo espaco, aumentando a flexibilidade do modelo em relagao

a padroes nao lineares.
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4 AQUISICAO DE DADOS

Este capitulo apresenta melhor a base de dados fotovoltaica brasileira proposta BR-
PVGen, descrevendo sua metodologia de aquisi¢cao, procedimentos de pré-processamento,
organizacao estrutural e principais caracteristicas estatisticas. A base foi construida a
partir do registro sistematico de dados operacionais de usinas fotovoltaicas localizadas em
diferentes estados do Brasil, abrangendo condigoes climaticas e geograficas diversas. Os
dados foram disponibilizados em parceria com a empresa TECSCI (Juiz de Fora-MG),

que possui um sistema supervisério web SCADA! com dezenas de usinas monitoradas.

Figura 8: Distribuicdo geografica das 51 usinas fotovoltaicas incluidas na base de dados
proposta.

Fonte: Autoria prépria (2025).

O processo de aquisicao de dados ¢ realizado através de um equipamento, chamado
datalogger, que faz a comunicacao e leitura dos dados dos demais dispositivos da planta
conectados na rede ethernet da usina, a cada 4 minutos. Os dados coletados sao tratados
internamente no datalogger e depois transmitidos para um banco de dados tinico em um

servidor em nuvem da Amazon Web Services (AWS).

O processo de aquisicao de dados esta ilustrado na Figura 9. A coleta continua das

medigoes dos dispositivos de campo ¢é feita através do protocolo de comunicacao Modbus
(Seta A) da Figura 9.

1

SCADA (Supervisory Control and Data Acquisition) é uma arquitetura de controle composta
por computadores, comunicacoes em rede e interfaces graficas, utilizada para monitoramento
e controle de processos em alto nivel.
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Figura 9: Diagrama da metodologia de aquisicao de dados.

Fonte: Autoria prépria (2025).

Apés a coleta, o datalogger transmite os dados para uma API? hospedada em

plataforma em nuvem (Seta B), utilizando exclusivamente o protocolo HTTPS3.

Em situagoes de falha ou baixa qualidade de rede de internet, os dados sdo
armazenados localmente e enviados automaticamente assim que a conexao é restabelecida.
Os dados recebidos pela API sdo processados e armazenados em um banco de dados nao

relacional 4 na nuvem (Seta C), garantindo tolerancia a falhas e confiabilidade na entrega.

O datalogger utilizado nesta aplicagdo é um Controlador Légico Programével (CLP)
da WAGO, chamado CC100. Este equipamento possui funcionalidades de TI e TA
(Tecnologia da Informagao e Automagao), possibilitando integragdo com diversos sensores

e atuadores da planta. Entre seus recursos:

« 8 Entradas Digitais (DI) e 4 Saidas Digitais (DO);
« 2 Entradas e 2 Saidas Analdgicas (AI/AO);

e 2 canais PT100 e 1 porta RS485.

Application Programming Interface; conjunto de rotinas e protocolos que permitem a interagao
entre diferentes sistemas de software.
3 Hypertext Transfer Protocol Secure; versdo segura do HTTP que garante integridade e

criptografia.
4 Banco de dados sem esquema fixo, otimizado para estruturas flexiveis como documentos e

pares chave-valor.
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Figura 10: Controlador WAGO CC100.

Fonte: https://www.wago.com/br/novo-controlador-iot-cc100. Acessado em 10/03/2025.

4.1 PROCESSAMENTO E TRATAMENTO DE DADOS

O periodo coberto pela base de dados inicia-se em 26 de marco de 2024 e encerra-se
em 9 de junho de 2025, resultando em mais de 44 milhoes de registros de inversores e mais

de 5,6 milhoes de registros de estagoes solarimétricas das 51 usinas.

Tabela 3: Resumo da base de dados bruta

Caracteristica Inversor Estacao Solarimétrica
Periodo 26/03/2024 — 09/06/2025
Total de Registros | 44.092.970 5.669.460

4.1.1 Segregacao por Fonte de Dados

Os registros foram segregados por origem: dados de inversores (geragao elétrica) e
dados de estagoes solarimétricas (irradidncia e varidveis meteorologicas). Essa distingao
reflete as diferencas fisicas e funcionais entre os sistemas de medicao, permitindo pré-

processamentos especificos para cada tipo de dado (42).

4.1.2 Padronizacao das Séries Temporais

Devido a irregularidade nos intervalos de registro, os carimbos de tempo foram
padronizados para uma malha fixa de 15 minutos, abrangendo as 24 horas do dia. Essa
uniformizacao é essencial para analises temporais, reduz ruidos e melhora a compatibilidade

com algoritmos de previsao (43).

4.1.3 Agregacao por Média Mdvel Ponderada

Para padronizar a resolucao temporal e reduzir a influéncia de valores atipicos, foi
utilizada a média mével ponderada (MMP), agregando dados originalmente amostrados a

cada 5 minutos, aproximadamente, para intervalos fixos de 15 minutos.
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A cada instante central T}, em {00:00,00:15,...,23:45}, foi considerada uma janela

simétrica de 15 minutos (h = 7,5 minutos).

Cada valor z(t;) representa uma medigao no instante ¢;. Para cdlculo do ponto do
valor agregado y(Ty) foram considerados apenas z(t;) nos quais t; € [T, — h, T + h]. Cada
valor z(t;) na janela recebeu peso inversamente proporcional a sua distdncia temporal em

relacao a T:

1
Wy = ———————
1+ |t; — T
O valor agregado foi calculado por:
> Wi - T
Ty) = =——
y(Tk) S w

Essa técnica preserva tendéncias locais e reduz flutuagoes nao representativas (44).

4.1.4 Interpolacao Direcionada para Valores Faltantes

Apos a agregacao, foi aplicada interpolagao linear apenas quando havia medicoes
validas imediatamente antes e depois do ponto ausente, e o intervalo entre elas nao excedia

15 minutos. A férmula utilizada foi:

1
y(t)=y1+< >-(y2—y1)
to — 11
Essa abordagem minimiza riscos de suavizagao excessiva e nao foi aplicada a

variaveis acumulativas.

4.2 POS-PROCESSAMENTO

A Figura 11 apresenta a evolugao mensal de registros validos, evidenciando o
crescimento progressivo decorrente da inclusao de novas usinas no sistema SCADA. Observa-

se uma reducao em junho de 2025 em virtude do encerramento da coleta em 9 de junho.

Apés todas as etapas de pré-processamento, a base final resultou em 14.400.480
registros validos provenientes dos inversores e 1.151.232 registros oriundos das estagoes
solarimétricas. Trata-se, portanto, de um conjunto de dados de grande escala, com
consisténcia temporal e amplitude geografica inédita para o contexto brasileiro, constituindo
um recurso valioso tanto para pesquisas académicas quanto para o desenvolvimento de

novas tecnologias aplicadas a operacao de usinas solares.

Além disso, foi calculado o percentual de dados ausentes em cada variavel por usina,

considerando apenas o periodo efetivo de geracao (entre 06:00 e 18:00, horario de Brasilia).
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Registros mensais combinados de inversores e estagoes solarimétricas.

Figura 11

(2025).

: Autoria prépria

Fonte

Essa analise, ilustrada no mapa de calor da Figura 12, permite avaliar a completude da

base e orientar estratégias de imputacao ou selecao de varidveis para os modelos preditivos.
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A base é organizada em trés entidades principais: Metadados, Inversor e Estacao

, descritas na Tabela 4.

imétrica

Solar
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4.3 DIFERENCIAIS E POSSIVEIS APLICACOES

Além da metodologia e estrutura previamente descritas, a base de dados proposta
apresenta diferenciais relevantes em relagao a outros conjuntos de dados fotovoltaicos

disponiveis na literatura:

o« Dados Granulares em Nivel de Inversor: A base fornece medigoes elétricas
detalhadas no nivel individual de cada inversor, permitindo anélises aprofundadas do
comportamento de componentes e identificagdo de desvios de desempenho localizados.
Embora esse recurso também esteja presente no FAIR PV Dataset (11), a base
brasileira expande essa capacidade ao incluir variaveis adicionais, como poténcia

reativa e temperatura interna do inversor.

e Organizacao Estruturada dos Dados: O conjunto de dados é organizado em trés
componentes distintos, metadados, medi¢oes de inversores e dados de estagoes solari-
métricas. Essa estrutura modular aumenta a transparéncia, facilita a escalabilidade

e integra-se de forma eficiente a fluxos de processamento de dados avancados.

« Ampla Cobertura Espacial e Operacional: Apesar de a série temporal se limitar
a pouco mais de um ano, a base contempla 51 usinas fotovoltaicas distribuidas
geograficamente pelo Brasil, capturando o comportamento dos sistemas em uma
ampla gama de condig¢Oes climaticas e operacionais da rede elétrica. A Figura 8

ilustra a distribuicao geografica das plantas.

e Representatividade em Escala Utilitaria: A base brasileira é composta por
sistemas fotovoltaicos distribuidos de grande porte, com capacidade instalada média
de aproximadamente 3 MWp, variando de 1,7 MWp a 5 MWp. Esse porte contrasta

com instalagdes menores presentes no DKASC' Dataset.

o Aquisicao de Dados Meteorolégicos Baseada em Sensores Locais: Diferente
de conjuntos de dados que dependem de APIs de terceiros para informacoes meteo-
rologicas, a base brasileira utiliza estagoes solarimétricas instaladas em cada local,
fornecendo medigoes ambientais diretas e em tempo real, incluindo irradiancia no

plano dos moédulos e irradiancia global inclinada.

e Conjunto Ampliado de Variaveis: A base inclui variaveis raramente encontradas
em benchmarks piiblicos, como poténcia reativa, poténcia em corrente continua,
temperatura interna do inversor, indice de albedo, coeficientes bifaciais e tensao da

bateria, possibilitando andalises e modelagens mais abrangentes dos sistemas.

A base proposta constitui um repositério tinico no contexto brasileiro, integrando
dados em nivel de inversor com medigdes meteoroldgicas locais. Sua abrangéncia geografica

e temporal, aliada a diversidade de varidveis, oferece potencial para:
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o Modelagem e previsao de geracao fotovoltaica.

o Estudos de desempenho e perdas de sistemas.

o Analises de impacto climético e geografico na producao de energia.

o Treinamento de modelos de aprendizado de maquina para diagnéstico e operagao de

plantas.

Este recurso atende a uma lacuna critica de dados consolidados para pesquisa e
operacao de usinas fotovoltaicas no Brasil, alinhando-se a padroes de protecao de dados e

ampliando as possibilidades de desenvolvimento cientifico e tecnolégico no setor.

4.3.1 Disponibilidade da Base de Dados

A base proposta, denominada BR-PVGen, encontra-se disponivel para acesso
ptiblico no repositério Kaggle ®. Os arquivos estdao organizados em formato CSV, acompa-
nhados de documentacao descritiva (README). A estrutura segue a organizacao discutida

neste capitulo.

> <https://www.kaggle.com/datasets/tecsci/brazilian-pv-dataset /data/data>



Tabela 4: Atributos das entidades que compoem a base de dados

Atributo Tipo Descricao
Entidade Metadados
id Inteiro Identificador tinico da usina.
nominal_power_mw Real Poténcia nominal instalada em megawatts (MW).
is_panel_bifacial Booleano Indica se o painel é bifacial (true) ou monofacial (false).
panel_temperature_coefficient Real Perda percentual de poténcia por aumento de 1°C.
panel_bifaciality_coefficient Real Razao de eficiéncia traseira/frontal de painéis bifaciais (0 a 1).
panel area_mm2 Real Area de um médulo fotovoltaico em mm?.
panel_efficiency_percentage Real Eficiéncia de conversao do painel em porcentagem.
number_of panels Inteiro Quantidade total de médulos instalados.
brazil_federative_unit Texto Unidade federativa (estado) onde a usina esta localizada (ex.: “SP”).
structure_type Texto Tipo de estrutura: TRACKER ou FIXED.
Entidade Inversor
datetime Texto Data/hora no formato ISO 8601 (YYYY-MM-DDThh:mm:ssZ).
total_reactive_power_var Real Poténcia reativa total (VAR); null se indisponivel.
total_active_power_w Real Poténcia ativa total (W); null se indisponivel.
total_dc_power_w Real Poténcia total de entrada CC (W); null se indisponivel.
internal_temperature_celsius Real Temperatura interna do inversor em °C.

document count
interpolated_keys

Objeto<Texto, Inteiro>
Objeto<Texto, Booleano>

Quantidade de pontos brutos usados na Média Mdével Ponderada por varidavel.

Mapeia cada variavel para indicar se foi interpolada (true se sim).

inverter_id Inteiro Identificador inico do inversor na usina.
Entidade Estacao Solarimétrica
datetime Texto Data/hora no formato ISO 8601 (YYYY-MM-DDThh:mm:ssZ).
poa_irradiance_wm?2 Real Irradidncia no plano dos médulos (W/m?).
battery_voltage Real Tensao da bateria da estacao (V).
wind_speed_ms Real Velocidade do vento (m/s).
gri_irradiance_wm2 Real Irradidncia refletida pelo solo (W/m?).
panel_temperature_celsius Real Temperatura de superficie do médulo FV (°C).
tracker_albedo_index Real Indice de albedo do solo para sistemas com tracker.
ghi_irradiance_wm2 Real Irradidncia Global Horizontal (W /m?).
wind_direction_degrees Real Diregdo do vento em graus.
ambient_temperature_celsius Real Temperatura ambiente (°C).
precipitation_accumulated_mm Real Precipitagao acumulada (mm).

document_count
interpolated_keys

Objeto<Texto, Inteiro>
Objeto<Texto, Booleano>

Quantidade de pontos brutos usados na MMP por varidvel.
Mapeia cada variavel para indicar se foi interpolada (true se sim).

4%
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5 TRATAMENTO DOS DADOS
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Figura 13: Fluxo geral do tratamento de dados adotado.

Fonte: Autoria prépria (2025).

A estrutura geral do tratamento dos dados é apresentada na Figura 13. O processo
inicia-se a partir de um conjunto de bases de dados provenientes de 51 usinas fotovoltaicas,

R™XTXV "em que T corresponde ao niimero de amostras no

representado pela matriz B €
horizonte temporal (apresentado por usina na Tabela 5) e V' ao ntimero inicial de varidveis

disponiveis, incluindo medigoes de inversores e estagoes solarimétricas.

De forma complementar, emprega-se a matriz C, a qual reline parametros técnicos
das usinas, tais como capacidade de poténcia ativa nominal dos inversores, area total
dos modulos fotovoltaicos, eficiéncia de referéncia dos médulos e demais caracteristicas
operacionais. A integracao das informacgoes de B e C possibilita o calculo da geracao
esperada e das perdas do sistema, conforme descrito na Secao 5.2. O resultado desse

RSIXTX 15

processamento constitui a matriz inicial D € , que serve como ponto de partida

para as etapas subsequentes de tratamento.

A partir de D, o fluxo de tratamento segue pelas seguintes etapas principais.
Inicialmente, das 15 varidveis originais foram selecionadas apenas duas de interesse direto
para a previsao: Geracao Esperada e Geragao Real. A matriz resultante, denotada por
Q € R™>T*2 preserva a modelagem nos atributos mais relevantes ao problema. No caso
da previsao didria, considera-se a energia acumulada no dia; ja para a previsao intradiaria,

utiliza-se a poténcia instantanea registrada a cada 15 minutos.
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5.1 RESUMO ESTRUTURAL DAS MATRIZES

O processo de tratamento pode ser resumido pela seguinte sequéncia de transfor-

magoes:

Geracao Esperada Selegao Normalizagao
B e RSlexV s De R51XTX15 Q c R51XTX2 H e [0’ 1]51><T><2

7

Ji € ROXTX12 - (hase didria, 5 lags por varidvel)

Defasagens . . .,
H———— 1 Jo € ROXTXX (hase intradidria, 12 lags por varidvel)

Y12 € RO (vetor target, com lag 1 instante a frente)

Tratamento Temporal | /o1 € RT3 (base didria, +1 coluna de cosseno)
AN

\71' 7

ICo € ROVXT*2 - (base intradidria, +1 cosseno e +1 gaussiana)

o Médins Moveis L, € RPIXTXI5 - (hase didria, +2 médias méveis)
. s Moveis,
(2

Lo € RAXTX320 (hase intradidria, +4 médias méveis)

Ao final dessas etapas, para cada usina, possui uma matriz de £ onde cada linha
corresponde a um vetor de medigoes no instante ¢, representando os vetores de entrada
() (t). A cada vetor de entrada associa-se uma varigvel-alvo y(t), definida como a poténcia

ou energia gerada pela usina no instante subsequente t + 1.

Quantidade de Registros Diarios por Usina

400

w
o
o

Registros Diarios
S
o

100

HANMTNDON0DDIOANMTNONO0NO A NM
A A A A A A A AN NNN

Figura 14: Quantidade de Dias na base de dados por usina

Fonte: Autoria prépria (2025).
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Tabela 5: Quantidade de registros por usina nas diferentes resolugoes temporais.

Usina Registros Didrios | Registros Intradiarios (15 min)
1,2, 3, 4 448 21515
5 431 20730
6 375 18035
7 403 19360
8 388 18670
9 370 17790
10 368 17690
11 360 17300
12 346 16615
13 337 16220
14 119 o745
15 297 14260
16 223 10735
17 263 12645
18 202 9705
19, 20 263 12645
21 196 9410
22 252 12105
23 253 12155
24 247 11860
25 253 12155
26 259 12450
27 203 9755
28 255 12255
29 253 12155
30 254 12205
31 171 8235
32 252 12105
33 248 11910
34 246 11810
35, 36 199 9560
37,38 190 9165
39 187 9020
40 136 6570
41 176 8480
42,43, 44, 45, 46, 47, 48, 49, 50 102 4905
o1 91 4415

A Tabela 5 e a Figura 14 apresentam o quantitativo de registros validos por usina,

tanto para a base de dados didria quanto para a intradidria (15 minutos).

Na sequéncia, sao detalhados os procedimentos empregados nas diferentes etapas

do tratamento de dados.
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A estimativa da geracao teodrica sob condi¢Oes operacionais ideais é uma etapa

fundamental tanto para a avaliagdo de desempenho de usinas fotovoltaicas quanto para

o enriquecimento de bases de dados utilizadas em modelos de previsao. Esses calculos

permitem identificar desvios operacionais, quantificar perdas e criar variaveis derivadas

para uso em algoritmos de inteligéncia artificial, especialmente em cenarios com falhas de

medi¢ao ou dados ausentes.

5.2.1 Poténcia Ideal

A poténcia ideal instantdnea Pige, foi calculada a partir da equacgao classica para

modulos fotovoltaicos:

em que:

Pideal = Amod : IPOA * Mmod»

o Ao € a area total dos méodulos (m?),

e Ipoa € a irradidncia no plano dos médulos (kW /m?),

* Tmoa ¢ & eficiéncia nominal do médulo em condigoes padrao de teste (STC).

Geragao Normalizada (kWh/kW)

®p

T T
0 2000

Figura 15: Comparacao entre a geracao medida e a geragao ideal estimada.

T T T
4000 6000 8000

Irradiagao (kWh/m?2)

Fonte: Autoria prépria (2025).

(5.1)

Essa formulagao assume condigoes ideais, incluindo médulos limpos, configuracao

monofacial, auséncia de perdas térmicas ou elétricas e sem degradacao. Assim, representa

um limite superior tedrico para a geracao instantanea, utilizado como referéncia na

avaliacao de desempenho.
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5.2.2 Componentes de Perda e de Ajuste de Performance

Para modelar a diferenca entre a geracao ideal e a geragao efetivamente medida,
foram incorporados mecanismos de perda que refletem condigoes reais de operacao, in-
cluindo ganho bifacial, perdas dependentes de irradiancia e temperatura, degradacao de
modulos, perdas por clipping e indisponibilidade do sistema.

5.2.2.1 Ganho Bifacial

Considerando que todas as usinas do conjunto de dados utilizam mddulos bifaciais,
a irradiancia efetiva foi ajustada para incluir a contribuicao da face traseira, proveniente

da irradiancia refletida pelo solo Iggrr, ponderada pelo coeficiente de bifacialidade ~:

Ig = Ipoa + v - Igri- (5.2)

A poténcia ideal ajustada para o ganho bifacial é dada por:

Pbif = Amod : ]eff * Tlmod - (53)

5.2.2.2 Perdas Dependentes da Irradiancia

A eficiéncia dos médulos tende a reduzir sob baixos niveis de irradiancia. Para
modelar este efeito, foi aplicado um fator corretivo 7;,,. Para valores de irradiancia inferiores

a 500 W/m?, utilizou-se um polinémio de sexto grau ajustado empiricamente (45):

1, Ipoa > 500
Thirr = 6 A (5.4)
> im0 @i Ipop, Ipoa < 500

Tabela 6: Coeficientes na Equagao

ag ay a3 as Qay Qs Qg
0.74894 0.0031 —1.68884 x 10™° 4.72152 x 10~% —6.95836 x 10~ 5.13525 x 1071* —1.49454 x 10~'7

5.2.2.83 Degradacao dos Mdédulos

A perda de eficiéncia ao longo do tempo foi modelada por um fator multiplicativo

faeg(t), representando a redugao acumulada em funcao dos anos de operacao (45):

0.975, t <1 ano
faeg(t) = 30.975 —0.00753 - (t — 1), 1<t<27 (5.5)
0.801, t > 27 anos
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Figura 16: Eficiéncia Normalizada de Acordo com Nivel de Irradiancia.

Fonte: Adaptagao de (45)
- Eficiéncia Normalizada
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Figura 17: Degradacao da Eficiéncia dos Médulos.
Fonte: Adaptacao de (45)
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5.2.2.4 Perdas Térmicas

Seguindo a norma IEC 61724-2, a eficiéncia foi ajustada para refletir o efeito da

temperatura, resultando em:

Nmod, 7 = Trr ° [1 + ﬁT . (Tmod - TSTC)] ) (56)

onde fSr é o coeficiente térmico do médulo (%/°C), Tioa ¢ a temperatura estimada
do moédulo e Tgre = 25°C.

5.2.2.5 Poténcia Esperada Final

Combinando os fatores descritos, a poténcia esperada final foi obtida por:

Pexp = Amod : ]eff * Thmod, T * fdeg- (57)

Esse valor reflete uma estimativa mais realista do desempenho, incorporando

condi¢oes meteoroldgicas e caracteristicas do sistema.

5.2.2.6 Perdas por Clipping

As perdas por clipping ocorrem quando a poténcia em corrente continua excede a

capacidade nominal de saida em corrente alternada do inversor:

Pclip - InaJX(PeXp - -Pinv,max; 0) (58)
7000 —— Poténcia Ideal
5000 Ganho Bifacial
Perda Temperatura
=000 Perda Clipping
~ 4000 / Poténcia Real
L

Poténcia (kW

/

00:00 02:15 04:30 06:45 09:00 11:15 13:30 15:45 18:00 20:15 22:30
Hora

Figura 18: Geracao esperada, perdas modeladas e geragao medida.

Fonte: Autoria prépria (2025).
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5.2.2.7 Perdas por Indisponibilidade

Periodos de indisponibilidade operacional foram identificados quando P, = 0 e
Ipoa > Iin, sendo I, um limiar minimo de irradidncia (50 W/m?2). Nestes casos, Pexp
foi utilizado para estimar a energia nao gerada.

5.2.2.8 Integracao na Base de Dados

Os valores de geracao esperada e componentes de perda calculados foram incorpora-
dos como features adicionais na base de dados na matriz B de dados originais, resultando

na matriz D. Tendo como objetivo:

e Preenchimento de lacunas de dados com estimativas fisicas consistentes;
o Referéncia de comparacao para validacao de previsoes;

e Deteccao de anomalias operacionais.

5.3 NORMALIZACAO DOS DADOS

Para uniformizar a escala das variaveis e melhorar a convergéncia dos modelos,
aplica-se a normalizacdo Min-Maz individualmente a cada coluna =z da matriz D,

considerando apenas o conjunto de treino Dieino. A transformagao é dada por:

(v) s (v)
T min (z
F = ( ) , (5.9)
max (z(*)) — min (z(*))

onde min (™) e max(z(*)) sdo, respectivamente, o menor e o maior valor da varidvel
2™ no conjunto de treino. O resultado da normalizacio é a matriz H € [0,1]7*", que
preserva as tendéncias temporais e minimiza o impacto de diferengas de magnitude entre

as variaveis.

5.4 ANALISE DE CORRELACAO

A matriz ‘H foi utilizada para avaliar a relacdo linear entre a variavel-alvo y
(geracdo fotovoltaica) e as varidveis explicativas 2("). O coeficiente de correlacao de
Pearson quantifica o grau de associacao linear entre duas varidaveis continuas, sendo

definido como:

_ Zthl (mt - j) (?Jt - Q) :
VS (o -2 VEL (- 9)°

PX)Y (510)
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onde z; e y; representam as observagoes das variaveis no instante t, e T e y
correspondem as respectivas médias amostrais. O coeficiente assume valores entre —1 e 1,

indicando correlacao negativa, nula ou positiva.

A matriz de correlagdo apresentada na Figura 19 permite observar as inter-relagoes
entre as variaveis analisadas. Identifica-se elevada colinearidade entre os diferentes tipos
de irradidncia (poa, ghi, gri) e entre as variaveis de poténcia calculadas (power_ideal,
power__adjusted, power _final). Em contrapartida, variaveis meteorologicas como dire¢ao
do vento e precipitacao acumulada apresentam baixos coeficientes, sugerindo influéncia

linear reduzida sobre a geracao de energia.

Matriz de Correlagao (lag=0)
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Figura 19: Matriz de correlagdo de Pearson (¢ = 0) entre as varidveis de entrada.

Fonte: Autoria prépria (2025).

5.4.1 Correlagao com defasagens temporais

Para investigar a dependéncia temporal da geragao fotovoltaica, o coeficiente de
Pearson foi estendido para incluir defasagens (lags) nas variaveis de entrada. O coeficiente

para um atraso ¢ é definido como:
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S iie (Y — 9) (aﬁ,@e — W)
_ v 2’
\/ZtT=1+e (ye — y)2 \/ZthHg (xg_)e _ x(v))

em que ¢ € {1,...,0n.x} representa o numero de amostras defasadas. Foram

py,:c(”) (z) = (511)

analisadas duas escalas temporais: geracao diaria acumulada e geracao intradiaria em

intervalos de 15 minutos.

Correlagdo de Pearson

Correlacao de Pearson para Diferentes Lags (Energia Diaria)

0.4
0.3 1

0.2+

20 25 30

0.1

0.0

15
Lag (dias)
Figura 20: Anélise de correlacao dos lags para geracao acumulada diéria.

Fonte: Autoria prépria (2025).

Na escala didria, observa-se correlacao positiva significativa nos primeiros atrasos,

com destaque para o lag 1 (dia anterior), o que evidencia a forte persisténcia temporal da

geracao entre dias consecutivos. Essa correlagdo diminui progressivamente com o aumento

da defasagem, tornando-se préoxima de zero apods cinco dias.

Correlagao de Pearson

Correlacao de Pearson para Diferentes Lags

1.0

0.8

0.

o

0.

EN

0

. ! "“FJII mL""m lw|||H|||| WIHI“ Wﬂﬂ

0 50 100 150 200 250 300
Lag

N

I
o
N

—0.

ES

Figura 21: Analise detalhada dos lags para a geracao a cada 15 minutos.

Fonte: Autoria prépria (2025).
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O comportamento periddico e simétrico das curvas indica forte sazonalidade diaria,
que pode ser representada matematicamente por funcoes peridédicas, como o cosseno ou a

gaussiana, conforme discutido na Segao 5.5.

Curvas de Correlacao de Pearson

—— poa_irradiance
battery_voltage

0.81 wind_speed
gri_irradiance
panel_temperature
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—— wind_direction

- ambient_temperature
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bifacial_gain
power_ideal
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power_final
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Figura 22: Curvas de correlagdo de Pearson considerando multiplas variaveis e defasagens.

Fonte: Autoria prépria (2025).

A Figura 22 apresenta as curvas de correlagao obtidas para diferentes variaveis
e defasagens na escala intradiaria. Verifica-se comportamento periédico, com picos de
correlagao positiva em miltiplos de 96 amostras (equivalentes a 24 horas na amostragem de
15 minutos) e correlagoes negativas em multiplos de 48 amostras (12 horas). Esse padrao
reflete o ciclo diurno da geragao solar: altos valores de poténcia proximos ao meio-dia

estao associados a baixos valores noturnos.

5.4.2 Informacao Mutua e PMI

Embora o coeficiente de Pearson quantifique dependéncias lineares, ele é limitado
na identificagao de relagdes nao lineares entre as variaveis. Para capturar dependéncias
mais gerais, foi empregada a Informagao Mutua (Mutual Information, MI), que mede o

grau de interdependéncia estatistica entre duas variaveis aleatorias X e Y.

A MI é dada por:

1Y) = & 3 ey logm, (5.12)

onde p(z,y) representa a distribui¢ao conjunta de X e Y, e p(z) e p(y) sdo as
distribuicoes marginais.

Complementarmente, a Informagao Mitua Pontual (PMI, Pointwise Mutual Infor-
mation) quantifica a contribuigao individual de cada par de eventos (x,y), sendo expressa

CcOomao:
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PMI(z,y) = log m (5.13)

Valores elevados de PMI indicam associagao estatistica forte, mesmo em relagoes nao
lineares. No presente estudo, as curvas de MI foram utilizadas para identificar defasagens

e variaveis com maior dependéncia informacional em relacao a geracao fotovoltaica.

Curvas de Informacao Mutua
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Figura 23: Curvas de Informagao Mutua entre variaveis e a geracao fotovoltaica.

Fonte: Autoria prépria (2025).

A Figura 23 evidencia que as variaveis de irradidncia e temperatura dos médulos
apresentam os maiores valores de MI, reforcando sua relevancia para a modelagem da
geracdo. Assim como observado nas curvas de correlacao, ha periodicidade marcada,
refletindo o comportamento ciclico e dependente do tempo caracteristico da producao

solar.

A combinacao das analises de Pearson e MI fornece uma visao abrangente das
relagoes entre as varidaveis, permitindo identificar dependéncias lineares e nao lineares
relevantes para a previsao da geracao. Com base nesses resultados, foram definidos os lags

utilizados na expansao da matriz de entrada J, conforme descrito na Secao subsequente.

5.4.3 Definicao de variaveis defasadas

Com base na andlise de correlacao, foram incluidas novas colunas correspondentes
as defasagens temporais. Para o caso diario, foram consideradas até ¢,,,, = 5. Ja para o
caso intradiario, além das primeiras defasagens, foi incorporado explicitamente o lag 96,

correspondente a geracao no mesmo horario do dia anterior:

2V 0=1,.. (5.14)
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. ~ .z . . /
A inclusdo dessas varidveis resulta na matriz J € R™>Y", onde V' representa o

numero total de variaveis apds a expansao com os lags.

5.5 MODELAGENS PERIODICAS

5.5.1 Modelagem sazonal com func¢ao cosseno

Para representar a sazonalidade anual e a variagao da irradiacao ao longo do ano,

de acordo com as estagoes do ano, é adicionada uma nova variavel calculada como:

Diat
C = 2 5.15
0SSeno; = COS ( T An0> , ( )

onde Dia; é o dia do ano no instante t e Ano = 365. A insercao desta coluna gera

a matriz K.

Modelagem Sazonal: Energia Normalizada vs. Cosseno
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Figura 24: Anadlise de modelagem sozonal.

Fonte: Autoria prépria (2025).

5.5.2 Modelagem intradiaria com fun¢ao gaussiana

A variagdo da poténcia fotovoltaica em um dia ideal, sem nuvens no céu, apresenta
um comportamento tipico, com maximo proximo ao meio-dia solar e valores proximos
de zero no inicio da manha e no final da tarde, tendo clipping na poténcia maxima dos
inversores, conforme detalhado na Secao 5.2.2.6. Para representar esse padrao, foi utilizada

uma funcao gaussiana parametrizada, definida como:
. (t —p)?
G(t) = 1, A- —_ 5.16
) =min (1, 4o (<210, (5.16)

onde t representa a hora do dia em formato decimal, ;1 = 12 corresponde ao horario

de pico (12:00), o foi ajustado de forma que os valores da funcao sejam praticamente nulos
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nos extremos do intervalo de geragao (entre 6:00 e 18:00), e A é um fator de amplitude
calculado de modo que a fun¢do permaneca maior ou igual a 1 no intervalo de 10:00 a
13:00. O resultado passa por uma fungao min(z,y) que garante a modelagem do clipping

dos inversores.

A coluna correspondente a esta modelagem foi adicionada a matriz de dados K,

utilizada para as previsoes intradiarias com resolucao de 15 minutos.

Modelagem Intradidria com Funcdo Gaussiana

1.0 Y —— Poténcia Normalizada
( ‘1 (\ Ml m vyv‘} W Gaussiana (limite em 1)

0.8

0.6
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Figura 25: Funcao gaussiana proposta para modelagem do perfil intradiario de poténcia.

Fonte: Autoria prépria (2025).

5.5.3 Média Mével

Com o objetivo de ampliar o contexto histoérico disponivel ao modelo e suavizar
flutuacoes pontuais, foi calculada, para cada variavel z(*), a média mével simples de janela

j, definida como:

o 132
MAY = =32l (5.17)
J k=0

No caso da previsao de geragao acumulada diaria, foram utilizadas janelas de 14 e

28 dias, de modo a capturar padroes de médio prazo.

Para a previsao intradidria, com registros a cada 15 minutos, foram empregadas
janelas de 96 e 288 amostras, correspondentes a 1 dia e 3 dias, respectivamente, permitindo

ao modelo explorar o comportamento em horizontes mais curtos.

A inclusdo dessas médias moveis gera a matriz £, que combina as variaveis originais
com suas representacoes suavizadas, enriquecendo o conjunto de atributos e favorecendo a

identificacdo de padroes temporais relevantes.
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6 AVALIACAO DE MODELOS DE APRENDIZADO DE MAQUINA
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Figura 26: Diagrama da metodologia de avaliacao de modelos de aprendizado de maquina.

Fonte: Autoria prépria (2025).

6.1 TREINO E TESTE

A matriz final £ foi utilizada para gerar parti¢oes de treino e teste respeitando a
ordem temporal dos registros. A divisao seguiu a forma convencional empregada em séries
temporais, em que a porcao inicial do conjunto é destinada ao treinamento do modelo e a
parte final é reservada para o teste, sem sobreposicao entre as amostras. Neste trabalho foi
utilizada a divisao da base de dados em treino (80%) e teste (20%) respeitando a ordem

temporal.

Dessa forma, assegura-se que as previsoes sejam realizadas sempre em instantes
posteriores aos utilizados no ajuste do modelo, refletindo um cenario mais proximo da
aplicagao pratica de previsao de geragdo em tempo real.

O conjunto de treino foi utilizado para ajuste dos parametros e hiperparametros
dos modelos, enquanto o conjunto de teste permaneceu isolado, sendo empregado exclusiva-
mente para avaliacdo do desempenho final. Esse procedimento reduz o risco de sobreajuste

(overfitting) e garante maior confiabilidade na interpretacao das métricas obtidas.
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6.2 METRICAS DE AVALIACAO

Sejam y = {y1, Y2, ..., Yn} 0s valores reais da série e § = {41, 92, ..., Un} 0s valores
previstos correspondentes. As métricas utilizadas para avaliar o desempenho dos modelos

foram:

6.2.1 Raiz do Erro Quadratico Médio (RMSE)

n

RMSE — J = (e — e, (6.1

t=1
a qual penaliza erros de maior magnitude, sendo amplamente utilizada em problemas de

previsao de séries temporais.

6.2.2 Erro Percentual Médio Absoluto (MAPE)

MAPE = 100% Z

[t

Ye — Ut
Yt

que expressa o erro médio relativo em porcentagem, facilitando a interpretacao do desem-

, (6.2)

penho do modelo.
6.2.3 Raiz do Erro Quadratico Médio Normalizado (NRMSE)

NRMSE — 1B (6.3)

max(y) — min(y)’
obtido pela normalizacdo do RMSE pela amplitude dos valores reais, permitindo compara-

¢oes entre diferentes séries.

6.2.4 Erro Percentual Médio Absoluto Simétrico (SMAPE)

Para avaliar o desempenho de forma independente de escala, empregou-se o Erro
Percentual Médio Absoluto Simétrico (SMAPE), definido como:

sMapE — 100% 3 [v: = G (6.4)

no S (yel +19:0)/2
O SMAPE varia de 0% (acurécia perfeita) a 200%.
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6.3 BUSCA POR HIPERPARAMETROS

A escolha adequada de hiperparametros é determinante para o desempenho de

modelos de previsao baseados em machine learning.

A técnica de Busca em Grade, em inglés Grid Search foi utilizada para a otimizagao
de hiperparametros nos modelos tradicionais de aprendizado supervisionado e nas redes
neurais do tipo Multi-Layer Perceptron (MLP). Esse método consiste em uma busca
sistemédtica e exaustiva sobre um conjunto previamente definido (grade) de possiveis

valores para cada hiperparametro.

O processo de execucao ocorre de forma iterativa, em que todas as combinagoes
possiveis entre os valores dos hiperparametros sao avaliadas. Para cada combinacao, o
modelo ¢ treinado e testado utilizando o conjunto de validacao, sendo o desempenho
quantificado pela métrica SMAPE. Ao término da busca, seleciona-se a combinagao de

hiperparametros que apresentou o menor valor de erro, garantindo, assim, que o modelo

final seja configurado para minimizar o erro percentual médio absoluto nas previsoes.

Tabela 7: Hiperparametros utilizados no Grid Search

Modelo | Hiperparametros | Faixa de Busca
. . (128, 64), (256, 128, 64), (128, 1283, 64, 32),
MLP Hidden Layer Size [ 28,(16,32,64,128,)64(,32,16,8)] )
Activation [relu’, "elu’]
Solver [adam’, 'sgd’, 'nadam’, 'rmsprop’]
Alpha [le-5, le-4]
Batch Size (32, 64]
Max Iterations [300, 400, 500]
RF Max Features [log2’; ’sqrt’]
Min Samples Split | [5, 6, 7, 8, 9, 10, 11]
N Estimators Range (100, 350, 10)
XGB Eta [0.006, 0.008, 0.009, 0.01, 0.015, 0.017, 0.019, 0.02]
Gamma Range (150, 310, 10)
N Estimators Range (70, 90, 2)
Subsample [0.5, 0.75, 1]
GB Learning Rate [0.005, 0.007, 0.009, 0.01, 0.02, 0.03]
Max Depth 2, 4, 6]
Min Samples Split | [5, 6, 7, 8, 9, 10, 11]
N Estimators Range (400, 500, 10)
[(0,0,0), (0,0,1), (0,0,2), (0,1,0), (0,1,1), (0,1,2),
ARIMA | Order (p, d, q) (1,0,0), (1,0,1), (1,0,2), (1,1,0), (1,1,1), (1,1,2),
(2,0,0), (2,0,1), (2,0,2), (2,1,0), (2,1,1), (2,1,2)]
Trend [None, 'n’; ’c’|
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7 RESULTADOS

7.1 CONFIGURACAO COMPUTACIONAL E FERRAMENTAS

Os experimentos foram conduzidos em um computador com processador Intel Core
i5-12450H, frequéncia de até 4,40 GHz, 16 GB de memodria RAM e sistema operacional
Windows 11.

O desenvolvimento foi realizado em Python 3.11, utilizando o ambiente de desen-

volvimento Visual Studio Code (VS Code). Os principais pacotes empregados foram:

« numpy e pandas: manipulacao e analise de dados;
o matplotlib: geragdo de gréficos e visualizagoes;

e scikit-learn: implementacao de modelos de regressao, grid search e métricas de

avaliacao;

» tensorflow e keras: construgao e treinamento das Redes Neurais Artificiais;

7.2 BASE DE DADOS BR-PVGEN

Um dos principais resultados deste trabalho consiste na proposicao da base BR-
PVGen, que retine séries temporais de geracao de energia elétrica de diferentes usinas
fotovoltaicas em territério brasileiro. Essa base foi estruturada com o objetivo de dis-
ponibilizar um repositério padronizado de dados para pesquisa em previsao de geracao,
avaliagao de desempenho e modelagem de aprendizado de maquina aplicada a sistemas

solares.

7.2.1 Descricao da Base

A BR-PVGen contempla tanto dados de geracao quanto informagoes meteorologicas

e técnicas, de forma a permitir analises completas de desempenho. Sua estrutura inclui:

» Resolucao temporal: dados didrios e intradidrios (com passo de 15 minutos);

« Variaveis disponiveis: energia gerada (kWh), irradidncia global, temperatura
ambiente, temperatura do médulo, velocidade do vento e dados de operacao de

inversores;

o Periodo de cobertura: maximo de 26 de marco de 2024 a 9 de junho de 2025,

variando de acordo com a disponibilidade de cada usina;
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7.2.2 Calculo da Geracao Esperada e Perdas

A geracao esperada de cada usina foi estimada a partir da irradidncia no plano do
médulo (POA), da poténcia nominal dos inversores e dos parametros técnicos do sistema
fotovoltaico. Conforme descrito na Secao 5.2.1, a energia ideal pode ser calculada com
base na irradiacdo do sol medida [W/m?], total de area dos médulos [m?] e eficiéncia de

conversao dos mddulos [%] (normalmente préximo de 21%).

Com base nesse indicador e demais perdas do sistema calculados conforme 5.2.2, a
Figura 27 apresenta o diagrama em cascata com a decomposicao dessas perdas, partindo

da geracao ideal até a energia efetivamente entregue.
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Figura 27: Diagrama em cascata das perdas: da geracao ideal até a geracao efetiva.

Fonte: Autoria propria (2025).

Observa-se que a energia efetiva representa em média 75,3% do montante esperado,

indicador que pode ser traduzido pelo Performance Ratio (PR):

E real

PR = .
Eideal

(7.1)

As principais perdas identificadas foram:

o Temperatura: aproximadamente 4,7%;
 Clipping dos inversores: 8%;
o Indisponibilidade: 6,6%;

« Outros (9,6%): perdas por sujidade, sombreamentos, falhas de sensores e incertezas
do célculo de Eigea-



7.3

RESULTADOS DO GRID SEARCH
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A busca exaustiva por hiperparametros foi realizada por meio do Grid Search,

contemplando 51 usinas da base BR-PVGen. A Tabela 8 apresenta os valores selecionados

como Otimos.

Tabela 8: Hiperparametros utilizados no Grid Search e valores selecionados

Modelo | Hiperparametros | Faixa de Busca Parametros Selecionados
MLP Hidden Layer Size (128, 642’87(1265722716248126§)64<7:1§781’61§)8]’ 64, 32), (256, 128, 64)
Activation [sigmoid’, ’tanh’; 'relu’, "elu’] Relu
Solver [adam’, 'sgd’, 'nadam’, 'rmsprop’] adam
Alpha [le-5, le-4] le-5
Batch Size [32, 64] 64
Max Iterations [300, 500, 800] 800
RF Max Features [log2’, 'sqrt’] log2
Min Samples Split | [5, 6, 7, 8, 9, 10, 11] 7
N Estimators Range (100, 350, 10) 100
XGB Eta [0.006, 0.008, 0.009, 0.01, 0.015, 0.017, 0.019, 0.02] | 0.02
Gamma Range (150, 310, 10) 260
N Estimators Range (70, 90, 2) 88
Subsample [0.5, 0.75, 1] 0.5
GB Learning Rate [0.005, 0.007, 0.009, 0.01, 0.02, 0.03] 0.005
Max Depth 2, 4, 6] 4
Min Samples Split | [5, 6, 7, 8, 9, 10, 11] 10
N Estimators Range (400, 500, 10) 410
[(0,0,0, (0,0,1), (0,0,2), (0,1,0), (0,1,1), (0,1,2),
ARIMA | Order (p, d, q) (1,0,0), (1,0,1), (1,0,2), (1,1,0), (1,1,1), (1,1,2), (0,0, 1)
(2,0,0), (2.0,1), (2,0,2), (2,1,0), (2,1,1), (2,1,2)]
Trend [None, 'n’, '¢’] n’

Além dos hiperparametros principais, outros mecanismos foram empregados para

estabilizar o treinamento:

1. Funcao de perda Huber: reduziu a sensibilidade a outliers, comuns em dados de

usinas com indisponibilidade ou falhas de medicgao.

2. ReduceLROnPlateau: permitiu refinamento da taxa de aprendizado quando a

validagao estagnava, garantindo ajustes mais finos.

3. Early Stopping: interrompeu treinamentos sem ganho apés 40 épocas, evitando

sobreajuste e reduzindo tempo computacional.

4. Regularizacao L2 adicional: aplicada em todas as camadas da MLP, restringiu o

crescimento dos pesos e melhorou generalizacao.

Em conjunto, essas escolhas resultaram em modelos mais robustos, com convergéncia

estavel e menor custo computacional, especialmente nas arquiteturas de MLP com transfer

learning, que apresentaram os melhores resultados médios.

Para comparacao do desempenho dos modelos com seus respectivos melhores

hiperparametros, foi realizada a previsao da geracao das usinas fotovoltaicas, forma
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individual por usina e, em seguida, consolidada por meio da média, desvio padrao, valores
minimo e maximo. Os resultados estao organizados nas Tabelas 9,10, referentes a previsao

de energia didria, e nas Tabelas 11 e 12 que apresentam a previsao de poténcia em escala

intradiaria.

Tabela 9: Desempenho dos modelos - SMAPE (%) - Previsao energia diaria

Modelo Menor Erro | Maior Erro | Média + Desvio
ARIMA 55.47 151.45 117.90 + 21.70
Gradient Boosting 64.77 159.01 126.16 £ 19.98
Random Forest 61.42 169.21 128.13 £ 21.76
XGBoost 67.62 168.96 127.68 + 21.32
MLP 60.94 160.82 120.87 + 23.08
MLP com Transfer Learning 76.08 156.50 116.26 £+ 16.19

Tabela 10: Desempenho dos modelos - NRMSE (%) - Previsao energia diaria

Modelo Menor Erro | Maior Erro | Média + Desvio
ARIMA 13.72 67.04 25.52 £+ 9.00
Gradient Boosting 17.47 48.81 25.51 + 5.62
Random Forest 14.56 46.12 25.38 + 5.28
XGBoost 16.04 51.12 25.63 £+ 5.89
MLP 17.04 69.66 26.08 + 8.32
MLP com Transfer Learning 15.56 52.87 24.94 £ 5.68

Tabela 11: Desempenho dos modelos - SMAPE (%) - Previsao energia em 15 min

Modelo Menor Erro | Maior Erro | Média + Desvio
ARIMA 22.04 72.89 47.05 + 8.66
Gradient Boosting 29.63 73.97 46.94 £+ 8.40
Random Forest 33.05 76.70 47.33 £+ 8.17
XGBoost 27.97 72.92 46.48 + 8.13
MLP 26.98 7.7 46.40 + 8.28
MLP com Transfer Learning 28.15 71.57 43.92 £ 6.29

Tabela 12: Desempenho dos modelos - NRMSE (%) - Previsao energia em 15 min

Modelo Menor Erro | Maior Erro | Média + Desvio
ARIMA 9.81 25.36 14.23 4+ 2.46
Gradient Boosting 9.37 27.16 13.99 4+ 2.82
Random Forest 9.34 28.77 13.82 £+ 2.95
XGBoost 9.37 28.98 13.92 £+ 2.89
MLP 10.36 26.76 14.49 4+ 2.59
MLP com Transfer Learning 9.32 21.89 14.07 £ 2.40
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7.4 TRANSFER LEARNING

Como evidenciado nas Tabelas 9,10,11 e 12, os resultados da MLP foram aprimo-
rados com a aplicacao da técnica de Transfer Learning. Nessa abordagem, a usina com
maior histérico de registros (id=1) serviu como base para o pré-treinamento do modelo,
mantendo-se congelados os pesos das duas camadas iniciais e permitindo o ajuste apenas

da camada final durante o re-treinamento em cada nova usina.

A Tabela 13 resume os valores médios de SMAPE antes e depois da aplicagao do
Transfer Learning, para o caso da previsao de energia diaria, considerando diferentes faixas
de disponibilidade de registros. Nota-se que, para o conjunto completo de 51 usinas, houve
reducao média de 3,81%, passando de 120,87 para 116.26. Os ganhos tornam-se mais
expressivos a medida que diminui o volume de dados: 6,60% de redugdo em usinas com

menos de 200 registros e 9,03% quando disponiveis apenas 100 registros ou menos.

Tabela 13: Comparagao de resultado antes e depois do Transfer Learning - Energia
Diéria

Caso Usinas | SMAPE Médio | SMAPE Médio | Redugao (%)
Antes Depois

Todas usinas o1 120.87 116.26 3.81

< 400 registros 46 118.35 114.68 3.09

< 300 registros 38 118.91 114.73 3.51

< 200 registros 20 125.79 117.56 6.60

< 100 registros 10 127.66 116.12 9.03

Tabela 14: Comparacao de resultado antes e depois do Transfer Learning - Energia
Didria (NRMSE)

Caso Usinas | NRMSE Médio | NRMSE Médio | Redugao (%)
Antes Depois

Todas usinas 51 26.17 24.94 4.71

< 400 registros 46 26.28 25.10 4.49

< 300 registros 38 27.16 25.94 4.50

< 200 registros 20 29.02 27.30 5.94

< 100 registros 10 29.80 26.82 9.99

A Figura 28 ilustra essa diferenga, mostrando que a maioria das usinas obteve

ganhos apoés a aplicacao da técnica.

Resultados ainda mais expressivos foram observados no cenario intradiario. A
Tabela 15 mostra que, para todas as 51 usinas, o SMAPE médio caiu de 47.24 para 43.92,
representando uma redugao de 7,02%. O ganho cresce em condi¢oes de menor quantidade

de dados, chegando a 11,06% para usinas com menos de 4800 registros.

A Figura 29 complementa a andlise, destacando a consisténcia da melhoria entre

diferentes usinas.
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Comparacao do SMAPE por Usina

—8— Antes do Transfer Learning
Depois do Transfer Learning
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Figura 28: Comparacao de resultado antes e depois do Transfer Learning - Energia
Diéaria.

Fonte: Autoria prépria (2025).

Tabela 15: Comparacao de resultado antes e depois do Transfer Learning - (15 minutos)

Caso Usinas | SMAPE Médio | SMAPE Médio | Redugao(%)
Antes Depois

Todas usinas 51 47.24 43.92 7.02

< 19200 registros 46 46.69 42.45 9.09

< 14400 registros 38 46.90 42.34 9.72

< 9600 registros 20 46.07 42.54 7.68

< 4800 registros 10 58.27 51.83 11.06

Tabela 16: Comparagao de resultado antes e depois do Transfer Learning - (15 minutos)

(NRMSE)
Caso Usinas | NRMSE Médio | NRMSE Médio | Redugao (%)
Antes Depois
Todas usinas 51 14.50 14.07 2.96
< 19200 registros 46 15.32 14.54 5.10
< 14400 registros 38 16.07 15.21 5.34
< 9600 registros 20 17.71 16.93 4.43
< 4800 registros 10 19.66 18.53 5.76

Em ambos os horizontes de previsao, o Transfer Learning demonstrou ganhos

consistentes, com redugoes mais modestas na previsao diaria e melhorias significativas na

previsao intradiaria.
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Comparacao do SMAPE por Usina

| —e— Antes do Transfer Learning
Depois do Transfer Learning
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Figura 29: Comparacao do SMAPE por usina antes e depois do Transfer Learning (15
minutos).

Fonte: Autoria prépria (2025).

Além do aumento de acuracia, destaca-se a economia computacional: o tempo
médio de treinamento foi aproximadamente 40% menor em comparagao ao treinamento
do zero, ja que o modelo inicia com pesos pré-ajustados e apenas as camadas finais passam
por ajuste fino. Essa combinacao de melhor desempenho e maior eficiéncia reforga o

potencial do Transfer Learning para aplicagoes em larga escala em usinas fotovoltaicas.
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Figura 30: Exemplo de comparacao do SMAPE em uma usina antes e depois do Transfer
Learning.

Fonte: Autoria propria (2025).
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7.4.1 Curvas de Aprendizado

As curvas de aprendizado constituem uma ferramenta essencial para analisar o
comportamento da rede neural ao longo do processo de otimizacao. A Figura 31 apresenta
o historico de treinamento da usina base, enquanto a Figura 32 ilustra o comportamento

do modelo durante o ajuste para a usina alvo, utilizando a estratégia de Transfer Learning.

No treinamento da usina base (Figura 31), observa-se uma fase inicial de maior
instabilidade, com oscilagdes significativas na fungao de custo (loss) e na perda de validagao
(val_loss). Esse comportamento é tipico do periodo inicial de ajuste dos pesos da rede,
quando os parametros sao atualizados de forma mais intensa em busca de uma regiao de
convergéncia no espaco de otimizacgao. A partir de aproximadamente 50 épocas, ambas
as curvas tendem a estabilizacao, indicando que o modelo passou a generalizar de forma

satisfatoria.

A linha pontilhada em vermelho representa a variagao da taxa de aprendizado
(learning rate), ajustada automaticamente pelo método ReduceLROnPlateau. Inicialmente,
sao utilizados valores mais elevados de taxa de aprendizado para acelerar a descida no
gradiente; & medida que a perda de validacao deixa de apresentar ganhos significativos, a
taxa é reduzida progressivamente, permitindo um refinamento mais preciso dos pesos e
mitigando oscilagoes no minimo local. O critério de parada antecipada (Farly Stopping),
indicado pela linha vertical em Epoca = 87, interrompeu o treinamento apds a estagnacao

da perda em validacao, prevenindo sobreajuste e garantindo o uso do melhor modelo

observado.
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Figura 31: Curvas de treinamento e validacao da rede na usina base.

Fonte: Autoria prépria (2025).

Ja na Figura 32, referente ao processo de adaptacao do modelo pré-treinado para a
usina alvo, verifica-se uma convergéncia consideravelmente mais rapida. Isso ocorre porque

a rede parte de uma configuragao inicial de pesos ja ajustada com base na usina base,
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reduzindo o tempo necessario para atingir uma regiao de 6timo local no novo dominio de

dados.

A queda acentuada da fungao de perda nas primeiras épocas reflete o processo de
ajuste fino (fine-tuning) das camadas finais, responsaveis por capturar as especificidades
da usina alvo, como padroes locais de irradiacao, temperatura e comportamento dinamico
da geracao.

O Early Stopping foi acionado em Epoca = 80, momento em que a perda de
validacao cessou de apresentar melhorias, indicando que a rede atingiu o ponto 6timo
de aprendizado para os novos dados. A taxa de aprendizado, novamente controlada por
ReduceLROnPlateau, acompanhou essa evolucao de forma adaptativa, reduzindo-se em

degraus a medida que a fungao de custo se estabilizava.
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Figura 32: Curvas de treinamento e validacao do modelo com Transfer Learning aplicado
a usina alvo.

Fonte: Autoria prépria (2025).

De modo geral, o comportamento observado nas curvas demonstra que o treinamento
inicial na usina base foi fundamental para fornecer uma representacao robusta das relagoes
entre as variaveis meteorologicas e a geracao elétrica. KEsse conhecimento prévio foi
reutilizado e refinado no ajuste da usina alvo, resultando em um processo de convergéncia
mais estavel e eficiente. A reducao significativa da perda em menor ntimero de épocas
confirma a eficicia do Transfer Learning em cenarios de limitacao de dados, proporcionando

melhor desempenho com menor custo computacional.
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7.5 COMPARACOES COM OUTROS MODELOS

A Tabela 17 apresenta o desempenho médio (SMAPE e NRMSE) para diferentes
modelos considerando dois cenarios: previsao de energia diaria e previsao em intervalos de
15 minutos. Os resultados indicam uma clara evolucao da MLP quando comparada aos

modelos tradicionais, em especial no cenario intradiario.

Tabela 17: SMAPE e NRMSE (%) para diferentes modelos e conjuntos de dados

2*Modelo Geracao diaria Geracgao 15 min
SMAPE (%) NRMSE (%) SMAPE (%) NRMSE (%)
MLP Transfer Learning 116.25 + 16.19  24.94 + 5.68 43.92 + 6.29 14.07 £ 2.40
MLP 120.87 £ 23.08  26.17 £ 8.32 46.40 + 8.28 14.49 £+ 2.59
Linear Regression 117.90 + 21.70  77.58 4+ 24.20 49.54 + 8.19 40.53 £ 6.61
Ridge 118.16 + 22.06  76.39 &+ 22.04 49.45 + 8.28 40.42 £ 6.39
Lasso 174.88 £ 17.25 87.58 £20.38  188.04 £ 9.49 101.60 £ 10.99
ElasticNet 163.48 £ 17.78 84.92 + 2193  119.27 £ 8.78  75.71 £+ 12.30
Decision Tree 130.62 £ 19.83 112.12 £ 2540 57.88 £ 10.14  58.29 £ 9.19
SVR kernel 119.04 + 24.18 80.17 &+ 21.74 177.30 £ 25.03 40.96 + 11.29
Extra Trees 130.74 £ 21.62 81.03 &£ 20.22  47.11 £ 8.27 40.00 £ 8.82
AdaBoost 134.26 + 24.80 81.85 +£20.29  70.04 £ 15.10  49.32 £ 9.52
Bagging 127.15 £ 19.67 82.56 £ 21.07  49.77 £ 9.50 42.34 + 8.62
KNN 130.98 £ 20.17  85.14 £ 19.56 50.11 £ 7.98 44.38 £ 9.76
Bayesian Ridge - 74.82 + 19.59 - 40.39 + 6.41
Reservoir Computing 117.90 £ 21.70 - 49.54 £ 8.19 -
GB (GS) 126.16 £ 19.98  25.51 £ 5.62 46.94 + 8.40 13.99 £+ 2.82
RF (GS) 128.13 £ 21.76  25.38 + 5.28 47.33 £ 8.17 13.82 £ 2.95
ARIMA (GS) 117.90 + 21.70  25.52 £ 9.00 47.05 £ 8.66 14.23 £+ 2.46
XGB (GS) 127.68 £ 21.32  25.63 £ 5.89 46.48 + 8.13 13.92 £ 2.89
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Figura 33: Distribuicdo do SMAPE para previsao de geragao de energia diaria.

Fonte: Autoria prépria (2025).
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Boxplot of SMAPE - 15-Minute Generation
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Figura 34: Distribuicao do SMAPE para previsao de geragdo de energia em intervalos de
15 minutos.

Fonte: Autoria prépria (2025).

Os boxplots das Figuras 33 e 34 confirmam que a MLP com Transfer Learning
apresenta distribuicao de erros mais concentrada e robusta frente as demais alternativas.

Ja os heatmaps das Figuras 35 e 36 evidenciam mostram o erro por modelo e usina.

Com o intuito de verificar a existéncia de diferencas estatisticamente significativas
entre os modelos de previsao avaliados, foi conduzida uma anélise de varidncia (ANOVA)
de um fator, considerando as métricas de erro SMAPFE obtidas para cada modelo ao longo

das diferentes usinas.

Os resultados da ANOVA indicaram diferenca altamente significativa entre os
modelos, com estatistica F' = 32,64 e valor de p = 4,10 x 1078, Este resultado rejeita a
hipétese nula de igualdade das médias de desempenho, confirmando que pelo menos um

dos modelos apresenta comportamento distinto em relacao aos demais.

Para identificar quais modelos diferem entre si, foi aplicado o teste post-hoc de
Tukey HSD, com nivel de significAncia de 5%. Observou-se que os modelos baseados em
regularizacao linear, como Lasso e ElasticNet, apresentaram diferencas significativas e
médias de erro consideravelmente mais elevadas em relagao a maioria dos demais modelos.
Em contrapartida, modelos como Random Forest, Ridge, SVR, Linear Regression, MLP e
MLP Transfer Learning apresentaram desempenhos estatisticamente equivalentes entre si,

situando-se entre os melhores resultados obtidos.
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Figura 35: Heatmap de comparacao por usina — Previsao didria.

Fonte: Autoria propria (2025).
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Heatmap de SMAPE por Usina (linhas) e Modelo (colunas)
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A Figura 37 apresenta o heatmap das diferencas médias de SMAPE entre modelos,
derivado das comparagoes miultiplas de Tukey. Cores azuladas representam diferencas
negativas (modelos na linha apresentando menor erro médio que os da coluna), enquanto
tons avermelhados indicam diferengas positivas (modelos com maior erro médio). A andlise
visual evidencia blocos de comportamento semelhante, nos quais modelos como MLP, MLP
Transfer Learning, Ridge e Random Forest formam um agrupamento de alta performance,
caracterizado por diferencas estatisticamente nao significativas entre si. Por outro lado,
observa-se que os modelos Lasso e ElasticNet se destacam por apresentarem médias de

erro substancialmente superiores, indicando limitagoes no ajuste para este conjunto de

dados.

De forma geral, os resultados confirmam a robustez dos modelos de aprendizado
profundo e de regressao regularizada com penaliza¢ao de segunda ordem (Ridge), além de
reforcarem o potencial da estratégia de transfer learning aplicada ao modelo MLP, que
se manteve consistentemente entre os melhores desempenhos sem apresentar diferencas
significativas em relagao as abordagens mais estaveis. Tal evidéncia corrobora a hipétese
de que técnicas de aprendizado transferido podem contribuir para maior generalizacao dos
modelos de previsao fotovoltaica, especialmente em cendarios com variabilidade interplanta

pronunciada.
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Figura 37: Diferenca média de SMAPE entre modelos obtida pelo teste de Tukey HSD.

Fonte: Autoria prépria (2025).
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8 CONCLUSAO

Esta dissertagao apresentou o desenvolvimento e a disponibilizacao da base de
dados BR-PVGen, constituindo um dos primeiros esfor¢os nacionais de consolidagao
e padronizagao de registros de usinas fotovoltaicas conectadas a rede em operagao real.
O trabalho teve como objetivo principal a criagao dessa base publica, estruturada e
anonimizavel, capaz de apoiar pesquisas em previsao, controle e otimizacao de sistemas
solares, e, de forma complementar, a avaliacao de metodologias de aprendizado de maquina

aplicadas a previsao de geracao de energia fotovoltaica.

A BR-PVGen reuniu séries temporais provenientes de 51 usinas fotovoltaicas
distribuidas em diferentes regides do Brasil, com medicoes diarias e intradiarias de poténcia
dos inversores e variaveis meteorolégicas correspondentes. O tratamento dos dados incluiu
etapas de verificagao de qualidade, interpolacao, filtragem e normalizacao, assegurando
consisténcia e reprodutibilidade. Essa base viabilizou nao apenas o desenvolvimento dos
modelos propostos nesta dissertacdo, mas também fornece um repositorio de referéncia

para futuras pesquisas na area de energia solar e aprendizado de maquina.

Com base nessas informagoes, foi realizada uma analise de desempenho operacional
das usinas, identificando um Performance Ratio médio de 75,3%, com perdas associadas
principalmente a temperatura (4,7%), ao clipping dos inversores (8,0%) e a indisponibilidade
(6,6%). Esses resultados reforcam a importancia de conjuntos de dados integrados para o

diagnostico e melhoria da performance de sistemas fotovoltaicos.

A segunda contribuicao deste trabalho concentrou-se na aplicacao de modelos de
aprendizado de maquina para previsao de geragao fotovoltaica, com énfase em Redes
Neurais Artificiais otimizadas por Transfer Learning. Os experimentos demonstraram que
o uso de pré-treinamento entre usinas com histéricos mais longos e aquelas com menor
volume de dados resulta em ganhos consistentes de acuracia e eficiéncia computacional.
Em horizontes diarios, o SMAPE médio reduziu de 120,87% para 116,26%, enquanto
em horizontes intradidrios (15 minutos) houve melhora média de 8,45%, chegando a
11,06% em usinas com séries menores. Além disso, o Transfer Learning reduziu em
aproximadamente 40% o tempo médio de treinamento, evidenciando sua aplicabilidade

em contextos operacionais.

De forma geral, os resultados confirmam que a utilizagdo de bases multivariadas e de
estratégias de transferéncia de conhecimento permite explorar padroes de geragao de forma
mais generalizavel e eficiente, abrindo caminho para novas abordagens no monitoramento

e previsao da geracgao solar no contexto brasileiro.
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CONTRIBUICOES E TRABALHOS FUTUROS

As principais contribuigoes desta dissertacao podem ser sintetizadas em trés eixos:

e Desenvolvimento e disponibilizacao da base de dados BR-PVGen, inédita no
contexto nacional, estruturada com dados meteorolégicos e de geragao elétrica de
51 usinas fotovoltaicas, com potencial para servir como benchmark em pesquisas

futuras;

o Aplicagao da BR-PVGen como estudo de caso para previsao de geracao, demons-

trando a eficiéncia do Transfer Learning em cenarios de dados escassos e heterogéneos;

o Implementacao e validacao de um fluxo de modelagem preditiva reprodutivel, que
integra controle de regularizagao, taxa de aprendizado adaptativa e fungoes de custo

robustas.
Como perspectivas de continuidade, destacam-se:

o Expansao da base BR-PVGen com novas usinas, periodos histéricos e variaveis
meteorologicas complementares, aprimorando a representatividade geografica e cli-

matica;

« Investigacao de arquiteturas hibridas e recorrentes, como Long Short-Term Me-
mory (LSTM), Gated Recurrent Unit (GRU) e Reservoir Computing,
capazes de capturar dependéncias temporais de longo alcance e padroes nao lineares

complexos;

« Exploracao de estratégias de Aprendizado Federado (Federated Learning),
permitindo o treinamento colaborativo entre diferentes usinas sem compartilhamento

direto dos dados brutos, preservando privacidade e confidencialidade;

o Aplicagao das técnicas de previsao e transferéncia de aprendizado em tarefas de

diagndstico de falhas e detecgdo de anomalias em tempo real.

Em sintese, esta dissertacao contribui para o avango da pesquisa nacional em
previsao de geracao fotovoltaica ao unir o desenvolvimento de uma base de dados publica,
padronizada e de alta qualidade, a demonstracao pratica de metodologias modernas de
aprendizado profundo. Espera-se que a BR-PVGen se torne um recurso de referéncia para
a comunidade cientifica e para o setor energético, incentivando estudos colaborativos e o
desenvolvimento de solugoes inteligentes para a operagao e integracao da energia solar no

sistema elétrico brasileiro.
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