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ABSTRACT

Fuzzy inference systems are a special class of machine learning models known for
balancing accuracy with interpretability. The two main types of fuzzy inference systems
are Mamdani and Takagi-Sugeno-Kang. While Mamdani models prioritize interpretability,
Takagi-Sugeno-Kang models achieve higher accuracy by approximating nonlinear systems
through a collection of linear subsystems. However, designing fuzzy rules lacks a standard-
ized method, often leading to models with excessive hyperparameters, high complexity,
and no direct control over the number of rules. To address such challenges, this work
introduces two new data-driven approaches for designing Mamdani and Takagi-Sugeno-
Kang rules. Among the advantages of the proposed fuzzy inference systems with the new
mechanism for rule generation, the following can be highlighted: reduced complexity, fewer
hyperparameters, enhanced interpretability, and direct control over the number of final
rules. Additionally, feature selection techniques, including genetic algorithms and ensemble
methods, are integrated to improve the models” ability to handle large datasets, optimize
performance, increase interpretability, and prevent overfitting. The introduced models
result in the NFISiS, a new collection of data-driven fuzzy inference systems for time series
forecasting. The proposed models are evaluated using benchmark time series, renewable
energy, financial, and cryptocurrency datasets in terms of errors and the number of rules.
Their performance is compared against state-of-the-art machine learning models, including
classical approaches, deep learning architectures, and rule-based evolving Fuzzy Systems.
The results indicate that the proposed models effectively handle complex, non-stationary
datasets, such as those in finance and cryptocurrency. All proposed models are avail-
able as a Python package, which can be installed via pip: pip install nfisis(https:
//pypi.org/project/nfisis). Furthermore, the source code used for the simulations

are available at https://github.com/kaikerochaalves/nfisis_thesis.git.

Keywords: Fuzzy inference system. Mamdani. Takagi-Sugeno-Kang. Feature

selection. Time series forecasting.


https://pypi.org/project/nfisis
https://pypi.org/project/nfisis
https://github.com/kaikerochaalves/nfisis_thesis.git

RESUMO

Sistemas de inferéncia fuzzy consistem em uma classe especial de modelos de
aprendizado de maquina conhecidos por balancear acuracia com interpretabilidade. Os
dois principais tipos de sistemas de inferéncia fuzzy sao Mamdani e Takagi-Sugeno-Kang.
Enquanto os modelos Mamdani priorizam a interpretabilidade, os modelos Takagi-Sugeno-
Kang normalmente obtém menores erros devido a sua habilidade de aproximar sistemas
nao lineares por meio de uma colecao de subsistemas lineares. Contudo, a criacao do
conjunto de regras fuzzy nao possuem uma abordagem padronizada, o que frequentemente
resulta em modelos com excesso de hiperparametros, alta complexidade e sem controle
direto sobre o nimero de regras. Para superar tais desafios, este trabalho introduz duas
novas abordagens para geracao de uma base de regras fuzzy baseadas em dados, tanto para
modelos Mamdani quanto para os Takagi-Sugeno-Kang. Entre as vantagens dos sistemas
propostos, destacam-se: complexidade reduzida, menor nimero de hiperparametros, maior
interpretabilidade e controle direto sobre o ntmero final de regras. Adicionalmente,
técnicas de selecao de atributos, incluindo algoritmos genéticos e métodos ensemble, sao
integradas para melhorar a capacidade dos modelos em lidar com grandes conjuntos
de dados, otimizar o desempenho, aumentar a interpretabilidade e evitar o sobreajuste
(overfitting). Os modelos introduzidos resultam no NFISiS, uma nova colegao de sistemas
de inferéncia fuzzy dirigida a dados para a previsao de séries temporais. Os modelos
propostos sao avaliados utilizando séries temporais sintéticas, bem como conjuntos de
dados de energia renovavel, dados financeiros e de criptomoedas. Os resultados sao
avaliados em termos de erros e nimero de regras. O desempenho dos modelos propostos é
comparado com o de modelos de aprendizado de maquina no estado da arte, incluindo
abordagens classicas, arquiteturas de aprendizado profundo (deep learning) e sistemas
fuzzy evolutivos baseados em regras. Os resultados indicam que os modelos propostos
lidam eficazmente com conjuntos de dados complexos e nao estacionarios, como os das
areas financeira e o de criptomoedas. Todos os modelos propostos estao disponiveis
como um pacote Python, que pode ser instalado via pip: pip install nfisis(https:
//pypi.org/project/nfisis). Além disso, o cddigo-fonte utilizado para as simulagdes

estd disponivel em https://github.com/kaikerochaalves/nfisis_thesis.git.

Palavras-chave: Sistema de inferéncia fuzzy. Mamdani. Takagi-Sugeno-Kang.

Selecao de atributos. Previsao de séries temporais.
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1 INTRODUCTION

Deep learning (DL) techniques have become increasingly popular due to technolo-
gical advances and the growing complexity of databases. However, DL models are more
intricate and susceptible to several issues, such as vanishing gradients, overfitting, long
training times [1], and a lack of interpretability due to their black-box nature [2, 3]. In
contrast, fuzzy inference systems (FIS), introduced by Zadeh [4], constitute a class of
machine learning models that balance accuracy and interpretability. These systems have
been successfully applied in various fields, including finance, business, and management
[5, 6, 7, 8], renewable energy [9, 10], medicine [11, 12], engineering [13, 14], chemistry
[15, 16], scheduling [17], pattern recognition [18], and fault detection [19].

There are two primary types of fuzzy models: Mamdani [20] and Takagi-Sugeno-
Kang (TSK) [21, 22]. These fuzzy rules are divided into two main parts: the antecedent
and the consequent. In these models, data are modeled through rules and fuzzy sets.
The antecedent part models the inputs, while the consequent part models the output.
Although both Mamdani and TSK models share the same approach in the antecedent
part, they differ in their consequent parts. Specifically, Mamdani systems use fuzzy sets
in the consequent, which tends to provide more interpretable results [23]. Miller defines
interpretability as the ability to explain or justify the reasoning behind a given result to
humans [24, 25].

On the other hand, TSK implements polynomial functions in the consequent, which
typically provide more accurate results and require fewer rules to describe highly nonlinear
and complex systems, generally fewer than those of Mamdani models [26, 27]. The core
idea behind TSK models is to approximate a nonlinear system by combining multiple
local linear subsystems. The output is estimated as a weighted combination of the local

outputs from each rule [28, 29].

Despite the clear advantages of FIS, their practical design and optimization present
significant challenges, which form the central motivation for this thesis. There is no
standardized method for defining rules, leading to several limitations in the existing
approaches: (i) rule generation mechanisms are often complex, requiring hybridizations that
increase the number of hyperparameters; (ii) usually there are no direct control over the final
number of rules, forcing an unpredictable trade-off between accuracy and interpretability;
and (iii) the TSK model, while accurate, suffers from a lack of interpretability in its
consequent part, which uses polynomial functions. These gaps highlight a clear need for a
new family of FIS that are simultaneously interpretable, controllable, and less complex to

configure.

For this reason, this thesis presents the outcome of in-depth research into FIS by

proposing the new fuzzy inference systems (NFISiS), a collection of novel data-driven
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fuzzy modeling approaches that define fuzzy rules based on a specified number of rules
and construct the fuzzy sets based on the target value. NFISiS offers three key advantages:
first, it allows users to specify the exact number of rules, enabling them to balance accuracy
and interpretability according to their needs. Second, by defining rules based on the target
value, the model establishes clearer correlations between the target and its attributes.
Finally, NFISiS reduces the number of hyperparameters and overall model complexity,

making it well-suited for real-world applications.

NFISiS includes both Mamdani and TSK variants, referred to as the new Mamdani
fuzzy inference system (NMFIS) and the new Takagi-Sugeno-Kang system (NTSK) [30, 31],
respectively. Additionally, NMFIS is further categorized into the new Mamdani classifier
(NMC) and the new Mamdani regressor (NMR). As will be discussed later, due to its
structural formulation, NTSK is only applicable to regression problems. Since NTSK
computes the output using polynomial functions, two recursive adaptive filtering techniques
are implemented in the consequent part of NTSK to estimate the consequent parameters:

the recursive least squares (RLS) and the weighted recursive least squares (wRLS).

Additionally, with the growing complexity of databases, one challenge remains:
which attributes should be selected to optimize the model’s performance while considering
the trade-off between accuracy and interpretability? The answer to this question depends
on feature selection techniques, which can be divided into five main types: filter, wrapper,
embedded, hybrid, and ensemble [32]. The first one, filter methods, are statistically
based approaches, but they neglect the integration between the selected subset and the
performance of the learning algorithm [33]. In contrast, wrapper methods use a metric
that measures the learning algorithm’s performance to identify the feature set that leads
to the best results. However, since it is infeasible to test all possible combinations of
features, heuristic and metaheuristic approaches are employed, such as randomized search

[34], genetic algorithm (GA) [35], and ant colony optimization [36].

In embedded methods, the feature selection technique is integrated into the learning
algorithm by adjusting the model’s internal parameters. Decision trees, random forest
(RF), and gradient boosting are examples of embedded feature selection techniques [37].
Hybrid methods combine multiple feature selection approaches in a multi-step process [38].
Finally, ensemble methods implement multiple weak learning algorithms and combine
their results to achieve better performance than any individual model [39, 40]. The key
difference between hybrid and ensemble methods is that hybrid models use multiple models
to obtain a single result, while ensemble methods generate one output per model and

combine the outputs into a final result.

In this scenario of increased complexity of the datasets and aiming to improve
the performance of the introduced data-driven approaches to real-world applications, two

feature selection paradigms, a wrapper and an ensemble, are combined with NMR and
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NTSK. The goal is to produce FIS capable of handling large datasets while ensuring
optimized performance, enhanced interpretability, and a reduced proneness to overfitting.
The wrapper technique consists of a GA approach to search for a subset of input attributes
that minimizes the error, deriving two models: the genetic new Mamdani regressor (GEN-
NMR) and the genetic new Takagi-Sugeno-Kang (GEN-NTSK). In addition, the NFISiS
framework incorporates three ensemble-based models: the random new Mamdani regressor
(R-NMR), the random new Takagi-Sugeno-Kang (R-NTSK), and the random forest new
Takagi-Sugeno-Kang (RF-NTSK). To evaluate the performance of the proposed models,
renewable energy, financial, and cryptocurrency datasets are used. These datasets were

chosen because of their complexity and relevance in many real-world applications.

Photovoltaic (PV) energy is expected to become one of the primary sources of
energy worldwide, as it is abundant, affordable, and easily scalable [41]. However, the
energy supplied by PV modules can be intermittent due to the varying nature of weather
conditions [42]. Forecasting the power generated in a PV plant is crucial, as it helps grid
operators, plant managers, and energy markets anticipate and manage the variability
inherent in PV energy generation. Accurate forecasts optimize energy production, ensure
a stable and reliable power supply, and contribute to cost reduction, efficient resource
planning, and the overall sustainability of the energy landscape. Furthermore, the chaotic
nature and uncertainties associated with PV energy make it difficult to obtain accurate
results using physical equations. This challenge has led to the increased use of machine
learning models for predicting PV energy generation [43]. On the other hand, obtaining
returns on investments in the stock market is challenging due to its complex nature. As
a result, machine learning models assist investors in developing investment strategies
[44, 45].

To measure the models’ performance on the PV datasets, the data are partitioned
into training, validation, and test sets. The hyperparameters are defined using the
validation set, and the final errors are reported on the test set. On the other hand, for
the cryptocurrency and financial datasets, sliding-window cross-validation is used, and
the results are reported as the mean and standard deviation of the results of each subset.
Furthermore, the number of fuzzy rules is reported for the fuzzy models. The results
of the proposed models are compared with those of classical models, DL, and evolving
Fuzzy Systems (eFSs) to enrich the work and provide more comprehensive conclusions.
Statistical tests are included to validate the results. Finally, a detailed discussion regarding

rules, interpretability, and computational cost is presented.

1.1 RESEARCH QUESTIONS

To address the identified gaps, this thesis seeks to answer the following primary

research questions:
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o How can novel data-driven algorithms for Mamdani and TSK models be designed to
provide direct, explicit control over the number of rules, thereby enabling a clearer

balance between predictive accuracy and model interpretability?

» To what extent do adaptive filtering techniques, specifically RLS and wRLS, enhance
the parameter estimation and predictive performance of the proposed TSK models

compared to standard methods?

o How does the integration of GA-based wrapper and ensemble-based feature selection
methods impact the performance, interpretability, and generalization of the proposed

fuzzy systems when applied to high-dimensional data?

o How does the performance of the proposed NFISiIS framework compare against
state-of-the-art classical, DL, and eFSs when applied to complex, real-world time

series in renewable energy, finance, and cryptocurrency?

1.2 OBJECTIVES

To answer these research questions, the main objective of this thesis is to develop
and evaluate a new family of fuzzy inference systems, called NFISiS, designed to address
key limitations in existing data-driven fuzzy modeling techniques. To achieve this goal,

the following specific objectives are defined:

« To develop novel data-driven algorithms for constructing both Mamdani and TSK
fuzzy models, providing direct control over the number of rules to balance model

accuracy and interpretability.

« To investigate the effectiveness of RLS and wRLS adaptive filtering techniques for

estimating the consequent parameters in the proposed TSK models.

o To incorporate a GA-based wrapper method and an ensemble approach into the
proposed FIS to perform automatic feature selection, enhancing model performance

and interpretability.

o To implement the proposed models in a user-friendly, open-source Python library

named nfisis to promote reproducibility and facilitate further research.

« To validate the performance of the proposed models through extensive simulations
on complex, real-world time series datasets from the domains of renewable energy,

finance, and cryptocurrency.

e To conduct a comprehensive comparative analysis of the proposed models against

classical, DL, and state-of-the-art eF'Ss to benchmark their effectiveness.
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1.3 MAIN CONTRIBUTIONS

This work introduces and discusses NFISiS, a collection of six novel FIS. The

contributions of this work are summarized as follows:

o New data-driven Mamdani and TSK models are proposed.

» Two adaptive filtering approaches, the RLS and wRLS, are tested for estimating the

polynomial functions in the consequent part of TSK-based models.

o GA and ensemble approaches are incorporated into the proposed data-driven FIS

for feature selection.

o The development and public release of nfisis, an open-source Python library con-

taining the implementations of all proposed models and feature selection techniques.

e The proposed models are extensively tested on PV, financial, and cryptocurrency

datasets.

o The presented models include direct control over the number of rules, enhanced
interpretability and explainability, a simplified structure with fewer hyperparameters,

lower prediction errors, and strong performance when dealing with complex series.

« Extensive simulations are conducted not only to validate the performance of the
introduced models but also to compare them with classical models, DL, and eFSs,

which are widely referenced in the literature.

1.4 ORGANIZATION OF THE MANUSCRIPT

The remainder of this document is organized as follows:

o Chapter 2 presents a detailed literature review on Mamdani, TSK, GA, and ensembles.
Additionally, it examines previous research on PV, financial, and cryptocurrency
applications. Whenever possible, the review highlights the advantages and limitations

of existing approaches.

o Chapter 3 provides background knowledge and mathematical formalisms for FIS,
GA, and ensemble methods.

o Chapter 4 introduces NFISiS, emphasizing its novel approaches to designing Mamdani
and TSK data-driven algorithms and their inference processes. Additionally, this
chapter outlines the benefits of the models’ integrated GA and ensemble approaches.

Finally, pseudo-code for the introduced algorithms is provided.
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o Chapter 5 details the datasets and their statistical characteristics, presents the tools
and devices utilized, introduces about the developed library, and outlines the error

metrics and simulation setup.

o Chapter 6 reports the simulation results and the statistical tests. Furthermore,
technical aspects are discussed, such as interpretability, computational performance,
and the stability of the proposed stochastic algorithms. Finally, observed limitations

are presented.

o Finally, Chapter 7 concludes the work, summarizes the findings, and proposes

directions for future research.
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2 LITERATURE REVIEW

This chapter presents a comprehensive review of the two FIS types, Mamdani
and TSK, highlighting their advantages and limitations. Subsequently, it provides an
overview of GA and ensemble methods, the two feature selection techniques implemented
in this work. Finally, it examines forecasting techniques applied to PV, financial, and

cryptocurrency datasets, which constitute the applications selected for this work.

2.1 FUZZY INFERENCE SYSTEMS

This section reviews the literature on FIS, presenting the strengths and weaknesses

of the Mamdani and TSK for time series forecasting.

2.1.1 MAMDANI FUZZY MODELS

Anderson and Hall [46] proposed the Mamdani-style Fuzzy Inference System (MR.
FIS), which generates Mamdani rules based on the knowledge embedded in a neural
network. Duan and Chung [47] introduced a Mamdani-type Multistage Fuzzy Neural
Network to address the curse of dimensionality problem in single-stage fuzzy networks.
Their findings indicate that the proposed model achieves faster convergence, greater
robustness, and reduced complexity. Ying [48] extended a single-input single-output
(SISO) Mamdani controller to a two-input two-output (TITO) and analyzed the resulting
performance. Uncu et al. [49] developed a Mamdani FIS that implements fuzzy c-means
to define Type-2 fuzzy sets, concluding that the proposed method yields more accurate
results. Kaymak et al. [50] introduced a probabilistic Mamdani fuzzy system, while
Chai et al. [51] implemented the Mamdani model-based Adaptive Neural Fuzzy Inference
System (M-ANFIS). Their work demonstrated that M-ANFIS outperforms the standard
adaptive neural-fuzzy inference system (ANFIS) in terms of hyperparameter efficiency,
training data requirements, runtime, and error reduction. Tung and Quek [52] discussed
the Mamdani-Takagi-Sugeno linguistic neural-fuzzy inference system (MTS-LiNFIS), a
hybrid neuro-fuzzy system that combines the explanatory trait of Mamdani with the

accuracy of TSK.
Gacto et al. [53] proposed the METSK-HDe, a fuzzy system that uses an evolu-

tionary algorithm to build the rule-based structure and a rule selection approach in the
post-processing stage. Gou et al. [54] implemented a modified fuzzy c-means to improve
the fuzzy rules of the Wang-Mendel algorithm even in the presence of noise and outliers.
Asadi [55] implemented a GA to extract the rules of a Mamdani FIS. Pekaslan et al. [56]
developed the ADONIS model, which adjusts the standard deviation of the Gaussian
fuzzy sets to enhance robustness and adaptability under uncertainty. Kacimi et al. [57]

utilized particle swarm optimization (PSO) for the automatic learning and self-adaptation
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of Mamdani rules. Zhang and Wagner [58] applied Markov blankets to establish causal
relationships between input and output variables to limit the number of rules by exploring
the concept of causality. Navarro-Almanza et al. [59] used a GA to build a fuzzy linguistic
interpretable model from an optimized Mamdani neuro-fuzzy model. Zhang et al. [60]

proposed a fuzzy algorithm that clusters the dataset to perform the regression task.

2.1.2 TSK FUZZY MODELS

Since the introduction of TSK, many researchers have explored and expanded
upon this topic. Fantuzzi and Rovatti [61] investigated the approximation capability of
homogeneous TSK models. Joh et al. [62] addressed stability issues in TSK systems,
proposing a method to find a common symmetric positive-definite matrix for linear discrete
TSK fuzzy models. Similarly, Nguyen et al. [63] provided a comprehensive review of the
stability of fuzzy control systems. From an interpretability perspective, Johansen et al. [27]
analyzed TSK models and provided practical examples to enhance their comprehensibility.
Ying [64] established sufficient conditions for system configuration, confirming TSK models

as universal approximators within single-input single-output (SISO) systems.

Several evolving neural-fuzzy models have been proposed, including the adaptive
neuro-fuzzy inference system (ANFIS) [65], the evolving fuzzy neural network (EFuNN)
[66], and the dynamic evolving neural-fuzzy inference system (DENFIS) [67]. DENFIS
incrementally creates and updates fuzzy rules in an online manner as new data arrives.
The limitations of DENFIS include: (i) it can generate a high number of rules; (ii) it
requires substantial training data to minimize errors; and (iii) it may produce significant

errors if the training data inadequately represents the input domain.

In the context of evolving models, Angelov and Filev [68] proposed the evolving
Takagi-Sugeno (eTS) model, a rule-based eF'S. The eT'S model dynamically updates its
rules and parameters as new data becomes available, enabling it to detect data shifts
and drifts. Inspired by eTS, various extensions were developed, such as Simpl eTS [69],
exTS [70], FLEXFIS [71], ePL [72], ePL+ [73], eMG [74], and ePL-KRLS-DISCO [75].
Despite their advantages, these models often require tuning various hyperparameters for
rule creation, deletion, and update rates. Additionally, their continuous rule revision
process can reduce explainability by producing models with too few or too many number

of rules across different stages.

Kukolj and Levi [26] proposed a neural network-based TSK model with improved
transparency, fewer rules, and higher accuracy, though they did not include a discussion
of hyperparameters or provide implementation details. In subsequent work, Vernieuwe
et al. [76] explored clustering methods and introduced ClusterFinder, an algorithm that
identifies optimized fuzzy sets. Kung and Su [77] implemented an approach that defines

the fuzzy sets using a c-regression model; however, this approach offers no direct control
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over the number of rules and fails to show how the number of clusters affects model error
and rule count. Du and Zhang [78] implemented a GA to optimize the number of rules
and the parameters of the membership functions in a TSK model and perform feature
selection. Nevertheless, the number of rules and computation time increase substantially

with the dimensionality of the input.
Rezaee and Zarandi [79] proposed a hybrid approach that starts with a single rule

and incrementally adds rules until a stopping criterion is met. Xu et al. [80] manually
designed TSK rules for a two-wheeled mobile robot using domain knowledge. Cheung et
al. [81] introduced the optimizing fuzzy model (OptiFel), which utilizes a heterogeneous
multi-swarm PSO algorithm to address limitations of classical PSO, such as premature
convergence and susceptibility to local optima, thereby improving TSK model accuracy.
Precup et al. [82] implemented two optimization algorithms to optimize TSK rules:
simulated annealing (SA) and PSO. The authors report three main advantages of the
proposed models: (i) the simplicity of the models’ structure; (ii) their consistency across
both training and testing data; and (iii) the transparency of the overall fuzzy modeling

approach.

Vrkalovic et al. [83] compared the performance of three optimization algorithms
in designing TSK rules: PSO, SA, and gravitational search algorithm (GSA). Tsai and
Chen [84] introduced a new identification method for TSK that uses the Xie-Beni index
algorithm to define the number of rules and implemented PSO and orthogonal least-squares
(OLS) to compute the matrices and parameters of the consequent part. Lai et al. [85]
proposed a technique to learn TSK rules from data with missing values. More recently,
Zander et al. [86] proposed reinforcement learning (RL) to optimize TSK rules. In a
related way, Fang et al. [87] presented a self-learning TSK that implements RL in the
learning process. Zhang et al. [88] developed an ensemble model named D-RSP-TSKE
that utilizes a deep reconciled and self-paced TSK fuzzy system for imbalanced data

classification. The authors report the model achieves improved interpretability.

2.2 FEATURE SELECTION

This subsection reviews the literature on the two feature selection approaches

implemented in this work: GA and ensembles.

2.2.1 GENETIC ALGORITHMS

Holland made a foundational contribution to evolutionary algorithms with the
introduction of GA in his books [89, 90]. Although he did not introduce the concept
of evolutionary algorithms, he was the first to use this term [91]. Since then, many
researchers have applied GA to a wide variety of problems. Shi et al. [92] implemented

the PSO-GA, a meta-heuristic approach that achieves better results than using either
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PSO or GA individually. Juang [93] discussed the hybrid GA particle swarm optimization
(HGAPSO) in the design of a recurrent neural network. Wang [94] presented the hybrid
genetic algorithm-—neural network strategy (GA-NN). Sheikh et al. [95] utilized GA in the
context of clustering. Syarif et al. [96] developed a GA to optimize SVM parameters.

Ding and Fu [97] introduced GAKFCM, a combination of an improved GA with
kernel-based fuzzy c-means to obtain clusters with improved performance. Sehgal et al.
[98] implemented a GA to optimize the parameters of a deep deterministic policy gradient.
Zivkovic et al. [99] discussed the implementation of a GA to optimize the hyperparameters
of a neuro-fuzzy inference system. Gao et al. [100] proposed DockingGA, a model that
combines a GA with transformer neural networks to generate molecules with better binding
affinity. Furthermore, some researchers have utilized GA in the context of feature selection.
Maleki et al. [101] used a GA for feature selection in medical images. Guha et al. [102]
proposed the combination of a GA with the great deluge algorithm to obtain increased
exploitation capability. Halim et al. [103] successfully applied an enhanced GA for feature
selection. Altarabichi et al. [104] implemented a fast GA for attribute selection using

decision trees.

2.2.2 ENSEMBLE MODELS

Sagi and Rokach [105] classified ensemble learning into two main frameworks:
dependent and independent. In the dependent framework, the learners are interdependent.
The learners are built in sequence, and the outputs of the k-th estimator are used to
guide the learning of the estimator at step k + 1. On the other hand, in the independent
framework, the estimators are built independently of one another. AdaBoost, introduced
by Freund and Schapire [106], exemplifies the dependent framework by iteratively assigning
weights to samples based on the current model’s errors and subsequently inducing a new
estimator. This process continues until a specified criterion is met. AdaBoost boasts
several advantages, including high precision, adaptability to various data types, reduced
susceptibility to overfitting, and ease of implementation. However, it also has notable
limitations, such as sensitivity to noise and outliers, high computational demands, and
unsuitability for complex tasks like speech and image recognition [107]. To address these
issues, several extensions have been proposed, including soft margin AdaBoost [108],
modest AdaBoost [109], SpatialBoost [110], and scalable variants like AdaBoost.PL and
LogitBoost.PL [111].

On the other hand, RF, initially conceptualized by Ho [112] and later popularized by
Breiman [113], is one of the main examples of independent ensembles. RF’s simplicity and
strong performance make it particularly effective, often achieving lower errors with minimal
parameter tuning. The technique involves creating multiple decision trees using subsamples

of the training data and aggregating their predictions. Research shows that RF is more
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robust and stable compared to methods like support vector machines (SVM), extreme
learning machines, and neural networks, especially for small training sets [114]. A related
method, Extremely Randomized Trees (Extra Trees), was proposed by Geurts et al. [115],
differing from RF by not employing bootstrap sampling. However, large forests are required
to reduce bias and variance. Friedman [116] introduced Gradient Boosting Machines
(GBM), which build models iteratively based on the gradient of the loss function from
previous learners. While GBM can deliver high accuracy, its hyperparameters are sensitive
and require careful tuning to avoid overfitting or underfitting. To improve scalability and
reduce computational complexity, variants such as Extreme Gradient Boosting (XGBoost)
[117] and Light GBM [118] were developed, offering significant efficiency gains. Recently,
DL-based ensembles have gained attention. Researchers have explored ensembles using
Long Short-Term Memory networks (LSTM) [119, 120, 121, 122, 123], Recurrent Neural
Networks (RNN) [124, 125], and Gated Recurrent Units (GRU) [126]. Additionally,
ensembles that combine multiple DL models [127, 128] have demonstrated promising

results across various domains.

2.3 PV ENERGY FORECASTING, FINANCIAL SERIES, AND CRYPTOCURRENCY

This section reviews the literature on PV, financial, and cryptocurrency datasets,

the three real-world applications implemented for the simulations.

Given the critical importance of reliability in PV energy management, many
researchers have addressed this topic extensively. Wan et al. [129], Barbieri et al. [130],
Das et al. [131], and Alcaniz et al. [41] presented extensive literature reviews on this
topic. Munsif et al. [132] proposed the convolutional-transformer-based network (CT-
NET) for power forecasting. Jailani et al. [17] implemented LSTM for solar energy
forecasting. Artificial neural networks (ANN) [133, 134] and ANN with feature selection
[135, 136] have also been applied. Sharma et al. [137] utilized a Levenberg Marquardt
artificial neural network (LM-ANN) employing the gradient descent (GD) optimization
technique for solar energy forecasting. Key advantages of ANNs include: (i) self-adaptive
ability; (ii) fault-tolerance; (iii) robustness; and (iv) strong inference capabilities [138].
However, due to their architecture, ANNs can exhibit high complexity. Support vector
machines (SVM) have also been explored for PV energy forecasting [139], praised for their
non-linear modeling capacity and independence from prior knowledge [140]. Numerous
hybrid approaches using SVM have emerged, such as PSO-SVM [141], GASVM [142], and
ACO-SVM [143]. Fuzzy models have been widely applied to the power prediction of PV
systems [144, 145, 146, 147, 148]. A notable advantage of fuzzy models is their ability to
handle uncertainties in real-world data [149]. Within the domain of fuzzy models, ANFIS
typically yields errors substantially lower than those of standalone fuzzy models. However,

its computational complexity also increases, especially compared to SVM [131, 150].
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In financial forecasting, DL models are increasingly prevalent, despite their black-
box nature [151, 152, 153]. LSTM networks have proven particularly effective in addressing
long-term dependencies in financial data [154, 155]. Ballings et al. [156] compared several
classical models and reported the superiority of RF and SVM. Ensemble models have
been widely applied to financial time series. Zhu and He [157] showed the superior
performance of an XGBoost ensemble over ARIMA and LSTM in predicting the stock
market price of Amazon. Xu et al. [158] implemented the ensemble learning-support
vector regression & random forest (E-SVR&RF) to predict the stock closing price of four
stock markets in China. In another study, Zhou et al. [159] implemented an LSTM and
CNN ensemble, while Sonkavde et al. [45] used an ensemble of RF, XGBoost, and LSTM
for TAINIWALCHM and AGROPHOS stock price forecasting. Among fuzzy applications
in finance, research indicates that neuro-fuzzy models tend to perform better due to their

ability to handle complex systems [160, 161].
Finally, regarding cryptocurrency forecasting, Greaves and Au [162] highlighted

that ANNs outperformed linear regression, logistic regression, and SVM. Derbentsev et
al. [163] showed the superiority of the binary autoregressive tree (BART) model over
ARIMA and the autoregressive fractional integrated moving average (ARFIMA) model
to predict Bitcoin, Ethereum, and Ripple prices. Aanandhi et al. [164] evaluated the
performance of ARIMA and LSTM in the short-term prediction of Bitcoin prices and
concluded that while ARIMA can capture the general trend, LSTM models outperform it
in predicting both the direction and magnitude of price movements [165]. Other works have
successfully applied LSTM for this task, including classical LSTM [166, 167, 168], LSTM
combined with autoregressive characteristics [169], and LSTM combined with a gated
recurrent unit (GRU) model [170]. RL is also employed to define investment strategies in
cryptocurrencies. For instance, Jiang and Liang [171] implemented an approach combining
RL and CNN, while Lee et al. [172] performed a similar study using inverse RL. Other
research has explored deep RL for this purpose [173, 174]. Lucarelli and Borrotti [175]
observed that double deep Q-learning networks trained with Sharpe ratio rewards for
automated cryptocurrency trading outperformed traditional models in Bitcoin trading.
The literature also indicates that RNNs are well-suited for this task [176, 177].

2.4 SUMMARY

This chapter provided a comprehensive literature review on the methods and
concepts utilized in this work. The review began with an analysis of Mamdani and
TSK models, emphasizing their respective advantages and limitations where applicable.
It then covered GAs and ensemble models, which are central to the optimization and
modeling strategies implemented in this work. Finally, the chapter reviewed the use of

these techniques in the context of PV energy, finance, and cryptocurrency datasets. The
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next chapter presents the theoretical background for the techniques applied in this study.
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3 BACKGROUND KNOWLEDGE

This chapter provides a comprehensive overview of the fundamental concepts and
formal methodologies of the machine learning techniques essential for this work, including

Mamdani and TSK FIS, as well as GA and ensemble feature selection techniques.

3.1 FUZZY INFERENCE SYSTEMS

This section provides a detailed examination of FIS approaches, beginning with
the Mamdani model and concluding with the TSK model.

3.1.1 MAMDANI FIS

The Mamdani fuzzy system is a rule-based model consisting of four main com-
ponents: a fuzzifier, a rule base, an inference engine, and a defuzzifier, as illustrated in
Figure 1. The following subsections detail each of these components, some of which are
also shared with TSK models.

Antecedent part

Fuzzy rule base:

If - Then

{} Consequent part

lgput: Fuzzy inference engine: ONERNE
x EX y g YEY

[ Fuzzfication [— > 1. Fuzzy operator [, P> Defuzzification [ — >

2. Implication
3. Aggregation

Figure 1 — Flowchart for the Mamdani FIS - Adapted from: [178]

3.1.1.1 FUZZIFICATION

Fuzzification involves mapping an input variable (x) to fuzzy sets (linguistic

variables). Formally, given a universe of discourse X, a fuzzy set A is defined as follows:

Definition 1 A fuzzy set A on a universe of discourse X is characterized by a membership
function, pa : X — [0,1]. Here, pua represents the degree of membership of an element
x € X in the fuzzy set A, where 0 denotes no membership and 1 denotes full membership.

The formal representation of a fuzzy set is given by (3.1) [179].
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A= {(z, pa(@))]e € X} (3.1)

Common membership functions include Gaussian, triangular, and trapezoidal
[180, 181, 182]. This study employs Gaussian membership functions, which is expressed

as:

ale) = exp H (“ )] (32)

o
where v represents the mean of the fuzzy set and o denotes the standard deviation.
Gaussian membership functions are advantageous because they are smooth, non-zero
across their entire domain, and effectively represent linguistic variables with precision and
clarity [183]. However, future research may explore alternative membership function types

for the proposed models.

3.1.1.2 FUZZY INFERENCE ENGINE

The fuzzy inference engine consists of three main components: the fuzzy operator,

implication, and aggregation, as described below:

o Fuzzy operator: This step takes the results of the membership functions from the
fuzzification process to compute the firing strength of a rule (w;) [184]. Formally,

w;(x) = f(pa, (@1), pay (22), .-, pa, (2p)), where x = [x1, 29, ..., 2"

vector, p is the number of input attributes, and py, (z;) is the membership degree

is the input

of the crisp input z; in the fuzzy set A;, for the jth attribute. To combine the
membership values from a rule’s antecedent, intersection and union techniques are
applied, commonly referred to as t-norm (triangular norm) and t-conorm (triangular
conorm), respectively. Commonly used operators include minimum and product for
intersection, and maximum for union, as given by (3.3), (3.4), and (3.5), respectively
[185, 186].

pa(x) = min i, (7)) (3.3)
p
pa(x) = [T s, () (3.4)
j=1
pa(x) = nax (x;) (3.5)

o Implication: The membership value obtained in the previous step shapes the

consequent membership function. Figure 2 depicts an example of implication. The
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figure shows a rule that uses two fuzzy sets to model an input vector with two
attributes and one fuzzy set to model the output. In the given example, the
parameters of the Gaussian fuzzy sets, represented by the mean (v) and the standard
deviation (o), are v = 2 and o = 0.4, for feature 1, v = 7 and o = 0.4 for feature
2, and v = 3 and o = 0.4 for the output. Given an input vector x = [2.3,6.2] and
using (3.2), the membership function values of 0.75 and 0.33 are obtained for the
first and second attributes, respectively. Considering the minimum value as the fuzzy
operator, the fuzzy set for the output is obtained, as shown in the figure. Fuzzy sets
can be referred to as linguistic variables because they can be described as so, i.e.,
fuzzy set for the attribute 1 can represent the linguistic variable small, fuzzy set for

attribute 2 as high, and fuzzy set for the target value as medium, for example.

1.0 1 —— Feature 1 - —— Output (Implication)
Feature 2

0.8 1

0.6

0.4 1

0.2 1

- min t-norm

0.0 1

Figure 2 — Illustration of the implication step

o Aggregation: The final step in the fuzzy inference engine aggregates the fuzzy sets
resulting from the implication process for all rules. Figure 3 shows an example of
aggregation. A commonly used aggregation technique is the maximum operator, as
given by (3.6), though other methods (e.g., summation and probabilistic aggregation)
are also applicable [187, 188].

Maggregated(x) = max {,U/outputl (X); ,uoutputz (X), R} /JJoutputR (X)} (36)

where [laggregated(X) 1S the aggregated fuzzy set of an input x, max is the maximum
operator, floutput;(X) is the output’s fuzzy set resulting from the implication process, for
1=1,2,..., R and R is the total number of rules.
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Figure 3 — Illustration of the aggregation step

3.1.1.3 DEFUZZIFICATION

Defuzzification converts the aggregated fuzzy set into a single crisp value [189].
Various defuzzification approaches exist, as discussed by Zimmermann [190] and Lee
[191]. Chakraverty et al. [192] provide an overview of notable methods, including max-

membership, centroid, weighted-average, and mean—-max.

3.1.2 TAKAGI-SUGENO-KANG

The TSK model employs fuzzy rules and polynomial functions to model a nonlinear

system through a collection of linear subsystems. TSK rules are expressed as follows:

Antecedent Consequent
where x = [z1,...,2,]7 € IR? is the input, p is the number of attributes in the input

vector, A; is the multidimensional antecedent (the combined fuzzy set region) for the ith
rule, and y; is the output of the ¢th rule calculated as a function of the input and the

consequent parameters.

According to (3.7), TSK rules are divided into antecedent and consequent compo-
nents. The antecedent component encompasses fuzzification and the calculation of the
firing strength, while the consequent component employs polynomial functions to compute

each rule’s output. The TSK process is depicted in Figure 4.

The fuzzification process in TSK is identical to that in Mamdani systems. However,
in the fuzzy inference stage, TSK only utilizes the fuzzy operator to calculate the firing

strength. Another distinction between Mamdani and TSK models lies in how the consequent
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Figure 4 — Flowchart presenting the inference mechanism of TSK

part is handled. TSK computes the output of each rule using polynomial functions, as

expressed by:

p+1
gi = Z xeﬂi’j = (Xe)THi (38)
=1
where §; is the estimated output for the sth rule, for i = 1,2,... R, xe = [1,x7]T is a

vector, and 6; are the consequent parameters for ith rule.

Finally, the last step is to compute the output of the model as a weighted average

of each rule’s output, as follows:

R
g = Z w; T (3'9)
i=1

where w; is the normalized firing strength, is given by:

- R
Eizl Ti

TSK mechanisms are summarized in the following steps:

(3.10)

w;

o Fuzzification: This step maps the input attributes to fuzzy sets using membership

functions.

o Firing Strength Calculation: The firing strength of each rule is determined by
applying a fuzzy operator (e.g., product or minimum) to the membership degrees of

the input attributes.

e Output Calculation: Each rule’s output is computed using a polynomial function

of the input attributes and the corresponding consequent parameters.
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o Aggregation: The final crisp output is obtained as a weighted average of the rules’

outputs, where the weights are the normalized firing strengths.

This structure enables the TSK model to effectively handle nonlinear systems
while maintaining interpretability. The use of polynomial functions in the consequent part
enhances the model’s precision and adaptability, making it suitable for a wide range of

applications, including control systems, forecasting, and decision support systems.

3.2 FEATURE SELECTION

This section presents the theoretical background of the two feature selection

techniques employed in this work.

3.2.1 GENETIC ALGORITHM

GA is one of the most widely recognized evolutionary algorithms [91]. Since its
inception, GA has undergone significant development, with numerous variations proposed
in the literature. This section focuses on the fundamental concepts of the classical GA.
The GA process comprises four main components: initialization, selection, reproduction,

and termination, as described bellow [193]:

o Initialization: This step involves randomly generating an initial population of
potential solutions. These solutions, often referred to as individuals, constitute the

starting point of the algorithm.

e Selection: In this step, the algorithm selects the most promising individuals based
on a predefined fitness function. Various selection methods exist in the literature,
including roulette wheel selection, linear ranking selection, exponential ranking
selection, and tournament selection [194]. The choice of selection method significantly

influences the performance of the algorithm.

e Reproduction: The selected individuals, termed parents, undergo genetic opera-
tions such as crossover (recombination) and mutation to produce offspring. This
step is crucial for exploring the solution space and introducing new genetic material.
These offspring form the population for the next generation, often replacing less
fit individuals from the parent population. This process repeats iteratively until a

termination criterion is met.

o Termination: The algorithm terminates when a specified criterion is satisfied.
Common termination criteria include a fixed number of generations, a computational
budget, or the achievement of a desired fitness level. For example, Wong et al.
[195] proposed a novel termination criterion that reduces computational costs while

maintaining solution quality.
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Figure 5 presents a flowchart of the GA and its main components.

Initialization

Selection D
Reproduction

No Termination
criteria is met?

v

Yes

End

Figure 5 — GA flowchart

In addition to these components, GA requires defining several key hyperparameters,

which significantly impact its performance:

e Number of Generations: Determines the maximum number of iterations the

algorithm will perform.

o« Number of Parents Mating: Specifies how many individuals from the current

generation are selected to form a mating pool for reproduction.

« Population Size: Refers to the total number of individuals in the population at

each iteration.

Proper tuning of these hyperparameters is essential for balancing exploration and
exploitation, which directly affects the algorithm’s efficiency and the quality of the final
solution.

3.2.2 ENSEMBLE MODEL

Ensemble models are founded upon two fundamental pillars: the generation of a set
of diverse learners and the combination of their outputs into a single, unified prediction.

The formal definition of an ensemble model is presented below:
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Definition 2 Given a dataset and an input vector, an ensemble learning model ¢ applies
an aggregation function G to combine the outputs of Z individual learners to produce a

single final output 7, given by:

?j:G(f1<X),f2<X>,...,fz(X)> (311)

The effectiveness of ensemble models is founded on two key principles: diversity

and predictive performance.

o Diversity: The core idea of diversity is to produce individual learners with uncorre-
lated errors. By ensuring diversity among learners, ensemble methods reduce the
risk of overfitting and improve generalization [196]. Techniques for inducing diversity
include input manipulation, partitioning, output manipulation, and hybridization of
ensemble methods [105].

e Predictive Performance: Each individual learner must achieve a predictive accu-
racy that is significantly better than random guessing. Ensuring high performance

for individual models strengthens the overall reliability of the ensemble [197].

Once the diverse learners are generated, the next step is to aggregate their outputs.
Zhou [198] discusses commonly used techniques for this purpose, including averaging,
voting, and learning-based combination methods. Each aggregation approach is suited to
specific problem types and datasets, providing flexibility in applying ensemble methods to

various domains.

3.3 SUMMARY

This chapter has outlined the fundamental concepts of the machine learning
techniques essential for this work. Initially, the two primary FIS, Mamdani and TSK, were
discussed. The key distinction between these systems lies in the consequent component:
while Mamdani models the output using fuzzy sets, TSK employs polynomial functions.
Subsequently, the GA approach was reviewed. The main components of the GA include
initialization, selection, reproduction, and termination. The GA is particularly suited
for tasks where the size of the search space renders traditional optimization techniques
impractical. Finally, the concept of ensemble models was introduced. Ensemble models
generally offer improved performance with a reduced risk of overfitting. The next chapter

introduces the proposed models.
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4 NEW FUZZY INFERENCE SYSTEMS (NFISiS)

This chapter provides a comprehensive explanation of the proposed NFISiS, which
consists of a collection of six new data-driven FIS models. First, the new data-driven
mechanism for designing NMR and NTSK rules is introduced. Subsequently, the chapter
explores the implementation of GA-based and ensemble-based approaches for feature

selection, integrated with the new rule design techniques.

4.1 PROPOSED FIS DESIGN

The main steps to design the fuzzy rules for the proposed models are summarized

as follows:

Step 1 - Define the Number of Rules: The user specifies the desired number

of rules.

Step 2 - Define Intervals for Target Values: The model creates intervals for

the target values based on specified criteria.

Step 3 - Define the Rules: Each interval from the previous step corresponds to

a single rule.

Step 4 - Assign Samples to Rules: Each sample is assigned to a rule based on

its corresponding output value.

Step 5 - Compute the Fuzzy Sets: The parameters of the fuzzy sets are

computed using the assigned samples.

The primary objective is to generate rules based on the target value. In contrast
to conventional TSK methods, which typically first define antecedent fuzzy sets and
subsequently establish the rule base, NMR and NTSK reverses this procedure.

41.1 NEW MAMDANI REGRESSOR (NMR)

This subsection provides a detailed overview of NMR. It starts by presenting the
fundamental concepts, followed by a description of the training and testing phases. Finally,

a simple example is provided to illustrate the process.

4.1.1.1 AN OVERVIEW OF NMR

The training process of NMR rules is summarized in the five steps presented below:

Step 1 - Define the Number of Rules: The user specifies the desired number
of rules (Ruyax)-

Step 2 - Partition the Output Space: The model creates equally spaced

intervals across the range of the target variable.
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Step 3 - Establish Consequent Rule Definitions: The intervals determine
to which rule each sample is assigned by comparing the target value with each interval

region.

Step 4 - Assign Samples to Rules: Each data sample is assigned to the rule

corresponding to the interval of its target value.

Step 5 - Compute Fuzzy Set Parameters: The parameters for the antecedent

and consequent membership functions are calculated from the partitioned data.

Figure 6 illustrates the steps involved in the training process of the NMR model.

Samples
Define the number of rules
% Define intervals for the target value
Q
4
c
[
g Define the rules
3}
Q
et
c
< Assign samples to the rules
Compute the fuzzy sets for the antecedents
t
©
o
R
c
g Compute the fuzzy sets for the consequent
o
o
0
c
[}
(&]

Figure 6 — Flowchart of the learning phase for NMR

4.1.1.2 DEFINING NMR RULES - TRAINING PHASE

NMR training phase begins with the user specifying the number of rules as R,
which is a key hyperparameter controlling model granularity. The algorithm then computes
the size of each output interval (1.5) based on the amplitude of the target variable’s range
as:

y—-y
15 = = 4.1
Rmax ( )

where 3 and y denote the maximum and minimum values of the target variable in the

training data, respectively. Subsequently, IS is used to compute the interval for the
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consequent of each rule, as follows:

Range; = [y + (i — 1)1S,y + (i)15] (4.2)

where Range; represents the interval of the consequent part of the ¢th rule and i =
1,2,..., Ruax.

Once the consequent intervals are defined, each training sample is assigned to its
corresponding rule by comparing its target value with these intervals. The index of the

rule assigned to the kth sample is determined by:

%EJ +1, if yF <y
Roax, otherwise
where igr denotes the index of the rule to which the kth sample is assigned, and ||

represents the floor function.

The final step in defining the rules involves computing the fuzzy sets for the
antecedent and consequent components. This work implements Gaussian fuzzy sets
(see Equation (3.2)), which require only two parameters: the mean and the standard
deviation. The complete training procedure is summarized in the pseudo-code presented
in Algorithm 1.

Algorithm 1: NMR training procedure
Input: x,y
1 Initialization: R,.«
2 Compute the interval size: Equation (4.1)
3 fori=1,2,..., Ry do
4 L Compute the interval bounds: Equation (4.2)

5 fork=1,2,...,N—1do
6 L Determine rule index igr for sample k: Equation (4.3)

7 Assign samples to rules based on igx
8 fori=1,2,..., Ry do
9 L Compute the parameters of the fuzzy sets

4.1.1.3 THE INFERENCE PROCESS OF NMR - TEST PHASE

During the inference phase, the NMR model first computes the normalized firing

strength (w;) for each rule as:

0]

k 2
1 Ty —Vq 4

H?:l exXp [_2( o 1) ]
w; = 3
Rmax P 1 (xl?i’ui‘ )

2oty ( j=1€XpP l_g —3 - ])

.3



37

where v; = [v;1,...,v;,|7 with v; ; consisting of the mean of the jth attribute for the ith
rule, p is the dimension of the inputs (number of attributes for each sample), :L“;“ is the
kth input vector for the jth attribute, and o; = [0y1, ..., 0|7 with o, ; consisting of the
standard deviation of the jth attribute for the ¢th rule. It is simple to visualize that w; is
obtained from Equations (3.4) and (3.10).

Finally, defuzzification is performed to compute the model’s output as follows:

Rmax
gk‘ = Z Vioutput * Wi (45)
i=1

where v; ouipu 1S mean of the consequent fuzzy set for the sth rule.
The complete inference procedure for the NMR model is summarized in the pseudo-

code presented in Algorithm 2.

Algorithm 2: NMR inference procedure
Input: x
Output: g
1 for k=1,2,... do
2 L Compute the normalized firing strength: Equation (4.4)

3 Compute the output: Equations (4.5)

4.1.1.4 SIMPLE EXAMPLE

To illustrate the mechanism of the NMR model, a simple example using a synthetic
dataset is provided in Table 1. The table comprises three columns: the first indicates
the sample index; the second represents the number of auto insurance claims; and the
third displays the total amount paid (in thousands). The objective is to use the number

of claims as an input feature to predict the total amount paid.

Table 1 — Synthetic auto insurance dataset

Samples Claims Total amount

1 108 392.5
2 19 46.2
3 13 15.7
4 124 422.2
5 40 1194

The first step is to define the number of rules. Subsequently, 1.5 and Range; are
computed using Equations (4.1) and (4.2), respectively. For example, with Ry, = 2,
the interval size is calculated as I.S = (422.2 — 15.7) /2 = 203.25. Accordingly, the range
for the first rule is Range; = [15.7 + 0 - 203.25,15.7 + 1 - 203.25] = [15.7,218.95], and
for the second rule, it is Ranges = [15.7 + 1 - 203.25,15.7 + 2 - 203.25] = [218.95,422.2].
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Consequently, the first rule contains samples whose output falls within [15.7,218.95], while
the second rule contains samples falling within [218.95,422.2]. Then, using Equation (4.3),
samples 2, 3, and 5 are assigned to the first rule, and samples 1 and 4 are assigned to the
second rule. Finally, the mean and standard deviation are computed using the clustered
samples, resulting in the parameters presented in Table 2. With the rules defined, the

model can perform inference on unseen data.

Table 2 — Parameters of the generated NMR rules

Rule Claims Total amount
1 24 4+ 14.18 60.43 £+ 53.29
2 116 £11.31 407.35 £+ 21.00

The underlying principles of NMR can be extended to the New Mamdani Classifier
(NMC). In this adaptation, instead of the user defining the number of rules, the number of
rules is automatically set equal to the number of classes, with each class corresponding to
a distinct rule. Although this work does not explore the NMC, the nfisis Python library

includes an implementation of this model.

412 NEW TAKAGI-SUGENO-KANG (NTSK)

This subsection provides a detailed overview of NTSK. It starts by presenting the
fundamental concepts, followed by a description of the training and testing phases. Finally,

a simple example is provided to illustrate the process.

4.1.2.1 AN OVERVIEW OF NTSK

The NTSK model follows a process similar to that of NMR for the antecedent
part, with slight variations. The primary distinction lies in the consequent part, where
the model employs polynomial functions. The steps for defining the NTSK rules are as

follows:

e Step 1 - Specify the Number of Rules: The user specifies the desired number

of rules.

e« Step 2 - Compute Target Value Variations: The first-order difference is

calculated for consecutive target values.

o Step 3 - Define Variation Intervals: Equally spaced intervals are created based

on the range of target value variations and Ry.y.

o Step 4 - Assign Samples to Rules: Each data sample is assigned to a rule by

comparing the sample’s value variation with the intervals of each rule.
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o Step 5 - Compute Antecedent Parameters: The parameters for the antece-
dent fuzzy sets are determined (e.g., mean and standard deviation for Gaussian

membership functions).

« Step 6 - Compute Consequent Parameters: The consequent parameters (6)

are estimated using an adaptive filtering method.

The flowchart for the training phase of NTSK is presented in Figure 7. For the

testing phase, the process resembles the classical TSK model (see Figure 4).
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Figure 7 — Flowchart depicting NTSK training procedure

4.1.2.2 DEFINING NTSK RULES - TRAINING PHASE

The training of the NTSK model begins with the user specifying the maximum
number of rules (Rp.x). This hyperparameter provides direct control over the number
of rules, a notable advantage over many data-driven FIS approaches. Next, the model
analyzes the dynamics of the target variable by computing its first-order difference. This
variation captures the local rate of change between consecutive samples and is calculated

as:

k+1 k

tan(y*) = M =y —yh = Ayt (4.6)
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Figure 8 — Illustration of the calculation of Ay*

where tan(y*) denotes the tangent of the kth sample, with k = 1,...,N — 1, and N
representing the total number of samples. In the context of time series, the tangent is
equivalent to the first-order difference, as tan(y*) = y**! — y* = Ay*. For convenience,
this work uses the terms first-order difference and tangent interchangeably, both denoted

by Ay*. The calculation is illustrated in Figure 8.

The primary motivation for computing the tangent is to capture local trends
and rates of change in the target variable. After calculating this variation (Ay*) for all
applicable samples, the model partitions the range of these values into distinct intervals.

This partitioning groups samples exhibiting similar variation. Each interval is defined by:

Range; = [ma + (1 — 1)IS,ma + (i)15] (4.7)

where Range; represents the interval limits for the tangent of the ¢th rule, for ¢ =
1,2,..., Ruax. Here, Ry denotes the specified number of rules, ma = max(Ay*) is the
maximum tangent value, and ma = min(Ay*) is the minimum tangent value. Finally, the

interval size (1.5) is computed as:

ma — ma

IS = 4.
S Rmax ( 8)

Subsequently, the model assigns each sample to its corresponding rule according to

the criterion:

AR i AYF <na o)
lgk = .
Riax, otherwise

where 7gx is the rule that the kth sample will be included.
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Next, the model computes the parameters of the fuzzy sets. Since this work
utilizes Gaussian fuzzy sets, the mean and standard deviation are calculated as shown in
Equations (4.10) and (4.11).

Ui,j — i‘l . (410)

&J
where v;; denotes the mean of the samples in the ith rule for the jth attribute, and z} ;
represents the [th sample assigned to the ith rule for the jth attribute, for [ =1,2,..., 2,

where z is the number of samples assigned to the ith rule.

05j = std(x} ;) (4.11)

where o, ; denotes the standard deviation of the samples assigned to the ith rule for the jth
attribute. It is calculated over the samples xij forl =1,2,...,z, where z is the number

of samples assigned to the ith rule.

Finally, the proposed model computes the consequent parameters. The RLS is
an adaptive filter for parameter estimation that minimizes the total weighted squared
error between the target value and the model’s output. A significant advantage of the
RLS algorithm over other methods, such as least mean squares (LMS), is the capacity to

achieve good accuracy with faster convergence speed [199, 200, 201].

This work evaluates two RLS methods. The first one is the conventional one,

discussed in [202], which is expressed as:

PF1xeF
K= )\Jr(xe;c)TPik*lxek
pik _ % [Pik—l _ K<Xek)TPik—1} (4.12)

OF = 0} + Plxe® (4 — (xe")To}1)

where PF~! denotes the previously computed covariance matrix for the ith rule, PF is the
new covariance matrix for the ¢th rule, and K is an intermediate variable used to simplify
the expression for P*. Additionally, xe® = [1, (x*)7]7 is the extended input vector, 7!
represents the previously estimated parameters for the ith rule, 6% is the current estimation
of the consequent parameters, y* is the current target value, and X € [0, 1] is a parameter
known as the forgetting factor. When A = 1, all previous errors are given equal weight;

conversely, for A close to zero, past errors are less influential in updating the parameters.

A second RLS approach implemented is the wRLS, given in Equation (4.13),
implemented in many rule-based eFSs [68, 69, 70, 72, 74]. In the wRLS, weights (w) are
used to update the consequent parameters, in which the weights are the normalized firing
strength. The firing strength will be computed for each rule when a new input vector is
available. Then, rules with higher a normalized firing strength will be more updated, and

rules with lower one will be less updated.
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k—1
k)TPi

Pk . Pk_l wiPikflxek(xe
i T - ok T PE—1, K
14+w;(xek)T P "xe (413)

OF = 0;7' + Prxerw; (yF — (xe*)T0F )
where w; represents the normalized firing strength of the ith rule. A significant advantage
of wRLS is that it does not require any hyperparameters. In contrast, the standard RLS

approach requires the specification of .

In summary, the RLS approach estimates a single, global set of parameters (6)
for all rules, meaning model performance is decoupled from the number of rules, which
primarily affects interpretability. In contrast, the wRLS approach estimates a unique set
of parameters for each rule, making model performance directly dependent on the chosen

value of Rpax.

Algorithm 3 details the training process for the NTSK model. In the first loop, the
model computes the first-order difference of the target value for all consecutive training
samples. Subsequently, the interval size is calculated. In the second loop, the model
assigns a rule index to each sample. For example, if the user sets Ry.x = 4, the model
generates four rule indices, numbered from one to four. Consequently, for a given sample,
if igr = 1, the sample is assigned to the first rule; if igr = 2, it is assigned to the second
rule, and so on. In the third loop, the model computes the parameters of the Gaussian
fuzzy sets for each attribute and rule based on the assigned samples. Finally, the model

computes the consequent parameters using either the RLS or wRLS technique.

Algorithm 3: NTSK training procedure
Input: x,y
Output: gy
1 Initialization: R, .
2 fork=1,2,...,N—1do
3 Compute the variation between two consecutive target values: Equation
(4.6)
4 Compute the interval size: Equation (4.8)
5 fork=1,2,...,N—1do
6 L Compute igr: Equation (4.9)

7 Cluster the samples based on g«

8 fori=1,2,..., Ry.x do

9 Compute the parameters of the Gaussian fuzzy sets for each attribute:
Equations (4.10) and (4.11)

10 for k=1,2,...,N do
11 Compute the parameters of the consequent: Equations (4.12) for RLS or
(4.13) for wRLS
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4.1.2.3 THE INFERENCE PROCESS OF NTSK - TEST PHASE

During the inference phase, the trained NTSK model predicts the output for an
unseen input vector (x*). The estimated output (§*) is calculated as the weighted sum of

the consequent of all fuzzy rules:

Rmax
7" =" wi(xe")To; (4.14)
=1

where §* is the estimated output.

Algorithm 4 presents the pseudo-code for the NTSK inference phase.

Algorithm 4: NTSK inference procedure
Input: x
Output: gy
1 for k=1,2,...do
2 Compute the normalized firing strength: Equations (4.4)
3 L Compute the model’s output: Equations (4.14)

The NTSK model is not applicable to classification problems, as a classification
version of NTSK would effectively reduce to the NMC. A formal demonstration is omitted,
as this relationship is readily apparent. Consider the case where the target value is discrete
(i.e., classes), and each rule corresponds to a single value rather than a range. In this
scenario, there is no need for a polynomial function to estimate the output, as it is explicitly
defined. The only requirement is to identify the rule with which the new input is most

compatible.

4.2 PROPOSED FIS WITH FEATURE SELECTION

This section details the implementation of the two feature selection approaches,
GA and ensemble, within the NMR and NTSK models.

4.2.1 GA IMPLEMENTATION FOR FEATURE SELECTION

The GA is employed as a wrapper method for feature selection, leading to the
development of two new models: GEN-NMR and GEN-NTSK. This approach aims to
identify the most informative subset of input features. In this framework, each candidate
feature subset is encoded as a chromosome, represented by a binary vector with a length
equal to the total number of input attributes. A value of ‘1’ in the vector signifies that
the corresponding feature is selected, while a ‘0’ signifies its exclusion. A constraint is
enforced to ensure that each chromosome contains at least one selected feature, thereby

preventing empty feature sets.



44

The fitness of each chromosome is evaluated based on the performance of the
corresponding fuzzy model (NTSK or NMR), which is trained and validated using only
the feature subset encoded by that chromosome. Through the iterative application of
standard evolutionary operators—selection, crossover, and mutation—the GA refines a
population of chromosomes to find the feature combination that maximizes fitness (i.e.,
minimizes prediction error). The final output of this process is the optimal feature subset.
The key hyperparameters governing the GA’s operation, along with their default values,

are summarized in Table 3.

Table 3 — GA hyperparameters and default values

Hyperparameter Description Default Value
num__generations The total number of 10
evolutionary generati-
ons the algorithm will
run

num_ parents_mating The number of elite 5
individuals selected to
produce offspring for
the next generation

sol__per_pop The total number of so- 10
lutions (chromosomes)
maintained in the po-
pulation for each gene-
ration

error metric The fitness function 'RMSE’

used to evaluate solu-
tions. The GA’s ob-
jective is to find a fea-
ture set that minimi-
zes this error. Op-
tions include RMSE,
NRMSE, NDEI, MAE,
and MAPE

Algorithm 5 outlines the steps involved in applying GA for feature selection.
The implementation of GA within the NFISiS model effectively handles high-

dimensional datasets, achieving improved performance and interpretability. However, there
remains a risk of converging to a local minimum, as the model may identify a subset that
yields the lowest error within a given context but does not necessarily achieve optimal
performance overall. To address this, an ensemble fuzzy approach can be applied to obtain

better performance on average.
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Algorithm 5: GA-based feature selection procedure
Input: x,y
Output: attributes vector
Internally separate the samples into train and test.
Initialize the vector of binary elements.
Generate a subset for each vector.
Call the fuzzy model and evaluate the fitness of the initial population.
for generation =1,2,...,n_generations do
Select the best individuals to constitute the parents.
Apply reproduction to generate a new population.
Call the fuzzy model and evaluate the fitness of the generated population.

w N O A W N =

Select the individual with the best fitness value as the winner.

©

4.2.2 ENSEMBLE FUZZY

As the final contribution, this work develops three distinct fuzzy ensemble models
to enhance predictive accuracy and robustness: R-NTSK, R-NMR, and RF-NTSK. The
efficacy of ensemble fuzzy methods is founded on two key principles: the diversity of the

base learners and their individual predictive performance.

The R-NTSK and R-NMR models are homogeneous ensembles based on the Random
Subspace method. For each ensemble, a total of n_ estimators base models (NTSK or
NMR) are trained. Each base model is trained on a different, randomly selected subset
of the available input features. The final prediction of the ensemble is the average of the

outputs from all n__estimators individual models.

The RF-NTSK model is a heterogeneous meta-ensemble that combines the predic-
tions of two distinct models: an RF and the previously described R-NTSK ensemble. The
final output is a weighted average of the predictions from these two models, where the
weights are inversely proportional to each model’s error on the training data. This allows
the meta-ensemble to favor the more accurate predictor. This aggregation is formulated

as follows:

~k ~k €ER—NTSK ~k €ERF
Y = Ypp + Yr_NTSK
€RF T €ER-NTSK €RF + ER-NTSK

(4.15)

where egr and eg_n7sk denote the estimated errors of the RF and R-NTSK models during
the training phase, respectively, and §%. and §% yrex represent the outputs of the RF
and R-NTSK models, respectively. As shown, the final prediction is a weighted average of

the outputs from both models, where the weights are inversely proportional to the errors.

One of the key advantages of ensemble fuzzy models is their ability to mitigate
overfitting by leveraging multiple estimators. While a single estimator is often susceptible
to overfitting, the inclusion of multiple estimators introduces diversity, thereby reducing

this risk. Consequently, ensemble fuzzy models exhibit improved generalization capability.
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The procedure for constructing the random subspace ensembles is outlined in
Algorithm 6.

Algorithm 6: Ensemble fuzzy training procedure
Input: x,y
Output: gy

1 fori=1,2,...,n_estimators do

2 for j =1,2,...,n_trials do

3 Generate a subset of the original dataset.

4

5

Separate 75% of the subset for train and the rest for test.
Evaluate the fitness for each subset.

6 Select the best model to compose the list of estimators.

4.3 SUMMARY

This chapter introduced the proposed NFISiS framework. The discussion com-
menced by presenting new data-driven algorithms for designing Mamdani and TSK rules,
designated as NMR and NTSK, respectively. These models are designed to offer increased
robustness, autonomy, simplicity, and interpretability. Subsequently, the chapter detailed
the integration of the proposed models with the GA for feature selection, aiming to enhance
both accuracy and interpretability. Finally, ensembles of the proposed fuzzy models were
discussed as a strategy for enhancing performance and reducing the risk of overfitting.

The next chapter presents the experimental setup employed in the simulations.



47

5 METHODOLOGY

This chapter presents the comprehensive experimental setup for the simulations,
detailing the evaluation metrics, hardware and software environments, datasets, and their

statistical properties.

5.1 EVALUATION INDICATORS

The model’s performance is assessed using the normalized root-mean-square error
(NRMSE), the non-dimensional index error (NDEI), and the mean absolute percentage
error (MAPE), given by:

NRMSE — TMSE (5.1)
y—y
RMSE
NDE]I = 5.2
() (5:2)
L&t =g
MAPE = — SN ALY .
N ,; " (5.3)

respectively, where y* is the kth actual value, §* is the kth predicted value, 7 is the
maximum value for y, y is the minimum value for y, N is the sample size, std() is the

standard deviation function, and RMSE is the root-mean-square error given by:

RMSE = J ]1, Sk — k)2 (5.4)

k=1

Each metric provides a different perspective on the model’s accuracy. RMSE
is widely used because its quadratic scoring rule heavily penalizes large errors and is
suitable for gradient-based optimization. To provide a scale-independent evaluation, two
normalized versions of RMSE are reported. The NRMSE normalizes the error by the range
of the target data, expressing it as a percentage, which is useful for comparing performance
across datasets with different scales. The NDEI normalizes the RMSE by the standard
deviation of the data, providing insight into whether the model’s error is smaller than
the data’s natural variability. Finally, while the previous metrics focus on absolute error,
MAPE is included to evaluate performance based on relative percentage error, which can
be more intuitive. However, MAPE is unsuitable for time series containing zero values due
to the division-by-zero issue. Furthermore, its normalization can make it highly sensitive

to errors for target values that are close to zero.

The error results are reported using tables, with the results categorized into four

groups. The first group comprises classical models, including a selection of models from
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the scikit-learn library. The second group consists of DL models. The third group

comprises the eF'Ss. Finally, the fourth group contains the models proposed in this thesis.

Furthermore, a novel metric, the Correct Percentage of Predicted Movements
(CPPM), is introduced for financial and cryptocurrency datasets. It measures the propor-
tion of correctly predicted upward or downward movements, thereby providing investors

with a baseline for a model’s directional accuracy. The CPPM is defined as follows:

1 N
CPPM = — > o (5.5)
k=1

where N is the sample size and o is a binary indicator that equals 1 if the model correctly

predicts the direction of movement for sample k, and 0 otherwise.

1, if Ay*-AgF >0
o = ey (5.6)
0, otherwise

To formally assess the statistical significance of the performance differences between
models, the Harvey, Leybourne, and Newbold (HLN) or Modified Diebold-Mariano (MDM)
test [203] is employed. The analysis was conducted using the dieboldmariano Python

F — §%)2) as its default loss function. The

library, which implements squared error (i.e., (y
null hypothesis of the HLN test is that the two models being compared exhibit equal
predictive accuracy. This hypothesis is rejected for p-values below a significance level of
a = 0.05. A rejection indicates that the observed difference in forecast accuracy between
the two models is statistically significant. For rule-based models, the total number of
final rules is also reported. The models’ hyperparameters are optimized using grid search
to minimize the error. The hyperparameter search spaces are shown in Appendix D.

Furthermore, the selected hyperparameters are reported in Appendix E.

5.2 MODEL SELECTION AND VALIDATION

The following four-step methodology is proposed for selecting the optimal model

configuration based on the experiments conducted in this research:

1. Perform a Grid-Search: Train and validated across a predefined range of number
of rules (e.g., from 3 to 20 rules). This process generates the quantitative performance

data required for empirical, data-driven model selection.

2. Plot the Error Curve: Plot the validation error as a function of the number of
rules. This visualization aids in identifying the elbow point—the stage at which

adding more rules yields diminishing returns in predictive accuracy.
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Conduct a Qualitative Analysis: For the set of best-performing models identified
near the elbow point, extract, tabulate and translate the fuzzy rules into a human-

readable format using linguistic variables. For example:

“If Forex Volatility is HIGH and Stock Spillover is LOW, then Systemic Risk is
MEDIUM.”

. Select the Optimal Model: Select the final modelbased on a holistic evaluation

of both quantitative and qualitative criteria. The optimal model is defined as the
one offering the most compelling balance between strong predictive performance
(low validation error) and a parsimonious, interpretable rule base that is logically

defensible.

5.3 REPRODUCIBILITY

All experiments were conducted on a PC equipped with a 13th Gen Intel® Core™

i7-1360P processor (2.2 GHz) and 16 GB of RAM. The simulations were performed using
Python 3.9, supported by the following libraries and frameworks:

Data Processing: Pandas 2.1.4, NumPy 1.26.4, SciPy 1.12.0
Visualization: Matplotlib 3.8.0

Statistical Tests: dieboldmariano for the Diebold-Mariano test, and statsmodels
0.14.0 for the Augmented Dickey-Fuller (ADF) test

Time Series Datasets: yfinance 0.2.41 for financial datasets and python-binance

1.0.19 for cryptocurrency data

Genetic Algorithm: PyGad 3.3.1

Classic Machine Learning Models: scikit-learn 1.6.1
Gradient Boosting Models: LightGBM 4.3.0 and XGBoost 2.0.3
Support Vector Regression: 1ssvr!

Neural Networks: Keras 2.15.0 and TensorFlow 2.18.0

2

Evolving Fuzzy Systems: evolvingfuzzysystems

Proposed Models: nfisis?®

1

3

https://github.com/zealberth/lssvr.git
https://pypi.org/project/evolvingfuzzysystems/
https://pypi.org/project/nfisis/


https://github.com/zealberth/lssvr.git
https://pypi.org/project/evolvingfuzzysystems/
https://pypi.org/project/nfisis/
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Appendix B presents a list of Python libraries developed and published during this
doctoral research, which were implemented in this work. Furthermore, instructions for

implementing the proposed models using nfisis are provided in Appendix C.

5.4 DATASETS

The benchmark series, renewable energy datasets, financial series, and crypto-
currency datasets used in this research are described in this section. Additionally, two
statistical tests are employed to analyze the normality and stationarity of real-world time
series: the Shapiro-Wilk test [204] and the Augmented Dickey-Fuller (ADF) test [205].
While the derivations of these tests are beyond the scope of this work, detailed explanations

can be found in the referenced literature.

For the Shapiro-Wilk test, a p-value less than 0.05 rejects the null hypothesis,
indicating that the series does not follow a normal distribution. Conversely, a p-value
greater than 0.05 suggests that the series follows a normal distribution. Similarly, for the
ADF test, a p-value below 0.05 supports stationarity, while a p-value greater than 0.05

indicates non-stationarity.

5.4.1 BENCHMARK SERIES

Three benchmark series are employed in this work: the Lorenz Attractor, the
Mackey-Glass series, and a nonlinear dynamic system, all of which are widely used in the
literature for validating new models. Lorenz [206] introduced a multivariate time series
composed of three ordinary differential equations, known as the Lorenz Attractor. The
system is defined by Equations (5.7), (5.8), and (5.9).

da

& =(b—a) (5.7)
(jil; =a((—c)—b (5.8)
;ij =ab— fc (5.9)

The parameters of the Lorenz system were set to v = 10, § = 2.667, and ¢ = 28,
with initial conditions a(0) = 0, b(0) = 1, and ¢(0) = 1.05, to induce chaotic behavior. A

total of 10,000 data samples were generated. The objective is to predict a**!

using the
input vector [a*, b¥, c*] for any step k. The first 8,000 data samples were used to train the
models, while the final 2,000 samples were used for testing. This dataset is widely used to

validate models on chaotic time series. Table 4 presents the correlation between the target
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Table 4 — Correlation between the target and the attributes of Lorenz Attractor time series

Attribute 1  Attribute 2  Attribute 3
1.00 0.91 0.00

Values
o

(a) Box plot for the Lorenz Attractor time series

20
15

10

Values
o

-10

-15

-20

(b) Violin plot for the Lorenz Attractor time series

Figure 9 — Box plot and violin plot for the Lorenz Attractor time series
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value and the attributes for the series. Notably, the target value exhibits zero correlation

with the last attribute. Figure 9 displays the box plot and the violin plot of the series.

The Mackey-Glass time series, a model of white blood cell production, was intro-
duced by Mackey and Glass [207]. This series is governed by the following differential

equation:

de  0.2e(t —n)
dt 1+t —n)
where e(0) = 1.2 and n = 17. For n > 17 the series exhibits chaotic behavior [208].

—0.1e(t — 1) (5.10)

Table 5 indicates that the target value exhibits the highest correlation with the

second attribute. Figure 10 presents the box and violin plots for the series.

Table 5 — Correlation between the target and the attributes of Mackey-Glass time series

Attribute 1 Attribute 2 Attribute 3 Attribute 4
0.72 0.89 0.49 -0.15

k+85

for

k ..k+6 $k+12’ T

using the input vector [z%, x"*°, h8]

The objective is to predict x
any step k. The simulations employed 3,000 data samples for training (k € [201, 3200])
and 500 data samples for testing (k € [5001, 5500]).

Finally, the third benchmark is a nonlinear dynamic system [209, 210], governed
by the following equation:

fk—lfk—2 fk—l —0.5 B
Feis (f“(>2 ¥ <f“)Z - o1

where uf = sin(%%), and f° = f! = 0.

The input vector [f*=2, f*=1 «*~1] is used to predict f* for any step k. The
simulations were performed for k € [2,5201], where the first 5,000 data samples were used
for training and the final 200 data samples for testing. Table 6 presents the correlation
between the target value and the attributes for the nonlinear time series. The target value
is highly correlated with all attributes. Figure 11 displays the box and violin plots for the

series.

Table 6 — Correlation between the target and the attributes of Nonlinear time series

Attribute 1 Attribute 2 Attribute 3
0.87 0.97 0.99

Additionally, to assess the models’ robustness, synthetic noise was added to the

benchmark series. A corresponding noise signal was created by sampling from a Gaussian
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Figure 10 — Box plot and violin plot for the Mackey-Glass time series
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distribution. This constitutes additive white Gaussian noise with zero mean. The standard
deviation of the noise (0y0ise) Was set to 10% of the standard deviation of the original

series (og , as follows:

original)

Opoise = 0.1 - 0g (5.12)

original

The final time series (Sgna) Was obtained by the element-wise addition of the

original signal and the noise signal:

Sﬁnal = Soriginal + Snoisey where Snoise ~ N(O 02 ) (513)

) ¥ noise

5.4.2 PV ENERGY DATASETS

Finally, four PV energy datasets from two different power plants are utilized in the
simulations. Two datasets originate from the Desert Knowledge Australia Solar Centre
(DKASC) in Alice Springs, while the other two are from the Yulara Solar System?. The
raw data were recorded at 5-minute intervals. Preprocessing was performed to remove
null values and aggregate the data into daily values. The time period for all datasets
spans from January 2021 to December 2022. Each dataset was divided chronologically
into three distinct, non-overlapping subsets: 60% for training, 20% for validation, and
20% for testing. The training set is used to fit the model parameters, the validation set is
used for hyperparameter tuning, and all final evaluation metrics reported in this study are

computed on the unseen test set.

DKASC Alice Springs is a large-scale solar power station in the Alice Springs desert
that houses PV technologies of various types, ages, brands, models, and configurations.
Operating since 2008, the facility offers a vast database for researchers. This work aims to
predict the daily power one step ahead using the following attributes as predictors: humidity
%], diffuse radiation [W/m?], radiation [W/m?], diffuse tilted [W /m?], accumulated energy
[kWh], rainfall [mm], wind direction [°], temperature [°C], global radiation [W/m?], tilted
[W/m?], energy [kWh], power [kW], and current [A]. Table 7 presents the correlation
between the target and the attributes for the Alice 1A and Alice 38 datasets. The results

are listed in ascending order.

Furthermore, Figures 12a and 12b display the box plot and the violin plot for the
target value of the Alice Springs datasets. The box plot indicates that the target value
contains numerous outliers, particularly for values close to zero. Nonetheless, the violin
plot demonstrates that the distribution approximates a normal distribution. A comparison
of the two plots reveals how these outliers affect the overall shape of the distribution

shown in the violin plot. More information about the datasets can be found on the official

4 https://dkasolarcentre.com.au/


https://dkasolarcentre.com.au/
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website: https://dkasolarcentre.com.au/. Since the plant employs solar panels with

diverse characteristics, the panels are identified by specific numbers.

Table 7 — Correlation between the target and the attributes for Alice 1A and Alice 38

Attribute Alice 1A Alice 38
Humidity -0.22 -0.18
Diffuse Radiation -0.21 -0.22
Radiation Diffuse Tilted -0.11 -0.13
Accumulated Energy -0.08 -0.10
Rainfall -0.01 -0.03
Wind Direction 0.13 0.09
Temperature 0.24 0.13
Energy 0.26 0.24
Radiation Global Tilted 0.38 0.24
Current 0.44 0.57
Power 0.55 0.57
Global Radiation 0.57 0.44

The Yulara Solar System, installed in 2014 near Yulara, operates a 1.8 MW solar
photovoltaic plant. Two datasets from Yulara are utilized to predict the daily power one
step ahead using the following predictors: air pressure, wind direction [°], rainfall [mm],
hail, wind speed [m/s], accumulated energy [kWh], max wind speed [m/s], pyranometer,
global radiation [W/m?], temperature [°C], temperature probe 1 [°C], temperature probe 2
[°C], energy [kWh], power [kW], and current [A]. Further details regarding these attributes

are available on the official website.

The two datasets selected for the simulations are Yulara 1 and Yulara 5. The
raw data were recorded at 5-minute intervals. Preprocessing was performed to remove
null values and aggregate the data into daily values. The datasets cover the period from
January 2021 to December 2022. Table 8 presents the correlation between the target
and the attributes for the Yulara 1 and Yulara 5 datasets. Notably, Yulara 1 exhibits
stronger correlations with the attributes compared to Yulara 5. The results are listed in
ascending order. Furthermore, Figures 13a and 13b display the box and violin plots for
the target values of the Yulara datasets. The box plot reveals that only Yulara 5 contains
outliers in the lower value range. In this case, drawing meaningful conclusions regarding

the distribution solely from the violin plot is challenging.

Table 9 presents the characteristics of the PV datasets, while Table 10 details their
statistical properties. The results suggest that only the Yulara 5 dataset follows a normal

distribution, and that all datasets exhibit stationarity.
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Table 8 — Correlation between Power One Step Ahead and Attributes for Yulara 1 and

Yulara 5

Attribute

Yulara 1 Yulara 5

Air Pressure

Wind Direction
Rainfall

Hail

Wind

Accumulated Energy
Max Wind Speed
Pyranometer

Global Radiation
Temperature
Temperature Probe 2
Temperature Probe 1
Energy

Power

Current

-0.43
-0.03
0.09
0.09
0.10
0.16
0.19
0.37
0.50
0.55
0.56
0.56
0.76
0.76
0.76

-0.14
-0.03
0.02
0.07
0.07
0.15
0.18
0.23
0.26
0.26
0.34
0.38
0.58
0.58
0.58

Table 9 — Characteristics of the PV datasets used in the simulations

Characteristics Alice 1A Alice 38 Yulara 1 Yulara 5
Manufacturer Trina Q CELLS - -
Array Rating 10.5 kW 5.9 kW 1058.4 kW 105.9 kW
PV Technology mono-Si mono-Si poly-Si mono-Si
Array Structure Tracker Dual Axis Ground Mount Ground Mount Roof Mount
Installed 2009 2017 2016 2016

Table 10 — Statistical tests of the PV energy datasets

Test, Alice 1A Alice 38 Yulara 1  Yulara 5
Shapiro-Wilk 5.0-1071" 1.4-107%" 54-107% 0.37
ADF 85-107% 1.0-1072° 3.7-1072° 83-107*
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5.4.3 FINANCIAL SERIES

This work employs three well-known financial time series: the Standard & Poor’s
500 (S&P 500), the National Association of Securities Dealers Automated Quotations
(NASDAQ), and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX).
Financial time series are often characterized by significant non-stationary behavior, making
them particularly challenging to model. The S&P 500 index comprises 500 large-cap stocks
listed on major U.S. exchanges and is widely considered the most followed stock index,
maintained by Dow Jones [211]. The NASDAQ), an American stock exchange founded in
1971 and privatized in 2006, is the second-largest stock exchange in the global market
[212]. Finally, TATEX, introduced in 1966, is the most widely quoted index of the Taiwan
Stock Exchange Corporation (TSEC), established with a base value of 100 points [213].

Table 11 presents the correlation between the closing prices and various attributes
of these financial series, with all attributes exhibiting high correlation with the target
values. Additionally, Figures 14a and 14b illustrate the box and violin plots for the target
values of the financial datasets. The box plot reveals no outliers in the series. Moreover,
the TAIEX exhibits a bimodal distribution.

Table 11 — Correlation between the closing price and the attributes for finance series

Attribute S&P 500 NASDAQ TAIEX

Open 1.00 1.00 1.00
High 1.00 1.00 1.00
Low 1.00 1.00 1.00
Close 1.00 1.00 1.00

All simulations involve predicting the closing price one and five steps ahead, using
the previous day’s high, low, open, and close prices as predictors. The data spans the
period from January 2020 to January 2022. A sliding window cross-validation approach is
implemented. The outer loop employs ten folds to estimate the generalization error, while
the inner loop utilizes a hold-out split on the training data for hyperparameter tuning.
Specifically, the inner split allocates 80% of the data for training and 20% for validation.
The final results are reported as the mean and standard deviation across the outer folds.
Table 12 summarizes the statistical test results for the datasets. The findings indicate that

the datasets do not follow a normal distribution and exhibit non-stationary behavior.
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Figure 14 — Box and violin plots for the financial series

Table 12 — Statistical tests of the financial datasets

Test S&P 500 NASDAQ  TAIEX
Shapiro-Wilk 5.5-107% 2.3.107* 29.107'
ADF 0.93 0.86 0.93
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5.44 CRYPTOCURRENCIES

This study utilizes time series data from three major cryptocurrencies: Bitcoin
(BTC), Ethereum (ETH), and Binance Coin (BNB). Bitcoin was officially launched on
January 3, 2009, when the first block of its blockchain, the genesis block, was created
[214]. Since then, it has experienced significant price appreciation. Figures 15a and 15b
present the box and violin plots for Bitcoin, respectively; notably, the dataset contains no
significant outliers. Subsequently, Ethereum was introduced by Vitalik Buterin in a 2013
white paper as a platform for building decentralized applications [215, 216]. Figures 15¢
and 15d display the box and violin plots for Ethereum. Finally, Binance Coin (BNB)
is a prominent cryptocurrency first issued in July 2017 with a maximum supply of 200
million tokens [217]. Figures 15e and 15f show its box and violin plots. Table 13 details
the correlation between the closing price and other attributes for each cryptocurrency.
The target value exhibits high correlation with the open, high, low, and close prices, and
moderate correlation with the quote asset volume, number of trades, and taker buy quote

volume.

Table 13 — Correlation between the closing price and attributes for cryptocurrencies

Attribute Bitcoin Ethereum Binance
Open 1.00 1.00 0.99
High 1.00 1.00 1.00
Low 1.00 1.00 0.99
Close 1.00 1.00 1.00
Volume -0.09 -0.17 -0.18
Quote Asset Volume 0.70 0.65 0.60
Number of Trades 0.62 0.64 0.66
Taker Buy Base Volume -0.08 -0.17 -0.17
Taker Buy Quote Volume  0.71 0.65 0.60

All simulations involve predicting the closing price one and five steps ahead, using
the previous day’s high, low, open, close, volume, quote asset volume, number of trades,
taker buy base volume, and taker buy quote volume as predictors. The data spans the
period from January 2020 to January 2022. A sliding window cross-validation approach is
implemented. The outer loop employs ten folds to estimate the generalization error, while
the inner loop utilizes a hold-out split on the training data for hyperparameter tuning.
Specifically, the inner split allocates 80% of the data for training and 20% for validation.
The final results are reported as the mean and standard deviation across the outer folds.
Table 14 summarizes the statistical test results for the datasets. The findings indicate that

the datasets do not follow a normal distribution and exhibit non-stationary behavior.
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Table 14 — Statistical tests of the cryptocurrency datasets

Test Bitcoin Ethereum  Binance
Shapiro-Wilk 1.0 - 107%% 43.-107% 1.2-107%
ADF 0.73 0.91 0.81
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5.5 SUMMARY

This chapter outlined the metrics employed to assess model performance and
introduced a novel metric specifically designed for evaluating financial and cryptocurrency
datasets. It also highlighted the importance of selecting an appropriate error metric for the
specific task. Details regarding the hardware, software, and libraries utilized were provided
to ensure reproducibility. The proposed models have been made publicly available on PyPI,
with a comprehensive description of the package provided to facilitate its application.
Finally, the datasets used in the simulations were described in detail. Key statistics, such
as the correlation between attributes and target values, were presented alongside box and
violin plots. This analysis also included formal tests for the stationarity and normality of

each time series. The next chapter presents the numerical simulations.
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6 EXPERIMENTAL RESULTS AND DISCUSSION

This chapter provides an extensive presentation of the simulation results, followed by
a thorough discussion of the number of rules, interpretability, computational performance,
and stability analysis. Additionally, the observed limitations of the proposed approaches

are addressed.

6.1 RESULTS

This section presents the simulation results, beginning with the benchmark series,
followed by the solar energy and financial datasets, and concluding with the cryptocurrency

datasets.

6.1.1 BENCHMARK SERIES

Table 15 presents the simulation results for the Lorenz Attractor. LS-SVM achieved
the lowest errors among the classical models, while MLP performed best among the DL
models. For the eFSs, eTS, Simpl eTS, ePL, and ePL+ recorded the lowest errors;
among the proposed fuzzy models, NTSK (RLS), NTSK (wRLS), GEN-NTSK (RLS),
and GEN-NTSK (wRLS) yielded the best results. The eMG model produced the highest
number of final rules. Table 16 displays the results of the MDM statistical test. A p-value
lower than 0.05 indicates that the proposed model (column) statistically outperforms the
compared model (row). The results indicate that the NTSK (RLS) and GEN-NTSK (RLS)
models outperformed all other models. Furthermore, the NTSK (wRLS) and RF-NTSK
models performed better than most classical and DL models. Figure 16 presents the
best predictions from each model category for the Lorenz Attractor. All plotted models

demonstrated high predictive accuracy, closely tracking the actual values.

Table 17 presents the simulation results for the Lorenz Attractor time series with a
moderate level of noise. As expected, the errors substantially increased. Regarding the
proposed models, the statistical test in Table 18 demonstrated that all models, except NMR
and R-NMR, achieved lower errors than at least one of the compared models. Notably,
the RF-NTSK outperformed 12 of the comparison models.



Table 15 — Simulations’ results of Lorenz Attractor time series

Model NRMSE  NDEI MAPE Rules
KNN [218] 0.00355  0.01641  0.04278 -
Regression Tree [219]  0.00349  0.01612  0.02535 -
Random Forest [112]  0.00167  0.00772  0.01262 -
SVM [220] 0.00148  0.00684  0.02107 -
LS-SVM [221] 0.00063 0.00293 0.00532 -
GBM [116] 0.00167  0.00772  0.01386 -
XGBoost [117] 0.00355  0.01640  0.03281 -
LGBM [118] 0.00243  0.01125  0.02212 -
MLP [222] 0.00000 0.00000 0.00000 -
CNN [223] 0.00146  0.00677  0.02083 -
RNN [224] 0.00020  0.00092  0.00215 -
LSTM [225] 0.00037  0.00170  0.00656
GRU [226] 0.00035  0.00163  0.00500 -
WaveNet [227] 0.00021  0.00097  0.00088 -
eTS [68] 0.00000 0.00000 0.00000 D
Simpl_eTS [69] 0.00000 0.00001  0.00002 2
exTS [70] 0.00007  0.00031  0.00050 5
ePL [72] 0.00000 0.00000 0.00000 1
eMG [74] 0.00040  0.00184  0.00505 o4
ePL+ [73] 0.00000 0.00000 0.00000 1
ePL-KRLS-DISCO [75]  0.00035  0.00164  0.00208 20
NMR 0.01211  0.05600  0.15097 19
NTSK (RLS) 0.00000 0.00000 0.00000 1
NTSK (wRLS) 0.00000 0.00001  0.00001 1
GEN-NMR 0.01211  0.05600  0.15097 19
GEN-NTSK (RLS) 0.00000 0.00000 0.00000 1
GEN-NTSK (wRLS)  0.00000 0.00001  0.00001 1
R-NMR 0.02953  0.13657  0.62820 -
R-NTSK 0.00001  0.00005  0.00008 -
RF-NTSK 0.00001  0.00007  0.00011 -

Table 16 — Statistical test for Lorenz Attractor simulations

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Regression Tree [219] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Random Forest [112] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SVM [220] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
LS-SVM [221] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
GBM [116] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
XGBoost [117] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
LGBM [118] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
MLP [222] 1.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
CNN [223] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
RNN [224] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
LSTM [225] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
GRU [226] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
WaveNet [227] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
eTS [68] 1.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
Simpl eTS [69)] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00
exTS [70] 1.00 0.02 0.02 1.00 0.02 0.02 1.00 0.02 0.03
ePL [72] 1.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
eMG [74] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
ePL+ (73] 1.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
ePL-KRLS-DISCO [75]  1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
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Table 17 — Simulations’ results of Lorenz Attractor time series with moderate level of noise

Model NRMSE  NDEI MAPE Rules
KNN [218] 0.02493  0.12257  1.72540 -
Regression Tree [219]  0.02840  0.13961  1.52104 -
Random Forest [112]  0.02520  0.12386 1.19619 -

SVM [220] 0.02410 0.11848 2.77485 -
LS-SVM [221] 0.02633  0.12946  2.30759 -
GBM [116] 0.02531  0.12441  1.23998 -
XGBoost [117] 0.02557  0.12572  0.79261 -
LGBM [118] 0.02513  0.12352 1.68385 -
MLP [222] 0.02635 0.12955 2.19797 -
CNN [223] 0.02484  0.12213  2.28269 -
RNN [224] 0.02570  0.12634 247068 -
LSTM [225] 0.02656  0.13059  2.38655 -
GRU [226] 0.02569  0.12630 2.81280 -
WaveNet [227] 0.02438 0.11983 2.83930 -
TS [68] 0.02633 0.12946  2.28601 1
Simpl_eTS [69] 0.02633  0.12946  2.28601 1
exT$ [70] 0.02600 0.12780 2.31969 8
ePL [72] 0.02634 0.12948 224720 1
eMG [74] 0.02396 0.11780 2.65170 142
ePL+ [73] 0.02633  0.12946 2.28017 1
ePL-KRLS-DISCO [75]  0.02448  0.12034  2.80061 16
NMR 0.02724  0.13391 250302 14
NTSK (RLS) 0.02648 0.13019 2.13217 1
NTSK (wRLS) 0.02632  0.12940 2.28690 19
GEN-NMR 0.02674 0.13148  2.79764 15

GEN-NTSK (RLS) 0.02643  0.12991  2.09732 1
GEN-NTSK (wRLS) 0.02632  0.12940  2.28690 19

R-NMR 0.03527  0.17337 1.33375 -
R-NTSK 0.02633  0.12945  2.27748 -
RF-NTSK 0.02505 0.12315 1.71775 -

Table 18 — Statistical test for Lorenz Attractor simulation with moderate level of noise

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70
Regression Tree [219] 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
Random Forest [112] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.13
SVM [220] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LS-SVM [221] 1.00 0.99 0.21 0.99 0.97 0.21 1.00 0.45 0.00
GBM [116] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.06
XGBoost [117] 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.00
LGBM [118] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.33
MLP [222] 1.00 1.00 0.10 0.99 1.00 0.10 1.00 0.19 0.00
CNN [223] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.82
RNN [224] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
LSTM [225] 1.00 0.17 0.00 0.91 0.06 0.00 1.00 0.01 0.00
GRU [226] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
WaveNet [227] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
eTS [68] 1.00 0.99 0.00 1.00 0.97 0.00 1.00 0.32 0.00
Simpl eTS [69)] 1.00 0.99 0.00 1.00 0.97 0.00 1.00 0.32 0.00
exTS [70] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
ePL [72] 1.00 0.99 0.04 0.99 0.99 0.04 1.00 0.23 0.00
eMG [74] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ePL+ (73] 1.00 0.99 0.00 1.00 0.97 0.00 1.00 0.09 0.00

ePL-KRLS-DISCO [75]  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
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Figure 16 — Prediction performance on the Lorenz Attractor time series

Table 19 presents the simulation results for the Mackey-Glass time series. KNN
obtained the lowest errors among the classical models, while LSTM performed best
among the DL models. ePL-KRLS-DISCO recorded the lowest errors among all models,
and RF-NTSK yielded the best results among the proposed fuzzy models. Notably, a
simpler model like KNN can outperform more complex models, such as DL architectures.
This can be attributed to the inherent complexity of DL, where optimizing numerous
hyperparameters—such as the learning rate, number of layers and neurons, and activation
functions makes finding a global minimum challenging. In some cases, simpler, well-suited
models can be more effective. Among the rule-based models, most exhibited higher errors,
with the exceptions being eMG, ePL-KRLS-DISCO, and the proposed RF-NTSK. The
eMG model also generated 186 final rules, the highest of any model. Table 20 shows the
statistical test results for the proposed models. Contrary to the Lorenz results, most of
the proposed models did not show statistically superior performance. The main exception
is RF-NTSK, which was statistically superior to several classical, DL, and eFS models,
including SVM, XGBoost, and MLP. Figure 17 presents the best predictions from each
model category for the Mackey-Glass time series. The results suggest that models capable
of capturing long-term dependencies, such as ePL-KRLS-DISCO and certain ensemble

approaches, are well-suited for predicting this type of chaotic series.

Table 21 presents the simulation results for the Mackey-Glass time series with a
moderate level of noise. The best-performing model for each category remained the same;
however, KNN and ePL-KRLS-DISCO exhibited substantially increased errors. Regarding
the proposed models, the statistical test in Table 22 demonstrated that only the RF-NTSK

achieved superior performance, outperforming 10 of the comparison models.



Table 19 — Simulations’ results of the Mackey-Glass time series

Model NRMSE  NDEI MAPE Rules
KNN [218] 0.00737 0.02873 0.00447 -
Regression Tree [219]  0.02054  0.08007  0.00985 -
Random Forest [112]  0.01064  0.04146  0.00666 -
SVM [220] 0.06987  0.27232  0.06244 -
LS-SVM [221] 0.09983  0.38908  0.08763 -
GBM [116] 0.00870  0.03390  0.00526 -
XGBoost [117] 0.06875  0.26795  0.05901 -
LGBM [118] 0.01263  0.04924  0.00906 -
MLP [222] 0.04539  0.17692  0.03147 -
CNN [223] 0.02210 0.08614  0.01712 -
RNN [224] 0.01872  0.07296  0.01432 -
LSTM [225] 0.01237 0.04820 0.00977 -
GRU [226] 0.01279  0.04983  0.01019 -
WaveNet [227] 0.01695  0.06607  0.01356 -
eTS [68] 0.09082  0.35399  0.07706 6
Simpl_eTS [69] 0.09270  0.36129  0.07888 13
exTS [70] 0.08789  0.34257  0.07305 7
ePL [72] 0.09779  0.38113  0.08506 1
eMG [74] 0.01279  0.04984  0.00985 186
ePL+ [73] 0.09134 0.35601  0.07836 6
ePL-KRLS-DISCO [75] 0.00341 0.01328 0.00216 33
NMR 0.09857  0.38417  0.08280 10
NTSK (RLS) 0.09955 0.38798  0.08515 1
NTSK (wRLS) 0.09026  0.35180  0.07901 18
GEN-NMR 0.09944  0.38759  0.08506 9
GEN-NTSK (RLS) 0.12141 047320  0.10543 1
GEN-NTSK (wRLS) 0.09032  0.35204  0.07905 19
R-NMR 0.10307  0.40174  0.08705 -
R-NTSK 0.09679  0.37725  0.08500 -
RF-NTSK 0.01566 0.06105 0.01280 -

Table 20 — Statistical MDM test for Mackey-Glass time series
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Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Regression Tree [219] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.07
Random Forest [112] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SVM [220] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
LS-SVM [221] 0.22 0.44 0.00 0.38 1.00 0.00 0.98 0.00 0.00
GBM [116] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
XGBoost [117] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
LGBM [118] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MLP [222] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
CNN [223] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
RNN [224] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
LSTM [225] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GRU [226] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
WaveNet [227] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.08
eTS [68] 1.00 1.00 0.39 1.00 1.00 0.40 1.00 1.00 0.00
Simpl eTS [69)] 1.00 1.00 0.07 1.00 1.00 0.08 1.00 1.00 0.00
exTS [70] 1.00 1.00 0.87 1.00 1.00 0.87 1.00 1.00 0.00
ePL [72] 0.69 0.82 0.00 0.95 1.00 0.00 1.00 0.07 0.00
eMG [74] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ePL+ (73] 1.00 1.00 0.30 1.00 1.00 0.31 1.00 1.00 0.00
ePL-KRLS-DISCO [75]  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 21 — Simulations’ results of the Mackey-Glass time series with moderate level of
noise

Model NRMSE  NDEI MAPE Rules
KNN [218] 0.06438 0.27324 0.05420 -
Regression Tree [219]  0.07927  0.33642  0.06429 -
Random Forest [112] 0.06451  0.27378  0.05519 -

SVM [220] 0.06938  0.29443  0.06271 -
LS-SVM [221] 0.09208  0.39078  0.08817 -
GBM [116] 0.06476  0.27485  0.05453 -
XGBoost [117] 0.08201  0.34804  0.07688 -
LGBM [118] 0.06653  0.28234  0.05581 -
MLP [222] 0.07225  0.30661  0.06327 -
CNN [223] 0.08156  0.34614  0.07399 -
RNN [224] 0.06728  0.28554  0.05689 -
LSTM [225] 0.05954 0.25270 0.04987 -
GRU [226] 0.06569  0.27877  0.05777 -
WaveNet [227] 0.06922  0.29378  0.05859 -
eTS [68] 0.09199  0.39040  0.08796 1
Simpl_eT'S [69] 0.09199  0.39040  0.08796 1
exTS [70] 0.08541  0.36246  0.08002 5
ePL [72] 0.09016  0.38264  0.08577 1
eMG [74] 0.07821  0.33191  0.06940 97
ePL+ [73] 0.09190  0.39002  0.08788 1
ePL-KRLS-DISCO [75] 0.06558 0.27833 0.05792 25
NMR 0.09323  0.39567  0.08661 14
NTSK (RLS) 0.09108  0.38655  0.08462 1
NTSK (wRLS) 0.09091  0.38583  0.08640 19
GEN-NMR 0.09465  0.40170  0.08858 17

GEN-NTSK (RLS) 0.09532  0.40452  0.08797 1
GEN-NTSK (wRLS) 0.09582  0.40664  0.09042 19

R-NMR 0.09615  0.40806  0.08951 -
R-NTSK 0.09169  0.38912  0.08704 -
RF-NTSK 0.07008 0.29741 0.06532 -

Table 22 — Statistical MDM test for Mackey-Glass time series with moderate level of noise

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Regression Tree [219] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Random Forest [112] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SVM [220] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.65
LS-SVM [221] 0.78 0.29 0.01 0.99 0.92 1.00 0.99 0.21 0.00
GBM [116] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
XGBoost [117] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
LGBM [118] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
MLP [222] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.09
CNN [223] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
RNN [224] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91
LSTM [225] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GRU [226] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
WaveNet [227] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.69
eTS [68] 0.80 0.31 0.01 1.00 0.93 1.00 0.99 0.26 0.00
Simpl eTS [69)] 0.80 0.31 0.01 1.00 0.93 1.00 0.99 0.26 0.00
exTS [70] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
ePL [72] 0.98 0.71 0.96 1.00 0.99 1.00 1.00 1.00 0.00
eMG [74] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
ePL+ (73] 0.82 0.33 0.02 1.00 0.94 1.00 0.99 0.32 0.00

¢PL-KRLS-DISCO [75]  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 17 — Prediction performance on Mackey-Glass time series
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Figure 18 — Prediction performance on the nonlinear time series

Table 23 presents the simulation results for the nonlinear time series. KNN, RT, RF,
and GBM obtained the lowest errors among the classical models, while RNN performed
best among the DL models. For the eFSs, Simpl_eTS and ePL-KRLS-DISCO recorded
the lowest errors, and RF-NTSK yielded the best results among the proposed models.
Within the proposed group, the NTSK models outperformed the NMR models, which
recorded the highest errors. The eMG model generated the highest number of final rules.
Table 24 confirms that RF-NTSK yields better predictions than all models except KNN,

RT, RF, and LGBM. Figure 18 presents the best predictions from each model category
for the nonlinear time series.



Table 23 — Simulations’ results of the nonlinear time series

Model NRMSE  NDEI MAPE Rules
KNN [218] 0.00000 0.00000 0.00000 -
Regression Tree [219]  0.00000 0.00000 0.00000 -
Random Forest [112]  0.00000 0.00000 0.00000 -
SVM [220] 0.02038  0.05866  0.34041 -
LS-SVM [221] 0.01539  0.04430 0.41073 -
GBM [116] 0.00000 0.00000 0.00000 -
XGBoost [117] 0.00412  0.01186  0.04387 -
LGBM [118] 0.00560  0.01612  0.01342 -
MLP [222] 0.00110  0.00317  0.00404 -
CNN [223] 0.00100  0.00288  0.00450 -
RNN [224] 0.00087 0.00252 0.00273 -
LSTM [225] 0.00137  0.00396 0.00701 -
GRU [226] 0.00280  0.00805  0.03260 -
WaveNet [227] 0.00092  0.00264 0.00574 -
eTS [68] 0.00203  0.00585  0.05778 S
Simpl_eTS [69] 0.00046 0.00134 0.00246 21
exTS [70] 0.00522  0.01501  0.10631 3
ePL [72] 0.02399  0.06905  0.20790 1
eMG [74] 0.00523  0.01505  0.00786 41
ePL+ [73] 0.02673  0.07692  0.35664 2
ePL-KRLS-DISCO [75] 0.00180  0.00517 0.00147 33
NMR 0.03385  0.09741  0.23639 19
NTSK (RLS) 0.02466  0.07098  0.37729 1
NTSK (wRLS) 0.02083  0.05993  0.25286 17
GEN-NMR 0.02815  0.08100  0.23091 19
GEN-NTSK (RLS) 0.02466  0.07098  0.37729 1
GEN-NTSK (wRLS) 0.02083  0.05993  0.25286 17
R-NMR 0.05409  0.15567  1.06570 -
R-NTSK 0.02219  0.06386  0.33846 -
RF-NTSK 0.00000 0.00000 0.00000 -

Table 24 — Statistical MDM test for nonlinear time series
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Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Regression Tree [219] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Random Forest [112] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SVM [220] 1.00 1.00 0.66 1.00 1.00 0.66 1.00 0.94 0.00
LS-SVM [221] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
GBM [116] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
XGBoost [117] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
LGBM [118] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.09
MLP [222] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
CNN [223] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
RNN [224] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
LSTM [225] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
GRU [226] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
WaveNet [227] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
eTS [68] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Simpl eTS [69)] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
exTS [70] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
ePL [72] 1.00 0.70 0.05 0.96 0.70 0.05 1.00 0.13 0.00
eMG [74] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
ePL+ (73] 1.00 0.02 0.00 0.85 0.02 0.00 1.00 0.00 0.00
ePL-KRLS-DISCO [75]  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
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Table 25 presents the simulation results for the nonlinear time series with a moderate
level of noise. In this scenario, the best-performing models for each category differed
significantly from the noise-free case. Random Forest (RF) yielded the lowest errors,
whereas the proposed models, with the exception of RF-NTSK, exhibited higher errors.
The statistical test results in Table 26 indicated that only RF-NTSK achieved statistically

superior performance, outperforming 6 of the comparison models.

Table 25 — Simulations’ results of the nonlinear time series with moderate level of noise

Model NRMSE  NDEI MAPE  Rules

KNN [218] 0.03177  0.10330  0.22483 -
Regression Tree [219]  0.03422  0.11126  0.25777
Random Forest [112]  0.03078 0.10005 0.22680 -

SVM [220] 0.03207  0.10427 0.24195 -
LS-SVM [221] 0.04614  0.15000 0.39798 -
GBM [116] 0.03231  0.10502 0.23946 -
XGBoost [117] 0.03359  0.10920 0.24271 -
LGBM [118] 0.03162  0.10280 0.24375 -
MLP [222] 0.03498 0.11371 029191 -
CNN [223] 0.03419  0.11115 0.30793 -
RNN [224] 0.03376  0.10974 0.28021 -
LSTM [225] 0.03360  0.10922 0.31463 -
GRU [226] 0.03486  0.11333  0.28048 -
WaveNet [227] 0.03350 0.10889 0.28508 -
eTS [68] 0.04595 0.14937 0.38946 1
Simpl_eT$S [69] 0.04595  0.14937 0.38946 1
exT$ [70] 0.04038  0.13126 0.31380 2
ePL [72] 0.04577  0.14879  0.38709 2
eMG [74] 0.03433  0.11160 0.26104 20
ePL+ [73] 0.04576  0.14876 0.38684 1
ePL-KRLS-DISCO [75] 0.03362 0.10930 0.28295 13
NMR 0.05172 0.16814 040322 18
NTSK (RLS) 0.04614  0.15000 0.39385 1
NTSK (wRLS) 0.04453  0.14476  0.36534 16
GEN-NMR 0.05093  0.16558 0.43517 19

GEN-NTSK (RLS) 0.05953  0.19353  0.56624 1
GEN-NTSK (wRLS) 0.05899  0.19179  0.54555
R-NMR 0.05955  0.19358  0.60643 -
R-NTSK 0.05164  0.16789  0.48268 -
RF-NTSK 0.03452 0.11223 0.28578 -
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Table 26 — Statistical MDM test for nonlinear time series with moderate level of noise

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
Regression Tree [219)] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.57
Random Forest [112]  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SVM [220] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
LS-SVM [221] 1.00 0.50 0.00 0.99 1.00 1.00 1.00 1.00 0.00
GBM [116] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96
XGBoost [117] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81
LGBM [118] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
MLP [222] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.35
CNN [223] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60
RNN [224] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73
LSTM [225] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.76
GRU [226] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.40
WaveNet [227] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81
eTS [68] 1.00 0.70 0.00 0.99 1.00 1.00 1.00 1.00 0.00
Simpl_eTS [69] 1.00 0.70 0.00 0.99 1.00 1.00 1.00 1.00 0.00
exTS [70] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
ePL [72] 1.00 0.84 0.00 0.99 1.00 1.00 1.00 1.00 0.00
eMG [74] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.55
ePL+ [73] 1.00 0.83 0.00 0.99 1.00 1.00 1.00 1.00 0.00
ePL-KRLS-DISCO [75]  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75

6.1.2 RENEWABLE ENERGY

Table 27 presents the simulation results for the Alice 1A time series. SVM and
LS-SVM achieved the lowest errors among the classical models, while LSTM performed
best among the DL models. For the eFSs, eTS and ePL+ recorded the lowest errors, and
GEN-NTSK (wRLS) and R-NTSK yielded the best results among the proposed fuzzy
models. Furthermore, TS obtained the lowest NRMSE and NDEI across all simulations,
and ePL+ achieved the lowest MAPE, highlighting the efficacy of eFSs on real-world

datasets.
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Figure 19 — Prediction performance on Alice 1A dataset

Although the eF'S models achieved the best overall metrics (eT'S for NRMSE/NDEI
and ePL+ for MAPE), the efficacy of the proposed models is validated by the statistical
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tests in Table 28. This analysis confirms that GEN-NTSK (wRLS) demonstrated a
statistically significant advantage over eight of the twenty-one comparison models, with
R-NTSK outperforming seven. Regarding model complexity, ePL, NTSK (RLS), and GEN-
NTSK (RLS) generated the fewest rules, whereas eMG produced the highest number. A
qualitative analysis of the predictions, illustrated in Figure 19, reveals a common challenge
across all models: a difficulty in accurately forecasting extreme points. This suggests that
the presence of outliers in the time series may limit the predictive performance of even the

best-performing methods.

Table 27 — Simulations’ results for the Alice 1A dataset

Model NRMSE  NDEI MAPE  Rules
KNN [218] 0.22656  1.00709  0.40166 -
Regression Tree [219] 0.21325  0.94790 0.37171 -
Random Forest [112]  0.21480  0.95481  0.36574 -

SVM [220] 0.20714  0.92075 0.35383 -
LS-SVM [221] 0.20669 0.91876 0.35509 -
GBM [116] 0.21849 097119  0.36887 -
XGBoost [117] 021538  0.95736  0.37573 -
LGBM [118] 0.21320 0.94771  0.37708 -
MLP [222] 0.26037 1.15734  0.46606 -
CNN [223] 022639 1.00634 040184 -
RNN [224] 0.20881 092818 0.36124 -
LSTM [225] 0.20776 0.92350 0.35657 -
GRU [226] 0.26014  1.15636  0.39765 -
WaveNet [227] 025401 112910 0.45572 -
eTS [68] 0.20639 0.91742 0.35508 4
Simpl_eTS [69] 0.33692  1.49764  0.43992 56
exT$ [70] 0.20861  0.92729 0.36044 3
ePL [72] 0.20953  0.93136  0.35760 1
eMG [74] 040435 1.79734  0.56272 140
ePL+ [73] 0.20757  0.92266 0.34947 3
ePL-KRLS-DISCO [75] 0.29263  1.30077  0.46094 33
NMR 024337 1.08178 0.38002 16
NTSK (RLS) 0.24953  1.10918  0.43855 1
NTSK (wRLS) 0.20957 0.93154 0.35129 4
GEN-NMR 0.23421  1.04108 0.38867 17

GEN-NTSK (RLS) 0.22072  0.98112  0.36194 1
GEN-NTSK (wRLS) 0.20711 0.92061 0.36308 19
R-NMR 0.23220 1.03216  0.36129 -
R-NTSK 0.21431  0.95261 0.35784 -
RF-NTSK 0.21177  0.94132  0.35908 -
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Table 28 — Statistical MDM test for Alice 1A

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 0.85 1.00 0.07 0.70 0.27 0.00 0.65 0.10 0.05
Regression Tree [219]  0.99 1.00 0.29 0.95 0.82 0.14 0.97 0.56 0.37
Random Forest [112]  0.98 1.00 0.18 0.93 0.80 0.07 0.96 0.47 0.14
SVM [220] 0.99 1.00 0.74 0.98 0.99 0.50 1.00 0.99 0.94
LS-SVM [221] 0.99 1.00 0.74 0.98 1.00 0.55 1.00 0.99 0.97
GBM [116] 0.96 1.00 0.14 0.88 0.60 0.06 0.88 0.31 0.13
XGBoost [117] 0.97 1.00 0.19 0.92 0.77 0.04 0.93 0.43 0.18
LGBM [118] 0.99 1.00 0.30 0.96 0.83 0.05 0.95 0.57 0.37
MLP [222] 0.15 0.18 0.00 0.04 0.00 0.00 0.05 0.00 0.00
CNN [223] 0.97 0.95 0.06 0.86 0.33 0.01 0.67 0.14 0.09
RNN [224] 1.00 1.00 0.55 0.99 0.96 0.37 1.00 0.87 0.69
LSTM [225] 1.00 1.00 0.67 0.98 0.99 0.44 1.00 0.98 0.82
GRU [226] 0.00 0.30 0.00 0.00 0.01 0.00 0.04 0.00 0.00
WaveNet [227] 0.24 0.37 0.00 0.07 0.02 0.00 0.12 0.00 0.00
eTS [68] 0.99 1.00 0.75 0.98 0.99 0.57 1.00 0.97 0.96
Simpl_eTS [69] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
exTS [70] 0.99 1.00 0.57 0.97 0.97 0.37 0.98 0.88 0.81
ePL [72] 0.99 1.00 0.50 0.96 0.99 0.28 0.99 0.94 0.78
eMG [74] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ePL+ [73] 0.99 1.00 0.74 0.98 0.99 0.46 1.00 0.98 0.91
ePL-KRLS-DISCO [75]  0.03 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00

The simulation results for the Alice 38 time series, presented in Table 29, underscore
the strong performance of the proposed ensemble models. Within the fuzzy model
category, R-NTSK and RF-NTSK delivered the top results. Their performance was
highly competitive against the best models from other classes, including LS-SVM, CNN,
GRU, €TS8, and exTS. The statistical analysis in Table 30 further substantiates these
findings, confirming that R-NTSK held a statistically significant advantage over eight of
the comparison models. Regarding model complexity, ePL, NTSK (RLS), and GEN-NTSK
(RLS) were the most parsimonious, generating the fewest rules, whereas eMG produced
the most complex model. A visual inspection of the best predictions from each model class,
presented in Figure 20, provides a qualitative comparison of their forecasting behavior in

tracking the series’ volatility.
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Figure 20 — Prediction performance on Alice 38 dataset
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Table 29 — Simulations’ results for the Alice 38 dataset

Model NRMSE  NDEI MAPE Rules
KNN [218] 023409 104722 037156 -
Regression Tree [219]  0.21404  0.95385  0.34513 -
Random Forest [112]  0.21363  0.95204  0.34780 -

SVM [220] 0.21480  0.95723  0.34494 -
LS-SVM [221] 0.20813 0.92755 0.33040 -
GBM [116] 025371 113065 0.37142 -
XGBoost [117] 0.22014  0.98103  0.34765 -
LGBM [118] 0.21548  0.96026  0.34166 -
MLP [222] 021231 094616 0.34199 -
CNN [223] 0.20700 0.92250 0.32452 -
RNN [224] 0.21020 0.93677 0.33125 -
LSTM [225] 0.20858  0.92953  0.33252 -
GRU [226] 021089  0.93981 0.32443 -
WaveNet [227] 0.25446  1.13400 0.42215 -
eTS [68] 021114 0.94093 0.32321 3
Simpl_eTS [69] 0.22844  1.01805 0.34967 36
exT$ [70] 0.20443 0.91105 0.33023 3
ePL [72] 0.58321 259907  0.68757 1
eMG [74] 0.28917  1.28866 042192 138
ePL+ [73] 025132 111999 0.35191 11
ePL-KRLS-DISCO [75] 0.26151 1.16542  0.36657 33
NMR 0.24519  1.09269  0.394983
NTSK (RLS) 025395 1.13171 0.41610 1
NTSK (wRLS) 0.23656  1.05424  0.35931 11
GEN-NMR 0.26173  1.16638 0.35348 13

GEN-NTSK (RLS) 0.21581 0.96176  0.34244 1
GEN-NTSK (wRLS) 0.25224  1.12411  0.36122 13

R-NMR 0.21897  0.97582  0.33655 -
R-NTSK 0.21150  0.94252 0.33032 -
RF-NTSK 0.21087 0.93974 0.33716 -

Table 30 — Statistical MDM test for Alice 38

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 0.87 0.99 0.55 0.91 0.01 0.87 0.09 0.01 0.00
Regression Tree [219] 1.00 1.00 0.98 1.00 0.64 0.99 0.72 0.30 0.17
Random Forest [112] 1.00 1.00 0.99 1.00 0.69 1.00 0.74 0.30 0.10
SVM [220] 1.00 1.00 0.98 1.00 0.60 1.00 0.70 0.24 0.17
LS-SVM [221] 1.00 1.00 1.00 1.00 0.99 1.00 0.94 0.90 0.88
GBM [116] 0.30 0.51 0.11 0.69 0.00 0.47 0.01 0.00 0.00
XGBoost [117] 0.99 1.00 0.97 1.00 0.24 0.99 0.44 0.04 0.02
LGBM [118] 1.00 1.00 0.98 1.00 0.53 1.00 0.67 0.17 0.10
MLP [222] 1.00 1.00 0.99 1.00 0.72 1.00 0.88 0.44 0.39
CNN [223] 1.00 1.00 1.00 1.00 0.87 1.00 0.97 0.80 0.76
RNN [224] 1.00 1.00 0.99 1.00 0.78 1.00 0.97 0.60 0.55
LSTM [225] 1.00 1.00 1.00 1.00 0.86 1.00 0.96 0.72 0.68
GRU [226] 1.00 1.00 0.99 1.00 0.71 1.00 0.89 0.54 0.50
WaveNet [227] 0.12 0.48 0.13 0.63 0.00 0.45 0.01 0.00 0.00
eTS [68] 1.00 1.00 0.99 1.00 0.76 1.00 0.84 0.52 0.48
Simpl eTS [69)] 0.93 0.95 0.78 0.99 0.15 0.99 0.06 0.04 0.05
exTS [70] 1.00 1.00 1.00 1.00 0.99 1.00 0.96 0.97 0.98
ePL [72] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eMG [74] 0.02 0.06 0.01 0.13 0.00 0.06 0.00 0.00 0.00
ePL+ (73] 0.40 0.54 0.22 0.69 0.08 0.52 0.06 0.05 0.05

ePL-KRLS-DISCO [75] 0.18 0.35 0.06 0.51 0.00 0.30 0.00 0.00 0.00
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Table 31 presents the simulation results for the Yulara 1 time series. RF achieved
the lowest errors among the classical models, while CNN performed best among the DL
models. For the eFSs, eTS and exTS recorded the lowest errors; among the proposed fuzzy
models, GEN-NMR and RF-NTSK yielded the best results. Notably, CNN achieved the
lowest errors overall. The eMG model generated 189 final rules, the highest number among
all models. In contrast, ePL, ePL+, NTSK (RLS), and GEN-NTSK (RLS) generated only
a single final rule. Table 32 displays the statistical test results for the proposed models.
The results indicate the superior performance of RF-NTSK over many of the comparison
models. Figure 21 presents the best predictions from each model category for the Yulara 1

time series.

Table 31 — Simulations’ results for the Yulara 1 dataset

Model NRMSE NDEI MAPE  Rules

KNN [218] 0.21399  1.02255  0.39364
Regression Tree [219]  0.21037  1.00523  0.28632
Random Forest [112]  0.17592 0.84064 0.27256 -

SVM [220] 0.21055  1.00610  0.34657 -
LS-SVM [221] 0.21319  1.01869  0.36743 -
GBM [116] 0.18105  0.86514  0.29454 -
XGBoost [117] 0.20440  0.97670  0.30765 -
LGBM [118] 0.17896  0.85515  0.28816 -
MLP [222] 0.17511  0.83676  0.26667 -
CNN [223] 0.16568 0.79168 0.25176 -
RNN [224] 0.22641  1.08191  0.29806 -
LSTM [225] 0.24267  1.15959  0.29554 -
GRU [226] 0.22945  1.09639  0.29685 -
WaveNet [227] 0.17783  0.84973  0.27339 -
eTS [68] 0.18750  0.89595  0.25613 4
Simpl_eTS [69] 0.20622  0.98540  0.28118 45
exTS [70] 0.16995 0.81211 0.25916 )
ePL [72] 0.22578  1.07888  0.39487 1
eMG [74] 0.28605  1.36686  0.51978 176
ePL+ [73] 0.21503  1.02751  0.36951 1
ePL-KRLS-DISCO [75] 0.21213  1.01365  0.36978 20
NMR 0.27135  1.29663  0.38104 8
NTSK (RLS) 0.20606  0.98463  0.34618 1
NTSK (wRLS) 0.22261  1.06370  0.38723 2
GEN-NMR 0.19319  0.92315 0.26033 19

GEN-NTSK (RLS) 0.26105  1.24740  0.45110 1
GEN-NTSK (wRLS) 0.21812  1.04229  0.37640 19
R-NMR 0.26611  1.27157  0.36162 -
R-NTSK 0.20941  1.00066  0.35864 -
RF-NTSK 0.18351 0.87687 0.30299 -
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Table 32 — Statistical MDM test for Yulara 1

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.21 0.79 0.06 1.00 0.65 1.00 0.33 0.00
Regression Tree [219] 1.00 0.36 0.81 0.01 1.00 0.71 1.00 0.47 0.01
Random Forest [112]  1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.98
SVM [220] 1.00 0.25 1.00 0.06 1.00 1.00 1.00 0.29 0.00
LS-SVM [221] 1.00 0.12 1.00 0.05 1.00 1.00 1.00 0.00 0.00
GBM [116] 1.00 1.00 1.00 0.91 1.00 1.00 1.00 1.00 0.63
XGBoost [117] 1.00 0.56 0.90 0.10 1.00 0.84 1.00 0.65 0.02
LGBM [118] 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.76
MLP [222] 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.94
CNN [223] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RNN [224] 0.99 0.11 0.42 0.01 0.96 0.33 0.99 0.17 0.00
LSTM [225] 0.93 0.02 0.16 0.00 0.81 0.11 0.93 0.04 0.00
GRU [226] 0.99 0.08 0.36 0.01 0.94 0.27 0.99 0.13 0.00
WaveNet [227] 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.93
eTS [68] 1.00 0.94 0.99 0.75 1.00 0.98 1.00 0.95 0.36
Simpl_eTS [69] 1.00 0.50 0.84 0.15 1.00 0.77 1.00 0.58 0.05
exTS [70] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
ePL [72] 0.99 0.00 0.01 0.01 1.00 0.00 0.98 0.00 0.00
eMG [74] 0.25 0.00 0.00 0.00 0.04 0.00 0.18 0.00 0.00
ePL+ [73] 1.00 0.03 1.00 0.04 1.00 0.85 1.00 0.00 0.00
ePL-KRLS-DISCO [75] 1.00 0.24 0.86 0.06 1.00 0.74 1.00 0.37 0.00
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Figure 21 — Prediction performance on Yulara 1 dataset

Table 33 presents the simulation results for the Yulara 5 time series. LS-SVM
achieved the lowest errors among the classical models, while CNN and GRU performed best
among the DL models. For the eF'Ss, ePL-KRLS-DISCO recorded the lowest errors, and
GEN-NTSK (wRLS) and R-NTSK yielded the best results among the proposed models.
Overall, ePL-KRLS-DISCO achieved the lowest NRMSE and NDEI, whereas R-NTSK
achieved the lowest MAPE. regarding complexity, Simpl eTS generated 431 final rules,
the highest number among all models, followed by eMG with 372. Table 34 displays the
statistical test results for the proposed models, supporting the superior performance of
GEN-NTSK (wRLS). Figure 22 presents the best predictions from each model category

for the Yulara 5 time series.
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Table 33 — Simulations’ results for the Yulara 5 dataset

Model NRMSE  NDEI MAPE Rules
KNN [218] 0.23408  1.10290  0.33711 -
Regression Tree [219]  0.21492  1.01262  0.29218 -
Random Forest [112]  0.21306  1.00388  0.28702 -

SVM [220] 022354 1.05322 0.20446 -
LS-SVM [221] 0.20783 0.97920 0.28330 -
GBM [116] 021769  1.02570 0.28887 -
XGBoost [117] 0.22848  1.07649  0.30705 -
LGBM [118] 0.21589  1.01717  0.28938 -
MLP [222] 021564 1.01601 0.30108 -
CNN [223] 0.21186 0.99821 0.28915 -
RNN [224] 0.29585  1.39393  0.37098 -
LSTM [225] 0.30403  1.43246 0.37513 -
GRU [226] 0.22070  1.03985 0.28804 -
WaveNet [227] 021745  1.02455 0.29647 -
eTS [68] 021658  1.02046  0.28506 3
Simpl_eTS [69] 0.22494  1.05983  0.20851 431
exT$ [70] 0.20669  0.97386  0.28372
ePL [72] 0.20992  0.98907  0.29031 1
eMG [74] 0.32813  1.54603  0.41719 372
ePL+ [73] 0.20917  0.98555 0.28964 4
¢PL-KRLS-DISCO [75] 0.20501 0.96595 0.28255 20
NMR 0.32884 1.54935 0.39332 2
NTSK (RLS) 022291  1.05029 0.31533 1
NTSK (wRLS) 0.21398  1.00818 0.28825 5
GEN-NMR 0.29698  1.39928  0.36355 15

GEN-NTSK (RLS) 0.22080  1.04035  0.29857 1
GEN-NTSK (wRLS)  0.20625 0.97176 0.28503 15

R-NMR 0.36554  1.72230  0.42459 -
R-NTSK 0.20632  0.97209 0.27714 -
RF-NTSK 0.20749  0.97761  0.27978 -

Table 34 — Statistical MDM test for Yulara 5

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.04 0.02 1.00 0.04 0.00 1.00 0.00 0.00
Regression Tree [219] 1.00 0.79 0.43 1.00 0.81 0.08 1.00 0.03 0.02
Random Forest [112] 1.00 0.82 0.57 1.00 0.88 0.13 1.00 0.07 0.01
SVM [220] 1.00 0.47 0.05 1.00 0.27 0.00 1.00 0.00 0.00
LS-SVM [221] 1.00 0.98 0.93 1.00 1.00 0.26 1.00 0.23 0.46
GBM [116] 1.00 0.68 0.27 1.00 0.67 0.05 1.00 0.02 0.00
XGBoost [117] 1.00 0.28 0.03 1.00 0.14 0.00 1.00 0.00 0.00
LGBM [118] 1.00 0.73 0.38 1.00 0.74 0.08 1.00 0.05 0.02
MLP [222] 1.00 0.72 0.42 1.00 0.70 0.12 1.00 0.13 0.13
CNN [223] 1.00 0.85 0.66 1.00 0.92 0.14 1.00 0.11 0.08
RNN [224] 1.00 0.00 0.00 0.59 0.00 0.00 1.00 0.00 0.00
LSTM [225] 1.00 0.00 0.00 0.08 0.00 0.00 1.00 0.00 0.00
GRU [226] 1.00 0.58 0.09 1.00 0.51 0.01 1.00 0.00 0.00
WaveNet [227] 1.00 0.68 0.28 1.00 0.68 0.03 1.00 0.03 0.02
eTS [68] 1.00 0.73 0.29 1.00 0.77 0.03 1.00 0.01 0.04
Simpl eTS [69)] 1.00 0.43 0.11 1.00 0.32 0.02 1.00 0.01 0.02
exTS [70] 1.00 0.99 0.97 1.00 1.00 0.39 1.00 0.44 0.58
ePL [72] 1.00 0.94 0.82 1.00 0.97 0.09 1.00 0.15 0.27
eMG [74] 0.51 0.00 0.00 0.14 0.00 0.00 0.91 0.00 0.00
ePL+ (73] 1.00 0.95 0.84 1.00 0.96 0.22 1.00 0.27 0.37

ePL-KRLS-DISCO [75]  1.00 0.97 0.92 1.00 0.99 0.58 1.00 0.60 0.69
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Figure 22 — Prediction performance on Yulara 5 dataset

6.1.3 FINANCIAL SERIES

Table 35 presents the simulation results for predicting the S&P 500 one step ahead.
Among the classical models, KNN and XGBoost achieved the lowest mean errors, while
MLP, CNN, and WaveNet exhibited the lowest errors among the DL models. For the eF'Ss,
eTS and ePL performed best; among the proposed fuzzy systems, NTSK (RLS), NTSK
(wRLS), GEN-NTSK (RLS), GEN-NTSK (wRLS), and R-NTSK yielded the lowest errors.
Notably, Simpl_eTS produced the highest mean and standard deviation for the number
of rules. In contrast, several models performed poorly, including SVM (among classical
models) and the recurrent neural networks (RNN, LSTM, GRU). In terms of directional
accuracy, the eMG model achieved the highest mean CPPM. The statistical test results
in Table 36 confirm that the proposed NTSK-based models were statistically superior to

many of the benchmark approaches.
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Table 35 — Simulations’ results of the S&P 500 series (horizon = 1)

Model NRMSE NDEI MAPE  CPPM (%) Rules
KNN [218] 0.31 (0.15) 1.23 (0.55) 0.02 (0.01) 44.55 (6.76) -
Regression Tree [219]  0.33 (0.13)  1.31 (0.47) 0.02 (0.01) 44.55 (6.36) -
Random Forest [112]  0.74 (0.41)  3.03 (1.88)  0.05 (0.02)  42.27 (5.20) -
SVM [220] 221 (1.43)  9.01(6.19)  0.16 (0.06)  50.91 (7.89) -
LS-SVM [221] 159 (0.82)  6.51(3.78)  0.12 (0.03)  51.14 (8.15) -
GBM [116] 043 (0.19)  1.73(0.75)  0.03 (0.01)  45.68 (6.62) -
XGBoost [117] 035 (0.15)  1.38 (0.57) 0.02 (0.01) 43.41 (5.79) -
LGBM [118] 1.60 (0.97)  6.54 (4.33)  0.11 (0.04)  43.18 (4.55) -
MLP [222] 0.13 (0.02) 0.52 (0.13) 0.01 (0.01) 51.14 (8.15) -
CNN [223] 0.13(0.03) 053 (0.13) 0.01 (0.01) 50.23 (8.29) -
RNN [224] 213 (1.36) 868 (5.94)  0.14 (0.06)  41.82 (5.40) -
LSTM [225] 152 (1.32)  6.26 (5.80)  0.11 (0.07)  46.36 (6.83) -
GRU [226] 3.05 (1.28) 12.32 (5.18)  0.30 (0.19)  45.00 (7.46) -
WaveNet [227] 0.14 (0.03)  0.56 (0.14) 0.01 (0.01) 51.14 (9.44) -
TS [68] 0.13 (0.03) 0.54 (0.13) 0.01 (0.01) 49.32 (3.07) 4 (0)
Simpl_eTS [69] 0.16 (0.04)  0.64 (0.19)  0.01 (0.01) 5136 (7.89) 56 (24)
exTS [70] 0.15 (0.06)  0.63 (0.25)  0.01 (0.02)  51.36 (7.27) 4 (0)
ePL [72] 0.13 (0.03) 0.54 (0.13) 0.01 (0.00) 49.77 (9.12) 1 (0)
eMG [74] 0.25 (0.11)  1.01(0.41)  0.02 (0.02) 53.18 (8.64) 12 (2)
ePL+ [73] 0.96 (2.38)  3.52(8.42)  0.06 (0.15) 49.32 (6.97) 3 (1)
¢PL-KRLS-DISCO [75] 042 (0.29)  1.66 (1.03)  0.03 (0.02)  46.59 (7.28) 32 (4)
NMR 0.96 (035)  3.80 (1.54)  0.06 (0.02) 47.05 (7.47) 6 (0)
NTSK (RLS) 0.13 (0.03) 0.52 (0.13) 0.01 (0.00) 47.73 (7.19) 1 (0)
NTSK (wRLS) 0.13 (0.03) 0.54 (0.12)  0.01 (0.00) 49.55 (8.79) 1 (0)
GEN-NMR 118 (0.91)  4.64 (3.31)  0.08 (0.06)  49.09 (8.14) 9 (0)
GEN-NTSK (RLS)  0.14 (0.03)  0.57 (0.17)  0.01 (0.00) 47.05 (10.01) 1 (0)
GEN-NTSK (WRLS) ~ 0.14 (0.03)  0.56 (0.13)  0.01 (0.01)  49.09 (9.38) 1 (0)
R-NMR 0.93 (0.34)  3.81 (1.60)  0.06 (0.01) 50.91 (8.64) -
R-NTSK 0.13 (0.03) 0.53 (0.12)  0.01 (0.01)  49.32 (8.20) -
RF-NTSK 0.16 (0.04)  0.67 (0.18)  0.01 (0.01)  49.32 (8.20) -

Table 36 — Statistical MDM test for S&P 500 (horizon = 1)

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Regression Tree [219]  1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Random Forest [112] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SVM [220] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS-SVM [221] 0.00 0.00 0.00 0.78 0.00 0.00 0.00 0.00 0.00
GBM [116] 0.00 0.00 0.00 0.66 0.00 0.00 0.00 0.00 0.00
XGBoost [117] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
LGBM [118] 0.00 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00
MLP [222] 1.00 0.07 0.26 1.00 0.20 1.00 1.00 0.46 1.00
CNN [223] 1.00 0.08 0.25 1.00 0.20 0.96 1.00 0.43 1.00
RNN [224] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LSTM [225] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRU [226] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WaveNet [227] 1.00 0.01 0.03 1.00 0.03 0.35 1.00 0.05 0.94
eTS [68] 1.00 0.00 0.01 1.00 0.01 1.00 1.00 0.01 1.00
Simpl_eTS [69] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.01
exTS [70] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
ePL [72] 1.00 0.02 0.57 1.00 0.38 0.99 1.00 0.82 1.00
eMG [74] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

ePL+ [73] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ePL-KRLS-DISCO [75]  1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
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Table 37 presents the simulation results for predicting the S&P 500 five steps ahead.
KNN and RF obtained the lowest mean errors among the classical models, while MLP,
CNN, and WaveNet performed best among the DL models. For the eFSs, TS, Simpl_eTS,
and exTS recorded the lowest errors; among the proposed fuzzy models, NTSK (RLS) and
GEN-NTSK (RLS) yielded the best results. Simpl_eTS exhibited the highest mean and
standard deviation for the number of rules. Conversely, SVM, LS-SVM, Light GBM, RNN,
LSTM, ePL+, NMR, and GEN-NMR exhibited higher errors. GEN-NMR achieved the
highest mean CPPM. Table 38 confirms that the NTSK models achieved lower errors than
many of the comparison models. Figure 23 shows the predictions for the S&P 500 five
steps ahead. It is worth noting that the curve for RF is non-smooth, resembling a step

line chart.

Table 37 — Simulations’ results of the S&P 500 series (horizon = 5)

Model NRMSE NDEI MAPE CPPM (%) Rules
KNN [218] 0.54 (0.25) 2.14 (0.92) 0.04 (0.03) 46.36 (6.03) -
Regression Tree [219]  0.58 (0.31)  2.29 (1.15)  0.05 (0.03)  48.41 (6.27) -
Random Forest [112]  0.54 (0.20) 2.15 (0.74) 0.04 (0.02) 47.73 (5.18) -
SV [220] 220 (1.40) 897 (6.08)  0.16 (0.06) 49.09 (6.52) -
LS-SVM [221] 1.60 (0.81) 653 (3.74)  0.12 (0.03) 48.86 (6.45) -
GBM [116] 055 (0.24)  2.21 (0.91)  0.04 (0.03) 46.82 (6.36) -
XGBoost [117] 0.58 (0.26)  2.31 (0.94)  0.05 (0.03) 46.36 (5.94) -
LGBM [118] 164 (0.93)  6.67 (4.19) 012 (0.03) 43.18 (4.31) -
MLP [222] 0.26 (0.07) 1.06 (0.31) 0.02 (0.02) 48.86 (6.45) -
CNN [223] 0.25 (0.05) 1.0 (0.21) 0.02 (0.02) 47.73 (5.93) -
RNN [224] 216 (1.36) 880 (5.99)  0.15 (0.06) 4250 (5.09) -
LSTM [225] 1.06 (0.82) 438 (3.68) 007 (0.04) 41.82 (5.40) -
GRU [226] 049 (0.32)  1.94 (1.20)  0.04 (0.03) 47.73 (9.59) -
WaveNet [227] 0.24 (0.04) 0.95 (0.17) 0.02 (0.01) 47.95 (5.79) -
TS [68] 0.20 (0.09) 1.18 (0.39) 0.03 (0.03) 49.09 (5.77) 5 (1)
Simpl_¢TS [69] 0.37 (0.18) 151 (0.60) 0.03 (0.03) 47.73 (4.87) 56 (38)
exTS [70] 0.29 (0.09) 117 (0.38) 0.03 (0.03) 50.45 (6.17) 5 (0)
¢PL [72] 0.44 (0.17) 178 (0.66)  0.04 (0.02) 5136 (7.55) 1 (0)
MG [74] 0.53 (0.28) 212 (0.98)  0.04 (0.03) 5114 (6.68) 20 (5)
ePL+ [73] 119 (2.61) 454 (9.60)  0.08 (0.14) 50.68 (5.75) 1 (0)
ePL-KRLS-DISCO [75] 0.6 (0.39) 240 (1.41)  0.05 (0.03) 50.23 (3.86) 31 (5)
NMR 120 (0.51)  4.86 (2.25) 0.09 (0.01) 5295 (6.02) 3 (0)
NTSK (RLS) 0.27 (0.08) 1.10 (0.28) 0.02 (0.02) 49.32 (4.88) 1 (0)
NTSK (wRLS) 0.29 (0.08) 117 (0.34)  0.03 (0.03) 4841 (4.07) 6 (0)
GEN-NMR 1.60 (0.99) 643 (3.85) 0.12 (0.08) 5455 (6.10) 15 (1)
GEN-NTSK (RLS)  0.28 (0.07) 113 (0.28) 0.02 (0.02) 5045 (4.64) 1 (0)
QEN-NTSK (wRLS) 030 (0.10) 121 (0.43)  0.03 (0.03) 48.64 (445) 7 (0)
R-NMR 0.86 (0.32) 3.9 (L51)  0.06 (0.01) 5159 (6.59) -
R-NTSK 0.30 (0.08)  1.21(0.35)  0.03 (0.03) 48.86 (4.69)
RF-NTSK 0.34 (0.10)  1.38(0.39)  0.03 (0.03) 48.64 (5.86)
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Table 38 — Statistical MDM test for S&P 500 (horizon = 5)

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Regression Tree [219] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Random Forest [112]  1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SVM [220] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS-SVM [221] 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
GBM [116] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
XGBoost [117] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
LGBM [118] 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
MLP [222] 1.00 0.01 1.00 1.00 0.25 1.00 1.00 1.00 1.00
CNN [223] 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RNN [224] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LSTM [225] 0.96 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
GRU [226] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
WaveNet [227] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
eTS [68] 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.02 0.81
Simpl_eTS [69] 1.00 0.00 0.00 1.00 0.00 0.11 1.00 0.00 0.00
exTS [70] 1.00 0.00 0.00 1.00 0.00 0.99 1.00 0.34 1.00
ePL [72] 1.00 0.00 0.00 1.00 0.00 0.01 1.00 0.00 0.00
eMG [74] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
ePL+ [73] 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
ePL-KRLS-DISCO [75]  1.00 0.00 0.00 1.00 0.00 0.00 0.75 0.00 0.00
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Figure 23 — Prediction performance on S&P 500 dataset (horizon = 5)

Table 39 presents the simulation results for predicting the NASDAQ one step
ahead. RT and RF obtained the lowest mean errors among the classical models, while
MLP performed best among the DL models. For the eFSs, TS recorded the lowest errors;
among the proposed fuzzy models, NTSK (RLS), NTSK (wRLS), GEN-NTSK (RLS),
GEN-NTSK (wRLS), and R-NTSK yielded the lowest errors. Simpl eTS exhibited the
highest mean and standard deviation for the number of rules. Conversely, SVM, RNN,
LSTM, and NMR exhibited higher errors. GEN-NMR achieved the best mean CPPM.
Table 40 confirms that the NTSK-based models, especially R-NTSK, achieved lower errors

than many of the comparison models.
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Table 39 — Simulations’ results of the NASDAQ) series (horizon = 1)

Model NRMSE NDEI MAPE  CPPM (%) Rules
KNN [218] 034 (0.21) 133 (0.88) 0.03 (0.02) 45.68 (9.06) -
Regression Tree [219]  0.34 (0.19) 1.33 (0.81) 0.03 (0.01) 48.86 (9.27) -
Random Forest [112] ~ 0.34 (0.21)  1.33 (0.92) 0.03 (0.01) 45.91 (8.31) -
SVM [220] 207 (113) 813 (4.73)  0.19 (0.05) 45.00 (7.66) -
LS-SVM [221] 1.68 (0.86)  6.59 (3.66)  0.15 (0.04) 48.64 (7.89) -
GBM [116] 138 (0.76) 543 (3.21)  0.12 (0.03) 46.36 (6.36) -
XGBoost [117] 0.35 (0.19)  1.39 (0.83)  0.03 (0.02) 44.55 (5.68) -
LGBM [118] 042 (0.21)  1.65 (0.88)  0.04 (0.02) 42.05 (8.27) -
MLP [222] 0.12 (0.03) 0.48 (0.14) 0.01 (0.00) 4841 (9.54) -
CNN [223] 0.15 (0.02) 059 (0.11)  0.01 (0.01) 47.05 (7.94) -
RNN [224] 2 13(1.16) 831 (484) 019 (0.05) 4318 (4.55) -
LSTM [225] 55 (1.18)  6.14 (5.02)  0.15 (0.08) 46.14 (8.32) -
GRU [226] 1 01 (0.60)  3.95 (2.51)  0.09 (0.04) 4091 (6.74) -
WaveNet [227) 0.14 (0.03) 054 (0.14)  0.01 (0.01) 4818 (5.64) -
TS [68] 0.12 (0.02) 0.48 (0.11) 0.01 (0.00) 48.18 (8.79) 4 (0)
Simpl_eTS [69] 0.15 (0.03) 057 (0.14)  0.01 (0.01) 49.09 (9.97) 47 (24)
exTS [70] 0.13 (0.03) 051 (0.11)  0.01 (0.01) 49.09 (9.71) 4 (0)
ePL [72] 0.30 (0.40) 115 (1.52)  0.05 (0.11) 49.09 (8.39) 1 (0)
eMG [74] 0.36 (0.24) 143 (1.05)  0.03 (0.02) 48.18 (5.06) 5 (1)
ePL+ (73] 0.16 (0.05)  0.64 (0.22)  0.02 (0.01) 46.59 (6.20) 3 (1)
¢PL-KRLS-DISCO [75]  0.98 (0.51)  3.75 (1.88)  0.06 (0.04) 49.09 (9.44) 32 (3)
NMR 1.36 (0.66) 5.34(2.79) 0.2 (0.03) 5L.14 (827) 2 (0)
NTSK (RLS) 0.13 (0.03) 0.52 (0.14)  0.01 (0.01) 47.27 (7.32) 1 (0)
NTSK (wRLS) 0.13 (0.03) 0.49 (0.11) 0.01 (0.00) 47.95 (8.71) 14 (1)
GEN-NMR 001 (0.48)  3.58(2.02)  0.08 (0.03) 51.36 (8.21) 3 (0)
GEN-NTSK (RLS)  0.14 (0.03)  0.55 (0.15)  0.01 (0.00) 44.77 (5.84) 1 (0)
GEN-NTSK (WRLS)  0.13 (0.03) 0.51 (0.12) 0.01 (0.00) 48.86 (7.69) 16 (1)
R-NMR 0.80 (0.47)  3.10 (1.86)  0.07 (0.04) 47.27 (5.73) -
R-NTSK 0.13 (0.03) 0.49 (0.11) 0.01 (0. 00) 4750 (8.16) -
RF-NTSK 0.17 (0.06)  0.66 (0.26)  0.02 (0.01) 49.09 (7.20) -

Table 40 — Statistical MDM test for NASDAQ (horizon = 1)

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Regression Tree [219]  1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Random Forest [112] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SVM [220] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS-SVM [221] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GBM [116] 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
XGBoost [117] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
LGBM [118] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
MLP [222] 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.99 1.00
CNN [223] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.84
RNN [224] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LSTM [225] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRU [226] 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WaveNet [227] 1.00 0.09 0.00 1.00 0.50 0.01 1.00 0.00 1.00
eTS [68] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Simpl_eTS [69] 1.00 0.00 0.00 1.00 0.04 0.00 1.00 0.00 1.00
exTS [70] 1.00 0.47 0.00 1.00 0.98 0.03 1.00 0.00 1.00
ePL [72] 1.00 0.00 0.00 0.50 0.00 0.00 0.52 0.00 0.00
eMG [74] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
ePL+ [73] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.07

ePL-KRLS-DISCO [75]  0.94 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00
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Table 41 presents the simulations’ results for the NASDAQ to predict five steps
ahead. KNN, XGBoost, and LGBM obtained the lowest mean errors among the classical
models, MLP, CNN, and WaveNet the lowest among DL models, eTS and exTS the lowest
for the eFSs, and NTSK (RLS), NTSK (wRLS), GEN-NTSK (RLS), GEN-NTSK (wRLS)
and R-NTSK, the lowest errors for the proposed fuzzy models. Simpl eTS had the highest
number of rules. SVM, RNN, GRU, and ePL-KRLS-DISCO performed higher errors.
NMR performed the best mean for CPPM. Table 42 supports that the NTSK models

perform lower errors than many of the compared models. Figure 24 shows the predictions

for NASDAQ five steps ahead.

Table 41 — Simulations’ results of the NASDAQ

series (horizon = 5)

Model NRMSE NDEI MAPE CPPM (%) Rules
KNN [218] 0.50 (0.28) 1.94 (1.17) 0.05 (0.02) 47.95 (7.29) -
Regression Tree [219]  0.57 (0.29)  2.24 (1.28)  0.05 (0.03)  47.05 (5.75) -
Random Forest [112]  0.52 (0.26)  2.02 (1.10)  0.05 (0.03) 46.36 (7.06) -
SVM [220] 205 (1.11)  8.04 (4.65)  0.19 (0.04) 52.05 (3.44) -
LS-SVM [221] 0.81 (0.31) 318 (1.37)  0.08 (0.02) 51.36 (4.79) -
GBM [116] 052 (0.23)  2.05 (0.94)  0.05 (0.03) 50.91 (7.41) -
XGBoost [117] 0.53 (0.22) 2.09 (0.95)  0.05 (0.02) 45.91 (4.75) -
LGBM [118] 051 (0.26)  2.00 (1.10)  0.05 (0.02) 42.05 (9.05) -
MLP [222] 026 (0.06)  LOL (0.26) 0.02 (0.01) 52.05 (3.44) -
CNN [223] 0.26 (0.06)  1.00 (0.20) 0.02 (0.01) 51.59 (4.55) -
RNN [224] 210 (1.16)  8.24 (4.83)  0.19 (0.05) 40.91 (6.74) -
LSTM [225] 0.78 (0.44)  3.01 (L.67)  0.09 (0.06) 51.59 (6.43) -
GRU [226] 400 (1.98) 1569 (8.33)  0.37 (0.06) 40.91 (6.74) -
WaveNet [227] 0.24 (0.06) 0.95 (0.26) 0.02 (0.01) 5205 (4.71) -
TS [63) 0.30 (0.09) 1.15 (0.30) 0.03 (0.02) 52.05 (5.33) 4 (0)
Simpl_€T$ [69] 036 (0.11)  1.40 (0.46)  0.04 (0.02) 51.14 (3.97) 72 (51)
exT$ [70] 027 (0.05)  1.05(0.22) 0.03 (0.02) 51.14 (4.22) 3 (0)
ePL [72] 034 (0.05)  1.34(0.24)  0.04 (0.03) 51.14 (457) 1 (0)
eMG [74] 051 (0.26)  1.99 (1.01)  0.05 (0.04) 47.73 (5.93) 8 (2)
ePL+ [73] 0.78 (1.24) 2,97 (4.62)  0.08 (0.14) 51.59 (6.75) 1 (0)
ePL-KRLS-DISCO [75] 3.83 (3.03) 14.67 (10.87) 0.26 (0.29) 50.00 (8.86) 20 (0)
NMR 0.84 (043) 327 (L74)  0.08 (0.03) 52.95 (6.97) 4 (0)
NTSK (RLS) 030 (0.07) 116 (0.28) 0.03 (0.02) 51.59 (7.05) 1 (0)
NTSK (wRLS) 0.28 (0.06) 1.09 (0.21) 0.03 (0.02) 5159 (4.55) 8 (0)
GEN-NMR 0.83 (0.60)  3.20 (2.28)  0.08 (0.06) 49.55 (6.88) 15 (1)
GEN-NTSK (RLS) 029 (0.06)  1.13(0.26) 0.03 (0.02) 50.00 (5.57) 1 (0)
GEN-NTSK (WRLS)  0.28 (0.05)  1.09 (0.21)  0.03 (0.02) 52.50 (4.60) 1 (0)
R-NMR 0.81 (0.44) 312 (L72)  0.07 (0.04) 47.27 (6.25) -
R-NTSK 029 (0.06) 111 (0.21) 0.03 (0.02) 51.82 (4.64)
RE-NTSK 034 (0.10) 133 (0.41)  0.04 (0.02) 52.27 (5.47)
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Table 42 — Statistical MDM test for NASDAQ (horizon = 5)

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Regression Tree [219] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Random Forest [112]  1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SVM [220] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS-SVM [221] 1.00 0.00 0.00 1.00 0.00 0.00 0.99 0.00 0.00
GBM [116] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
XGBoost [117] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
LGBM [118] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
MLP [222] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CNN [223] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RNN [224] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LSTM [225] 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00
GRU [226] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WaveNet [227] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
eTS [68] 1.00 0.00 0.00 1.00 0.01 0.00 1.00 0.00 0.98
Simpl_eTS [69] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
exTS [70] 1.00 0.96 0.69 1.00 1.00 0.63 1.00 0.93 1.00
ePL [72] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.02
eMG [74] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
ePL+ [73] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ePL-KRLS-DISCO [75]  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 24 — Prediction performance on NASDAQ dataset (horizon = 5)

Table 43 presents the simulation results for predicting the TAIEX one step ahead.
KNN, RT, and XGBoost obtained the lowest mean errors among the classical models,
while MLP performed best among the DL models. For the eFSs, eTS, Simpl_eTS, exTS,
and ePL recorded the lowest errors; among the proposed models, NTSK (RLS), NTSK
(wRLS), GEN-NTSK (RLS), GEN-NTSK (wRLS), R-NTSK, and RF-NTSK yielded the
lowest errors. Simpl_eTS generated the highest number of rules. Conversely, SVM, GBM,
LGBM, RNN, LSTM, and ePL+ exhibited higher errors. R-NMR achieved the best mean
CPPM. Table 44 confirms that the NTSK models achieved lower errors than many of the

comparison models.
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Table 43 — Simulations’ results of the TAIEX (horizon = 1)

Model NRMSE NDEI MAPE CPPM (%)  Rules
KNN [218] 0.27 (0.15) 1.00 (0.51)  0.03 (0.02) 49.77 (10.51) -
Regression Tree [219]  0.27 (0.15) 0.97 (0.50) 0.02 (0.02) 50.00 (8.96) -
Random Forest [112]  0.28 (0.15)  1.02 (0.49)  0.03 (0.02) 52.79 (11.11) -

SVM [220] 1.93(0.99)  7.34(3.86) 0.18 (0.07)  50.70 (5.68) -
LS-SVM [221] 0.30 (0.12)  1.15(0.52)  0.03 (0.01)  51.63 (5.96) -
GBM [116] 115 (0.51)  4.39 (2.10)  0.11 (0.04)  50.70 (9.46) -
XGBoost [117] 0.27 (0.15)  1.00 (0.49)  0.03 (0.02)  50.23 (8.33) -
LGBM [118] 1.28 (0.52)  4.88(2.22)  0.12 (0.04) 45.35 (8.84) -
MLP [222] 0.11 (0.04) 0.43 (0.18) 0.01 (0.00) 50.93 (6.10) -
CNN [223] 0.17 (0.05)  0.64 (0.23)  0.02 (0.01)  52.33 (7.37) -
RNN [224] 177 (0.86)  6.77 (3.54)  0.16 (0.07)  43.72 (8.24) -
LSTM [225] 3.27 (1.44) 1256 (6.30)  0.31 (0.08)  43.72 (8.24) -
GRU [226] 0.60 (0.51)  2.30 (2.04)  0.06 (0.05)  44.88 (8.45) -
WaveNet [227] 0.17 (0.07)  0.64 (0.32)  0.02 (0.01)  52.56 (7.73) -
TS [68] 0.11 (0.04) 0.43 (0.18) 0.01 (0.01) 5163 (3.24) 5 (0)
Simpl_eTS [69] 0.14 (0.04) 053 (0.17) 0.01 (0.01) 52.33 (5.81) 81 (70)
exTS [70] 0.13 (0.06)  0.50 (0.24) 0.01 (0.01) 53.02 (9.11) 4 (0)
ePL [72] 0.13 (0.05) 051 (0.23) 0.01 (0.01) 51.63 (7.11) 1 (0)
eMG [74] 027 (0.27) 097 (0.85)  0.03 (0.04) 52.79 (10.09) 7 (3)
ePL+ [73] 1.06 (1.73) 411 (6.69) 0.12 (0.19) 5233 (7.22) 1 (0)
¢PL-KRLS-DISCO [75]  0.61 (0.65)  2.15 (2.04)  0.04 (0.05)  50.23 (5.81) 13 (7)
NMR 0.96 (0.44)  3.67 (1.88) 0.0 (0.04) 53.02 (3.44) 2 (0)
NTSK (RLS) 0.11 (0.04) 0.44 (0.17) 0.01 (0.01) 53.02 (7.34) 1 (0)
NTSK (wRLS) 0.11 (0.04) 0.44 (0.18) 0.01 (0.01) 51.63 (8.56) 4 (0)
GEN-NMR 0.71 (0.36) 271 (1.48)  0.07 (0.04)  54.65 (9.60) 3 (0)
GEN-NTSK (RLS)  0.12 (0.04) 048 (0.21) 0.01 (0.01) 54.42 (9.08) 1 (0)
GEN-NTSK (WRLS)  0.11 (0.04) 0.43 (0.18) 0.01 (0.01) 50.93 (8.67) 3 (0)
R-NMR 091 (0.91) 358 (4.14)  0.07 (0.05)  54.88 (9.08) -
R-NTSK 0.11 (0.04) 0.43 (0.18) 0.01 (0.01) 52.79 (7.50) -
RF-NTSK 0.15 (0.05)  0.57 (0.18) 0.01 (0.01) 52.79 (6.74) -

Table 44 — Statistical MDM test for TAIEX (horizon = 1)

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Regression Tree [219]  1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Random Forest [112] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SVM [220] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS-SVM [221] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
GBM [116] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
XGBoost [117] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
LGBM [118] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MLP [222] 1.00 0.99 1.00 1.00 1.00 0.98 1.00 0.98 1.00
CNN [223] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.03
RNN [224] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LSTM [225] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRU [226] 1.00 0.00 0.00 0.01 0.00 0.00 0.54 0.00 0.00
WaveNet [227] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.16
eTS [68] 1.00 0.96 1.00 1.00 1.00 0.99 1.00 0.90 1.00
Simpl_eTS [69] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00
exTS [70] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.99
ePL [72] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00
eMG [74] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
ePL+ [73] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ePL-KRLS-DISCO [75]  0.36 0.03 0.03 0.17 0.03 0.03 0.24 0.03 0.03
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Table 45 presents the simulation results for predicting the TAIEX five steps ahead.
KNN, RT, RF, LS-SVM, and XGBoost obtained the lowest mean errors among the classical
models, while MLP, CNN, and WaveNet performed best among the DL models. For the
eFSs, exTS recorded the lowest errors; among the proposed models, GEN-NTSK (RLS)
and GEN-NTSK (wRLS) yielded the lowest errors. Simpl eTS generated the highest
number of rules. Conversely, SVM, Light GBM, and RNN exhibited higher errors. The
ePL-KRLS-DISCO model achieved the best mean CPPM. Table 46 confirms that the
NTSK models achieved lower errors than many of the comparison models. Figure 25 shows
the predictions for the TAIEX five steps ahead.

Table 45 — Simulations’ results of the TAIEX (horizon = 5)

Model NRMSE NDEI MAPE CPPM (%) Rules

KNN [218] 047 (0.23) 177 (0.94) 0.05 (0.04) 46.67 (8.40
Regression Tree [219]  0.52 (0.28)  1.94 (1.14) 0.05 (0.04) 45.48 (5.88
Random Forest [112]  0.45 (0.23) 1.70 (0.94) 0.05 (0.04) 47.38

R-NMR 075 (0.31) 279 (1.09)  0.07
R-NTSK 0.26
RF-NTSK 0.33

(8.40) -
(5.88) -
(5.68) -
SVM [220] 188 (0.96) 7.12(3.73) 0.8 (0.07) 4833 (5.54) -
LS-SVM [221] 1.23 (045) 467 (1.95) 012 (0.05) 47.62(9.93) -
GBM [116] 0.85(0.23) 322 (0.98) 0.08 (0.02) 45.95 (6.39) -
XGBoost [117] 048 (0.26)  1.82 (1.06) 0.05 (0.04) 46.67 (8.19) -
LGBM [118] 118 (0.48)  4.49 (2.02)  0.11 (0.04) 4524 (8.72) -
MLP [222] 0.23 (0.06) 0.89 (0.29) 0.02 (0.01) 4833 (5.54) -
CNN [223] 0.27 (0.09)  1.02 (0.43) 0.02 (0.01) 48.33 (4.52) -
RNN [224] 173 (0.82)  6.58 (3.39)  0.17 (0.07) 44.05 (8.40) -
LSTM [225] 043 (0.27) 161 (1.07)  0.04 (0.03) 43.33 (7.05) -
GRU [226] 059 (0.38) 220 (1.71)  0.05 (0.03) 44.05 (8.40) -
WaveNet [227] 0.22 (0.08) 0.86 (0.38) 0.02 (0.01) 48.33 (4.13) -
TS [68] 0.26 (0.07)  0.99 (0.34) 0.02 (0.01) 50.48 (6.10) 5 (0)
Simpl_cTS [69] 0.28 (0.09)  1.08 (0.41)  0.03 (0.01) 4857 (6.58) 55 (38)
exT$ [70] 0.25 (0.06) 0.96 (0.26) 0.02 (0.01) 50.24 (6.34) 3 (0)
ePL [72] 0.34 (0.14)  1.31 (0.60)  0.03 (0.02) 47.86 (6.25) 1 (0)
eMG [74] 051 (0.33)  1.92 (1.30)  0.05 (0.04) 50.24 (4.82) 13 (6)
ePL+ [73] 0.33 (0.15)  1.28 (0.67)  0.03 (0.02) 49.76 (5.05) 3 (1)
ePL-KRLS-DISCO [75]  0.68 (0.27)  2.53 (0.94)  0.06 (0.04) 54.05 (4.65) 30 (5)
NMR 0.69 (0.22) 262 (0.96) 0.07 (0.03) 52.38 (6.73) 4 (0)
NTSK (RLS) 0.27 (0.08)  1.02 (0.38)  0.02(0.01) 51.90 (5.91) 1 (0)
NTSK (wRLS) 0.26 (0.06)  0.98 (0.31)  0.02 (0.01) 50.71 (6.21) 13 (0)
GEN-NMR 079 (0.35) 298 (1.37)  0.07 (0.04) 51.19 (8.13) 5 (0)
GEN-NTSK (RLS)  0.26 (0.08)  1.01 (0.40) 0.02 (0.00) 48.33 (4.40) 1 (0)
GEN-NTSK (WRLS)  0.25 (0.06) 0.96 (0.29) 0.02 (001) 51.67 (7.15) 1
(0. (5.76)
(0. (6.25)
(0. (6.14)

0.08) 1.01(0.36) 0.02
012) 1.24(0.54) 0.03
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Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Regression Tree [219] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Random Forest [112] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SVM [220] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS-SVM [221] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GBM [116] 0.00 0.00 0.00 0.36 0.00 0.00 0.37 0.00 0.00
XGBoost [117] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
LGBM [118] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MLP [222] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CNN [223] 1.00 0.53 0.19 1.00 0.19 0.10 1.00 0.48 1.00
RNN [224] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LSTM [225] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
GRU [226] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
WaveNet [227] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
eTS [68] 1.00 0.97 0.71 1.00 0.74 0.33 1.00 0.99 1.00
Simpl_eTS [69] 1.00 0.03 0.00 1.00 0.00 0.00 1.00 0.00 1.00
exTS [70] 1.00 0.75 0.24 1.00 0.24 0.07 1.00 0.74 1.00
ePL [72] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.01
eMG [74] 0.99 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
ePL+ (73] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.03
¢PL-KRLS-DISCO [75]  0.06 0.00 0.00 0.91 0.00 0.00 0.93 0.00 0.00
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Figure 25 — Prediction performance on TAIEX dataset (horizon = 5)
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6.1.4 CRYPTOCURRENCIES

Table 47 presents the simulation results for predicting Bitcoin one step ahead.
XGBoost obtained the lowest mean errors among the classical models, while WaveNet
performed best among the DL models. For the eF'Ss, eT'S recorded the lowest errors, and
R-NTSK yielded the best results among the proposed models. Notably, the proposed
R-NTSK achieved the lowest errors among all simulations. Conversely, SVM, RNN, GRU,
and ePL exhibited higher errors. KNN achieved the best mean for CPPM. Table 48
confirms that the NTSK-based models achieved lower errors than many of the comparison

models.

Table 47 — Simulations’ results of Bitcoin (horizon = 1)

Model NRMSE NDEI MAPE CPPM (%) Rules
KNN [218] 032 (022) 121 (089) 0.13 (0.11) 5169 (5.25) -
Regression Tree [219]  0.35 (0.23)  1.37 (0.96)  0.14 (0.10)  46.00 (6.05) -
Random Forest [112] 0.38 (0.23)  1.41(0.94) 0.15(0.10)  48.77 (2.29) -
SVM [220] 111 (050)  4.09 (1.90)  0.51 (0.26) 5108 (6.15) -
LS-SVM [221] 0.67 (0.33)  2.60 (L56)  0.29 (0.17) 47.85 (7.68) -
GBM [116] 0.70 (0.20)  2.65 (1.27)  0.30 (0.15)  47.85 (3.86) -
XGBoost [117] 0.28 (0.20) 1.06 (0.79) 0.11 (0.10) 51.23 (6.67) -
LGBM [118] 0.71 (0.20)  2.65 (1.24) 031 (0.15) 4631 (6.02) -
MLP [222] 0.20 (0.18)  0.86 (0.95)  0.06 (0.04) 46.31 (6.76) -
CNN [223] 0.23 (0.20)  0.92 (0.86)  0.08 (0.06) 47.60 (6.34) -
RNN [224] 1.05 (0.53)  3.92 (204) 045 (0.24) 46.62 (6.23) -
LSTM [225] 0.46 (0.34) 181 (1.50) 0.8 (0.17) 4246 (4.47) -
GRU [226] 172 (0.87)  6.96 (5.24)  0.68 (0.13) 46.31 (6.17) -
WaveNet [227] 0.15 (0.11) 0.59 (0.49) 0.05 (0.04) 47.23 (5.80) -
oTS [68] 0.11 (0.03) 0.43 (0.21) 0.04 (0.01) 45.38 (7.70) 4 (0)
Simpl_¢TS [69] 0.15 (0.07)  0.61 (0.30)  0.06 (0.03) 48.77 (7.05) 33 (19)
exTS [70] 0.13 (0.05)  0.50 (0.27)  0.05 (0.03) 47.38 (7.87) 7 (3)
ePL [72] 110 (1.00)  3.97 (3.60) 0.52 (0.48) 46.62 (10.30) 2 (0)
MG [74] 034 (0.21) 130 (0.86) 0.13 (0.10) 49.38 (4.54) 48 (37)
ePL+ [73] 0.18 (0.12)  0.68 (0.43)  0.07 (0.07) 46.62 (6.78) 5 (3)
PL-KRLS-DISCO [75]  0.80 (1.24)  2.80 (4.00)  0.30 (0.38) 48.46 (8.06) 15 (7)
NMR 055 (0.54) 211 (225) 0.20 (0.19) 45.38 (6.75) 18 (2)
NTSK (RLS) 0.10 (0.04)  0.39 (0.19)  0.04 (0.02) 46.62 (9.36) 1 (0)
NTSK (wRLS) 0.09 (0.03)  0.37 (0.17)  0.03 (0.02)  48.00 (9.40) 1 (0)
GEN-NMR 0.77 (0.30)  3.03 (1.88)  0.31 (0.16)  49.85 (4.36) 18 (2)
GEN-NTSK (RLS)  0.10 (0.03)  0.30 (0.17)  0.04 (0.02)  43.69 (9.13) 1 (0)
GEN-NTSK (wRLS)  0.09 (0.03) 037 (0.17)  0.03 (0.02) 45.85 (10.15) 1 (0)
R-NMR 0.50 (0.48) 189 (1.95)  0.18 (0.17)  46.46 (5.54) -
R-NTSK 0.09 (0.02) 0.35 (0.16) 0.03 (0.01) 46.15 (7.72)
RF-NTSK 0.13 (0.05)  0.48 (0.22)  0.05 (0.02)  46.46 (7.96)
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Table 48 — Statistical MDM test for Bitcoin (horizon = 1)

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Regression Tree [219] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Random Forest [112]  1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SVM [220] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS-SVM [221] 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
GBM [116] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
XGBoost [117] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
LGBM [118] 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
MLP [222] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00
CNN [223] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.97
RNN [224] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LSTM [225] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
GRU [226] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WaveNet [227] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00
eTS [68] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00
Simpl_eTS [69] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.97
exTS [70] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00
ePL [72] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eMG [74] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
ePL+ [73] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
ePL-KRLS-DISCO [75]  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 26 — Prediction performance on Bitcoin dataset (horizon = 5)

Table 49 presents the simulation results for predicting Bitcoin five steps ahead.
XGBoost and LGBM obtained the lowest mean errors among the classical models, while
WaveNet performed best among the DL models. For the eF'Ss, exTS recorded the lowest
errors; among the proposed models, NTSK (wRLS), GEN-NTSK (RLS), and R-NTSK
yielded the lowest errors. Simpl eTS generated the highest number of rules. Conversely,
SVM, GRU, and ePL-KRLS-DISCO exhibited higher errors. The ePL~+ approach obtained
higher errors, it achieved the best mean CPPM. Table 50 confirms that the NTSK-based
models achieved lower errors than many of the comparison models. Figure 26 shows the

predictions for Bitcoin five steps ahead.
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Table 49 — Simulations’ results of Bitcoin (horizon = 5)

Model NRMSE NDEI MAPE  CPPM (%) Rules
KNN [218] 041 (0.22) 157 (0.96) 0.16 (0.11) 48.62 (5.29) -
Regression Tree [219]  0.43 (0.19)  1.62 (0.84)  0.17 (0.09) 46.77 (5.85) -
Random Forest [112] 044 (0.22)  1.64 (0.91)  0.18 (0.11)  50.31 (5.29) -
SVM [220] 110 (0.50)  4.05 (1.91)  0.51 (0.26) 52.00 (7.37) -
LS-SVM [221] 0.96 (0.36)  3.61 (1.59) 042 (0.18) 51.23 (6.98) -
GBM [116] 042 (0.23)  1.61 (0.97) 0.17 (0.11) 45.54 (4.57) -
XGBoost [117] 0.40 (0.18)  1.55 (0.84) 0.16 (0.09) 49.23 (6.31) -
LGBM [118] 0.39 (0.21) 1.50 (0.88) 0.16 (0.11) 50.15 (7.12) -
MLP [222] 0.25 (0.13)  1.00 (0.69)  0.09 (0.04) 50.00 (5.93) -
CNN [223] 024 (0.11) 094 (0.51)  0.09 (0.04) 52.31 (6.42) -
RNN [224] 0.96 (0.39)  3.63 (1.69)  0.42 (0.20) 46.62 (6.00) -
LSTM [225] 0.96 (0.39)  3.61 (1.68) 042 (0.20) 46.31 (6.17) -
GRU [226] 1.25 (0.74)  5.06 (4.28) 047 (0.14) 4538 (6.35) -
WaveNet [227) 0.20 (0.05) 0.74 (0.23) 0.08 (0.05) 50.00 (7.67) -
TS [68] 024 (0.08) 092 (0.48) 0.09 (0.03) 50.77 (5.46) 4 (0)
Simpl_eTS [69] 0.34 (0.18)  1.35 (0.86)  0.13 (0.06) 48.31 (4.78) 31 (18)
exTS [70] 0.19 (0.04) 0.74 (0.23) 0.07 (0.03) 49.69 (6.27) 3 (0)
ePL [72] 0.55 (0.46) 217 (1.91)  0.25 (0.29) 49.85 (6.35) 1 (0)
eMG [74] 040 (0.15) 154 (0.72)  0.15 (0.06) 49.38 (6.05) 21 (16)
ePL+ (73] 042 (0.31) 164 (1.36)  0.16 (0.13) 53.54 (4.00) 2 (1)
ePL-KRLS-DISCO [75]  1.05 (1.01)  3.85 (3.24)  0.38 (0.48) 47.23 (3.77) 25 (9)
NMR 0.86 (0.34) 329 (1.60) 0.34 (0.14) 5154 (5.34) 2 (0)
NTSK (RLS) 021 (0.03)  0.79 (0.23)  0.08 (0.03) 52.00 (5.45) 1 (0)
NTSK (wRLS) 0.19 (0.04) 0.74 (0.29) 0.07 (0.02) 50.62 (4.79) 10 (2)
GEN-NMR 0.71 (0.50)  2.70 (2.08)  0.26 (0.16) 51.54 (6.46) 18 (3)
GEN-NTSK (RLS)  0.19 (0.04) 0.74 (0.25)  0.07 (0.03) 50.62 (4.94) 1 (0)
GEN-NTSK (WRLS) ~ 0.27 (0.12)  0.99 (0.41)  0.12 (0.10) 50.62 (5.26) 5 (0)
R-NMR 0.56 (0.46) 217 (1.92)  0.20 (0.14) 50.15 (5.02) -
R-NTSK 0.19 (0.04) 0.73 (0.27) 0.07 (0.03) 50.15 (4.36) -
RF-NTSK 0.23 (0.06)  0.89 (0.34)  0.09 (0.04) 51.23 (6.71) -

Table 50 — Statistical MDM test for Bitcoin (horizon = 5)

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Regression Tree [219]  1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Random Forest [112] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SVM [220] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS-SVM [221] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GBM [116] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
XGBoost [117] 1.00 0.00 0.00 1.00 0.00 0.02 1.00 0.00 0.00
LGBM [118] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
MLP [222] 1.00 1.00 0.18 1.00 0.62 1.00 1.00 0.09 1.00
CNN [223] 1.00 1.00 0.20 1.00 0.58 1.00 1.00 0.12 1.00
RNN [224] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LSTM [225] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRU [226] 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WaveNet [227] 1.00 1.00 0.77 1.00 0.94 1.00 1.00 0.70 1.00
eTS [68] 1.00 0.06 0.00 1.00 0.00 1.00 1.00 0.00 0.39
Simpl_eTS [69] 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00
exTS [70] 1.00 0.99 0.00 1.00 0.00 1.00 1.00 0.00 1.00
ePL [72] 1.00 0.00 0.00 1.00 0.00 0.00 0.05 0.00 0.00
eMG [74] 1.00 0.00 0.00 1.00 0.00 0.80 1.00 0.00 0.00
ePL+ [73] 1.00 0.00 0.00 1.00 0.00 0.00 0.04 0.00 0.00

ePL-KRLS-DISCO [75]  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 51 presents the simulation results for predicting Ethereum one step ahead.
RF and GBM obtained the lowest mean errors among the classical models, while CNN
and WaveNet performed best among the DL models. For the eFSs, TS recorded the
lowest errors; among all models, NTSK (wRLS), GEN-NTSK (wRLS), and R-NTSK
yielded the lowest errors. Simpl_eTS generated the highest number of rules. Conversely,
SVM, RNN, LSTM, ePL, and ePL-KRLS-DISCO exhibited higher errors. Furthermore,
ePL-KRLS-DISCO achieved the best mean CPPM. Table 52 confirms that R-NTSK

achieved lower errors than all of the comparison models.

Table 51 — Simulations’ results of Ethereum (horizon = 1)

Model NRMSE NDEI MAPE CPPM (%) Rules
KNN [218] 041 (0.17) 177 (0.86) 0.21 (0.13) 19.08 -

Regression Tree [219]  0.37 (0.14)  1.51 (0.77

Random Forest [112]  0.30 (0.17)  1.20 (0.80
SVM [220] 1.34 (0.81) (3.23
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GBM [116] 0.29 (0.16) 1.17 (0.77) 0.13 (0.11) 50.46
XGBoost, [117] 031 (0.14)  1.24 (0.69)  0.14 (0.10) 49.38
LGBM [118] 0.36 (0.18)  1.44 (0.85)  0.16 47.85
MLP [222] 029 (0.26) 1.28 (1.35) 0.13
CNN [223] 0.21 (0.18) 0.87 (0.90) 0.09
RNN [224] 111 (0.65)  4.42 (2.66)  0.52
LSTM [225] 146 (0.57)  5.94 (2.91)  0.70
GRU [226] 047 (0.26)  1.93 (1.32) 0.4
WaveNet [227] 022 (0.14)  0.90 (0.71) 0.09 (0.07) 48.46 (5.11
TS [68] 0.18 (0.10) 0.74 (0.54) 0.07 (0.03) 48.46 (6.57
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NMR 054 (0.31) 2.15 (1.39) 0.24 (0.18) 47.23
NTSK (RLS) 0.15 (0.07)  0.58 (0.23)  0.06 (0.04) 46.15
NTSK (wRLS) 0.10 (0.02) 0.42 (0.14) 0.04 (0.01) 47.38
GEN-NMR 0.63 (0.44) 255 (1.96)  0.30
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Table 52 — Statistical MDM test for Ethereum (horizon = 1)

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Regression Tree [219] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Random Forest [112]  1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SVM [220] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS-SVM [221] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GBM [116] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
XGBoost [117] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
LGBM [118] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
MLP [222] 1.00 0.03 0.00 1.00 0.06 0.00 1.00 0.00 0.84
CNN [223] 1.00 0.91 0.00 1.00 0.97 0.00 1.00 0.00 1.00
RNN [224] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LSTM [225] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRU [226] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
WaveNet [227] 1.00 0.38 0.00 1.00 0.60 0.00 1.00 0.00 0.98
eTS [68] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.01
Simpl_eTS [69] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
exTS [70] 1.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 1.00
ePL [72] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eMG [74] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
ePL+ [73] 0.69 0.00 0.00 1.00 0.00 0.00 0.02 0.00 0.00
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Figure 27 — Prediction performance on Ethereum dataset (horizon = 5)

Table 53 presents the simulation results for predicting Ethereum five steps ahead.
RF obtained the lowest mean errors among the classical models, while CNN performed
best among the DL models. For the eF'Ss, exTS recorded the lowest errors; among the
proposed models, NTSK (RLS) and NTSK (wRLS) yielded the lowest errors. Simpl_eT'S
generated the highest number of rules. Conversely, SVM, RNN, LSTM, and ePL exhibited
higher errors. Furthermore, ePL and GEN-NTSK (wRLS) achieved the best mean for
CPPM. Table 54 confirms that the NTSK models achieved lower errors than many of the

comparison models. Figure 27 shows the predictions for Ethereum five steps ahead.
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Table 53 — Simulations’ results of Ethereum (horizon = 5)

Model NRMSE NDEI MAPE CPPM (%) Rules
KNN [218] 049 (0.18)  1.95 (0.87)  0.24 (0.14) 50.00 (3.23) -
Regression Tree [219]  0.46 (0.11) 181 (0.62)  0.19 (0.07) 46.92 (4.97) -
Random Forest [112]  0.40 (0.12) 1.62 (0.67) 0.18 (0.09) 50.00 (4.83) -
SVM [220] 134 (0.80) 526 (3.22)  0.64 (0.25) 50.00 (6.43) -
LS-SVM [221] 0.44 (0.23) 180 (L18)  0.22 (0.14) 48.00 (7.31) -
GBM [116] 0.73 (0.31)  2.90 (L46)  0.34 (0.13) 4585 (1.62) -
XGBoost [117] 0.44 (0.13)  1.80 (0.78)  0.19 (0.08) 47.23 (8.40) -
LGBM [118] 043 (0.16) 171 (0.76)  0.20 (0.11) 46.62 (5.06) -
MLP [227] 031 (0.19) 130 (1.05)  0.14 (0.10) 48.92 (6.87) -
ONN [223] 0.28 (0.12) 1.15 (0.64) 0.12 (0.06) 50.46 (7.93) -
RNN [224] 118 (0.68)  4.66 (277)  0.55 (0.22) 45.85 (8.16) -
LSTM [225] 101 (0.50)  4.14 (2.34) 048 (0.21) 46.77 (6.24) -
GRU [226] 0.78 (0.30)  3.21 (L67)  0.36 (0.14) 49.69 (8.48) -
WaveNet [227] 0.28 (0.16) 119 (0.87)  0.12 (0.07)  50.31 (7.15) -
oTS [68] 0.35 (0.19) 140 (0.84)  0.16 (0.11) 49.85 (7.76) 5 (0)
Simpl_eTS$ [69] 0.41 (020) 168 (1.02) 021 (0.13) 47.54 (7.55) 44 (5)
exTS [70] 0.23 (0.07) 0.90 (0.29) 0.10 (0.05) 49.54 (4.12) 3 (0)
¢PL [72] 475 (5.46)  18.55 (21.58) 1.94 (1.86) 50.77 (5.92) 3 (2)
MG [74] 0.50 (0.22)  2.03 (1.16)  0.23 (0.13) 49.08 (6.79) 12 (9)
ePL+ [73] 0.33 (0.13) 133 (0.75)  0.15 (0.08)  50.00 (7.29) 2 (0)
oPL-KRLS-DISCO [75] 0.63 (0.49) 243 (1.94) 026 (0.19) 50.15 (6.53) 8 (7)
NMR 052 (0.24) 2,09 (1.17) _ 0.24 (0.15) 46.15 (5.06) 3 (0)
NTSK (RLS) 0.24 (0.06)  0.94 (0.31)  0.10 (0.03) 49.54 (3.82) 1 (0)
NTSK (wRLS) 0.23 (0.06) 0.94 (0.33) 0.10 (0.03) 50.31 (6.74) 6 (0)
GEN-NMR 052 (0.24) 210 (1.15)  0.25 (0.15) 46.62 (5.55) 3 (0)
GEN-NTSK (RLS)  0.24 (0.06)  0.96 (0.33)  0.10 (0.04) 49.08 (5.48) 1 (0)
GEN-NTSK (wRLS) 031 (0.21)  1.24 (0.86)  0.13 (0.08) 50.77 (4.67) 6 (0)
R-NMR 049 (0.24)  1.94 (1.08)  0.23 (0.14) 50.00 (7.02) -
R-NTSK 0.24 (0.06)  0.94 (0.33)  0.10 (0.04) 49.85 (6.96) -
RF-NTSK 0.25 (0.06)  1.00 (0.37)  0.11 (0.04) 4892 (6.52) -

Table 54 — Statistical MDM test for Ethereum (horizon = 5)

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 1.00 0.00 0.00 1.00 0.00 0.31 1.00 0.00 0.00
Regression Tree [219]  1.00 0.00 0.00 1.00 0.00 0.42 1.00 0.00 0.00
Random Forest [112] 1.00 0.00 0.00 1.00 0.00 0.66 1.00 0.00 0.00
SVM [220] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS-SVM [221] 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00
GBM [116] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
XGBoost [117] 1.00 0.00 0.00 1.00 0.00 0.48 1.00 0.00 0.00
LGBM [118] 1.00 0.00 0.00 1.00 0.00 0.19 1.00 0.00 0.00
MLP [222] 1.00 0.60 0.13 1.00 0.67 1.00 1.00 0.01 0.57
CNN [223] 1.00 0.95 0.53 1.00 0.93 1.00 1.00 0.37 0.84
RNN [224] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LSTM [225] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRU [226] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WaveNet [227] 1.00 0.90 0.39 1.00 0.89 1.00 1.00 0.17 0.79
eTS [68] 1.00 0.17 0.04 1.00 0.14 1.00 1.00 0.05 0.06
Simpl_eTS [69] 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00
exTS [70] 1.00 1.00 0.54 1.00 0.96 1.00 1.00 0.36 0.83
ePL [72] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eMG [74] 1.00 0.00 0.00 1.00 0.00 0.02 1.00 0.00 0.00
ePL+ [73] 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00

ePL-KRLS-DISCO [75]  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 55 — Simulations’ results of the Binance coin (horizon = 1)

Model NRMSE NDEI MAPE CPPM (%) Rules
KNN [218] 042 (022) 188 (1.12) 024 (0.22) 49.23 (5.42) -
Regression Tree [219]  0.34 (0.13)  1.44 (0.52)  0.18 (0.18)  43.38 (6.45)
Random Forest [112]  0.23 (0. 10) 1.04 (0.61) 0.15 (0.19) 46.31 (5.82)
SVM [220] 1.24 (0.95)  5.10 (3.57)  0.62 (0.33) 51.23 (5.38)
LS-SVM [221] 1.02 (0. 60) 422 (251) 052 (0.26) 5154 (6.78)
GBM [116] 0.26 (0.10) 116 (0.52) 0.15 (0.19) 49.38 (4.69)
XGBoost [117] 028 (0.11)  1.23 (0.64)  0.16 (0.20)  46.00 (4.74)
LGBM [118] 027 (012)  1.22 (0.67) 017 (0.21) 47.54 (4.64)
MLP [222] 035 (0.32) 160 (1.69)  0.16 (0.13) 47.08 (6.16)
CONN [223] 031 (0.35)  1.44 (1.87) 013 (0.11)  46.92 (5.11)
RNN [224] 049 (0.34)  2.25 (1.87)  0.28 (0.25) 48.00 (4.66)
LSTM [225] 039 (0.37) 187 (2.02)  0.23 (0.26) 45.85 (3.49)
GRU [226] 042 (0.36)  1.97 (1.97)  0.23 (0.21) 46.92 (4.83)
WaveNet [227] 0.19 (0. 11) 0.84 (0.59) 0.08 (0.04) 47.54 (5.17)
TS [68] 036 (0.32)  L61 (L50)  0.17 (0.14) 50.15 (6.39) 5 (0)
Simpl_eTS [69] 0.40 (0. 32) 1.85 (1.65) 0.2 (0.20) 50.77 (5.01) 44 (7)
exTS [70] 0.31(0.23) 130 (0.93) 0.14 (0.12) 48.92 (645) 6 (3)
ePL [72] 6.98 (10.78) 26.30 (40.31) 2.7 (3.61) 45.08 (3.37) 4 (4)
MG [74] 0.31 (0.15) 138 (0.79)  0.15 (0.11)  44.46 (5.65) 20 (20)
ePL+ [73] 0.13 (0.04) 0.53 (0.14) 0.06 (0.03) 45.08 (2.92) 1 (0)
ePL-KRLS-DISCO [75] 0.17 (0.05)  0.74 (0.24)  0.08 (0.07) 49.85 (4.92) 3 (3)
NMR 027 (0.12)  L18 (0.52)  0.17 (0.20) 48.00 (6.03) 14 (1)
NTSK (RLS) 0.11 (0. 03) 0.46 (0.12)  0.05 (0.02) 45.38 (3.53) 1 (0)
NTSK (wRLS) 0.15 (0.08)  0.65 (0.42)  0.06 (0.03) 47.23 (4.62) 5 (0)
GEN-NMR 0.31 (0.11)  1.38(0.63)  0.19 (0.22) 45.54 (543) 3 (0)
GEN-NTSK (RLS)  0.11 (0.03) 0.46 (0.11)  0.05 (0.03) 4554 (457) 1 (0)
GEN-NTSK (wRLS) ~ 0.15 (0.08)  0.62 (0.35)  0.06 (0.04) 46.62 (5.20) 6 (0)
R-NMR 0.25 (0. 10) L11(0.57) 0.6 (0.19) 46.31 (3.92) -
R-NTSK 0.16 (0.12)  0.69 (0.47)  0.07 (0.06) 46.62 (4.13)
RF-NTSK 0.17 (0.07)  0.74 (0.38)  0.09 (0.08) 48.31 (2.85)

Table 55 presents the simulation results for predicting Binance Coin one step
ahead. RF and GBM obtained the lowest mean errors among the classical models, while
WaveNet performed best among the DL models. For the eF'Ss, ePL+ recorded the lowest
errors; among the proposed models, NTSK (RLS) and GEN-NTSK (RLS) yielded the
lowest errors. Simpl eTS generated the highest number of rules. Conversely, SVM and
ePL exhibited higher errors. Furthermore, LS-SVM achieved the best mean for CPPM.
Table 56 confirms that the NTSK-based models achieved lower errors than many of the

comparison models.
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Table 56 — Statistical MDM test for Binance (horizon = 1)

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 0.00 0.00 0.00 0.52 0.00 0.00 0.18 0.00 0.00
Regression Tree [219]  0.96 0.00 0.00 1.00 0.00 0.00 0.99 0.00 0.00
Random Forest [112]  1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SVM [220] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS-SVM [221] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GBM [116] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
XGBoost [117] 0.82 0.00 0.00 1.00 0.00 0.00 0.99 0.00 0.00
LGBM [118] 0.00 0.00 0.00 0.25 0.00 0.00 0.01 0.00 0.00
MLP [222] 1.00 0.11 0.00 1.00 0.54 0.01 1.00 0.00 1.00
CNN [223] 1.00 0.88 0.47 1.00 0.99 0.65 1.00 0.32 1.00
RNN [224] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LSTM [225] 0.04 0.00 0.00 1.00 0.00 0.00 0.74 0.00 0.00
GRU [226] 0.02 0.00 0.00 0.63 0.00 0.00 0.20 0.00 0.00
WaveNet [227] 1.00 0.54 0.13 1.00 0.90 0.22 1.00 0.10 1.00
eTS [68] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00
Simpl_eTS [69] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
exTS [70] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.02
ePL [72] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eMG [74] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
ePL+ [73] 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.98
ePL-KRLS-DISCO [75]  1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

1000 — Actual value
— RF
8 WaveNet
00y __. exTS
a —-—- GEN-NTSK-RLS
v 600
=
(O]
wn
° 400
o
200
0 I
0 100 200 300 400 500 600
Samples

Figure 28 — Prediction performance on Binance dataset (horizon = 5)

Table 57 presents the simulation results for predicting Binance Coin five steps ahead.
RF and LGBM obtained the lowest errors among the classical models, while WaveNet
performed best among the DL models. For the eFSs, exTS recorded the lowest errors, and
GEN-NTSK (RLS) yielded the lowest errors among all models. Simpl eT§S generated the
highest number of rules. Conversely, ePL: and ePL-KRLS-DISCO exhibited higher errors.
Furthermore, ePL+ achieved the best mean for CPPM. Table 58 confirms that the NTSK
models achieved lower errors than many of the comparison models. Figure 28 illustrates

the predictions for Binance Coin five steps ahead.



Table 57 — Simulations’ results of the Binance
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coin (horizon = 5)

Model NRMSE NDEI MAPE  CPPM (%) Rules
KNN [218] 054 (0.24) 233 (1.08) 026 (0.21) 47.85 (5.03) -
Regression Tree [219] 050 (0.20) ~ 2.13 (0.81)  0.25 (0.19) 46.46 (4.23) -
Random Forest [112] ~ 0.38 (0. 17) 1.68 (0.94) 0.21 (0.20) 48.31 (4.42) -
SVM [220] 0.77 (0.34) 333 (1.71) 043 (0.23) 49.38 (5.52) -
LS-SVM [221] 0.69 (0.30) 298 (1.58)  0.38 (0.22) 4892 (5.32) -
GBM [116] 042 (0.16)  1.81 (0.84)  0.22 (0.20) 50.46 (4.23) -
XGBoost [117] 045 (0.20)  1.94 (1.02)  0.22(0.20) 4631 (6.29) -
LGBM [118] 040 (0.15)  1.76 (0.85)  0.21 (0.20) 50.46 (5.75) -
MLP [222] 039 (0.33) 179 (1.82)  0.18 (0.12) 49.54 (6.80) -
CNN [223] 0.33(0.27) 152 (1.47)  0.15(0.09) 5015 (7.79) -
RNN [224] 0.71 (0.68)  3.05 (2.78)  0.34 (0.26) 47.54 (6.29) -
LSTM [225] 042 (027)  1.95(156)  0.24 (0.22) 5092 (6.93) -
GRU [226] 045 (0.33) 210 (1.87)  0.25 (0.21) 48.77 (457) -
WaveNet, [227] 0.31 (0.23) 1.40 (1.26) 0.13 (0.07) 48.77 (6.81) -
TS [68] 042 (026)  1.82 (1.23) 0.19 (0.13) 47.85 (6.76) 4 (0)
Simpl_eTS [69] 047 (0.32) 212 (1.72) 025 (0.18) 49.85 (6.28) 29 (3)
exTS [70] 0.33 (0. 16) 1.37 (0.54) 0.18 (0.16) 48.31 (6.35) 5 (2)
ePL [72] 554 (7.91) 2091 (20.55) 2.36 (2.76) 47.54 (6.32) 3 (3)
eMG [74] 0.48 (0. 19) 2.08 (0.91)  0.25(0.19) 49.08 (6.96) 19 (20)
ePL+ [73] 047 (0.25)  1.94 (0.95)  0.23 (0.16) 52.15 (6.05) 2 (1)
ePL-KRLS-DISCO [75] 1.77 (1.44)  7.69 (6.78)  0.92 (1.39) 49.85 (6.08) 10 (11)
NMR 044 (025)  1.87 (0.97) 0.22 (0.18) 48.31 (3.90) 10 (0)
NTSK (RLS) 041 (0.17)  1.80 (0.93)  0.24 (0.27) 4554 (5.76) 1 (0)
NTSK (wRLS) 029 (0.14)  1.23(0.59)  0.14 (0.09) 48.77 (7.12) 11 (1)
GEN-NMR 041 (021) 177 (0.84)  0.24 (0.22) 48.46 (5.56) 9 (0)
GEN-NTSK (RLS)  0.27 (0. 10) 1.13 (0.39) 0.13 (0.09) 48.31 (3.96) 1 (0)
GEN-NTSK (WRLS) ~ 0.30 (0.15)  1.20 (0.67)  0.14 (0.09) 49.38 (5.30) 12 (1)
R-NMR 0.36 (0. 14) 153 (0.52)  0.21 (0.20) 50.62 (4.38) -
R-NTSK 030 (0.15)  1.27 (0.64)  0.14 (0.09) 47.85 (7.52) -
RF-NTSK 031 (0.14)  1.35(0.68)  0.16 (0.11) 4831 (7.16) -

Table 58 — Statistical MDM test for Binance (horizon = 5)

Model NMR NTSK (RLS) NTSK (wRLS) GEN-NMR GEN-NTSK (RLS) GEN-NTSK (wRLS) R-NMR R-NTSK RF-NTSK
KNN [218] 0.12 0.98 0.00 0.00 0.00 0.00 1.00 0.00 0.00
Regression Tree [219]  0.00 0.93 0.00 0.00 0.00 0.00 0.91 0.00 0.00
Random Forest [112]  0.87 0.99 0.00 0.36 0.00 0.00 1.00 0.00 0.00
SVM [220] 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS-SVM [221] 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GBM [116] 0.28 0.99 0.00 0.02 0.00 0.00 1.00 0.00 0.00
XGBoost [117] 0.03 0.98 0.00 0.00 0.00 0.00 1.00 0.00 0.00
LGBM [118] 0.17 0.98 0.00 0.02 0.00 0.00 1.00 0.00 0.00
MLP [222] 1.00 1.00 0.98 1.00 1.00 0.99 1.00 0.96 1.00
CNN [223] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RNN [224] 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LSTM [225] 0.97 0.99 0.00 0.70 0.00 0.00 1.00 0.00 0.00
GRU [226] 0.95 0.99 0.00 0.60 0.00 0.00 1.00 0.00 0.00
WaveNet [227] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
eTS [68] 1.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
Simpl_eTS [69] 1.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
exTS [70] 0.44 0.98 0.00 0.26 0.00 0.00 1.00 0.00 0.00
ePL [72] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eMG [74] 0.15 0.98 0.00 0.01 0.00 0.00 1.00 0.00 0.00
ePL+ [73] 0.01 0.94 0.00 0.00 0.00 0.00 0.96 0.00 0.00

ePL-KRLS-DISCO [75]  0.00 0.00

0.00 0.00

0.00

0.00

0.00 0.00 0.00
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6.2 RULES, ERRORS, AND INTERPRETABILITY

When evaluating the impact of the number of rules on model performance, it is
observed that for RLS-based models, the number of rules does not influence the error metric,
as each rule shares identical consequent parameters. Since A is the sole hyperparameter
influencing the consequent parameters and remains constant across all rules, the results
are invariant to changes in R,... Consequently, only A requires tuning to minimize error,

while R,.x can be adjusted to optimize interpretability.

In contrast, for models based on NMR and NTSK (wRLS), Ry directly affects
predictive performance. Therefore, R,,., must be tuned to achieve the desired balance
within the accuracy-interpretability trade-off. Figure 29 illustrates the NDEI as a function
of Rpyax for the NMR model. For the NASDAQ dataset, the NDEI appears to reach
its minimum at approximately five rules, beyond which it begins to increase. For the
remaining datasets, the minimum is achieved with approximately three rules, after which
it stabilizes. Furthermore, the standard deviation tends to increase alongside the number
of rules. The results suggest that NMR-based models achieve lower errors within the range

Ruax € [3,5]. For higher values, the increased complexity yields no performance benefit.
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Figure 29 — NDEI as a function of R, for NMR

Figure 30 illustrates how the NDEI varies with the number of rules for the NTSK
(wRLS) model when applied to the datasets. The plots indicate that there is no clear,
consistent pattern for the errors as a function of R,,... For example, for the S&P 500, the
NDEI remains approximately constant regarding R,,.. Conversely, for the Alice datasets
(Figure 30b), the errors remain stable for up to 15 rules, while for the Yulara datasets

(Figure 30c), the error converges after approximately three rules.
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Table 59 presents the rule base generated by the NMR model when configured with
four rules. The values denote the normalized mean and standard deviation of the fuzzy
sets. However, as this numerical representation is not intuitively interpreted, linguistic
variables are employed to provide a qualitative description, as shown in Table 60. For
example, the first rule can be interpreted as follows: IF the Open, High, Low, and Close
prices are all “Very Low”, THEN the Close price one step ahead will also be “Very Low”

Table 59 — NMR rule base for the S&P 500 dataset (Rpax = 4)

Rule Open High Low Close Next Close
1 0.16 (0.08) 0.17 (0.07) 0.18 (0.09) 0.18 (0.08) | 2687.28 (197.81)
2 10.38(0.07) 0.39 (0.06) 0.40 (0.07) 0.40 (0.06) | 3251.66 (159.87)
3 ]0.61(0.07) 0.61(0.07) 0.62 (0.07) 0.62 (0.07) | 3823.05 (165.25)
4 10.85(0.07) 0.85(0.07) 0.85(0.07) 0.86 (0.07) | 4430.70 (177.85)

Table 60 — Linguistic interpretation of the NMR rule base for the S&P 500

Rule Open High Low Close Next Close
1 Very Low  Very Low Very Low Very Low | Very Low
2 Low Low Medium Medium Low
3 High High High High High
4 | Very High Very High Very High Very High | Very High

The same interpretability principle applies to the NTSK-based models, as presented
in Table 61. The Open, High, Low, and Close columns display the mean and standard
deviation of the antecedent fuzzy sets. These numerical values can be replaced by
linguistic variables. The Nezt Close column indicates the expected variation of the closing
price for each rule. This feature constitutes the primary advantage of the NTSK model
regarding interpretability. Unlike models that utilize abstract polynomial parameters in
the consequent, NTSK provides the expected variation of the target value directly. For
instance, considering Table 61, if a new sample is most compatible with the first rule,
the Next Close value is expected to range between —324.89 and —186.07. Therefore, if
the current value is 25,000, the next value is predicted to fall between 24,675.11 and
24,813.93.
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Table 61 — NTSK (wRLS) rule base for the S&P 500 dataset (Rpax = 4)

Rule Open High Low Close Next Close
1 ]0.41(0.34) 0.41(0.34) 0.40 (0.35) 0.41 (0.35) | [-324.89, -186.07]
2 10.50 (0.28) 0.50 (0.27) 0.50 (0.27) 0.50 (0.27) | [-186.07, -47.26]
3 10.60 (0.23) 0.60 (0.23) 0.61 (0.22) 0.61 (0.23) | [-47.26, 91.56]
4 10.25(0.27) 0.27 (0.26) 0.25 (0.26) 0.27 (0.26) | [91.56, 230.38]

Furthermore, the proposed genetic-based models enhance interpretability through
attribute selection. For instance, the solar energy datasets contain numerous attributes,
which can complicate the visual representation of the rules. The proposed approaches sim-
plify this by selecting key attributes, thereby facilitating human comprehension. Table 62
displays the rule base generated by GEN-NMR, while Table 63 provides the corresponding
linguistic interpretation. Notably, the model selected only two attributes out of twelve.
Additionally, Figure 64 presents the four rules generated by GEN-NTSK (wRLS), where

the model selected six attributes out of twelve.

Table 62 — GEN-NMR rule base for the Alice 1A dataset (Rpax = 4)

Rule | Wind Direction [°] Energy [kWh| | Next Power [kW]
1 98.32 (16.20)  39.73 (16.45) 0.70 (0.42)
2 20.09 (16.09)  41.44 (14.90) 1.45 (0.25)
3 30.00 (15.04)  54.13 (39.23) 2.27 (0.23)
4 35.15 (15.86)  66.19 (25.16) 2.87 (0.15)

Table 63 — Linguistic interpretation of the GEN-NMR rule base for Alice 1A

Rule | Wind Direction  Energy | Next Power
1 Very Low Very Low | Very Low
2 Low Low Low
3 High High High
4 Very High Very High | Very High

As previously stated, the model selected six attributes from the twelve available. A
key observation is that the model did not simply select the six most correlated attributes.
Indeed, while the three most correlated attributes (current, power, and global radiation)
were selected, the genetic algorithm also chose rainfall, an attribute with near-zero
correlation, and diffuse radiation, a negatively correlated attribute. This suggests an
important advantage: genetic-based approaches can uncover underlying relationships
between the target value and the attributes that may not be readily apparent from simple

correlation analysis.
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Table 64 — Rules of GEN-NTSK (wRLS) for Alice 1A with four rules

Rule | Diffuse Radiation [W/m?] Rainfall [mm] Wind Direction [°] Current [A] Power [kW] Global Radiation [W/m?] | Next Power [kW]
1 57.67 (27.35) 0.07 (0.20) 2422 (18.12) 504 (0.85) 2.48 (0.49) 301.66 (69.41) [-2.56, -1.37]
2 61.40 (37.21) 0.56 (2.41) 3120 (15.20) 448 (1.07) 218 (0.64) 264.34 (88.11) [-1.37, -0.18]
3 54.35 (35.91) 0.46 (2.45) 31.33 (15.58)  4.54 (1.11)  2.24 (0.57) 270.44 (78.31) [-0.18, 1.01]
4 79.98 (34.00) 0.96 (3.43) 27.92 (15.82)  3.82(1.33)  1.79 (0.76) 218.76 (95.23) [1.01, 2.20]

6.3 COMPUTATIONAL PERFORMANCE

Faster computational speed and practical usability increase the applicability and
acceptability of models in real-world applications [228]. In this context, Figure 31 illustrates
how runtime varies with the number of rules for NMR and NTSK. The plots indicate
that runtime increases linearly with the number of rules for all models; however, the
fastest model is NTSK (RLS). This occurs because, in this model, the parameters of the
consequent component are identical for all rules. Consequently, regardless of the number
of rules, the RLS-based model has only one set of consequent parameters to update.
Conversely, NMR is slower than NTSK (RLS) because it must compute the fuzzy sets of
the consequent component for each rule, yet it remains faster than NTSK (wRLS), which

recursively updates the parameters of a polynomial function for every rule.

Further analysis of the plots reveals that the PV datasets require more processing
time due to the higher dimensionality of their input vectors. Table 65 details the runtime
increase per additional rule across all datasets. The computational cost of adding a new
rule in NTSK (RLS) is, on average, approximately 12 times lower than that of NMR and
32 times lower than that of NTSK (wRLS).

Table 65 — Runtime increase per additional rule (in seconds)

Dataset NMR NTSK (RLS) NTSK (wRLS)
Alice 1A 0.0038 0.0003 0.0112
Alice 38 0.0037 0.0004 0.0137
Yulara 1 0.0040 0.0003 0.0146
Yulara 5 0.0040 0.0004 0.0110
S&P 500 (horizon = 1) 0.0030 0.0004 0.0069
NASDAQ (horizon = 1) 0.0028 0.0003 0.0071
TAIEX (horizon = 1) 0.0029 0.0003 0.0068
BITCOIN (horizon = 1) 0.0043 0.0003 0.0086
ETHEREUM (horizon = 1)  0.0040 0.0003 0.0092
BINANCE (horizon = 1) 0.0031 0.0004 0.0063
Mean 0.0036 0.0003 0.0095




—4— Alice 1A
,-\0'14 —4— Alice 38
B —4+— Yulara 1
Y0.12{ —+ Yularas
H —4— &P 500 (horizon 1)
c —— NASDAQ (horizon 1)
8 0.10 —4— TAEIX (horizon 1)
£ —4— Bitcoin (horizon 1)
: 0.08 —4— Ethereum (horizon 1)
% —+— Binance (horizon 1)
C
S0.06
(]
L
o 0.04
£
€ 0.02
35
o
0.00
0 5 10 15 20 25 30
Number of Rules
(a) NMR
—4— Alice 1A
— 0.040 —4— Alice 38
g —¢— Yulara 1
—4— Yulara 5
+0.0357 4 5cp 500 (horizon 1) ~
= —4— NASDAQ (horizon 1) Qz =4
[} 0.030 —4— TAEIX (horizon 1) />‘M%Ez 5? 27‘*"<7
é . —4— Bitcoin (horizon 1) b 4 ZQF/‘:L\‘ ’
T 0 o0ns| === b g
€0.025 ' AEBNEBEESZs
IS) e = S S g R A o
9 A g
£0.020 PupSant
()
£
£0.015
=]
o
0.010
0 5 10 15 20 25 30
Number of Rules
(b) NTSK (RLS)
—4— Alice 1A
— —4— Alice 38
B 0.5 —4— Yulara 1
«n —4— Yulara 5 ]
H —4— S&P 500 (horizon 1)
S 0.4{ —— NASDAQ (horizon 1)
() —4— TAEIX (horizon 1)
1S —4— Bitcoin (horizon 1)
:0 3 —4— Ethereum (horizon 1)
% *~ | —4— Binance (horizon 1)
g
o
ﬁ 0.2
()
£
£0.1
3
a4
0.0
0 5 10 15 20 25 30

Number of Rules

(¢) NTSK (wRLS)

Figure 31 — Runtime as a function of R.y

105



106

Alice 1A

Alice 38

Yulara 1

Yulara 5

S&P 500 (horizon 1)
NASDAQ (horizon 1)
TAEIX (horizon 1)
Bitcoin (horizon 1)
Ethereum (horizon 1)
Binance (horizon 1)

-~
%]

0.008

FrEtttEtt

0.004

o
o
S
N

Runtime [seconds] (mean +

—4— Alice 1A

—4— Alice 38
20.04] + vulara1
H —4— Yulara 5

—4— S&P 500 (horizon 1) | =z
P —4— NASDAQ (horizon 1) %
@ 0.03{ —4— TAEIX (horizon 1)
g —4— Bitcoin (horizon 1)
—_— Ethereum (horizon 1)
) ) )

—4— Binance (horizon 1)
20.02
o
[v]
(]
R
0 0.01
£
)
c
3
& 0.00

2 4 6 8 10
Window
0.05 —4— Alice 1A

—_ —4— Alice 38
B —4— Yulara 1
Y0.04{ —+ vularas
H —4— S&P 500 (horizon 1)
5 —— NASDAQ (horizon 1)
[J] —4— TAEIX (horizon 1)
g 0.03 —4— Bitcoin (horizon 1)
—_ Ethereum (horizon 1)
% —4— Binance (horizon 1)
50.02
V]
(]
L
(]
goot
)
c
=}
©0.00

Window

(¢) NTSK (wRLS)

Figure 32 — Runtime as a function of window size with fixed Rayx



107

Conversely, Figure 32 suggests a linear variation in the models’ runtime as a
function of window size (i.e., partitions of the total dataset), where Window 1 represents
10% of the total samples, Window 2 represents 20%, and so forth. Although the results
suggest that the runtime of NMR, NTSK (RLS), and NTSK (wRLS) varies linearly with
both the number of rules and the number of samples, further formal investigation is

required to validate the computational complexity of the proposed models.

6.4 MONTE CARLO SIMULATION FOR STABILITY ANALYSIS

To evaluate the robustness and stability of the proposed models, a Monte Carlo
simulation was conducted. The results are summarized in Table 66, which details the
mean and standard deviation of the NRMSE, NDEI, and MAPE error metrics for each
model across the four PV energy datasets. The standard deviation serves as a direct
indicator of model stability, where a lower value signifies greater robustness. The primary
observation from this analysis is the superior stability of R-NMR and R-NTSK compared
to the GA-based models. The R-NTSK model, in particular, demonstrates exceptional
stability, frequently achieving a standard deviation of 0.00 (e.g., on Alice 1A, Alice 38,
and Yulara 5). This indicates that its performance is highly consistent across different
simulation runs. The R-NMR model also performs well, with low standard deviations,
such as an NRMSE of 0.22 4+ 0.01 on Alice 1A. Conversely, the GA-based models exhibit
significant performance variance. The most unstable results were observed for GEN-NTSK
(RLS) on the Yulara 1 dataset and GEN-NMR on the Yulara 5 dataset. This variability

suggests that these models are highly sensitive to their initialization or data partitions.



Table 66 — Monte Carlo simulation for stability analysis

Model NRMSE NDEI MAPE
Alice 1A
GEN-NMR 0.24 £ 0.02 1.05 £0.09 0.41 & 0.05
GEN-NTSK (RLS) 0.22 £ 0.01 0.98 £ 0.04 0.37 £ 0.02
GEN-NTSK (wRLS) 0.22 +0.01 0.96 + 0.04 0.36 + 0.01
R-NMR 0.22 £0.01 1.00£ 0.03 0.39 &£ 0.01
R-NTSK 0.21 &= 0.00 0.92 £ 0.00 0.36 £ 0.00
Alice 38
GEN-NMR 0.22 & 0.02 0.99 £ 0.09 0.35 £ 0.04
GEN-NTSK (RLS) 0.23 +0.02 1.01 +0.10 0.35 + 0.05
GEN-NTSK (wRLS) 0.21 +£0.01 0.94 + 0.04 0.33 + 0.01
R-NMR 0.21 &£ 0.00 0.95 £ 0.01 0.35 £ 0.01
R-NTSK 0.21 &= 0.00 0.92 £ 0.00 0.33 £ 0.00
Yulara 1
GEN-NMR 0.17 £ 0.03 0.83 £0.16 0.24 £ 0.08
GEN-NTSK (RLS) 0.38 £0.20 1.83+0.96 0.62 + 0.35
GEN-NTSK (wRLS) 0.23 +£0.03 1.13 +£0.12 0.43 £+ 0.06
R-NMR 0.26 £ 0.01 1.24 £0.06 0.30 &= 0.02
R-NTSK 0.15 £ 0.01 0.73£0.04 0.26 &= 0.02
Yulara 5
GEN-NMR 0.24 +£0.12 1.12+0.54 0.26 £ 0.14
GEN-NTSK (RLS) 0.25+0.07 1.15+ 0.34 0.29 + 0.08
GEN-NTSK (wRLS) 0.13 +£0.04 0.61 +0.20 0.15 £+ 0.05
R-NMR 0.19 £ 0.01 0.88 £0.03 0.22 4+ 0.02
R-NTSK 0.12 £ 0.00 0.57 £0.02 0.15 & 0.01
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6.5 DISCUSSION

Regarding the proposed models, RF-NTSK demonstrated lower errors for the
Mackey-Glass and nonlinear datasets, indicating its suitability for handling both short-
and long-term time series. Conversely, for the Lorenz Attractor dataset, all models, except
those based on NMR, achieved lower errors. Notably, for the benchmark datasets with
a moderate level of noise, the best-performing proposed model performed worse than
the best models from other classes. This suggests that the proposed models may not
be suitable for handling noisy datasets in isolation. However, for the renewable energy
datasets, the NTSK model, when combined with the feature selection approach, achieved
superior performance compared to the other proposed models. This suggests that feature
selection is effective in addressing the challenges posed by noisy datasets. Finally, for
the financial and cryptocurrency datasets, NTSK consistently produced the lowest errors

across all simulations.

For the eFSs, the ePL-KRLS-DISCO model achieved the lowest errors for the
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Mackey-Glass and nonlinear datasets, indicating its effectiveness in handling datasets
with reduced uncertainty. However, for real-world datasets, the TS and exTS models
outperformed the other eF'S models. Notably, Simpl eTS generated the highest number
of rules in many simulations. Regarding DL models, CNN exhibited superior performance
for the renewable energy datasets, achieving the lowest errors. However, DL models
demonstrated high error variability for the financial and cryptocurrency datasets, indicating
instability. Finally, among the classical models, LS-SVM achieved the lowest errors for
the renewable energy datasets. Interestingly, in some simulations, KNN also achieved the

lowest errors among the classical models, despite its simplicity.

It is noteworthy that none of the models were able to increase the CPPM significantly
above 50%, indicating that the models correctly predicted the trend only slightly more
than 50% of the time. Values close to 50% suggest that trend predictions are nearly
random, akin to making decisions by tossing a coin. Therefore, developing techniques to

enhance the predictability of trends is essential to support decision-making in trading.

Another important factor examined in this work is the number of rules in the fuzzy
systems. The graphs comparing R,., and error for NMR suggest that the lowest errors
are achieved at about three to five rules. On the other hand, for NTSK (RLS) and NTSK
(wRLS), the results indicate that there is no clear correlation between Ry,.x and the errors,
implying that the choice of Ry, is primarily heuristic. Regarding computational cost,
the graphs reveal that runtime scales linearly with R, for NMR and NTSK (wRLS),
whereas for NTSK (RLS), runtime remains largely unaffected by Rp.x. Furthermore, for
all three models, runtime varies linearly with the number of input samples. Consequently,
a key objective is to determine the number of rules that optimally balances interpretability,
runtime, and error minimization. The runtime was not analyzed for approaches involving

feature selection, as it varies depending on multiple factors.

Furthermore, there is no single theoretical formula for determining the number of
rules. The process is largely empirical and heuristic, guided by a fundamental trade-off.
Too few rules may create an overly simplistic model that cannot capture the complex
dynamics of the system. Conversely, too many rules can lead to overfitting and create
a black box that is as difficult to interpret as a complex neural network, defeating the

purpose of using an interpretable model.

A particularly noteworthy finding is the strong performance of the RLS-based
models, which were often highly effective with just a single fuzzy rule. Since the RLS filter
estimates a single, global parameter vector for the consequent, a one-rule configuration
effectively collapses the fuzzy model into a global linear model. The excellent results from
this single-rule model suggest that for these specific datasets, a well-tuned linear model
provides a very strong baseline and is sufficient to capture a significant portion of the

underlying system dynamics.
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However, the true value of the fuzzy models is demonstrated by the wRLS-based
approaches. These models, which use distinct local parameters for each fuzzy rule,
consistently outperformed their RLS counterparts. This indicates that while a global linear
model is effective, the fuzzy partitioning of the input space allows the wRLS models to
capture additional nonlinearities and local behaviors that the global model misses, leading
to statistically significant improvements in accuracy. Therefore, the framework not only
produces a high-performing model but also provides insight into the degree of nonlinearity

present in the data.

Beyond predictive accuracy, the proposed models offers critical advantages in
interpretability and transparency. The ability for a user to directly specify the number of
rules provides explicit control over the accuracy-interpretability trade-off. This benefit is
amplified by the GA-based feature selection, as exemplified by the GEN-NTSK (wRLS)
model applied to the Alice 1A dataset. The GA selected an optimal subset of 6 out of the

original 12 attributes, which delivered two simultaneous benefits:

o Improved Interpretability: The resulting rule base is far simpler and easier to
analyze, as seen in Table 64. The antecedent of each rule is defined by only six
features instead of twelve, focusing the analysis on the most influential variables.
For greater transparency, the numerical fuzzy sets in the table could be translated

bR A4

into intuitive linguistic terms (e.g., “low”, “medium”, “high”).

o Improved Accuracy: The model’s performance was enhanced by focusing only on
the most relevant features. This demonstrates the GA’s capacity to uncover complex
correlations and filter out noisy or redundant attributes, leading to a more robust

and effective model.

In summary, the simplicity of the rule induction mechanism, combined with the
optimization from feature selection and the robustness added by ensembling, results in a

framework that is both powerful and practical for real-world applications.

While the proposed models demonstrated strong performance, some limitations

were observed:

o The equally spaced regions for the consequent component are uniform for all rules,

disregarding data density.

o It is assumed that the relationship between the input vector and the target value
is one-to-one. Consequently, in cases where it is many-to-one or one-to-many, the

models may perform worse.
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o The GA-based approaches search for a subset of features that improves predictive
performance; however, this can lead to overfitting (i.e., a feature subset that performs

well on a specific range but does not generalize well).

o The ensemble fuzzy approaches suffer from reduced interpretability.

6.6 SUMMARY

This chapter presented a detailed account of the simulations, reporting the obtained
error metrics and the number of generated rules. Subsequently, key aspects of the proposed
models, such as their rule bases, interpretability, and computational performance, were
examined. Finally, a critical discussion of the results was provided. The next chapter

presents the conclusions of this work.
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7 CONCLUSIONS

This work introduces a new framework of fuzzy inference systems (NFISiS) for
time series forecasting, comprising a series of new data-driven fuzzy models. NFISiS
includes a novel data-driven approach to design Mamdani and TSK fuzzy rules with
direct control over the number of rules, termed the New Mamdani Regressor (NMR) and
New Takagi-Sugeno-Kang (NTSK). The novel mechanism for designing Mamdani and
TSK rules offers reduced complexity, higher autonomy, improved accuracy, and fewer
hyperparameters. In general, the NTSK model outperformed the NMR model regarding

error metrics.

Furthermore, two adaptive filter approaches for defining the consequent parameters
of NTSK were evaluated: RLS and wRLS. The RLS approach estimates a single, global
parameter vector for the consequent, which effectively collapses the fuzzy model into a
global linear model, thereby rendering RLS faster than wRLS. While the results suggest
that for specific datasets, a well-tuned RLS provides a very strong baseline and is sufficient
to capture a significant portion of the underlying system dynamics, the true value of
the NTSK is demonstrated by the wRLS-based approaches. These are able to capture
additional nonlinearities and local behaviors that the global model misses, leading to

statistically significant improvements in accuracy.

Additionally, two feature selection methods were implemented in the proposed
fuzzy models, GA and ensemble, aiming to enhance the models’ ability to handle large
datasets, optimize performance, increase interpretability, and avoid overfitting. In general,
the implementation of the GA increased interpretability and reduced both errors and
complexity by selecting only the most relevant set of features for a specific dataset. On

the other hand, the fuzzy ensemble avoids the risk of overfitting.

The models were applied to several time series, including benchmark, solar energy,
financial, and cryptocurrency datasets. Their performance was evaluated in terms of
error metrics and the number of rules, with further analysis conducted on rule bases,
interpretability, and computational performance. Regarding computational performance,
the plots reveal that runtime scales linearly with Ry, for NMR and NTSK (wRLS),
whereas the runtime of NTSK (RLS) is largely unaffected by Ryax. Furthermore, for all
three models, runtime varies linearly with the number of input samples. Additionally, the
graphs comparing R,., and error for the NMR model suggest that the lowest errors are
achieved with approximately three to five rules. In contrast, for NTSK (RLS) and NTSK
(wRLS), the results indicate that there is no clear correlation between Ry, and the errors,
implying that the choice of Ry.x is primarily heuristic. Another aspect evaluated concerns
the stability of the stochastic models; the results indicate that the fuzzy ensembles are
more stable than the GA-based models.
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The benchmark simulations indicate that NTSK-based models perform better when
predicting complex datasets over short time horizons; however, their performance dimi-
nishes over long time horizons. Furthermore, results from the financial and cryptocurrency
datasets demonstrate the models’ suitability for non-stationary data. Conversely, although
NMR-based models typically do not perform as well as NTSK on non-stationary datasets,
they achieved better results on the energy datasets, supporting their suitability for data
populated by outliers. The implementation of GA for feature selection proved effective
for improving model performance and interpretability by producing results with fewer
attributes. One of the main advantages of NTSK compared to the conventional TSK is its
increased interpretability, as the polynomial functions of the consequent can be replaced
by the expected variation of the target value within the rule-based structure. On the
other hand, the fuzzy ensembles achieved the lowest errors in many of the simulations,

suggesting the models perform well in a broader range of datasets.

While classical models obtained good results in straightforward simulations, their
performance decreased significantly in more complex scenarios. Regarding DL models,
they performed well across all benchmark series; however, their varied results on real-world
datasets limited a conclusive analysis. As for eFSs, they generally performed similarly to
the proposed models. However, eF'Ss present several drawbacks, such as a larger number
of hyperparameters, limited interpretability, a lack of control over the number of rules,
and greater complexity. Since the proposed models overcome these shortcomings, they are

preferable to eF'Ss.

While the proposed models demonstrated strong performance, it is important
to acknowledge their limitations. First, the equally spaced regions for the consequent
component are uniform for all rules, disregarding the underlying data density. Second, the
models assume a one-to-one relationship between the input vector and the target value,
which may reduce efficacy on problems with more complex many-to-one mappings. Third,
the GA-based feature selection approaches, while powerful, can be prone to overfitting,
potentially finding a feature subset that does not generalize well. Finally, the ensemble
fuzzy approaches, although highly accurate, achieve this performance at the expense of

the core interpretability for which fuzzy systems are known.

These limitations give rise to several promising avenues for future research. To
address architectural constraints, one direction involves exploring Type-2 fuzzy systems
to better manage uncertainty and alternative membership functions to capture complex
relationships. This also includes integrating advanced algorithms such as Kernel Recursive
Least Squares (KRLS) for more robust parameter estimation and investigating non-uniform
consequent partitions that respect data density. Another avenue concerns the learning
paradigm. Future work could focus on developing online learning mechanisms to adapt to
data streams and creating methods for the automatic optimization of fuzzy set parameters.

To combat overfitting and the loss of interpretability, research is needed on regularization
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techniques for GA-based selection and methods for rule-base merging or pruning in
ensembles. Finally, the scope of evaluation could be broadened. A formal computational
complexity analysis is warranted, and testing the frameworks on a more diverse range of
high-dimensionality datasets is essential for validating their scalability and generalization

capabilities.
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APPENDIX A - LIST OF PUBLICATIONS

This appendix presents the list of publications resulting from the Ph.D. program.

The list of papers published in journals is as follows:

K. S. T. R. Alves, R. Ballini, E. P. de Aguiar, Financial Series Forecasting: A
New Fuzzy Inference System for Crisp Values and Interval-Valued Predictions, Com-
putational Economics. Doi: https://doi.org/10.1007/s10614-024-10670-w

K. S. T. R. Alves, C. D. de Jesus, E. P. de Aguiar, A New Takagi-Sugeno-Kang
Model for Time Series Forecasting, Engineering Applications of Artificial Intelligence
133 (2024) 108155. Doi: https://doi.org/10.1016/j.engappai.2024.108155.

The list of conference papers published is as follows:

K. S. T. R. Alves, R. Ballini, E. P. de Aguiar, A New Fuzzy Inference System
Applied to Time Series Forecasting, in Anais do XVI Congresso Brasileiro de
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APPENDIX B - LIST OF PYTHON LIBRARIES

This appendix lists the open-source Python libraries developed and published
during the Ph.D. program.

« evolvingfuzzysystems: https://pypi.org/project/evolvingfuzzysystems/
« expandingnet: https://pypi.org/project/expandingnet/

e handsonmachinelearn: https://pypi.org/project/handsonmachinelearn/
o krls: https://pypi.org/project/krls/

o nfisis: https://pypi.org/project/nfisis/


https://pypi.org/project/evolvingfuzzysystems/
https://pypi.org/project/expandingnet/
https://pypi.org/project/handsonmachinelearn/
https://pypi.org/project/krls/
https://pypi.org/project/nfisis/
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APPENDIX C - HOW TO IMPLEMENT THE PROPOSED MODELS

The models proposed in this work can be obtained via pip by typing: pip install
nfisis. After installing the package, the models can be imported using the following

commands:

« New Mamdani Classifier: from nfisis.fuzzy import NewMamdaniClassifier
as NMC

« New Mamdani Regressor: from nfisis.fuzzy import NewMamdaniRegressor
as NMR

o« New Takagi-Sugeno-Kang: from nfisis.fuzzy import NTSK
« GEN-NMR: from nfisis.genetic import GEN_NMR

« GEN-NTSK: from nfisis.genetic import GEN_NTSK

« R-NMR: from nfisis.ensemble import R_NMR

e R-NTSK: from nfisis.ensemble import R_NTSK

Once the libraries have been imported, the methods fit and predict can be used,

as exemplified in Algorithm 7.

Algorithm 7: Training and testing NTSK
1 from nfisis.fuzzy import NTSK
2 model = NTSK()
3 model .fit(X_ train, y_ train)
4 y_pred = model.predict(y_ test)

Fornfisis.fuzzy and nfisis.genetic, the user can invoke the methods model.show_rules(
to display the generated rules and model.plot_hist () to plot the histogram of the fuzzy

sets.

Finally, the list of hyperparameters for each model is detailed below:

e New Mamdani Classifier:

non non non

- fuzzy_ operator: {"prod", "max", "min", "minmax", "equal"}, default="minmax"
Mathematical function used in fuzzy logic to manipulate fuzzy sets and perform

operations like intersection, union, and complement.

- ponder: bool, default=True If True, the number of samples in a rule is used to

weight its firing strength.
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New Mamdani Regressor:

rules: int, default=5 The number of rules that the model will create.

non non non

fuzzy_operator: {"prod", "max", "min", "minmax", "equal"}, default="prod"
Mathematical function used in fuzzy logic to manipulate fuzzy sets and perform

operations like intersection, union, and complement.

ponder: bool, default=True If True, the number of samples in a rule is used to

weight its firing strength.

NTSK:
rules: int, default=5 The number of rules that the model will create.

lambdal: float in the range [0,1], default=1 The forgetting factor for the
adaptive filter (adaptive_filter). Only valid for adaptive_filter = "RLS".

adaptive__filter: {"RLS", "wRLS"}, default="RLS" Used to estimate the

consequent parameters.

non non non

fuzzy_operator: {"prod", "max", "min", "minmax", "equal"}, default="prod"
Used in fuzzy logic to manipulate fuzzy sets and perform operations like intersection,

union, and complement.

ponder: bool, default=True If True, the number of samples in a rule is used to

weight its firing strength.

omega: int, default=1000 Used to initialize the covariance matrix of the adaptive

filtering approaches.

GEN-NMR:

rules: int, default=5 The number of rules that the model will create.

non non non

fuzzy__operator: {"prod", "max", "min", "minmax", "equal"}, default="prod"
Used in fuzzy logic to manipulate fuzzy sets and perform operations like intersection,

union, and complement.

ponder: bool, default=True If True, the number of samples in a rule is used to

weight its firing strength.

num__generations: int, default=10. The total number of iterations the algorithm

rumns.
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- num__parents__mating: int, default=>5 Specifies how many individuals (solu-
tions) from the current population are selected to produce offspring for the next

generation.

- sol__per_ population: int, default=10 Refers to the total number of solutions

(individuals) in a population at any given time.

- error__metric: {"RMSE", "NRMSE", "NDEI", "MAE", "MAPE", "CPPM"},
default="RMSE". Defines which error metric will be implemented to evaluate the

best solutions.

- print__information: bool, default=False Determines whether information about

the training phase will be printed.

- parallel_ processing: int or None, default=None Enables parallel processing
via PyGAD!.

« GEN-NTSK:
- rules: int, default=>5 The number of rules that the model will create.

- lambdal: float in the range [0,1], default=1 Forgetting factor for the adaptive
filter. Only valid for adaptive filter = "RLS".

- adaptive__filter: {"RLS", "wRLS"}, default="wRLS" Used to estimate the

consequent parameters.

n n n n n "

- fuzzy_ operator: {"prod", "max", "min", "minmax", "equal"}, default="prod"
Used in fuzzy logic to manipulate fuzzy sets and perform operations like intersection,

union, and complement.

- ponder: bool, default=True If True, the number of samples in a rule is used to

weight its firing strength.

- omega: int, default=1000 Used to initialize the covariance matrix of the adaptive

filtering approaches.

- num__generations: int, default=10. The total number of iterations the algorithm

runs.

- num__parents_ mating: int, default=>5 Specifies how many individuals from the

current population are selected to produce offspring.

If None (Default), no parallel processing is applied. It accepts a list/tuple of 2 ele-
ments: 1) 'process’ or 'thread’, 2) The number of processes/threads. For example, paral-
lel _processing=['process’, 10] applies 10 processes. If a positive integer is assigned, it is used as
the number of threads. Source: https://pygad.readthedocs.io/en/latest/pygad.html


https://pygad.readthedocs.io/en/latest/pygad.html
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sol__per_ population: int, default=10 The total number of solutions in a

population at any given time.

error__metric: {"RMSE", "NRMSE", "NDEI", "MAE", "MAPE", "CPPM"},
default="RMSE". Defines which error metric will be implemented to evaluate the

best solutions.

print__information: bool, default=False Determines whether information about

the training phase will be printed.

parallel__processing: int or None, default=None Enables parallel processing
via PyGAD.

R-NMR:

n__estimators: int, default=100 The number of fuzzy models that will be created.

n__trials: int, default=5 The number of fuzzy models that will be created with

different hyperparameters per iteration.

combination: {"mean", "median", "weighted__average"}, default="mean"

Used to combine the output of each individual estimator.

error__metric: {"RMSE", "NRMSE", "NDEI", "MAE", "MAPE", "CPPM"},
default="RMSE". Defines which error metric will be implemented to evaluate the

best solutions.

print__information: bool, default=False Determines whether information about

the training phase will be printed.

parallel_ processing: int, default=0 Implements multiprocessing to execute n

worker processes in parallel using CPU cores. If n = 0, the code runs sequentially. If

n = —1, it uses all available cores. If used, the main code must be isolated using if
__name__ ==’ main_ ’:.
R-NTSK:

n__estimators: int, default=100 The number of fuzzy models that will be created.

n_ trials: int, default=5 The number of fuzzy models that will be created with

different hyperparameters per iteration.

combination: {"mean", "median", "weighted__average"}, default="mean"

Used to combine the output of each individual estimator.
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- error__metric: {"RMSE", "NRMSE", "NDEI", "MAE", "MAPE", "CPPM"},
default="RMSE". Defines which error metric will be implemented to evaluate the

best solutions.

- print__information: bool, default=False Determines whether information about

the training phase will be printed.

- parallel_ processing: int, default=0 Implements multiprocessing to execute n
worker processes in parallel using CPU cores. If n = 0, the code runs sequentially. If
n = —1, it uses all available cores. If used, the main code must be isolated using if

__name__ ==’ main_ ’:.
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APPENDIX D - HYPERPARAMETER SEARCH SPACES

Table 67 — Hyperparameter search spaces for model tuning

Model hyperparameters

KNN [218] n_neighbors: [2, 3, 5, 11]
Regression Tree [219]  max_depth: [2, 4, 8, 12, 16, 20], max_ features: [2, 4, 6, 8, 10]
Random Forest [112]  max_depth: [2, 4, 8, 12, 16, 20], max_ features: [2, 4, 6, 8, 10], n_ estimators: [50, 100, 150, 200]

SVM [220] C: [0.01,0.1,1,10], gamma: [0.01,0.5,1,10,50], kernel: [linear, rbf, sigmoid]
LS-SVM [221] kernel: [linear]
GBM [116] learning_rate: [0.01, 0.05, 0.1], max_ depth: [2, 4, 8, 12, 16, 20], max_ features: (2, 4, 6, 8, 10], n_ estimators:
[50, 100, 150, 200]
XGBoost [117] eta: [0.3, 0.4, 0.5], eval metric: [rmse], gamma: [0.3, 0.4, 0.5], max_ depth: [2, 4, 8, 12, 16, 20], min_ child_ weight:
[2, 5], n_estimators: [50, 100, 150, 200]
LGBM [118] learning _rate: [0.01, 0.05, 0.1, 0.5], max_depth: [2, 4, 8, 12, 16, 20], max_features: [2, 4, 6, 8, 10], n_ estimators:
[50, 100, 150, 200]
MLP [222] n_hidden: [0,1,2,3], n_neurons: Integer in [1, 99], activation: [elu, exponential, gelu, hard sigmoid, linear, relu,
selu, sigmoid, softplus, softsign, swish, tanh|, learning_rate: Log-uniform dist. in [107%, 0.5]
CNN [223] n_hidden: [0,1,2,3], n_neurons: Integer in [1, 99], learning_rate: Log-uniform dist. in [107°, 0.5]
RNN [224] n_hidden: [1,2,3,4,5], n_neurons: Integer in [1, 99], learning _rate: Log-uniform dist. in [107?, 0.5]
LSTM [225] n_neurons: Integer in [1, 99], n_lstm_hidden: [1,2,3,4,5], neurons_dense: Integer in [1, 99], dropout_rate: [0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], n_ dense_hidden: [0,1,2,3,4], learning_rate: Log-uniform dist. in [107°,
0.5]
GRU [226] filters: [2,4,8,16,32,64], kernel size: [1,2,3,4,5], strides: [1,2,3,4,5], n_neurons: Integer in [1, 99], n_gru hidden:

[1,2,3,4,5], neurons dense: Integer in [1, 99], dropout rate: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
n_dense_hidden: [0,1,2,3,4], learning_rate: Log-uniform dist. in [107°, 0.5]

WaveNet [227] dilation rate: [(1),(1,2),(1,2,4),(1,2,4,8),(1,2,4,8,16),(1,2,4,8,16,32)], repeat: [1,2], learning rate: Log-uniform
dist. in [1077, 0.5]
eTS [68] omega: [50, 100, 250, 500, 1000, 10000], r: 0.1, 0.3, 0.5, 0.7, 5, 10, 50]
Simpl_eTS [69] omega: [50, 250, 500, 750, 1000], r: [0.1, 0.3, 0.5, 0.7]
exTS [70] mu: [0.1, 0.3, 0.5, 0.7], omega: [50, 250, 750, 1000]
ePL [72] alpha: [0.001, 0.01, 0.1, 0.9], beta: [0.001, 0.005, 0.01, 0.1, 0.2], lambdal: [0.001, 0.1], r: [0.1, 0.25, 0.5, 0.75], s:
[100, 10000]
eMG [74] alpha: [0.001, 0.01], lambdal: [0.1, 0.5], omega: [10%], sigma: [0.001, 0.003], w: [10, 50]
ePL+ [73] alpha: [0.001, 0.01, 0.1], beta: [0.01, 0.1, 0.25], e utility: [0.03, 0.05], lambdal: [le-7, 0.001], omega: [100, 10000],

pi: [0.3, 0.3], sigma: [0.5, 1, 10, 50]
¢PL-KRLS-DISCO [75] alpha: [0.05, 0.1], beta: [0.01, 0.1, 0.25], ¢ utility: [0.03, 0.05], lambdal: [le-7,1e-3], sigma: [0.5, 1, 10, 50]

NMR fuzzy operator: [prod,min,max,minmax], rules: Integer in [1, 19]
NTSK (RLS) adaptive filter: [RLS], fuzzy operator: [prod,min,max,minmax], lambdal: [0.95,0.96,0.97,0.98,0.99], rules: [1]
NTSK (wRLS) adaptive filter: [wRLS], fuzzy operator: [prod,min,max,minmax], rules: Integer in [1, 19]
GEN-NMR error_metric: [RMSE,MAE,CPPM], fuzzy operator: [prod,min,max,minmax], num_generations: [10],

num_ parents_mating: [5], parallel processing: [10], rules: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19], sol_per_pop: [10
GEN-NTSK (RLS) error_metric: [RMSE,MAE,CPPM], adaptive filter: [RLS], fuzzy operator: [prod,min,max,minmax
num_ generations: [10], num_ parents mating: [5], parallel processing: [10], lambdal: [0.95,0.96,0.97,0.98,0.99
rules: [1], sol_per_pop: [10]
GEN-NTSK (wRLS)  error_metric: [RMSE,MAE,CPPM], adaptive filter: [wRLS], fuzzy operator: [prod,min,max,minmax],
num_ generations: [10], num_ parents mating: [5], parallel processing: [10], rules: [1, 3, 5, 7, 9, 11, 13,
15, 17, 19], sol_per_pop: [10]
R-NMR combination: [mean,median,weighted average], n_estimators: [50]
R-NTSK combination: [mean,median,weighted average], n_estimators: [50]

)




APPENDIX E - MODELS’ HYPERPARAMETERS

Table 68

— Models’ hyperparameters for Lorenz Attractor time series

Model

hyperparameters

KNN [218]
Regression Tree [219]
Random Forest [112]

SVM [220]

LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

n_neighbors: 2

max_ depth: 20, max_features: 8

max_ depth: 20, max_features: 2, n_estimators: 200

C: 10, gamma: 0.5, kernel: rbf

kernel: linear

learning_ rate: 0.05, max_ depth: 12, max_ features: 2, n_ estimators: 200

eta: 0.3, eval metric: rmse, gamma: 0.3, max_ depth: 12, min_ child weight: 2, n_ estimators: 50
learning_rate: 0.5, max_ depth: 16, max_features: 2, n_ estimators: 200, verbosity: -1

MLP [222]
CNN [223]
RNN [224]
LSTM [225]

GRU [226]

WaveNet [227]

n_hidden: 0, n_neurons: 0, activation: relu, learning_rate: 0.474, input_ shape: [3]

n_hidden: 3, n_neurons: 57, learning rate: 0.005

n_hidden: 1, n_neurons: 53, learning rate: 0.00058

n_neurons: 92, n_lIstm hidden: 2, neurons_dense: 1, dropout_rate: 0, n_dense hidden: 2, learning rate:
0.00043

filters: 4, kernel size: 3, strides: 4, n_neurons: 28, n_gru_hidden: 2, neurons dense: 1, dropout_ rate: 0,
n_dense hidden: 1, learning rate: 0.00061

dilation_rate: (1, 2, 4), repeat: 1, learning rate: 0.00028

eTS [68] omega: 10000, r: 0.1
Simpl_eTS [69] omega: 1000, r: 0.7
exTS [70] mu: 0.3, omega: 1000
ePL [72] alpha: 0.9, beta: 0.01, lambdal: 0.001, r: 0.75, s: 10000
eMG [74] alpha: 0.001, lambdal: 0.1, omega: 10000, sigma: 0.003, w: 10
ePL+ [73] alpha: 0.01, beta: 0.25, e utility: 0.03, lambdal: 0.25, omega: 10000, pi: 0.3, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.1, beta: 0.25, e_utility: 0.05, lambdal: 1e-07, sigma: 10
NMR fuzzy operator: min, rules: 19

NTSK (RLS)
NTSK (wRLS)
GEN-NMR
GEN-NTSK (RLS)
GEN-NTSK (wRLS)

R-NMR
R-NTSK

adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.97, rules: 1

adaptive_filter: wRLS, fuzzy_operator: prod, rules: 1

error_metric: RMSE, fuzzy operator: min, num_ generations: 10, num_ parents_mating: 5, parallel _processing:
10, rules: 19, sol_per pop: 10

adaptive_filter: RLS, error_metric: RMSE, fuzzy operator: prod, lambdal: 0.99, num_ generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol _per pop: 5

adaptive_filter: wRLS, error_metric: RMSE, fuzzy operator: max, num_ generations: 5, num_ parents mating:
5, parallel processing: 10, rules: 19, sol per pop: 5

combination: median, n_ estimators: 50

combination: median, n_estimators: 50
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Table 69 — Models’ hyperparameters for Lorenz Attractor time series with moderate level

of noise

Model

hyperparameters

KNN [218]
Regression Tree [219)
Random Forest [112]

SVM [220]

LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

n_ neighbors: 11

max_ depth: 8 max_features: 8

max_ depth: 12, max_features: 2, n_ estimators: 150

C: 10, gamma: 10, kernel: rbf

kernel: linear

learning rate: 0.05, max_depth: 8 max_features: 2, n_estimators: 100

eta: 0.3, eval metric: rmse, gamma: 0.5, max_depth: 8, min_child weight: 5, n_estimators: 200
learning rate: 0.1, max_depth: 20, max_features: 2, n_estimators: 150, verbosity: -1

MLP [222]
CNN [223]
RNN [224]
LSTM [225]

GRU [226]

WaveNet [227]

n_hidden: 0, n_neurons: 0, activation: relu, learning_rate: 0.474, input_shape: [3]

n_ hidden: 3, n_neurons: 57, learning_rate: 0.005

n_hidden: 1, n_neurons: 53, learning rate: 0.00058

n_neurons: 92, n_lIstm hidden: 2, neurons dense: 1, dropout rate: 0, n_dense hidden: 2, learning rate:
0.00043

filters: 4, kernel size: 3, strides: 4, n_neurons: 28, n_gru_hidden: 2, neurons dense: 1, dropout_rate: 0,
n_dense hidden: 1, learning rate: 0.00061

dilation_rate: (1, 2, 4), repeat: 1, learning_rate: 0.00028

eTS [68] omega: 50, r: 0.1
Simpl eTS [69] omega: 50, r: 0.1
exTS [70] mu: 0.7, omega: 1000
ePL [72] alpha: 0.01, beta: 0.2, lambdal: 0.001, omega: 100, sigma: 0.1
eMG [74] alpha: 0.001, lambdal: 0.5, omega: 10000, sigma: 0.003, w: 10
ePL+ [73] alpha: 0.001, beta: 0.01, e utility: 0.03, lambdal: 0.25, omega: 100, pi: 0.3, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.1, beta: 0.1, e utility: 0.05, lambdal: 0.001, sigma: 1
NMR fuzzy operator: prod, rules: 14
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive filter: wRLS, fuzzy operator: prod, rules: 19
GEN-NMR error_metric: RMSE, fuzzy operator: prod, num_ generations: 10, num_parents mating: 5, paral-

GEN-NTSK (RLS)
GEN-NTSK (wRLS)

R-NMR
R-NTSK

lel processing: 10, rules: 15, sol_per_ pop: 10

adaptive_filter: RLS, error _metric: RMSE, fuzzy operator: prod, lambdal: 0.99, num_ generations: 5,
num_ parents _mating: 5, parallel processing: 10, rules: 1, sol_per_pop: 5

adaptive_filter: wRLS, error_metric: RMSE, fuzzy operator: prod, num_ generations: 5, num_parents_mating:
5, parallel processing: 10, rules: 19, sol_per pop: 5

combination: weighted average, n_ estimators: 50

combination: median, n_estimators: 50

Table 70

— Models’ hyperparameters for Mackey-Glass time series

Model

hyperparameters

KNN [21§]
Regression Tree [219)
Random Forest [112]

SVM [220]

LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

n_ neighbors: 2

max_ depth: 16, max_features: 10

max_ depth: 20, max_ features: 8, n_ estimators: 150

C: 10, gamma: 10, kernel: rbf

kernel: linear

learning_rate: 0.05, max_depth: 12, max_features: 2, n_estimators: 150

eta: 0.5, eval metric: rmse, gamma: 0.3, max_depth: 8, min_child weight: 2, n_estimators: 50
learning_rate: 0.1, max_depth: 20, max_features: 2, n_estimators: 200, verbosity: -1

MLP [222]
CNN [223)]
RNN [224]
LSTM [225]

GRU [226]

WaveNet [227]

n_hidden: 2, n_neurons: 77, activation: relu, learning_rate: 0.145, input_shape: [4]

n_hidden: 3, n_neurons: 97, learning_rate: 0.006

n_hidden: 5, n_neurons: 21, learning_rate: 0.003

n_neurons: 83, n_Istm_hidden: 4, neurons dense: 1, dropout_rate: 0, n_dense hidden: 2, learning_rate:
0.006

filters: 4, kernel size: 2, strides: 2, n_neurons: 76, n_gru_hidden: 4, neurons dense: 0, dropout_rate: 0,
n_dense hidden: 0, learning rate: 0.016

dilation rate: (1, 2, 4), repeat: 2, learning_rate: 0.007

eTS [68] omega: 10000, r: 0.1
Simpl eTS [69] omega: 1000, r: 0.1
exTS [70] mu: 0.1, omega: 1000
ePL [72] alpha: 0.001, beta: 0.2, lambdal: 0.1, r: 0.25, s: 10000
eMG [74] alpha: 0.001, lambdal: 0.5, omega: 10000, sigma: 0.001, w: 10
ePL+ [73] alpha: 0.001, beta: 0.1, e_utility: 0.05, lambdal: 0.75, omega: 100, pi: 0.5, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.1, beta: 0.01, e utility: 0.03, lambdal: 1e-07, sigma: 0.5
NMR fuzzy operator: prod, rules: 10
NTSK (RLS) adaptive filter: RLS, fuzzy operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: prod, rules: 18
GEN-NMR error_metric: CPPM, fuzzy operator: minmax, num _generations: 10, num parents mating: 5, paral-

GEN-NTSK (RLS)
GEN-NTSK (wRLS)

R-NMR
R-NTSK

lel processing: 10, rules: 9, sol per pop: 10

adaptive filter: RLS, error metric: CPPM, fuzzy operator: prod, lambdal: 0.97, num_generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol_per_pop: 5

adaptive_filter: wRLS, error metric: MAE, fuzzy operator: prod, num_ generations: 5, num_ parents mating:
5, parallel processing: 10, rules: 17, sol _per pop: 5

combination: median, n_ estimators: 50

combination: weighted average, n_ estimators: 50
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Table 71 — Models” hyperparameters for Mackey-Glass time series with moderate level of

noise

Model

hyperparameters

KNN [218]
Regression Tree [219]
Random Forest [112]

SVM [220]

LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

n_ neighbors: 11

max_ depth: 8 max_features: 4

max_ depth: 16, max_features: 2, n_estimators: 200

C: 1, gamma: 50, kernel: rbf

kernel: linear

learning_ rate: 0.05, max_depth: 8, max_features: 2, n_ estimators: 100

eta: 0.3, eval metric: rmse, gamma: 0.3, max_depth: 8 min_child weight: 2, n_ estimators: 50
learning rate: 0.1, max_ depth: 20, max_features: 2, n_estimators: 100, verbosity: -1

MLP [222]
CNN [223]
RNN [224]
LSTM [225]

GRU [226]

WaveNet [227]

n_hidden: 2, n neurons: 77, activation: relu, learning rate: 0.145, input_shape: [4]

n_hidden: 3, n_neurons: 97, learning rate: 0.006

n_hidden: 5, n_neurons: 21, learning_rate: 0.003

n_neurons: 83, n_lstm_hidden: 4, neurons dense: 1, dropout_rate: 0, n_dense hidden: 2, learning rate:
0.006

filters: 4, kernel size: 2, strides: 2, n_neurons: 76, n_gru_hidden: 4, neurons_dense: 0, dropout_rate: 0,
n_dense hidden: 0, learning rate: 0.016

dilation_rate: (1, 2, 4), repeat: 2, learning_rate: 0.007

eTS [68] omega: 10000, r: 0.1
Simpl_eTS [69] omega: 1000, r: 0.1
exTS [70] mu: 0.3, omega: 1000
ePL [72] alpha: 0.001, beta: 0.2, lambdal: 0.001, omega: 100, sigma: 0.1
eMG [74] alpha: 0.001, lambdal: 0.5, omega: 10000, sigma: 0.003, w: 10
ePL+ (73] alpha: 0.001, beta: 0.01, e_utility: 0.03, lambdal: 0.25, omega: 100, pi: 0.3, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.05, beta: 0.1, e_utility: 0.03, lambdal: 0.001, sigma: 0.5
NMR fuzzy operator: prod, rules: 14
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: prod, rules: 19
GEN-NMR error_metric: CPPM, fuzzy operator: minmax, num_ generations: 10, num_ parents mating: 5, paral-

GEN-NTSK (RLS)
GEN-NTSK (wRLS)

R-NMR
R-NTSK

lel_processing: 10, rules: 17, sol_per_pop: 10

adaptive_filter: RLS, error metric: CPPM, fuzzy operator: prod, lambdal: 0.99, num_ generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol per pop: 5

adaptive_filter: wRLS, error_metric: MAE, fuzzy operator: prod, num_ generations: 5, num_ parents mating:
5, parallel processing: 10, rules: 19, sol _per_pop: 5

combination: median, n_ estimators: 50

combination: median, n_ estimators: 50

Table 72 — Models” hyperparameters for Nonlinear time series

Model

hyperparameters

KNN [213]
Regression Tree [219)
Random Forest [112]

SVM [220]

LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

n_neighbors: 11

max_ depth: 12, max_features: 8

max_ depth: 12, max_features: 2, n_estimators: 50

C: 10, gamma: 0.01, kernel: rbf

kernel: linear

learning_ rate: 0.1, max_depth: 8, max_features: 8, n_estimators: 200

eta: 0.5, eval metric: rmse, gamma: 0.3, max_ depth: 4, min_child weight: 2, n_estimators: 50
learning_ rate: 0.5, max_ depth: 20, max_ features: 2, n_estimators: 200, verbosity: -1

MLP [222]
CNN [223]
RNN [224]
LSTM [225)

GRU [226]

WaveNet [227]

n_hidden: 2, n_neurons: 87, activation: relu, learning rate: 0.063, input_ shape: [3]

n_hidden: 2, n_neurons: 52, learning_rate: 0.002

n_hidden: 4, n_neurons: 78, learning_rate: 0.00039

n_neurons: 28, n_Istm_hidden: 2, neurons_dense: 0, dropout_rate: 0, n_dense hidden: 0, learning rate:
0.024

filters: 32, kernel size: 2, strides: 1, n_neurons: 36, n_gru_hidden: 4, neurons_ dense: 0, dropout_ rate: 0,
n_dense hidden: 0, learning rate: 0.016

dilation_rate: (1, 2, 4, 8, 16), repeat: 2, learning rate: 0.002

eTS [68] omega: 10000, r: 0.1
Simpl_eTS [69] omega: 1000, r: 0.1
exTS [70] mu: 0.1, omega: 50
ePL [72] alpha: 0.9, beta: 0.005, lambdal: 0.001, r: 0.1, s: 10000
eMG [74] alpha: 0.01, lambdal: 0.5, omega: 10000, sigma: 0.001, w: 10
ePL+ [73] alpha: 0.1, beta: 0.25, e utility: 0.03, lambdal: 0.25, omega: 100, pi: 0.3, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.1, beta: 0.1, e_utility: 0.03, lambdal: 1e-07, sigma: 1
NMR fuzzy operator: min, rules: 19
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: min, rules: 17
GEN-NMR error metric: RMSE, fuzzy operator: min, num generations: 10, num parents mating: 5, parallel processing:

GEN-NTSK (RLS)
GEN-NTSK (wRLS)

R-NMR
R-NTSK

10, rules: 19, sol_per_ pop: 10

adaptive_filter: RLS, error_metric: RMSE, fuzzy operator: prod, lambdal: 0.99, num_ generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol per pop: 5

adaptive filter: wRLS, error metric: RMSE, fuzzy operator: min, num_ generations: 5, num_ parents_mating:
5, parallel processing: 10, rules: 17, sol _per_pop: 5
combination: mean, n_ estimators: 50

combination: median, n_estimators: 50
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Table 73 — Models’ hyperparameters for Nonlinear time series with moderate level of noise

Model

hyperparameters

KNN [218]
Regression Tree [219]
Random Forest [112]

SVM [220]

LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

n_neighbors: 11

max_ depth: 8, max_features: 8

max_ depth: 8 max_features: 2, n_estimators: 150

C: 10, gamma: 50, kernel: rbf

kernel: linear

learning_ rate: 0.05, max_ depth: 8, max_features: 2, n_estimators: 100

eta: 0.3, eval metric: rmse, gamma: 0.3, max_ depth: 8 min_child weight: 5, n_ estimators: 50
learning_rate: 0.05, max_ depth: 20, max_features: 2, n_estimators: 150, verbosity: -1

MLP [222]
CNN [223]
RNN [224]
LSTM [225)

GRU [226]

WaveNet [227]

n_hidden: 2, n_neurons: 87, activation: relu, learning rate: 0.063, input_ shape: [3]

n_hidden: 2, n_neurons: 52, learning rate: 0.002

n_hidden: 4, n_neurons: 78, learning_rate: 0.00039

n_neurons: 28, n_lstm_hidden: 2, neurons_dense: 0, dropout_rate: 0, n_dense hidden: 0, learning rate:
0.024

filters: 32, kernel_size: 2, strides: 1, n_neurons: 36, n_gru_hidden: 4, neurons_dense: 0, dropout_rate: 0,
n_dense hidden: 0, learning rate: 0.016

dilation_rate: (1, 2, 4, 8, 16), repeat: 2, learning rate: 0.002

eTS [68] omega: 50, r: 0.1
Simpl_eTS [69] omega: 50, r: 0.1
exTS [70] mu: 0.1, omega: 1000
ePL [72] alpha: 0.001, beta: 0.2, lambdal: 0.1, omega: 10000, sigma: 0.25
eMG [74] alpha: 0.001, lambdal: 0.1, omega: 10000, sigma: 0.003, w: 50
ePL+ [73] alpha: 0.1, beta: 0.01, e_utility: 0.03, lambdal: 0.25, omega: 100, pi: 0.3, sigma: 0.25
ePL-KRLS-DISCO [75] alpha: 0.05, beta: 0.25, e utility: 0.05, lambdal: 0.001, sigma: 0.5
NMR fuzzy operator: min, rules: 18
NTSK (RLS) adaptive_filter: RLS, fuzzy_operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: prod, rules: 16
GEN-NMR error_metric: RMSE, fuzzy operator: min, num_ generations: 10, num_ parents_mating: 5, parallel _processing:

GEN-NTSK (RLS)

GEN-NTSK (wRLS)

10, rules: 19, sol_per_ pop: 10

adaptive_filter: RLS, error metric: RMSE, fuzzy operator: prod, lambdal: 0.99, num generations: 5,
num_ parents _mating: 5, parallel processing: 10, rules: 1, sol per pop: 5

adaptive filter: wRLS, error metric: RMSE, fuzzy operator: prod, num_ generations: 5, num_ parents mating:
5, parallel _processing: 10, rules: 5, sol _per_pop: 5

R-NMR combination: weighted average, n_estimators: 50
R-NTSK combination: median, n_ estimators: 50
Table 74 — Models” hyperparameters for Alice 1A
Model hyperparameters
KNN [218] n_neighbors: 11

Regression Tree [219]
Random Forest [112]
SVM [220]
LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

max_ depth: 2, max_features: 6

max_ depth: 4, max_features: 4, n_estimators: 100

C: 10, gamma: 0.01, kernel: linear

kernel: linear

learning rate: 0.1, max depth: 12, max features: 2, n_estimators: 200

eta: 0.3, eval metric: rmse, gamma: 0.4, max_depth: 2, min_child weight: 2, n_estimators: 50
learning_rate: 0.01, max_depth: 2, max_features: 2, n_estimators: 200, verbosity: -1

MLD [222]
CNN [223]
RNN [224]
LSTM [225]
GRU [226]

WaveNet [227]

n_hidden: 1, n_neurons: 38, activation: tanh, learning rate: 0.005, input_ shape: 12

n_hidden: 0, n_neurons: 0, learning rate: 0.00068

n_hidden: 1, n_neurons: 3, learning rate: 0.02

n_neurons: 45, n_lIstm_ hidden: 1, neurons_dense: 1, dropout_rate: 0, n_dense hidden: 0, learning_rate: 0.01
filters: 64, kernel size: 1, strides: 5, n_neurons: 56, n_gru_hidden: 5, neurons_dense: 1, dropout_rate: 0,
n_dense_hidden: 2, learning_rate: 0.00091

dilation rate: (1, 2, 4), repeat: 1, learning rate: 0.00026

eTS [68] omega: 10000, r: 10
Simpl_eTS [69)] omega: 50, r: 0.1
exTS [70] mu: 0.1, omega: 1000
ePL [72] alpha: 0.1, beta: 0.1, lambdal: 0.001, r: 0.1, s: 100
eMG [74] alpha: 0.01, lambdal: 0.1, omega: 10000, sigma: 0.003, w: 10
ePL+ [73] alpha: 0.1, beta: 0.01, e_utility: 0.05, lambdal: 0.75, omega: 10000, pi: 0.3, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.1, beta: 0.25, e utility: 0.03, lambdal: 0.001, sigma: 10
NMR fuzzy_operator: max, rules: 16
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: minmax, rules: 4
GEN-NMR error_metric: CPPM, fuzzy operator: prod, num_generations: 10, num parents mating: 5, paral-

GEN-NTSK (RLS)
GEN-NTSK (wRLS)

R-NMR
R-NTSK

lel _processing: 10, rules: 17, sol_per pop: 10

adaptive_filter: RLS, error metric: MAE, fuzzy operator: prod, lambdal: 0.97, num generations: 5,
num_ parents_mating: 5, parallel processing: 10, rules: 1, sol _per_ pop: 5

adaptive_filter: wRLS, error_metric: CPPM, fuzzy operator: prod, num_ generations: 5, num_ parents mating:
5, parallel _processing: 10, rules: 3, sol_per_pop: 5

combination: median, n_ estimators: 50

combination: median, n_ estimators: 50
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Table 75 — Models’ hyperparameters for Alice 38

Model

hyperparameters

KNN [218]
Regression Tree [219)]
Random Forest [112]

SVM [220]

LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

n_neighbors: 3

max_ depth: 2, max_features: 8

max_ depth: 2, max_ features: 6, n_ estimators: 50

C: 10, gamma: 0.01, kernel: rbf

kernel: linear

learning_ rate: 0.05, max_ depth: 20, max_features: 4, n_ estimators: 150

eta: 0.4, eval metric: rmse, gamma: 0.4, max_ depth: 2, min_ child weight: 2, n_ estimators: 100
learning_rate: 0.1, max_depth: 2, max_features: 2, n_estimators: 50, verbosity: -1

MLP [222]
CNN [223]
RNN [224]
LSTM [225]
GRU [226]

WaveNet [227]

n_hidden: 1, n_neurons: 38, activation: tanh, learning rate: 0.005, input_shape: 12

n_hidden: 0, n_neurons: 0, learning rate: 0.033

n_hidden: 1, n_neurons: 6, learning rate: 0.08

n_neurons: 58, n_lstm_hidden: 1, neurons_dense: 1, dropout_rate: 0, n_dense hidden: 3, learning rate: 0.03
filters: 64, kernel size: 1, strides: 5, n_neurons: 72, n_gru_hidden: 4, neurons_ dense: 0, dropout_ rate: 0,
n_dense hidden: 0, learning rate: 0.00068

dilation_rate: (1, 2, 4, 8, 16), repeat: 1, learning rate: 0.00026

eTS [68] omega: 50, r: 0.1
Simpl_eTS [69] omega: 250, r: 0.1
exTS [70] mu: 0.5, omega: 1000
ePL [72] alpha: 0.9, beta: 0.01, lambdal: 0.001, r: 0.1, s: 10000
eMG [74] alpha: 0.001, lambdal: 0.1, omega: 10000, sigma: 0.003, w: 10
ePL+ [73] alpha: 0.001, beta: 0.01, e utility: 0.05, lambdal: 0.75, omega: 100, pi: 0.5, sigma: 0.5
ePL-KRLS-DISCO [75] alpha: 0.05, beta: 0.01, e_utility: 0.03, lambdal: 0.001, sigma: 1
NMR fuzzy operator: minmax, rules: 9
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy_operator: prod, rules: 11
GEN-NMR error_metric: CPPM, fuzzy operator: min, num_ generations: 10, num_ parents_mating: 5, parallel _processing:

GEN-NTSK (RLS)

GEN-NTSK (wRLS)

10, rules: 13, sol_per pop: 10

adaptive_filter: RLS, error_metric: RMSE, fuzzy operator: min, lambdal: 0.97, num_ generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol per pop: 5

adaptive_filter: wRLS, error metric: MAE, fuzzy operator: prod, num_generations: 5, num_parents mating:
5, parallel processing: 10, rules: 17, sol _per pop: 5

R-NMR combination: mean, n_ estimators: 50
R-NTSK combination: mean, n_ estimators: 50
Table 76 — Models” hyperparameters for Yulara 1
Model hyperparameters
KNN [218] n_neighbors: 11

Regression Tree [219]
Random Forest [112]
SVM [220]
LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

max_ depth: 2, max_ features: 6

max_ depth: 2, max_features: 2, n_estimators: 150

C: 10, gamma: 0.01, kernel: linear

kernel: linear

learning rate: 0.1, max_depth: 2, max features: 4, n_estimators: 50

eta: 0.3, eval metric: rmse, gamma: 0.3, max_depth: 2, min_child weight: 2, n_estimators: 50
learning rate: 0.01, max_depth: 4, max features: 2, n_estimators: 200, verbosity: -1

MLD [222]
CNN [223]
RNN [224]
LSTM [225]

GRU [226]

WaveNet [227]

n_hidden: 1, n_neurons: 38, activation: tanh, learning rate: 0.005, input_ shape: 15

n_hidden: 0, n_neurons: 0, learning rate: 0.031

n_hidden: 3, n_neurons: 66, learning rate: 0.44

n_neurons: 22, n_lstm_hidden: 1, neurons_dense: 1, dropout_rate: 0, n_dense hidden: 1, learning rate:
0.009

filters: 4, kernel size: 5, strides: 3, n_neurons: 83, n_gru_hidden: 2, neurons dense: 0, dropout_ rate: 0,
n_dense hidden: 0, learning rate: 0.383

dilation rate: (1, 2), repeat: 1, learning rate: 0.007

eTS [68] omega: 1000, r: 5
Simpl_eTS [69)] omega: 50, r: 0.3
exTS [70] mu: 0.7, omega: 250
ePL [72] alpha: 0.001, beta: 0.1, lambdal: 0.001, r: 0.1, s: 100
eMG [74] alpha: 0.01, lambdal: 0.1, omega: 10000, sigma: 0.003, w: 10
ePL+ [73] alpha: 0.001, beta: 0.1, e_utility: 0.03, lambdal: 0.25, omega: 10000, pi: 0.3, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.1, beta: 0.1, e_utility: 0.05, lambdal: 0.001, sigma: 50
NMR fuzzy__operator: minmax, rules: 8
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: prod, rules: 2
GEN-NMR error_metric: RMSE, fuzzy operator: prod, num generations: 10, num_parents mating: 5, paral-

GEN-NTSK (RLS)
GEN-NTSK (wRLS)

R-NMR
R-NTSK

lel _processing: 10, rules: 19, sol_per pop: 10

adaptive_filter: RLS, error metric: MAE, fuzzy operator: max, lambdal: 0.98, num generations: 5,
num_ parents_mating: 5, parallel processing: 10, rules: 1, sol _per pop: 5

adaptive_filter: wRLS, error_metric: MAE, fuzzy operator: max, num_ generations: 5, num_ parents_mating:
5, parallel processing: 10, rules: 19, sol _per_pop: 5

combination: median, n_ estimators: 50

combination: weighted average, n_ estimators: 50




Table 77 — Models” hyperparameters for Yulara 5

Model hyperparameters

KNN [218§] n_neighbors: 11
Regression Tree [219]  max_depth: 4, max_features: 2
Random Forest [112]  max_depth: 2, max_features: 4, n_estimators: 150

SVM [220] C: 10, gamma: 0.01, kernel: linear
LS-SVM [221] kernel: linear
GBM [116] learning_ rate: 0.01, max_ depth: 2, max_features: 10, n_ estimators: 150
XGBoost [117] eta: 0.3, eval metric: rmse, gamma: 0.3, max_ depth: 2, min_child weight: 2, n_estimators: 50
LGBM [118] learning_ rate: 0.01, max_ depth: 2, max_features: 2, n_estimators: 100, verbosity: -1
MLP [222] n_hidden: 0, n_neurons: 0, activation: relu, learning_rate: 0.001, input_ shape: 15
CNN [223] n_hidden: 3, n_neurons: 91, learning rate: 0.031
RNN [224] n_hidden: 4, n_neurons: 64, learning rate: 0.001
LSTM [225] n_neurons: 35, n_Istm_hidden: 1, neurons_dense: 1, dropout_rate: 0, n_dense hidden: 2, learning rate:
0.006
GRU [226] filters: 16, kernel size: 5, strides: 3, n_neurons: 46, n_gru_hidden: 1, neurons_dense: 0, dropout_ rate: 0,
n_dense hidden: 0, learning rate: 0.022
WaveNet [227] dilation_rate: (1, 2), repeat: 1, learning rate: 0.044
eTS [68] omega: 50, r: 0.7
Simpl_eTS [69] omega: 50, r: 0.1
exTS [70] mu: 0.1, omega: 50
ePL [72] alpha: 0.1, beta: 0.1, lambdal: 0.1, r: 0.1, s: 100
eMG [74] alpha: 0.001, lambdal: 0.5, omega: 10000, sigma: 0.001, w: 10
ePL+ [73] alpha: 0.001, beta: 0.01, e utility: 0.03, lambdal: 0.25, omega: 100, pi: 0.3, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.05, beta: 0.25, e_utility: 0.05, lambdal: 0.001, sigma: 50
NMR fuzzy operator: max, rules: 2
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: min, rules: 5
GEN-NMR error metric: RMSE, fuzzy operator: min, num generations: 10, num parents mating: 5, parallel processing:

10, rules: 15, sol_per pop: 10
GEN-NTSK (RLS) adaptive_filter: RLS, error__metric: MAE, fuzzy operator: minmax, lambdal: 0.99, num_ generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol per pop: 5
GEN-NTSK (wRLS)  adaptive_filter: wRLS, error_metric: RMSE, fuzzy operator: max, num_ generations: 5, num_ parents mating:
5, parallel processing: 10, rules: 13, sol per_pop: 5
R-NMR combination: median, n_estimators: 50
R-NTSK combination: mean, n_ estimators: 50

Table 78 — Models’ hyperparameters for S&P 500 (horizon = 1)

Model hyperparameters

KNN [218] n_neighbors: 2
Regression Tree [219]  max_depth: 16, max_features: 6
Random Forest [112]  max_depth: 2, max_features: 2, n_estimators: 50

SVM [220] C: 0.01, gamma: 0.01, kernel: linear
LS-SVM [221] C: 0.01, gamma: 0.01, kernel: linear
GBM [116] learning_rate: 0.01, max_depth: 2, max_features: 2, n_estimators: 50
XGBoost [117] eta: 0.3, eval metric: rmse, gamma: 0.3, max_ depth: 2, min_child weight: 5, n_estimators: 100
LGBM [118] learning_rate: 0.01, max_depth: 2, max_features: 2, n_estimators: 50, verbosity: -1
MLP [222] n_hidden: 1, n_neurons: 39, activation: relu, learning rate: 3.153e-05, input_ shape: 4
CNN [223] n_hidden: 2, n_neurons: 96, learning_ rate: 0.124
RNN [224] n_hidden: 5, n_neurons: 96, learning_rate: 0.335
LSTM [225] n_neurons: 58, n_Istm_ hidden: 4, neurons_ dense: 1, dropout_ rate: 0, n_ dense hidden: 3, learning_rate:
0.005
GRU [226] filters: 8, kernel size: 2, strides: 5, n_neurons: 42, n_gru_hidden: 1, neurons dense: 0, dropout_rate: 0,
n_dense hidden: 0, learning rate: 0.01
WaveNet [227] dilation rate: (1, 2, 4, 8), repeat: 1, learning rate: 0.025
eTS [68] omega: 500, r: 0.7
Simpl_eTS [69] omega: 50, r: 0.1
exTS [70] mu: 0.1, omega: 50
ePL [72] alpha: 0.001, beta: 0.2, lambdal: 0.1, r: 0.25, s: 10000
eMG [74] alpha: 0.01, lambdal: 0.1, omega: 10000, sigma: 0.001, w: 10
ePL+ [73] alpha: 0.001, beta: 0.01, e_utility: 0.03, lambdal: 0.75, omega: 100, pi: 0.3, sigma: 0.1
e¢PL-KRLS-DISCO [75] alpha: 0.05, beta: 0.25, e_utility: 0.03, lambdal: 1e-07, sigma: 10
NMR fuzzy operator: minmax, rules: 6
NTSK (RLS) adaptive filter: RLS, fuzzy operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive filter: wRLS, fuzzy operator: prod, rules: 1
GEN-NMR error_metric: RMSE, fuzzy operator: prod, num generations: 10, num_parents mating: 5, paral-

lel_processing: 10, rules: 9, sol_per_pop: 10
GEN-NTSK (RLS) adaptive filter: RLS, error metric: MAE, fuzzy operator: min, lambdal: 0.98, num generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol_per_pop: 5
GEN-NTSK (wRLS)  adaptive filter: wRLS, error metric: RMSE, fuzzy operator: prod, num_ generations: 5, num_parents mating:
5, parallel _processing: 10, rules: 1, sol_per_pop: 5
R-NMR combination: weighted average, n_estimators: 50
R-NTSK combination: weighted average, n_ estimators: 50
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Table 79 — Models’ hyperparameters for S&P 500 (horizon = 5)

Model hyperparameters

KNN [218] n_neighbors: 2
Regression Tree [219]  max_depth: 12, max_features: 2
Random Forest [112]  max_depth: 4, max_features: 8, n_estimators: 150

SVM [220] C: 0.01, gamma: 0.01, kernel: linear
LS-SVM [221] C: 0.01, gamma: 0.01, kernel: linear
GBM [116] learning rate: 0.05, max_depth: 4, max _features: 2, n_estimators: 150
XGBoost [117] eta: 0.3, eval metric: rmse, gamma: 0.3, max_depth: 2, min_child_weight: 2, n_estimators: 100
LGBM [118] learning_rate: 0.01, max_depth: 2, max_features: 2, n_estimators: 50, verbosity: -1
MLP [222] n_hidden: 0, n_neurons: 0, activation: relu, learning rate: 0.067, input_ shape: 4
CNN [223] n_hidden: 3, n_neurons: 99, learning rate: 0.007
RNN [224] n_hidden: 1, n_neurons: 80, learning rate: 0.19
LSTM [225] n_neurons: 72, n_lstm_hidden: 5, neurons_dense: 1, dropout_rate: 0, n_dense hidden: 3, learning_rate: 0.12
GRU [226] filters: 8, kernel_size: 1, strides: 5, n_neurons: 58, n_gru_hidden: 2, neurons_dense: 1, dropout_rate: 0,
n_dense hidden: 4, learning rate: 0.009
WaveNet [227] dilation rate: (1, 2, 4, 8, 16), repeat: 2, learning rate: 0.003
eTS [68] omega: 50, r: 0.5
Simpl_eTS [69] omega: 250, r: 0.1
exTS [70] mu: 0.7, omega: 50
ePL [72] alpha: 0.01, beta: 0.001, lambdal: 0.001, r: 0.25, s: 10000
eMG [74] alpha: 0.01, lambdal: 0.5, omega: 10000, sigma: 0.001, w: 10
ePL+ [73] alpha: 0.01, beta: 0.01, e_utility: 0.05, lambdal: 0.5, omega: 100, pi: 0.3, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.1, beta: 0.25, e utility: 0.03, lambdal: 1e-07, sigma: 50
NMR fuzzy__operator: min, rules: 3
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.98, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: prod, rules: 6
GEN-NMR error_metric: CPPM, fuzzy operator: prod, num_generations: 10, num_parents mating: 5, paral-

lel _processing: 10, rules: 15, sol_per pop: 10
GEN-NTSK (RLS) adaptive_filter: RLS, error metric: RMSE, fuzzy operator: prod, lambdal: 0.95, num generations: 5,
num_ parents_mating: 5, parallel processing: 10, rules: 1, sol _per pop: 5
GEN-NTSK (wRLS)  adaptive filter: wRLS, error metric: RMSE, fuzzy operator: prod, num_ generations: 5, num_ parents mating:
5, parallel _processing: 10, rules: 13, sol _per_pop: 5
R-NTSK combination: median, n_ estimators: 50

Table 80 — Models’ hyperparameters for NASDAQ (horizon = 1)

Model hyperparameters

KNN [218] n_neighbors: 2
Regression Tree [219]  max_depth: 8, max_features: 2
Random Forest [112]  max_depth: 8, max_features: 2, n_estimators: 100

SVM [220] C: 0.01, gamma: 0.5, kernel: sigmoid
LS-SVM [221] C: 0.01, gamma: 10, kernel: rbf
GBM [116] learning_ rate: 0.01, max_ depth: 8, max_features: 4, n_estimators: 50
XGBoost [117] eta: 0.4, eval _metric: rmse, gamma: 0.3, max_ depth: 8, min_ child_ weight: 5, n_ estimators: 150
LGBM [118] learning_ rate: 0.05, max_depth: 8 max_features: 2, n_estimators: 150, verbosity: -1
MLP [222] n_hidden: 0, n_neurons: 0, activation: relu, learning rate: 0.258, input_shape: 4
CNN [223] n_hidden: 0, n_neurons: 0, learning rate: 0.344
RNN [224] n_hidden: 2, n_neurons: 63, learning rate: 0.417
LSTM [225] n_neurons: 77, n_lstm_hidden: 4, neurons_dense: 1, dropout_rate: 0, n_dense hidden: 2, learning rate:
0.006
GRU [226] filters: 16, kernel size: 4, strides: 2, n_neurons: 90, n_gru_hidden: 4, neurons_ dense: 1, dropout_ rate: 0,
n_dense hidden: 4, learning rate: 0.104
WaveNet [227] dilation_rate: (1, 2), repeat: 1, learning rate: 0.017
eTS [68] omega: 100, r: 0.1
Simpl_eTS [69] omega: 250, r: 0.3
exTS [70] mu: 0.1, omega: 50
ePL [72] alpha: 0.1, beta: 0.005, lambdal: 0.001, r: 0.1, s: 10000
eMG [74] alpha: 0.01, lambdal: 0.1, omega: 10000, sigma: 0.003, w: 10
ePL+ [73] alpha: 0.001, beta: 0.01, e_utility: 0.05, lambdal: 0.75, omega: 10000, pi: 0.5, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.05, beta: 0.25, e_utility: 0.03, lambdal: 1e-07, sigma: 1
NMR fuzzy operator: prod, rules: 2
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.95, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy_operator: min, rules: 15
GEN-NMR error_metric: MAE, fuzzy_operator: prod, num_ generations: 10, num_ parents_mating: 5, parallel _processing:

10, rules: 3, sol_per_ pop: 10
GEN-NTSK (RLS) adaptive_filter: RLS, error metric: MAE, fuzzy operator: max, lambdal: 0.96, num_ generations: b5,
num_ parents_mating: 5, parallel processing: 10, rules: 1, sol per_pop: 5
GEN-NTSK (wRLS)  adaptive filter: wRLS, error metric: MAE, fuzzy operator: max, num_generations: 5, num_parents mating:
5, parallel processing: 10, rules: 19, sol per pop: 5
R-NMR combination: median, n_estimators: 50
R-NTSK combination: mean, n_ estimators: 50




Table 81 — Models’ hyperparameters for NASDAQ (horizon = 5)

Model hyperparameters

KNN [218§] n_neighbors: 11
Regression Tree [219]  max_ depth: 16, max_features: 2
Random Forest [112]  max_ depth: 4, max_features: 2, n_estimators: 150

SVM [220] C: 0.01, gamma: 0.01, kernel: linear
LS-SVM [221] C: 0.1, gamma: 1, kernel: rbf
GBM [116] learning_ rate: 0.1, max_depth: 2, max_features: 2, n_estimators: 200
XGBoost [117] eta: 0.4, eval metric: rmse, gamma: 0.3, max_ depth: 16, min_child weight: 5, n_estimators: 150
LGBM [118] learning_ rate: 0.05, max_ depth: 8, max_features: 2, n_estimators: 200, verbosity: -1
MLP [222] n_ hidden: 0, n_neurons: 0, activation: relu, learning_rate: 0.032, input_ shape: 4
CNN [223] n_hidden: 2, n_neurons: 73, learning_rate: 0.008
RNN [224] n_hidden: 1, n_neurons: 70, learning rate: 0.351
LSTM [225] n_neurons: 58, n_Istm_hidden: 1, neurons_dense: 1, dropout_rate: 0, n_dense hidden: 1, learning rate:
0.151
GRU [226] filters: 64, kernel size: 1, strides: 3, n_neurons: 22, n_gru_hidden: 5, neurons_ dense: 1, dropout_ rate: 0.1,
n_dense hidden: 3, learning rate: 0.015
WaveNet [227] dilation_rate: (1, 2, 4, 8, 16), repeat: 1, learning rate: 0.01
eTS [68] omega: 50, r: 0.1
Simpl_eTS [69] omega: 50, r: 0.1
exTS [70] mu: 0.3, omega: 50
ePL [72] alpha: 0.01, beta: 0.001, lambdal: 0.001, r: 0.1, s: 100
eMG [74] alpha: 0.01, lambdal: 0.5, omega: 10000, sigma: 0.003, w: 10
ePL+ [73] alpha: 0.001, beta: 0.1, e utility: 0.03, lambdal: 0.25, omega: 100, pi: 0.3, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.05, beta: 0.25, e_utility: 0.05, lambdal: 1e-07, sigma: 0.5
NMR fuzzy operator: min, rules: 4
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.97, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: max, rules: 8
GEN-NMR error_metric: RMSE, fuzzy operator: prod, num_ generations: 10, num_ parents_mating: 5, paral-

lel _processing: 10, rules: 15, sol_per_pop: 10
GEN-NTSK (RLS) adaptive_filter: RLS, error_metric: RMSE, fuzzy operator: prod, lambdal: 0.97, num_ generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol per pop: 5
GEN-NTSK (wRLS)  adaptive_filter: wRLS, error_metric: CPPM, fuzzy operator: prod, num_ generations: 5, num_ parents mating:
5, parallel processing: 10, rules: 9, sol _per_ pop: 5
R-NMR combination: median, n_estimators: 50
R-NTSK weighted average, n_ estimators: 50

Table 82 — Models’ hyperparameters for TAIEX (horizon = 1)

Model hyperparameters

KNN [218] n_neighbors: 2
Regression Tree [219]  max_depth: 8, max_features: 8
Random Forest [112]  max_depth: 4, max_features: 2, n_estimators: 50

SVM [220] C: 0.01, gamma: 0.01, kernel: linear
LS-SVM |[221] C: 1, gamma: 0.5, kernel: rbf
GBM [116] learning_rate: 0.01, max_depth: 8, max_features: 4, n_estimators: 50
XGBoost [117] eta: 0.4, eval metric: rmse, gamma: 0.3, max_ depth: 8 min_child weight: 2, n_estimators: 50
LGBM [118] learning_rate: 0.01, max_depth: 2, max_features: 2, n_estimators: 50, verbosity: -1
MLP [222] n_hidden: 0, n_neurons: 0, activation: relu, learning rate: 0.155, input_ shape: 4
CNN [223] n_hidden: 2, n_neurons: 36, learning_ rate: 0.02
RNN [224] n_hidden: 4, n_neurons: 96, learning_rate: 0.387
LSTM [225] n_neurons: 6, n_lstm_ hidden: 4, neurons_ dense: 1, dropout_ rate: 0.2, n_dense_hidden: 1, learning_rate:
0.316
GRU [226] filters: 64, kernel size: 3, strides: 5, n_neurons: 58, n_gru hidden: 1, neurons dense: 1, dropout rate: 0,
n_dense hidden: 3, learning rate: 0.029
WaveNet [227] dilation rate: (1, 2, 4, 8), repeat: 1, learning rate: 0.005
eTS [68] omega: 1000, r: 0.5
Simpl_eTS [69] omega: 750, r: 0.1
exTS [70] mu: 0.5, omega: 1000
ePL [72] alpha: 0.01, beta: 0.1, lambdal: 0.001, r: 0.25, s: 10000
eMG [74] alpha: 0.001, lambdal: 0.1, omega: 10000, sigma: 0.003, w: 10
ePL+ [73] alpha: 0.001, beta: 0.01, e_utility: 0.05, lambdal: 0.5, omega: 10000, pi: 0.5, sigma: 0.1
e¢PL-KRLS-DISCO [75] alpha: 0.05, beta: 0.01, e _utility: 0.05, lambdal: 1e-07, sigma: 1
NMR fuzzy operator: min, rules: 2
NTSK (RLS) adaptive filter: RLS, fuzzy operator: prod, lambdal: 0.98, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: prod, rules: 4
GEN-NMR error_metric: CPPM, fuzzy operator: max, num_ generations: 10, num_parents mating: 5, parallel processing:

10, rules: 3, sol_per_pop: 10
GEN-NTSK (RLS) adaptive filter: RLS, error metric: MAE, fuzzy operator: minmax, lambdal: 0.99, num generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol_per_pop: 5
GEN-NTSK (wRLS)  adaptive filter: wRLS, error metric: RMSE, fuzzy operator: prod, num_ generations: 5, num_parents mating:
5, parallel _processing: 10, rules: 11, sol_per_pop: 5
R-NMR combination: weighted average, n_estimators: 50
R-NTSK combination: mean, n_ estimators: 50
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Table 83 — Models’ hyperparameters for TAIEX (horizon = 5)

Model

hyperparameters

KNN [213]
Regression Tree [219)
Random Forest [112]

SVM [220]

LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

n_neighbors: 2

max_ depth: 8, max_features: 2

max_ depth: 4, max_features: 2, n_estimators: 100

C: 0.01, gamma: 0.5, kernel: rbf

C: 0.01, gamma: 1, kernel: rbf

learning_ rate: 0.01, max_ depth: 4, max_features: 2, n_estimators: 100

eta: 0.3, eval metric: rmse, gamma: 0.3, max_ depth: 16, min_child weight: 5, n_estimators: 50
learning_ rate: 0.01, max_ depth: 4, max_ features: 2, n_estimators: 50, verbosity: -1

MLP [222]
CNN [223]
RNN [224]
LSTM [225)

GRU [226]

WaveNet [227]

n_ hidden: 0, n_neurons: 0, activation: relu, learning_rate: 0.041, input_ shape: 4

n_hidden: 1, n_neurons: 95, learning_rate: 0.022

n_hidden: 1, n_neurons: 90, learning rate: 0.433

n_neurons: 32, n_Istm_hidden: 2, neurons_dense: 1, dropout_rate: 0, n_dense hidden: 3, learning rate:
0.067

filters: 4, kernel size: 1, strides: 4, n_neurons: 39, n_gru_hidden: 2, neurons dense: 1, dropout_ rate: 0,
n_dense hidden: 3, learning rate: 0.057

dilation_rate: (1, 2, 4, 16, 32), repeat: 2, learning rate: 0.002

eTS [68] omega: 50, r: 0.1
Simpl_eTS [69] omega: 250, 1: 0.5
exTS [70] mu: 0.1, omega: 50
ePL [72] alpha: 0.001, beta: 0.001, lambdal: 0.001, r: 0.1, s: 100
eMG [74] alpha: 0.001, lambdal: 0.1, omega: 10000, sigma: 0.001, w: 10
ePL+ [73] alpha: 0.001, beta: 0.01, e utility: 0.03, lambdal: 0.75, omega: 100, pi: 0.5, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.05, beta: 0.25, e_utility: 0.03, lambdal: 0.001, sigma: 50
NMR fuzzy operator: min, rules: 4
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.96, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: prod, rules: 13
GEN-NMR error_metric: RMSE, fuzzy operator: max, num generations: 10, num parents mating: 5, parallel processing:

GEN-NTSK (RLS)
GEN-NTSK (wRLS)

R-NMR
R-NTSK

10, rules: 5, sol_per pop: 10

adaptive_filter: RLS, error_metric: RMSE, fuzzy operator: prod, lambdal: 0.96, num_ generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol per pop: 5

adaptive_filter: ~ wRLS, error metric: =~ RMSE, fuzzy operator: minmax, num_ generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 15, sol per_pop: 5
combination: mean, n_ estimators: 50

combination: mean, n_ estimators: 50

Table 84 — Models’ hyperparameters for Bitcoin (horizon = 1)

Model

hyperparameters

KNN 213]
Regression Tree [219]
Random Forest [112]

SVM [220]

LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

n_neighbors: 5

max_ depth: 4, max_features: 2

max_depth: 2, max features: 4, n_estimators: 200

C: 0.01, gamma: 50, kernel: sigmoid

C: 0.01, gamma: 0.01, kernel: linear

learning_rate: 0.01, max_depth: 2, max_features: 4, n_estimators: 50

eta: 0.3, eval metric: rmse, gamma: 0.3, max_depth: 2, min_child _weight: 5, n_estimators: 150
learning_rate: 0.01, max_depth: 2, max_features: 2, n_estimators: 50, verbosity: -1

MLD [222]
CNN [223]
RNN [224]
LSTM [225]

GRU [226]

WaveNet [227]

n_hidden: 0, n_neurons: 0, activation: relu, learning_rate: 0.084, input_shape: 9

n_hidden: 3, n_neurons: 76, learning rate: 0.024

n_hidden: 4, n_neurons: 72, learning rate: 0.149

n_neurons: 44, n_lIstm_ hidden: 1, neurons_ dense: 1, dropout_rate: 0, n_ dense hidden: 4, learning_rate:
0.003

filters: 16, kernel size: 2, strides: 4, n_neurons: 81, n_gru hidden: 3, neurons_dense: 1, dropout_rate: 0.4,
n_dense hidden: 2, learning rate: 0.192

dilation rate: (1, 2), repeat: 2, learning rate: 0.044

eTS [68] omega: 250, r: 0.1
Simpl_eTS [69] omega: 500, r: 0.5
exTS [70] mu: 0.5, omega: 50
ePL [72] alpha: 0.001, beta: 0.1, lambdal: 0.001, r: 0.1, s: 10000
eMG [74] alpha: 0.01, lambdal: 0.5, omega: 10000, sigma: 0.001, w: 10
ePL+ [73] alpha: 0.001, beta: 0.01, e_utility: 0.05, lambdal: 0.75, omega: 10000, pi: 0.3, sigma: 0.1
e¢PL-KRLS-DISCO [75] alpha: 0.1, beta: 0.01, e_utility: 0.05, lambdal: 1e-07, sigma: 10
NMR fuzzy operator: min, rules: 19
NTSK (RLS) adaptive filter: RLS, fuzzy operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive filter: wRLS, fuzzy operator: prod, rules: 1
GEN-NMR error_metric: CPPM, fuzzy operator: max, num_ generations: 10, num_parents mating: 5, parallel processing:

GEN-NTSK (RLS)
GEN-NTSK (wRLS)

R-NMR
R-NTSK

10, rules: 19, sol_per_pop: 10

adaptive filter: RLS, error metric: MAE, fuzzy operator: minmax, lambdal: 0.99, num generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol_per_pop: 5

adaptive_filter: wRLS, error_metric: MAE, fuzzy operator: max, num_ generations: 5, num_ parents_ mating:
5, parallel _processing: 10, rules: 1, sol_per_pop: 5

combination: mean, n_ estimators: 50

combination: mean, n_ estimators: 50
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Table 85 — Models’ hyperparameters for Bitcoin (horizon = 5)

Model hyperparameters

KNN [218§] n_neighbors: 11
Regression Tree [219]  max_depth: 2, max_features: 4
Random Forest [112]  max_ depth: 2, max_features: 2, n_estimators: 50

SVM [220] C: 0.01, gamma: 0.5, kernel: rbf
LS-SVM [221] C: 0.01, gamma: 0.01, kernel: rbf
GBM [116] learning_ rate: 0.05, max_ depth: 2, max_features: 2, n_estimators: 50
XGBoost [117] eta: 0.5, eval metric: rmse, gamma: 0.3, max_ depth: 20, min_child weight: 2, n_estimators: 50
LGBM [118] learning_ rate: 0.05, max_ depth: 8, max_features: 2, n_estimators: 100, verbosity: -1
MLP [222] n_ hidden: 0, n_neurons: 0, activation: relu, learning_rate: 0.135, input_ shape: 9
CNN [223] n_hidden: 2, n_neurons: 39, learning rate: 0.034
RNN [224] n_hidden: 1, n_neurons: 82, learning rate: 0.123
LSTM [225] n_neurons: 59, n_Istm_ hidden: 5, neurons_dense: 1, dropout_rate: 0, n_dense hidden: 0, learning rate:
0.342
GRU [226] filters: 16, kernel size: 2, strides: 2, n_neurons: 86, n_gru_hidden: 1, neurons_dense: 1, dropout_rate: 0.2,
n_dense hidden: 3, learning rate: 0.022
WaveNet [227] dilation_rate: (1, 2), repeat: 1, learning_rate: 0.15
eTS [68] omega: 10000, r: 0.1
Simpl_eTS [69] omega: 50, r: 0.1
exTS [70] mu: 0.1, omega: 250
ePL [72] alpha: 0.001, beta: 0.001, lambdal: 0.001, r: 0.1, s: 10000
eMG [74] alpha: 0.01, lambdal: 0.5, omega: 10000, sigma: 0.003, w: 10
ePL+ [73] alpha: 0.01, beta: 0.01, e_utility: 0.05, lambdal: 0.5, omega: 10000, pi: 0.5, sigma: 0.25
ePL-KRLS-DISCO [75] alpha: 0.1, beta: 0.25, e_utility: 0.03, lambdal: 1e-07, sigma: 1
NMR fuzzy operator: max, rules: 2
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.96, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: prod, rules: 13
GEN-NMR error _metric: MAE, fuzzy operator: minmax, num generations: 10, num parents mating: 5, paral-

lel _processing: 10, rules: 19, sol_per_ pop: 10
GEN-NTSK (RLS) adaptive_filter: RLS, error_metric: RMSE, fuzzy operator: max, lambdal: 0.99, num_ generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol per pop: 5
GEN-NTSK (wRLS)  adaptive_filter: wRLS, error _metric: RMSE, fuzzy operator: prod, num_ generations: 5, num_ parents mating:
5, parallel processing: 10, rules: 9, sol _per_ pop: 5
R-NMR combination: median, n_estimators: 50
R-NTSK combination: mean, n_ estimators: 50

Table 86 — Models’ hyperparameters for Ethereum (horizon = 1)

Model hyperparameters

KNN [218] n_neighbors: 11
Regression Tree [219]  max_depth: 12, max_features: 2
Random Forest [112]  max_depth: 4, max_features: 6, n_estimators: 100

SVM [220] C: 0.01, gamma: 0.01, kernel: linear
LS-SVM [221] C: 0.01, gamma: 0.01, kernel: linear
GBM [116] learning_rate: 0.1, max_depth: 2, max_features: 4, n_estimators: 100
XGBoost [117] eta: 0.5, eval metric: rmse, gamma: 0.3, max_depth: 2, min_child weight: 2, n_estimators: 100
LGBM [118] learning_rate: 0.05, max_depth: 2, max_features: 2, n_estimators: 100, verbosity: -1
MLP [222] n_hidden: 0, n_neurons: 0, activation: relu, learning rate: 0.137, input_ shape: 9
CNN [223] n_hidden: 0, n_neurons: 0, learning rate: 0.366
RNN [224] n_hidden: 1, n_neurons: 87, learning_rate: 0.002
LSTM [225] n_neurons: 74, n_lstm_ hidden: 5, neurons_ dense: 1, dropout_rate: 0.2, n_ dense_hidden: 4, learning_rate:
0.002
GRU [226] filters: 4, kernel size: 3, strides: 2, n_neurons: 90, n_gru_hidden: 3, neurons dense: 1, dropout_rate: 0,
n_dense_hidden: 3, learning rate: 0.00084
WaveNet [227] dilation_rate: (1, 2, 4), repeat: 1, learning rate: 0.006
eTS [68] omega: 100, r: 0.1
Simpl_eTS [69] omega: 50, r: 0.7
exTS [70] mu: 0.7, omega: 50
ePL [72] alpha: 0.1, beta: 0.001, lambdal: 0.1, r: 0.5, s: 100
eMG [74] alpha: 0.001, lambdal: 0.5, omega: 10000, sigma: 0.001, w: 10
ePL+ [73] alpha: 0.01, beta: 0.01, e_utility: 0.05, lambdal: 0.25, omega: 100, pi: 0.3, sigma: 0.1
ePL-KRLS-DISCO [75] alpha: 0.05, beta: 0.01, e_utility: 0.05, lambdal: 1e-07, sigma: 0.5
NMR fuzzy operator: prod, rules: 10
NTSK (RLS) adaptive filter: RLS, fuzzy operator: prod, lambdal: 0.95, rules: 1
NTSK (wRLS) adaptive filter: wRLS, fuzzy operator: prod, rules: 12
GEN-NMR error_metric: CPPM, fuzzy operator: min, num_ generations: 10, num_ parents mating: 5, parallel processing:

10, rules: 3, sol_per_pop: 10
GEN-NTSK (RLS) adaptive_filter: RLS, error metric: CPPM, fuzzy operator: prod, lambdal: 0.96, num generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol_per_pop: 5
GEN-NTSK (wRLS)  adaptive filter: wRLS, error metric: CPPM, fuzzy operator: prod, num_ generations: 5, num_ parents mating:
5, parallel _processing: 10, rules: 7, sol_per_pop: 5
R-NMR combination: median, n_ estimators: 50
R-NTSK combination: mean, n_ estimators: 50
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Table 87 — Models’ hyperparameters for Ethereum (horizon = 5)

Model

hyperparameters

KNN [213]
Regression Tree [219)
Random Forest [112]

SVM [220]

LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

n_neighbors: 11

max_ depth: 8, max_features: 2

max_ depth: 20, max_features: 4, n_estimators: 150

C: 0.01, gamma: 0.5, kernel: sigmoid

C: 1, gamma: 0.01, kernel: linear

learning_ rate: 0.01, max_ depth: 2, max_features: 2, n_estimators: 100

eta: 0.3, eval metric: rmse, gamma: 0.3, max_ depth: 20, min_child weight: 5, n_estimators: 150
learning_ rate: 0.05, max_ depth: 12, max_ features: 2, n_estimators: 150, verbosity: -1

MLP [222]
CNN [223]
RNN [224]
LSTM [225)

GRU [226]

WaveNet [227]

n_ hidden: 0, n_neurons: 0, activation: relu, learning_rate: 0.224, input_ shape: 9

n_hidden: 0, n_neurons: 0, learning_rate: 0.24

n_hidden: 5, n_neurons: 21, learning rate: 0.011

n_neurons: 80, n_lstm_hidden: 5, neurons_dense: 1, dropout_rate: 0.1, n_ dense hidden: 3, learning rate:
0.001

filters: 32, kernel size: 5, strides: 4, n_neurons: 68, n_gru_hidden: 3, neurons_dense: 1, dropout_ rate: 0.2,
n_dense hidden: 1, learning rate: 0.001

dilation rate: (1, 2), repeat: 1, learning rate: 0.04

eTS [68] omega: 50, r: 0.1
Simpl_eTS [69] omega: 50, r: 0.7
exTS [70] mu: 0.1, omega: 250
ePL [72] alpha: 0.001, beta: 0.01, lambdal: 0.001, r: 0.5, s: 100
eMG [74] alpha: 0.01, lambdal: 0.1, omega: 10000, sigma: 0.003, w: 10
ePL+ [73] alpha: 0.001, beta: 0.01, e utility: 0.05, lambdal: 0.25, omega: 100, pi: 0.3, sigma: 0.25
ePL-KRLS-DISCO [75] alpha: 0.05, beta: 0.01, e_utility: 0.05, lambdal: 1e-07, sigma: 10
NMR fuzzy operator: min, rules: 3
NTSK (RLS) adaptive_filter: RLS, fuzzy operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: prod, rules: 6
GEN-NMR error _metric: MAE, fuzzy operator: min, num generations: 10, num parents mating: 5, parallel processing:

GEN-NTSK (RLS)
GEN-NTSK (wRLS)

R-NMR
R-NTSK

10, rules: 3, sol_per pop: 10

adaptive_filter: RLS, error_metric: CPPM, fuzzy_operator: minmax, lambdal: 0.98, num__ generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol per pop: 5

adaptive filter: wRLS, error metric: RMSE, fuzzy operator: min, num_ generations: 5, num_ parents_mating:
5, parallel processing: 10, rules: 19, sol per_pop: 5
combination: weighted average, n_ estimators: 50
combination: median, n_estimators: 50

Table 88 — Models’ hyperparameters for Binance (horizon = 1)

Model

hyperparameters

KNN 213]
Regression Tree [219]
Random Forest [112]

SVM [220]

LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

n_neighbors: 11

max_ depth: 16, max_features: 4

max_ depth: 16, max_features: 10, n_ estimators: 50

C: 0.01, gamma: 0.01, kernel: rbf

C: 0.01, gamma: 0.01, kernel: rbf

learning_rate: 0.1, max_ depth: 8, max_features: 10, n_estimators: 150

eta: 0.4, eval metric: rmse, gamma: 0.3, max_depth: 8 min_child weight: 5, n_estimators: 50
learning_rate: 0.05, max_depth: 4, max_features: 2, n_estimators: 150, verbosity: -1

MLD [222]
CNN [223]
RNN [224]
LSTM [225]

GRU [226]

WaveNet [227]

n_hidden: 0, n_neurons: 0, activation: relu, learning_rate: 0.318, input_shape: 9

n_hidden: 3, n_neurons: 85, learning rate: 0.002

n_hidden: 3, n_neurons: 71, learning rate: 0.0004

n_neurons: 75, n_lIstm_ hidden: 3, neurons_ dense: 1, dropout_ rate: 0, n_ dense hidden: 1, learning_rate:
0.00061

filters: 2, kernel size: 5, strides: 3, n_neurons: 44, n_gru_hidden: 2, neurons dense: 0, dropout_ rate: 0,
n_dense hidden: 0, learning rate: 0.001

dilation rate: (1, 2), repeat: 2, learning rate: 0.004

eTS [68] omega: 50, r: 0.3
Simpl_eTS [69] omega: 50, r: 0.1
exTS [70] mu: 0.7, omega: 50
ePL [72] alpha: 0.001, beta: 0.005, lambdal: 0.001, r: 0.75, s: 10000
eMG [74] alpha: 0.01, lambdal: 0.5, omega: 10000, sigma: 0.003, w: 10
ePL+ [73] alpha: 0.1, beta: 0.01, e_ utility: 0.03, lambdal: 0.25, omega: 10000, pi: 0.3, sigma: 0.5
e¢PL-KRLS-DISCO [75] alpha: 0.05, beta: 0.01, e utility: 0.03, lambdal: 0.001, sigma: 1
NMR fuzzy operator: prod, rules: 14
NTSK (RLS) adaptive filter: RLS, fuzzy operator: prod, lambdal: 0.99, rules: 1
NTSK (wRLS) adaptive_filter: wRLS, fuzzy operator: prod, rules: 5
GEN-NMR error_metric: MAE, fuzzy operator: max, num_ generations: 10, num_parents_mating: 5, parallel processing:

GEN-NTSK (RLS)
GEN-NTSK (wRLS)

R-NMR
R-NTSK

10, rules: 3, sol_per_pop: 10

adaptive_filter: RLS, error metric: RMSE, fuzzy operator: minmax, lambdal: 0.97, num_ generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol_per_pop: 5

adaptive_filter: wRLS, error_metric: CPPM, fuzzy_operator: prod, num_ generations: 5, num__parents_mating:
5, parallel _processing: 10, rules: 1, sol_per_pop: 5

combination: mean, n_ estimators: 50

combination: mean, n_ estimators: 50
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Table 89 — Models” hyperparameters for Binance (horizon = 5)

Model

hyperparameters

KNN 218]
Regression Tree [219]
Random Forest [112]

SVM [220]

LS-SVM [221]
GBM [116]
XGBoost [117]
LGBM [118]

n_neighbors: 2

max_ depth: 16, max_features: 2

max_ depth: 4, max features: 2, n_estimators: 150

C: 1, gamma: 0.01, kernel: linear

C: 0.01, gamma: 0.01, kernel: linear

learning_rate: 0.1, max_depth: 4, max_features: 4, n_estimators: 200

eta: 0.4, eval metric: rmse, gamma: 0.3, max_ depth: 8 min_child weight: 2, n_estimators: 50
learning_ rate: 0.5, max_ depth: 20, max_ features: 2, n_estimators: 200, verbosity: -1

MLP [222]
CNN [223]
RNN [224]
LSTM [225]

GRU [226]

WaveNet [227]

n_hidden: 0, n_neurons: 0, activation: relu, learning_rate: 0.107, input_ shape: 9

n_hidden: 3, n_neurons: 70, learning_rate: 0.001

n_hidden: 5, n_neurons: 92, learning_rate: 0.0028

n_neurons: 53, n_lIstm_ hidden: 3, neurons dense: 1, dropout_rate: 0, n_dense hidden: 2, learning_rate:
0.00055

filters: 32, kernel size: 5, strides: 5, n_neurons: 45, n_gru_hidden: 3, neurons_ dense: 0, dropout_ rate: 0,
n_dense hidden: 0, learning rate: 0.002

dilation rate: (1, 2), repeat: 1, learning rate: 0.047

eTS [68] omega: 50, r: 0.1
Simpl_eTS [69] omega: 50, r: 0.3
exTS [70] mu: 0.1, omega: 1000
ePL [72] alpha: 0.001, beta: 0.01, lambdal: 0.001, r: 0.1, s: 10000
eMG [74] alpha: 0.01, lambdal: 0.5, omega: 10000, sigma: 0.003, w: 10
ePL+ [73] alpha: 0.001, beta: 0.01, e_utility: 0.05, lambdal: 0.25, omega: 100, pi: 0.5, sigma: 0.25
e¢PL-KRLS-DISCO [75] alpha: 0.1, beta: 0.25, e_utility: 0.03, lambdal: 1e-07, sigma: 1
NMR fuzzy _operator: prod, rules: 10

NTSK (RLS)
NTSK (wRLS)
GEN-NMR
GEN-NTSK (RLS)
GEN-NTSK (wRLS)

R-NMR
R-NTSK

adaptive filter: RLS, fuzzy operator: prod, lambdal: 0.95, rules: 1

adaptive_filter: wRLS, fuzzy operator: prod, rules: 16

error_metric: CPPM, fuzzy operator: min, num_ generations: 10, num_ parents mating: 5, parallel processing:
10, rules: 9, sol_per_pop: 10

adaptive_filter: RLS, error_metric: MAE, fuzzy_operator: max, lambdal: 0.99, num_ generations: 5,
num_ parents mating: 5, parallel processing: 10, rules: 1, sol_per_pop: 5

adaptive_filter: wRLS, error_ metric: CPPM, fuzzy_operator: prod, num_ generations: 5, num__parents mating:
5, parallelprocessing: 10, rules: 1, sol_per_pop: 5

combination: median, n_estimators: 50

combination: mean, n_ estimators: 50
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