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RESUMO

O objetivo deste trabalho é apresentar duas abordagens para o calculo do grupo fundamental
de uma variedade flag Fg = G/Pg. A primeira abordagem é baseada em [1] e consiste
em calcular o grupo fundamental de uma variedade flag via geradores e relagoes usando a
estrutura celular obtida a partir da decomposi¢ao de Bruhat e o Teorema de van-Kampen (veja
o Teorema 2.25). A segunda abordagem baseada em [2] parte de um resultado da teoria de
recobrimentos que afirma que o grupo fundamental de G/ Pg é isomorfo a um quociente de um
subgrupo discreto especial (veja o Teorema 3.1). Mais especificamente, como um quociente do
grupo das componenetes conexas de Pg (veja a Proposicao A.65). Neste trabalho, usaremos
este resultado para explorar com detalhes o célculo do grupo fundamental das variedades
flag de SL(n,R). Essa segunda abordagem tem um cardter mais algébrico, uma vez que o

recobrimento universal de SO(n,R) é descrito através das dlgebras de Clifford.

Palavras-chave: algebras de lie; grupo fundamental; grupos de lie; sistemas de raizes; variedades

flag.



ABSTRACT

The objective of this work is to present two approaches for computing the fundamental group
of a flag manifold Fg = G/Pg. The first approach is based on [1] and involves calculating the
fundamental group of a flag manifold via generators and relations, using the cellular structure
obtained from the Bruhat decomposition and the van Kampen Theorem (see Theorem 2.25).
The second approach, based on [2], relies on a result from covering theory, which states that
the fundamental group of G/ Pg is isomorphic to a quotient of a special discrete subgroup (see
Theorem 3.1). More specifically, it is a quotient of the group of connected components of Pg
(see Proposition A.65). In this work, we use this result to explore in detail the computation
of the fundamental group of the flag manifolds of SL(n,R). This second approach has a more

algebraic nature, as the universal covering of SO(n,R) is described through Clifford algebras.

Keywords: flag manifolds; fundamental group; lie algebras; lie groups; root systems.
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1 INTRODUCAO

Seja G' grupo de Lie semissimples, com centro finito, e com &lgebra de Lie g com
decomposigao de Iwasawa g = € @ a @ n, de forma que G = K AN é a decomposicao de Iwasawa
de GG e sejam II o conjunto das raizes de a e X C II um sistema simples de raizes. Para cada
© C ¥, consideremos a subdlgebra pg = m@ adndn(0)~, onde m é o centralizador de a em
€, n é a soma dos espagos de raizes correspondentes as raizes positivas e n(©)~ é a soma dos
espacos de raizes correspondentes as raizes negativas que sao geradas por ©. Uma variedade
flag de tipo © consiste no espago homogéneo Fg = G/ Pg, onde Py denota o normalizador de
po em G. O objetivo do trabalho é calcular o grupo fundamental de Fg apresentando como

este calculo pode ser feito através de duas abordagens distintas.

A primeira consiste em calcular o grupo fundamental com base na técnica desenvolvida
em [1]. Esta é, de fato, a primeira referéncia na literatura sobre o assunto. A ideia é usar
a decomposicao celular de Fg proveniente da decomposicao de Bruhat que nos permite
calcular o grupo fundamental via geradores e relagoes pelo método apresentado no teorema
de Van-Kampen. Desta forma, obtém-se a seguinte apresentagao do grupo fundamental (veja
o Teorema 2.25):

Teorema 1.1. Se X* denota o conjunto das raizes simples de multiplicidade 1, e e(«, ) =
(=)™ onde n(a, B) = 2§§Z; ¢ o numero de Killing, entdo o grupo fundamental de Fg
tem a sequinte apresentacao: os geradores sao t, o € X*, com relagoes gty = tat?a’ﬁ), para

a,BeX, a#fb, ety=1, paraa € ¥*NO.

A segunda abordagem foi desenvolvida mais recentemente na tese [2]. Ela consiste
em usar a teoria de recobrimentos para calcular o grupo fundamental de variedades flag. A
ideia ¢é a seguinte: como as raizes que contribuem para o grupo fundamental sao as raizes
de multiplicidade 1, consideremos o caso em que m = 0 e sejam p : G — G o recobrimento
universal de G e K = p Y(K) (veja a Proposigdo A.30). Denotemos por M o centralizador de
aem K, M o centralizador de a em K, Po o normalizador de pg em G e (Pg); a componente

conexa da identidade. Neste caso, temos o seguinte resultado (veja o Teorema 3.1)

Teorema 1.2. O grupo fundamental de Fo € isomorfo & M /(M N (Pe)).

Notemos que uma consequéncia imediata é que o grupo fundamental do flag maximal
F = Fy é isomorfo ao M (veja o Corolério 3.2). Além disso, usaremos esse resultado para
explorar com detalhes o grupo fundamental das variedades flag de G = SL(n, R), que séo os

flags de subespagos de R™. Neste caso, temos o seguinte resultado (veja o Corolario 3.36):



Teorema 1.3. Seja G = SL(n,R) comn > 2. Se © # () entao o grupo fundamental de Fg ¢é
isomorfo a M /(M N (Po)1).

Para destrinchar este resultado, precisaremos aprofundar no recobrimento universal
de SO(n,R), que é conhecido como grupo spin. A ideia da construgao deste grupo é a
seguinte: todo espaco vetorial munido de uma forma bilinear simétrica pode ser visto como
um subespaco de uma algebra associativa, conhecida como algebra de Clifford. No caso em
que o espago em questao tem dimensao finita, a algebra de Clifford também tem dimensao
finita e, portanto, o conjunto dos elementos inversiveis tem uma estrutura de grupo de Lie. O

grupo spin é definido como sendo um subgrupo especial (veja a Defini¢ao 3.20).

Cada elemento em pg ¢ uma matriz em blocos e esses blocos sao determinados por
©. Relacionando o grupo spin com esses blocos, temos o seguinte resultado (veja o Teorema
3.38).

Teorema 1.4. Seja G = SL(n,R) comn > 2. Se © # 0 entio o grupo fundamental de Fg é

isomorfo a Z5*, onde k € a quantidade de blocos na diagonal determinados por pe.

Para exemplificar a aplicacao de ambos os métodos, consideramos o caso da variedade
Grassmanniana Grg(n + 1) que corresponde a variedade flag de SL(n,R) com © dado pelo
complementar de uma raiz simples, digamos, ay. O Teorema 1.1 fornece o grupo fundamental
dado por um tnico gerador t,, com relagdo t2 = 1, ou seja, o grupo é Z, (veja a Segao
2.6). Por sua vez, pelo Teorema 1.4, como © determina dois blocos na subalgebra parabdlica,

concluimos que o grupo fundamental é Z, (veja o Exemplo 3.39).

O texto esta organizado da seguinte forma: no Capitulo 2 exploraremos a abordagem
de [1] via o Teorema de van-Kampen para complexos celulares. Notemos que as células
que contribuem para o grupo fundamental sdo as células de dimensao menor ou igual a 2
(veja o Teorema A.7). Portanto, na segao 2.2 estudaremos as células de dimensao menor ou
igual a 2 de uma variedade flag. Nas secOes seguintes teremos por objetivo obter as fungoes
caracteristicas dessas células para encontrar os geradores e as relagoes. Na ultima segao
do capitulo utilizaremos essa abordagem para calcular o grupo fundamental das variedades
Grassmannianas. No Capitulo 3, faremos a abordagem de [2], comegando pela se¢io 3.1
onde provaremos o Teorema 3.1) que é o resultado principal deste capitulo. Nas se¢des
3.2, 3.3 e 3.4 exploraremos as algebras de Clifford e na ultima se¢do nos concentraremos
no grupo fundamental das variedades flags de SL(n,R). Nos apéndices estao os resultados
que nos auxiliarao no texto principal. No Apéndice A.1 estao os resultados topologicos que
precisaremos, principalmente o Teorema A.7 que nos diz como calcular o grupo fundamental

de complexos celulares, e o Teorema A.13 que nos diz como é o grupo fundamental de um



espaco homogéneo. No Apéndice A.2 estao alguns resultados sobre a estrutura dos grupos
de Lie semissimples, principalmente a decomposicao de Iwasawa e como ela é preservada
no recobrimento universal. Ja no Apéndice A.3 é feita a construgdo das variedades flag

explorando aspectos importantes das subalgebras parabdlicas.
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2 GRUPO FUNDAMENTAL DE VARIEDADES FLAG: ABORDAGEM TO-
POLOGICA

2.1 PRELIMINARES

Esta secao tem por objetivo estabelecer as notagoes e enunciar alguns resultados que

utilizaremos no decorrer do texto.

Seja G um grupo de Lie conexo, semissimples com centro finito e algebra de Lie g,
com decomposicao de Cartan
g=tds,

e decomposicao de Iwasawa
g=tPadn,

de forma que G = KAN é a decomposicao de Iwasawa de GG, sendo K, A, N os subgrupos
conexos de G gerados por £, a, n, respectivamente (veja o Apéndice A.2.2). Denotemos por I1
o conjunto das raizes e por X um sistema simples de raizes. Sejam © C ¥ e Pg subgrupo
parabdlico de tipo O e seja Fg = G/ Py a variedade flag de tipo © (veja o Apéndice A.3).
Neste caso, temos que Fg é isomorfa & K/Kg, sendo Kg o centralizador de ag em K, de
forma que Fg é compacto. Em particular, se P denota o subgrupo parabdlico minimal, entao

F é isomorfa & K /M, onde M denota o centralizador de a em K.

Se W denota o grupo de Weyl de II, entao todo elemento k € M, é o representante
de um elemento w € W, sendo M, o normalizador de a em K, pois W é isomorfo a M, /M

(Proposicio A.47). Notemos que se kyM = kyM, entdo ky 'k € M, de forma que
k1Pe = k2 Po,

pois Pg = Kg AN contém M. Neste sentido, se k € M, é um representante de w € W, entao
podemos denotar
wP@ = ]{ZP@.

Seja Wg o conjunto dos elementos em VW que centralizam ag . Neste caso, temos que
wbe = be se, e somente se, w € Wg (veja o Lema 5.18 de [3]).

Assim, se wy Wg = wy We, entao wibg = webe. Vale a seguinte decomposicao de Fg,

a conhecida decomposicao de Bruhat (veja o Teorema 5.19 de [3]).

Proposicao 2.1. Fg = |_| Nuwbg.
weW / We

Seja W = {w € W: l(wr,) > l(w); Va € ©}. Devido & Proposicao A.59, podemos

escrever w = wiwy, com w; € WP e wy € We, de forma que wWg = w; Weg. Assim,
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podemos tomar Nwbg com w € W®. Denotemos Nwbg por C®. Quando © = (), denotemos

C? simplesmente por C,,.
Seja 119 = {a e IT: wlaell~\ (O)}.

Proposicao 2.2. A funcgdo
v Z ga — Nwbe

acll

que leva X em V(X) = exp(X)wbg € um difeomorfismo.

Demonstragio. Veja o Teorema 5.14 de [3]. |

Corolario 2.3. Sew e W® ew=r,, --- Ta, € uma expressao reduzida, entao

q
O
dim Cy) = > ma, + moa,,
i=1

onde my, denota a dimensao de gg.

Demonstracdo. A ideia da demonstracdo consiste em encontrar a cardinalidade do conjunto
I19. No caso em que © = (), temos que a cardinalidade ¢ n(w) = [(w) = ¢ (veja a Proposi¢ao
A.53). No caso geral, como w € W temos que C’S tem a mesma dimensao de C,, (Lema 3.1
de [4]). [ |

Em particular, cada C© é uma célula aberta. As células C® sdo denominadas de
células de Bruhat de Fg. O fecho de cada célula de Bruhat C© é denominada de célula de
Schubert e é denotada por S©. O seguinte resultado estd enunciado na Proposigio 2.7 de [1]
Proposicao 2.4. 5§ = | J C®, onde < denota a ordem de Bruhat'.

v<w
A partir da Proposicao 2.4, temos que a decomposicao de Bruhat de Fg nos fornece

uma estrutura de complexo CW em Fg.

Observagao 2.5. Notemos que a tnica 0-célula ¢ CP = {be} e bg estd no fecho de toda

2-célula. Portanto, estamos nas condi¢oes deA.1.1

2.2 CELULAS DE DIMENSAO < 2

Em um complexo CW, as células que contribuem para o calculo do grupo fundamental
sao as células de dimensao < 2. Nesta secao caracterizaremos essas células em termos das

raizes e do grupo de Weyl.
1" Veja a Definiciao A.60
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Lema 2.6. Sea € ¥ ¢ A= {a} ou A ={a,2a}, dependendo se 2a € raiz ou ndo, entao
ro(IIT\ A) =117\ A.
Demonstragio. Veja Lema 3.95 de [5] ou a Proposicao 9.12 de [6]. |

Em particular, as inicas raizes positivas que sao levadas em raizes negativas por uma

reflexao simples r, sao a e 2a, dependendo se 2« € raiz ou nao.
Lema 2.7. 1. we W° & w(O) CIIT.
2. Sew € We e a ¢ O, entio wa > 0.

3. Se ©1,0, C X sdo subconjuntos tais que ©1 N Oy = ), entao We, C wez.

Demonstragio. 1. Suponhamos w € W®. Por definicio de W€, temos que I(wry) > I(w),

para todo a € ©. Seja a € ©. Se wa € I, entdo segue da Proposicao A.51 que
l(wry) = l(w) — 1 < l(w),

contradicao! Portanto, wa € IIT. Reciprocamente, se wa € IIT, entao
lwry) = l(w) + 1> l(w),

para todo o € O, de forma que w € W°.

2. Seja w = T4, - - - Tq, uma expressao reduzida de w com «o; € © (Lema A.56). Se wa < 0,
entdo segue da Proposicao A.51 e do Teorema A.54 que existe um indice ¢ € {1,...,q}
tal que

W="Tq  Ta; " TagTa

Dai, r, € Wg e, portanto, a € O, contradicao! Logo, wa > 0.

3. Se w € Weg, e a € Oy, entao segue do item 2 que wa > 0. Logo, w(03) C IT*, donde
w € W2 pelo item 1.

Isso conclui a demonstracao. |

Seja ¥* = {a € X; m, = 1}, onde m,, denota a dimensao de g,.

Proposicao 2.8. Seja w € W. Vale que

1. weWP® edimC® =0 se, e somente se, w = 1.
w

2. weW® edimC® =1 se, e somente se, w =Tq, com a € L*\ O.
w
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3. we W® edim C® =2 se, e somente se, uma das sequintes afirmagoes é verdadeira:

a) w=ry coma€X\O, my=2€my, =0.
b) w=rarg, coma,BeX*\O ea#p.
c) w=rarg, coma€X*NO, F&X*\0O e a,p)#0.

Demonstragao. 1. Suponhamos w € W®, w = Tay ' Ta, €xpressao reduzida de w, e

k

k
. e
0=dimC, = Zmai + Maq,,
i=1

de forma que k = 0 e, portanto, w = 1. A reciproca também é imediata.

2. Suponhamos w € W, w = Tay *** Ta, €Xpressao reduzida de w e

k

k
1=dimCy =" ma, + Maa,.
i=1
Neste caso, k =1 e my, =1, donde w = r, com a € ¥*. Usando o Lema 2.7 temos que
a ¢ O, pois w(O) C T e wa = r,(a) < 0. Reciprocamente, suponhamos w = r,, com
a € ¥*\ O. Neste caso, a unica raiz simples que é levada em raiz negativa por w é a.
Como « ¢ O, segue que w(©) C II*, donde w € W® (Lema 2.7).

3. Suponhamos w € W® e dim C9 = 2. Neste caso, se w = rg, - ‘Tq, € UMa expressao
reduzida, entao
q
dim C? = > Ma, + Moa,,
i=1
de forma que ¢ € {1,2}.
Se ¢ = 1, entao w = r,. Neste caso, a inica possibilidade é m,, = 2, pois se m, = 1, entao
mao = 0 (Proposigao A.20). Notemos que o ¢ O, pois se a € ©, entdo w(a) = —a < 0,

contrariando w € W® . Assim, temos o item a.

Se ¢ = 2, entao w = 1,7 com o # 3. Neste caso, temos m, = 1 ¢ mg = 1, de forma
que «, 5 € X*. Temos que 5 ¢ ©. De fato,

w(B) = rars(f) = ro(=F).

Como a # e a é a Unica raiz positiva levada em raiz negativa por r,, segue que
ro(8) > 0, donde
U)(ﬁ) = —Ta(ﬂ) < 07
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e portanto, 3 ¢ ©, pois w(©) C IIT. Se o ¢ O, entdo temos o item b. Se o € O, entdo
wa > 0, pois w € W®. Notemos que

=rorg(a) =ro|a— )
wo = ryrz(a) a( 2<6’6>B>.

Dai, se («, ) = 0, entdo wa = —a, contrariando wa > 0. Portanto, («, 3) # 0, donde

segue o item c.

Reciprocamente, suponhamos o item a: w = r,, com « € 3\ O, m, = 2 € mg, = 0.

Neste caso, usando o Lema 2.7, temos que Wyx\g C WO, de forma que w € W°. Dal,
dimCS = Mg + Moo = 2.

Agora suponhamos o item b: w = r,rg, com o # e a,f € ¥*\ ©. Neste caso,
temos w € Wy C W€ (Lema 2.7). Além disso, como m, = 1 e mg = 1, temos que
Moo = 0 = mas (Proposicao A.20). Como o # 3, segue que w = 7,rz ¢ UMa eXpressao
reduzida, de forma que

dim CS = mg, + mg = 2.

Por fim, suponhamos o item c¢: w = rarg, com a € X*N0O, f € X\ 0O e (a,f) #0.
Primeiro, afirmamos que w € W®. De fato, como /3 # «, temos que a, 5 ¢ O\ {a}, de
forma que {a, 5} N (©\ {a}) = 0. Segue do Lema 2.7 que

w E W{aﬁ} - wo\el

e, portanto, w(O \ {a}) C I, também pelo Lema 2.7. Para ver que wa > 0, notemos

que
P R AN Y )
v = rartw) = oo 2(3:500) 5.5 (@1)
— — o, ) - <B’a>a = —a—n(B,«a n(a, B)n(f, a)a
2650 (5-20%a) (8.0)8+ n(a, An(3.a)a (22
= (n(a, B)n(B,a) = a —n(B,a)B, (2.3)
= Men o) = o, ) sdo os numeros de Killin omo « e 3 sao
onde n(a,ﬁ)—2<a7a> (8, a) 2<5>5> de Killing. C B

raizes simples e o # 3, um resultado da teoria de raizes nos da que (o, 8) < 0 (veja a
Proposicao 3.35 de [5]). Como («, 8) # 0, segue que («, 5) < 0 e, portanto, n(«, 3) < 0
e n(f3,a) < 0. Dai, os tnicos valores possiveis para n(a, #) e n(f, «) sdo —1, -2, —3, —4
(veja Proposicao 3.25 de [5]), de forma que n(«, 5)n(S,a) > 1. Assim, os coeficientes
de wa em 2.1 sdo inteiros positivos e, portanto, wa > 0. Assim, w(©) C I, donde

w e WP. Como o # 3, temos que w = roTp € uma expressao reduzida, de forma que

dim CS = m, + mg = 2. |
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2.3 GRUPO FUNDAMENTAL DE FLAGS MAXIMAIS

Nesta secao, calcularemos o grupo fundamental de flags maximais no caso particular
em que cada espaco de raiz é unidimensional. Portanto, sejam © = () e m,, = 1, para todo
a € 3. O caso em que m, = 1 para toda raiz simples o € ¥ ocorre quando g é uma forma
real normal de gc (veja o item 6 da pagina 531 de [7]). Neste caso, tem-se que m =0 e que a
é uma subalgebra de Cartan de g (veja Proposigao 6.47 de [8]), de forma que ac = C Qg a é
uma subalgebra de Cartan de gc = C ®g g. Assim, é possivel obter uma decomposi¢ao em

espagos de raizes de g¢
gc=acD Z (9¢)y,

~€lle
onde Il denota o conjunto das raizes de ac. Se « € II é uma raiz de a, entao v € um funcional

linear o : a — R. Neste caso, é possivel estender a para um tnico funcional linear sobre C
(1®a):C®Ra—>C

tal que 1 ® a(A ® H) = Aa(H), para todo A € C e para todo H € a.

Notemos que um elemento H de a¢ é da forma

H:Z)\1®Hl’ )\iE(C, HZ'GC[.

i=1
Se X € g,, entao

[H, X]| = [Xn:)\i@JHi,l@X] :zn:)\Z'@[Hi,X] :zn:)\i@Oé(Hi)X

i=1 i=1

= (1®Q)(i)\i®Hi)(1®X) =(l®a)(H)(1®X).

i=1
Logo, 1 ® a é uma raiz de ac e se (gc)o denota o respectivo espago de raiz, entao
1®ga C (gc)a. Como g, é unidimensional sobre R, segue que C ®g g, é unidimensional sobre

C. Como os espacos de raizes de uma algebra semissimples complexa sao unidimensionais

sobre C, segue que

(gC)a =C Qr Ha-

Sejam « € ¥ uma raiz simples arbitraria, H, € a o tnico elemento tal que (H, H,) =

2
a(H), para todo H € a e seja HY = < >Ha. Neste caso, seguindo a Observagao A.46,
a, o

existe X, € g, tal que [X,,0X,] = —H, onde 6 denota a involugao de Cartan, de forma que

g(a) =RX,®RH ®RO(X,)
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é uma subélgebra isomorfa a sl(2,R) via as identifica¢oes

1 1
0 . ( 0 < HY, 0 O)HQXQ.
0 0 0 -1 -1 0

Tomemos Z, = X, + 0X,. Neste caso, Z, se identifica com

Denotando © = {a}, temos que g(«) é exatamente a subdlgebra semissimples de tipo

© (veja a secao A.3.1). Neste caso, vale que
g(a) = t(a) ® s(a)
¢ uma decomposigao de Cartan de g(«), sendo (o) = tNg(a) e s(a) =sNg(a) e
g(a) = t(a) ® a(a) ®n(a)

¢ uma decomposicao de Iwasawa de g(a), sendo a(a) = ang(a) e n(a) = nNg(a). Se-
jam G(a), K(a), A(a), N(a) os subgrupos conexos de G gerados, respectivamente, por
g(a), t(a), a(a) e n(a). Neste caso, temos que G(a) = K(a)A(a)N(a) é decomposi¢ao

de Iwasawa de G/(«). A subdlgebra parabdlica minimal é

p(a) = a(a) ®n(a),

pois m(a) = 0. Denotemos o normalizador de p(«) em G(a) por P(«), de forma que F(«) =
G(a)/P(«) é uma variedade flag maximal de G(«). Seja também M(a) = M N K(«) o
centralizador de a(a) em K(«) (veja a Proposigao A.37).

Proposicao 2.9. t(a) = RZ,.

Demonstragio. Como g(a) ~ sl(2,R), temos que €(«) ~ s0(2, R), donde ¢(«) é unidimensional.
|

Agora, sejam B a forma de Cartan-Killing de g e B¢ a forma de Cartan-Killing de
gc. Neste caso, vale que Bclgxg = B (veja a Segao 3 do Capitulo 1 de [8]). Notemos que se
H=" \N®H €ac,com )\; € Ce H; € a, entao

Be(H,1® H,) = f:/\iB(Hi,Ha) = iAiOé(Hz’) =(1 ®04)(§n: A @ H;) = (1®a)(H).

i=1 i=1
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Assim, 1 ® H, é o tinico elemento em ac tal que
(l1®a)(H) = Bc(H,1® H,), VH € ac.

Seja (ac)(a) o subespago complexo de ac gerado por 1 ® H,. Como a(a) é subespago

unidimensional sobre R, segue que C ®g a(a) é unidimensional sobre C, de forma que
C ®r a(e) = (ac)(a).

Seja (gc) (@) = (gc)—a @ (ac)(a) @ (gc)a- Neste caso, vale que

(9c)(@) = (9-a)c @ a(a)c © (ga)c =~ g(a)c.

Lema 2.10. As sequintes afirmagoes sao verdadeiras:

1. Se i =+/—1, entdo e*1(7%e) = ad(miflJ),
2. exp(tZ,) € M(a) & t = 7k, para algum k € Z.

(8, )

é o numero de
(o, v

3. Se a, B € %, entio e*mZe) 75 = (—1)"*A Z5 onde n(a, B) = 2
Killing.

Demonstra¢io. Como gc(a) = g(a)c, o isomorfismo sl(2, R) — g(«) se estende a um isomor-

fismo complexo ¢ : sl(2,C) — gc (). Neste caso,
adog¢ : 51(2,C) — gl(gc)

¢ um homomorfismo. Como SL(2,C) é simplesmente conexo, existe um tinico homomorfismo
U : SL(2,C) — GL(gc) tal que d¥; = ado¢ (veja o Teorema 7.13 de [9]). Neste caso, se
X € ge(w), entdo

W(exp(7 (X)) = 2470 = ),

Em particular,
e2d(mZa) _ \Il(exp(ﬁ¢_1(za))>'

Mas, em SL(2,C) vale que
expwl(za)):exp( 0 ”):(‘1 0 )zexp(” 0.)=exp<w1<m:>>.
-7 0 1 0 —mi

Logo,
0 20) = W(exp(r ™ (Z)) = Wlexp(mi™ (1)) = M),
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Isso prova o item 1.
Para o item 2, como a(«) é gerado por HY, temos que
exp(tZ,) € M(a) < Ad(exp(tZ,))H) = H) < ¢ ' (Ad(exptZ,)H)) = ¢ ' (H).(2.4)
Mas, usando que ¢! oad(Z,) o ¢ = ad(¢p'(Z,)), temos que
¢~ (Ad(exptZa)HY) = ¢ oe ™) og(¢p HY) = 0T )G (YY)
= Ad(exp(to~ ( o)))o (H,
= exp(to™(Za))o ™ (Hy) Za))

o)
. (
B cost sint 1 cost —sint
—sint cost 0 — sint cost
B cos(2t)  —sin(2t)
—sin(2t) —cos(2t) )

Dai, voltando na Equacao (2.4), temos que exp(tZ,) € M(«) se, e somente se,

( 1 0 ) _ ( cos(2t)  —sin(2t) )
0 -1/ \ —sin(2t) —cos(2t) )
Isso acontece se, e somente se, t = wk, para algum k € Z.

Para o item 3, se X € (gc)s, entao

27i 27i (B, )

[miHY, X] = [H,, X] = B(H)X = mi2

X =mi- X.
(o) (o) )
Dai, usando o item 1, temos que

ead(ﬂ—Z&)X _ ead(wiHX)X _ eﬂ'i-n(a,B)X.
Analogamente, temos que se X € (g¢)_g, entao
ea.d(T('Za)X _ 6ad(m’H(X))( _ e—mﬁn(a,ﬁ)X‘
Como o ntimero de Killing n(a, #) é um inteiro, temos que se n(a, #) é par, entao

e:l:m'%(a,ﬂ) -1

e se n(a, ) é impar, entao
eim’-n(a,ﬁ) -1

Logo, como Zg = X3 + 0.X3, segue que

ead(wZa)Zﬂ _ ead(TrZa)XB + €ad(7rZa)(6XB) _ (_:Un(oz,ﬂ)Xﬂ + (_1)77,(&,,8)0)(6
= (1ye0z,

como queriamos. [ |
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Como estamos considerando © = (), uma célula de Bruhat C© é denotada simplesmente

por C,,. Neste caso, o ponto base bg do flag maximal F é denotado simplesmente por b.

Observagao 2.11. Para cada « € ¥, denotemos F(a) = G(a)/P(«) o flag maximal de G(«)

de forma que b(a) = 1P(a) denota o ponto base. Neste caso, temos uma inclusao natural

t:G(a)/P(a) - G/P, gb(a) — gb.
O espago tangente de F(a) = G(a)/P(a) no ponto base é

Ty F () ={X - b: X € g(a)},

de forma que o espago tangente nos demais pontos gb, sao obtidos por translagoes

Ty F(0) = {g(X -b): X € g(a)}.
Analogamente, o espaco tangente de F no ponto base é

T, F={X -b: X e€g}
e o espaco tangente no ponto gb ¢é
TpF ={g(X-b): X €g}.

Para maiores detalhes, veja o Apéndice C de [3].

Dai, calculando a derivada da inclusao no ponto b(c), temos que diyq) € injetora, pois
se dipa) (X - b(a)) = 0, entdo

0 = dip) (X - b(a)) = Zb(exp(tX)b(a))ho = iexp(tX)bho =X b, (2.5)

donde X € p. Logo, X € g(a) Np = p(«), e portanto, X - b(«) = 0. Notemos que

(tog)(kb(a)) = v(ghb(a)) = gkb = (g o ) (kb(e)),

onde g : F(a) — F(a) e g : F — F denotam a translacao por g. Derivando em b(«), temos que

dLgb(a) @) dgb(a) = dgb e} dLb(a).

Como dgp(a) : Toa) F (o) = Typa) F (@) € dgy : TLF — Ty[F sdo isomorfismos, segue que ¢ tem
posto constante. Sendo uma aplicacao injetora de posto constante, segue que ¢ é uma imersao.

Assim, podemos olhar para F(a) dentro de F.



20

Denotemos por F, a variedade flag Froy = G/ Py de tipo © = {a}, b, o ponto base

e consideremos a projecao
Pa : F = Fa, pal(gh) = gba

do flag maximal em F,. E claro que p. é equivariante.

Proposigao 2.12. A fibra p;'(bs) € difeomorfa ao flag maximal F(a) = G(a)/P(a), de
maneira que gb € p.(by) € identificado com gb(a) € F(a).

Demonstragio. Se ¢ : F(a) — F denota a inclusao ¢(gb(«)) = gb, entdo como ¢ é imersao,
basta mostrarmos que p;'(b,) = ¢(F(a)). Se kb € p;'(b.), k € K, entdo kb, = b,, donde
k € Py = K{iyAN (Proposigao A.44). Mas Ky, = K(a)M (Teorema 4.13 de [3]), de
forma que k = k(a)m € K(a)M. Dai, kb = k(a)b = t(k(a)b(«)). Reciprocamente, se
k(a)b = t(k(a)b(a)), entdo

pois k(a) € K(a) € Koy € Pay- |
Lema 2.13. A decomposicio de Bruhat de F(a) = G(«a)/P(«) €

F(a) = {b(a)} | N(e)rab(a)
Demonstragio. A decomposigao de Bruhat de G(«)/P(«) é

G(a)/P(a) = || N(e)wd(a),

WEWo
onde b(a) é o ponto base 1P(«), a, é o complemento ortogonal de a(a) em a, W, = {w €
W; w|,, =id,,} e a barra denota a restri¢gdo a a(a). Como W, é o grupo de Weyl de a(«)
(veja Proposi¢ao A.57), temos que
Wa = {1,745}

Pela Proposicao A.45, temos que 7, e 7, sdo representados pelo mesmo elemento em M ().,

de forma que r,b(a) = Tob(a). Dai, a decomposi¢ao de Bruhat de G(«)/P(«) é

G(a)/P(a) = {b(a)} [ | N(a)rab(a),
como queriamos. [ |

Lema 2.14. Se «, 8 € ¥ sdo tais que o # (3, entdo

1. Cy, = N(a)ryb.

2. Crory = N(a)N(ra(B))rarsb.
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3. Seja ko € K(a). Tem-se que ko € K(a) \ M(a) < kub € C,,.

4. Todo elemento de C,., é da forma k,b, com k, € K(a) \ M(«).

Demonstragao. 1. Sejam ny = 3" e\ (o} 91 € No 0 subgrupo conexo de N gerado por n,, .
Neste caso, segue do Lema A.15 que N = N(«)N,. Afirmamos que N,r.b = r,b. De
fato, se n € N,, entao também pelo Lema A.15 podemos escrever n = exp(X), com

X €ng,. Dai, X =37 ciiv\ (o) X5, de forma que usando a Proposicao A.48 ficamos com

reX =ra Y, Xy€ D> G

yelt\{a} yellt\{a}
Mas 7, () € I\ {a}, para toda raiz positiva v # « (Lema 2.6), de forma que 7, X € n,, .

Portanto, n, é invariante por r,. Dai, como r, = r !, temos que
ro €Xp(X)ry = exp(raX) € N,.
Assim,
Nrob = N(a)Nuyrob = N(Q)rar, ' Norab = N(a)roaNob = N(a)r4b,
sendo que a tultima igualdade segue do fato de que N, C N de forma que N,b =b.

2. Sejam M = 3" crit\fa,ra 8} Oy € N5 = Doqemrt\ 5} G € Sejam Ne N os respectivos subgrupos

conexos. Neste caso, temos que
N = N(a)N(ra5)N.
Um elemento em N é da forma exp(X) com X € @i e

TaX = Ty Z X, € Z Orony-
vellt\{a,ra 8} vellt\{a,ra 8}

Afirmamos que 7,X € ng. De fato, se r,y = 3, entao v = r, /3, contradigdo. Portanto,
ro7y # [ para todo v € IIT \ {«, 7,3}, de forma que r,X € ng. Dali,

raﬁra C Ng.
Segue da demonstragao do item 1 que rgNgrg € N3 C N. Assim,
rgraﬁrarg C rgNgrg C N,
de forma que

rgraﬁrarﬁb =b

Nrorgb = N(a)N(raﬁ)vararﬁb = N(Oz)N(raﬁ)rarg(rarfg)’llvrargb
= N(a)N(rof)rars (rgraﬁrarg) b
= N(a)N(rof)rarsb.
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3. Suponhamos k, € K(a)\ M(«). Neste caso, pelo Lema 2.13 temos que a decomposigao
de Bruhat de G(a)/P(«) é

G(0)/P(a) = {b(a)} L] N(@)rab(a).
Como k, ¢ M(«), temos que k.b(a) € N(a)r,b(«), de forma que
kob(a) = narab(a), ny € N(a).
Pela Proposicao 2.12, identificando k,b(c) com k,b e n,rob(a) com n,r,b, temos que
kob = narab € C,,.
Reciprocamente, se k.b € C,_, com k, € K(«), entdo kb # b, donde k, ¢ M(«).

4. Todo elemento de C,, é da forma n,r,b. Usando a decomposi¢ao de Iwasawa de G(«),

podemos escrever n,r, = kqan € K(a)A(a)N(«a), de forma que
NaTab = koanb = kb,

com k, € K(«). Como k,b € C,,, temos que k, € K(a)\ M(«).

Isso termina a demonstracao. [ |

Denotando I = [0, 1], e b o ponto base de F = GG/ P, consideremos as seguintes fungoes

T, : I —TF, T,(s)=exp(snZ,)b
Tap: I x 1 —TF, Top(s,t) =exp(snZ,)exp(tnZs)b.

Proposicao 2.15. T, é uma fun¢do caracteristica para C,,,.

Demonstragio. Temos que T,(0) = b € Cy e T,(1) = exp(nZ,)b = b € C}, pois, pelo Lema
2.10, exp(nZ,) € M(a) C P. Dai, T, leva o bordo de I em C;. Se s € Int(I), entao pelo
Lema 2.10 temos que exp(snZ,) € K(a) \ M(«), donde exp(snZ,)b € C,, (Lema 2.14).
Resta mostar que 7, é um difeomorfismo entre Int(/) e C,,. Afirmamos que T, ¢ injetora em

Int(7). De fato, se s, 59 € Int([) sdo tais que exp(s17Z,)b = exp(samZ4)b, entao
exp((s; — s9)mZy)b =10 € C4,

donde exp((s1—$2)7Z,) € M(«), pelo Lema 2.14. Logo, pelo Lema 2.10, temos que s;—s3 = k,
para algum inteiro k € Z. Como 0 < s1, s9 < 1, segue que k = 0 e, portanto, s; = So. Assim,
T, é injetora em int([). Para a sobrejetividade, segue do item 3 do Lema 2.14 que um elemento

de C,, ¢ da forma k,b, com k, € K(a)\ M(«). Como ¢(a) = RZ, ¢ unidimensional, segue
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que ko = exp(tnZ,), t € R. Como k, nao estd em M («a), segue do Lema 2.10 que ¢ nao é
inteiro. Mas, também pelo Lema 2.10, temos que exp(tmZ,)b = exp((t + k)7 Z,)b, para todo

k € Z, de forma que podemos escrever
kab = exp(tnZ4)b = exp(snZyb), s € Int(1),

donde kob = T,(s). Assim, T,, é uma bijegao entre Int(/) e C,., . Para ver que ¢ difeomorfismo,
basta notar que a curva T, é uma curva integral do campo infinitesimal gerado por 77,
que passa por b. Notemos que b ndo é ponto fixo deste campo, pois se fosse, teriamos
T.(s) = exp(smZ,)b = b, para todo s € (0, 1), o que nao pode acontecer, pois T,(s) € C,, e
as células sao disjuntas. Como b nao é ponto fixo, segue que T, é uma imersao que leva Int(7)
em C,_ . Como C,, tem dimensdo 1, temos que T, é um difeomorfismo local entre Int([) e

C,,,. Sendo um difeomorfismo local bijetor, T,, é um difeomorfismo entre Int(1) e C,. |

O objetivo agora ¢ provar que T3 ¢ uma funcio caracteristica para Ci., ;.

Lema 2.16. Sejam o, € X raizes simples com o # (3. As sequintes afirmagoes sao

verdadeiras:

1. M A normaliza N(«).
2. M normaliza K(«) e M(«).
3. Sen, € N(a) eng € N(f3), entdo nangrgb = ngrgb.

4. M, normaliza M A.

Demonstragio. Para o item 1, notemos que A normaliza N(«a), pois se a € A e n, € N(«),

entdo a = exp(H), H € a e n, = exp(Ya), Ya € go (Teorema A.24). Neste caso,
anga ' = aexp(Yy)a ' = exp(Ad(a)Y,).

Mas,
Ad(a)Y, = Ad(exp(H))Y, = e*HY, € g,,

pois [H,Y,] = a(H)Y, € g,. Portanto, A normaliza g,. Também temos que M normaliza

N(«a), pois M normaliza g, (Proposicdo A.48), de forma que se m € M, entao
mnem ' = mexp(Yy)m ' = exp(Ad(m)Y,) € N(a).

Como M e A normalizam N(«), segue que M A normaliza N(«), o que prova o item 1. Para

o item 2, como M normaliza g,, §_, € a(a), temos que M normaliza

g(a) =g ®a(a) D ga-
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Dai, se X € g(a) e m € M, entdo
mexp(X)m ™! = exp(Ad(m)X) € G(a).

Como G(«) é gerada por exponenciais de g(a), segue que M normaliza G(«), donde M
normaliza K (a) = K N G(«). Assim, M normaliza M (a) = M N K(a), o que prova o item 2.

Para o item 3, basta mostrarmos que
rainglngn eP
g Mg MaNplp < I
Escrevamos n, = exp(Y,), Ya € 8a, € ng = exp(Ys), Y3 € gs. Neste caso,
ng'nang = ng' exp(Ya)ng = exp(Ad(nz')Ys,).

Mas,
Ad(ng")Ys = Ad(exp(—Y3))Ya = Y, € 3 gars

k>0
Dali, n/glnanﬁ € N. Como «a # f3, e a Unica raiz simples levada em raiz negativa por rz é 3,
temos que 75(a + k) é uma raiz positiva, para todo k£ > 0. Dal, segue da Proposi¢do A.48

que

s Z Jotks = Z Ors(atks) S M.
k>0 k>0

Assim,

rlglnglnangrg eNCP

de forma que

nangrzb = ngrgb,

0 que prova o item 3. Para o item 4, sejam k € M,, m € M e H € a. Neste caso, como
k~'H € a, segue que
kmk™*H = kk™'H = H,

donde M, normaliza M. Como M, normaliza A e M, segue que M, normaliza M A, o que

prova o item 4. [ ]
Lema 2.17. Se ps : F — Fg denota a projecio ps(gb) = gbs, entdo
1. p5" (Nrargbg) = NrobUNr,rgh.

2. pa|Nrap : N1ob — Nrobg € difeomorfismo.
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Demonstragio. Para o item 1, a decomposicao de Bruhat de F(3) é

F(8) = {b(B)}UN (B)rsb(B).
Usando o difeomorfismo de pgl(bg) com F(5) (Lema 2.12) temos que
P (bs) = {bYUN(B)rsb.
Aplicando r, e usando a equivariancia de pg, ficamos com
pgl(rabg) = {rob}Ur N (B)rsb.

Usando que 7,93 = g5 (Proposicao A.48) e que r,(3) é uma raiz positiva (Lema 2.6), temos
que

raN(8) = TaN(B)Tglra = N(ra(B))ra;

de forma que
5 (rabg) = {rab}UN (o) rarsh.
Aplicando N e usando a equivariancia de pg, ficamos com
pgl(Nrabﬁ) = NrobUN7T,7gb.
Mas, r3bs = bg, pois rg € K(f). Dali,

pgl(Nrargbﬂ) = pgl(Nrabﬁ) = NrabUN7,7gb.

Para provar o item 2, basta mostrarmos que pg ¢ injetora em N7,b, pois pg ¢ equivariante
e, em particular, tem posto constante, de forma que se for uma bijecao é um difeomorfismo.

Portanto, seja n17,bg = nar,bg. Neste caso, temos que
ny 'nirab € pgt(rabs) = {rab}UN (ro8)rarsh.

Como ny'nirab € C,, e as células sdo disjuntas, temos que n;'nirab & N(roB)rargh, de
forma que

Ny 'nirab = 14b,
0 que prova que pg ¢ injetora em Nr,b. |

O Lema 2.17 acima é o Lema 1.4 de [4], mas enunciado de maneira adequada para o

nosso contexto de uma 2-célula. O argumento da demonstragao é essencialmente o mesmo.

Proposicao 2.18. T, ¢ uma fungio caracteristica para Cy,,.
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Demonstragio. Primeiro, provemos que T,3(0(1 x I)) estda contido no 1-esqueleto. De fato,

Top(s,0) = exp(snZ,)be C,,
Top(s,1) = exp(snZ,)exp(nZz)b = exp(snZy)b e C,,,

pois exp(7Zg) € M(S) (Lema 2.10).
T.p(0,t) = exp(tnZp)b e Cy,.
Agora, usando que M normaliza K (/) (Lema 2.16), temos que
Top(1,t) = exp(nZy) exp(tnZs)b = exp(mZ,) exp(tn Zg) exp(—nZy )b € C,,.

Assim, T, leva O(I x I) no l-esqueleto. Agora, provemos que T, é um difeomorfismo entre
Int(I x I) e C,,,,. Por um lado, seja (s,t) € Int(/ x I). Neste caso, como T,(Int I) = C,, =

N(a)rab, temos que exp(smZ,)b = nyrqb, com n, € N(a), de forma que
exp(smZy) = NaTaqn,

comq € MAen € N. Notemos que gn € PNG(a) = P(a) = M(a)A(a)N(a). Pela unicidade
da decomposicao gn € M(a)A(a)N(«a), segue que ¢ € M(a)A(a) e n € N(a). Denotemos
n =n! € N(a), de forma que

exp(smZy) = naraqn.,.

Também podemos escrever

exp(tmZz)b = ngrgb.

Dai,
Top(s,t) = exp(s7Z,) exp(tnwZ5)b = naraqni,nsrsb.

Pelo item 3 do Lema 2.16, temos que n/ ngrgb = ngrgb, donde
NaTaqnongrgh = naroqngrsb.
Como qng = qngq 'q = nj3q, com nj = qngqt € N(B) (item 1 do Lema 2.16), temos que
NaTaqNarh = NaTaNqrgb.
Mas, M, normaliza M A (item 4 do Lema 2.16), de forma que grzb = rﬂrglqrﬂb = rgb. Dal,
NaTaNgqrab = naTangrsb.
Usando a Proposigio A.48, temos que 1, (5) = ranjr, " € N(ro(3)). Assim,

narangrgb = naran/ﬁrglrargb = NNy (B)Talsb € C’TQTB,
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pois Cy,; = N(a)N(r(8))rarsb (Lema 2.14). Portanto,
Taﬁ(s,t) S C”’a"’ﬁ'

Reciprocamente, se nan,,g)ra7s € Cr,ry, entao usando a Proposicao A.48 temos que ng =

T‘ﬁ?
o e, 3re € N(B), de forma que

NNy (8)Talsb = nararglnm(ﬁ)rarﬂb = NaTangrgb.
Mas, norob = exp(smZ,)b, com s € (0, 1), de forma que
NaTo = exp(smZy)qnl,,q € MA, n, € N(«).
Dai,
NaTanprsb = exp(smZy)qningrsb = exp(swZy)qnsrgh,

onde a tultima igualdade segue do item 3 do Lema 2.16. Como M A normaliza N (), segue
que

exp(smZy)qnprsb = exp(smZ,)qnaq tqrab = exp(smZa)npqrsb, njy € N(B).

Usando que M, normaliza M A, ficamos com
exp(smZa)nqrab = exp(swZa)ngrary qreb = exp(swZa)nrgh.
Mas, njgrgb = exp(tmZz)b, com t € (0,1), donde
exp(smZq)ngrsb = exp(smZ,) exp(tn Zz)b = Top(s, t).

Em resumo, T4 leva o interior de I x I em C,,,, e todo elemento de C,,,, ¢ imagem de

s
alguém no interior de I x I. Afirmamos que T,3 ¢ injetora em Int(/ x I). De fato, sejam (s, )

e (s,t) em Int(1 x I) tais que Tpp(s,t) = Tp(S,t). Sem perda de generalidade, se s > §, entao

multiplicando os dois lados por exp(—s$7Z,), ficamos com
TQB(S - g, t) == Taﬂ(O,t).

Mas o lado direito estd em C,,,

acontecer pois as células sao disjutas. Portanto, s = s. Dal,

enquanto o lado esquerdo estd em C,,,,, 0 que nao pode

b

Tos3(0,t) = Top(0,)

donde Tp(t) = Tp(t) e, portanto, t = . Isso prova que T,z é injetora em Int(I x I). Por fim,

afirmamos que Ti,5 ¢ uma imersao de Int(/ x ) em F. Para isso, basta mostrarmos que

0 0
{d(Tﬂtﬂl(So,to)) (asl(SO,to)) ) d(Taﬁ) |(So,t0) (at |(807t0)> }
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¢ linearmente independente no espaco tangente de C. ., no ponto Tns(so,t), para todo

(s0,t0) € Int(I x I). Fixemos ty € (0, 1) e consideremos a seguinte aplicagdo
Tos:(0,1) = Cporyb, Tag(s) = Tap(s, to).
Seja ps : F — 3 a projecao. Neste caso, como exp(tonZz) € K (), temos que

psoTag(s) = exp(smZy)exp(tonZs)bs = exp(smZq)bs
= psoTa(s).

Como Ty, : (0,1) — Nryb é um difeomorfismo (Proposi¢ao 2.15) e ps é um difeomorfismo

entre Nr,b e Nrobg (Lema 2.17), temos que

Dg ngﬂ =psgoT,:(0,1) = Nrob — Nrybg

0
dp,ﬁ <d(Ta,@)(So,to) (as | (So,t0)> )

¢ base do espago tangente de Nr,bg no ponto pg(Tas(so,tp)). Em particular,

¢ um difeomorfismo. Dai,

0
T gyl #0. 26)
s
Por outro lado, notemos que
d d d
%Taﬁ(so, =ty = pr exp(somZy) exp(tnZ3)b = d(Eexp(sornza)) pr exp(tmZ5)bli=t,

= d(EeXp(Soﬂ'Za)) (Té@o)) )

onde Eeyy(syrz,) denota a translagao a esquerda, que ¢ um difeomorfismo. Como T é(to) #0
(Proposicao 2.15), temos que d(Tysg)(so,t0)(0/ 0| (s0,t0)) 7 0. Além disso,

0 d d
dpﬂ (d(Taﬂ>(So7t0) (atkso,to))) - %pﬁ (Taﬂ(‘SOv t)) |t:t0 = % eXp<SU7TZa) eXp<t7TZ5)bﬂlt:to

d
= = exp(somZa)bgli=t, = 0.

Logo, d(Tos3)(0/0t(syt0)) ndo pertence ao subespaco gerado por d(T,z)(0/05|(se4)), de forma
que esses elementos formam um conjunto linearmente independente. Com isso, 1,3 é uma
imersao de Int(I x I) em [F que cai em C’TQTB e, Como Cram tem dimensao 2, segue que T,z ¢

um difeomorfismo local de Int(I x I) em C, Sendo um difeomorfismo local bijetor, temos

Talg"

que T, ¢ um difeomorfismo entre Int(I x I') e C

rarg- Lortanto, T,,5 € uma funcdo caracteristica

para C,. .. [
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Observacao 2.19. A demonstracao de que 7,3 ¢ um difeomorfismo entre (0,1) x (0,1)
e C

rars f01 inspirada na demonstracao da Proposi¢ao 1.9 de [4]. L&, o resultado é mais

geral para uma célula C,, e o argumento é uma indugao sobre l(w), que é semelhante ao
que fizemos para T,g. A diferenca é que na Equagao 2.6 podemos provar que o conjunto
{0/0t:\ Ty, ...,0/0t,_1T,} é linearmente independente usando que p,, é submersao (aqui
. ¢ minimal) e 0/0t,T, nao pertence ao subespago gerado, de forma que
{0/ot,T,,,...,0/0t,T,} é linearmente independente. ]

W = To """ T

Denotemos por t, a classe de homotopia de T, e e(a, 8) = (—1)*# onde n(a, )
¢ o namero de Killing. Para o resultado que enunciaremos abaixo, usaremos o conceito de

palavra de fronteira que foi introduzido na Definicao A.6.

Proposicao 2.20. Uma palavra de fronteira de T,p é tﬁtat;(a’ﬂ)t;l.

Demonstrag¢io. Consideremos os caminhos ¢1, ¢a, ¢3, ¢4 : I — O(1 x I) definidos da seguinte

forma;

¢1(5> = (075)7 ¢2(3) = (5? 1): ¢3(5) = (17 1— 5)7 ¢4<3) = (1 - 570)'

2

R

{_J

e

o)
Neste caso, temos que a concatenagao dos caminhos
¢ = 1% P2k P3x Py

é um laco em (I x I) que gera o grupo fundamental de O(I x I) ~ S'. Dai, a palavra de

fronteira de 7,3 ¢ a classe de homotopia de T,g 0 ¢. Mas,

Ta,ﬁ © ¢ = (Taﬁ © ¢1) * (Taﬂ © ¢2) * (Ta,B © ¢3) * (Ta,ﬁ © ¢4)

Notemos que

Ta,ﬁo(bl :Tﬁ7
Taﬁ o ¢2 = Ta;
Tagods =T,

Para calcular 7,5 o ¢3, vejamos que

Top o ¢3(s) =Tup(l,1 —s) = exp(nZ,) exp((1 — s)7wZ3)b = exp(nZ,) exp(—snZz)b.
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Denotando m, = exp(7Z,) € M(«), temos que

Togo ¢3(s) = maexp(—stZs)b=mg,exp(—stZz)m,'b
= exp(—smAd(my)Zs) = exp(—sm Ad(exp(71Z,))Zs)
= exp(—smel(™Ze) 7).
Usando o item 3 do Lema 2.10, temos que e*4("%e) 75 = (—1)"*H Z; = ¢(a, ) Z5 de forma
que
Top o ¢3(s) = exp(—sme(w, B)Z3) = Tﬁ_a(a’ﬁ)(s).

Assim,
Tago¢=TyxTox Ty P xT L,

Portanto, uma palavra de fronteira de Ti,z ¢

totaty 7t

o )

como queriamos. [

Com isso, usando o Teorema A.7, podemos calcular o grupo fundamental de F = G/P

via geradores e relagoes.

Teorema 2.21. O grupo fundamental de F tem a sequinte apresentagdo: os geradores sao t,,

com « € 3, e as sequintes relagoes: tgt, = tatg(a’ﬁ), coma,BEX, a#p.

2.4 GRUPO FUNDAMENTAL DE VARIEDADES FLAG: CASO GERAL

Agora consideremos o caso geral de uma variedade flag Fg, isto é, quando © C ¥ é
qualquer e os espacos de raizes de g nao sao necessariamente unidimensionais. Para calcular
o grupo fundamental de Fg, juntaremos a Proposicao 2.15, a Proposi¢ao 2.18 e a Proposicao
2.8.

Segue da Proposicao 2.8 que as células de dimensao 1 sdo C’SX com a € ¥*\ ©. Portanto,
os geradores do grupo fundamental de Fg sao t, com « € ¥*\ ©. Agora, calcularemos as

palavras de fronteira para as células de dimensao 2.

Consideremos a projecao pg : F — Fg que leva gb € F em pg(gb) = gbe € Fo.

Notemos que peg estda bem definida pois P C Pg. Dai, podemos considerar as aplica¢oes

T :pooT,: I — Fe, eTo%:p@oTaﬁ:Ix[—)F@, a, B eX.

Notemos que pe(C,) = C9, para todo w € W.
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Proposigao 2.22. Se a € X\ O € tal que my =2 e mo, = 0, entao a palavra de fronteira de

C® ¢ trivial
«@

Demonstracao. Segue da Proposicao 2.4 que a fronteira de C’fi é a célula trivial CP = {be},
de forma que o lago de fronteira é constante igual a bg e, portanto, a palavra de fronteira é
trivial. m

Proposicao 2.23. Se o, 5 € ¥*\ © com a # f3, entao TO% ¢ uma funcao caracteristica para

C® e t@tatga(a’ﬁ)tgl ¢ uma palavra de fronteira para C°

Talp Talp

Demonstragio. Como «, 5 € ¥* \ O, segue que os argumentos da Proposi¢ao 2.18 se aplicam

neste caso. Dal, basta aplicar a Proposicao 2.20. |

Proposigao 2.24. Sea € ¥*NO e f € ¥*\ O, com (o, ) # 0, entao TSB ¢ uma fungdo

caracteristica para C’grﬂ e tgt;(a’ﬁ) ¢ uma palavra de fronteira para 07?17"57 ety =1.

Demonstracao. Neste caso, Tfﬁ ¢ uma funcao caracteristica para C’ﬁ rg: De fato, como
P6(Crors) = Cfirﬂ, temos que Ty (Int (1 x I)) = CSM e que To;(9(I x I)) cai no 1-esqueleto.

Afirmamos que TO% é injetora em Int(I x I). De fato, seguindo a mesma ideia da demonstragao
da Proposicdo 2.18, se T9(s,t) = Ty(5,t), entdo To(s — 5,t) = T9(0,t). Como o lado
direito estd em C’Sg, segue que s = §, pois as células sao disjuntas. Dalf, Tf?(t) = Tg(t). Como
B € ¥*\ O, caimos no caso da Proposicao 2.15, de forma que T, BG é injetora em Int(7). Agora,

. o 5 O tam i x /
pe : Crory — Oy, € uma submersao e, como Ch,r, e O, tém dimensao 2, segue que pe ¢

um difeomorfismo local. Como T : Int(I x I) = C,,,, é difeomorfismo, temos que

—C°

TaTp Talg

Tes =peoTas : Int(I x I) = C

[0}

¢ um difeomorfismo local. Sendo um difeomorfismo local bijetor, segue que Ta@B é difeomorfismo

entre Int(I x I) e Cg rg» de forma que TO% é uma funcao caracteristica para CT@a ro’ Com isso,

podemos calcular a palavra de fronteira assim como na Proposicao 2.20, mas neste caso T, ¢é
(e.B) ]

um laco trivial pois a € O, de forma que a palavra de fronteira é tgtgg
Com isso, usando o Teorema A.7, podemos calcular o grupo fundamental de Fg via

geradores e relacoes:

Teorema 2.25. O grupo fundamental de Fg tem a sequinte apresentacdo: os geradores $ao

to, @ € 3%, com relagoes tat, = tatz(a’ﬁ), para o, f €X*, a# B3, ety =1, para o € ¥* N O.
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2.5 EXEMPLO: FLAG MAXIMAL DE SL(3,R)

Seja G = SL(3,R). Neste caso, temos que ¥ = {a, } com n(a, ) = -1 en(f,a) =

—1. Dali, o grupo fundamental H do flag maximal IF tem geradores ¢,,t3 com relacoes
tals = tgt,' e tgta =taty'. (2.7)
Proposigao 2.26. Se ¢ = [t,, 5] = tatgtgltgl denota o comutador de t, e tg, entdo
c=th=t3=t>=t"e’ =1
Demonstrag¢ao. Usando que t,ts = tgt;l, temos que
¢ =ttty 5" = tatalaty' =13
Por outro lado,
t2 =c=tatg(t't5") = tatg(tsta) ™" = talataty') ™ = tatht ",
de forma que t, = t3t," e, portanto, t3 = t2 = c. Também temos que
¢ = (tatp)ty 'ty =tat 2t5" =ta(ts) t5" =157

Portanto,
c=th=t=t"=tecc? =1, (2.8)

como queriamos. [ |
Com este resultado, temos que C' = {1, ¢} é um subgrupo normal de H.

Proposicao 2.27. O grupo H/C é isomorfo a Zy X Zs.

Demonstragio. Como H é gerado por ta,ts ¢ ¢ =2 =13 = ¢, = t5*, temos que H/C ¢é um
subgrupo com 4 elementos {1,%,,%5,%.ts}, onde a barra denota a classe de um elemento em
H/C. A identificacao

define um isomorfismo. [ |
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Assim, H é um grupo com 8 elementos. Se 7 : H — H/C' denota a projecao, entao a

fibra de cada elemento tem dois elementos. Temos que

(1) = {l,¢}
) = {tety'}
T (ts) = {tst5'}
T tals) = {tals tsta}

Portanto,
H={1,cta,t;" tg.t5" tats, tata}.

Proposicao 2.28. H ¢ isomorfo ao grupo quaternionico

Qs = {£1, +i, +7, £k},
de forma que t, ¢é identificado com i etz € identificado com j.
Demonstracao. As identificagoes

1—1, c— -1

to i, 1t —i

tg—j, tz' > —j
tatg — k, tgto— —k

definem um isomorfismo. [ |

2.6 EXEMPLO: VARIEDADES GRASSMANNIANAS

Uma variedade Grassmaniana Grg(n 4 1) consiste no conjunto dos subespagos de
R"™! de dimensdo k. Seja G = SL(n + 1,R). Como todo elemento de G ¢ um isomorfismo e

isomorfismos preservam dimensao, temos uma agao natural de G em Grg(n + 1). Denotemos

por b € Grg(n + 1) o subespago gerado por {ey,..., e}, onde eyq,. .., e,1 denotam os vetores
candnicos. Neste caso, fixemos x € Grg(n + 1), e tomemos uma base ortonormal {vy, ..., vy}
de x e completemos para uma base ortonormal {vy, ..., v,,1} de R"™! (com rela¢io ao produto

interno canoénico). Com isso, podemos definir um isomorfismo g € GL(n + 1,R) de forma
que ge; = v;. Como g leva base ortonormal em base ortonormal, temos que g é ortogonal.
Caso det g = —1, trocamos v; por —vp, de forma que g tenha determinante 1. Notemos
que g € SL(n + 1,R) leva o subespaco b € Grg(n + 1) gerado por {ey, ..., ex} no subespago
x € Gri(n + 1) gerado por {vy,...,v;}. Portanto, a érbita de b pela agdo de G é todo o
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conjunto Grg(n + 1), de forma que a acao é transitiva. Com isso, podemos colocar uma
estrutura de variedade em Grg(n + 1) de forma que Gri(n + 1) seja difeomorfa a G/G, onde

(G denota a isotropia de b. Notemos que G, consiste no subgrupo das matrizes em blocos da
A B
0 D)’

Por outro lado, a algebra de Lie de G é g = sl(n+ 1, R), que admite uma decomposigao

forma

onde A é um bloco k x k.

de Iwasawa
g=tPadn,

onde £ = so(n+1,R), a consiste no subespago das matrizes diagonais e n consiste na subalgebra
das matrizes triangulares superiores com zeros na diagonal. Neste caso, as raizes sao «;;, onde
. . Iy . :
a;; € a* leva uma matriz H = diag(ay, ..., an+1) em a; — a; € o espago de raiz associado [
é o subespaco gerado pela matriz EY que tem 1 na entrada ¢j e zero nas demais. As raizes
positivas sao as raizes «;; com ¢ < j e as raizes negativas sao as raizes o;;, com j < i. Um
sistema simples é ¥ = {ay,...,a,}, onde a; = v i41.
Tomando © = ¥\ {a;}, afirmamos que G, = Pg. De fato, notemos que se j < k < 1,

entdo ay; ¢ (©)7, pois se a;; € ()7, entdo aj; € (©)T, de forma que

Qji = Z Na,
ac0
e por outro lado,

o que contraria a unicidade da decomposi¢ao de aj; como combinacao linear de elementos de
>.. Portanto, temos que
po=adndn(0),

de forma que pg consiste na subdlgebra das matrizes em blocos da forma
a b
0d)’
onde a é uma matriz k x k. Assim, G, = Pg, de forma que Fg = G/Gy, ~ Gri(n + 1).

Com isso, podemos calcular o grupo fundamental de Grg(n + 1) ~ Fg : temos que

to = 1, para todo o € ©, de forma ¢,, ¢ um gerador, submetido a seguinte relagao:
tay = to,-

Logo, o grupo fundamental de Grg(n + 1) ¢é isomorfo a Zs.
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3 ABORDAGEM ALGEBRICA

3.1 PRELIMINARES

O célculo do grupo fundamental de Fg via geradores e relagoes (Teorema 2.25)
indica que as raizes que contribuem para o calculo do grupo fundamental sdo as raizes de
multiplicidade 1. O que faremos agora é dar uma outra abordagem para encontrar o grupo
fundamental de uma variedade flag. Para isso, consideraremos o caso em que a algebra de
Lie de G é uma forma real normal, de forma que m = 0. Depois, calcularemos o exemplo das

variedades flag de SL(n,R), que sdo os flags de subespagos de R™.

Seja G grupo de Lie conexo semissimples com centro finito e algebra de Lie g como no
Capitulo 2 e consideremos o caso em que a algebra de Lie de G é uma forma real normal.
Neste caso, temos que m = 0, de forma que M é discreto. Seja p : G — G recobrimento
universal de G (veja a Segao A.2.3). Neste caso, denotemos por Po o normalizador de Yo
em G, de forma que Fo =G / Po é uma variedade flag do tipo © de G. Denotemos por be 0
ponto base 1Pg € Fg. Neste caso, temos que p Y Pe) = Po e que Fg é difeomorfa & Fg (veja
a Proposicao A.43).

Para exibir o grupo fundamental de Fg, usaremos o seguinte resultado (para os detalhes,
veja a Proposigao A.13): se G é um grupo de Lie, H C G é um subgrupo fechado e H; denota
a componente conexa da identidade, entao a aplicacdo natural G/H; — G/H é um fibrado
principal com grupo estrutural H/H;. Dai, se H/H; é discreto e G/H; é simplesmente conexo,

entdo o grupo fundamental de G/H ¢é isomorfo a H/H;.

Teorema 3.1. Se M denota o centralizador de a em K e (]5@)1 denota a componente conexa

da identidade de 15@, entdo o grupo fundamental de Fg € isomorfo d

M /(M N (Po)y).

Demonstracio. Consideremos o fibrado ¢ : G/(Pg); — G/Po. Como Po = (Pg)1 M (Proposi-
¢ao A.65), temos que a fibra
Po (PonM _ M

(Po)i  (Po)i  MnN(Pe)i

Em particular, como m = 0, segue que M é discreto e, portanto, Pe /(Pg)1 é discreto. Além
disso, como G é simplesmente conexo e (Pg); é conexo, segue que G/(Pg); é simplesmente
conexo (veja a Proposigao 1.94 e) de [8]). Portanto, segue da Proposi¢do A.13 que o grupo

fundamental de E'@ =G / 15@ é isomorfo a

Po N M
(Po)1  MnN(Pg):
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O resultado segue pois Feg e Fg sdo difeomorfas. [ |

Corolario 3.2. O grupo fundamental do flag maximal F € isomorfo a M.
Demonstragio. No caso do flag maximal, temos que P = MAN e a algebra de Lie é

p=mdadbn=adn.

Dali, (]5)1 e AN sdo subgrupos conexos com a mesma algebra de Lie, de forma que (P); = AN.

Logo, M N (P); = {1}, de forma que o grupo fundamental de F ¢ isomorfo &

como queriamos. [ |

Observacao 3.3. No caso em que G = SL(3,R), vimos na Proposigdo 2.28 que o grupo

fundamental de F é isomorfo ao grupo quaternionico
Qs = {£1, +i, +j, 2k}

Portanto, M ~ Qs.

3.2 ALCGEBRAS DE CLIFFORD

Com o Teorema 3.1 em maos, calcularemos o grupo fundamental das variedades flag no
caso em que G = SL(n,R), cujas variedades flag sdo os flags de subespacos em R™. Para este
fim, precisaremos das dlgebras de Clifford para obter um recobrimento universal de SO(n, R).

As referéncias utilizadas foram [10] e [11].

Definigao 3.4. Seja V espago vetorial sobre R. Uma forma quadratica em V consiste em

uma aplicacao ¢ : V' — R tal que
1. g(av) = a*q(v), Yv € V, Va € R.
2. A aplicagao (u,v) — q(u+v) — q(u) — g(v) é bilinear.

Um espago quadratico consiste em um par (V,q) onde V' é um espaco vetorial sobre

R e ¢ ¢ uma forma quadratica em V.

Se (V,q) é um espago quadratico, a forma bilinear

By(u,0) = 5 (a(u+v) — alu) — a(v)
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¢ a unica forma bilinear simétrica tal que B,(u,u) = ¢(u). Reciprocamente, se B é uma forma
bilinear simétrica em V', entao a aplicacao q(u) = B(u,u) define uma forma quadratica. Neste
sentido, estudar espagos quadraticos é equivalente a estudar espagos com uma forma bilinear

simétrica. No decorrer do texto denotaremos a forma bilinear simétrica também por q.

Definigao 3.5. Seja C uma &algebra associativa com unidade 1. Uma aplicagao de Clifford

de V para C consiste em uma aplicacao linear ¢ : V' — C tal que

L(v)? = —q(v)1, Yv € V. (3.1)

Notemos que a Equacao 3.1 é equivalente a
v(u)e(v) + o(v)e(u) = —2B,(u,v)1, Yu,v € V. (3.2)

Proposicao 3.6. Seja v : V — C aplicacao de Clifford. As segquintes afirmagoes sdo equiva-

lentes:

1. Para toda dlgebra associativa com unidade A e para toda aplicacio de Clifford ¢ - V — A,

existe um unico homomorfismo de dlgebras ® : C — A tal que ® o1 = ¢.

2. A imagem de v gera C e para toda dlgebra associativa com unidade A e para toda

aplicacao de Clifford ¢ : V — A existe um homomorfismo ® : C — A tal que ® o1 = ¢.

Demonstrag¢io. Suponhamos 1. Para mostrar que Im: gera C sejam A a subdlgebra de C

gerada por Im¢ e seja j : A — C a inclusdo. Consideremos a restri¢ao
VA

do contradominio de ¢. Notemos que ¢ é uma aplicacao de Clifford, de forma que existe um

unico homomorfismo ® : C — A tal que ® o = 7. Dali,
jo®or=jor=u,

donde j o ® = id¢ pela unicidade de id¢ . Logo, j : A — C é sobrejetora e, portanto, A = C.
A implicagdo 2 = 1 é imediata, pois se dois homomorfismos coincidem num conjunto gerador

entao eles sao iguais. [ |

Defini¢ao 3.7. Uma algebra de Clifford sobre V' consiste em um par (C,¢), onde C é uma
algebra associativa com unidade e ¢ : V' — C é uma aplicacao de Clifford que satisfaz alguma

das condi¢oes da Proposicao 3.6.

Proposicao 3.8. Se (Cy,t1) e (Ca,ta) sdo dlgebras de Clifford sobre V', entao existe um

isomorfismo ® : C; — Cq tal que ® o1y = 1.
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Demonstragio. Como (Cq,t1) é uma &lgebra de Clifford e 15 : V' — Cy é uma aplicagao
de Clifford, temos que existe um tinico homomorfismo ® : C; — Cs tal que ® o 11 = 5.

Analogamente, existe um tnico homomorfismo W : Co — C; tal que W o 15 = ¢1. Dali,
PoWoiy=>Por =g,

donde ¢ o ¥ = id¢,, onde usamos que ide, oty = 15 € a unicidade do homomorfismo com esta

propriedade. Analogamente, ¥ o ® = id¢,, donde ¢ ¢ isomorfismo. [ |

Exemplo 3.9. 1. Consideremos a forma bilinear simétrica (x,y) = xy em R e seja ¢ :
R — C a aplicacdo t(a) = ia, onde i = v/—1. Notemos que a aplicacio ¢ é de Clifford. A
imagem de ¢ gera C, pois se z = a+ib € C, entdo a = ¢(1)c(—a) e ib = ¢(b). Além disso,
sejam f : R — A4 uma aplicagao de Clifford e @ = f(1). Notemos que f(a) = af(1) = ax
e que

o® = f(1)* = -1
Definamos a aplicacio linear f : C — A na base por f (I)=1e f (1) = «, de forma que

fla+1ib) = al + ba.

Usando que a? = —1, é possivel verificar que f ¢ um homomorfismo. Por fim,

foua) =aa= f(a),
donde (C, ) é uma aplicagao de Clifford sobre R.

2. Consideremos a algebra dos quatérnions definida da seguinte forma: em R*, denotemos
1=(1,0,0,0), i =(0,1,0,0), 5 =(0,0,1,0) k= (0,0,0,1)

definamos um produto nesta base de R* de acordo com a seguinte tabela:

1| i | j |k
1014 | 4|k
ili|=1] k | —j
Jlil=k|=1] i
k| j | —i| -1

A 4lgebra dos quatérnions consiste do espaco R* munido deste produto e é denotado
por H. Notemos que a algebra é associativa com unidade 1, mas nao é comutativa,
pois ij = k, e ji = —k. Um elemento de H ¢ da forma a + ib + jc + kd, onde a = al.

Sejam e; = (1,0) e e = (0, 1) os vetores candnicos de R? e definamos a aplicagao linear
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¢ : R? — H na base por t(e;) =i e t(ey) = j. Considerando o produto interno candnico

em R? dado por
((a,b),(c,d)) = ac+ bd,

temos que ¢ é uma aplicacao de Clifford, pois
1((a,0))? = (ai + bj)(ai + bj) = —a* + abk — bak — b* = —(a® + b*) = —{(a, b), (a,])).
Notemos que a imagem de ¢ gera H, pois dado a + ib + jc + kd € H, temos que

ib = u((0,0)), je=((0,¢)) e kd = ¢((1,0))((0, d)).

Por fim, sejam f : R? — A uma aplicacao de Clifford e sejam a = f(e;) e 8 = f(es).
Neste caso,

o’ = f(e)? = —1= f(e) =

af + o= f(e1)f(e2) + flea) f(er1) = —2(e1, e2)1 = 0.
Definamos a tranformagao linear f : H — A na base de R* por

=1, fi)=a, [(j)=Be f(k)=ap.
Usando que a2 = —1, 2= —1 e afi = —fBa, é possivel verificar que f é um homomor-
fismo. Além disso,

foula,b) = aa+08 = f(a.b),
donde H é uma algebra de Clifford sobre R2.

Proposicao 3.10. Se (V,q) é um espaco quadrdtico, entio existe uma algebra de Clifford
sobre V.

Demonstragio. Seja T (V') a algebra tensorial de V' e consideremos I o ideal bilateral gerado

por elementos do tipo
r®x+q(x,x)l,zeV.

Denotemos por j : V — T (V) ainclusaoe 7 : T(V) — T(V)/I a projegao. Afirmamos

que

L=moj:V—=>TV)=TV)/I

¢ uma aplicacao de Clifford. De fato,
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Agora, sejam A uma &algebra associativa com unidade e f : V' — A uma aplicacao de Clifford.
A propriedade universal da algebra tensorial nos da que existe um tnico homomorfismo de
algebras ¢ : T(V) — A tal que ¢ o j = f. Notemos que I C ker ¢, pois

oz @) +q(z,z) = fz)f(x) +q(2)1 = 0.
Logo, existe um tinico homomorfismo f : 7(V)/I — A tal que f o m = ¢. Dai,
foir=fomoj=¢oj=Ff.

Além disso, se g : T(V)/I — A é um homomorfismo tal que got = f, entdo gomoj = f,
donde g o m = ¢, pela unicidade de ¢ e portanto g = f pela unicidade de f . Assim, o par
(T(V)/I,t) é uma algebra de Clifford sobre V. |

Proposigao 3.11. Se (C,t) é uma aplicagio de Clifford sobre V', entdo 1 : V — C ¢é injetora.

Assim, podemos identificar V' com (V) C C.

Teorema 3.12. Se V' tem dimensdo finita com base {x1,...,x,} e C é uma dlgebra de Clifford

sobre V', entdo os elementos da forma
iy o Ty, U < oov <lg, s=0,...,n

formam uma base de C .

Demonstragio. A ideia é que a partir da relagao z;x; + xj2; = —2¢(z;, z;)1 temos que esses
elementos geram C e usar que a dimensao de C é 2", pois C e A* V' sao isomorfos como espagos

vetoriais (veja Proposigao 1.3 de [10]). |

Como a algebra de Clifford C sobre E é uma &algebra associativa, temos que C admite

uma estrutura de dlgebra de Lie dada pelo comutador

[u,v] = wv — vu, u,v € C.

3.3 PROPRIEDADES DAS ALGEBRAS DE CLIFFORD

Sejam (V, ¢) um espago vetorial munido de uma forma bilinear simétrica e seja C1(V q)

a algebra de Clifford associada.

Definigao 3.13. Um morfismo entre (V,q) e (V',¢’) consiste em uma aplicagao linear

f:V — V' que preserva a forma bilinear, isto é,

q'(f (), f(v) = q(u,v), Yu,v € V.
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Se f:(V,q) = (V',¢) preserva formae ¢ : V — Cl(V,q) e /' : V! — CI(V’,¢) sao as
respectivas inclusoes, entao existe um tinico homomorfismo

f:CUV,q) = CL(V',¢)

que faz o seguinte diagrama comutar

V Vv’

CU(V, q) —L= (v, ¢)

Proposicao 3.14. Sejam f: (V,q) = (V'¢') eg: (V'¢) — (V",q") aplicagdes que preservam

forma. As sequintes afirmagoes sio verdadeiras:

2. idy = idayv.g)-

Demonstragio. 1. O homomorfismo go f : CI(V,q) — CI(V",¢") é o tinico tal que
gofour=1"o(gof).
Por outro lado, f : C1(V,q) — CL(V’,¢) é o tinico homomorfismo tal que
fou=Vof
eg:ClV' ¢)— Cl(V" ¢") é o tinico homomorfismo tal que
gol/=1"0g.

Dai,
gofor=golof=1ogolf.

A unicidade de ﬁf nos da que ﬁ =gof.
2. Anélogo, usando a unicidade de idy.

Definigao 3.15. Definimos o grupo ortogonal associado ao espago (V, g) como sendo o

conjunto
O(V,q) = {f € GL(V); ¢(f(u), f(v)) = q(u,v), Yu,v € V'}
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E claro que O(V, q) é um subgrupo de GL(V), pois se f,g € O(V, q), entdo

q(go f(u),go f(v) = q(f(u), f(v)) = q(u,v).

g(f 7 (w), F7H W) = q(F(fH(w), F(f7H () = q(u,v).
Proposigao 3.16. A aplicacio ¢ : O(V,q) — Aut(Cl(V,q)) que leva f:V —V em f éum

homomorfismo injetor.

Demonstracao. Que é homomorfismo, segue da Proposicao 3.14. Que é injetor, segue de que
t:(V,q) = CI(V, q) é injetora, pois se f =g, entdo
Lof=for=gorL=10g,

donde f = g, pois ¢ é injetora. [ |

Consideremos a aplicagao (3 : (V,q) — (V,q) que leva v € V em [3(v) = —v. Notemos
que 3% = idy e que

q(ﬁ(u), B(U)) = Q(_u> _U) = Q(u’ U)?

donde 8 € O(V,q). Definamos a € Aut(Cl(V,q)) da seguinte forma: o = 3 : CI(V,q) —
C1(V,q). Como (o 8 =idy, segue que

QQZgOBZBE:ﬁ‘//:idC](V’q).

Sendo assim, C1(V, ¢) se decompde como soma dos autoespagos de « associados aos autovalores
1 e —1. Seja C1°(V, ¢) o autoespaco associado ao autovalor 1 e C1*(V, q) o autoespaco associado

ao autovalor —1, de forma que
CI(V, g) = CI(V, ¢) & CI'(V, q).

Definicdo 3.17. O autoespaco C1°(V,q) é denominado de parte par de Cl(V,q) e o
autoespago Cll(V, q) é denominado de parte impar de CI(V,q).

Seja i € Z, ={0,1,2,...} e consideremos o conjunto
CI'(V,q) = {u € CL(V,q); a(u) = (—1)'u}.

Notemos que se i é par, entao Cl'(V, q) = C1°(V, q) e se i é fmpar, entdo CI'(V, q) = CI'(V, q),

de forma que

CUV, ) = D CL(V, q) = CL(V, ) & CI(V, ).

1=0
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Além disso, C1/(V, q) CV(V, q) C CI"™(V, q), donde

CUV, g) = B CF(V, )

1=0

é uma algebra graduada, de forma que CI'(V, q) = C1°(V, q), se i é par, e CI'(V, ¢) = C1}(V, q),

se 1 é Impar, isto é, o supraindice é lido modulo 2. Neste caso, dizemos que

CUV, q) = D CI(V,q)

=0
é uma algebra Zj,-graduada.

Em particular, C1°(V, ¢) é fechado para o produto e 1 € CI°(V, ), pois como « é
homomorfismo de dlgebras, temos que a(1) = 1. Portanto, C1°(V, ¢) é uma subélgebra de
ClI(V, q).

Um elemento = € CI(V,q) é dito inversivel, quando existe y € CI(V,q) tal que
2y = 1 = yx. Neste caso, y ¢ tnico com essa propriedade e é denotado por z=!. Denotemos o

conjunto dos elementos inversiveis de Cl(V, q) por C1*(V,q) que é um grupo.

Um apéndice: Seja A uma algebra associativa com unidade sobre um corpo K tal
que o espago vetorial subjacente seja de dimensao finita e consideremos G(.A) o conjunto
dos elementos inversiveis. Temos que G(.A) é um grupo. Afirmamos que G(A) C A ¢é aberto
na topologia induzida por uma norma no espago vetorial A. De fato, fixado x € A, seja
E, : A— Aa translagao a esquerda que leva y € A em E,(y) = xy. Notemos que F, é linear,
pois

Ex(ays +y2) = x(ays + 1) = alwy) + xy2 = aLa(yr) + E(y2).

Assim, podemos considerar a aplicagao
E:A— L(A)

que leva x € A na transformagao linear F, (L£(A) denota o espago dos operadores lineares de

A). Notemos que
Eozy1a,(y) = (ax1 + 20)y = a(x1y) + 20y = aFE,, + E,,,
de forma que E é uma aplicacao linear. Além disso,
Ery(2) = (vy)z = x(yz) = Ex 0 Ey(2),

e Bi(x) =z, isto é,F; =1 € L(A). Logo, F é um homomorfismo de dlgebras. Notemos que

E ¢ injetora, pois se B, = F,, entao
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Seja || - || uma norma em L(A) e definamos
|z = [| Bl

Notemos que

lz] =0« ||E,||=0< E, =0< x=0.

Além disso, temos que
Eopy(z)=(x+y)z=22+yz=(E, + E))(2),
de forma que
2+ yl = [|Eeryll = [|Ex + Eyll < [[Eoll + || Eyl] = || + |yl
Portanto, | - | define uma norma em A. Notemos que
[yl = [|Eayl| = || Ex 0 Ey|| < [|E[[[Eyl] = [2]lyl-

Assim, se |z] < 1, entdo a série » 2™ é convergente, pois
n

Yoa <3 <Y faf?
n n n

e Y |x|™ converge. Seja y = Zx” Neste caso,
n

l-z)y=>01-2)) "= limz::(l —z)2k = li7rln(1 — " =1

n

Portanto, se |z| < 1, entdo 1 — z é invertivel. Notemos que se |z| < 1, entdo | — z| < 1,

donde 1+ x é invertivel. Agora, afirmamos que se x é invertivel e |h| < ,entao x + h é

2|z
invertivel. De fato, neste caso temos que

o] < ] < 5 <1,
donde 1 + z7'h ¢ invertivel. Dai,
r+h=z(l+z'h)
é invertivel, pois é produto de invertiveis. Assim, o conjunto G(.A) dos elementos invertiveis

é aberto em A, pois dado = € G(A), temos que se |y — z| < Gt entdo y =z + (y — x)
T

é invertivel. Portanto, G(.A) é uma subvariedade aberta de A. Como o produto em A

é diferenciavel, pois é bilinear e A tem dimensao finita, segue que o produto em G(A) é
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diferenciavel e, portanto, G(.A) é um grupo de Lie. Uma translagdo a esquerda por g em
G = G(A) ¢é arestricdo de £, : A — A, que é linear. Assim,

d(Eyla)n = E,.
Seja X : G — A um campo invariante a esquerda, isto é,
X(gh) = d(Eg)n(X(h)) = Eg(X(h)) = gX(h), Vg,h € G.
Em particular, vale que
X(g) = gX(1),

de forma que os campos invariantes a esquerda sao da forma gX, onde X € A. Consideremos

o PVI
g =9X, g(0)=1.
Como o sistema ¢é linear, temos que a solugao da EDO é

ge'*, onde ¥ =" w

—~ nl

Agora, a adjunta de g € GG é
Ad(g) = d(Cy)1 = d(Eyo0 Dy-1); = Ego0 Dy-1,
de forma que
Ad(g)X = gXg "
A representagao adjunta é definida como sendo

Ad: G — GL(A)

que leva g € G em Ad(g). Denotemos a algebra de Lie dos campos invariantes & esquerda por

g. Dados X, Y € g, temos que a representagao local do colchete de Lie ¢
X, Y](2) = dYa(X(2) — dX, (Y ().

Sejam X : A — AeY : A — A definidos respectivamente por X (z) = zX e Y(z) = zV.

Temos que X e Y sao as restrigcoes de Xe }7, que sao lineares. Portanto,
X, Y](x) = Y(X(2) - X(Y(2)) = 2(XY) — 2(YX) = (XY - YX)(x).

Portanto, o campo [X, Y] coincide com o campo XY — Y X, de forma que o colchete de Lie é

o comutador

[X,Y]=XY - YX,

Voltando para as édlgebras de Clifford, temos que Cl(V, q) é uma algebra associativa,

de forma que o grupo dos elementos invertiveis C1*(V, ¢) é um grupo de Lie, cuja dlgebra de

Lie ¢ CI(V, q).
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Proposicao 3.18. Se v € V € tal que q(v,v) # 0, entdo v € invertivel.

Demonstracao. Tomando u = —L, temos que
q(v,v)
2
VU = — v =1=uv. [ |
q(v,v)
- . . q(v,w
Proposicao 3.19. Sewv € V € tal que q(v,v) # 0, entdo — Ad(v)(w) = w — 2 ( )v, para
q\v,v
todo w € V.
Demonstracio. Segue diretamente das seguintes igualdades:
-1 -1
Adv)w = vwv™ VWY = (—2¢(v,w) —wov)v
q(v,v) q(v,v)
1
= 2q(v,w)v+ wv2:2q<v’w)v—w.
q(v,v)  q(v,v) q(v,v)
[ |

Usando a Proposicao 3.19 e abrindo as contas, é possivel verificar que Ad(v) deixa
q invariante, para todo v € V' tal que ¢(v,v) # 0, de forma que Ad(v) € O(V,q), para todo
v eV tal que g(v,v) # 0.
q(v,w)

v, definimos a
q(v,v)

Para evitar o sinal negativo na férmula — Ad(v)w = w — 2

representacao adjunta torcida
Ad(v)w = a(v)wv ™,

—_—

onde « é a aplicagao que estende 3(v) = —v. Temos que Ad(v) € GL(C1(V, q)), para todo
v € CI*(V,q). Com isso,
Ad: CI*(V,q) — GL(CL(V, q))

estd bem definida e ¢ um homomorfismo de grupos. Notemos que se v € V' é tal que ¢(v,v) # 0,

entao

Ad(v)w = a()wv ™ = —vwv™' = — Ad(v)w = w — 2

Além disso, se v € C1°(V, ¢), entdo a(v) = v, de forma que Ad(v) = Ad(v).

Seja V* = {v € V; ¢q(v,v) # 0} e consideremos o subgrupo P(V,q) de CI*(V,q)
gerado por V*.

Definigao 3.20. O grupo Pin de CI(V, q) é definido como sendo o subgrupo de P(V,q)
gerado por {v € V; q(v,v) = £1} e é denotado por Pin(V,q). O grupo Spin de CI(V,q) é
definido como

Spin(V, q) = Pin(V, ¢) N CI°(V, q).
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Seja A uma &algebra associativa com o produto denotado por ¢, e definamos
¢°PP Ax A= A

por ¢°PP(z.y) = ¢(y,x). Temos que ¢°PP & bilinear, definindo assim uma estrutura de
dlgebra em A, que também ¢ associativa. Em particular, consideremos a 4lgebra C1(V, q)°PP
e seja

L2V = CL(V, q)%PP

a inclusdo. Como a estrutura de espaco vetorial de C1(V, ¢)°PP é a mesma de C1(V, q), temos

que ¢ é linear e, portanto, se estende a um homomorfismo
7: CU(V, q) — CI(V,q)°PP.
Notemos que
7(uwv) = vu,Yu,v € V

Assim, considerando a estrutura de dlgebra de C1(V, ¢), temos que 7 é um antihomomorfismo,

denominado de aplicagcao transposta. A aplicagao transposta também é denotada por
T(u) = u', ue Cl(V,q).

Como Im ¢ gera Cl(V, q), temos que todo elemento de CI(V,q) se exprime como combinagao
linear de elementos do tipo

Uy U, 7> 1, u; € V.

Notemos que
T(ul...ur) :ur...ul,

2

de forma que 7° coincide com a identidade em um conjunto gerador de CI(V,q). Logo,

T2 = idcy(v,q) - Analogamente, como « é homomorfismo e 7 ¢ antihomomorfismo, temos que
Toa(uy - -up) =T(a(ug) - a(uy)) = alu,) - a(u) = a(uy -+ uy) = aor(uy - uy).

Como oo 7 e 7o« coincidem num conjunto gerador, segue que €« o7 =T o q.

A partir da aplica¢ao transposta, podemos definir a aplicacao
N : Cl(V,q) — CI(V,q)

que leva u € CI(V, ¢) em N(u) = ua(u'), denominada de aplicagdo norma.

Seja P(V,q) = {v € C1*(V,q); Ad(v)(V) = V}. Notemos que P(V, ) é um subgrupo
de CI*(V, q), pois se u,v € f)(V, q) e w € V, entdo

V = Ad(v™")(Ad(0)(V)) = Ad(v)(V).
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Dai,

—_—

Ad(uv~ ) (V) = Ad(u)Ad(v=1)(V) =V,
donde uv—! € f’(V, q) e, portanto, JB(V, q) é subgrupo.

As demonstragoes dos proximos resultados sdo um pouco mais trabalhosas, por isso

enunciaremos os resultados e indicaremos a referéncia da demonstracao.

Teorema 3.21. Se V é um espaco vetorial de dimensdao finita e q € uma forma bilinear

simétrica nao degenerada em V', entao o nicleo do homomorfismo
Ad : P(V,q) — Aut(V)

¢ o conjunto
K*={a €K; a#0}.

Demonstracao. Veja a Proposicao 2.4 de [10]. [ |
Proposigao 3.22. 1. P(V,q)={v1---v, € Cl(V,q); r >0 ev; € V*}.

2. Se S={veV; qlv,v) ==+£1}, entio Pin(V,q) ={vy---v,; r >0, ev; € S}.

3. Spin(V,q) = {vy --- v, € Pin(V,q); r € par}.
Demonstragio. Veja as equagoes 2.20, 2.24 e 2.25 de [10] ou a Proposigao 2.0.13 de [11] W

Notemos que se v € Spin(V, q), entdo v = vy - - - voi, com ¢(v;) = £1, de forma que
a(w) = a(vy) - a(ve) = (1) - vy = 0.

Portanto, se v € Spin(V, ¢), entdo Ad(v) = Ad(v).

3.4 RECOBRIMENTO UNIVERSAL DE SO(n,R)

Sejam V = R" e ¢ o produto interno candnico. Neste caso, denotamos a algebra de

Clifford por Cl,, e o grupo Spin por Spin,,.
Proposicao 3.23. A sequéncia
0 — Zy — Spin, = SO(n,R) — 0
¢ evata, onde v = Ad |gpin, , Zo = {£1} e Zy — Spin,, € a inclusdo.

Proposicao 3.24. Sen > 2, entdo o grupo Spin,, é simplesmente conezo.
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Demonstra¢io. Como ~ : Spin,, — SO(n,R) é um recobrimento duplo (a fibra tem dois ele-

mentos) de SO(n, R), segue que o subgrupo . (m (Spin,,), ) tem indice 2 em m;(SO(n,R),-),
ﬂ'l(SO(’I’L, R)v )

7+(m(Spin,, -))
tal de SO(n,R) é Z,. Assim, pelo Teorema de Lagrange, a cardinalidade de v, (m(Spin,,, -)) é

isto é, a cardinalidade de é dois. Mas paran > 2 temos que o grupo fundamen-

1. Como 7, é injetora, pois Ad é recobrimento, segue que Spin,, é simplesmente conexo. W

Sejam G = SL(n,R), n > 2, com decomposi¢do de Iwasawa G = KAN, onde
K = S0O(n,R), A é o subgrupo das matrizes diagonais com entradas positivas e N é o
subgrupo das matrizes triangulares superiores com 1 na diagonal. Denotemos por G o

recobrimento universal de G. Neste caso, temos que

G = KAN ~ KAN = KAN,
pois A, N sao simplesmente conexos. Como K é o recobrimento universal de K = SO(n,R),
temos que K ¢ isomorfo ao grupo Spin,, para n > 2. Em particular, a algebra de Lie de

Spin,, é so(n,R).

Proposigao 3.25. O grupo Spin(V, q) € subgrupo fechado de C1*(V,q) e, portanto, é subgrupo
de Lie.

Demonstragio. Basta usar que os elementos de Spin(V, ¢) sdo da forma wy - - - w, € Pin(V,q)

com 7 par e usar a aplicagdo norma, que é homomorfismo continuo e coincide com gem V. W

Assim, a exponencial exp : so(n,R) — Spin, é a restricdo da exponencial exp :
CL(V,q) — CI"(V,q), que é
X'n
exp(X) = g

n>0

Proposicao 3.26. O subespaco gerado por {[z,y|; x,y € R"} coincide com o subespago
gerado por {xy; x,y € R" q(z,y) =0} e este subespaco é uma subdlgebra de Lie isomorfa d
s0(n,R). A identificagio é feita da sequinte forma
FY =F9 — BV Lo 1<i<j<
= — <—>—§eiej,1_z<j_n,

onde e; denota os vetores canonicos.

Demonstragio. Proposi¢ao 11.14 de [6]. |
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3.5 GRUPO FUNDAMENTAL DE VARIEDADES FLAG DE SL(n,R)

O grupo G = SL(n,R) é um grupo de Lie simples cuja algebra de Lie é g = sl(n,R).
Uma decomposicao de Cartan é g = €@ s, onde £ = so(n,R) e s é o subespago das matrizes
simétricas. Temos que o subespaco a das matrizes diagonais é um abeliano maximal em s e
as raizes associadas sao

oy« diag(ag, ..., a,) — a; — ay,

sendo g,,, 0 subespago unidimensional gerado pela matriz E% que tem 1 na entrada ij e zero

nas demais. Neste caso, um sistema simples de raizes é

Y= {0417 ce 7an—1}7

onde «; denota a raiz o ;4.

Notemos que no caso n = 2, temos que ¥ = {«a;}, de forma que o tnico caso nao

trivial 6 © = (). Neste caso, a variedade flag é
F~ K/M =S0(2,R)/{£+1} ~ RP* ~ §'
de forma que o grupo fundamental é Z.

Proposicao 3.27. O centralizador M de a em K = SO(n,R) é o conjunto das matrizes

{diag(e1, ... ,en); €1+ en=1c¢le| =1} e M é isomorfo a Z5 .

Demonstracao. Se k € M, entao k é uma matriz diagonal, pois centraliza todas as matrizes
diagonais. Digamos k = diag(ey,...,e,). Como k € SO(n,R), temos que |g;] =1eey ¢, =
det(k) = 1. Por outro lado, é claro que uma matriz desse tipo centraliza a. Dai, escolhendo

as entradas que contém —1 aos pares, temos que a ordem de M é

() (3) -+ (30)

onde 2k é o maior inteiro par menor ou igual a n. Usando o bindomio de Newton, temos que

0=-1y =3 ({0

donde

Como
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temos que a ordem de M é

(g) ; (2) ot

Como M é um grupo finito tal que 2? = 1, para todo z € M, segue que |M| = 2* para algum
k€ Ne M éisomorfo a Z5. Como |M| = 2"1, segue que k =n — 1. |

Exemplo 3.28. No caso n = 3, temos que
M = {diag(1,1,1),diag(1,—1, —1),diag(—1,1 — 1), diag(—1,—1,1)}.
Além disso, o recobrimento universal de SO(3,R) é
7:S* = SO(3,R),

sendo S* C H o grupo dos quatérnions unitérios e y(ww = uwut,w € R, onde R? é o

subespago de H gerado por {i, 7, k}. Notemos que

y(@)i = i
V(@)j = —j
vk = —k,

de forma que
+(i) = diag(1, ~1,~1).

Analogamente, temos que

v(j) = diag(—1,1, —1) e v(k) = diag(—1, —1,1).

Como o recobrimento é duplo, temos que cada fibra tem exatamente dois elementos e, como o

nicleo de v é {£1}, temos que

M =~71(M) = {£1, £i, +j, £k}
é o grupo quaternioénico. |

Sejam p : G — G o recobrimento universal de G, de forma que G = KAN. Como
Pl K — K & recobrimento universal (Proposicao A.28), temos que K ¢ difeomorfo ao grupo

Spin,,, pois 7 = Ad|gpin, : Spin, — SO(n,R) é recobrimento universal (Proposicao 3.23 e

Proposigao 3.24), onde v(u)w = vwu~!, para todo w € Cl,. Se {ey,...,e,} denota a base
canénica de R™ C Cl,,, ent@o usando que e;e; = —eje;, para todos ¢ # j (Equacao 3.2), temos
que
1,1 —1,-1
v(erea)er = ejegeres e = —ejejege, € = —e
1,1 1 -1
v(erea)es = eregeses €] = —egejese, €] = —eg

—1, -1 —1 -1 »
v(erea)e; = ejeseje; €] =ejerege, e =ej, Vi > 2.
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Dai,
v(erep) = diag(—1,—1,1,...,1).

De maneira inteiramente analoga, temos que
v(ese;) = diag(l,...,1,—1;,1,...,1,—1;,1,...,1).
Proposicao 3.29. Se M ¢ o centralizador de a em E, entio M = D,., onde
D, ={e; - -€ip; 1 <iy,... 09 <n},

e M/ker~ € isomorfo ao M.

Demonstragao. Se e;, - - - e, € Dy, entdo y(e;, - - - €, ) = diag(e1,...,&,) onde cada g;; = —1
¢ os demais ¢; sdo 1. Portanto, y(D,) € M, de forma que D,, C v~ (M) = M (Proposicio
A.31). Por outro lado, se diag(ey,...,e,) € M, entdo os elementos ¢; = —1 aparecem aos
pares pois €1 ---&, = 1. Digamos que sejam ¢;,,...,¢;, . Neste caso, diag(ey,...,&,) =
v(es, - e,) € (Dy), de forma que v(D,) = M. Assim, se k € M, entdo y(k) =
diag(ey,...,e,) = 'y(%), para algum k = e, - €5, € Dy . Segue do Teorema 3.21 que o
nucleo de v é £1, de forma que k = *e;, ---€;,, € D,,. Em particular, como M = D, e

v : M — M é sobrejetor, segue que M/ ker~ ~ M. [

Agora, seja © C ¥ = {ay,...,q,_1} € vejamos como descrever pg em termos de

matrizes em blocos. Como

Ppo=0a®nd® > ga,
ac(®)~

se a; € ©, entdo go, B g-a, C Po. Dai,se a; €O e ;1 ¢ O e ;41 ¢ O, entdo «; determina
um bloco 2 X 2. Se o, ...y €O e ;1 €O e ap & O, entdo «, .. ., a1 determinam
um bloco (k4 1) x (k+ 1). As entradas abaixo desses blocos sdo nulas. Para exemplificar,

consideremos os casos abaixo:

Exemplo 3.30. Seja g = s[(6,R) e consideremos os casos

_(A *)
Pe=\ o B

onde A é um bloco 2 x 2 ¢ B é um bloco 4 x 4.

1. © = {1, a3,a4,a5}. Neste caso,
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2. © = {ay, a4 }. Neste caso,

A x x %

0 B x =x
o7l o 0 c « |

0 0 0 D

onde A e C sao blocos 2 x 2 e B e D sao blocos 1 x 1.

3. © = {a, a3, a5}. Neste caso,

Po =

S O
o I ¥
Q *

onde A, B, C sao blocos 2 x 2.

Como tg C pg NE, temos que todo elemento de g é uma matriz diagonal em blocos,

onde cada bloco ¢ determinada por © assim como pg. Cada bloco ¢ um so(x).
Exemplo 3.31. 1. © = {ay,as,a4,a5}. Neste caso,
A 0
bo —
° ( 0 B )
onde A € 50(2,R) e B € s0(4,R).

2. © = {ay, a4}. Neste caso,

A0
0 B
to =
© 0 0

o O o o
O o o o

0 O
onde A,C € s50(2,R) e B e D sao blocos 1 x 1.

3. © = {a, a3, as}. Neste caso,

o by o
Q o o

onde A, B,C € s0(2,R).

Se X = diag(A, ..., Ax) é uma matriz diagonal em blocos, entao X" = diag(AY, ..., A}),
para todo n > 0. Assim, a exponencial de uma matriz diagonal em blocos é a exponencial de

cada bloco.
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Observacao 3.32. Seja (Kg); a componente conexa da identidade de Kg. Temos que
(Ko)1 € Kg é um subgrupo normal, fechado e aberto (pois é componente conexa de um
espago topolégico localmente conexo). Em particular, a algebra de Lie de (Kg); é to. Como
Kg é compacto (fechado dentro do compacto K'), temos que (Kg); é compacto e conexo e,
portanto, a exponencial exp : tg — (Kg)1 é sobrejetora (veja o Corolario 11.28 de [9]). Assim,

(Ko)1 é uma matriz diagonal em blocos, em que cada bloco é um SO(x)

Exemplo 3.33. 1. © = {ay,as,a4,a5}. Neste caso,

SO(2,R) 0 )

(o) = ( 0 SO(4R)

2. © ={ay, a4}. Neste caso,

SO2,R) 0 0 0
0 0 0
(Ko =
0 SO(2,R) 0
0 1
3. © = {ay, a3, as}. Neste caso,
SO(2,R) 0 0
(Ko = 0 SO(2,R) 0
0 0 SO(2,R)

Proposicio 3.34. Seja © # 0. Se (Pg); denota a componente conexa da identidade de (Po)

e~ : Spin, — SO(n,R) denota o recobrimento universal, entio ker~y C (Po);.

Demonstragio. Como kery = {#1} (Teorema 3.21) e 1 € (Pp);, basta mostrarmos que

—-1e€ (}3@)1. Notemos que, para cada 1, 7, vale que

(eie;)? = eiejee; = —ejel = —1
(eie))’ = —eie

(eiej)' = —eiej(ee;) = elel =1
(eie)” = eie;

(eie))” = (eiej)® =—1

Assim,set € Re j e {1,...,n— 1}, temos que

o tk €l k
exp(tejejH) — Z (Jiﬁl)

P i = COS(t) + Sin(t)ejejH.
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Em particular, tomando ¢ = 7, temos que
exp(mejejpr) = —1.

Agora, como © # (), podemos tomar a; € ©. Neste caso, go, ® g_o; C pg, de forma que
E7#i+tl — pitli € pg. Usando a identificagio de € = so(n, R) com uma subdlgebra de Cl,,

(Proposigao 3.26), temos que mejej1 € ENpgy = Lo . Dal,
—1 = exp(mejej11) € (Ko)i € (Po)i,
como queriamos. [ |

Lema 3.35. Se © # 0, entio v(M N (Po)1) = M N (Po);.

Demonstragio. Como p(M) = M (Proposicio A.31), p((Po)1) = (Ps): (Proposicao A.43) e

plz =7, temos que
p(M N (Po)1) = (M N (Po)1) € M N ((Po)r).

Por outro lado, seja m € M N (Pg);. Neste caso, m = p(m), para algum m € Mem= p(9),
para algum g € (15@)1. Mas podemos escrever g = kan € KAN , de forma que

m = p(g) = p(k)p(a)p(n) € KAN.

Logo, p(a) = 1 e p(n) =1, donde a = 1 e n = 1, pois p|; e p|5 sdo difeomorfismos (Proposicao
A.29). Assim, § = k € (Po)1, com k € K. Como plz = 7, temos que y(m) =m = v(k), de
forma que

mk~! e ker~y C (]5@)1.

Logo, m € (Pe)1 N M. |

Para o préximo resultado, usaremos o Terceiro Teorema de Isomorfismo de grupos:

sejam G grupo, H, N C G subgrupos normais com N C H. Neste caso, existe um isomorfismo

G G/N

ViR T N

que faz o seguinte diagrama comutar
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Também usaremos o seguinte fato: se ¢g : G — G ¢é isomorfismo e N C GG é normal,

entao existe um isomorfismo

¢:G/N = G/do(N)

que faz o seguinte diagrama comutar

G—>* .G
| ~ |
G/N —G/n(N)

Corolario 3.36. Se © # 0, entdao existe um isomorfismo

. M R M
"Mn(Po)y Mn(Pe)

7

que faz o sequinte diagrama comutar

M—2 M |
Wl l??
M M

Mn(Pg); 0 MnN(Peo)

onde ™ e n sao as respectivas projecoes. Em particular, o grupo fundamental de Fg é

M
m(Fe,bg) ¥ —————.
1(Fesbe) = 77 (Po)1
Demonstra¢io. Como kery C (Pg)1, podemos usar o Terceiro Teorema de Isomorfismos que

nos d4 um isomorfismo

' M . M/ ker ~
" MnN(Po)1 M (Po)i/kery

que faz o seguinte diagrama comutar

(8

M ker

I
M ]\~4/ker’y
(

Mn(Pe)1 % MnN(Pe)1/kery
Além disso, segue da Proposicao 3.29 que existe um isomorfismo
¢o: M/kery — M
tal que ¢g 0 & = ~. Pelo Lema 3.35, temos que

do(M N (Po)1/ kery) = ¢o 0 (M N (Po)1) = 7(M N (Po)1) = M N (Po)r.
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Dai, existe um isomorfismo

M [ ker~ M
P —=——= —
M N (Po)i/kery MM (Po)

que faz o seguinte diagrama comutar
M (o)

ker M
) :
M

]\~4/ ker vy
MN(Po)i/kery ¢  MN(Pe)i

Tomando 6 = ¢ o ¢, temos que # é um isomorfismo tal que
fom=no(dog)=no,
como queriamos. [ |

Proposicao 3.37. Sejae;, - e, €D, = M. Tem-se que €, -+ €4y, € (]5@)1 se, e somente

se, a quantidade de indices que aparece em cada bloco definido por pg € par.

Demonstragio. Primeiro, afirmamos que m = e;, ---e;, € (Po)1 se, e somente se (i) €
(Po)1. De fato, se m € (Pg)1, entdo v(m) € (Po)1 (Lema 3.35). Reciprocamente, se (i) €

(Po)1, entao com a notagao do Corolério 3.36, temos que
1 =1n(y(m)) = 0(x(m)) = =(m) = 1,

pois 0 é isomorfismo. Dai, m € (15@)1. Por outro lado, um elemento m = diag(ey,...,&,) € M
estd em (Pg)1 = (Ko)1 AN se, e somente se, estd em (Kg);. Como os blocos de (Kg); tém
determinante 1, temos que m € (Kg); se, e somente se, a quantidade de ¢; = —1 em cada
bloco ¢é par. Mas 7(e;, - - - €;,, ) ¢ uma matriz tal que ¢;, = —1 e as demais entradas na diagonal
sao 1, de forma que e;, ---¢€;, € (15@)1 se, e somente se, a quantidade de indices em cada

bloco é par. [ |

Assim, os elementos em um bloco de pg sao da forma
diag(e;, ..., €i41), €+ -€ip =1, e |gj| = 1.
Logo, se os blocos tém dimensao ry,...,7g, entdo ry + -+ 1y =n e
MO (Po)y ~ Z5 " x - x 2yt = Z57F,

donde Z5~' /757" ~ 751 Em resumo:
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Teorema 3.38. Se © # (), entdo o grupo fundamental de Fo é isomorfo a Z5~, onde k € o

numero de blocos determinado por pg.

Exemplo 3.39. O espaco projetivo RP" pode ser visto como uma variedade flag Fg de SL(n+
1,R) escolhendo © = X\ {an } = {aw, ..., a,}. Neste caso, temos dois blocos determinados
por pg, de forma que o grupo fundamental de RP" é Z,. Ja a Grassmanniana Grg(n) pode
ser vista como uma variedade flag Fg de SL(n + 1,R) escolhendo © = 3\ {ay}. Neste caso,
também temos dois blocos determinados por ©, de forma que o grupo fundamental de Grg(n)

¢ Zy (como jé foi visto na Secao 2.6). |

Vejamos agora como podemos descrever os geradores do grupo fundamental. Seja
mij :diag(l,...,—11‘,...,—1]',...,1)7 /L<j’

a matriz diagonal que tem —1 nas entradas iz € jj e 1 nas demais entradas da diagonal.
Dado m = diag(ey,...,e,) € M, temos que a quantidade de ¢; = —1 é par, digamos

€iryEjy - - 5 €iy» €4, - Neste caso,

M= Mg, 5 My s 11 < J1 <0 <lgp < Jg-

Portanto, M ¢é gerado por {m;;; 1 <i < j <n}. Mas cada m;; é da forma
M5 = M1 Mj-15,

donde M ¢é gerado por

{mlg, . ,mn,l’n}.

Afirmamos que M /(M N (Po)1) é gerado pelas classes dos elementos m;; tais que —1; e —1;
estao em blocos sucessivos. De fato, notemos que m;; € (Po); se, e somente se, —1; e —1;
estao no mesmo bloco, pois o determinante de cada bloco é positivo. Além disso, se m;; e

m,s sao tais que —1;, —1, estao em um bloco e —1;, —1, estao em um outro bloco, entao
mijmys € (Po)1,

de forma que esses elementos estdo na mesma classe em M /(M N (Pg);). Portanto, as classes
dos elementos m;; tais que —1, e —1; estdo em blocos sucessivos geram M /(M N (Po)1).
Em particular, a classe dos elementos m; ;1; tais que —1; e —1,4; estao em blocos sucessivos
geram M /(M N (Pg)1). Para exemplificar essa discussao, consideremos a Grassmanniana
Gri(n+1) = G/Po, onde G =SL(n+ 1,R) e

P
®_0D7
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onde A é uma matriz k x k. Neste caso, um gerador para o grupo fundamental pode ser
escolhido como sendo my ;41 (que corresponde a raiz simples ay, veja a Secao 2.6), mas
também pode ser escolhido como sendo my ,,41. Essa discussao sobre geradores foi baseada

nas notas nao publicadas de San Martin [12].
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APENDICE A -

A1 TOPOLOGIA

A.1.1 COMPLEXOS CW

As referéncias para esta segao sao os capitulo 5 e 10 de [13] e também o Apéndice de
[14].

Sejam (X, )aea uma colegao de espagos topoldgicos e consideremos a uniao disjunta

X=|]|Xo={(a,20); a€Aex, € Xo} = |J ({a} x X,).

acA acA

Para cada o € A, existe uma fungao injetora
bo - Xog > X

definida por ¢, (x) = (o, ). Portanto, podemos identificar cada X, com um subconjunto de
X. Definamos uma topologia em X da seguinte forma: U C X é aberto se, e somente se,
UnN X, C X, éaberto na topologia induzida em X, para todo a € A. Nao é dificil verificar
que isso de fato define uma topologia em X. Notemos que se U C X, é aberto, entao U C X
é aberto, pois U N X, = U, que é aberto em X,, e U N Xz = (), para todo § # «a.

Seja (X4)aea uma colegdo de conjuntos, Y um conjunto fixado e, para cada a € A,

seja
fa: Xo =Y
uma fung¢ao. Definimos
f: |_| Xo—Y
acA

por f(a,z4) = fo(xs). Identificando X, com um subconjunto de | |, 4 X, temos que cada

fo € a restricao de f ao X, e, além disso, f é a tnica funcao que estende cada f,.

Proposigao A.1. Sejam Y espago topologico (Xa)aca uma colegio de espagos topoldgico e,
para cada o € A, seja
fo: Xoa =Y

uma fungdo. Seja
f: |_| Xo—Y

acA
a unica fungao que estende cada f,. Tem-se que f € continua se, e somente se, cada f, €

continua.
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Sejam X e Y espacos topologicos, A C Y um subespago fechadoe f: A — X uma

funcao continua. Consideremos a relacao de equivaléncia ~ em X | |Y gerada por
a~ f(a), Va € A.

Neste caso, o espago quociente
XY/ ~

¢ denotado por X Uy Y e denominado espaco de adjuncao colando Y em X por f.

Proposicao A.2. Seq: X||1Y — X U; Y denota a aplicacao quociente, entdo as sequintes

afirmagoes sao verdadeiras:

1. A restrigio q|x : X — X Uy Y € um mergulho topoldgico e ¢q(X) C X U Y € fechado.

2. A restricio qly\a 1 Y \ A —= X Uy Y é um mergulho topoldgico e q(Y \ A C)X Uy Y €

aberto.

3. X Up A é a unido disjunta de (Y \ A) e ¢(X).

Seja D™ a bola fechada n-dimensional em R". Temos que D" é uma variedade
topoldgica com bordo, de forma que o conjunto Int D™ dos pontos interiores é exatamente a
bola aberta n-dimensional e o conjunto dD™ dos pontos de bordo é a esfera S** . Além disso,
cl(Int D™) = D".

Definicao A.3. Uma n-célula aberta consiste em um espago topoldgico homeomorfo a bola
aberta n-dimensional e uma n-célula fechada consiste em um espaco topoldgico homeomorfo

a bola fechada n-dimensional.

Como D™ é uma variedade topoldgica com bordo, segue que toda n-célula fechada é
uma variedade topolégica com bordo. Denotemos por Int D™ o conjunto dos pontos interiores
e D" o conjunto dos pontos de bordo. Notemos que se F' : D" — D" é homeomorfismo,
entdo z € D™ é ponto interior se, e somente se, F(x) € [ D" e x € D™ é ponto de bordo se, e
somente se, F(z) € S™~!. Isso porque um ponto interior de uma variedade com bordo nao
pode ser ponto de bordo e um ponto de bordo nao pode ser ponto interior. Dai, se z € 9D",
entdo F(r) € "' C D", donde

z € F~!(cl(Int D™)) = cl(F~'(Int D™)) = cl(Int D").

Portanto,

cl(Int D") = D",
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Além disso, temos que Int(D™) C D™ é aberto e 9D™ C D™ é fechado.

Sejam X espaco topoldgico, (Dg)aca uma colegdo de n-células fechadas e f, : 9D, —

X, a € A, colecao de fungoes continuas. Neste caso, existe uma tnica funcao continua

f: U@DQ%X

acA

que estende cada f,. Neste caso, cada 0D, C |l eca Do € fechado, de forma que | |,c4 0D, C

Llaeca Do € fechado e, portanto, podemos formar o espago de adjuncao

Xuf<|_|Da>.

acA

Definigao A.4. Sejam X e Y espagos topoldgicos. Dizemos que Y é obtido de X colando

n-células, quando Y é homeomorfo ao espago de adjuncao

Xuf<|_|Da>.

a€A

Definicao A.5. Um complexo CW consiste em um espago topoldgico Hausdorff X que

satisfaz as seguintes condicgoes:

1. Existe uma cole¢do de subespagos X° C X' C X2 C --- tais que X = JX". Cada X,
¢ denominado n-esqueleto de X.
2. XY ¢é discreto.

3. Para cada n > 1 tem-se que X™ é obtido de X" ! colando n-células.

4. Um subespago A C X é fechado se, e somente se, AN X" C X" é fechado, para cada n.
Um complexo CW ¢ dito finito quando X = X, para algum n.

Uma n-célula é denotada por e}. Cada n-célula com n > 1 admite uma funcao

caracteristica 77, que é a composicao
Ty D" — X" |eh = X" — X.

A fungdo caracteristica T} de uma n-célula tem as seguintes propriedades (veja Proposi¢ao
A.2 de [14])

1. T e pn : Int D™ — €% é um homeomorfismo.

2. TS € X1,
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Além disso, vale que T (D™) = cl(e}), isso porque um complexo CW é normal, em particular
Hausdorff (veja Proposigao A.3 de [14]). Dai, T{(D™) C €%, pois T}y é continua e, como
T¢(D™) C X é compacto, segue que é, em particular, fechado e contém e?. Logo, cl(e}) C
T(D™).

Uma das técnicas para o calculo do grupo fundamental é o Teorema de van-Kampen
(veja a se¢ao 70 de [15]) e a partir dele é possivel calcular o grupo fundamental de um complexo

CW. A linguagem que utilizaremos pode ser encontrada no Capitulo 7 de [16].

Seja X = UJ,, X;, um complexo C'W finito com as seguintes propriedades:

1. X() = {.%'0}

2. xg estd no fecho de todas as 2-células.

Neste caso, temos que o fecho de cada 1-célula e, é homeomorfo a S', de forma que a funcio
caracteristica
Ty : D' =[-1,1] — cl(ey)

é um lago baseado em zy, cuja classe de homotopia gera m;(cl(ey), zg). Denotemos por ¢y
a classe de homotopia de T. Também temos que zy € T/\Q(Sl), para toda 2-célula €3, pois
temos que g € cl(e3) = T?(D?), mas xg ¢ €3 = Ti(Int D?), pois {x¢} é uma 0-célula e as
células sdo disjuntas. Assim, zo = T7(2), com zy € S'. Seja ¢ : I — S' um laco cuja classe

de homotopia gera 7T1<Sl, 2p). Neste caso,

T3(6(0)) = TX(20) = zo = TX((1)).

Logo,
R,\:T/\Qoqﬁ:l—>X

¢ um lago em baseado em .

Definicao A.6. Com a notacado acima, dizemos que Ry, é um lagco de fronteira e a classe

de homotopia de Ry ¢é denotada por r) e é denominada palavra de fronteira.

Teorema A.7. Se {e}; A € L1} sio as 1-células e {e; p € Lo} sao as 2-células, entio o

grupo fundamental m (X, xg) tem apresentagao

(tx, A€ Ly| ry, p € Lo).

A.1.2 ESPACOS DE RECOBRIMENTO

Sejam F, E’', B espagos topolégicos conexos por caminhos e localmente conexos por

caminhos.
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Definigao A.8. Dizemos que dois recobrimentos p : £ — B e p' : E' — B sdo equivalentes

quando existe um homeomorfismo h : E — E’ que faz o seguinte diagrama comutar

Neste caso, dizemos que h é uma equivaléncia de recobrimentos.

Proposigao A.9. Se p: E — B é um recobrimento e ey € p~'(by), entdo a aplicagio
D« - 7T1(E7€0) — 71-1(Ba bO)

é injetora e a imagem p.(m1(F,eq)) consiste nas classes de lagos em by cujos levantamentos

sao lagos em eq.

Demonstragio. Veja a Proposigao 1.31 de [14]. [ |

Teorema A.10. Sejam p : E — B e p' : E' — B recobrimentos de B, e ey € p~'(by) e
ey € p'H(by). Tem-se que existe uma equivaléncia h : E — E' com h(eg) = €}, se, e somente

se, p«(m1(E,ep)) = pu(mi(E',€p)). Neste caso, a equivaléncia com h(ey) = e[, € unica.

Demonstragio. Veja o Teorema 79.2 de [15] ]

Definicao A.11. Dizemos que um recobrimento p : £ — B é um recobrimento universal

quando E é simplesmente conexo.

Seja p : E — B recobrimento universal. Notemos que o conjunto C das transformacoes
de recobrimento de p : £ — B é um grupo, denominado grupo de transformacoes de
recobrimento. Se h € C, entdo p o h = p, de forma que h preserva cada fibra de p. Neste

sentido, C age em cada fibra p~!(by) da segunite forma:
(h7€0) = h<60)'

A agao é transitiva, pois como E é simplesmente conexo existe uma tnica transformacao de
recobrimento h : E — E tal que h(ep) = e; (Teorema A.10). Além disso, a unicidade da
transformagao de recobrimento nos garante que se h(eg) = eg, entdo h = idg, de forma que a

acao é livre. Assim, fixado ey € p~1(by), existe uma bijegao

U:C—pt(b)
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que leva h € C em h(ep). Dado e; € p~!(by), existe um caminho v em F ligando ey a ey, pois
E ¢ conexo por caminhos. Se v é um outro caminho ligando eg a e;, entao %75 é um laco

em eg, de forma que [y % vo] = [¢ce,], pois E é simplesmente conexo. Assim,

e = e[y * 0] = Py *p10 '] = [por]* [povo] ",

donde [po~y] = [po]. A partir disso, podemos definir uma fungao
D . p_l(bo) — 7T1<B, bo)

que leva e; € p~'(by) na classe [p o], onde v é um caminho entre eq e e;. Por outro lado,
para cada [f] € m (B, by), existe um unico levantamento f de f com ponto inicial eg, pois E

é simplesmente conexo (veja a Proposigao 1.33 de [14]). Definimos
= 7T1(B,b0) — pil(bo)

como sendo a funcdo que leva [f] em f (1). Notemos que f é um caminho entre ey e f(1), de

forma que

o E([f]) = ©(f(1)) = [ro f] = [f].
Por outro lado, se v é um caminho entre ey e e, entdo v é o levantamento de p oy com ponto

inicial eq, de forma que
Eo®(e1) =E([pon]) =1(1) = e
Portanto, ® : C — m1(B,by) é bijetora com inversa =. Fazendo a composi¢ao de ¥ com @,

temos que a funcao
doV:C— p_l(bo) — 7T1<B, bo)

é bijetora. Esta func¢do leva h € C em [p o], onde  é um caminho entre ey e h(eg). Para ver
que é homomorfismo, sejam hy, hy € C, e; = hy(eg), €2 = ha(eg), e3 = ha(e1) = ha(hi(eg)) €
sejam 7, caminho entre eg e ey, e 75 caminho entre ey e e;. Neste caso, hy o v é um caminho

entre
hl (¢] ")/2(0) = hl(eo) —= €1 € hl (@) ’}/2(1) = hl(eg) = €3.

Assim, 3 x (hy 0 72) estd bem definido e é um caminho entre ey e e3. Mas 1 * (h; 0y2) é 0

levantamento de (p o) * (p o 72), com ponto inicial eq pois
po(m*(hio))=(poy)*(po(hio))=(pom)*(pore).
Portanto,

o W(hyohy) =[(pom)*(pore)]=Ipen]xlpor]=(®oW(h))*(PoV(hy)).

Em resumo:
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Proposigao A.12. Para cada ey € p~'(by) existe um isomorfismo entre C e (B, by). Este
isomorfismo € dado da sequinte forma: se h € C ey é um caminho entre eq e h(eg), entdo h

é levado em [p o 7).

Proposicao A.13. Sejam G grupo de Lie, H C G subgrupo fechado e Hy a componente

conexa da identidade em H. Tem-se que a aplicacao natural
p:G/H, — G/H

que leva gHy em gH é um fibrado principal com grupo estrutural H/Hy. Em particular, se
H/H, € discreto, entiao p é um recobrimento. Além disso, se G/H; € simplesmente conero,
entdo o grupo fundamental de G/H no ponto b= H € G/H ¢é isomorfo a H/H;.

Demonstragio. Que p é um fibrado com grupo estrutural H/H; é a Proposi¢ao 13.23 de [9].

Um fibrado localmente trivial com fibra discreta é um recobrimento. Para cada h € H, seja
fh : G/Hl — G/Hl

a fungao que leva gH, em f,(gH,) = (gh~')H,. Esta fun¢io estd bem definida no sentido em
que se gH, = gHy, entdao g 'g € Hy, de forma que

hg 'gh™' € Hy,

pois H; é normal em H. Logo, gh 'H, = gh™'H,. Se p; : G — G/H; denota a projegio e
Dj-1 denota a translacdo a direita por h~!, entdo p; o Dy-1 = fj, o p1, donde f), é continua

com inversa f,-1. Logo, f; é homeomorfismo.

Notemos que se g € G, entao
p(gh™ Hy) = gh™ H = gH = p(gH,),

donde po f,(gH1) = p(gh™' Hy) = p(gH,), e portanto, f; é uma transformagao de recobrimento.
Por outro lado, afirmamos que se ¢ € C é uma tranformagao de recobrimento, entao ¢(1H;) =
hHi, com h € H. De fato, temos que ¢(1H;) = hH;, com h € G. Como ¢ é transformagao

de recobrimento, temos que
hH =po ¢(1H,) = p(1H,) = 1H,

donde h € H. Com isso, a unicidade de ¢ tal que ¢(1H,) = hH; (Teorema A.10) nos da
que ¢ = fp-1. Agora, como H; é normal em H, podemos tomar classes laterais a esquerda.
Consideremos a funcao

5H/H1—>C
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que leva hH, = H1h em f;,. Notemos que ¢ esta bem definida, pois se Hihy = Hiho, entao
hohi' € Hy. Assim, se g € G, entdo (ghy')H, = (ghy ')Hy, donde fy, = fn,. Além disso, € é

injetora, pois se f, = fn,, entao
hi'Hy = fn,(1H,) = fo,(1H,) = hy ' H,

donde hghfl € H; e, portanto Hihy = Hihs. Como toda transformagao de recobrimento é
da forma fj,, com h € H, segue que & é sobrejetora e, portanto, é bijetora. Para ver que é

homomorfismo, basta notar que

Juina(9) = (g(hihe) ™" Hy = (ghy " )hi ' Hy = fu, © fu,(9)-

Portanto, o grupo C das transformagoes de recobrimento de G/H; é isomorfo ao H/H e,
como C é isomorfo ao grupo fundamental m (G/H,1H), segue que H/H; é isomorfo ao grupo

fundamental m (G/H, 1H). |

A2 ESTRUTURA DOS GRUPOS DE LIE

A.2.1 GRUPOS NILPOTENTES

Seja G um grupo de Lie conexo. Dizemos que G ¢é nilpotente quando sua algebra de

Lie for uma algebra nilpotente.

Proposicao A.14. Se G é um grupo conexo nilpotente, entao a exponencial exp : g — G
¢ uma aplicaciao de recobrimento. Além disso, G € simplesmente conexo se, e somente se,

exp: g — G € injetora.
Demonstragio. Veja o Corolario 10.9 de [9]. |

Sejam GG um grupo de Lie conexo semissimples com um automorfismo de Cartan 6 e
seja
g=mdad Z [o P

a€ll

a decomposicao da sua algebra de Lie em espacos de raizes. Sejam
n= 3% gaen = ) ga
a€llt acll—
Como g, = g_., temos que
Go=10,:n—n".

¢é isomorfismo. Sejam N e N~ os subgrupos conexos gerados por n e n~, respectivamente.

Como n e n~ sao nilpotentes, segue que N e N~ sao nilpotentes. Além disso, o Teorema
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da decomposicao de Iwasawa garante que exp : n — N é difeomorfismo, de forma que N é

simplesmente conexo. Dali, existe um tinico homomorfismo
®:N—> N~
tal que d®; = ¢g, de forma que
®(exp(X)) = exp(¢o(X)).

Notemos que ker ® ¢é discreto, pois sua algebra de Lie é ker ¢g = 0. Dai, se Y1,Y5 € n™ sao
tais que
exp(Y1) = exp(Y2),

entao escrevendo Y; = ¢o(X;), temos que
O (exp(Xy)) = Pexp(Xa)).
Mas exp(X;) estd na componente conexa da identidade de N, de forma que
exp(X7) = exp(Xa),

donde X; = Xy, pois exp : n — N ¢é difeomorfismo. Logo, exp : n~ — N~ ¢ injetora, donde
N~ é simplesmente conexo. Sendo N e N~ grupos simplesmente conexos com algebras de Lie

isomorfas, segue que N e N~ sdo isomorfos.

Precisaremos do seguinte resultado (veja o Lema 2.3 de [17])

Lema A.15. Sejam nq,...,ng subdlgebras de n tais que

I.a=n®---Dny.

2. Cada n; € soma de espagos de raizes g,. Nestas condicoes, a fungdao
Ny x---xN,— N
que leva (nqy,...,ng) emny---ny € difeomorfismo.

A.2.2 DECOMPOSICAO DE CARTAN E IWASAWA

Sejam g uma algebra de Lie real de dimensao finita e
B(X,Y) = tr(ad(X)ad(Y))

a forma de Cartan-Killing de g.
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Definigdo A.16. Uma involugao de Cartan de g consiste em um automorfismo 6 : g — g

que satisfaz as seguintes condic¢oes:

1. 62 =id,.

2. A forma bilinear
(X,Y)=—-B(X,0Y)

define um produto interno em g, denominado de produto interno de Cartan.

Definicao A.17. Dizemos que uma &lgebra de Lie real g é semissimples quando g admite

uma involucao de Cartan.

Se # é uma involugdo de Cartan de g, entdao g se decompde como soma direta de
autoespacos
g=1t®s,

onde € é o autoespago associado ao autovalor 1 e s é o autoespago associado ao autovalor
—1. Esta decomposicao é denomidada de decomposicao de Cartan de g associada a 6.

Notemos que se X,Y € &, entao
0[X,Y]=[0X,0Y] = [X,Y],
donde [X,Y] € ¢. Logo, & é subdlgebra. Por outro lado, se X, Y € s, entao
(X, Y] =[0X,0Y] =[-X,-Y] = [X,Y],

donde [X, Y] € . Em particular, s ndo é subdlgebra em geral. Além disso, se X € te Y € s,

entao
(X, Y] =[0X,0Y] =[X,-Y] =—[X,Y],

donde [X,Y] € s. Em resumo, temos que

[t C ¢ [£,s] Cs, [s,8] C¢

Proposicao A.18. Seja g = t®s uma decomposi¢io de Cartan associada d 6 e seja (-,-) o

produto interno de Cartan. As sequintes afirmagoes sao verdadeiras:

1. Se X € ¢, entdo ad(X) € antissimétrica com relagio ao produto interno de Cartan.
2. Se X € s, entao ad(X) € simétrica com relagio ao produto interno de Cartan.

3. e s sao ortogonais com relacao ao produto interno de Cartan e com relacao a forma
de Cartan-Killing.
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Demonstragio. Sejam X € te Y, Z € g. Usando que B(ad(X)Y,Z) + B(Y,ad(X)Z) =0

ficamos com

(ad(X)Y,Z) = —B(ad(X)Y,02) = B(Y,ad(X)0Z) = B(Y,[X,0Z7])
= B(Y,0[6X,7]) = B(Y,0[X, Z]) = —{Y,[X, Z])
= —(Y,ad(X)Z),

donde ad(X) é antissimétrica, demonstrando o item 1. O item 2 é anédlogo usando que se
X € s, entdao #(X) = —X. Para o item 3, usaremos que a forma de Cartan-Killing é invariante

por automorfismos, isto é,

B(X,Y) = B(6X,0Y),

para todos X, Y € g. Sejam X € e Y € 5. Segue que
B(X,Y)=B(6X,0Y)=—-B(X,Y),
donde B(X,Y) = 0. Assim,
(X,)Y)=—-B(X,0Y)=B(X,Y) =0,
0 que prova o item 3. [

Sejam # uma involugao de Cartan de g e ¢ : g — g um isomorfimo de algebras de Lie.
Definamos o automorfismo
60 =¢pobodt:g—g.
Notemos que
(6.0)2(X) = po 6?0 ¢ (X) = X,

para todo X € g, donde ¢,0 é uma involucio de g. Para cada X € g, denotemos ¢(X) = X.

Neste caso, temos que a forma de Cartan-Killing B de § é

B(X,Y) = tr(ad(X)(Y)) = tr(¢ad(X) ad(Y)p ') = tr(ad(X),ad(Y)) = B(X,Y).
Dai, se X,Y € §, entdo
—B(X,9.0Y) = =B(¢(X),¢ 0 0(Y)) = —B(X,6(Y))

define um produto interno em g. Assim, ¢ induz a involugao de Cartan ¢.0 em g. Notemos
que o autoespago associado ao autovalor 1 é ¢(£) e o autoespago associado ao autovalor —1 é

®(s), de forma que
g=0(t) ©os).
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A partir de agora, fixemos g = £ @ s uma decomposigdo de Cartan de g associada a 6

e (-,-) o produto interno de Cartan.

Como g tem dimensao finita, existe uma subalgebra abeliana a de g contida em s que

¢ maximal. Seja o € a* um funcional linear de a e consideremos o seguinte conjunto
g ={X €g; ad(H)X = «a(H)X, VH € a}.

Caso a seja um funcional linear nao nulo de a e g, # 0, diremos que « é uma raiz restrita
de a (ou simplesmente uma raiz de a) e que g, é um espaco de raiz. O conjunto das raizes
restritas é denotado por II. Valem as seguintes propriedades a respeito dos espacos de raizes

(para a demonstracao veja a Proposi¢ao 6.40 de [8]).

Proposicao A.19. As sequintes afirmacoes sao verdadeiras:

1. A dlgebra g se decompoe na soma direta ortogonal g = go B Z Ja-
a€ll

2. [gaagﬂ] C Ja+s-

3. Se 0 € a involucao de Cartan, entdo g, = g_q.

4. go=mda, ondem é o centralizador de a em €. Além disso, m e a sdo ortogonais.

O conjunto das raizes restritas forma um sistema de raizes’ em a* (Coroldrio 6.53 de
[8]). Seja X C IT um sistema simples de rafzes. Neste caso, podemos definir o conjunto IT+
das raizes positivas, que sdo as raizes que se exprimem como combinacao linear de ¥ com

coeficientes inteiros nao negativos.

No caso de uma algebra semissimples real, os espagos de raizes podem ter dimensao
maior do que 1, diferente do que acontece com uma algebra semissimples complexa. Também
pode acontecer de 2« ser raiz, de forma que Il ndao é um sistema de raizes reduzido. O que
acontece é que se g, tem dimensao impar, entdo 2 nao é raiz. Este fato esta citado na pagina

530 de [7] e a demonstracao estd na Proposigao 2.3 de [18] ou no Lema 2 da pégina 33 de [19].

Proposicao A.20. Se m, denota a dimensao de g, e mq € impar, entdo 2a nao é raiz.

Seja n = Z g.- Pela Proposicao A.19, temos que n é subélgebra e [a,n] C n. Vale a
a€llt
seguinte decomposicao de g, conhecida por decomposicao de Iwasawa da algebra de Lie

1 Para a teoria de sistemas de raizes, veja o Capitulo 3 de [5]. Outras referéncias sdo o Capitulo

I1, segao 5 de [8] e o Capitulo 9 de [6].
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Teorema A.21 (Decomposigao de Iwasawa da algebra de Lie). Com a notag¢do acima, g se
decompoe na soma direta
g=tDadn.

Seja ¢ : g — g isomorfismo de dlgebras de Lie. Vimos anteriormente que ¢,60 define
uma involugao de Cartan, de forma que g = ¢(€) ® ¢(s) é decomposicao de Cartan de g. Seja
a C s abeliana maximal. E claro que ¢(a) é subdlgebra abeliana maximal de g contida em
(s).

Denotemos por II o conjunto das raizes de ¢(a) e seja ¢* : g* — g* a transposta de
¢~1. Como a* é identificado com um subespaco de g* por extensdo de um funcional linear
de a para um funcional linear de g, ndo é dificil verificar que II = ¢*(IT), que ¢*(X) é um
sistema simples de raizes em I1 e que ¢(ga) = go-a (Veja a demonstracao do Lema 4.6 de [5)).
Considerando o conjunto das raizes positivas II™ definido por ¢*(2), temos que ¢*(II1) = I,

de forma que ¢(n) = 2 geii+ 98 = n. Com isso, temos o seguinte resultado.

e

Proposicao A.22. Se g = t@adn € decomposicio de Iwasawa de g € ¢ : g — g €

isomorfismo, entao
g=0(t) ® ¢(a) ® ¢(n)
¢ decomposicao de Iwasawa de g.
Definicao A.23. Um grupo de Lie conexo ¢ dito semissimples, quando sua algebra de Lie

¢é semissimples.

Fixemos um grupo de Lie conexo G semissimples com &lgebra de Lie g semissimples e
consideremos as notagoes acima. Sejam K = (expt), A = (expa), N = (expn) os subgrupos

de Lie conexos gerado por £, a, n, respectivamente.

Teorema A.24 (Decomposigao de Iwasawa do grupo de Lie). Seja G um grupo de Lie conexo
com dlgebra de Lie g. Com as notagoes acima, seja g = B adn uma decomposicio de

Twasawa de g. Tem-se que a fungdo
p: K xAXN—=G

definida por ¢(k,a,n) = kan é um difeomorfismo, de forma que todo elemento g € G se

exprime, de forma unica, como um produto g = kan, com k € K, a € A, n € N. Além disso,

1. K, A, N e AN sao subgrupos fechados.

2. exp:a— A eexp:n— N sdo difeomorfismos, donde A e N sdo difeomorfos a espagos

euclidianos.
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3. K € compacto e K = exp(t) se, e somente se, o centro de G € finito.

A demonstragao deste resultado pode ser encontrada no Teorema 12.12 de [9] ou no
Teorema 6.64 de [8].

Uma subalgebra de Cartan de uma algebra de Lie sobre um corpo K consiste em uma

subdlgebra nilpotente que coincide com seu proprio normalizador.

Proposicao A.25. Se t é um subespaco abeliano maximal contido em m, entdo a®t é uma

subdlgebra de Cartan de g.
Demonstragio. Veja Proposicao 6.47 de [8]. [ |

Assim, a estd contido em uma subélgebra de Cartan h. Neste caso, a complexificacao
bc é uma subalgebra de Cartan de gc, pois a complexificagao de uma subalgebra nilpotente
ainda é nilpotente e a propriedade de coincidir com o préprio normalizador nao depende dos
escalares. Com relacao a subalgebra de Cartan hc, vale a seguinte decomposi¢cdo em espacos

de raizes

gc=hc® > (8¢)a:

a€lle
onde Il¢ denota o conjunto das raizes com relacao a he. Se 5 é uma raiz restrita, isto é, 5 é

uma raiz de a, entao vale o seguinte resultado:

gs=gnN < D (gc)a)

a€cllp
alu:B

(veja as equagoes 6.48 de [8]). Em particular, as raizes de a sdo restrigoes das raizes de h.

A.2.3 RECOBRIMENTO DE GRUPOS DE LIE

Seja G um grupo de Lie conexo com algebra de Lie g. Considerando o recobrimento
universal p : G — G da variedade subjacente e tomando um elemento 1 € p~'({1}),
podemos colocar uma estrutura de grupo de Lie em G de tal forma que 1 é a identidade, p é
homomorfismo diferencidvel e dpy ¢ isomorfismo entre a algebra de Lie de G e a dlgebra de
Lie de G. (Veja o Teorema 7.16 de [9]). Denotando a identidade em G por 1 e identificando
a algebra de Lie de G com a algebra de Lie de G por meio de dp;, podemos interpretar dp;
como sendo a identidade. Como a decomposicao de Iwasasa de algebras de Lie é invariante

por isomorfismos, essa identificacdo nao nos causara prejuizos.
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Proposicdo A.26. Se exp : g — G denota a exponencial de G e éxp : g — G denota a
exponencial de G, entdo

p(exp(X)) = exp(X), VX € g.

Demonstracao. Como p : G — G é homomorfismo, temos que o seguinte diagrama é comuta-

tivo
G—2L-@
S
g Tdpr g
Assim, p(exp(X)) = exp(dp (X)) = exp(X), para todo X € g. [ |

Proposicdo A.27. Se g € G, entdo Ad(g) = Ad(p(g)).

Demonstragio. Denotemos por I, e D, as translagoes a esquerda e a direita em G por g € G,
respectivamente, e Cy a conjugagdo em G por g € (. Analogamente, sejam E; e Dy as
translacoes a esquerda e & direita em G por § € G e C5 a conjugagao em G por § € G. Neste

caso, vale que

po E5(h) = p(gh) = p(§)p(h) = E,; o p(h).
Analogamente,
poDs=D,zop, ¥jeG.
Dai,

poly=polyoDy.=EgopoDs=EgGoD,g-op=Cygop.

Derivando na identidade e denotando por Ad(g) a adjunta de g em G , que € a derivada de C;

na identidade, temos que
dpy o Ad(g) = Ad(p(g)) o dp:.

Como dp; é a identidade, segue que

Ad(g) = Ad(p(9)),

como queriamos. [ ]

Agora, sejam K , Ae N os subgrupos conexos de G gerados por €, a e n, respectiva-
mente. O Teorema da decomposicao de Iwasawa (Teorema A.24) nos dé que K A, N e AN
sao subgrupos fechados e A e N sdo simplesmente conexos. Neste caso, AN & simplesmente

conexo.
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Proposicio A.28. Tem-se que p(K) =K e plx: K — K ¢ um recobrimento.

Demonstragio. Seja k € K. Neste caso, podemos escrever k = exp(Zy) - -exp(Zy), Z; € &,

de forma que

p(k) = p(exp(Z1)) - p(exD(Zy)) = exp(Z1) -+~ exp(Zy) € K

Como todo elemento de K ¢é da forma exp(Z) - - -exp(Z), Z; € ¢, vale a igualdade p(K) = K.
Agora, como K & subgrupo de G, temos que plz: K — K é homomorfismo sobrejetor. Para

mostrar que p|z ¢ recobrimento, basta mostrar que a derivada na identidade é um isomorfismo
(Veja a Proposicao 7.4 de [9]). Mas

d(plg)i(t) = d(po)i(t) = dpy o du(t) = ¢,

onde ¢ : K — G ¢ a inclusdo de forma que di1(€) é identificado com €. Dali, temos que

d(p|z) : &€ — € é isomorfismo, donde p|z é recobrimento. [

De maneira analoga e usando que AN, A, N sdo simplesmente conexos, temos que

Proposicdo A.29. Tem-se que p(AN) = AN, p(A) = A, p(N) = N e pliv AN —
AN, pl;: A— A, ply: N — N sdo recobrimentos. Em particular, sao difeomorfismos.

Proposigao A.30. Tem-se que p~'(K) = K.

Demonstragio. Se § € p~'(K), entdo usando a decomposicio de Iwasawa de G, podemos
escrever

G = kan € KAN,
de forma que

p(k)p(@)p(R) = p(g) € K,

donde p(a) =1 e p(n) = 1. Como p|; e p|5 sdo difeomorfismos sobre A e N, respectivamente,

temos que a =1en =1, donde g = k € K. A outra inclusdo é direta de p(lA(/) = K, pois

K Cp ' (p(K)) = p~ ' (K).

Logo, p }{(K) = K. [

Proposicao A.31. Se M ¢é o centralizador de a em K e M é o centralizador de a em K,
entdo M = p~1(M).
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Demonstragio. Se m € M e H € a, entdo p(m) € K e
H = Ad(m)H = Ad(p(m))H,
donde p(m) € M e, portanto, M C p~(M). Por outro lado, se m € p~'(M), entdo m € K e

Ad(m)H = Ad(p(m))H = H,

donde p~ (M) = M. [

A.3 VARIEDADES FLAG

A.3.1 SUBALGEBRAS PARABOLICAS

Nesta secao, coletaremos alguns resultados do Capitulo 4 de [3] que nos serao tteis.

Seja G grupo de Lie conexo semissimples com centro finito? e 4lgebra de Lie g
semissimples com decomposigdo de Cartan g = €@ s, (-,-) o produto interno de Cartan e
g = t® adn uma decomposicao de Iwasawa. Sejam também II C a* o conjunto das raizes de
a e 3 C IT um sistema simples de raizes (Veja a Secao A.2.2 para essas defini¢oes). Neste

caso, como (-, -) é um produto interno, temos o isomorfismo linear canénico

w:a—a

que leva H € a no funcional linear &(H)(H) = (H, H). Notemos que & induz um produto

interno em a* definido por

Para cada « € I1, seja H, =& !(a) e seja

H = % _H, (A1)

(o)
Neste caso, a teoria de sistemas de raizes nos garante que o conjunto
MY ={H): a €I}
¢ um sistema de raizes em a que é, num certo sentido, dual a II. Para mais detalhes, veja o
Capitulo 3 de [5], mais especificamente a Proposicao 3.23.

Sejam © C ¥ e a(0O) = ger{H,: a € O}. Neste caso, existe um subespago ag de a

que é o complemento ortogonal de a(©) em a, de forma que

a=a(0)Dag.

2 A hipétese de G ter centro finito entra para que na decomposicio de Iwasawa G = KAN

tenhamos que K seja compacto, na verdade subgrupo compacto maximal. Veja Teorema 6.31 de
8]
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Denotemos por (©) o conjunto das raizes que sao combinagoes lineares de © e seja

g(©) a subdlgebra de g gerada por

O)® > da-

a€e(O)

Proposicao A.32. g(0) ¢ uma dlgebra semissimples, 0|qey € uma involugio de Cartan de
9(©) e
9(0) =£(0) ©5(0)

€ a decomposicio de Cartan associada d 0ye), onde €(O) = €Ng(O) e s(0) = sNg(O).

Dizemos que g(0) é a subélgebra semissimples de tipo ©.

Denotemos (©)" = (0) NIIT e (©)~ = (O) NI~ e sejam

Zgaen Zga

Proposicao A.33. Tem-se que a(©) C 5(0O) é um abeliano mazimal e (©) = {alqe): o €

(©)} € o conjunto das raizes de a(©). Além disso,
9(0) =(©) ®a(®) ©n(0)

¢ uma decomposicao de Twasawa de g(©).

Sejam G(0), K(0), A(©), N(O) os subgrupos conexos de G gerados por g(©), ¢(0), a(O)

e n(©), respectivamente.

Proposicao A.34. O subgrupo semissimples G(©) centraliza ag e tem decomposicao de

Twasawa dada por

Com isso, temos o seguinte
Proposicao A.35. K(©) = KNG(O), AO)=ANG(O), N(©)=NNG(O).
Proposicao A.36. Se M(©), denota o normalizador de a(©) em K(©), entao M(0©), =
M,NK(©).

Como G(O) centraliza ag, temos o seguinte resultado:

Proposicao A.37. Se M(©) denota o centralizador de a(©) em K(©), entao M(O) =
MNK(©).
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Denotemos por ge o centralizador de ag em g, isto é,
go={X€g:[X,H] =0, VH € ag}
e denotemos por g = geo N € o centralizador de ag em €.

Proposicao A.38. Sem denota o centralizador de a em € e (©) denota o conjunto das raizes

que sao combinagoes lineares de O, entao

go=mPad Z Ja-
ae(O)

Sejam

ne= Y, GulNe= D, 8an(O)= >  dacn(®) =

a€llT\(O) acll—\(0) a€(O)NIIt+ a€(

Ya-

-

E1%¢

Notemos que se n = Z gaoen = Z 0o, €ntao
a€llt a€cll~

n=ng®n(®)e n =ng®dn(O)".
Consideremos o conjunto pg = go P ne € notemos que
Po=mDadn(O)dn(O) Gng=mbadndn(O) . (A.2)
Proposicao A.39. O conjunto pg é uma subdlgebra de g.

Definicao A.40. A subdlgebra pg é denominada de subalgebra parabdlica de tipo ©.

Caso © = (), denotamos py = p e dizemos que p é a subdlgebra parabdlica minimal.
Proposicao A.41. A subdlgebra parabdlica minimal se decompde como
p=mdadn.

Definicao A.42. O normalizador de pg em G é denotado por Pg e é denominado subgrupo
parabdlico de tipo ©. Caso © = (), denotamos Py por P, denominado subgrupo parabdlico

minimal.

Em geral, o normalizador de uma subalgebra em G é um subgrupo fechado de G.
Em particular, Py é um subgrupo fechado, de forma que existe uma estrutura diferenciavel
em (G/Pg munido da topologia quociente. (Veja Secao 6.7 de [9]). Com essa estrutura, a
variedade G/ Pg é denominada variedade flag de tipo O e é denotada por Fg. O ponto base
1Pg é denotado por bg, de forma que todo elemento de Fg é da forma gbg, g € G. Quando

© = (), o ponto base bg é denotado simplesmente por b.

Sejam p : G — G recobrimento universal de G e Pg o normalizador de Po em G. De
maneira analoga, consideremos a variedade Fo = G / Ps e denotemos por be 0 ponto base

1Po € G/Po. Além disso, sejam (Pg); e (Po); as respectivas componentes conexas.
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Proposi¢io A.43. 1. Pp = p1(Po).

2. p((Po)1) = (P

3. Fe ¢ difeomorfa a Fg.

Demonstragio. Para provar 1, basta usar que Ad(§) = Ad(p(j)), para todo § € G (Proposicio
A.27). Assim, se g € p~'(Py), entdo

Po = Ad(p(9)) pe = Ad(9) e,

donde g € Po. Reciprocamente, se ge< Po, entdo

Po = Ad(g) pe = Ad(p(9)) pe,

donde § € p~'(Pe). Para provar 2, basta notarmos que (Pg); e (Po); si0 0s respectivos
subgrupos conexos com algebra de Lie pg e usar o mesmo argumento da Proposigao A.28.
Agora, para provar 3, temos que G age transitivamente em Fg de forma que se g € G e
gbe € Fg, entao

g (gbe) = (p(9)g)be-

Se éb@ denota o subgrupo de isotropia desta acao, temos que

G€Gh < p@bo =bo < p(g) € Po
& gep HPs) = Po.

Logo, a isotropia desta agao ¢é ]5@, de forma que a aplicagao
& G/Po — G/ Po
dada por &, (§Pe) = p(j)be é difeomorfismo (Veja Proposicio 13.9 de [9]). ]
Proposicao A.44. O subgrupo parabélico de tipo © se decompoe como
Ps = Ko AN,

sendo Kg o centralizador de ag em K. Em particular, o subgrupo parabolico minimal se

decompoe como

P = MAN,

sendo M o centralizador de a em K.
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A.3.2 GRUPO DE WEYL

Sejam W o grupo de Weyl de II e W* o grupo de Weyl de IIV. Neste caso, se r, denota

a reflexao em a no espago a*, entao identificando a com o bidual a**, temos que a transposta
t.
rtia—a

é uma reflexdo em H) (veja a Proposi¢ao 3.22 de [5]). Para cada w € W, denotemos por w*

a transposta da inversa
de forma que

Consideremos a fungao
W — Wr

que leva w € W em w*. Notemos que a funcao estd bem definida no sentido em que w* € W,

POIS 8€ W = Ty, * * * Tq, , €NLAO
* -1\t __ t __ .t t *
w = ((ral"'roék) ) - (rak"'ral) —T‘al'“?“ak eWwr.
Além disso, é homomorfismo, pois

(rars)” = ((rars) ') = (rgra)’ = rary =127,

E injetor, pois se (w™)! = id, entdo w™! = id, donde w = id, e é sobrejetor pois W* é gerado
por 1%, « € II. Portanto, W é isomorfo a W*. Além disso, temos que w = (w*)*, para todo
weW.

Sejam M, o normalizador de a em K e M o centralizador de a em K. E claro que M
é subgrupo normal de M,, de forma que M, /M é um grupo. Vale que M, /M é isomorfo ao

grupo de Weyl W. Daremos a ideia da demonstracao com base no capitulo VI.5 de [8].

Proposigao A.45. Se a € Il e X, € g, \ {0}, entdo as sequintes afirmagies sio verdadeiras:

1. [Xa, 0(X0)] = B(Xa,0(Xo)Hy € B(Xa,0(X,)) < 0.

2. RX, ®RH, ® RO(X,) é uma subdlgebra isomorfa d sl(2,R).

-2
3. Se X, € tal que B(X,,0(X,)) = o)’ entdo o elemento
a,

ko, = exp <72T(Xa + Q(Xa))>

t

pertence a M, e Ad(k,) age como a reflexdo v, em a*, isto é, Ad(ky)|a = 7%,
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Observacao A.46. Uma forma de ver o isomorfismo do item 2 da Proposicdo A.45 é a
seguinte: como [X,,0X,] = B(X,,0X,)H,, com B(X,,0X,) <0, podemos normalizar X,
de forma que

[Xo,0X,] = —H,.

Assim,
Y. X,] = a(H)X, = 2X,
[H!,—0X,] = —-0[0H) X,|=0[H X, =—-2(-0X,)
[(X,, —0X,] = H,

de forma que temos as seguintes identificagoes

01 1 0 0 0
— X, < HY, — 0X,.
0 0 0 —1 -1 0

Em particular, o item 3 nos dd que W* C {Ad(k)|,: k € M.}. No Capitulo VL6 de [§]
¢ provada a igualdade W* = {Ad(k)|.: k € M.,}. Notemos que a fun¢ao M, — {Ad(k)|.: k €
M.} que leva k € M, em Ad(k)|, ¢ um homomorfismo sobrejetor com nicleo M. Assim,
M, /M ¢ isomorfo a {Ad(k)|.: k € M.}. Logo, W* e M, /M sao isomorfos e, portanto, W
e M,/M sao isomorfos, de maneira que se k € M,, entdao kM € M, /M é identificado com

(Ad(k)|q)* € W. Para referéncia futura, enunciaremos o resultado.
Proposicao A.47. W ¢ isomorfo a M,/M de forma que kM ¢é identificado com (Ad(k)|q)*.

Proposicao A.48. Sejam a € I1U {0} e k € M,. Se w = (Ad(k)|,)* € W denota o

representante de k no grupo de Weyl, entao

kga = Buwa-

Em particular, M normaliza cada espago de raiz.

Demonstracio. Sejam X € g, e H € a. Neste caso, temos que
[HkX] =k[k'H, X] = ka(k""H)X = a(k ' H)kX.
Mas w = (Ad(k)|,)*, que pode ser interpretado como (k~')* de forma que
a(k™ H) = ((k)')(H) = wa(H).

Portanto, kX € gua- [ |
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Temos que o grupo de Weyl W é gerado pelas reflexdes 7, com a € 3 (veja Proposigao
3.98 de [5]), de forma que todo elemento w € VW se exprime como rg, - - - Tq,, COM @; € 2.
Por simplicidade, denotaremos r,, simplesmente por r;. Os resultados a seguir podem ser

encontrados nas segoes 1.6 e 1.7 de [20].

Definigao A.49. Seja w € W. Definimos o comprimento de w como sendo o menor inteiro
nao negativo k tal que

w =7y Tk

Neste caso, denotamos [(w) = k e dizemos que w = ry - - - 1, ¢ uma expressao reduzida de
w.

Observagao A.50. 1. l(w)=1&w=r,, a€.

é uma expressao reduzida de w, entao

2. l(w) = l(w*1)7 POIS S€ W = Tg, =+ * Ta,

-1
w :Tak"'rogu

donde [(w™) < I(w). De maneira andloga, I(w) < I(w™?).

Proposicao A.51. Sejam w € W e a € .. As sequintes afirmagoes sao verdadeiras:

1. Se wa > 0, entao l(wry,) = l(w) + 1.
2. Se wa < 0, entdo l(wry) = l(w) — 1.
3. Se wla >0, entdo l(row) = l(w) + 1.
4. Sew la <0, entdo l(row) = l(w) — 1.
Para w € W, seja n(w) a quantidade de raizes positivas que sdo levadas em raizes
negativas por w.

Teorema A.52 (Condigao de reducdo). Se w =71y -- -1, e n(w) < k, entdo existem indices
1 <1<y <k tais que

A A

wzrl."ri"'rj"'rka
onde o chapéu indica omissao.
Proposigao A.53. Se w € W, entio l[(w) = n(w).

Teorema A.54. Seja w =1y, -1, erpressao de w que nao é necessariamente reduzida. Se

k

a € X € tal que l(wr,) < l(w), entdao existe um indice i € {1,...,k} tal que

W="Tq """ Ta; - TapTa-
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Definigao A.55. Seja © C . Definimos o conjunto WWeg como sendo o conjunto dos elementos
em W que centralizam ag .
Proposicdao A.56. 1. Weg ¢ gerado por {r,; a € O}.

2. Se w € Wg e l(w) =k, entdo existe uma expressio reduzida w = 7oy« Tq,, COM

Oéi€@.

Demonstragio. O item 1 é a Proposicao 3.18 de [3] e o item 2 é a Proposigao da secao 1.10,
item b de [20]. |

No contexto das algebras semissimples, temos que se © C ¥ e g(0) é a subdlgebra
semissimples de tipo ©, entdo a Proposicao A.33 nos da que (©) é um sistema de raizes
em a(©). Consideremos a seguinte notagao: para cada w € We, sejam W = w|qe) €

We = {w; w € We}. Vale o seguinte resultado:

Proposigao A.57. 1. We € o grupo de Weyl de (©).

2. We = Ad(M(0).)a.
Demonstragio. O item 1 ¢é a Proposicao 3.19 de [3] e o item 2 é a Proposicao 4.7 de [3]. W

Com isso, usando a mesma ideia da Proposicao A.47 temos o seguinte resultado:
Proposicdao A.58. We ¢ isomorfo a M(©),/M(0) de forma que kM (©) ¢ identificado com
(Ad(k) )"

Seja WO = {w € W: l(wry) > l(w); Ya € O}.

Proposicio A.59. Se w € W, entio existem unicos elementos u € W€ e v € We tais que

w = uv. Além disso,

1. l(w) = l(u) + l(v).
2. u € WP € o dnico elemento em wWe de menor comprimento.

Definigao A.60. Sejam w,v € W e w = rq - - -, uma expressao reduzida de w. Dizemos que
v < w quando v se exprime como uma subexpressao de w = r1 --- 7. Em outras palavras,
existem iy, ...,is € {1,...,k}, com iy < --- <, tais que

V=TT

5"

A relagdo < em W é denominada ordem de Bruhat.
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A.3.3 CAMARAS DE WEYL

Como o conjunto Il das raizes de a é um sistema de raizes, podemos definir uma

camara de Weyl de II como sendo uma componente conexa do conjunto
{H €a:a(H)#0, Ya € IT}.

Para mais detalhes, veja a segdo 3.6 de [5]. Fixemos uma cdmara de Weyl a™ e um elemento
H € cl(a™). Neste caso, denotando

Y(H)={aeX: a(H) =0},
vale que o conjunto das raizes que sdo combinagoes lineares de X(H) é

(X(H)) ={aell: a(H) =0}
(veja a Proposigao 3.16 de [3]). Por outro lado, vale o seguinte resultado:
Proposicao A.61. Se © C X, entdo existe Hg € cl(a™) Nag tal que X(Hg) = O.

Demonstragio. Veja Proposi¢ao 3.17 de [3]. [ |

Agora, seja G o centralizador de H em G e Ky = Gy N K o centralizador de H em
K. Consideremos também o grupo K(H) = K(3(H)).

Proposicao A.62. Ky = Ky = K(H)M.
Consideremos os conjuntos

ng= Y, Ga€ Py =0n®nm,
aclt
a(H)>0

onde gy ¢é o centralizador de H em g. Se Py denota o normalizador de p; em G, entao vale

o seguinte resultado:

Proposicao A.63. Py = Py e Py = KgAN.

Com isso, podemos provar o seguinte:
Proposicao A.64. Py = (Py)1 M
Demonstragio. Como Py = KgAN e Ky = K(H)M, temos que

Py = K(H)MAN.
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Mas, segue da Proposi¢do A.48 que M centraliza A e M normaliza N, de forma que
Py = K(H)ANM.

Mas K (H)AN é um conexo contido em Py que contém a identidade, de forma que K (H)AN C
(PH)I Dai;
Py = K(H)ANM C (Py), M.

A outra inclusdo é direta, pois (Pg)y € Py e M C Py. [ |
Corolario A.65. Se © C X, entao

Py = (Po)1 M

Demonstragio. Basta tomar He € cl(a™) tal que ¥(Hg) = © e usar que Py, = (Py, )1 M. R
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