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RESUMO

Esta tese é composta por assuntos distintos entre si de teorias quânticas de campos
onde alguns deles são descritos em espaços não-comutativos (NC). Em primeiro lugar,
analisamos a dinâmica de uma partícula livre sobre uma 2-esfera e através da dinâmica das
suas equações de movimento, obtivemos as perturbações NCs neste espaço de fase. Este
modelo sugere uma origem para o Zitterbewegung do elétron. Depois disso, consideramos
uma versão NC da segunda lei de Newton para este modelo, que foi obtido com este cenário
geométrico aplicado a este modelo. Em seguida, discutimos um formalismo alternativo
relacionado à não-comutatividade chamado DFR onde o parâmetro NC é considerado
uma coordenada e demonstramos exatamente que ela tem obrigatoriamente um momento
conjugado neste espaço de fase DFR, diferentemente do que alguns autores da atual
literatura sobre DFR afirmam. No próximo assunto, usando o formalismo de solda que, em
poucas palavras, coloca partículas com quiralidades opostas no mesmo multipleto, soldamos
algumas versões NCs de modelos bem conhecidos como modelos de Schwinger quirais e
modelos (anti) auto duais no espaço-tempo de Minkowski estendido. Em outro assunto
estudado aqui, também construímos a versão NC do modelo de Jackiw-Pi com um grupo
de calibre arbitrário e usamos o mapeamento bem conhecido de Seiberg-Witten para obter
este modelo NC em termos de variáveis comutativos. Finalmente, utilizamos o formalismo
de campos e anticampos (ou método BV) para construir a ação de Batalin-Vilkovisky
(BV) do modelo Jackiw-Pi estendido e após o prEntendiocedimento de fixação de calibre
chegamos a uma ação completa, pronta para quantização.

Palavras Chaves: Geometria não-comutativa em física. Formalismo de solda e fenômenos
de interferência em teoria quântica de campos. Método lagrangiano de quantização.



ABSTRACT

This thesis is composed of distinct aspects of quantum field theories where some of
them are described in noncommutative (NC) spaces. Firstly, we have analyzed the
dynamics of a free particle over a 2-sphere and through the dynamics of the equations of
motion we have derived its NC perturbations in the phase-space. This model suggests
an origin for Zitterbewegung feature of the electron. After that we have considered
the NC version of Newton’s second law for this model, which was obtained with the
geometrical scenario applied to this model. Then we have discussed the so-called Doplicher–
Fredenhagen–Roberts (DFR) alternative formalism concerning noncommutativity where
the NC parameter has a coordinate role and we showed exactly that it has a conjugated
momentum in the DFR phase-space, differently of what some authors of the current
DFR-literature claims. In the next issue, using the soldering formalism which, in few
words, put opposite chiral particles in the same multiplet, we have soldered some NC
versions of well known models like the chiral Schwinger model and (anti)self dual models
in the extended Minkowski spacetime. Changing the subject, we have constructed the NC
spacetime version of Jackiw-Pi model with an arbitrary gauge group and we used the well
known Seiberg-Witten map to obtain the NC model expressed in terms of commutative
variables. Finally, we have used the field-antifield (or BV method) formalism to construct
the Batalin-Vilkovisky (BV) action of the extended Jackiw-Pi model and after the gauge
fixing procedure we have arrived at a quantized-ready action for this model.

Key words: Noncommutative geometry in physics. Soldering formalism and the interference
phenomena in quantum field theory. Lagrangian method of quantization
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1 Introduction

1.1 Noncommutative physics

The search for the holy grail in theoretical physics is composed of the main challenges
that have dwelt among us since the last century. One of these challenges is to unify
into a single and consistent framework both theories of quantum mechanics and general
relativity. The combination of special relativity and quantum mechanics has already been
accomplished through the Klein-Gordon and Dirac approaches. However, the path to
reconcile the general relativity with the quantum theory in a completely consistent form is
still a mystery.

This so-called quantization procedure of general relativity has stumbled onto another
theoretical physics challenge, i.e., the infinities (divergences) that appear in some specific
calculations during the quantization process. This issue is directly connected to the
understanding of the behavior of quantum fields at the high energy scale which is also
connected to the structure of spacetime at (or near) the Planck scale. Understanding
the structure of spacetime at this scale is mandatory in order to construct the Hilbert
space inner product, essential to the definition of the particle states. There are several
formalisms that deal with these questions and one of those is the noncommutative (NC)
geometry, which can, for these reasons, be considered as a toy model for quantum gravity.

1.1.1 Noncommutative geometry

The correspondence between geometric spaces and commutative algebras is a well known
and basic idea of algebraic geometry. NC geometry generalizes this correspondence to
NC algebras. In the physical applications of NC geometry discussed in this work, we are
interested in the correspondence between NC algebras of functions on a space and the
geometry of the underlying NC space.
The ideas of NC geometry were revived in the 1980’s thanks to the works of mathematicians
Connes, Drinfel’d and Woronowicz. They generalized the notion of a differential structure
to the NC setting [1, 2, 3, 4], i.e. to arbitrary C?-algebras, and also to quantum groups
and matrix pseudo-groups. Along with the definition of a generalized integration [5], this
led to an operator algebraic description of NC spacetimes - based entirely on the algebras
of functions - and it enabled one to define Yang-Mills gauge theories on a large class of NC
spaces. Initially, the physical applications were based on geometric interpretations of the
standard model and its various fields and coupling constants (the so-called Connes–Lott
model) [6, 7, 8]. Gravity was also eventually introduced in a unifying way [9, 10, 11, 12].
Unfortunately this approach suffered from many weaknesses - most glaring was the problem
that quantum radiative corrections could not be incorporated in order to give satisfactory
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predictions - and eventually it died out. Nevertheless, thanks to these mathematicians,
the idea of spacetime noncommutativity (NCy) became again very much alive part of
theoretical and experimental physics.

1.1.2 The beginning era

It was Heisenberg who suggested, very early, that one could use a NC structure for
spacetime coordinates at very small length scales to introduce an effective ultraviolet
cutoff. After that, Snyder tackled the idea launched by Heisenberg and published what is
considered as the first paper on spacetime NCy in 1947 [13]. Snyder in his seminal work
attempted to free us from the infinities that appear in quantum field theory by constructing
a five dimensional NC algebra in order to define a minimum length for spacetime structure.
Unfortunately, a little time after the Snyder’s effort, Yang [14] demonstrated that even in
Snyder’s NC algebra, the divergences still persisted.
In this approach, Snyder postulated an identity between coordinates and generators of the
SO(4, 1) algebra. Hence, he promoted the spacetime coordinates to Hermitian operators.

We can construct the Snyder’s spacetime algebra conveniently as a modification of the
canonical commutation relations of phase-space, given by [15]

[xµ, xν ] = il2P~−1(xµpν − xνpµ)

[xµ, pν ] = i~δµν + il2P~−1pµpν (1.1)

[pµ, pν ] = 0.

where we can see the presence of a fundamental minimal length lP , the scale of NCy.
In the limit lp → 0 we recover the "classical" phase space of quantum mechanics. The
commutation relations (1.1) describe a discrete spacetime which, at the same time, respect
the Lorentz invariance. However, the original motivation behind these relations was that
the introduction of the length scale lP is analogous to considering hadrons in QFT as
extended objects, because at the time renormalization theory was regarded as a distasteful
procedure [13, 14, 15]. But, the success of the renormalization method resulted in little
attention being paid to the subject for some time.

This result condemned Snyder NCy to be an outcast for more than fifty years until
Seiberg and Witten [16] demonstrated that the algebra resulting from string theory
embedded into a magnetic field showed itself to have a NC algebra. The so-called Seiberg-
Witten (SW) map [16] between commutative and NC gauge theories have explained that
gauge symmetries, including diffeomorphisms, can be realized by standard commutative
transformations on commutative fields.

1.1.3 String theory with constant background field

String theory, besides loop quantum gravity, is one of the best candidates for quantum
gravity. Therefore it has an important role in the study of the fundamental structure of
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spacetime. String theory has the built-in characteristics of nonlocality and uncertainty of
coordinate measurements at short distances. It is the finite mean length of strings, ls, that
necessarily makes the physics nonlocal and forces the shortest length that can be observed
by using the strings as probes. Hence, it was not a big surprise when NC spacetime
coordinates began to repeatedly emerge from the research concerning string theory. String
theory is one of the strongest reasons why spacetime NCy and NC gravitation has been
studied so much during the last decade. Seiberg and Witten developed the idea by elegantly
proving that when the end point of an open string is constrained to move on D-branes
in the presence of a constant (supergravity) B-field background and also the theory is
taken in a certain low-energy limit; then the full dynamics of the theory is described
by a (supersymmetric) gauge theory on a NC spacetime [16]. In this low-energy limit
(Seiberg-Witten limit), the open string modes completely decouple from the closed string
modes and only the end point degrees of freedom for the open strings are left to live on
a NC spacetime defined by the coordinate commutation relations (1.1). Thus NC gauge
theory emerges as a low-energy limit of open string theory with constant antisymmetric
background field. Because the closed string modes decouple in this limit, the resulting
gauge theories do not have graviton- the quantum of gravitation. Nevertheless, NC
gravitation can be studied in the Seiberg-Witten limit by considering first order corrections
for the closed string modes. This approach has already provided us important information
about NC gravitation and twisted symmetries. In string theory, gravitational interactions
have much richer dynamics than in some other NC deformations of GR — especially than
the ones based on the invariance under the naive twisted diffeomorphisms.

1.2 Particle over 2-sphere

Classical mechanics is one of the most enlightening starting points for introducing many
distinct mathematical tools such as differential equations, symplectic structures [17] and,
in particular, the basic concepts of differential geometry. For example, in [18], the author
used a potential motion to construct the corresponding geometric setting. In this way,
some notions such as Riemann metric space, Christoffel symbols, parallel transport and
covariant derivative were introduced. We extend this idea in this thesis. Instead of treating
a potential motion, we will describe a free particle constrained to a curved surface. By
constructing its corresponding Lagrangian, we are naturally led to a free motion in a
Riemann space. Definitions of metric and Christoffel symbols appear in the course of
constructing the dynamics of the model.

We will analyze in details the movement of a particle over a 2-sphere, which is the
analog to the nonlinear sigma model problem, which was intensely studied in the past (see
[19, 20, 21] and references within). Solution of the equations of motion are given in two
different ways. Firstly, we will explore the geometrical properties of the model and after
that, we will use the Noether charges to decouple the equations of motion. Moreover, due
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to the symmetrical structure of the 2-sphere, we will establish the equivalence between
the motion in a central field and the free particle over the 2-sphere. It turns out that
the central potential is proportional to the curvature of the surface. Then, constrained
systems may be also a suitable analogue formalism to introduce general relativity, once
Einstein interpreted gravity as a deformation of space-time due to the presence of mass
[22]. We will also treat the corresponding hamiltonization of the free particle over the
2-sphere according to the Dirac algorithm for constrained systems [23], which enables one
to establish the intrinsic relation between the Dirac brackets and Christoffel symbols, since
both of them are supposed to provide the proper evolution over the surface where the
model is defined, the former in the phase space and the latter, in the configuration space.
Although all the calculations are performed classically, we will discuss an application in
the quantum realm. We set one possible interpretation of the so-called Zitterbewegung, a
quivering motion predicted by Schrödinger when he scrutinized the Dirac equation [24].
The time evolution of electron position operators may be separated in two parts: one in
a rectilinear movement and the other oscillates in a ellipse as trajectory, resembling the
physical variables of a free particle over a 2-sphere. Thus, the Zitterbewegung may be
interpreted as a position variable constrained to a 2-sphere, if we assume to the electron
the structure of a sphere.

In the case of NC classical mechanics, considered here, one can analyze the contribution
of NCy in order to add a perturbation in Newton’s second law for the systems considered
[25]. Namely, since the equations of motions are modified, when treated in a NC space,
we can ask about the effects in the acceleration coordinate [25, 26].
The results of this section are published in [27].

1.3 Soldering formalism and interference phenomena

During the last two or three decades of the last century, the fermion-boson mapping was
one of the most investigated topics in theoretical physics. The possibility that complicated
fermionic actions could be studied through bosonic fields has motivated many physicists
at that time. Concerning the chiral bosonization, some importance was given to the fact
that in two dimensions we would face anomalous gauge theories in both theories.
At the same time, the study of chiral boson motivated by string theory, instigated another
area of research in two dimensional field theory. As a generalization, in supergravity models,
the extension of the chiral boson to higher dimensions has naturally introduced the concept
of the chiral p-forms. In [28], the authors considered interacting chiral bosons with Abelian
and non-Abelian gauge fields. Harada, in [29], investigated the chiral Schwinger model via
chiral bosonization and he has analyzed its spectrum. On that time several models were
suggested for chiral bosons but latter it was shown that there are some relations between
these models [30]. For instance, the Floreanini-Jackiw (FJ) model is the chiral dynamical
sector of the more general model proposed by Siegel [31]. The Siegel modes (rightons and
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leftons) carry not only chiral dynamics but also symmetry information. The symmetry
content of the theory is described by the Siegel algebra, a truncate diffeomorphisms, that
disappears at the quantum level.

Studying the deformation of a specific symmetry provides us a better understanding
of its structure and also may open new a way to the theories beyond the present ones.
In the search for the theories beyond the standard model of particle physics one can
investigate the deformation of Lorentz group as the isometry of Minkowski spacetime. The
deformation of Lorentz or Poincaré group (κ deformed spacetime) results a NC spacetime
and this new structure has some similarities with quantum groups. This NCy is Lie
algebraic type according to Hopf algebra classification and recently has been attracted
much attention because it is a natural candidate for the spacetime based on which the
Doubly Special Relativity has been established. In a recent work the authors through the
introduction of a well-defined new proper time have constructed a commutative spacetime
that capture all of the characteristics of the NC κ deformed spacetime [32].

In this thesis we have investigated some NC bosonized chiral Schwinger model (CSM)
in the extended Minkowski spacetime in the light of the canonical soldering formalism
developed in [33]. In the soldering formalism using the iterative Noether procedure one can
implement a desired symmetry into a model. The price of this new invariance is inclusion
of some new auxiliary fields in the configuration space of the theory. But in the case of two
Lagrangians with opposite/complementary symmetries, after doing some iterations one
can add up two Lagrangians with the new counterterms and obtain a soldered Lagrangian.
In this Lagrangian the auxiliary fields can be removed using their equations of motion. In
a few words, after soldering two initial theories with opposite/complementary symmetries
we obtain an effective theory that is completely different from the initial ones. This new
model has bigger symmetry groups and also is invariant under the desired symmetry. The
interesting point is that the final model is not dependent on the initial fields but a new
soldered field.
Also we consider the (anti)self-dual models in 3-dimensional κ deformed Minkowski
spacetime. These models appears in many occasions in physics, for instance, they are
consequence of bosonization of Thirring model in the large mass limit. Self-dual model
has a close connection with the Maxwell-Chern-Simons (MCS). An obvious difference
between these two models is that, whereas the MCS theory is manifestly gauge-invariant,
possessing only first class constraints, the dual model is a purely second-class system.In the
usual Minkowski spacetime the soldering of these models yields the Proca model. Hence
we expect that the final soldered model be a theory equivalent to the Proca model in this
spacetime.
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1.4 3-dimensional gauge theories

Three dimensional gauge theories possess theoretical/mathematical interest, in addition
they deserve investigation because they describe (1) kinematical processes that are confined
to a plane when external structures (magnetic fields, cosmic strings) perpendicular to the
plane are present, and (2) static properties of (3 + 1)-dimensional systems in equilibrium
with a high temperature heat bath. An important issue is whether the apparently massless
gauge theory possesses a mass gap. The suggestion that indeed it does gain support
from the observation that the gauge coupling constant squared carries dimension of mass,
thereby providing a natural mass-scale (as in the two-dimensional Schwinger model) [34].
Also, without a mass gap, the perturbative expansion is infrared divergent, so if the
theory is to have a perturbative definition, infrared divergences must be screened, thereby
providing evidence for magnetic screening in the four-dimensional gauge theory at high
temperature.

One might study NC theories as interesting analogs of theories of more direct interest,
such as Yang-Mills theory. An important point in this regard is that many theories of
interest in particle physics are so highly constrained that they are difficult to study. For
example, pure Yang-Mills theory with a definite simple gauge group has no dimensionless
parameters with which to make a perturbative expansion or otherwise simplify the analysis.
From this point of view it is quite interesting to find any sensible and nontrivial variants
of these theories. The Chern-Simons expression, when added to the three-dimensional
Yang-Mills action, renders the fields massive, while preserving gauge invariance. However,
parity symmetry is lost. A trivial way of maintaining parity with this mass generation
is through the doublet mechanism. Consider a pair of identical Yang-Mills actions,
each supplemented with their own Chern-Simons term, which enters with opposite signs.
The parity transformation is defined to include field exchange accompanying coordinate
reflection, and this is a symmetry of the doubled theory. Using this method Jackiw and
Pi in a seminal paper [35] have offered a theory for massive vector fields, which is gauge
invariant and parity preserving. This theory is gauge invariant, but has non-Yang-Mills
dynamics. Although formal quantization of the model can be carried out, developing a
perturbative calculational method encounters some difficulties.

As this model is non-Abelian, we can not construct its NC counterpart by simply
substituting the dot product by the star one and using SW map. Generally in the common
method one assumes U(1) as the gauge group [36]. Although it must be mentioned that
U(N) is a non-Abelian group but we can analyze it by the common method. But for an
arbitrary gauge group the commutation of two gauge transformations is not another gauge
transformation of the same group [37]. It will be closed in only the enveloping algebra of
the original algebra.
Here we try to construct the NC counterpart of the model proposed by Jackiw and Pi for
an arbitrary gauge group using the enveloping algebra of the original algebra. For this
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reason we have used a method elaborated by J. Wess et al. [37]. The generalization of
this method to higher order term of NC parameter can be found in a work done by Ukler
et al. [38]. In this thesis we just proceed up to the first order term in our calculations.

1.5 The field-antifield quantization formalism

Batalin-Vilkovisky (BV) or field-antifield formalism [39] is currently the most complete
method to deal with quantum gauge field theory. In fact it is a generalization of the BRST
formalism [40, 41] that includes the sources of anti-fields into the action. One of the reasons
physicist are interested in a BRST invariant action is that it leads to Slavnov-Taylor
identities from which one may prove unitarity and renormalizability. Among the various
BRST approaches, the BV formalism has the advantage of treating all quantum systems
(with/without open algebra’s, with/without ghosts for ghosts) in a unified manner. This
brings out the essential features more clearly, and that, in turn, might be helpful in
quantizing systems, such as the heterotic string or closed-string field theory. In some sense,
the BV formalism is a generalization of BRST quantization. In fact, when sources of the
BRST transformations are introduced into the configuration space, the BRST approach
resembles the field-antifield one[42]. Antifields then, have a simple interpretation: They
are the sources for BRST transformations. In this sense, the field-antifield formalism is a
general method for dealing with gauge theories within the context of standard field theory.

The general structure of the antibracket formalism is as follows. One introduces an
antifield for each field and ghost, thereby doubling the total number of original fields.
The antibracket ( , ) is an odd non-degenerate symplectic form on the space of fields and
antifields. The original classical action S0 is extended to a new action S, in an essentially
unique way, to arrive at a theory with manifest BRST symmetry. One equation, the master
equation (S, S) = 0, reproduces in a compact way the gauge structure of the original
theory governed by S0. Although the master equation resembles the Zinn-Justin equation,
the content of both is different since S is a functional of quantum fields and antifields and
is a functional of classical fields.

In this thesis we have studies carefully the gauge structure of Jackiw-Pi (JP) model
and then we have constructed the corresponding BV action for the U(1)*U(1)*U(1)*SU(N)
gauge group. It is obvious that the quantization of this gauge group is possible via BRST
approach but we hired BV formalism for having better understanding of the symmetries.
Also gauge fixing is simpler in this formalism and moreover the BV action is ready for
quantization and study of anomalies.
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2 Particle model on 2-sphere and its quantization

2.1 Constrained systems: the basic formalism

The basic path to introduce a constraint into a Lagrangian is via Lagrange multipliers.
Equivalently, knowing a priori the constraints of the model, one may find one of the
variables in terms of the others and include it into the Lagrangian, leading to a new
formulation in terms of physical variables, i.e., whose dynamics is independent of the
remaining ones. Our first step in these notes is to show the equivalence between the new
and former formulations. Besides, we will begin with the notation which will be used here.

Let us consider a free particle constrained to the surface

Φ(xi) = 0, (2.1)

where xi = xi(t); i = 1, ..., N are the coordinates of the system. There are technical
conditions satisfied by the function Φ where we can find one of the variables, say x1, in
terms of the others,

Φ(xi) = 0⇔ x1 = f(xα); α = 2, ..., N. (2.2)

From now on in this section, Greek letters mean the values 2, ..., N . In this case, x1 is
a non-physical degree of freedom because its dynamics is dependent of the remaining
variables xα. If L = L(xi, ẋi) is the Lagrangian of the free particle in the absence of the
constraint (2.1), then the prescription to construct an action in terms of the physical
variables xα is the following,

S1 =
∫ t2

t1
dtL(xi, ẋi)|x1=f(xα), (2.3)

where we have denoted ẋi ≡ dxi

dt
. We can also write that

L(xi, ẋi)|x1=f(xα) = L(x1 = f(xα), ẋ1 = ∂f

∂xβ
ẋβ, xα, ẋα) ≡ L̄(xα, ẋα). (2.4)

The notation L̄ indicates the substitution of x1 = f(xα) in (2.3) and repeated indexes
mean summation, as usual. To obtain the Euler-Lagrange equations of (2.3), we evaluate
separately the derivatives of the expression (2.4),

∂L̄(xα, ẋα)
∂xγ

= ∂L(xi, ẋi)
∂x1

∣∣∣∣ ∂f∂xγ + ∂L(xi, ẋi)
∂ẋ1

∣∣∣∣ ∂2f

∂xγ∂xβ
ẋβ + ∂L(xi, ẋi)

∂xγ

∣∣∣∣, (2.5)

∂L̄(xα, ẋα)
∂ẋγ

= ∂L(xi, ẋi)
∂ẋ1

∣∣∣∣ ∂f∂xγ + ∂L(xi, ẋi)
∂ẋγ

∣∣∣∣, (2.6)
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where | corresponds to the substitution expressed in (2.3). It will be used in subsequent
calculations. Hence, the equations of motion given by

δS1

δxγ
= ∂L̄(xα, ẋα)

∂xγ
− d

dt

(
∂L̄(xα, ẋα)

∂ẋγ

)
= 0 (2.7)

provide, after rearranging the terms,

δS1

δxγ

∣∣∣∣+ δS1

δx1

∣∣∣∣ ∂f∂xγ = 0. (2.8)

The idea here is to show that one may insert the constraint Φ(xi) = 0 into the initial
Lagrangian leading to an equivalent description. Let us consider the following action,

S2 =
∫
dtL̃(xi, ẋi, λ), (2.9)

defined in an extended configuration space parametrized by xi and λ, where

L̃(xi, ẋi, λ) = L(xi, ẋi) + λΦ(xi). (2.10)

The functions L and Φ are the same as the initial construction and λ is a Lagrange
multiplier. Hence, the Euler-Lagrange equations are

δS2

δx1 = 0⇒ ∂L(xi, ẋi)
∂x1 + λ

∂Φ
∂x1 = d

dt

(
∂L(xi, ẋi)

∂ẋ1

)
, (2.11)

δS2

δxγ
= 0⇒ ∂L(xi, ẋi)

∂xγ
+ λ

∂Φ
∂xγ

= d

dt

(
∂L(xi, ẋi)
∂ẋγ

)
, (2.12)

δS2

δλ
= 0⇒ Φ(xi) = 0. (2.13)

From (2.11), we find

λ = −
(
∂Φ
∂x1

)−1 [
∂L(xi, ẋi)

∂x1 − d

dt

(
∂L(xi, ẋi)

∂ẋi

)]
. (2.14)

The substitution of (4.16) in (4.15) eliminates the λ-dependence of equations of motion,

∂L(xi, ẋi)
∂xγ

− d

dt

(
∂L(xi, ẋi)
∂ẋγ

)
−
(
∂Φ
∂x1

)−1
∂Φ
∂xγ

[
∂L(xi, ẋi)

∂x1 − d

dt

(
∂L(xi, ẋi)

∂ẋ1

)]
= 0.(2.15)

Finally, from (2.13) and according to (2.2),

Φ(xi) = 0⇔ x1 = f(xα). (2.16)

Substitution of x1 = f(xα) into the constraint Φ(xi) = 0 gives the identity

Φ(x1 = f(xα), xα) ≡ 0, (2.17)
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whose derivative provides

0 = d

dxγ
Φ(x1 = f(xα), xα) = ∂Φ(xi)

∂x1

∣∣∣∣ ∂f∂xγ + ∂Φ(xi)
∂xγ

∣∣∣∣. (2.18)

Then we have that

∂f

∂xγ
= −

[
∂Φ(xi)
∂x1

∣∣∣∣
]−1

∂Φ(x1)
∂xγ

∣∣∣∣. (2.19)

This expression appears in (2.15), which is now rewritten by eliminating x1,[
∂L(xi, ẋi)
∂xγ

− d

dt

(
∂L(xi, ẋi)
∂ẋγ

)] ∣∣∣∣+
[
∂L(xi, ẋi)

∂x1 − d

dt

(
∂L(xi, ẋi)

∂ẋ1

)] ∣∣∣∣ ∂f∂xγ = 0. (2.20)

Since d
dt

(L|) = dL
dt
|, we arrive at

δS1

δxγ

∣∣∣∣+ δS1

δx1

∣∣∣∣ ∂f∂xγ = 0. (2.21)

These are the same equations of motion of the initial formulation, see (2.8). The equivalence
between both constructions that have been developed so far becomes clearer if we compare
the number of degrees of freedom in each description. The initial construction described
by L̄ = L̄(xγ, ẋγ) was formulated by eliminating x1 with the previous knowledge of the
constraint surface the model is immersed in. We are left N − 1 degrees of freedom. On
the other hand, the second one starts with N + 1 variables. First, we have excluded λ
from the description by using (2.11). Then, with the help of (2.13), x1 was eliminated, see
(2.16). These two steps left us with N + 1− 2 = N − 1 degrees of freedom, as expected.
This concludes the equivalence between S1 and S2. An application will be treated in the
next subsection, when we consider the example of a particle over a 2-sphere.

2.2 A concrete example of constrained dynamics: particle over a 2-sphere

We will now discuss an application of the result found in the last Section. Actually, the
main aim of these notes is the classical and NC descriptions of a free particle over a
2-sphere. Besides, the example of the particle over a 2-sphere will be used for a classical
description of the Dirac spinning electron, see subsection 2.6.

Let m be the mass of the particle and xi = xi(t), i = 1, 2, 3, its spatial coordinates.
Since we want to formulate the particle evolution constrained to a 2-sphere, we take the
following action,

Sλ(xi) =
∫ t2

t1
dt
[
m

2 δijẋ
iẋj + λ(δijxixj − a2)

]
, (2.22)

where δij stands for the delta Kronecker symbol and λ is again a Lagrange multiplier. Sλ
has manifest SO(3)-invariance, which guarantees, for example, conservation of angular
momentum. Equation of motion for λ gives the desired constraint

δijx
ixj = a2. (2.23)
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So, Eq. (2.22) in fact describes a free particle over a 2-sphere of radius a. On the other
hand, we could exclude one of the variables with the help of (2.23),

x3 = ±
√
a2 − δαβxαxβ, (2.24)

where α, β run the values 1 and 2. Concerning the parametrization of the 2-sphere, we
take the upper half plane x3 > 0. Then, according to (2.3), we substitute (2.24) into the
action for the free particle in a flat 3-dimensional space leading to

Sph =
∫
dt
m

2 gαβẋ
αẋβ, (2.25)

where

gαβ(x) = δαβ + xαxβ
a2 − δαβxαxβ

. (2.26)

The action was named Sph since we have eliminated the spurious degree of freedom x3,
obtaining an equivalent description of the particle over a 2-sphere in terms of physical
variables x1, x2. It has a simple interpretation: since the particle is constrained to a
2-sphere, (2.25) describes a free particle in a Riemann space whose metric is given by gαβ
[43]. The elimination of x3 naturally led us to the concept of first fundamental form (or
metric) [44]. In the limit a→ +∞, we have a free particle in a flat bi-dimensional space.
Namely, gαβ → δαβ and the Lagrangian originated from (2.25) becomes the kinetic energy
of the particle,

m

2 gαβẋ
αẋβ → m

2
[
(ẋ1)2 + (ẋ2)2

]
. (2.27)

We now turn our attention to the time evolution of the model. The dynamics is
governed by the principle of least action. The minimization δSph = 0 gives the equation of
motion

ẍα = Gα
σβẋ

σẋβ, (2.28)

where

Gα
σβ = gαγ

(1
2∂γgσβ − ∂σgγβ

)
. (2.29)

gαγ corresponds to the inverse of the metric: gαβgβγ = δαγ and ∂γ ≡ ∂
∂xγ

. Explicit
calculation of G gives

Gα
σβ = 1

2
xσδ

α
β − xβδασ

a2 − δγρxγxρ
− xαgσβ

a2 . (2.30)

The first term of G is antisymmetric on σ ↔ β. Then it vanishes when contracted with
the symmetric factor ẋσẋβ of (2.28). We are finally left with

ẍα + Γαβγẋβẋγ = 0, (2.31)
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and Γ is given by

Γαβγ = xα

a2 gβγ, (2.32)

where (2.31) is the equation of a geodesic line: the particle chooses the trajectory with the
shortest length. Moreover, the principle of least action gave us the Christoffel symbol or
affine connection Γαβγ . Once again, the “static” concepts of differential geometry (geodesic
line and second fundamental form Γ) were discovered via a dynamical realization. In the
limit a→ +∞, the equation of motion tends to

ẍα = 0, (2.33)

which corresponds to the motion of a free particle (in flat bi-dimensional space) since
Γαβγ → 0, in accordance with our intuition.

In the next section we will solve the equations of motion (2.31). It will be accomplished
in two different ways. The first one is by exploring the geometric setup that the model was
constructed and the second one is by using the conserved currents obtained from Noether
theorem [45].

2.3 Solution to equations of motion

Let us now obtain the solution of the equations of motion (2.31) in the commutative
plane. It will be obtained via two different approaches. In the first one, we will use the
geometric structure of the problem, i.e., since the particle is free, it is supposed to describe
a circumference of radius a with constant angular velocity. Besides, we will also use the
Noether theorem which provides two integrals of motion, which allow us to find the general
solution of equations of motion.

2.3.1 Solving equations of motion: geometrical point of view

There is a standard way to solve the equations of motion in different models: if we know
a particular solution, the general one is obtained by applying a group transformation
in which the model is based on. For example, in [46], the author finds general spinors
connected to an arbitrary state of motion of the Dirac electron by boosting plane wave
solutions of the Dirac equation for a particle at rest. We will use the same prescription
here. Initially, we take the following particular solution,

xi(t) =


0

a sinωt
a cosωt

 , (2.34)

that describes our free particle with constant (and arbitrary) angular velocity ω constrained
to the 2-sphere of radius a. A direct calculation shows that it satisfies (2.31). We have
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restricted the motion to the plane x2x3. The general solution is achieved by three
successive passive rotations around x1, x2 and x3 axes. The rotations introduce three new
and arbitrary parameters which, combined with ω, complete the necessary number of four
constants of integration concerning the second order equation (2.31). Denoting Rxi(θj)
the rotation around xi-axis by an angle θj, we have

xi(t) = [Rx3(θ3)]i j [Rx2(θ2)]j k [Rx1(θ1)]k lyl(t), (2.35)

where, for example,

Rx1(θ1) =


1 0 0
0 cos θ1 sin θ1

0 − sin θ1 cos θ1

 . (2.36)

The other matrices Rx2(θ2) and Rx3(θ3) are well-known from the SO(3)-group. The para-
meters θi are the Euler angles, taken in the x1x2x3 convention. For different representations
of the Euler angles, see [47, 48], for example.

So, for the general solution one can obtain that

xi(t) =


a sin θ2 cos θ3 cos(ωt+ θ1) + a sin θ3 sin(ωt+ θ1)
−a sin θ2 sin θ3 cos(ωt+ θ1) + a cos θ3 sin(ωt+ θ1)

a cos θ2 cos(ωt+ θ1)

 . (2.37)

In Section 3, we have withdrawn the variable x3 from the description. One may check that
the expression above obeys the identity,

x3(t) ≡
√
a2 − (x1(t))2 − (x2(t))2. (2.38)

Then, the physical solution is given by the projection of xi = xi(t) onto the plane x1x2.
On this plane, the trajectory is an ellipse. In fact, with no loss of generality1 we take to
the solution

x̃i(t) = [Rx2(θ2)]i k [Rx1(θ1)]k lyl(t) (2.39)

in the plane x1x2,

x̃α(t) =
 a sin θ2 cos(ωt+ θ1)

a sin(ωt+ θ1)

 . (2.40)

The trajectory is obtained by excluding the time of the parametric equations (2.40). It is
given by

(x̃1)2

a2 sin2 θ2
+ (x̃2)2

a2 = 1, (2.41)
1 The only effect of the last rotation Rx3(θ3) is to make the semi-axes of the ellipse not

coincident with the coordinate axes x1 and x2. Thus, for simplicity, we obtain the trajectory
by looking to the solution x̃α in (2.40).
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which is the equation of an ellipse.
Finally, the general solution that we were looking for is given by the projection of

(2.37) in the plane x1x2,

xα(t) =
 a sin θ2 cos θ3 cos(ωt+ θ1) + a sin θ3 sin(ωt+ θ1)
−a sin θ2 sin θ3 cos(ωt+ θ1) + a cos θ3 sin(ωt+ θ1)

 , (2.42)

whose trajectory is an ellipse. One then can ask about the possibility of interpreting this
movement as generated by a central field. It will be discussed in section 2.4. Our next
step consists of finding xα = xα(t) with the help of conserved quantities.

2.3.2 Solving equations of motion: conserved quantities

One of the most impressive results in classical mechanics is the Noether theorem: if an
action is invariant under a global transformation, then there is a related integral of motion,
known as Noether charge. In our case, we may look at (2.22) or (2.25) since they are
equivalent. Considering that (2.22) has global SO(3)-invariance,

xi → x′i = Ri
jx
j; where RT = R−1. (2.43)

It implies the conservation of angular momentum,

Li = mεijkx
jẋk ⇒ dLi

dt
= 0. (2.44)

One may also look at the expression (2.25), which is invariant under time translations

t→ t′ = t+ τ. (2.45)

In this case, the corresponding conserved quantity is

E = m

2 gαβ(x)ẋαẋβ. (2.46)

where E is considered as the energy of the particle. We now turn our attention to the
equation of motion (2.31). It is immediately decoupled if we use (2.46),

ẍα + xα

a2 gβγẋ
βẋγ = 0⇒ ẍα + 2E

ma2x
α = 0. (2.47)

Thus, the solution of (2.47) can promptly be written as

xα(t) = Aα sin(Ωt+ ϕα); Ω =
√

2mE
ma

(2.48)

where Aα and ϕα are arbitrary constants of integration. Substitution of the solution (2.48)
into (2.44) and (2.46) gives, respectively,

L3

mΩ = −A1A2 sin(ϕ2 − ϕ1), (2.49)

(A1)2 + (A2)2 = a2 + L2
3

2mE. (2.50)
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And (2.49) means that the angle between x1(t) and x2(t) is ϕ2 − ϕ1. If we assume that
ϕ2−ϕ1 = π

2 , then the general solution may be achieved by rotating the particular solution
with this restriction. So, first if we substitute (2.49) in (2.50) we have that

(A1)2 + (A2)2 = a2 + (A1)2(A2)2

a2 ⇒ A1 = a⇒ A2 = − L3√
2mE

. (2.51)

We then have a particular solution xαp = xαp (t), where x1
p and x2

p are perpendicular,

xαp (t) =
 a sin(Ωt+ ϕ1)
− L3√

2mE cos(Ωt+ ϕ1)

 . (2.52)

A final general solution can be obtained by rotating the particular solution above in an
active way,  x1

x2

 =
 cosϕ2 sinϕ2

− sinϕ2 cosϕ2

 x1
p

x2
p

 , (2.53)

that is,

xα(t) =
 a cosϕ2 sin(Ωt+ ϕ1)− L3√

2mE sinϕ2 cos(Ωt+ ϕ1)
−a sinϕ2 sin(Ωt+ ϕ1)− L3√

2mE cosϕ2 cos(Ωt+ ϕ1)

 . (2.54)

As expected, we have four constants of integration: ϕ1,2, E and L3. Equivalence between
the two solutions (2.42) and (2.54) is manifest if we write

ω = Ω,
θ1 = ϕ1,

θ3 = ϕ2 + π
2 ,

a sin θ2 = L3√
2mE .

(2.55)

In the next section, we will discuss a possible interpretation of the solution of the
equations of motion in terms of an effective central potential induced by the space curvature.

2.4 Equivalence between a central force problem and the particle over a 2-sphere

The movement of the particle over the 2-sphere was completely described so far by the
physical variables xα(t), α = 1, 2, see (2.42) or (2.54). Since the trajectory is an ellipse,
one may think that it could be derived by a central field. So, the objective of this section is
to show that the solution xα(t) is equivalent to the one described by an isotropic harmonic
oscillator. We already know the time evolution of the particle. The idea is, instead of
solving a differential equation of motion, we would like to obtain it. For that, we will use
polar coordinates (x1, x2)↔ (r, θ)

x1 = r cos θ
x2 = r sin θ

⇔
r =

√
(x1)2 + (x2)2

θ = arctan
(
x2

x1

)
.

(2.56)
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For simplicity, we have used the solution (2.40). Let us construct the differential equations
obeyed by the coordinates θ and r. We have that

θ(t) = arctan
(
x2(t)
x1(t)

)
= arctan

(
sin ∆

sin θ2 cos ∆

)
, (2.57)

r(t) = a
√

sin2 θ2 cos2 ∆ + sin2 ∆, (2.58)

where we have used the shorthand notation ∆ = ωt+ θ1. First time derivative of (2.57)
gives

θ̇(t) = ωa2 sin θ2

r2(t) = L3

mr2(t) , (2.59)

since the angular momentum L3 is given by

L3 = m(ẋ2x1 − ẋ1x2) = mωa2 sin θ2. (2.60)

We turn our attention to the radial variable. It is a tedious but rather direct calculation
to obtain the second order time derivative of Eq. (2.58). We have

ṙ(t) = ωa2 sin 2∆(1− sin2 θ2)
2r . (2.61)

The second time derivative reads

r̈ = ω2a2 cos 2∆(1− sin2 θ2)
r

− ωa2 sin 2∆(1− sin θ2)
2r2 ṙ. (2.62)

Substituting ṙ(t) into the expression above, one finds after rearranging the terms,

r̈ = ω2a4

r3 [−(cos2 ∆ sin2 θ2 + sin2 ∆)2 + sin2 θ2(sin2 ∆ + cos2 ∆)2], (2.63)

which multiplied by the mass of the particle becomes

mr̈ = −ω2r + L2
3

m2r3 ⇒ mr̈ = −mω2r + L2
3

mr3 . (2.64)

Eqs. (2.59) and (2.64) are exactly the ones obeyed by a particle in a central field [47].
Eq. (2.64) may be seen as the second Newton’s law for a particle in a isotropic harmonic
oscillator. The term L2

3
mr3 corresponds to the centrifugal force always present when one

writes a central force in polar coordinates. The first term, that has been associated with
the harmonic oscillator, may be considered as an effective force due to the curved space
the particle is constrained to. In fact, we construct the scalar or total curvature of the
surface

R = gαβ(∂γΓγαβ − ∂βΓγαγ + ΓγαβΓλλγ − ΓγαλΓλβγ). (2.65)

Using the Christoffel symbols (2.32) and the inverse of the metric

gαβ = δαβ + xαxβ

a2 , (2.66)



29

one obtains

R = 2
a2 . (2.67)

It turns out that the constant force of second Newton’s law (2.64) is proportional to the
total curvature,

k = mω2 = m
2mE
m2a2 = RE. (2.68)

Thus the movement of the free particle over a 2-sphere projected in x1x2-plane is equivalent
to the movement described by a particle in a central effective potential

Veff (r) = RE

2 r2 + L2
3

2mr2 , (2.69)

as stated and both potentials, V (r) ∼ 1
r
and V (r) ∼ r2 produce the same trajectory, i.e.,

an ellipse.

2.5 Hamiltonization of constrained systems: interpretation of the Dirac brackets based
on geometric grounds

Since our discussion on the dynamics of a constrained system has been restricted to the
Lagrangian formalism, the objective of this section is based on the hamiltonization of the
Lagrangian Lλ. At the time when Dirac proposed his formalism, it was not completely
understood how to introduce constraints into the Hamiltonian formalism [23], which is
a solved problem in current days [43, 49, 50, 51]. Hamiltonization of Lλ leads to the
so-called Dirac brackets and we will provide its geometric interpretation. The construction
of the Hamiltonian concerning (2.22) begins with the definition of the conjugate momenta

pA ≡
∂L

∂q̇A
, (2.70)

where we wrote collectively qA = (xi, λ). According to the formalism, we can use the
expression of conjugate momenta to obtain the maximum number of velocities as functions
of momenta and configuration variables,

pA = ∂L

∂q̇A
⇔

 pi = ∂L
∂ẋi
⇔ ẋi = 1

m
pi,

pλ = ∂L
∂λ̇
⇒ pλ = 0.

(2.71)

Let us define T1 ≡ pλ = 0 and call it a primary constraint. The complete Hamiltonian is
defined in extended phase space qA, pA, v

H = pAq̇
A − L+ vpλ

= 1
2mp2

i − λ[(xi)2 − a2] + vpλ, (2.72)



30

where v is a Lagrange multiplier and all velocities enter into H according to (2.71). Let us
write the equations of motion via Poisson brackets again such that

q̇A = {qA, H} ⇒

 ẋi = 1
m
pi,

λ̇ = v,
(2.73)

ṗi = {pi, H} = 2λxi. (2.74)

Since a constraint must be constant, one obtains the following chain of secondary constraints

T2 = ṗλ = {pλ, H} ⇒ T2 = (xi)2 − a2 = 0, (2.75)

T3 = Ṫ2 = {T2, H} ⇒ T3 = xipi = 0, (2.76)

T4 = Ṫ3 = {T3, H} ⇒ T4 = 1
m
p2
i + 2λ(xi)2. (2.77)

Finally, the evolution in time of T4 allows us to find the Lagrange multiplier v,

v = 0. (2.78)

The matrix Tab = {Ta, Tb}; a, b = 1, 2, 3, 4 is invertible, then according to the Dirac
terminology, the constraints are called second class (actually, the existence of T−1

ab is the
reason why all multipliers have been found [43]). The Dirac brackets are

{A,B}∗ = {A,B} − {A, Ta}T−1
ab {Tb, B}. (2.79)

So, the equations of motion are defined over the constraint surface and one may forget
about the equations Ta = 0. They read,

Ẏ = {Y,H0}∗, (2.80)

where Y = (xi, pi) since the sector (λ, pλ) may be omitted and H0 ≡ H − vpλ. The basic
Dirac brackets for the (xi, pi)-sector have the form

{xi, xj}∗ = 0, (2.81)

{xi, pj}∗ = δij − xixj

a2 , (2.82)

{pi, pj}∗ = − 1
a2 (xipj − xjpi). (2.83)

Since the equations of motion described via Lagrangian formalism give the proper time
evolution of the particle over the surface as well as the Lagrangian and Hamiltonian
formulations being equivalent [49], one expects a relationship between Christoffel symbols
and the Dirac bracket. To see this, first we decouple the equation for xi,

mẋi = pi ⇒ mẍi = 2λxi. (2.84)
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With the help of the constraints T2, T4 and (2.73), we obtain that

λ = −m(ẋi)2

2a2 . (2.85)

Then,

ẍi = −(ẋi)2

a2 xi. (2.86)

On the other hand, we may write

ẍi = 1
m
{pi, H0}∗|, (2.87)

where | denotes substitution of pj in terms of position and velocity variables, see (2.71).
The α-sector (α = 1, 2) of equation (2.86) coincides with equations of motion (2.31) of the
Lagrangian formalism. Comparing it with (2.87), one finds

{H0, p
α}∗| = mΓαβγẋβẋγ = −ẍα. (2.88)

This calculation that compares equations of motion in both Lagrangian and Hamiltonian
formalisms shows the intrinsic relation between Christoffel symbols and Dirac brackets,
as these structures are the ones responsible for the time evolution of the particle in each
formalism.

2.6 Application: spinning particle

The complete understanding of electron spin was accomplished in the realm of quantum
electrodynamics. If we consider the Dirac equation

i~∂tΨ = ĤΨ; Ĥ = cαip̂i +mc2β, (2.89)

as the one-particle equation in Relativistic Quantum Mechanics then, in the Heisenberg
picture, the position operators experience a quivering motion [52]

xi = ai + bpit+ ci exp{−2iH
~
t} (2.90)

that may be considered a superposition of a rectilinear movement with an harmonic one,
with high frequency 2H

~ ∼
2mc2
~ . This harmonic oscillation was named Zitterbewegung

by Schrödinger [24]. In recent literature, a model has been proposed with commuting
variables that produces the Dirac equation through quantization [53]. Analysis of the
classical counterpart of the model leads to the so-called Zitterbewegung, also experienced
by spin variables. In order to provide spacetime interpretation for the evolution of the
classical position and spin coordinates, they were combined to produce configuration
coordinates whose dynamics is given by (see details in [54]),
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x̃i(t) = xi + c
pi

p0 t, (2.91)

J i(t) = 1
2|p|(A

i cosωt−Bi sinωt), (2.92)

with Ai, Bi, pµ being some constants, |p| ≡ √−pµpµ and ω has the same order of
magnitude as the Compton frequency. They evolve similarly to the center-of-mass and
relative position of two-body problem in a central field. The potential turns out to be
V (J) ∼ J2; J = |J i|. Assuming that (2.91) and (2.92) are the position variables for the
electron, then J i describes an ellipse with restricted size (a particular feature of the model
restricts the magnitude of Ai and Bi as well as their direction, since piAi = piB

i = 0,
the center-of-mass moves perpendicularly to the plane of oscillations). According to the
previous sections, we interpret J i as the physical variables for the motion over a 2-sphere.
This may explain the physical origin of the Zitterbewegung if we assume that the electron
has an internal structure [55]. It seems that Dirac himself believed that the electron was
not an elementary particle, see [56].

The idea of a composed electron goes back to the seminal paper by Dirac on the unitary
irreducible particle representations of the Anti-de Sitter group [57]. Actually, in this work,
he found two remarkable representations of SO(2,3), the isometry group of Anti-de Sitter
space AdS4. Those representations do not have a counterpart in Poincaré group; they are
unique to SO(2,3). This means that, whenever the (Riemann) curvature of AdS4 goes to
zero, these two representations may be combined in order to construct one of the unitary
irreducible representations of Poincaré group in terms of one-particle states. He called
these representations singletons. Currently, singleton physics is an active research area [58].
Moreover, preons appear as “point-like"particles are perceived as being subcomponents of
quarks and leptons. This term was coined by Jogesh Pati and Abdus Salam in their 1974
paper [59]. Preon models set out as an attempt to describe particle physics in a more
fundamental level than the Standard Model [60]. In these preonic models, one postulates
a set of fewer fundamental particles than those of the Standard Model, together with the
interactions governing the dynamics of these fundamental particles. Based on these laws,
preon models try to explain some physics beyond the Standard Model, often producing
new particles and a number of phenomena which do not belong to the Standard Model.

2.7 Noncommutative classical mechanics in a curved phase-space

As we saw previously, the canonical NCy is described by the following algebra

[x̂i, x̂j] = i θij ; [x̂i, p̂j] = i δij ; [p̂i, p̂j] = 0 , (2.93)

where we are using that ~ = 1 and θij ’s are c-numbers with the dimensionality of (length)2.
Let us assume that this so-called NC parameter is within the Planck’s area order, i.e.,
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l2P = ~G/c3, so we have that the tensor θij must be of G/c3 order. Hence, in the classical
limit, the symplectic framework will not have ~ [25]. This result agrees with this kind of
limit. At the classical level, the quantum mechanical commutator is substituted by the
Poisson bracket via

[
Â, B̂

]
−→ i {A, B} (2.94)

and consequently, the classical limit of (2.93) is

{xi, xj} = θij ; {xi, pj} = δij ; {pi, pj} = 0 (2.95)

where θij is an antisymmetric constant matrix and the Poisson bracket must have the
same properties as the quantum mechanical commutator (bilinear, antisymmetric, Leibniz
rules, Jacobi identity). In this section we will assume a symplectic structure given by
(2.95) in order to obtain the corresponding equations of motion. It is important to say
that there are NC formulations where the momenta commutator (Poisson bracket) is not
zero. But we will not analyze it here.

We will assume a symplectic structure for the classical mechanics of a particle in
a curved phase-space. The target geometry is the 2-sphere described above. We will
demonstrate that there is a correction term added to Newton’s second law thanks to the
curved configuration of the phase-space, which shows that the space configuration alone
can bring consequences to the result. On the other hand, we will see that in a flat space,
what causes a NC correction is the potential function, which is a standard result in NC
classical mechanics. In the 2-sphere curved space we will see that there is a NC correction
without the existence of a potential effect over the particle. This result is coherent with
the one obtained here that established ana analogy between the curvature of a 2-sphere
and a central field.

Let us begin by describing the origin of the NC contribution in the generalized (without
a specific potential) Newton’s second law [25, 61, 62]. We can define a theory as being
formulated by a set of canonical variables ξa, where a = 1, . . . , 2n combined with a
symplectic structure {ξa, ξb}. This structure can be extended in order to accommodate
arbitrary function of ξa such as

{F,G} = {ξa, ξb} ∂F
∂ξa

∂G

∂ξb
(2.96)

where F and G are two arbitrary function of phase-space and the repeated indices are
summed from now on. Eq.(2.96) can be used, of course, in classical mechanical systems
[25, 61, 62] as the one we will analyze in this thesis.
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In Hamiltonian systems, we can use the structure given in (2.96) to write the equations
of motion for a Hamiltonian given by H = H(ξa) such that

ξ̇a = {ξa, H} (2.97)

and for a generalized function F defined in this space we can write that

Ḟ = {F,H}. (2.98)

In our case, we will consider a phase-space given by the physical variables x and y and
so, ξ = (x, px, y, py). The algebra between these coordinates is

{x, y} = θ, {x, px} = {y, py} = 1 {px, py} = 0, (2.99)

Let us consider two arbitrary functions F and G, defined on the phase-space. Using Eqs.
(2.96) and (2.99) we have that

{F,G} = θij
∂F

∂xi
∂G

xj
+ ∂F

∂xi
∂G

pi
− ∂F

∂pi

∂G

xi
(2.100)

where i, j = x, y. For example, if we have a Hamiltonian of the standard form with
ξ = (xi, pi) such that

H = pip
i

2m + V (x) (2.101)

using (2.98) and (2.100) we have the equations of motion given by

ẋi = {xi, H} = θ
∂H

∂xi
+ ∂H

∂pi
=⇒ ẋi = pi

m
+ θij

∂V

∂xj

and analogously
ṗi = − ∂V

∂xi
. (2.102)

Notice from both these equations that an obvious conclusion is that if V = 0 (free particle)
we have pi = constant and xi is a linear function of time. Hence, the second term of ẋi is
connected to V , an external field. We can understand that the dynamics of the framework
is ruled by the the perturbation caused by this external field in the NC phase-space.
Newton’s second law can be obtained analogously (from Eq. (2.98)) and the result is

mẍi = − ∂V

∂xi
+ mθij

∂2V

∂xj∂xk
ẋk . (2.103)

This result was used to investigate several models in physics [63]. Here, we want to verify
how the phase-space curvature affects the NC contribution. We can see that this new
force can be understood, analogously to (2.102), as the result of a perturbation in the
classical phase-space as a consequence of an external field.
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In our case, we want to discuss the NC approach for the free particle in a flat 3D space
which has the Lagrangian given by

Lph = m

2 gαβẋ
αẋβ (2.104)

where gαβ is given in (2.26). From (2.104) we have that

px = mẋ + mx(xẋ+ yẏ)
a2 − x2 − y2

py = mẏ + my(xẋ+ yẏ)
a2 − x2 − y2 (2.105)

where we have used that x1 = x and x2 = y. From Eqs. (2.104) and (2.105), the
Hamiltonian is given by

H = 1
2ma2

[
(a2 − x2)p2

x + (a2 − y2)p2
y − 2pxpyxy

]
(2.106)

and our set of symplectic variables is given by ξ = (x, y, px, py), as we said before. Using
Eqs. (2.98)-(2.100) and the Hamiltonian in (2.106) we have the NC equations of motion

ẋ = 1
ma2

[
(a2 − x2)px − xypy − θ

(
yp2

y + xpxpy
)]

ẏ = 1
ma2

[
(a2 − y2)px − xypx − θ

(
xp2

x + ypxpy
)]

ṗx = 1
ma2

(
xp2

x + pxpyy
)

(2.107)

ṗy = 1
ma2

(
yp2

y + pxpyx
)
.

Notice that when θ = 0 we have the standard commutative phase-space equations of
motion. Secondly, from (2.107) we can see the effect of a curved phase-space. For a
free particle we must have ṗx = ṗy = 0, and this is the result of a free particle in a flat
phase-space. However, before the calculation of ṗx or ṗy we can see the curvature effect
already in ẋ and ẏ. In other words, we do not need the values of ṗx and ṗy to know that
the curvature plays a kind of potential in order to perturb the NC calculations [27].

It is important to say that if we have NCy in the momentum bracket of Eq. (2.95)
and (2.98) we would have a θ-term in the momentum dynamics of (2.107).

After long algebra the NC Newton’s second law for our particle on the 2-sphere is

mẍ = − 1
ma4

[
x(a2 − x2)p2

x − 2x2ypxpy − x(a2 + y2)p2
y

]
− θ

ma2 (p2
x + p2

y)py (2.108)

and

mÿ = − 1
ma4

[
y(a2 − y2)p2

y − 2xy2pxpy − y(a2 + x2)p2
x

]
− θ

ma2 (p2
x + p2

y)px (2.109)
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and curiously we saw that in (2.103) the NC correction depends on the background space
through the θij parameter and also on the variations of the potential. This result could
lead us to think that for our free particle, the NC corrections would be zero, as the
expression obtained in [25] (Eq. (2.103)) could also indicate this). However, we can see
in (2.108)-(2.109) that the curvature of the space originates a NC correction as well, in
spite of a zero potential. In other words, we understand Eqs. (2.108) and (2.109) as a new
NC Newton’s second law. At the final terms of Eqs. (2.108) and (2.109) we can realize
the correction due to the NC rule. This correction term relies on the background space
through the NC θ-parameter. However, we can see the 2-sphere term represented by a,
which is an expected result.
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3 Canonical noncommutativity and quantum field theory

3.1 Canonical NCy and quantum field theory

3.1.1 NC quantum field theory

The theoretical framework for studying QFT in the NC spaces is called NC field theory
(NCFT) and it may be a relevant physical model at scales between lP (' 1.6× 10−33cm)
and lLHC (' 2× 10−18cm). In fact, one of the main threads of research in this field has
been related to studies of energetic cosmic rays, as we will discuss further below. In the
following we will study this relationship in some detail. These field theories provide fruitful
avenues of investigation for several reasons, that will be explained in more depth below.

Firstly, some QFT’s are better behaved on NC spacetime than on ordinary spacetime.
In fact, some are completely finite, even non-perturbatively. In this manner spacetime
NCy presents an alternative fomalism to supersymmetry or string theories in some sense.
Secondly, it is a useful arena for studying physics beyond the standard model, and also for
standard physics in strong external fields. Thirdly, it sheds light on alternative lines of
attack to address various fundamental issues in QFT, for instance the renormalization and
axiomatic programs. Finally, it naturally relates field theory to gravity. Since the field
theory may be easier to quantize, this may provide significant insights into the problem of
quantizing gravity.

Nowadays, in accordance with the Hopf-algebraic classification of all deformations of
relativistic and non-relativistic symmetries, one can distinguish three kinds of spacetime
NCy [64, 65]

1- Canonical (soft) deformation [
x̂µ, x̂ν

]
= iθµν , (3.1)

with tensor θµν being constant and antisymmetric (θµν = −θνµ).
2- Lie-algebraic case [

x̂µ, x̂ν
]

= iθµνρ x̂
ρ, (3.2)

with particularly chosen constant coefficients θµνρ . This kind of spacetime modification is
represented by κ-Poincaré and κ-Galilei Hopf algebras.

3- Quadratic deformation [
x̂µ, x̂ν

]
= iθµνρσ x̂

ρx̂σ, (3.3)

with constant coefficients θµνρσ . The hat symbol “ ˆ ” above the variables indicates that
they are NC variables.
According to this classification, the NCy that has emerged within the string theory belongs
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to the canonical NCy. One of the main consequences of canonical NCy is absence of
full Lorentz invariance. Both θi0 and εijkθij are fixed three-vectors that define preferred
directions in a given Lorentz frame. The NC QFTs based on this category possess symmetry
under various twisted Poincaré algebras, depending on the structure of θ [66, 67]. The
advantage of using the twisted Poincaré language for constructing physical theories is
that, in spite of the lack of full Lorentz symmetry, the fields carry representations of the
full Lorentz group [68] and the spin-statistics relation is still valid; the deformation then
appears in the product of the fields (interaction terms).
As there is no empirical data to support the violation of Lorentz symmetry in nature, to
loose the Lorentz invariance property is not a good thing for any theory, in the opinion
of some scientists. For this reason Doplicher, Fredenhagen and Roberts (DFR), have
suggested that the NC parameter may not be a constant one and in this way the Lorentz
invariance would be recovered [69]. We will see that the DFR algebra has been proposed
based on issues that come from general relativity and quantum mechanics. The authors
claim that very accurate measurement of spacetime position of a test particle could
transfer such amount of energy to it that at least theoretically could be sufficient to create
a gravitational field that, a priori could trap photons. Analyzing the limitations of this
position measurement using a semi-classical approximation leads to uncertainty relations
among spacetime coordinates

∆x0
3∑
i=1

∆xi & l2P ;
∑

1>j>k>3
∆xj∆xk & l2P . (3.4)

These relations can be traced back to the commutation relations among coordinates
(though not uniquely) [

x̂µ, x̂ν
]

= iQµν , (3.5)

where Q is a tensor whose components Qµν commute with all coordinates. Thus, the
presence of classical gravitation makes the spacetime effectively NC and this feature should
be present in any quantum theory of gravitation.

The results appearing in [70] are explored by some authors [71, 72, 73, 74, 75]. Some
of them prefer to start from the beginning by adopting DFR algebra, which essentially
assumes (3.5) as well as the vanishing of the triple commutator among the coordinate
operators. As it was cleared above, the DFR algebra is based on the principles coming
from general relativity and quantum mechanics. In addition to (3.5) it also assumes that

[x̂µ, Qαβ] = 0. (3.6)

An important point in DFR algebra is that the Weyl representation of NC operators
obeying (3.5) and (3.6) keeps the usual form of the Moyal-Weyl product, and consequently
the form of the usual NCFT’s, although the fields have to be considered as depending not
only on xµ but also on θαβ. The argument is that very accurate measurements of spacetime
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localization could transfer to test particles energies sufficient to create a gravitational field
that in principle could trap photons. This possibility is related with spacetime uncertainty
relations that can be derived from (3.5) and (3.6) as well as from the quantum conditions

θµνθ
µν = 0,

(1
4
∗θµνθµν

)2
= λ8

P , (3.7)

where ∗θµν = 1
2εµνρσθ

ρσ and λP is the Planck length.
These operators are seen as acting on a Hilbert space H and this theory implies in

extra compact dimensions [69]. The use of conditions (3.7) in [70, 72, 73, 74, 75] would
bring trivial consequences, since in those works the relevant results strongly depend on the
value of θ2, which is taken as a mean with some weight function W (θ). They use in this
process the Seiberg–Witten [16] transformations that is explained previously. Of course
those authors do not use (3.7), since their motivations are not related to quantum gravity
but basically with the construction of a NCFT which keeps Lorentz invariance.

A nice framework to study different aspects of NCy is given by the so called NC
quantum mechanics (NCQM), due to its simpler approach. There are many interesting
works in NCQM but in most of these works, the object of NCy θij (where i, j = 1, 2, 3),
which essentially is the result of the commutation of two coordinate operators, is considered
as a constant matrix.

In NCQM, although time is a commutative parameter, the space coordinates do not
commute. However, the objects of NCy, θ, are not considered as Hilbert space operators.
As a consequence the corresponding conjugate momenta is not introduced, because, as
well known, it is important to implement rotation as a dynamical symmetry [76]. As a
result, the theories are not invariant under rotations.

In [77], the author promoted an extension of the DFR algebra to a non-relativistic
QM in a trivial way, but keeping consistency. The objects of NCy were considered as
true operators and their conjugate momenta were introduced. This permits us to display
a complete and consistent algebra among the Hilbert space operators and to construct
generalized angular momentum operators, obeying the SO(D) algebra, and in a dynamical
way, acting properly in all the sectors of the Hilbert space.

In a recent work [78], the authors have indicated that in fact if the NC parameter is a
coordinate of this new Hilbert space, an associate momentum is directly connected to it.
Namely the new phase space would be formed by the original coordinates and the (θ, π)
new pair.

3.2 Noncommutative gauge theory

Gauge theories are crucially important when building a realistic physical model and are
the main ingredients of standard model of particle physics. So, in order to obtain any real
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results out of the NC field theory, the notion of gauge symmetry had to be generalized to
the NC setting. Since gauge symmetries are essentially local, generalizing them to the
nonlocal NC spacetime is highly nontrivial.

There are two methods to construct gauge field theories in NC spacetime. First uses the
Seiberg-Witten map, obtained from string theory [16], which maps a NC gauge theory to
a commutative gauge theory. In the second, one uses a NC generalization of a gauge group
and the ?-product to construct a gauge theory in the framework of NC field theory. Both
methods have been further developed and they offer some flexibility in their approaches.
In this chapter we shall study just the Seiberg-Witten method briefly in the case of the
constant θ and then we will construct a NC version of a Non-Yang-Mills gauge theory
with SU(N) gauge group. The reader with an interest in field theoretical approach can
refer to [79, 80, 66, 67, 68].

Until now we have studied Lorentz-invariant NC spacetime which the parameter of
NCy was an operator valued object but now we will take a look at the cases where the
NC spacetime is considered to be the canonical one, i.e. the parameter of NCy be a real
valued constant matrix. In this type of NCy the Lorentz invariance is violated.

For future use the Moyal ?-product and the Moyal bracket 2are naturally generalized
for the algebra of matrix-valued functions Mn×n ⊗ Aθ, i. e., for two arbitrary functions
f(x) and g(y) we have

(f(x) ? g(y))ij = f(x)ik ? g(y)kj. (3.8)

The Hermitian conjugation for the algebraMn×n⊗Aθ can be defined by the usual Hermitian
conjugation of matrices

(
f(x)†

)
ij

=
(
f(x)?ji

)
and by the definition that the ?-product

behaves under the operation

(f(x) ? g(x))† = g(x)† ? f(x)†. (3.9)

3.2.1 The Seiberg-Witten map and universal enveloping algebra

After a quantization process, the open string theory in a constant antisymmetric background
field, with string end points constrained on D-branes, by using the Pauli-Villars and the
point-splitting regularization, one obtains a commutative or NC gauge theory, respectively.
The Seiberg-Witten (SW) map provides a correspondence between these two gauge theories,
which should be equivalent, since a well-defined quantum theory does not depend on the
regularization technique.

The SW map, as originally proposed, is a map between the NC U?(N) gauge theory,
described by Â and Λ as gauge field and gauge transformations, respectively and the
2 For a review of Moyal-Weyl product refer to A
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corresponding ordinary commutative u(N)-matrix valued functions A and Λ. In this
approach it is argued that, because most of the gauge theories on NC spaces cannot be
constructed with Lie algebra valued infinitesimal gauge transformations, the infinitesimal
gauge transformations should instead, be taken to be enveloping algebra valued. The idea
is to bypass the difficulties in constructing NC gauge groups by letting the generators of
the gauge transformations and the gauge fields to take values in the universal enveloping of
the corresponding gauge algebra. The main problem with this approach is that enveloping
algebras are infinite dimensional, which means that simply the numbers of both gauge
transformation parameters and the gauge fields are infinite.
The gauge transformation parameters and the gauge fields can, however, be defined to be
functions of the corresponding Lie algebra valued objects — the functions being obtained
through the SW maps —, so that their numbers are the same as in the corresponding
commutative gauge theories.

Let us consider the NC version of a gauge theory of a generic non-Abelian gauge
algebra, say the algebra su(n), with the matter fields ψ̂ and the gauge fields Âµ. The
infinitesimal local gauge transformations are

δ̂Λ̂ψ̂ = iρψ(Λ̂(x)) ? ψ̂ (3.10)

δ̂Λ̂Âµ = ∂̂µΛ̂(x) + i
[
Λ̂(x), Âµ

]
?

(3.11)

where the NC infinitesimal gauge transformation parameter Λ̂ is valued in a universal
enveloping of the gauge algebra U(su(n)) and ρψ is the matter representation of U(su(n))3.
It should be noted that there is no gauge symmetry group, since this gauge symmetry
is only defined for infinitesimal gauge transformations4. Generally speaking, the gauge
transformation parameter Λ̂ cannot be Lie algebra valued, because the commutator of two
Lie algebra valued parameters Λ̂ = Λ̂iTi and Σ̂ = Σ̂iTi does not close in the Lie algebra
with the gauge transformations

[
Λ̂ , Σ̂

]
?

= 1
2{Λ̂i , Σ̂j}? [Ti , Tj]︸ ︷︷ ︸

ifijkTk

+1
2
[
Λ̂i , Σ̂j

]
?︸ ︷︷ ︸

6=0

{Ti , Tj}. (3.12)

Therefore, we have to use fields and gauge transformations that are U(su(n))-valued.
The gauge fields Âµ have to be in the adjoint representation of U(su(n)). The gauge
covariant derivative and the field strength are given by

D̂µψ̂ = ∂µψ̂ − iρψ(Âµ) ? ψ̂ (3.13)

F̂µν = ∂[µÂν] − i
[
Âµ , Âν

]
?

(3.14)
3 The concept of universal enveloping algebra is reviewed at appendix (C)
4 For a U(L) there is nothing like the exponential map that maps a Lie algebra L to a Lie

group.
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with the gauge transformations

δ̂Λ̂D̂µψ̂ = iΛ̂(x) ? D̂µψ̂ (3.15)

δ̂Λ̂F̂µν = i
[
Λ̂(x), F̂µν

]
?
. (3.16)

The gauge invariant action for the gauge sector is defined by

S
[
Â, ∂Â

]
= −1

4

∫
dDx Tr

(
F̂µνF̂

µν
)

(3.17)

and the action for the matter/interaction sector is constructed by using the covariant
derivative. For example, the action of a NC fermion is written as

S
[
ψ̂, ∂ψ̂, Â

]
=
∫
ddx

¯̂
ψ ? (γµD̂µ −m)ψ̂. (3.18)

These definitions are similar to corresponding commutative su(n) gauge theory, the
differences being the ordinary point-wise product and the Lie algebra valued fields and
gauge transformation parameters. Here we denote the commutative concepts without the
hats: ψ,Aµ,Λ etc. In order to fix the notation we mention that in the commutative space,
the fields transform under gauge transformations with Lie algebra-valued infinitesimal
parameters

δΛψ(x) = iΛ(x)ψ(x) ; Λ(x) = ΛaT
a. (3.19)

The commutator of two gauge transformations gives us

(δΛδΣ − δΣδΛ)ψ(x) = iΛa(x)Σb(x)fabcT cψ(x) = δΛ×Σψ(x), (3.20)

where

Λ× Σ ≡ ΛaΣbfabcTc = −i [Λ , Σ] . (3.21)

For the Lie algebra-valued gauge potential Aaµ(x) we define the following transformation

δΛAaµ = ∂µΛa − fabcΛb(x)Acµ(x) ; Aµ = Aaµ(x)Ta. (3.22)

Since the gauge invariance of the commutative gauge theory should be maintained in the
NC space, the gauge transformations in the latter theory are induced by the transformations
of the former theory:

Âµ[A] + δ̂Λ̂[Λ,A]Âµ[A] = Âµ[A+ δΛA], (3.23)

ψ̂[ψ,A] + δ̂Λ̂[Λ,A]ψ̂[ψ,A] = ψ̂[ψ + δΛψ , A+ δΛA]. (3.24)

These relations are called SW map. They say that, if the commutative fields Aµ and ψ are
related to the fields AUµ and ψU through the gauge transformation U = exp(iΛ) generated
by Λ, then the NC fields Âµ[A] and ψ̂[ψ,A] are related to the fields Âµ[AU ] and ψ̂[ψU , AU ]
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through the gauge transformation Û = exp(iΛ̂[Λ, A]), generated by Λ̂[Λ, A]. These gauge
equivalence relations can be solved pertubatively in θ in order to obtain the SW maps
explicitly. For the gauge theories with U(N) as the gauge group the SW map for the
leading order in θ can be written as:

Âµ [A] = Aµ + 1
4θ

νρ{Aρ , ∂νAµ + Fµν}+ O
(
θ2
)

(3.25)

ψ̂ [ψ,A] = ψ + 1
2θ

µνρψ(Aν)∂µψ + i

8θ
µν [ρψ(Aµ) , ρψ(Aν)]ψ + O

(
θ2
)

(3.26)

Λ̂ [Λ, A] = Λ + 1
4θ

µν{Aν , ∂µΛ}+ O
(
θ2
)
. (3.27)

As we have mentioned above, the gauge parameters of a general gauge theory, for example,
with SU(N) as the gauge group, in the NC space can not be Lie algebra-valued, because
the commutation relation is not always closed, they have to take value in enveloping
algebra5.

Λ̂(x) = Λ̂a(x)T a + Λ̂1
ab(x) : T aT a : + . . .

+ Λ̂n−1
a1a2...an(x) : T a1 · · ·T an : + . . .

The dots mean that we must sum over a basis of vector space spanned by homogeneous
polynomials of the generators of the Lie algebra. Completely symmetrized products form
such the following basis:

: T a : = T a

: T aT b : = 1
2
{
T a, T b

}
= 1

2
(
T aT b + T bT a

)
: T a1 . . . T an : = 1

n!
∑
πεSn

T aπ(1) · · ·T aπ(n) .

The ?-commutator of two enveloping algebra-valued transformations always will remain
enveloping algebra-valued. The bad point is that we will deal with a series of infinite
parameters, however it is possible to define a gauge transformation where all these infinitely
parameters depend on the usual gauge parameter Λ(x), the gauge potential Aµ(x) and
their derivatives [37]. Transformations of this type will be denoted as Λ̂ [A] and their x-
dependence is purely via this finite set of parameters and gauge potentials Λ [A] ≡ Λ̂ [A(x)]
(for constant θ).

Now the gauge transformation (3.10) will take the following form

δΛ̂ψ̂(x) = iΛ̂ [A] ? ψ̂(x). (3.28)
5 As mentioned above just in the case of U(N) gauge group one find that the commutation is

closed and the parameters are Lie algebra-valued.
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Each finite set of parameters Λ0
a(x) defines a tower ΛΛ0 [A0] in the enveloping algebra

that is completely determined by the Lie algebra-valued part. To define and construct
this tower we demand a similarity with Lie algebra [81]

(δΛ̂δΣ̂ − δΣ̂δΛ̂) ψ̂(x) = δΛ̂×Σ̂ψ̂(x). (3.29)

More explicitly we have

iδΛ̂Σ̂ [A]− iδΣ̂Λ̂ [A] + Λ̂ [A] ? Σ̂ [A]− Σ̂ [A] ? Λ̂ [A] = iΩ̂Λ̂×Σ̂ [A] . (3.30)

Now we can use the expansion of the ?-product to solve Eq.(3.30) in its NC part.

(f ? g) (x) = exp
(
i

2
∂

∂xi
θij

∂

∂yj

)
f(x)g(y)|y→x

= f(x)g(x) + i

2θ
ij∂if∂jg + · · · .

We assume that always the following expansion is possible:

Λ̂ [A] = Λ + Λ1 [A] + Λ2 [A] + · · · . (3.31)

This expansion is the principal ingredient for the construction of non-Abelian NC gauge
theories. If we substitute the above relation in (3.30) to zeroth order we yield the Eq.(3.20)
which is the commutator of two Lie algebra-valued objects. To the first order by means of
an ansatz we have that

Λ1 [A] = 1
4θ

µν {∂µΛ, Aν} = 1
2θ

µν∂µΛaAbν : T aT b : . (3.32)

Also we can expand the fields, gauge potential and in NC space in terms of the original
space ones as follows

ψ̂ = ψ0 + ψ1 + ... (3.33)

and
Âµ = Aµ + A1

µ + .... (3.34)

By the same treatment as the gauge parameter for the gauge potential and field strength
at the first order terms one finds [37]

A1
k = −1

4θ
ij {Ai, ∂jAk + Fjk} (3.35)

F 1
ij = 1

2θ
kl {Fik, Fjl} −

1
4θ

kl {Ak, (∂l +Dl)Fij} (3.36)

Hence the ordinary Yang-Mills term FijF
ij in the NC spacetime takes the following form

F̂ij ? F̂
ij = FijF

ij + i

2θ
klDkFijDlF

ij + 1
2θ

kl{{Fik, Fjl}, F ij}

− 1
4θ

kl{Fkl, FijF ij} − i

4θ
kl
[
Ak, {Al, FijF ij}

]
. (3.37)
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For matter field in the fundamental representation we have

ψ1 = −1
4θ

ijAi (∂j +Dj)ψ where Diψ = ∂iψ − iAiψ (3.38)

and in the adjoint representation [38]

ψ1 = −1
4θ

ij {Ai, (∂j +Dj)ψ} where Diψ = ∂iψ − i [Ai, ψ] (3.39)

We must take care that these variables do not take value in a Lie algebra but in an
enveloping algebra. So {•, •} is not the anticommutator of a Lie algebra-valued matrices
and the result is more complicated such as (3.32).

The higher order of expansions are obtained analogously. In [37] the action of a NC
gauge theory with fermionic matter has been constructed to the second order of NCy
parameter θ, and the result can be written solely in terms of the usual gauge covariant
derivatives and field strengths, exhibits beautifully the usual gauge invariance of the
expansion.

3.2.2 The no-go theorem

In a realistic physical model we need to consider gauge groups with several simple factors.
Let G1 and G2 be two local gauge groups. The gauge group G = G1 ×G2 is defined by

g = g1 × g2 ; h = h1 × h2 ; g, h ∈ G ; gi, hi ∈ Gi

g.h = (g1 × g2) . (h1 × h2) ≡ (g1.h1)× (g2.h2) . (3.40)

where "·" is the corresponding group multiplication for each group. If we now take
the groups to be the NC ones, G1 = U? (n) and G2 = U? (m), we see that because of the
?-product we cannot re-arrange the elements of the subgroups as in (3.40). Therefore
the matter fields cannot be in the fundamental representation of both U? (n) and U? (m).
However, there is one possibility left. The matter field Ψ can be in the fundamental
representation of one group, say U? (n), and in the anti-fundamental representation of the
other group

Ψ −→ Ψ′ = U ?Ψ ? V −1 ; U ∈ U? (n) , V ∈ U? (m) . (3.41)

In the general case the gauge group consists of N factors G = ∏N
i=1 U? (ni). The matter

fields can at most be charged under two of the U? (ni) factors and they have to be singlets
under the rest of them. This is a strong constraint on the possible models specially the
extension of the standard model of particle physics on NC spacetimes.
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4 Doplicher–Fredenhagen–Roberts noncommutative phase-space

4.1 The Noncommutative Quantum Mechanics

In this section we will introduce DFR space and its complete extension formulated in
[77, 82, 83, 84, 85] where the beginning version of the DFR is accomplished through
the introduction of the canonical conjugate momenta to the variable θ̂µν of the system.
Concerning now the DFR-extended space, we continue to furnish its “missing parts” and
naturally its implications in QM and QFT.

4.1.1 The Snyder’s Algebra

In the beginning of the formulation of QFT and the appearance of the notorious divergences,
many people were thinking that the problem is caused by the existence of a continuum
spacetime and this continuity was dictated by Lorentz invariance. Until Snyder proposed
that the Lorentz invariance does not imply continuity necessarily. In his work [13],
Snyder introduced a five dimensional spacetime with SO(4, 1) as a symmetry group,
with generators MAB, satisfying the Lorentz algebra in the 5D De Sitter space, where
A,B = 0, 1, 2, 3, 4 and using natural units, i.e., ~ = c = 1. Snyder’s representation of
this algebra was constructed by considering a (4+1)D spacetime with coordinates ηA and
metric gAB = diag(+−−−−). The transformations that leave both η4 and the quadratic
form η2

0 − η2
1 − η2

2 − η2
3 − η2

4 invariant are the Lorentz transformations on this space. The
ordinary Lorentz transformations act only on the first four coordinates and are induced by
a dimensional reduction from (4+1) to (3+1) dimensions. Snyder defined the generators
of usual Lorentz algebra in (3+1)D as

Mµν = i

(
ηµ

∂

∂ην
− ην ∂

∂ηµ

)
. (4.1)

Also he introduced the position and time operators in Minkowski spacetime in the following
way

x̂µ = aM4µ

= ia

(
η4

∂

∂ηµ
+ ηµ

∂

∂η4

)
. (4.2)

In the above definition, the spacetime coordinates are promoted to operators. As it
can be seen, the position operators are Hermitian and can be shown that they have
discrete spectrum with eigenvalues ma where m are integers. But the time operator is not
Hermitian and it also has a continuous spectrum (where µ, ν = 0, 1, 2, 3 and the parameter
a has dimension of length). The mentioned relationship introduces the commutator,

[x̂µ, x̂ν ] = ia2Mµν , (4.3)
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and the identities,

[Mµν , x̂λ] = i
(
x̂µηνλ − x̂νηµλ

)
(4.4)

and

[Mµν ,Mαβ] = i
(
Mµβηνα −Mµαηνβ + Mναηµβ −Mνβηµα

)
, (4.5)

which agree with four dimensional Lorentz invariance.
We here note that the triple commutator in Snyder’s quantized spacetime is not vanishing,

[x̂µ, [x̂ν , x̂ρ]] = −a2(ηνµx̂ρ − ηρµx̂ν). (4.6)

Such a q-number triple commutator is not a general feature of a Lorentz-invariant NC
space-time.

We can also construct the Snyder’s spacetime algebra conveniently as a modification
of the canonical commutation relations of phase-space, given by [86]

[x̂µ, x̂ν ] = ia2~−1(x̂µp̂ν − x̂ν p̂µ)

[x̂µ, p̂ν ] = i~δµν + ia2~−1p̂µp̂ν (4.7)

[p̂µ, p̂ν ] = 0,

where we can see the presence of a fundamental minimal length a, the scale of NCy. In
this way we can recover the “usual” phase space of quantum mechanics when a = 0.

In fact there are two kinds of Snyder’s quantized spacetime where the triple commutator
between the operator coordinates does not vanish. In one of them, which was originally
proposed by Snyder and was mentioned above, the spatial coordinates have a discrete
spectrum of eigenvalues of the form ma, where m is an integer, while the time coordinate
has a continuous spectrum. The other one is the opposite: the spectrum of the time
coordinate is discrete, while that of the spatial coordinates is continuous [87].

4.1.2 The Doplicher–Fredenhagen–Roberts–Amorim (DFR-extended) Space

The Doplicher, Fredenhagen and Roberts (DFR) algebra [69] essentially defines

[x̂µ, x̂ν ] = iθ̂µν (4.8)

as well as the vanishing of the triple commutator among the coordinate operators,

[x̂µ, [x̂ν , x̂ρ]] = 0, (4.9)

and it is easy to realize that this relationship constitutes a constraint in a NC spacetime.
Notice that the commutator inside the triple one is not a c-number.

As usual x̂µ and p̂ν , where i, j = 1, 2, . . . , D and µ, ν = 0, 1, . . . , D, represent the
position operator and its conjugate momentum. The NC variable θ̂µν represents the NCy
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operator, but now π̂µν is its conjugate momentum. In accordance with the discussion
above, it follows the algebra

[x̂µ, p̂ν ] = iδµν , (4.10a)

[θ̂µν , π̂αβ] = iδµναβ, (4.10b)

where δµναβ = δµαδ
ν
β − δµβδ

ν
α. The relation (4.8) here in a space with D dimensions, for

example, can be written as

[x̂i, x̂j] = iθ̂ij and [p̂i, p̂j] = 0 (4.11)

and together with the triple commutator (4.9) condition of the standard spacetime, i.e.,

[x̂µ, θ̂να] = 0. (4.12)

This implies that

[θ̂µν , θ̂αβ] = 0, (4.13)

and this completes the DFR algebra.
Thus there are two notable differences between Snyder’s and the DFR algebras,

[x̂µ, [x̂ν , x̂ρ]]

 = 0 ( DFR algebra)
6= 0 ( Snyder’s algebra)

[p̂µ, x̂ν ]

 = igµν ( DFR algebra)
6= igµν ( Snyder’s algebra).

(4.14)

Recently, in order to obtain consistency R. Amorim introduced [77], as we talked above,
the canonical conjugate momenta π̂µν such that,

[p̂µ, θ̂να] = 0, [p̂µ, π̂να] = 0. (4.15)

The Jacobi identity formed by the operators x̂i, x̂j and π̂kl leads to the nontrivial relation

[[x̂µ, π̂αβ], x̂ν ]− [[x̂ν , π̂αβ], x̂µ] = −δµναβ. (4.16)

The solution, unless trivial terms, is given by

[x̂µ, π̂αβ] = − i2δ
µν
αβ p̂ν . (4.17)

It is simple to verify that the whole set of commutation relations listed above is indeed
consistent under all possible Jacobi identities. Expression (4.17) suggests the shifted
coordinate operator [88, 89, 90, 91, 92, 93] (also known as Bopp-shift)

Xµ ≡ x̂µ + 1
2 θ̂

µν p̂ν (4.18)
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that commutes with πkl. Actually, (4.18) also commutes with θ̂kl and Xj, and satisfies a
non trivial commutation relation with p̂i depending objects, which could be derived from

[Xµ, p̂ν ] = iδµν (4.19)

and

[Xµ,Xν ] = 0. (4.20)

To construct a DFR-extended algebra in (x, θ) space, we can write

Mµν = Xµp̂ν −Xν p̂µ − θ̂µσπ̂ ν
σ + θ̂νσπ̂ µ

σ , (4.21)

where Mµν is the antisymmetric generator of the Lorentz-group. To construct πµν we have
to obey equations (4.10b) and (4.17), obviously. From (4.10a) we can write the generators
of translations as

Pµ = −i∂µ. (4.22)

With these ingredients it is easy to construct the commutation relations

[Pµ,Pν ] = 0, [Mµν ,Pρ] = −i
(
ηµνPρ − ηµρPν

)
,

[Mµν ,Mρσ] = −i
(
ηµρMνσ − ηµσMνρ − ηνρMµσ − ηνσMµρ),

and we can say that Pµ and Mµν are the generators of the DFR-extended algebra. These
relationships are important, because they are essential for the extension of the Dirac
equation to the DFR-extended configuration space (x, θ). It can be shown that the Clifford
algebra structure generated by the 10 generalized Dirac matrices Γ relies on these relations.

Now we need to remember some basics in quantum mechanics. In order to introduce
a continuous basis for a general Hilbert space, with the aid of the above commutation
relations, it is necessary firstly to find a maximal set of commuting operators. For instance,
let us choose a momentum basis formed by the eigenvectors of p̂ and π̂. A coordinate basis
formed by the eigenvectors of (X, θ̂) can also be introduced, among other possibilities.
We observe here that it is in no way possible to form a basis involving more than one
component of the original position operator x̂, since their components do not commute.

To clarify, let us display the fundamental relations involving those basis, namely
eigenvalue, orthogonality and completeness relations

Xi|X ′, θ̂′〉 = X ′
i|X ′, θ̂′〉, θ̂ij|X ′, θ̂′〉 = θ′ij|X ′, θ̂′〉,

p̂i|p̂′, π̂′〉 = p′i|p̂′, π̂′〉, π̂ij|p̂′, π̂′〉 = π′ij|p̂′, π̂′〉,

〈X ′, θ̂′|X ′′, θ̂′′〉 = δD(X ′ −X ′′)δ
D(D−1)

2 (θ̂′ − θ̂′′),

〈p̂′, π̂′|p̂′′, π̂′′〉 = δD(p̂′ − p̂′′)δ
D(D−1)

2 (π̂′ − π̂′′),∫
dDX ′ d

D(D−1)
2 θ̂′|X ′, θ̂′〉〈X ′, θ̂′| = 1,∫

dDp̂′ d
D(D−1)

2 π̂′|p̂′, π̂′〉〈p̂′, π̂′| = 1, (4.23)
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notice that the dimension D means that we live in a framework formed by the spatial
coordinates and by the θ̂ coordinates, namely, D includes both spaces, D = (spatial
coordinates +θ̂ coordinates). It can be seen clearly from the equations involving the delta
functions and the integrals equations in (4.23).

Representations of the operators in those bases can be obtained in an usual way. For
instance, the commutation relations given by equations (4.10) to (4.19) and the eigenvalue
relations above, unless trivial terms, give

〈X ′, θ̂′|p̂i|X ′′, θ̂′′〉 = −i ∂

∂X ′i
δD(X ′ −X ′′)δ

D(D−1)
2 (θ̂′ − θ̂′′)

and

〈X ′, θ̂′|π̂ij|X ′′, θ̂′′〉 = −iδD(X ′ −X ′′) ∂

∂θ̂′ij
δ
D(D−1)

2 (θ̂′ − θ̂′′).

The transformations from one basis to the other one are carried out by extended Fourier
transforms. Related with these transformations is the plane wave

〈X ′, θ̂′|p̂′′, π̂′′〉 = N exp(ip̂′′ ·X ′ + iπ̂′′ · θ̂′),

where internal products are represented in a compact manner. For instance,

p̂′′ ·X ′ + π̂′′ · θ̂′ = p̂′′iX
′i + 1

2 π̂
′′
ij θ̂
′ij.

Before discussing any dynamics, it seems interesting to study the generators of the group
of rotations SO(D). Without considering the spin sector, we realize that the usual angular
momentum operator

lij = x̂ip̂j − x̂j p̂i

does not close in an algebra due to (4.11). And we have that,

[lij, lkl] = iδillkj − iδjllki − iδikllj + iδjklli − iθ̂ilp̂kp̂j + iθ̂jlp̂kp̂i + iθ̂ikp̂lp̂j − iθ̂jkp̂lp̂i

and so their components can not be SO(D) generators in this extended Hilbert space. On
the contrary, the operator

Lij := Xip̂j −Xj p̂i, (4.24)

closes in the SO(D) algebra. However, to properly act in the (θ̂, π̂) sector, it has to be
generalized to the total angular momentum operator

Jij := Lij − θ̂ilπ̂ j
l + θ̂jlπ̂ i

l . (4.25)

It is easy to see that not only

[Jij,Jkl] = iδilJkj − iδjlJki − iδikJlj + iδjkJli, (4.26)
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but Jij generates rotations in all Hilbert space sectors. Actually

δXi = i

2εkl[X
i,Jkl] = εikXk, δp̂i = i

2εkl[p̂
i,Jkl] = εikp̂k,

δθ̂ij = i

2εkl[θ̂
ij,Jkl] = εikθ̂ jk + εjkθ̂ik, δπ̂ij = i

2εkl[π̂
ij,Jkl] = εikπ̂ j

k + εjkπ̂ik (4.27)

have the expected form. The same occurs with

x̂i = Xi − 1
2 θ̂

ij p̂j =⇒ δx̂i = i

2εkl[x̂
i,Jkl] = εikx̂k.

Observe that in the usual NCQM prescription, where the objects of NCy are parameters or
where the angular momentum operator has not been generalized, X fails to transform as a
vector operator under SO(D) [88, 89, 90, 91, 92, 93]. The consistence of transformations
(4.27) comes from the fact that they are generated through the action of a symmetry
operator and not from operations based on the index structure of those variables.

We would like to mention that in D = 2 the operator Jij reduces to Lij , in accordance
with the fact that in this case θ̂ or π̂ has only one independent component. In D = 3, it is
possible to represent θ̂ or π̂ by three vectors and both parts of the angular momentum
operator have the same kind of structure, and so the same spectrum. An unexpected
addition of angular momentum potentially arises, although the (θ, π) sector can live in a
J = 0 Hilbert subspace. Unitary rotations are generated by U(ω) = exp(−iω · J), while
unitary translations, by T (λ,Ξ) = exp(−iλ · p̂− iΞ · π̂).

4.2 Dynamical Symmetries in NC Theories

In this section we will analyze the dynamical spacetime symmetries in NC relativistic
theories by using the DFR-extended algebra depicted in section 2.1. As explained there,
the formalism is constructed in an extended spacetime with independent degrees of freedom
associated with the object of NCy θ̂µν . In this framework we can consider theories that are
invariant under the Poincaré group P or under its extension P′. The Noether formalism
adapted to such extended x+ θ̂ spacetime will be employed.

4.2.1 Coordinate operators and their transformations in relativistic NCQM

In the usual formulations of NCQM, interpreted here as relativistic theories, the coor-
dinates x̂µ and their conjugate momenta p̂µ are operators acting on a Hilbert space H

satisfying the fundamental commutation relations given in Section 2.1, we can define the
operator

G1 = 1
2ωµνL

µν .

Note that, analogously to (4.27), it is possible to dynamically generate infinitesimal
transformations on any operator A, following the usual rule δA = i[A,G1]. For Xµ, p̂µ
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and Lµν , given in (4.18) and (4.24), with spacetime coordinates, we have the following
results

δXµ = ωµνXν , δp̂µ = ω ν
µ p̂ν , δLµν = ωµρLρν + ωνρLµρ.

However, the physical coordinates fail to transform in the appropriate way. As can be
seen, the same rule applied on x̂µ gives the result

δx̂µ = ωµν

(
x̂ν + 1

2 θ̂
νρp̂rho

)
− 1

2 θ̂
µνωνρp̂

ρ, (4.28)

which is a consequence of θ̂µν not being transformed. Relation (4.28) probably will break
Lorentz symmetry in any reasonable theory. The cure for these problems can be obtained
by considering θ̂µν as an operator in H, and introducing its canonical momentum π̂µν as
well. The price to be paid is that θ̂µν will have to be associated with extra dimensions, as
happens with the formulations appearing in [70, 71, 72, 73, 74, 75].

Moreover, we have that the commutation relation

[x̂µ, π̂ρσ] = − i2δ
µν
ρσp̂ν (4.29)

is necessary for algebraic consistency under Jacobi identities. The set (4.29) completes the
algebra displayed in Section 2.1, namely, the DFR-extended algebra. With this algebra in
mind, we can generalize the expression for the total angular momentum, equations (4.25)
and (4.26).

The framework constructed above permits consistently to write [94, 95]

Mµν = Xµp̂ν −Xν p̂µ − θ̂µσπ̂ ν
σ + θ̂νσπ̂ µ

σ (4.30)

and consider this object as the generator of the Lorentz group, since it does not only close
itself in the appropriate algebra

[Mµν ,Mρσ] = iηµσMρν − iηνσMρµ − iηµρMσν + iηνρMσµ, (4.31)

but it generates the expected Lorentz transformations on the Hilbert space operators.
Actually, for δA = i[A,G2], with G2 = 1

2ωµνM
µν , we have that,

δx̂µ = ωµν x̂
ν , δXµ = ωµνXν , δp̂µ = ω ν

µ p̂ν , δθ̂µν = ωµρθ̂
ρν + ωνρθ̂

µρ,

δπ̂µν = ω ρ
µ π̂ρν + ω ρ

ν π̂µρ, δMµν = ωµρMρν + ωνρMµρ, (4.32)

which in principle should guarantee the Lorentz invariance of a consistent theory. We
observe that this construction is possible because of the introduction of the canonical pair
θ̂µν , π̂µν as independent variables. This pair allows the building of an object like Mµν

in (4.30), which generates the transformations given just above dynamically [76] and not
merely by taking into account the algebraic index content of the variables.
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From the symmetry structure given above, we realize that actually the Lorentz genera-
tor (4.30) can be written as the sum of two commuting objects,

Mµν = Mµν
1 + Mµν

2 , (4.33)

where
Mµν

1 = Xµp̂ν −Xν p̂µ and Mµν
2 = −θ̂µσπ̂ ν

σ + θ̂νσπ̂ µ
σ , (4.34)

as in the usual addition of angular momenta. Of course both operators have to satisfy the
Lorentz algebra. It is possible to find convenient representations that reproduce (4.32).
In the sector H1 of H = H1 ⊗H2 associated with (X, p̂), it can be used the usual 4× 4
matrix representation D1(Λ) = (Λµ

α), such that, for instance

X′µ = Λµ
νXν . (4.35)

For the sector of H2 relative to (θ̂, π̂), it is possible to use the 6× 6 antisymmetric product
representation

D2(Λ) =
(
Λ[µ

αΛν]
β

)
, (4.36)

such that, for instance,
θ̂′µν = Λ[µ

αΛν]
β θ̂

αβ. (4.37)

The complete representation is given by D = D1 ⊕D2. In the infinitesimal case, Λµ
ν =

δµν + ωµν , and (4.32) are reproduced. There are four Casimir invariant operators in this
context and they are given by

Cj1 = Mj
µνMjµν and Cj2 = εµνρσMj

µνMj
ρσ, (4.38)

where j = 1, 2. We note that although the target space has 10 = 4 + 6 dimensions,
the symmetry group has only 6 independent parameters and not the 45 independent
parameters of the Lorentz group in D = 10. As we said before, this D = 10 spacetime
comprises the four spacetime coordinates and the six θ̂ coordinates.

Analyzing the Lorentz symmetry in NCQM following the lines above, permits us to
construct the irreducible representations of this symmetry and introduce an appropriate
theory, for instance, a scalar or fermion action. We know, however, that the elementary
particles are classified according to the eigenvalues of the Casimir operators of the inho-
mogeneous Lorentz group. Hence, let us extend this approach to the Poincaré group P.
By considering the operators presented here, we can in principle consider

G3 = 1
2ωµνM

µν − aµp̂µ + 1
2bµν π̂

µν (4.39)

as the generator of some group P′, which has the Poincaré group as a subgroup. By
following the same rule as the one used in the obtainment of (4.32), were G2 was replaced
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by G3, we can arrive at the set of transformations

δXµ = ωµνXν + aµ, δp̂µ = ω ν
µ p̂ν , δθ̂µν = ωµρθ̂

ρν + ωνρθ̂
µρ + bµν ,

δπ̂µν = ω ρ
µ π̂ρν + ω ρ

ν π̂µρ, δMµν
1 = ωµρM

ρν
1 + ωνρM

µρ
1 + aµp̂ν − aν p̂µ,

δMµν
2 = ωµρM

ρν
2 + ωνρM2

µρ + bµρπ̂ ν
ρ + bνρπ̂µρ, δx̂µ = ωµν x̂

ν + aµ + 1
2b

µν p̂ν . (4.40)

We observe that there is an unexpected term in the last one of (4.40) system. This is
a consequence of the coordinate operator in (4.18), which is a nonlinear combination of
operators that act on H1 and H2.

The action of P′ over the Hilbert space operators is in some sense equal to the action
of the Poincaré group with an additional translation operation on the (θ̂µν) sector. All
its generators close in an algebra under commutation, so P′ is a well defined group of
transformations. As a matter of fact, the commutation of two transformations closes in
the algebra

[δ2, δ1]y = δ3y, (4.41)

where y represents any one of the operators appearing in (4.40). The parameters composi-
tion rule is given by

ωµ3ν = ωµ1αω
α
2ν − ω

µ
2αω

α
1ν , aµ3 = ωµ1νa

ν
2 − ω

µ
2νa

ν
1,

bµν3 = ωµ1ρb
ρν
2 − ω

µ
2ρb

ρν
1 − ων1ρb

ρµ
2 + ων2ρb

ρµ
1 . (4.42)

4.3 The DFR-extended Harmonic Oscillator

In [78] the authors have analyzed an harmonic oscillator constructed in a DFR-extended
[77] phase-space. The generalized Hamiltonian is given by

H = π2

2Λ + p2

2m + V (xi, pi, θij, πij) , (4.43)

where Λ is a parameter with (length)−3 dimension and the potential V is a function of
DFR-extended variables. Let us define the following symplectic variables ξi as being
(xi, pi, θij, πij).

We can write the generalized Poisson bracket for this system in a compact and
symplectic form as

{F,G} =
{
ξi, ξj

} ∂F
∂ξi

∂G

∂ξj
, (4.44)

where we are using the sum rule for repeated indices.
Hence, following (4.44) the equations of motion for (xi, pi, θij, πij) are given by
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ẋi = θij
∂V

∂xj
+
(
∂V

∂pi
+ pi

m

)
+
(
πji

Λ + ∂V

∂πji

)
pj (4.45)

ṗi = −∂ V
∂ xi

(4.46)

θ̇ij = 2
Λπ

ij + 2 ∂ V
∂ πij

(4.47)

π̇ij = − 2 ∂ V

∂ θij
+ ∂ V

∂ xi
pj (4.48)

and it can be seen clearly that when πij = 0 (namely, when the phase-space is (x, p, θ)) the
first consequence is that the potential V will not be a function of πij and to construct Eq.
(4.48) makes no sense. The second consequence is that, from Eq. (4.47), when πij = 0 we
have that θij =const., and therefore the Lorentz invariance is lost and we have a canonical
NCy. Let us continue with a specific construction for the potential V , for example.

In [77] an isotropic NC harmonic oscillator (NCHO) was constructed in a D = 9
DFR-extended phase-space. The extended potential was given by

V (xi, pi, θij, πij) = 1
2mω

2
(
xi + 1

2θ
ijpj

)2
+ 1

2ΛΩ2θ2 (4.49)

and the extended Hamiltonian can be written as

H = 1
2Λπ

2 + 1
2mp2 + 1

2mω
2
(
xi + 1

2θ
ijpj

)2
+ 1

2ΛΩ2θ2 . (4.50)

Consequently, the equations of motion are

ẋi = 1
2θ

ij
(
mω2xj + 1

2mω
2θjlp

l
)

+ pi

m
+ πij

Λ pj , (4.51)

ṗi = −mω2xi −
1
2mω

2θij p
j , (4.52)

θ̇ij = 2
Λπ

ij , (4.53)

π̇ij = − 2 ΛΩ2θij . (4.54)

In a naive way, it should be possible that we could understand that when πij = 0 it
would be easy to conclude that the resulting phase-space would be given by the DFR
one. However, as we mentioned before when we have analyzed the equations of motion
for θij and πij in Eqs. (4.47) and (4.48) respectively, we can see that θij = const.. If
πij = 0 in (4.53) we can see clearly that θij = const.. If we construct a Hamiltonian
independent of πij it does not make sense to construct Eqs. (4.48) and (4.54). Substituting
these values in Eqs. (4.51) and (4.52) we recover the canonical NCy and not the DFR
NCy approach. Consequently we can conclude that the DFR-extended and pure DFR
formalisms are both connected to the canonical NCy via πij and not only via the nature
of θij. Namely, to carry out a dimensional reduction of the phase-space (doing πij = 0)
means that θij loses automatically its variable parameter identity and becomes again a
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constant parameter. Hence, the phase-space dimensional reduction would be represented
by (xi, pi, θij, πij) −→ (xi, pi) where θij is only a constant parameter, the result of the
operatorial bracket between x’s. The Lorentz invariance is lost and the NCy is the canonical
one.

So, concerning the original DFR formalism, although in general, the momentum πij

may not be relevant, we understand that the momentum associated to θij is necessary. As
a matter of fact, it would be natural and direct to construct this object since θij, in DFR
phase-space, is a coordinate and must have an associated momentum. However, what is
new, in our point of view, is to connect the existence of πij with the kind of the NCy or,
in other words, if the NCy is DFR-extended or canonical.

This result make us think that, if we consider, for example, QFT’s systems embedded
in a NC spacetime, the implications are even more serious because the existence of a
θµν-variable NC parameter recovers the Lorentz invariance of the NC theory. But, the
relevance of πµν = 0 is the fact that it brings back a constant θµν , and hence we have the
Lorentz invariance violated. So, the connection between both objects (θµν and πµν) is a
connection between Lorentz invariant or non-invariant NC theories. Besides, we will see
that the momenta πµν allow us to construct the commutation relations for the scalar field
in DFR phase-space.

Back to Eqs. (4.51)-(4.54) we can see that, in this specific example that, from Eq.
(4.53), if θ =const. =⇒ π = 0 and Eq. (4.54) makes no sense at all. Hence, we have the
inverse condition, i.e., θ =const. =⇒ π = 0, which is the inverse of π = 0 =⇒ θ =const..
Let us see another example, the NC relativistic particle to reinforce these claims above.

4.4 The NC Relativistic Particle

In [96], the author proposed that the cure for the lack of relativistic invariance for NC
models is to modify the constant feature of the NC parameter. Consequently, he has
analyzed the NC version for D-dimensional relativistic particle with a θ-variable phase-space
and a π-momentum.

Since we are interested in the dynamics of the phase-space, we have calculated the
equations of motion and the NC relativistic acceleration in order to discuss the θconst. =⇒
θvariable duality and its consequence. We will see that although the algebra is not the
DFR one the consequences of the duality are kept, namely, if we have a θ-variable the
phase-space must have the π-momentum (the DFR-momentum).

4.4.1 Noncommutative Relativistic Free Particle

In this section, since we are interested in the DFR features that exist in the analyzed
model, we will mention only the relavant points and more details can be found in [96].
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The Lagrangian of NC free relativistic particle is

S =
∫
dτ
[
ẋµvµ −

e

2
(
v2 −m2

)
+ 1
θ2 v̇µθ

µνvν

]
. (4.55)

where θ2 ≡ θµνθµν , η = (+,−, ...,−), and pµ, πµ, pe, p
µν
θ are the conjugate momenta

associated to xµ(τ), vµ(τ), e(τ) and θµν(τ), respectively. We will use the fundamental
algebra [96] defined by

{xµ, xν} = − 2
θ2 θ

µ
ν , {xµ, pν} = δµν , {vµ, πν} = δµν (4.56)

{xµ, vν} = δµν , {xµ, πν} = − 1
θ2 θ

µν , {θµν , pρσθ } = −δ[ρ
µ δ

σ]
ν

{xµ, pρσθ } = −{πµ, pρσθ } = 1
θ2η

ν[ρvσ] − 4
θ4 (θv)µθρσ.

This system is singular and has the following primary constraints

Gµ = pµ − vµ (4.57)

T µ = πµ − 1
θ2 θ

µνvν (4.58)

pµνθ = 0 (4.59)

pe = 0 (4.60)

and we can write the total Hamiltonian as being

H = e

2
(
v2 −m2

)
+ λ1µG

µ + λ2µT
µ + λepe + λθµνp

µν
θ . (4.61)

where the λ’s are the Lagrange multipliers. Using the time consistency we have the
secondary constraint

K ≡ v2 −m2 = 0 (4.62)

and other relations that allow us to determine the Lagrange multipliers

Ġµ = {Gµ, H} = 0 =⇒ λµ2 = 0 (4.63)

Ṫ µ = {T µ, H} = 0 =⇒ λµ1 = evµ + 2
θ2 (λθv)µ − 4

θ4 (θλθ) (θv)µ . (4.64)

If we substitute the fixed Lagrange multipliers into the Hamiltonian we have that

H = e

2
(
p2 −m2

)
+
(
evµ + 2

θ2 (λθv)µ − 4
θ4 (θλθ) (θv)µ

)
(pµ − vµ)+λepe+λθµνp

µν
θ (4.65)

and it can be seen we were left with two undetermined Lagrange multipliers.
In the same way as we have carried out to construct Eq. (4.44) we will define the

following symplectic variables
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ξµ ≡ (xµ, pµ)

ζµ ≡ (vµ, πµ)

χµ ≡ (e, pe)

Ωµν ≡ (θµν , pθµν) (4.66)

We can write the Poisson brackets for this system in a compact and symplectic form as
follow

{F,G} = {ξµ, ξν} ∂F
∂ξµ

∂G

∂ξν
+ {ζµ, ζν} ∂F

∂ζµ
∂G

∂ζν

+ {χµ, χν} ∂F
∂χµ

∂G

∂χν
+ {Ωµν ,Ωρσ} ∂F

∂Ωµν

∂G

∂Ωρσ
. (4.67)

According to the (4.67) we obtain the following equation of motion for xµ and pµ

ẋµ = {xµ, H}

= {xα, pβ}
∂xµ

∂xα
∂H

∂pβ
+ {pβ, xα}

∂xµ

∂pβ

∂H

∂xα
+
{
xα, xβ

} ∂xµ
∂xα

∂H

∂xβ

+ {xα, pθρσ}
∂xµ

∂xα
∂H

∂pθρσ
+ {pθρσ, xα}

∂xµ

∂pθρσ

∂H

∂xα
(4.68)

⇒ ẋµ = epµ + 2
θ2 (λθv)µ − 4

θ4 (θλθ) (θv)µ (4.69)

and for pµ we have that

ṗµ = {pµ, H}

= {xα, pβ}
∂pµ

∂xα
∂H

∂pβ
+ {pβ, xα}

∂pµ

∂pβ

∂H

∂xα

⇒ ṗµ = 0 (4.70)

Analogously, we can compute the equations of motion for the other variables, namely,

θ̇µν = − 2λµνθ (4.71)

v̇µ = 0 (4.72)

ė = λe (4.73)

ṗe = − v · p + 1
2(v2 + m2) (4.74)

π̇µ = 4
θ4 (θλθ) (θ v)µ − 1

θ2η
µ[ρvσ] λθρσ (4.75)

ṗµνθ = 8
θ4

[
θµν

θ2 (θλθ)(θv)σpσ − λµνθ (θv)σpσ − θµν(λθv)σpσ + 1
2(θλθ)v[µpν]

]
.(4.76)
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Finally, in the same way we can calculate the acceleration in this NC phase-space, namely,
ẍµ = {ẋµ, H}, which brings us the result

ẍµ = 8
θ4

[
(θλθ) (λθv)µ − 4

θ2 (θλθ)2 (θv)µ + λ2(θv)µ − (θλθ)(λθv)µ
]

(4.77)

where λ2 = λθµνλ
µν
θ . This last result is very interesting since the equation of motion

(4.71) shows us that if we have that θ = const., we have that λθ = 0. In this way we will
not have pθ in the Hamiltonian written in (4.65). However, we can easily see from Eq.
(4.76) that we have that λθ = 0 =⇒ ṗθ = 0 =⇒ pθ = const., but the important fact is
that the phase-space for the Hamiltonian in Eq. (4.65) will not have pθ. Hence, although
the algebra in Eq. (4.56) is not a DFR∗ one, the scenario is the same, namely, if θ is not
constant, the NC phase-space contains pθ, if θ is constant, we do not have pθ within the
phase-space. Notice that although the λ’s are auxiliary variables in order to construct the
total Hamiltonian, they are connected to the momenta, by construction of the constraints
formalism.

We can also notice that if θ = const. in Eq. (4.77), the acceleration is zero. This is
an interesting result since we do not have any time derivative of θ in Eq. (4.77) but this
result is a consequence of the zeroness of λθ. However, the time derivative of xµ in Eq.
(4.68) is not zero when λθ = 0 neither it is constant since e(τ) is variable (pµ is constant
since ṗµ = 0).

4.5 Quantum NC scalar field theory

In this section we will construct the first basic step of a QFT with the phase-space
definitions established in the previous sections. Since we have shown that the DFR and
DFR-extended phase-space are in fact the same, we will use the name DFR to define the
formalism embedded in the complete phase-space (x, p, θ, π).

In a series of papers [97, 98, 99], the authors have shown that the construction of the
commutation relations between the bosonic/fermionic fields with themselves and with its
associated momenta are missing. It is our intention in this section to fill this gap. In other
words, we will demonstrate precisely the basic commutation relations using only the DFR
elements. The fermionic construction is an ongoing research that will be published in a
near future.

In some papers that considers the DFR formalism or a kind of it, such as [69, 70, 73,
74, 75, 96, 72, 100] for example, we can find this basic step in an indirect way where the
associated momenta are not defined. The quantity used to construct the scalar field, that
was used to associate with the variable θ, is a scalar quantity with no definition at all. As
a consequence we now know that this last object is in fact the momenta associated with
the NC parameter and this fact allows us to work with a well defined phase-space, the
DFR one.
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After the considerations given above, we can complement (clarify) [70, 75] by cons-
tructing the Fourier transform, so we can write a map between a member of the operator
algebra and an ordinary function

f̂(x̂, θ̂) =
∫ d4p

(2π)4
d6π

(2π)6 e
−i(p·x̂+π·θ̂) f̃(p, π) , (4.78)

The Fourier transform f̃ is defined by the trace calculus

f̃(p, π) = Tr
[
ei(p·x̂+π·θ̂) f̂(x̂, θ̂)

]
=
∫
d4x d6θ ei(p·x+π·θ) f(x, θ) , (4.79)

where p · x̂ = pµx̂
µ and π · θ̂ = 1

2 πµν θ̂
µν ( the 1/2 factor avoids the sum over repeated

terms), f(x, θ) is the correspondent function to the operator f̂(x̂, θ̂), and the integration
measures are

d6π = dπ01 dπ02 dπ03 dπ12 dπ13 dπ23 ,

d6θ = dθ01dθ02dθ03dθ12dθ13dθ23 . (4.80)

The details about θ and π are described in [85]. But notice that in [85] (and references
therein), θ-variable and π are not necessarily connected as we have discussed so far. It is
important to say that we have clarified the one other main point treated in [70] and [75].
In these last ones, the objects were described with a not well defined quantity coupled to
θµν . Here we have demonstrated precisely that this quantity is the momentum π which
completes the DFR phase-space.

Since Eqs. (4.11), (4.12) and (4.13) closes the extended DFR algebra, we can use
the fact that the momentum πµν makes part of the NC phase-space, let us construct the
operator field in this DFR algebra in Weyl representation [75]

φ̂(x̂, θ̂) =
∫ d4p

(2π)4
d6π

(2π)6 φ̃(p, π) ei(p·x̂+π·θ̂) , (4.81)

where φ̃(p, π) is the Fourier transform of φ̂(x̂, θ̂) and d6π is a Lorentz invariant measure
given above. Notice that the difference between the issues explored here and in [75] is that
now we know that the phase-space is described by (x, p, θ, π).

In order to obtain a Fourier representation of a scalar φ from operator φ̂, let us make
the diagonalization operation [75]

φ(x, θ) = 〈X, θ| φ̂(x̂, θ̂) |X, θ〉 =
∫ d4p

(2π)4
d6π

(2π)6 φ̃(p, π) ei(p·x+π·θ) , (4.82)

where we have used that p ·X = p · x.
The Lagrangian density of a real spin-0 field φ with mass m can be written as [85]

L = 1
2 ∂µφ ? ∂

µφ + λ2

4 ∂µνφ ? ∂
µνφ − 1

2 m
2 φ ? φ , (4.83)
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where ∂µν := ∂
∂θµν

, and λ is a parameter with dimension of length, as the Planck length
which was introduced here due to dimensional needs. It is important to remember that
when the Lagrangian (4.83) is integrated throughout DFR space-time, the Moyal product
in the quadratic terms reduces to usual product. Therefore, the action from (4.83) gives
us the Klein-Gordon equation (

2 + λ22θ + m2
)
φ = 0 , (4.84)

where 2= ∂µ∂
µ and 2θ = 1

2 ∂µν∂
µν is the four- and six-dimensional Laplace operators,

respectively. The canonical conjugate momentum associated to φ is given by

π(x, θ) = ∂L

∂φ̇(x, θ)
= φ̇(x, θ) , (4.85)

and this result leads us to the Hamiltonian density

H = 1
2 π(x, θ) ? π(x, θ) + 1

2 ∇φ(x, θ) ?∇φ(x, θ)

+ λ2

2 ∇θφ(x, θ) ?∇θφ(x, θ) + 1
2 m

2φ(x, θ) ? φ(x, θ) , (4.86)

where ∇θ = 1
2 ∂

ij . The conserved field energy is defined by the integral of the Hamiltonian
density in the space (x, θ)

H =
∫
d3x d6θ

1
2

[
π2(x, θ) + (∇φ(x, θ))2 + λ2

(
∇θΦ̂(x, θ)

)2
+ m2 φ2(x, θ)

]
. (4.87)

In [75] the author has written an incomplete φ̂(x, θ) using the Weyl representation.
We say incomplete because now we know that θµν has an associated momentum given by
πµν . In this way now we can expand the field φ(x, θ) with respect to a basis. Let us use
the set of plane waves such as

up,π(x, θ) = Np,π e
i (p·x+π·θ) , (4.88)

which means that we can write the Fourier modes as

φ(x, θ, t) =
∫
d3p d6π Np,π e

i(p·x+π·θ) ap,π(t) , (4.89)

where Np,π is a normalization constant. If we substitute Eq. (4.89) into (4.84) we will
have the following equation of motion

äp,π(t) + ω 2
p,π ap,π(t) = 0 , (4.90)

which has a general solution given by

ap,π(t) = a(1)
p,π e

−iωp,πt + a(2)
p,π e

iωp,πt , (4.91)
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and the dispersion relation is

ωp,π =
√

p 2 + λ2

2 π2 + m2 , (4.92)

and from (4.91) we can easily see that a(1)
p,π and a(2)

p,π are constants in time. The real-valued
feature of the classical field shows us that, of course, the operator is hermitian, hence,

(
a(1)

p,π

)†
= a

(2)
−p,−π , (4.93)

which is a standard constraint. One can ask if the field quanta will obey a kind of
Bose-Einstein statistics in this NC phase-space. For now, we will associate ap,π and a†p,π
with annihilation and creation operators, respectively, in DFR formalism. Therefore, the
field φ in (4.89) is promoted to the field-operator Φ̂ expanded in this basis as

Φ̂(x, θ, t) =
∫
d3p d6π Np,π

[
âp,π e

i(p·x+π·θ−ωp,πt) + â†p,π e
−i(p·x+π·θ−ωp,πt)

]
. (4.94)

Thus we construct the conjugate momentum operator Π̂, that is, Π̂(x, θ, t) = ˙̂Φ(x, θ, t),
so we have that

Π̂(x, θ, t) =
∫
d3p d6π Np,π (−iωp,π)

[
âp,π e

i(p·x+π·θ−ωp,πt) − â†p,π e
−i(p·x+π·θ−ωp,πt)

]
. (4.95)

The free field can be expanded in terms of creation and annihilation operators, namely,

[
âp,π , â

†
p′,π′

]
= δ3(p− p′) δ6(π − π′) , (4.96)

[
âp,π , âp′,π′

]
=
[
â†p,π , â

†
p′,π′

]
= 0 . (4.97)

We can construct the Moyal commutation relation between two field-operators in equal
times as [

Φ̂(x, θ, t) , Φ̂(x′ , θ′, t)
]
?

:= Φ̂(x, θ, t) ? Φ̂(x′, θ′, t)− Φ̂(x′, θ′, t) ? Φ̂(x, θ, t)(4.98)

and substituting Eq. (4.94) in Eq. (4.98), and using relations (4.96) and (4.97), we obtain
[
Φ̂(x, θ, t), Φ̂(x′, θ′, t)

]
?

=
∫
d 9P

∫
d 9P ′Np,πNp′,π′ (−2i) sin

(
p ∧ p′

2

)
×

× [ âp,π âp′,π′ e
i(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′) − â†p′,π′ âp,π e

i(p·x−ωp,π t−p′·x′+ωp′,π′ t+π·θ−π′·θ′)

− â†p,π âp′,π′ e
−i(p·x−ωp,π t−p′·x′+ωp′,π′ t+π·θ−π′·θ′) + â†p,π â

†
p′,π′ e

−i(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′)] ,

(4.99)

where d9P := d3p d6π, and we have defined the product p ∧ p′ = θµνpµ p
′
ν . With the help

of the previous calculus, the Moyal-commutation relation between field operator Φ̂ and
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momenta Π̂ is given by[
Φ̂(x, θ, t), Π̂(x′, θ′ , t)

]
?
=
∫
d 9P N 2

p,π (iωp,π)
[
eip·(x−x′)+iπ·(θ−θ′) + e−ip·(x−x′)−iπ·(θ−θ′)

]
+
∫
d 9P

∫
d 9P ′Np,πNp′,π′ (iωp′,π′) (2i) sin

(
p ∧ p′

2

)
×

×[ âp,π âp′,π′ e
i(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′) + â†p′,π′ âp,π e

i(p·x−ωp,π t−p′·x′+ωp′,π′ t+π·θ−π′·θ′)

− â†p,π âp′,π′ e
−i(p·x−ωp,π t−p′·x′+ωp′,π′ t+π·θ−π′·θ′) + â†p,π â

†
p′,π′ e

−i(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′) ] .

(4.100)

If we choose the normalization constant

Np,π = 1√
2 (2π)9 ωp,π

, (4.101)

the result in (4.100) is simplified as

[
Φ̂(x, θ, t), Π̂(x′, θ′ , t)

]
?

= i δ3 (x− x′) δ6 (θ − θ′)−
∫ d 9P d 9P ′

(2π)9

√
ωp′,π′

ωp,π
sin

(
p ∧ p′

2

)
×

×[ âp,π âp′,π′ e
i(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′) + â†p′,π′ âp,π e

i(p·x−ωp,π t−p′·x′+ωp′,π′ t+π·θ−π′·θ′)

− â†p,π âp′,π′ e
−i(p·x−ωp,π t−p′·x′+ωp′,π′ t+π·θ−π′·θ′) + â†p,π â

†
p′,π′ e

−i(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′)] ,

(4.102)

which is the opposite direction followed in [85] where the delta functions are assumed to
have the form obtained before. For end, we have the commutation relation involving the
momentum operators[

Π̂(x, θ, t), Π̂(x′, θ′ , t)
]
?

=
∫
d 9P

∫
d 9P ′Np,πNp′,π′ (−iωp,π) (−iωp′,π′) ×

× (−2i) sin
(
p ∧ p′

2

)
[ âp,π âp′,π′ e

i(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′) +

+ â†p′,π′ âp,π e
i(p·x−ωp,π t−p′·x′+ωp′,π′ t+π·θ−π′·θ′)

− â†p,π âp′,π′ e
−i(p·x−ωp,π t−p′·x′+ωp′,π′ t+π·θ−π′·θ′)

+ â†p,π â
†
p′,π′ e

−i(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′) ] . (4.103)

Notice that what we have done here was to demonstrate the canonical commutation
relations using the field operators constructed with DFR phase-space definitions. These
canonical relations involving the Moyal-product do not close to the usual case, in which
we have obtained combinations between creation and annihilation operators. It is clear
that in the commutative limit, these terms involving â and â† go to zero naturally. If we
use the vacuum properties of the operators â and â†, that is, we define a vacuum state |0〉,
such that âp,π|0〉 = 0, so the expected value of the previous commutators in the vacuum
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state are given by

〈0|
[
Φ̂(x, θ, t), Φ̂(x′, θ′, t)

]
?
|0〉 = 0 ,

〈0|
[
Φ̂(x, θ, t), Π̂(x′, θ′, t)

]
?
|0〉 = i δ3 (x− x′) δ6 (θ − θ′) ,

〈0|
[
Π̂(x, θ, t), Π̂(x′, θ′, t)

]
?
|0〉 = 0 . (4.104)

We can see that the result in (4.103) corroborates the construction of the operator in Eq.
(4.8) with a convenient normalization choice and obeying the commutation operators. We
believe that this formalism completes the ones depicted in [75] and [70] since in the first
one the existence of a NC six-dimensional phase-space is missing since we have shown
that the existence of a momentum is connected to Lorentz invariance. Concerning [85],
the path here was different since we have demonstrated that the field operator in a NC
space-time can be written in terms of plane waves as

up,π(x, θ) = e−i(p·x+π·θ)√
2 (2π)9 ωp,π

, (4.105)

when we substitute Eq. (4.105) in the Fourier expansion in Eq. (4.94), and the same can
accomplished for Π̂.

We can apply the quantization to the field energy (4.87), so the quantized Hamiltonian
operator is given by

Ĥ =
∫
d3x d6θ

1
2

[
Π̂2(x, θ, t) + (∇Φ̂(x, θ, t))2 + (λ∇θΦ̂(x, θ, t))2 + m2 Φ̂2(x, θ, t)

]
.

(4.106)
Using the plane wave expansion of the operators Φ̂ and Π̂, the quantized energy in terms
of the creation and annihilation operators is given by

Ĥ =
∫
d3p d6π ωp,π

(
a†p,π ap,π + 1

2

)
, (4.107)

so that we can obtain the vacuum energy E0

E0 = 〈0|Ĥ|0〉 =
∫
d3p d6π

1
2 ωp,π . (4.108)

We can use the Hamiltonian operator (4.107), and the operators (4.94) and (4.95) to
calculate the Hamilton’s equations of motion as

˙̂Φ(x, θ, t) = −i
[

Φ̂(x, θ, t), Ĥ
]

= Π̂(x, θ, t) , (4.109)

and
˙̂Π = −i

[
Π̂(x, θ, t), Ĥ

]
=
(
∇2 + λ2∇2

θ − m2
)

Φ̂(x, θ, t) , (4.110)

where we have used the integration by parts when necessary. Notice that, using Eqs.
(4.109) and (4.110), we can construct the NC Klein-Gordon equation

¨̂Φ(x, θ, t) =
(
∇2 + λ2∇2

θ − m2
)

Φ̂(x, θ, t) , (4.111)
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which shows clearly a different path from [75] since the author did not consider the
existence of a canonical momentum.
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5 Soldering formalism in noncommutative spacetime

5.1 The canonical soldering formalism

The basic idea of the soldering procedure is to raise a global Noether symmetry of the
self and anti-self dual constituents into a local one, but for an effective composite system,
consisting of the dual components and an interference term. The objective in [33] is to
systematize the procedure like an algorithm and, consequently, to define the soldered
action.

An iterative Noether procedure was adopted to lift the global symmetries to the local
ones. Therefore, assume that the symmetries in question are being described by the local
actions S±(φη±), invariant under a global multi-parametric transformation

δφη± = αη , (5.1)

where η represents the tensorial character of the basic fields in the dual actions S± and, for
notational simplicity, will be dropped from now on. Here the ± subscript is referring to
the opposite/complementary aspects of two models at hand, for instance, φ+ may refer to
a left chiral field and φ− to a field with right chirality. As it is well known, we can write,

δS± = J± ∂± α , (5.2)

where J± are the Noether currents.
Now, under local transformations these actions will not remain invariant, and Noether

counterterms become necessary to reestablish the invariance, along with appropriate
auxiliary fields B(N), the so-called soldering fields which have no dynamics where the
N superscript is referring to the level of the iteration. This makes a wider range of
gauge-fixing conditions available. In this way, the N -action can be written as,

S±(φ±)(0) → S±(φ±)(N) = S±(φ±)(N−1) −B(N)J
(N)
± . (5.3)

Here J (N)
± are the N−iteration Noether currents. For the self and anti-self dual systems

we have in mind that this iterative gauging procedure is (intentionally) constructed not to
produce invariant actions for any finite number of steps. However, if after N repetitions,
the non-invariant piece ends up being only dependent on the gauging parameters, but not
on the original fields, there will exist the possibility of mutual cancellation if both gauged
version of self and anti-self dual systems are put together. Then, suppose that after N
repetitions we arrive at the following simultaneous conditions,
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δS±(φ±)(N) 6= 0

δSB(φ±) = 0 , (5.4)

with SB being the so-called soldered action

SB(φ±) = S
(N)
+ (φ+) + S

(N)
− (φ−) + Contact Terms, (5.5)

and the "Contact Terms" being generally quadratic functions of the soldering fields. Then
we can immediately identify the (soldering) interference term as,

Sint = Contact Terms−
∑
N

B(N)J
(N)
± . (5.6)

Incidentally, these auxiliary fields B(N) may be eliminated, for instance, through theirs
equations of motion, from the resulting effective action, in favor of the physically relevant
degrees of freedom. It is important to notice that after the elimination of the soldering
fields, the resulting effective action will not depend on either self or anti-self dual fields φ±
but only in some collective field, say Φ, defined in terms of the original ones in a (Noether)
invariant way

SB(φ±)→ Seff (Φ) . (5.7)

Analyzing in terms of the classical degrees of freedom, it is obvious that we have now a
theory with bigger symmetry groups. Once such effective action has been established, the
physical consequences of the soldering are readily obtained by simple inspection.

5.2 The NC extension of Minkowski spacetime

As we have seen before, the commutative spacetime is characterized by the canonical
Heisenberg commutation relations[

X̂µ, X̂ν
]

= 0,
[
X̂µ, P̂ν

]
= iδµν ,

[
P̂µ, P̂ν

]
= 0 (5.8)

where µ, ν = 0, 1, 2, 3. In order to introduce the k-deformed Minkowski spacetime we have
[32]

x̂0 = X̂0 − 1
k

[
X̂i, P̂j

]
+
, x̂i = X̂i + A ηijP̂j exp(2

k
P̂0) (5.9)

where
[
Ô1, Ô2

]
+
≡ 1

2(Ô1Ô2 + Ô2Ô1), ηµν ≡ diag(1,−1,−1,−1), i, j = 1, 2, 3 and A is an
arbitrary constant. The NC parameter k has mass dimension and it is real and positive.
The Casimir operator of the k-deformed Poincaré’s algebra is

Ĉ1 =
(

2ksinh p̂0

2k

)2

− p̂2
i , (5.10)
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and for the momentum operators we have

p̂0 = 2k sinh−1 P̂0

2k , p̂i = P̂i. (5.11)

With these last results we can construct our NC phase-space (x̂µ, p̂ν)[
x̂0, x̂j

]
= i

k
x̂j,

[
x̂i, x̂j

]
= 0, [p̂µ, p̂ν ] = 0,

[
x̂i, p̂j

]
= iδij (5.12)

[
x̂0, p̂0

]
= i

(
cosh p̂0

2k

)−1

,
[
x̂0, p̂i

]
= − i

k
p̂i,

[
x̂i, p̂0

]
= 0 (5.13)

which satisfies the Jacobi identity. It is easy to see that when k → ∞ we recover the
commutative phase-space in Eq.(5.8).

The Casimir operator described above in Eq.(5.10) can now be written in the standard
way

Ĉ1 = P̂2
0 − P̂2

i (5.14)

It’s easy to see that this selection coincides with the ones in Eq.(5.8).
In the case that p̂µ has standard forms like

p̂0 = −i ∂
∂t
, p̂i = −i ∂

∂xi
, (5.15)

so that the operator P̂0 then reads

P̂0 = −2ik
(
sin 1

2k
∂

∂t

)
. (5.16)

In [32] the authors introduced a proper time τ through the operator

P̂0 ≡ −i
∂

∂τ
(5.17)

and using Eqs.(5.16) and (5.17) we have that

2k
(
sin 1

2k
d

dt

)
τ = 1 (5.18)

to which the solution is
τ = t+

+∞∑
n=0

c−n exp(−2knπt) (5.19)

where n ≥ 0, n ∈ N. The coefficients c−n are arbitrary real constants. This property
implies a kind of temporal fuzziness coherent in the k-Minkowski spacetime. Notice that
as k →∞, the proper time turns back to the ordinary time variable.

To construct a NC extension of Minkowski spacetime (τ, xi)(where the NC feature is
inside the proper time), let us define a twisted t-coordinate, such that the metric is

g00 = τ̇ 2 =
[
1− 2kπ

+∞∑
n=0

nc−n exp(−2knπt)
]2

g11 = g22 = g33 = −1. (5.20)
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So, we can using Eq.(5.20), construct NC models in the commutative framework. Namely,
we construct a Lagrangian theory for NC model in the extended framework of the Minkowski
spacetime. We will now perform the soldering formalism treatment of some NC Bosonized
Chiral Schwinger models.

5.3 Chiral Schwinger model in terms of chiral bosonization

The Chiral Schwinger model is a 2D (1 spatial dimension + 1 time dimension) Euclidean
quantum electrodynamics with a Dirac fermion. This model exhibits a spontaneous
symmetry breaking of the U(1) symmetry due to a chiral condensate from a pool of
instantons [101]. The photon in this model becomes a massive particle at low temperatures.
This model can be solved exactly and it is used as a toy model for other complex theories.
The bosonization of this theory can be done in several ways that apparently leads to
different bosonized models. But these apparently inequivalent models are related by some
gauge transformations [29]. Here we shall not enter into the details of this equivalence
and just we will discuss the application of the soldering mechanism in the different
forms concerning these chiral models. The Chiral Schwinger model is given by following
generating functional

Z(A) =
∫
DψDψ̄ exp

{
i
∫
d2xLF

}
(5.21)

when

LF = ψ̄γµ[i∂µ + e
√
πAµ(1− γ5)]ψ (5.22)

= iψ̄Rγ
µ∂µψR + ψ̄Lγ

µ(i∂µ + 2e
√
πAµ)ψL. (5.23)

Since the right-handed fermion is decoupled, the integration related to it provides a field-
independent constant and it can be absorbed by the normalization factor. The remaining
path integral can be computed exactly

Z(A) =
∫
DψLDψ̄L exp

[
i
∫
d2x ψ̄Lγ

µ(i∂µ + 2e
√
πAµ)ψL

]
(5.24)

= exp
[
ie2

2

∫
d2xAµ

{
aηµν − (∂µ + ∂̃µ) 1

2
(∂ν + ∂̃ν)

}
Aν

]

where a is the Jackiw-Rajaraman regularization constant which must be a ≥ 1. Because
of the d’ALembertian operator in the denominator, the generating functional (5.24) is
nonlocal but by introducing a scalar field φ(x) it can be rewritten in a local form

Z(A) =
∫
Dφ exp

[
i
∫
d2xLB

]
, (5.25)

where
LB = 1

2(∂µφ)2 + e(ηµν − εµν)∂µφAν + 1
2e

2aAµA
µ. (5.26)

Both Lagrangians (5.24) and (5.26) are equivalent in the sense that both of them lead to
the same generating funcional.
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In the fermionic model the dynamics only comes from the left-handed fermion and the
right-handed one is absent and can be negleted from the beginning. But in the bosonic
counterpart, the field φ(x) contains both left and right-moving components. So the bosonic
model has extra degrees of freedom and it is not suitable for describing the Schwinger
model. For this reason we can eliminate the extra degrees of freedom by imposing the
following "chiral constraint" [102]

Ω(x) ≡ πφ − φ′ ≈ 0, (5.27)

where πφ is the canonical momenta associated to φ(x). The quantum theory that describes
this chiral bosonic model is given by the following generating functional

Zch[A] =
∫
Dφ exp

[
i
∫
d2xLch

]
(5.28)

where

Lch = φ̇φ′ − (φ′)2 + 2eφ′(A0 − A1)− 1
2e

2(A0 − A1)2 + 1
2e

2aAµA
µ. (5.29)

This Lagrangian is a gauged version of the Floreanini and Jackiw’s Lagrangian, L0 =
φ̇φ′ − (φ′)2 [103].

5.4 The soldering of the NC bosonized CSM

On the 2D extended Minkowski spacetime (τ, x) the Lagrangian (5.29) takes the following
action form

Ŝ =
∫
dτdx

∂φ
∂τ

∂φ

∂x
− (∂φ

∂x
)2 + 2e∂φ

∂x
(A0 − A1)− 1

2e
2(A0 − A1)2 (5.30)

+ 1
2e

2aηµνAµAν −
1
4FµνF

µν

,
where the hat symbol "ˆ" again means that the object lives in the extended Minkowski
spacetime.
By the coordinate transformation (5.19) we can rewrite the above action in terms of (t, x)
with explicit NCy,

Ŝ =
∫
dtdx
√
−g

1
τ̇

∂φ

∂t

∂φ

∂x
− (∂φ

∂x
)2 + 2e∂φ

∂x
(A0 − A1)− 1

2e
2(A0 − A1)2

+ 1
2e

2aηµνAµAν + 1
2

(
1
τ̇

∂A1

∂t
− ∂A0

∂x

)2
, (5.31)

where √−g is Jacobian of the transformation and also the non-trivial measure of the
k-deformed Minkowski spacetime. Note that always √−g =| τ̇ | but here we only focus on
the case τ̇ > 0.
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Until here we have considered only left chiral Schwinger model but the bosonization
process gives us both the left and right chiral bosons which depends on the "chiral
constraint" that we have imposed on it. The corresponding Lagrangians for these chiral
models in the extended Minkowski spacetime are given by

L̂+ = φ̇φ′ −
√
−g(φ′)2 +

√
−g{2eφ′(A0 − A1)− 1

2e
2(A0 − A1)2 + 1

2e
2a[(A0)2 − (A1)2]}

+ 1
2√−g (Ȧ1 −

√
−gA′0)2 (5.32)

L̂− = −ρ̇ρ′ −
√
−g(ρ′)2 +

√
−g{2eρ′(A0 − A1)− 1

2e
2(A0 − A1)2 + 1

2e
2b[(A0)2 − (A1)2]}

+ 1
2√−g (Ȧ1 −

√
−gA′0)2. (5.33)

Note that + and − signs are associated to left and right moving chiral bosons, respectively.
These models contain NCy through the proper time τ with the finite NC parameter k. In
the limit k → +∞,√−g = τ̇ = 1 these Lagrangians turn back to theirs ordinary forms on
the Minkowski spacetime.

Now we are ready to sold these two chiral Lagrangians. To accomplish the task we
calculate the variation of Eqs.(5.32) and (5.33) under the following local variations

δφ = η(x) = δρ. (5.34)

In fact we are imposing this local symmetry into these models in order to obtain a gauge
invariant Lagrangian. Under this variation we have

δ(L̂+ + L̂−) = (J+ + J−)δB1 (5.35)

where
J+ = 2φ̇− 2

√
−gφ′ + 2e

√
−g(A0 − A1) (5.36)

and
J− = −2ρ̇− 2

√
−gρ′ + 2e

√
−g(A0 − A1) (5.37)

and B1 is an auxiliary field that its variation can be defined as

δB1 = ∂xη and δB2 = ∂tη. (5.38)

So we must add a counterterm to both original Lagrangians (5.32) and (5.33) to cover the
above extra terms. So

L̂+1 = L̂+ − J+B1 (5.39)

L̂−1 = L̂− − J−B1 (5.40)
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Now let us check the variation of the above Lagrangians

δL̂+1 = −(δJ+)B1 = −(2η̇ − 2
√
−gη′)B1

= −2B1(δB2) + 2
√
−gB1(δB1) (5.41)

δL̂−1 = −(δJ−)B1 = (2η̇ − 2
√
−gη′)B1

= 2B1(δB2) + 2
√
−gB1(δB1). (5.42)

As we can see, it is not zero but the extra terms are independent of original fields. So the
iteration will finish in this second step by adding another counterterm.

Finally we can sold these two Lagrangians in order to construct an invariant one.

Ŵ = L̂+ + L̂− − (J+ + J−)B1 − 2
√
−g(B1)2. (5.43)

We can eliminate the auxiliary field B1 by its equation of motion

δW

δB1
= 0 =⇒ −(J+ + J−)− 4

√
−gB1 = 0⇒ B1 = −1

4√−g (J+ + J−) (5.44)

By substituting Eq.(5.44) into W we find

Ŵ = L̂+ + L̂− + 1
8√−g (J+ + J−)2. (5.45)

Here we define a new field Ψ = φ− ρ. By this definition we can rewrite W in a compact
and nice form

Ŵ = −
√
−g
2 Ψ′2 + 1

2√−g Ψ̇2 + 2eΨ̇(A0 − A1) + 2ξ (5.46)

where ξ is

ξ =
√
−g{1

2e
2(A0 − A1)2 + 1

4e
2(a+ b)[(A0)2 − (A1)2]}+ 1

2√−g (Ȧ1 −
√
−gA′0)2 (5.47)

As the final result, the action (5.46) is not "chiral" theory anymore and it has a bigger
symmetry group than the two initial models. To this aim, we have soldered the two chiral
models and as a consequence we gained an additional term in the final Lagrangian that
was absent initially. One of the peculiar futures of this action is that the electromagnetic
field interacts just with the temporal derivative of soldered field. This peculiarity has its
origin in the noncovariant initial Jackiw-Floreanini Lagrangian. In fact one can decompose
the above action into two distinct ones using the dual projection approach. The result is a
self-dual and a free massive scalar fields.

This mechanism in some sense is analogous to adding a mass term into the Dirac
action. Without this mass term the Dirac equation describes two chiral electrons and by
adding the mass, we have merged these two chiral electrons to obtain the real electron.
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5.5 The soldering of the generalized bosonized CSM

Bassetto et al. [104] have suggested the generalized chiral Schwinger model (GCSM), i.e.,
a vector and axial-vector theory characterized by a parameter which interpolates between
pure vector and chiral Schwinger models. This 2D model is given by the action

Ŝ =
∫

dtdx
[1
2 (∂µφ) (∂µφ) + eAµ (εµν − rηµν) ∂νφ+ 1

2e
2aAµA

µ − 1
4FµνF

µν
]
. (5.48)

The quantity r is a real interpolating parameter between the vector (r = 0) and the chiral
Schwinger models (r = ±1). This action can be rewritten in the extended Minkowski
spacetime

L̂ = 1
2√−g φ̇

2 −
√
−g
2 φ′2 − k1φ̇+ k2φ

′ + ξ (5.49)

where

k1 = e(rA0 + A1) (5.50)

k2 = e
√
−g(A0 + rA1) (5.51)

ξ = 1
2√−g

(
Ȧ1 −

√
−gA′0

)2
+ 1

2e
2a
√
−g

[
(A0)2 − (A1)2

]
. (5.52)

By defining the value of the parameter r in two extreme points ±1 we obtain two chiral
Lagrangians

L̂+ = 1
2√−g φ̇

2 −
√
−g
2 φ′2 − e(A0 + A1)φ̇+ e

√
−g(A0 + A1)φ′

+ 1
2√−g

(
Ȧ1 −

√
−gA′0

)2
+ 1

2ae
2√−g

[
(A0)2 − (A1)2

]
(5.53)

L̂− = 1
2√−g ρ̇

2 −
√
−g
2 ρ′2 − e(−A0 + A1)ρ̇+ e

√
−g(A0 − A1)ρ′

+ 1
2√−g

(
Ȧ1 −

√
−gA′0

)2
+ 1

2be
2√−g

[
(A0)2 − (A1)2

]
(5.54)

where a and b are the Jackiw-Rajaraman coefficients for each chirality, respectively. Here,
by means of iterative Noether embedding procedure, we will transfom both Lagrangians
(5.53) and (5.54) into two embedded Lagrangians which are invariant under transformations
δφ = η(x) and δρ = η(x). After that we will be able to sold these new Lagrangians in order
to yield an invariant one that describes a fermionic system. By varying the Lagrangians
with respect to the variables ∂tΦ and ∂xΦ, (Φ = (φ, ρ)), we obtain the following Noether
currents

J1+ = 1√
−g

φ̇− e(A0 + A1) (5.55)

J2+ = −
√
−g [φ′ − e(A0 + A1)] (5.56)

J1− = 1√
−g

ρ̇+ e(A0 − A1) (5.57)

J2− = −
√
−g [ρ′ − e(A0 − A1)] . (5.58)
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After two soldering iteration steps and adding the counterterms to the original Lagrangians
we find

L̂
(2)
+ = L+ − J1+B1 − J2+B2 + 1

2
√
−g (B1)2 −

√
−g
2 (B2)2 + ξ+ (5.59)

L̂
(2)
− = L− − J1−B1 − J2−B2 + 1

2
√
−g (B1)2 −

√
−g
2 (B2)2 + ξ− (5.60)

where ξ± are non-dynamical terms of L±. The embedding process ends after these two
steps and these Lagrangians are invariant under the desired transformation δφ = η(x)δρ.
Now we can solder them by adding up two Lagrangians Eqs.(5.59) and (5.60)

Ŵ = L̂
(2)
+ + L̂

(2)
− (5.61)

= L̂+ + L̂− − (J1+ + J1−)B1 − (J2+ + J2−)B2 + 1√
−g

(B1)2 −
√
−g(B2)2

To express this Lagrangian just in terms of the original fields, we can eliminate B1 and B2

easily by using their equation of motions, it reads:

B1 =
√
−g
2 (J1+ + J1−) (5.62)

B2 = − 1
2
√
−g (J2+ + J2−). (5.63)

After substituting these results into W, defining a new field Ψ = φ − ρ and set the
Jackiw-Rajaraman coefficients a = 1 = b, for simplicity, we can write that

Ŵ = 1
4√−g Ψ̇2 −

√
−g
4 Ψ′2 − eA0Ψ̇ + eA1

√
−gΨ′

+ 1
2√−g

(
Ȧ1 −

√
−gA′0

)2
+ e2√−g

[
(A0)2 − (A1)2

]
. (5.64)

This Lagrangian describes a 2D fermionic system and has a larger symmetry group than
the initial Lagrangians (5.53) and (5.54). As the previous case, the soldering process
included an extra noton term into the original Lagrangians to fuse the chiral states. This
non-dynamical term acquires dynamics upon quantization [33].

5.6 The soldering of the gauge invariant generalized bosonized CSM

In [105], the authors have introduced the Wess-Zumino (WZ) term for the GCSM and
constructed its gauge invariant formulation by adding the WZ term into the Lagrangian
of the model. This gauge invariant model is described by

Ŝ =
∫

dtdx
{1

2 (∂µφ) (∂µφ) + eAµ (εµν − rηµν) ∂νφ+ 1
2e

2aAµA
µ − 1

4FµνF
µν

+1
2
(
a− r2

)
(∂µθ) (∂µθ) + eAµ

[
rεµν +

(
a− r2

)
ηµν

]
∂νθ

}
, (5.65)

where θ(x) is the WZ field. The Lagrangians of left/right moving bosons are given by
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defining the parameter r at its two extreme points ±1

L̂+ = 1
2√−g (φ̇)2 −

√
−g
2 (φ′)2 − b1φ̇+ b1

√
−gφ′ (5.66)

+ b2√
−g

(θ̇)2 − b2
√
−g(θ′)2 + b3θ̇ + b4θ

′ + ξ+

L̂− = 1
2√−g (ρ̇)2 −

√
−g
2 (ρ′)2 − b5ρ̇+ b5

√
−gρ′ (5.67)

+ b′2√
−g

(η̇)2 − b′2
√
−g(η′)2 + b6η̇ + b7η

′ + ξ−

where η is also another WZ field and

b1 ≡ e(A0 + A1), b2 ≡
a− 1

2 , b′2 ≡
b− 1

2 , b3 ≡ e [A0(a− 1)− A1]

b4 ≡ e
√
−g [A0 − A1(a− 1)] , b5 ≡ e(A0 − A1),

b6 ≡ e [A0(b− 1) + A1] , b7 ≡ e
√
−g [−A0 − A1(b− 1)]

ξ± ≡
1

2√−g (Ȧ1)2 −
√
−g
2 (A′0)2 +

√
−g
2 e2 (ab )

[
(A0)2 − (A1)2

]
− Ȧ1A

′
0. (5.68)

The goal is gauging these Lagrangians under the following transformations

δφ = δρ = α(x)

δθ = δη = β(x). (5.69)

The Noether currents under these transformations are

J1+ = 1√
−g

φ̇− b1, J1− = 1√
−g

ρ̇− b5,

J2+ = −
√
−gφ′ + b1

√
−g, J2− = −

√
−gρ′ + b5

√
−g,

J3+ = 2b2√
−g

θ̇ + b3, J3− = 2b′2√
−g

η̇ + b6,

J4+ = −2b2
√
−gθ′ + b4, J4− = −2b′2

√
−gη′ + b7. (5.70)

The first iteration Lagrangians read

L̂
(1)
+ = L̂+ − J1+B1 − J2+B2 − J3+B3 − J4+B4

L̂
(1)
− = L̂− − J1−B1 − J2−B2 − J3−B3 − J4−B4 (5.71)

where B1, B2, B3 and B4 are new auxiliaries fields which have the following variations

δB1 = ∂tα, δB2 = ∂xα, δB3 = ∂tβ, δB4 = ∂tβ. (5.72)

The variation of the first iterated Lagrangians are given by

δL̂
(1)
+ = − 1√

−g
(δB1)B1 +

√
−g(δB2)B2 −

2b2√
−g

(δB3)B3 + 2b2
√
−g(δB4)B4 (5.73)

δL̂
(1)
− = − 1√

−g
(δB1)B1 +

√
−g(δB2)B2 −

2b2√
−g

(δB3)B3 + 2b2
√
−g(δB4)B4. (5.74)
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As it can be seen, these variations are completely independent of original fields, therefore
the embedding process finished here and by adding the counterterms associated to these
variations we can obtain our desired invariant Lagrangian. Now we are ready to fuse both
Lagrangians (5.71) by adding them up and introducing a counterterm

Ŵ = L̂+ + L̂− − J1+B1 − J2+B2 − J3+B3 − J4+B4 − J1−B1 − J2−B2 − J3−B3 − J4−B4

+ 1√
−g

(B1)2 −
√
−g(B2)2 + 2b2√

−g
(B3)2 − 2b2

√
−g(B4)2 (5.75)

where we have fixed the Jackiw-Rajaraman coefficients a = b for simplicity. To express
the final result only in terms of the original fields, one can eliminate the auxiliary fields by
using their equations of motions

B1 =
√
−g
2 (J1+ + J1−) (5.76)

B2 = −1
2√−g (J2+ + J2−)

B3 =
√
−g

4b2
(J3+ + J3−)

B4 = −1
4b2
√
−g

(J4+ + J4−).

By substituting these results into Eq.(5.75) and introducing two soldering fields Ψ = φ− ρ
and Ω = θ − η we obtain an effective action

Ŵeff = 1
4√−g (Ψ̇)2 −

√
−g
4 (Ψ′)2 − eA0Ψ̇ + e

√
−gA1Ψ′ + b2

2√−g (Ω̇)2 (5.77)

− b2
√
−g

2 (Ω′)2 − eA1Ω̇ + 1
2
[
eA0 + e

√
−g(A0 − 2A1b2) + 2eA1b2

]
Ω′

− 2e2b2
√
−g(A0)2 + e2√−g

8b2
(A0 − 2A1b2)2 − 2e2A0

8b2
(A0 − 2A1b2)

+ e2

8√−gb2
(A0)2 + e2

2√−gA0A1 + e2b2

2√−g (A1)2 − e2

2 A1(A0 − 2A1b2) + 2ξ

where ξ = ξ− + ξ+. The initial Lagrangians were invariant under a semilocal gauge group,
but this effective Lagrangian is invariant under the local version of the initial gauge group
and moreover it is invariant under gauge transformations (5.69).

Maybe someone asks about the counterpart of this model in the commutative spacetime.
We can find it just by putting √−g = 1. It reads

Weff = 1
4∂µΨ∂µΨ + eεµνAµ∂νΨ + (a− 1) ∂µΩ∂µΩ− eAµεµν∂νΩ (5.78)

+ 1
2e

2aAµA
µ − 1

4FµνF
µν

where ξ′ = ξ|√−g=1. We have succeeded in including the effects of interference between
rightons and leftons (right/left moving scalar). Consequently, these components have lost
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their individuality in favor of a new, gauge invariant, collective field that does not depend
on φ or ρ separately.

As it can be seen, this Lagrangian is apparently different from the initial ones and the
new fields Ψ and Ω are not chiral anymore. If we fix the Jackiw-Rajaraman coefficients
a = b = 1 the field Ω becomes non-dynamical and will just interact with electromagnetic
field. The combination of the massless modes led to a massive vectorial mode as a con-
sequence of the chiral interference. The noton field, that is defined before, propagates
neither to the left nor to the right.

5.7 The massive Thirring model

The Thirring model is an exactly solvable QFT that describes the self-interactions of a
Dirac theory in (2+1) dimensions. For the first time S. Coleman discovered an equivalence
between this model and Sine-Gordon model which is bosonic theory [106]. In order to
study another example of the soldering formalism we will consider the bosonization of
Thirring model and after that we will show how one can fuse the bosonized version of this
model. Here we briefly review the bosonization process of this model.

The generating functional of the massive Thirring model in Minkowski spacetime is
given by

Z(k) =
∫
DψDψ̄ exp

{
i
∫
d3x

[
ψ̄(i/∂ +m)ψ − λ2

2 jµj
µ + λjµk

µ

]}
(5.79)

where jµ = ψ̄γµψ is a fermionic current. The fermionic current can be eliminated by using
an auxiliary variable

Z(k) =
∫
DψDψ̄Dfµ exp

{
i
∫
d3x

[
ψ̄(i/∂ +m+ λ(6f + /k))ψ + 1

2fµf
µ
]}
. (5.80)

In 3-dimensional spacetime this integration can not be done exactly. Under certain limiting
conditions, however, this integration leads to an exact expression. A particularly effective
choice is the large mass limit in which case the fermion determinant yields a local form.
Incidentally, any other value of the mass leads to a nonlocal structure [107]. The large
mass limit is therefore very special. The leading term in this limit was calculated by
various ways [108] and it can be shown to yield the Chern-Simons three form. Thus the
generating functional for the massive Thirring model in the large mass limit is given by

Z[k] =
∫
Dfµ exp

(
i
∫
d3x

(
λ2

8π
m

| m |
εµνλf

µ∂νfλ + 1
2fµf

µ + λ2

4π
m

| m |
εµνσk

µ∂νfσ
))

,

(5.81)
where the signature of the topological terms is dictated by the corresponding signature
of the fermionic mass term. In obtaining the above result a local counter term has been
ignored. Such terms manifest the ambiguity in defining the time ordered product to
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compute the correlation functions [109]. The Lagrangian in the above partition function
defines a self dual model introduced earlier [110]. The massive Thirring model, in the
relevant limit, therefore can be bosonized to a self dual model. It is useful to clarify the
meaning of this self duality. The equation of motion in the absence of sources is given by

fµ = −λ
2

4π
m

| m |
εµνλ∂

νfλ (5.82)

from which the following relations may be easily verified

∂µf
µ = 0(

2 +M2
)
fµ = 0 ; M = 4π

λ2 . (5.83)

A field dual to fµ is defined as
f̃µ = 1

M
εµνλ∂

νfλ (5.84)

where the mass parameter M is inserted for dimensional reasons. Repeating the dual
operation, we find that

˜̃fµ = 1
M
εµνλ∂

ν f̃λ = fµ (5.85)

was obtained by exploiting (5.83), thereby validating the definition of the dual field.
Combining these results with (5.82), we conclude that

fµ = − m

| m |
f̃µ. (5.86)

Hence, depending on the sign of the fermion mass term, the bosonic theory corresponds
to a self-dual or an anti self-dual model. Likewise, the Thirring current leads to the
topological current

jµ = λ

4π
m

| m |
εµνρ∂

νfρ. (5.87)

The close connection to the two dimensional analysis is now clear. There the starting
point was to consider two distinct fermionic theories with opposite chiralities. The
analogous thing is to take two independent Thirring models with identical coupling
strengths but opposite mass signatures,

L+ = ψ̄ (i∂/+m)ψ − λ2

2
(
ψ̄γµψ

)2

L− = ξ̄ (i∂/−m′) ξ − λ2

2
(
ξ̄γµξ

)2
. (5.88)

Then the bosonized Lagrangians are, respectively,

L+ = 1
2M εµνλf

µ∂νfλ + 1
2fµf

µ

L− = − 1
2M εµνλg

µ∂νgλ + 1
2gµg

µ, (5.89)
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where fµ and gµ are the distinct bosonic vector fields. The current bosonization formula
in both cases are given by

j+
µ = ψ̄γµψ = λ

4πεµνρ∂
νfρ

j−µ = ξ̄γµξ = − λ

4πεµνρ∂
νgρ. (5.90)

These models are known as self and anti-self dual models in the literature.

5.8 The soldering of NC (anti)self-dual models

On the extended Minkowski spacetime (τ, x) the Lagrangian (5.89) takes the following
action form

Ŝ± =
∫
dτd2x

[
1
2h

µhµ ±
1

2M

(
εµ0λh

µ∂h
λ

∂τ
+ εµiλh

µ∂ihλ
)]

(5.91)

where hµ = fµ, gµ.
After making the coordinate transformation, we obtain the action written in terms of

the coordinates (t, x),

Ŝ± =
∫
dtd2x

√
−g
[1
2h

µhµ ±
1

2M εµiλh
µ∂ihλ

]
± 1

2M εµ0λh
µ∂h

λ

∂t
. (5.92)

Taking a hint from the two dimensional case, let us consider the gauging of the following
symmetry

δfµ = δgµ = εµρσ∂
ρασ. (5.93)

Under these transformations the bosonized Lagrangians change as

δŜ± =
∫
dtd2x

[√
−g

{
εµρσhµ ±

1
M
εµiλε

µρσ∂ihλ
}
± 1
M
εµ0λε

µρσ∂0hλ
]
∂ρασ. (5.94)

We can identify the Noether currents

Jρσ± (hµ) =
√
−g

{
εµρσhµ ±

1
M
εµiλε

µρσ∂ihλ
}
± 1
M
εµ0λε

µρσ∂0hλ. (5.95)

As a comment about the form of the variation (5.93) we can say that the more simpler
form such as the one we have assumed in 2D case, will not be suitable and the variations
cannot be combined to give a single structure like (5.95). Now we introduce the auxiliary
field coupled with the antisymmetric currents. In the two dimensional case this field
was a vector. In the three dimensional case, as a natural generalization, we adopt an
antisymmetric second rank Kalb-Ramond tensor field Bρσ where its transformation is
given by

δBρσ = ∂ρασ − ∂σαρ (5.96)
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It is worthwhile to mention that in the canonical NC approach one must include the
variation of current associated with the NC field/parameter to the transformation of the
auxiliary tensor field to obtain an effective Lagrangian after soldering [111].
To eliminate the non-vanishing change (5.94), we add a counter term to the original
Lagrangian. So the first iterated Lagrangians are

L
(1)
± = L± −

1
2J

ρσ
± (hµ)Bρσ (5.97)

which transform as,
δL

(1)
± = −1

2δJ
ρσ
± Bρσ. (5.98)

The variation of the currents coupled with the auxiliary field is

δJρσ± Bρσ =
√
−g
[
δBρσBρσ ∓

1
M
ελγθ(∂i∂γαθ)Biλ

]
∓ 2
M
ελγθ(∂0∂γαθ)B0λ. (5.99)

As we can see, the above Lagrangians also are not invariant under the transformations
(5.93), hence we must go further and add another counter term. As a key point, in the
soldering formalism the invariance of one Lagrangian alone is not desired. We are looking
for a combination of both Lagrangians that be gauge invariant. To this aim, the second
iteration Lagrangians is defined as

L
(2)
± = L

(1)
± +

√
−g
4 BρσBρσ. (5.100)

By this definition a straightforward algebra shows that the following combination is
invariant under transformation (5.93) and (5.96),

LS = L
(2)
+ + L

(2)
−

= L+ + L− −
1
2B

ρσ
(
J+
ρσ(f) + J−ρσ(g)

)
+
√
−g
2 BρσBρσ. (5.101)

The gauging of the symmetry is therefore complete now. But the final result would be
more interesting if we express the above Lagrangian in terms of the original fields. By
using the equation of motion of field Bρσ we can eliminate this auxiliary field

Bρσ = 1
2√−g

(
J+
ρσ(f) + J−ρσ(g)

)
. (5.102)

Including this solution into (5.101) the final soldered Lagrangian is expressed only in terms
of the original fields,

LS = L+ + L− −
1

8√−g
(
J+
ρσ(f) + J−ρσ(g)

) (
J+ρσ(f) + J−ρσ(g)

)
. (5.103)

The crucial point of soldering formalism comes now, by using the explicit structures for
the currents, the above Lagrangian is no longer a function of fµ and gµ separately, but
solely on the combination

Aµ = 1√
2M

(fµ − gµ). (5.104)
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By this field redefinition we obtain the final effective action as

LS = M2√−g
2 AµAµ+∂iA0∂

0Ai− 1
2√−g∂0Ai∂

0Ai−
√
−g
2 (∂iA0∂iA0+∂iAj∂iAj−∂jAi∂iAj).

(5.105)
In the usual commutative Minkowski spacetime we yield the Proca theory by soldering
two (anti)self-dual theories [109]. As a generalization we claim the Lagrangian (5.105)
to be the NC version of the Abelian Proca theory in the κ-deformed (2+1)D Minkowski
spacetime. In order to check that our calculation is correct we can obtain directly this
Lagrangian by applying the coordinate transformation (τ, x)→ (t, x) in Proca theory. The
Abelian Proca model on the extended Minkowski spacetime (τ, x) is

Ŝ =
∫
dτd2x

[
− 1

4F
µνFµν + M2

2 AµAµ
]

=
∫
dτd2x

(
− 1

2
[∂Ai
∂τ

(∂Ai
∂τ
− ∂A0

∂xi
) + ∂A0

∂xi
(∂A0

∂xi
− ∂Ai

∂τ
)

+ ∂Aj

∂xi
(∂Aj
∂xi
− ∂Ai
∂xj

)
]

+ M2

2 AµAµ

)
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where F µν = ∂µAν − ∂νAµ. By coordinate transformation (5.19) we can rewrite the
above actions in term of (t, x) with explicit NCy,

Ŝ =
∫
dtd2x

√
−g
(
− 1

2
[ 1√
−g

∂Ai

∂t
( 1√
−g

∂Ai
∂t
− ∂A0

∂xi
) + ∂A0

∂xi
(∂A0

∂xi
− 1√
−g

∂Ai
∂t

)

+ ∂Aj

∂xi
(∂Aj
∂xi
− ∂Ai
∂xj

)
]

+ M2

2 AµAµ

)
. (5.107)

Here we have assumed that τ̇ = √−g > 0. After some straightforward manipulation we
find

Ŝ = 1
2

∫
dtd2x

(
2∂0Ai∂iA0 +

√
−g∂iAj∂jAi −

√
−g∂iAj∂iAj

−
√
−g∂iA0∂iA0 −

1√
−g

∂0Ai∂0Ai +M2√−gAµAµ
)
. (5.108)

As we expected this action coincide with the model described by Lagrangian (5.105).
An interesting observation about this NC version is that besides the modification of

the field dynamics in this new spacetime, the mass term is also changed and it is not equal
to the usual Minkowski spacetime so, the particle associated to this field must have a
different mass in this spacetime.

It is noteworthy that the transformations (5.93) are not the unique ones that lead to
this result. We also can take the transformation

δfµ = −δgµ = εµρσ∂
ρασ. (5.109)

By assuming the above transformation and defining the final soldered field

Aµ = 1√
2M

(fµ − gµ) (5.110)
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we arrive at the same Lagrangian as (5.105). This led the authors of paper [112] to the
idea of generalizing the soldering formalism. As it was mentioned before, the basic idea
of soldering was that adding two independent dual Lagrangians does not give us new
information and for obtaining a gauge invariant model we have to fuse two Lagrangians via
the Noether procedure. This idea was successfully applied to different models in various
dimensions such as chiral Schwinger model with opposite chiralities. Some years after
proposing this idea it was shown that the usual sum of opposite chiral bosons models is, in
fact, gauge invariant and corresponds to a composite model, where the component models
are the vector and axial Schwinger models [112]. As a consequence, we can reinterpret the
soldering formalism as a kind of degree of freedom reduction mechanism.

In the case at hand, two transformations (5.93) and (5.109) result in the same effective
action but in a general case we may obtain two apparently different actions. For example,
if we add an interaction term to the Lagrangians (5.89) the final result will be different.
This property is the subject of generalized soldering formalism [112]. Now this question
may arise whether these two actions are describing two distinct phenomena. However,
by calculating the generating functional of these two Lagrangians we yield the same
result. This shows that we are dealing with the same physics but described by different
Lagrangians.
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6 Noncommutative Jackiw-Pi model

6.1 The Jackiw-Pi Theory

The JP model is a 3D gauge invariant, massive, parity preserving theory governed by the
Lagrangian [34, 35]

S = Tr
∫
d3x

(1
2F

µνFµν + 1
2G

µνGµν −mεµνρFµνφρ
)

(6.1)

where Aµ and φµ are vector bosonic fields and m is a mass parameter. The 2-form
curvature F (2) = dA(1) − i

(
A(1) ∧ A(1)

)
= 1

2! (dxµ ∧ dxν)Faµν T a defines the curvature
tensor Fµν = ∂[µAν] − i [Aµ, Aν ] for the non-Abelian 1-form A(1) = dxµA

µ
a T

a gauge field
Aµ = AaµT

a where d = dxµ∂µ is the exterior derivative (with d2 = 0). Similarly, another
2-form G(2) = dφ(1) − i

(
A(1) ∧ φ(1)

)
− i

(
φ(1) ∧ A(1)

)
= 1

2! (dxµ ∧ dxν)Gaµν T
a defines the

curvature tensor Gµν = Dµφν −Dνφµ corresponding to 1-form φ1 = dxµφaµ T
a vector field

φµ = φaµT
a. In the above, the vector fields Aµ and φµ have opposite parity, thus the JP

model becomes parity invariant. In the this classical theory in commutative spacetime
the fields are Lie algebra-valued Ψ = ΨaT a but in the noncommutative spacetime for an
arbitrary gauge group, as it was mentioned before, this property will be lost.

This theory is invariant under the non-Abelian transformation

δθAµ = Dµθ (6.2)

δθφµ = −i[φµ, θ]. (6.3)

The Lie algebra of the generators for the symmetry group of Aµ is given by[
Qa, Qb

]
= ifabcQc (6.4)

and we recall that the vector potential Aaµ is the connection associated with this group.
The gauge group of φµ is Abelian and its generators are symmetric matrices with the same
number of generators as Aµ and they obey the following commutation relationship[

P a, P b
]

= 0. (6.5)

Also, it is assumed that the generators of these two algebra satisfy the following relation[
Qa, P b

]
= ifabcP c. (6.6)

In the case of su(n), the generators of Lie algebra are traceless and Hermitian matrices,
also we will assume that the generators P a are symmetric matrices.

By turning the coupling off,

Sq ≡ S(coupling constant=0) (6.7)
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the action (6.1) reduces to an action which is invariant under two different Abelian
transformations

δq1Aµ = ∂µθ ; δq1φµ = 0

δq2Aµ = 0 ; δq2φµ = ∂µξ. (6.8)

For Green functions generating functional (or in partition function) we just need the gauge
fixing terms for its gauge symmetries (6.2). However, the propagators will be calculated
in terms of a quadratic action (6.7) which still possesses the gauge symmetry (6.8). i.e.
gauge fixing of the non-Abelian action will not be enough to eliminate the superficial fields
in (6.7) which is essential to define finite propagators.

A general quantization procedure of the theories whose gauge symmetries are in the
quadratic and the full cases are not consistent is not available yet [113]. Jackiw and Pi
proposed to enlarge the configuration space by introducing the new fields ρ and to deal
with the action (Extended JP)

Sext = Tr
∫
d3x

(1
2F

µνFµν + 1
2 (Gµν − i [F µν , ρ]) (Gµν − i [Fµν , ρ])−mεµνρFµνφρ

)
(6.9)

which is invariant under two different type of non-Abelian transformations

Yang-Mills


δθAµ = Dµθ

δθφµ = −i[φµ, θ]
δθρ = −i[ρ, θ]

(6.10)

and

Non-Yang-Mills


δχAµ = 0
δχφµ = Dµχ

δχρ = −χ
(6.11)

The additional scalar field ρ transforms under the first gauge transformation as an adjoint
vector while the second one applies a shift.

In this thesis we just study the NC version of JP model and postpone the analysis of
the JP-extended for future works.

6.2 Noncommutative Jackiw-Pi model

The NC version of original JP model will be written as

Ŝ = Tr
∫
d3x

{1
2 F̂

µν ? F̂µν + 1
2Ĝ

µν ? Ĝµν −mεµνρF̂µν ? φ̂ρ
}
. (6.12)

In similarity with commutative spacetime, the following definitions in the NC space are
claimed as

F̂µν = ∂µÂν − ∂νÂµ − i[Âµ, Âν ]? (6.13)
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Ĝµν = D̂µφ̂ν − D̂νφ̂µ (6.14)

D̂µφ̂ν = ∂µφ̂ν − i ˆ[Aµ, φ̂ν ]? (6.15)

where [A,B]? = A ? B −B ? A as before. By using the definition of Moyal-Weyl star
product, up to the first order, we have

[A,B]? = [A,B] + i

2θ
ij{∂iA, ∂jB}. (6.16)

It is worthy to mention again that in a general noncommutative spacetime the objects
inside the above anticommutator take value in the universal enveloping algebra, U (su(n)).
According to the SW map the gauge transformations are form-invariant, just the fields
and operators must be reformulated in NC spacetime. In the other words:

 δθÂµ = D̂µθ̂ = ∂µθ̂ − i[Âµ, θ̂]?
δθφ̂µ = −i[φ̂µ, θ̂]?

(6.17)

and
 δχÂµ = 0
δχφ̂µ = D̂µχ̂ = ∂µχ̂− i[Âµ, χ̂]?

. (6.18)

The action has three parts that must be mapped to commutative spacetime. The
Yang-Mills term, dynamical/interaction term of φµ and the third one is a Chern-Simons
like term. As we saw earlier, the SW map gives us a way to express the variables of NC
spacetime in terms of commutative ones up to some freedom. Mapping of the Yang-Mills,
term up to the first order, is driven by integration of relation (3.37) and the result is [37]

1
2Tr

∫
F̂ µν ? F̂µνd

3x = 1
2Tr

∫
F̂ µνF̂µνd

3x (6.19)

= 1
2Tr

∫
d3x

(
F µνFµν −

1
2θ

klFklFµνF
µν + θklFµkFνlF

µν
)
.

The vector field φµ transforms in adjoint representation of the gauge group. So the
SW map tells us that, up to the first order, this field can be expressed as

φ̂µ = φµ −
1
4θ

ρσ{Aρ, ∂σφµ +Dσφµ}

≡ φµ + θφ1
µ (6.20)

where Dµ• = ∂µ • −i[Aµ, •].
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The second term of action (6.12) is more complicated and needs more attention. Using
the SW map this term can be written as

1
2Tr

∫
d3x Ĝµν ? Ĝµν = 1

2Tr
∫
d3x

(
D̂µφ̂ν − D̂νφ̂µ

)
?
(
D̂µφ̂ν − D̂νφ̂µ

)
(6.21)

= 1
2Tr

∫
d3x

(
D̂µφν + D̂µφ1ν − D̂νφµ − D̂νφ1µ

)
?
(
D̂µφν + D̂µφ

1
ν − D̂νφµ − D̂νφ

1
µ

)
.

The covariant derivative in the above expression is given by

D̂µφν = Dµφν − i
[
A1
µ, φν

]
+ θαβ

2
{
∂αAµ, ∂βφν

}
(6.22)

where A1
µ is the first term of the expansion of NC field Âµ in terms of commutative fields,

as we saw in (3.35). By plugging in the expanded covariant derivative in (6.21) we obtain
1
2Tr

∫
d3x(Ĝµν) ? (Ĝµν) (6.23)

= 1
2Tr

∫
d3x

(
DµφνDµφν − iDµφν

[
A1
µ, φν

]
+ θαβ

2 Dµφν
{
∂αAµ, ∂βφν

}
+DµφνDµφ

1
ν

− DµφνDνφµ − iDµφν
[
A1
ν , φµ

]
+ θαβ

2 Dµφν
{
∂αAν , ∂βφµ

}
−DµφνDνφ

1
µ

+ Dµφ1νDµφν −Dµφ1νDνφµ − i
[
A1µ, φν

]
Dµφν + i

[
A1µ, φν

]
Dνφµ

+ θαβ

2
{
∂αA

µ, ∂βφ
ν
}
Dµφν −

θαβ

2
{
∂αA

µ, ∂βφ
ν
}
Dνφµ

− DνφµDµφν + iDνφµ
[
A1
µ, φν

]
− θαβ

2 Dνφµ
{
∂αAµ, ∂βφν

}
−DνφµDµφ

1
ν

+ DνφµDνφµ + iDνφν
[
A1
ν , φµ

]
− θαβ

2 Dνφµ
{
∂αAν , ∂βφµ

}
+DνφµDνφ

1
µ.

After doing some algebra the above expression can be simplified as
1
2Tr

∫
d3x(Ĝµν) ? (Ĝµν) = (6.24)

1
2Tr

∫
d3x

(
GµνGµν + 3G1

µνD
µφν − iGµν

[
A1µ, φν

]
+ θαβ

2 Gµν
{
∂αAµ, ∂βφν

})
where G1

µν = Dµφ
1
ν − Dνφ

1
µ. The above expression can be rewritten solely in terms of

ordinary fields of commutative theory,
1
2Tr

∫
d3x(Ĝµν) ? (Ĝµν) = 1

2Tr
∫
d3x

(
GµνGµν (6.25)

− 3θρσGµν
(
DµAρ (∂σ +Dσ)φν −

1
3∂αAµ∂βφν

)
.

According to the SW map, the Chern-Simons like term can be transformed as follows

mTr
∫
d3x εµνρF̂µν ? φ̂ρ = mTr

∫
d3x εµνρF̂µνφ̂ρ (6.26)

= mTrεµνρ
∫
d3x

(
Fµν + F 1

µν

)(
φρ + φ1

ρ

)
= mTrεµνρ

∫
d3x

(
Fµνφρ + F 1

µνφρ + Fµνφ
1
ρ

)
.



87

This expression also can be rewritten just in terms of variables of the original theory

mTr
∫
d3x εµνρF̂µν ? φ̂ρ = mTrεµνρ

∫
d3x

(
Fµνφρ (6.27)

+ θαβ
(
FµαFνβφρ + 1

4Fµν
{
φρ, (∂β +Dβ)Aα

}))
.

The noncommutative JP theory is given by adding up Eqs.(6.19), (6.25) and (6.27)

Ŝ = Tr
∫
d3x

{1
2 F̂

µν ? F̂µν + 1
2Ĝ

µν ? Ĝµν −mεµνρF̂µν ? φ̂ρ
}

(6.28)

= S + 1
2Tr

∫
d3x

(
− 1

2θ
αβFαβFµνF

µν + θαβFµαFνβF
µν

− 3θρσGµν
(
DµAρ (∂σ +Dσ)φν −

1
3∂αAµ∂βφν

)
+ θαβ

(
FµαFνβφρ + 1

4Fµν
{
φρ, (∂β +Dβ)Aα

}))
This complete O (θ1) noncommutative JP theory contains vertices, with a higher number
of gauge bosons, that are absent in the original theory and from the phenomenological
point of view these two Lagrangian produce different interactions. We have not included
structure constants explicitly in our analysis so one can not discuss the pertubation
expansion of the NC theory. For the future work, we are going to add fermionic matter
field in the theory with explicit structure constants and we will analyze its perturbative
expansion and the phenomenological aspects of both theories.
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7 The field-antifield treatment of extended Jackiw-Pi model

7.1 A Fast Review of Field-Antifield (or Batalin-Vilkovisky) Formalism

The basic idea of the so-called Field-Antifield formalism is to generalize the BRST invariance
to the theories with arbitrary gauge structure. The ingredients are the ordinary fields
ΦA, the ghosts, the auxiliary fields and their canonically conjugated antifields Φ?

A. With
all these elements we can construct the well-known Field-Antifield or Batalin-Vilkovisky
(BV) action. At the classical level, the BV action becomes the ordinary classical action
when all the antifields are zeroed. A gauge-fixed action can be obtained by a canonical
transformation. At this time we can say that the action is in a gauge-fixed basis. The
other way to fix the gauge is through the choice of a gauge fermion and to make the
antifields to be equal to the functional derivative of this fermionic function.
This method can be applied to gauge theories which have an open algebra (the algebra
of gauge transformations closes only on shell), to closed algebras, to gauge theories that
have structure functions rather than constants (soft algebras), and to the case where the
gauge transformations may or may not be independent, reducible or irreducible algebras
respectively. Zinn-Justin introduced the concept of sources of BRST-transformations [114].
These sources are the antifields in the BV formalism. It was shown also that the geometry
of the antifields have a natural origin [115].

At the quantum level, the field-antifield formalism also works at one-loop anomalies
[116, 117]. Here, with the addition of extra degrees of freedom, which leads to an extension
of the original configuration space, we have a solution for the regularized quantum master
equation (QME) at one-loop that has been obtained as an independent part of the antifields
inside the anomaly.

7.1.1 Gauge structure

In a gauge theory the action is invariant under a set of gauge transformations with
infinitesimal form

δΨi(x) = (Ri
αε

α)(x) (7.1)

where i = 1, 2, · · ·n is the number of fields, α = 1, 2, · · ·m < n is the number of sets of
gauge transformations and and Ri

α are the generators of gauge transformations. The εα

are the infinitesimal gauge parameters and Ri
α the generators of the gauge transformations.

When εα = ε (εα) = 0 we have an ordinary symmetry, when εα = 1 the equation is
characteristic of a supersymmetry. The Grassmann parity of generators of the gauge
transformations is defined as ε (Ri

α) = εα + εi. Also we have εi = ε (φi) that defines
Grassmann parity of the fields. Fields with εi = 0 are called bosonic and with εi = 1 are
fermionic. The relation (7.1) is written in the DeWitt compact notation and its original
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form is
δΨi(x) =

∑
α

∫
dy Ri

α(x, y)εα(y) (7.2)

The graded commutation rule is defined as

φi (x)φj (y) = (−1)εiεj φj (y)φi (x) . (7.3)

Let S0,i(φ, x) denote the variation of the action with respect to φi(x):

S0,i ≡
∂rS0[φ]
∂φi(x) (7.4)

where the subscript i after the comma denotes the right derivative with respect to the
corresponding field, that is, the field is to be commutated to the far right and then dropped.
When using right derivatives, the variation δS0 of S0, or of any other object, is given
by δS0 = S0,iδφ

i. If one were to use left derivatives, the variation of S0 would be read
δS0 = δφi ∂lS0

∂φi
. The commutation rule for the gauge transformations in the most general

form obeys the following relationship

[δ1, δ2]φi =
(
Ri
γT

γ
αβ − S0,jE

ij
αβ

)
εβ1ε

α
2 (7.5)

where the tensors T γαβ are called the structure constants of the gauge algebra, although
they depend, in general, on the fields of the theory. When Eij

αβ = 0, the gauge algebra is
said to be closed, otherwise it is open. Equation (7.5) defines a Lie algebra if the algebra
is closed and the T γαβ are independent of the fields. We will see that the Jackiw-Pi model
has a closed and Lie algebraic gauge structure.

When we say that the action is invariant under the gauge transformation in Eq.(7.1)
means that the Noether identities∫

dx
n∑
i=1

S0,i(x)Ri
α(x, y) = 0 (7.6)

hold, or equivalently, in compact notation

S0,iR
i
α = 0. (7.7)

Hence the field equations may be written as

S0,i = 0. (7.8)

As in the familiar Faddeev-Popov procedure, it is useful to introduce ghost fields C with
opposite Grassmann parities to the gauge parameters εα

ε (Cα) = εα + 1 (mod 2) (7.9)

and to replace the gauge parameters by ghost fields.



90

7.1.2 Irreducible and reducible gauge theories

It is important to know any dependences among the gauge generators. After analyzing
these relations it is possible to determine the independent degrees of freedom. The simplest
gauge theories, for which all gauge transformations are independent, are called irreducible.
When dependences exist, the theory is reducible. In reducible gauge theories, there is
a “kind of gauge invariance for gauge transformations” or what one might call “level-
one”gauge invariances. If the level-one gauge transformations are independent, then the
theory is called first-stage reducible. This may not happen. Then, there are “level-two”
gauge invariances, i.e., gauge invariances for the level-one gauge invariances and so on.
This leads to the concept of an L-th stage reducible theory. In what follows we let m s
denote the number of gauge generators at the s-th stage regardless of whether they are
independent.

In this brief review we will consider only theories with irreducible gauge structure. For
more detailed discussion of the full formalism the interested reader is encouraged to see
[118, 50].

7.1.3 Introducing the antifields

We incorporate the ghost fields into the field set ΨA = {φi, Cα} , where i = 1, ..., n and
α = 1, ...,m. We call it a minimal set. Clearly A = 1, ..., N , where N = n+m. One then
further increases the set by introducing an antifield Ψ?

A for each field ΨA. The Grassmann
parity of the antifields is ε (Ψ?

A) = ε (Ψa) + 1 (mod 2).
We assign a new number to each field, the ghost number gh, which is defined as follow

gh
[
φi
]

= 0

gh [Cα] = 1

gh [Ψ?
A] = −gh [ΨA]− 1.

In this generalized space, the antibracket is defined by

(X, Y ) = ∂rX

∂ΨA

∂lY

∂Ψ?
A

− ∂rX

∂Ψ?
A

∂lY

∂ΨA
(7.10)

where ∂r denotes the right derivative and ∂l the left derivative. The antibracket is graded
antisymmetric

(X, Y ) = − (−1)(εX+1)(εY +1) (Y,X) . (7.11)

If one groups the fields and the antifields together into the set

za =
{

Ψ?
A,ΨA

}
a = 1, 2, .., 2N (7.12)

then the antibracket is seen to define a symplectic structure on the space of fields and
antifields

(X, Y ) = ∂rX

∂za
ωab

∂lY

∂zb
(7.13)
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with

ωab =
 0 δAB

−δAB 0

 . (7.14)

The antifield can be thought of as a kind of conjugate variable to the field, since(
ΨA,Ψ?

B

)
= δAB. (7.15)

As it can be seen the antibracket is, in some sense, very similar to the Poisson bracket
in the phase-space. In fact, by introducing the antifields and defining the antibracket we
have an odd(even) symplectic structure inside the Lagrangian formalism. In this way,
we can enjoy the clarity and power of Hamiltonian formalism right inside the extended
configuration space.

The antibracket of two fermionic fields is

(F, F ) = 0, (7.16)

for two bosonic fields is
(B,B) = 2 ∂B

∂ΨA

∂B

∂Ψ?
B

(7.17)

and for any field X, the triple commutation gives

(X (X,X)) = 0. (7.18)

7.1.4 The classical master equation

Let S
[
ΨA,Ψ?

B

]
be a functional of the fields and antifields with the dimension of an action,

vanishing ghost number and even Grassmann parity. The equation

(S, S) = 2 ∂S

∂ΨA

∂S

∂Ψ?
A

= 0 (7.19)

is the classical master equation. The solutions of the classical master equation with suitable
boundary conditions turn out to be generating functionals for the gauge structure of the
theory. S is also the starting point for the quantization.

Finally, the action S
[
ΨA,Ψ?

B

]
can be expanded in a series in the antifields, while

maintaining vanishing ghost number and even Grassmann parity

SBV = S
[
ΨA,Ψ?

B

]
= S0 + φ?iR

i
αC

α + C?
α

1
2T

α
βγ (−1)εβ CγCβ

+ φ?iφ
?
j (−1)εi 1

4E
ji
αβ (−1)εα CβCα.

When this is inserted into the classical master equation, one finds that this equation
implies the gauge structure of the classical theory. In fact, this form is not unique but is
the brief one for SBV . One can turn back to the classical action S0 when the antifields go
to zero

SBV [Ψ,Ψ?]|Ψ?=0 = S0[φ]. (7.20)
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7.1.5 Gauge Fixing and Quantization

Although ghost fields have been incorporated into the theory, the solutions of classical
master equation (7.19) have a set of invariances

∂S

∂za
Ra
b = 0, (7.21)

with
Ra
b = ωac

∂l∂rS

∂zc∂zb
. (7.22)

Due to these gauge freedoms the action (7.20), as a solution of classical master equation is
not suitable for quantization via path integral and a gauge-fixing procedure is needed. The
theory also contains many antifields that usually one wants to eliminate before computing
amplitudes and S-matrix elements. One cannot simply set the antifields to zero because
the action would reduce to the original classical action S0 , which is not appropriate
for starting perturbation theory due to gauge invariances. In the Batalin– Vilkovisky
approach the gauge is fixed using a fermionic function which has Grassmann parity ε(Θ)=1,
gh[Θ] = −1 and is functional of fields ΨA only. The antifields are eliminated through
relation

Ψ?
A = ∂Θ

∂ΨA
(7.23)

After implementing this gauge-fixing procedure we can define a surface in the functional
space

ΣΘ =
{(

ΨA,Ψ?
A

)
|Ψ?

A = ∂Θ
∂ΨA

}
. (7.24)

Hence for any functional X [Φ,Φ?] we have

X|ΣΘ
= X

[
Ψ, ∂Ψ

∂Φ

]
(7.25)

To construct a gauge-fixing fermion Θ of ghost number -1, one must again introduce
additional auxiliary fields. The simplest choice utilizes a trivial pair C̄α and π̄α with the
following properties

ε
(
C̄α
)

= εα + 1, ε (π̄α) = εα

gh
[
C̄α
]

= −1, gh [π̄α] = 0. (7.26)

The auxiliary fields C̄α are the Faddeev-Popov antighosts (π̄α are called Nakanishi-Lautrup
fields)6. Along with these fields we include the corresponding antifields C̄?

α and π̄?α. Adding
the term π̄αC̄?

α to the action S does not spoil its properties as a proper solution to the
classical master equation, and one obtains the non-minimal action

Snm = S + π̄αC̄?
α. (7.27)

6 Do not confuse antighost with anti-ghost.
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We can think of these new auxiliary fields as a kind of Lagrange multipliers for the
gauge-fixing terms. The simplest possibility for fermionic function Θ is

Θ = C̄αχα (φ) (7.28)

where χα are the gauge-fixing conditions for the fields φ. The gauge-fixed action is denoted
by

SΘ = SBV−nm|ΣΘ
. (7.29)

The quantum generating functional is defined by using the constraint (7.23) to calculate
the correlation function X as

I|Θ (X) =
∫

DΨDΨ?δ

(
Ψ?
A −

∂Θ
∂ΨA

)
e
i
~W [Ψ,Ψ?]X [Ψ,Ψ?] . (7.30)

Here W is the quantum action, which reduces to S in the limit ~→ 0. An admissible Θ
leads to well- defined propagators when the path integral is expressed as a perturbation
series expansion. For a detailed discussion of the W we refer the interested reader to the
references [50, 118].

7.2 Field-antifield treatment of extended Jackiw-Pi model

According to gauge transformations, Eqs.(6.10) and (6.11) the gauge structure of extended
JP model can be expressed in a compact form δΨi = Ri

αε
α or


δAµ

δφµ

δρ

 =


Dµ 0

[φµ, ◦] Dµ

[ρ, ◦] −1


 θ

χ

 . (7.31)

The dynamical variables of the model, i.e. Aµ, φµ and ρ are bosonic fields so their
Grassmann parity is εi = 0. The gauge parameters θ and χ also are bosonic variables
hence their Grassmann parity is εα = 0.

For the first step we have to calculate the commutation of two gauge transformations.
For the gauge field Aµ we have

[δ1, δ2]Aaµ = ∂µθ
a
12 + fadeAdµθ

e
12 = Dae

µ θ
e
12 (7.32)

where θe12 = f ecbθc1θ
b
2. For the vector field φµ one finds

[δ1, δ2]φaµ = fadbφdµ
(
f becθe1θ

c
2

)
+Dad

µ

(
fdbcχb1θ

c
2 + fdcbθc1χ

b
2

)
(7.33)

Additionally for the scalar field ρ, we yield

[δ1, δ2] ρa = fadbρd
(
f becθe1θ

c
2

)
−
(
fabcχb1θ

c
2 + facbθc1χ

b
2

)
. (7.34)

As we can see from the commutations of fields, the gauge algebra of the extended JP
model is closed and all of Eij

αβ are equal to zero. In other words, there is not any term
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dependent on the equation of motion. The next step would be determine the structure
constants of the gauge algebra according to Eq.(7.5). As an interesting result we find that
the non-zero structure constant of all the above commutations are the same and are equal
to Tαβγ = fabc.

Now we have the enough ingredients to construct the field-antifield action for the
theory at hand as

SBV = S0 + A?aµ D
µabξb + φ?aµ

(
fabcφµbξc +Dµabηb

)
+ ρ?a

(
fabcρbξc − ηa

)
(7.35)

+ η?afabcξcξb + ξ?afabcηcξb (7.36)

where ξ and η are ghost fields related to the gauge parameters θ and χ, respectively. The
Grassmann parity of these ghosts is ε (ξ) = ε (η) = 1. The ghost numbers of the variables
of action SBV are

gh [Aµ] = gh [φµ] = gh [ρ] = 0, gh [ξ] = gh [η] = 1,

gh
[
A?µ
]

= gh
[
φ?µ
]

= gh [ρ?] = −1, gh [ξ?] = gh [η?] = −2. (7.37)

Before moving forward to the quantum world we have to fix the gauge degrees of freedom.
To realize this we go to a gauge-fixed basis by introducing a fermionic function with the
ghost number equal to gh [Θ] = −1 and Grassmann parity ε (Θ) = −1, as mentioned
before. Without lost of generality we suggest the fermionic function

Θ =
∫
d3x ξ̄a

(
− π̄

a

2γ + ∂µAaµ

)
+ η̄a

(
− ω̄

a

2γ′ + ∂µφaµ

)
(7.38)

where ξ̄a and η̄a are Faddeev-Popov antighost fields related to the ghosts ξa and ηa with
statistics and ghost number equal to

ε
(
ξ̄a
)

= ε (η̄a) = 1, gh
[
ξ̄a
]

= gh [η̄a] = −1. (7.39)

It should be mentioned that the final result of a quantization is independent of gauge fixing.
Together with the Faddeev-Popov antighost, we have introduced the Nakanishi-Lautrup
fields (π̄a, ω̄a) to our minimal set to eliminate antighost fields with the following properties

ε (ω̄a) = ε (π̄a) = 0, gh [ω̄a] = gh [π̄a] = 0. (7.40)

It is necessary to include the antifields associated to these new auxiliary fields with the
following properties

ε
(
ξ̄?a
)

= ε (η̄?a) = 0, gh
[
ξ̄?a
]

= gh [η̄?a] = 0,

ε (ω̄?a) = ε (π̄?a) = 1, gh [ω̄?a] = gh [π̄?a] = −1. (7.41)

The minimal set together with these new auxiliary fields constitute the so-called non-
minimal set. The non-minimal extension of Batalin-Vilkovisky action reads

SBV−nm = SBV + ξ̄?aπ̄a + η̄?aω̄a (7.42)
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By employing the Gaussian-averaging gauge-fixing procedure we have

Ψ?
A = ∂Θ

∂ΨA
. (7.43)

With this choice we can eliminate the antifields via Eqs.(7.38) and (7.43)

A?aµ = −∂µξ̄a, η̄?a = − ω̄
a

2γ′ + ∂µφaµ,

φ?aµ = −∂µη̄a, ξ?a = 0,

ξ̄?a = − π̄
a

2γ + ∂µAaµ, η?a = 0,

ρ?a = 0. (7.44)

Finally we obtain the gauge-fixed quantized-ready action for extended JP model

SΘ =S0 −
∫
d3x

∂µξ̄aDµabξb − ∂µη̄a
(
fabcφµbξc +Dµabηb

)

+π̄a
(
− π̄

a

2γ + ∂µAaµ

)
+ ω̄a

(
− ω̄

a

2γ′ + ∂µφaµ

) (7.45)

The Gaussian integration over auxiliary fields π̄ and ω̄ can be performed for Eq.(7.45) to
give

SΘ −→−
1
4

∫
d3x

(1
2F

aµνF a
µν + 1

2 (Gaµν − i [F µν , ρ]a)
(
Ga
µν − i [Fµν , ρ]a

)
−mεµνρF a

µνφ
a
ρ

+ ∂µξ̄
aDµabξb − ∂µη̄a

(
fabcφµbξc +Dµabηb

)
+ γ

2∂
µAaµ∂

νAaν + γ′

2 ∂
µφaµ∂

νφaν

)
(7.46)

which is very similar to the Yang-Mills action fixed in the Rγ gauge. The case γ = γ′ = 1
is the Feynman gauge. When γ, γ′ → ∞, the π̄ and ω̄ dependence in Θ of Eq.(7.38)
disappears and the Landau gauge ∂µφaµ = ∂µAaµ = 0 is imposed as a delta-function
condition.

The gauge-fixed BRST transformations are

δBΘA
a
µ = Dµabξb, δBΘφ

a
µ = fabcφbµξ

b +Dab
µ η

b,

δBΘρ
a = fabcρbξc − ηa, δBΘξ

a = fabcξbηc,

δBΘη
a = fabcξbηc, δBΘ ξ̄

a = π̄a,

δBΘ η̄
a = ω̄a, δBΘπ̄

a = 0,

δBΘω̄
a = 0. (7.47)

The nilpotency of δBΘ holds off-shell because the original gauge algebra is closed.
The next step would be to discuss the anomalies of this theory and also to calculate

its perturbative expansion and anomalies using the above action.
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8 Conclusions and perspectives

To investigate some ingredients of the formalism that can lead us to work in the Planck
energy scale requires us to discuss the physics of the early Universe, for instance, where
quantum mechanics and general relativity were combined and quantum gravity is formed.
This is one of the main motivations to study mechanisms that introduces Planck scale
parameters in classical systems. As such this is one of the main motivations to use NCy
in order to introduce this so-called Planck scale parameter. In this work we have analyzed
the free movement of a particle upon a 2-sphere considering a NC classical mechanics
approach. In this scenario, we can consider a semi-classical approach where the Planck
constant was substituted by the NC parameter.

The NC Newton’s second law has shown us that the curvature of the space acted the
same way as if there was a potential since the particle flat space acceleration has the NC
contribution given by the potential, namely, the NC contribution would be zero but it is
not. In the 2-sphere free particle dynamics, the NC additional term is different from zero,
which means that its origin is the curvature of the system.

The introduction of NC contribution makes us also ask what would be the nature of
the potential effect caused by the curvature. In other words, since in a flat space free
particle system the NC contribution is connected with a potential such that if V = 0 we
have no contribution, and in the curved space this effect does not happen, what is the
physical meaning of this potential-type effect brought by the curvature? And in the case
of curved space and V 6= 0? Where would the NC contribution appear?

Furthermore, we have also introduced some basic ideas of classical mechanics and
differential geometry. We started by formulating the procedure of introducing constraints
into the Lagrangian formalism: they were inserted via Lagrange multipliers and we have
demonstrated that this procedure leads to the same number of degrees of freedom and
equations of motion if we had obtained one of the variables of the known constraint and
substitute it in the free Lagrangian. After that, we have given a detailed analysis of a
particle constrained over a 2-sphere.

Basic notions of differential geometry, such as the metric and Christoffel symbols,
appear as a consequence of the description of a constrained Lagrangian system and its
corresponding principle of least action. A solution of the equations of motion was given
based on geometric grounds and with the help of Noether theorem. It was also shown that
physical position variables of the model evolve over an ellipse. We have proposed a central
force problem whose solution for position variables are the same as those of the particle
over a 2-sphere. One can be led to interpret the curvature of the space where the particle
lives as a consequence of an effective potential. This example may be a starting point for
studying general relativity. We have also naively discussed the relation between both the
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Dirac brackets and Christoffel symbols, since both of them are supposed to describe the
correct evolution of a particle constrained to a surface.

Finally, as an example, we treated the so-called Zitterbewegung of the Dirac electron.
It may be seen as the effective motion of a particle over a 2-sphere, assuming that the
electron bears an internal structure.

The extended DFR formulation of NC theories was developed recently and its main
mathematical characteristic is to promote the NC parameter, θµν , to the status of spacetime
coordinates. This procedure recovers the Lorentz invariance of the theory and at the same
time it requires the construction of a conjugated momentum associated with θµν , together
with its respective algebra. In this work, based on the results obtained in two different
θ-variable phase-spaces, we have shown, in the DFR spacetime, that this momentum πµν

(which completes the set of phase-space symplectic variables as being (xµ, pµ, θµν , πµν))
is directly connected to Lorentz invariance and cannot be considered irrelevant in any
ordinary DFR analysis since it is essential to calculate the QFT commutation relations for
DFR formalism.

Through two examples, the DFR harmonic oscillator and the NC relativistic particle
developed in [96], we have shown that in both NC formalisms (a DFR algebra and a non-
DFR algebra, respectively) we have a kind of duality θconst. −→ θvariable which can be also
represented by π = 0 −→ π 6= 0 or (non-Lorentz invariance) −→ (Lorentz invariance) maps.
The conclusion is that there is no difference between DFR and DFR∗, and consequently
the DFR formalism has the conjugated pairs (x, p) and (θ, π). We believe that this result
complements the DFR literature. In this way, we also have constructed also the scalar field
QFT and we have calculated the operatorial commutation relations with the (x, p, θ, π)
phase-space.

The NC relativistic particle shows, besides the θconst. −→ θvariable duality, another
interesting result. Since the equations of motion have shown that for θ = const. we have
the multiplier λθ = 0 and this value zeroes the NC acceleration, the velocity is not constant
since it has a parameter that is time dependent. In [96] the author has obtained this last
result also, but since he does not have the value of the acceleration, it was not possible
to see how interesting this result is. Besides, we have calculated here that ė 6= 0, which
confirms that, following the equations of motion, the velocity ẋ is not constant. It was
important to compute ė because although it is defined as e = e(τ) its calculation could
result as zero, which would show a paradox. But it did not happen.

As a perspective we can analyze other θvariable algebras different from DFR (of course)
to verify if the behavior is the same. Another possible research is to construct the fermion
DFR QFT. It is an ongoing research and it will published elsewhere.

In this thesis we have briefly reviewed the proposal of the NC extension of the Minkowski
spacetime in which a proper time is defined in order to connect the κ-Minkowski spacetime
and the extended Minkowski spacetime. We saw that in this formalism the information of
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NCy can be encoded from the κ-Minkowski spacetime into the extended spacetime.
Chiral Schwinger models possess only a semilocal form of gauge invariance. However,

it is well-known that one can recover full local gauge invariance by soldering two opposite
chirality chiral Schwinger models. In this case one ends up with a vector Schwinger model.

Next, we have applied the soldering formalism to three 2D models: the interacting
model of NC Floreanini-Jackiw chiral bosons and gauge fields, the NC generalized chiral
Schwinger model and its NC gauge invariant formulation. As a result we could fuse the
massless chiral states of these theories and yield equivalent non-chiral massive models.
These new bosonic models have the same generating functional of the NC chiral Schwinger
fermions.

Also, we have studied the bosonization of 3D Thirring model and after that by means
of soldering formalism, we fused two distinct non-invariant NC (anti)self dual models to
obtain a NC gauge invariant massive 3D bosonic model which is NC Chern-Simons theory
in κ-Minkowski spacetime. This new massive theory is equivalent to fermionic Thirring
model in the extended Minkowski spacetime and their generating functional are the same.

NC gauge theories for an arbitrary gauge group were studied and we saw that using the
enveloping algebra of a Lie algebra we can construct the NC counterpart of a commutative
theory. Because of ambiguity in the SW map and the mentioned no-go theorem the
particle content of a NC theory is not necessarily equal to commutative counterpart and
this matter is still under intense investigation in the literature [80, 119].

The JP model is a 3D massive gauge invariant model that respects the parity was
introduced and we have analyzed its gauge structure and its difficulties of quantization.
The NC SU(N) counterpart of this theory was constructed such that it is invariant under
the same gauge form.

The field-antifield formalism is the most powerful approach to study the gauge structure
and quantization of gauge theories. This formalism has an important role in quantization
of modern theories of high energy physics such as supergravity and superstring theory.
In the chapter 7.1 we have presented a field-antifield treatment of JP model. In fact we
used this theory as a simple toy model for studying the mentioned formalism. As it was
shown, the JP model has an irreducible, closed Lie algebra. After that we suggested a
non-minimal gauge-fixed action for this model which is ready for further calculations such
as quantization, Slavnov-Talyor identities and anomaly studies. It is worth to mention
that this model has been analyzed by a slightly different approach from antifield formalism
in [120].
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Appendix A – The Moyal-Weyl product

To investigate field theories defined on spaces with NC coordinates corresponding to
deformations of flat spaces, as e.g. the Euclidean plane or Minkowski space Md one must
replace the (commuting) coordinates of flat space by Hermitian operators xµ (with µ = 0,
1, · · · , (d-1)) [121]. Let us consider a canonical structure defined by the following algebra

[x̂µ, x̂ν ] = iθµν

[θµν , x̂ρ] = 0, (A.1)

where simplest case is when the θµν matrix is constant, which means that we have only
the first equation of (A.1). Furthermore, θµν is real and antisymmetric. In natural units,
where ~ = c = 1, it can be seen easily from (A.1) that it has squared mass dimension, i.e.,
[θ] = −2.

In order to construct the perturbative field theory formulation, it is more convenient
to use fields Φ(x) (which are functions of ordinary commuting coordinates) instead of
operator valued objects like Φ̂(x̂). To be able to consider such fields, concerning the
properties (A.1), one must redefine the multiplication law of functional (field) space. One
therefore defines the linear map f̂(x̂) 7−→ S[f̂ ](x), called the "symbol" of the operator f̂ ,
and it can then represent the original operator multiplication in terms of the so-called star
products which symbols is

f̂ ĝ = S−1
[
S[f̂ ] ? S[ĝ]

]
, (A.2)

see for example references [122, 86]. By using the Weyl-ordered symbol (which corresponds
to the Weyl-ordering prescription of the operators) one can arrive at the following definitions
(with S[f̂ ](x) = Φ(x))

Φ̂(x̂) ←→ Φ̂(x),

Φ̂(x̂) =
∫ ddk

(2π)d
˜̂Φ(k)eikx̂,

Φ̃(k) =
∫
ddx Φ(x)e−ikx , (A.3)

where k and x are real variables. For any two arbitrary scalar fields Φ̂1 and Φ̂2 one
therefore can write that7

Φ̂1(x̂)Φ̂2(x̂) =
∫ ddk1

(2π)d
∫ ddk2

(2π)d
˜̂Φ1(k1) ˜̂Φ2(k2) eik1x̂ eik2x̂

=
∫ ddk1

(2π)d
∫ ddk2

(2π)d
˜̂Φ1(k1) ˜̂Φ2(k2) ei(k1+k2)x̂− 1

2 [x̂µ,x̂ν ]k1,µk2,ν (A.4)

7 One has to use the Baker-Campbell-Hausdorff formula, as well as relation (A.1)
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Hence one has the following Weyl-Moyal correspondence

Φ̂1(x̂)Φ̂2(x̂) = Φ̂1(x) ? Φ̂2(x), (A.5)

where, in using relation (A.1) to replace the commutator in the exponent of (A.4), the
Moyal-Weyl star product is given by

Φ1(x) ? Φ2(x) = Φ1(x)exp
(
i

2
←−
∂ xθ

µν−→∂ y

)
Φ2(y)

∣∣∣∣
x=y

. (A.6)

This equation means that we can work in the same way as in a usual commutative space
for which the multiplication operation is modified by the star product (A.6).

Using integration by part and antisymmetric property of the NCy parameter, θij = −θji,
we can find an useful relation∫

dnx f(x) ? g(x) =
∫
dnx g(x) ? f(x) =

∫
dnx f(x)g(x). (A.7)

The Moyal-Weyl star product in its general form is defined by

f1(x1) ? . . . ? fn(xn) =
∏

1≤a<b≤n
exp( i2θ

ij ∂

∂xia

∂

∂xjb
)f1(x1) . . . fn(xn) (A.8)

For instance, the star product of three functions at the first order of θ is given by

f(x) ? g(x) ? h(x) = f(x)g(x)h(x) + i
2θ

µν∂µf(x)∂νg(x).h(x)

+ i
2θ

µν∂µf(x)g(x)∂νh(x) + i
2θ

µνf(x)∂µg(x)∂νh(x)
(A.9)

and for the four functions we obtain

f(x) ? g(x) ? h(x) ? k(x) = f(x)g(x)h(x)k(x) + i
2θ

µν∂µf(x)∂νg(x).h(x).k(x)

+ i
2θ

µν∂µf(x)g(x)∂νh(x).k(x) + i
2θ

µν∂µf(x)g(x).h(x)∂νk(x)

+ i
2θ

µνf(x)∂µg(x)∂νh(x).k(x) + i
2θ

µνf(x)∂µg(x)h(x)∂νk(x)

+ i
2θ

µνf(x)g(x)∂µh(x)∂νk(x)
(A.10)

For the ordinary commuting coordinates, the Moyai-Weyl star product implies that8

[xµ, xν ]? = iθµν

[θµν , xρ]? = 0 . (A.11)
8 The Weyl bracket is defined as [A,B]? = A ? B −B ? A
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At this point one has to mention that the commutation relations (A.1) between the
coordinates explicitly break Lorentz invariance because of the fact that we assumed that θ
is a constant matrix [86].

Some other possibilities for a non-constant θ are, for example, θµν = Cµν
ρ xρ (Lie algebra)

or θµν = Rµν
ρσx

ρxσ (quantum space structure) - one can see for instance reference [122, 86]
for a detailed discussion about these two approaches.

Another solution of this problem leads us to the NC formulation of the spacetime used
here which was formulated by Doplicher, Fredenhagen and Roberts (DFR) [69], which is
based in general relativity and quantum mechanics arguments. This formalism recovers
Lorentz invariance through the promotion of θµν to be a standard coordinate operator of
this extra dimensional system. Of course, being the coordinate, the algebra turns out to
be, together with Eq. (A.1)

[x̂µ, p̂ν ] = iδµν ;
[
x̂µ, θ̂µν

]
= 0 ; [p̂µ, p̂ν ] =

[
θ̂µν , θ̂ρλ

]
= 0 (A.12)

which completes the basic DFR algebra.
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Appendix B – A brief review of non-Abelian gauge theories

In this appendix we are going to review some basic concepts about special unitary su(N)
Lie algebras9, i. e., the algebras associated with the symmetry groups that are beneath
the symmetries of the standard model of particle physics. Lie algebras are closely related
to Lie groups which are groups that are also smooth manifolds, with the property that
the group operations of multiplication and inversion are smooth maps. Any Lie group
gives rise to a Lie algebra. Conversely, to any finite-dimensional Lie algebra over real or
complex numbers, there is a corresponding connected Lie group unique up to covering.
Generally physicist prefer to study Lie alberas which are linear objects instead of study
Lie groups, which are geometric objects. The generators (bases of the vector space) of a
general Lie algebra obey a non-associative multiplication called Lie Bracket 10

[
T a , T b

]
= ifabc T c (B.1)

where the constants fabc are called structure constants of the groups and are unique
characteristics of a Lie group. The indices run from 1 to the order of the algebra, i. e.
the number of generators of the algebra. The number of generators of su(N) is equal
to N2 − 1, so the order of the group is N2 − 1. A basis always can be chosen in a form
that the structure constants are completely antisymmetric. One can check that any three
generators A, B and C, satisfy the Jacobi identity

[[A,B] , C] + [[B,C] , A] + [[C,A] , B] = 0 (B.2)

This leads to the following identity for the structure constants

fabef ecd + f bcef ead + f caef ebd = 0 (B.3)

In matrix representation of SU(N), the generators are traceless but the trace of the product
of two generators is in general nonzero. It is always possible to choose a basis such that

Tr(T a T b) = C(R)δab (B.4)

where the coefficient C(R) depends on the representation of the generators T a and their
normalization. However, once the this coefficient is fixed for one particular representation,
the values of C(R) for other representations are automatically determined.
9 In the literature the symbol SU(N) is reserved for the special unitary Lie group and su(N)

for its associated Lie algebra.
10 Generally, mathematicians define the Lie algebra in a slightly different way. In physics we

are mainly interested in the Hermitian operators, for this reason we defined the Lie algebra
with the complex variable “i”. In this way the generators are Hermitian objects. But if we
drop out this complex variable and insist on maintaining the structure constant to be real
valued, the generators will be anti-Hermitian objects.
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Here we will be concerned only with two specific representations of su(N): the funda-
mental and the adjoint representations. The dimension of the fundamental representation
is N , so the generators are N ×N matrices and it is the smallest irreducible representation.
There is also an “anti-fundamental” representation which is a complex conjugation of the
fundamental representation. For N = 2 these two representations are actually equivalent
because they are related by a unitary transformation. But for N > 2 the fundamental
and anti-fundamental representations are not equivalent. This is the case of SU(3) as the
gauge group of QCD that leads to quarks and anti-quarks representations.

Usually we normalize the generators of the fundamental representation as

Tr(T aF T bF ) = δab

2 (B.5)

and, as mentioned before, this normalization automatically sets all other coefficients of
representations.

For su(2) algebra, the structure constants are given by the Levi-Civita symbol, fabc =
εabc. The generators of the fundamental representation of this algebra are taken to be one
half of the Pauli matrices:

T aF = σa

2 (B.6)

where σa are just the usual Pauli matrices. We can see that these generators satisfy the
condition (B.5).

The non-zero structure constants for the su(3) algebra are

f 123 = 1 , f 147 = f 165 = f 246 = f 257 = f 345 = f 376 = 1
2 , f 458 = f 678 =

√
3

2 (B.7)

and the generators of the fundamental representation are given by the one half of the
Gell-Mann matrices:

T aF = λa

2 (B.8)

where the Gell-Mann matrices are

λ1 =


0 1 0
1 0 0
0 0 0

 λ2 =


0 −i 0
i 0 0
0 0 0

 λ3 =


1 0 0
0 −1 0
0 0 0



λ4 =


0 0 1
0 0 0
1 0 0

 λ5 =


0 0 −i
0 0 0
i 0 0

 λ6 =


0 0 0
0 0 1
0 1 0



λ7 =


0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3


1 0 0
0 1 0
0 0 −2

 (B.9)

These matrices, by definition, are traceless, Hermitian, and obey the extra relation (B.5).
These properties were chosen by Gell-Mann because they then generalize the Pauli matrices
for SU(2) group.
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In the standard model, all the fermions as well as the Higgs fields transform in the
fundamental and anti-fundamental representations of the gauge groups.

The adjoint representation also has a particular importance because the gauge field
strengths transform in this representation. The adjoint representation is defined by

(T aAD)bc = −ifabc. (B.10)

On the left hand side, the index a determines the specific generator which we are dealing
with, whereas the bc label the specific entry of that generator. Clearly the dimension of
this representation is N2 − 1, the same value as the number of the generators. Using
the Jacobi identity we can show that these matrices indeed satisfy the basic definition
of the Lie groups. By assuming the specific normalization (B.5) for the fundamental
representation, the adjoint representation obeys

Tr(T aAD T bAD) = Nδab. (B.11)

Now let us consider a set of N fermionic/bosonic fields ψi that transform in the fundamental
representation of sn(N) algebra. It means that they can be written as a column vector ψ.
Under a gauge transformation these fields transform as

ψ → ψ′ = exp [iT aFΛa(x)]ψ

≡ Uψ (B.12)

where Λa(x) are a set of N2 − 1 spacetime dependent gauge parameters and U is an
element of group SU(N).

In the rest of the appendix we will suppress the spacetime dependence of Λ to alleviate
the notation. We also define

T aF Λa ≡ Λ. (B.13)

We have to keep in mind that Λ is an N ×N matrix containing a set of N2−1 parameters.
The gauge covariant derivative on this multiplet is defined by

Dµψ ≡ (∂µ + AaF T
a
F )ψ (B.14)

and, as it can be seen from this definition there is the same number of gauge fields as the
number of generators of the group, i. e., N2 − 1. To simplify the notation we also define

Aaµ T
a
F ≡ Aµ (B.15)

which we shall call Aµ as the gauge field but indeed it is a matrix as Λ 11.The transformation
of the gauge field is given by

Aµ → A′µ = UAµU
† + i(∂µ)U †. (B.16)

11 In the standard model the notation Aaµ ≡W a
µ for the SU(2)L gauge fields and Aaµ ≡ Gaµ for

the glouns
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By adopting this definition the covariant derivative Dµψ transforms in the same way as ψ
itself

Dµψ → (Dµψ)′ = UDµψ (B.17)

As an example let us take a look at the transformation of Dirac spinors Ψi. When these
fields transform in the fundamental representation, a gauge invariant Lagrangian can be
obtained simply by replacing ∂µ by the gauge covariant derivative in the Dirac Lagrangian:

L = Ψ̄(iγµDµ −m)Ψ (B.18)

where, again, Ψ is seen as a column vector containing the N Dirac spinors transforming in
the fundamental representation of a group12.

It is noteworthy to mention that there is much freedom in the choice of signs in the
definitions (B.14) and (B.16), the only restriction is that these definitions must result
transformation property (B.17).

The field strength corresponding to a gauge field is

Fµν = [Dµ, Dν ]

= ∂µAν − ∂νAµ − i [Aµ, Aν ] (B.19)

The commutator is, of course, zero in the case of an Abelian gauge theory like Maxwell
electrodynamics. Since the field strength is also a Lie algebra-valued object, it may be
written explicitly as

Fµν ≡ F a
µν T

a
F

= ∂µA
a
ν T

a
F − ∂νAaµ T aF − iAbµ Acν

[
T bF , T

c
F

]
(B.20)

Using the basic property of Lie bracket we have

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcAbµ A

c
ν (B.21)

Using Eq. (B.16) one can show that the field strength transforms as

Fµν → F ′µν = UFµνU
†

≈ Fµν + i [Λ, Fµν ]

= F a
µνT

a
F + iΛb F c

µν

[
T bF , T

c
F

]
= F a

µνT
a
F − fabcΛbF c

µνT
a
F (B.22)

from which we can read off the transformation of F a
µν :(

F a
µν

)′
= F a

µν − fabcΛbF c
µν (B.23)

12 Replacing normal derivative by the covariant one is a common method for introducing the
interaction of a particle with a gauge field
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Using the antisymmetry of the structure constants and the definition of the adjoint
representation we can rewrite the above equation as(

F a
µν

)′
= F a

µν + i
(
T bAD

)bc
ΛbF c

µν (B.24)

which is the infinitesimal limit of(
F a
µν

)′
= exp

(
i T bADΛb

)
Fµν (B.25)

This shows that the field strength transforms in the adjoint representation. Note that in
the above equation, Fµν is a column vector with N2 − 1 components, in contrast with the
Fµν in the Eq. (B.22) which is an N ×N matrix.

Unlike the Abelian case, F µνFµν of a non-Abelian gauge theory is not gauge invariant
and it is a matrix. So we can not use it as the kinetic term of a Lagrangian. On the other
hand, the trace of this quantity is gauge invariant and the kinetic term can be taken in
the following form

Lkin = −1
2Tr (F µνFµν)

= −1
2F

aµνF b
µνTr

(
T aF T

b
F

)
= −1

4F
aµνF a

µν (B.26)
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Appendix C – A quick glance at universal enveloping algebra

Here we would like to take a glance at the concept of universal enveloping algebra. Universal
enveloping algebras are nearly as common as Lie algebras in physics, but we often take
them for granted or do not even think about them. The universal enveloping algebra of a
Lie algebra is the most general unital associative algebra into which the Lie algebra can
be embedded.

Let us consider a Lie algebra generated by Ti, i = 1, 2, · · · , n ,

[Ti , Tj] = ifijkTk (C.1)

The Lie algebra could for instance be the algebra of angular momentum operators Ji , a
cornerstone of quantum mechanics. We do not usually see the Lie bracket [Ti , Tj] as a
non-associative product of generators Ti , but instead as a commutator

[Ti , Tj] ≡ TiTj − TjTi = ifijkTk (C.2)

where the associative product is TiTj . Thus, we have embedded the Lie algebra into its
universal enveloping algebra that consists of the polynomials in the generators Ti modulo
the commutation relations (C.2) and of the unit element 1. The basis of the universal
enveloping algebra can be chosen such that it consists of 1 and of the fully symmetrized
products of the generators

T(i1Ti2 · · ·Tin) , n ∈ N (C.3)

Since the universal enveloping of a Lie algebra fully captures the structure of the Lie
algebra, the representation of the common generators are identical for the two algebras.
In the universal enveloping of a Lie algebra we can define such polynomial operators as
the quadratic Casimir operators, which can be used to classify the representations of the
corresponding Lie algebra.

Every Lie algebra has a universal enveloping algebra, which is uniquely determined up
to a unique algebra isomorphism by the Lie algebra. This property of "universality" is
the reason why enveloping algebras of Lie algebras are called universal. The associativity
property of universal enveloping algebras enables the introduction of interesting additional
structures and that is what makes universal enveloping algebras so useful for us.
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