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(Bruno De Finetti)



ABSTRACT

This thesis presents and discusses improvements in the type-1 and singleton fuzzy logic
system for dealing with classification problems. Two training methods are addressed, the
scaled conjugate gradient, which uses the second order information approximating the
multiplication of the Hessian matrix H by the directional vector v (i.e. Hv), and the
same method using the differential operator R{·} to compute the exact value of Hv.
Also, in order to adapt the fuzzy model to handle multiclass classification problems, it is
developed a novel fuzzy model with a vector as output. All proposals are tested through
the performance metrics analysis based on data sets provided by UCI Machine Learning
Repository. The reported results show the high convergence speed and better classification
rates of the proposed training methods than others presented in the literature. Additionally,
the novel fuzzy model has a significant reduction in computational and classifier complexity,
especially when the number of classes in classification problem increases.

Key-words: fuzzy logic system, multiclass classification, scaled conjugate gradient, hessian-
free.
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1 INTRODUCTION

The fuzzy logic (FL) was introduced by Lotfi A. Zadeh in 1965 inspired by the
processes of human perception and cognition. While in the classical logic exist only truth
and false, in the FL was developed the mathematical concept of partial truth and partial
false. Based on this concept, the fuzzy logic system (FLS) emerged by promising to
deal with problems owning uncertainties that may not be modeled by well-established
theories, such as statistical theory. Over the years, the applications that use FLS has
spread across different fields of knowledge. In these fields, the most common applications
of FLS are control and automation [1], supervised and unsupervised (clustering) pattern
recognition [2, 3], regression [4] and prediction [5].

The output of FLS has been widely discussed in the literature, owing the FLS has
only one output. This characteristic imply in difficulties when dealing with multiclass
classification problems (MCP). Usually the classifier which has this limitation needs a
decomposition strategy applied to solve it, reducing the initial MCP in several binary
classification problems. In other words, many two-classes classifiers must be designed, and
as consequence, the computational complexity increases. In [6] was used a FLS to deal with
MCP by employing pairwise learning decomposition strategy, resulting on improvement
of the FLS performance. The authors in [7] proposed a fuzzy support vector machine
to obtain the fuzzy rules by one-vs-all decomposition strategy. Also, in [8] was used a
fuzzy support vector machine in fault diagnosis of wind turbine classification; however,
the decomposition strategy adopted in this work was one-vs-one decomposition strategy.
All works aforementioned use a decomposition strategy, even FLS combined or not with
other models, evidencing the high limitation of FLS model to deal with MCP.

Another challenging issue about FL, is how to determine the number and the type
of rules to use. Based on inference of IF-THEN rules, the existing set of fuzzifications,
t-norms, t-conorms, memberships functions and defuzzifications result in an explosive
number of distinct FLS. Furthermore, two main approaches are widely investigated to
design FLS, the first is a merged model associating the fuzzy rule based method with
the neural network, in which the neural network is a non-linear function used to identify
the extremely non-linear system parameters. This merged model is well-know called
by artificial neuro-fuzzy inference system (ANFIS) [9]. This approach is used to solve
several problems, such as, in [10] is used an ANFIS to control the continuously variable
transmission ratio to extract the maximal wind energy through the wind turbine. The
researchers in [11], identify the dialect from Assamese speech using ANFIS through
of prosodic features, the comparison performed in this work showed that the ANFIS
provides around 23% improvement than feed forward neural network. The authors in [12]
proposed a new ANFIS classification technique for data mining, using the multilayer
perceptron backpropagation network and fuzzy set theory. The work concluded that this
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new technique offer improvements over previous ANFIS classification techniques. Also, a
hybrid classification technique integrating the fuzzy c-means clustering-piloting Particle
Swarm Optimization with ANFIS was proposed in [13], aiming to perform a non-intrusive
load monitoring system to identify the power-intensive household.

In another direction to design the FLS, the second main approach is to use the
evolutionary optimization method associated with FLS, such as genetic fuzzy system
(GFS) [14]. The GFS is a robust method applied in many kind of problems, in [15] the
authors use it within a pairwise learning framework for increase the detection rate of a
intrusion detection system. The method consists in use the higher interpretability of fuzzy
rules with the divide-and-conquer learning scheme. Moreover, [16] proposes an adaptive
GFS to optimize rules and membership functions for medical data classification process.
The quantitative, qualitative and comparative analysis performed show that the adaptive
GFS obtained better accuracy when compared with the existing GFS. In [17] was proposed
a methodology to obtain GFS under the iterative rule learning approach to forecast energy
consumption of an office building. Even having good results, the evolutionary algorithms
are computationally expensive by themselves due to the large number of iterations needed
to reach convergence [18]. On the other hand, the design of FLS based on first and second
information [19], which updates a fixed number of rules created initially by user, results in
lower computational cost and has the tendency to use fewer rules than evolutionary fuzzy
approaches.

Based on the aforementioned discussions, the following problems emerged: the
limitation of FLS to handle MCP and the design of FLS. The former problem is well
established in the literature, in fact, the FLS was designed to have only one output. As a
result, it cannot be directly applied to handle problems demanding two or more outputs.
For instance, MCP must be broken into several two-classes problems to allow the use of
FLS to handle it. In another perspective, the latter problem focuses on approach to design
the FLS without merged it with any model. The approach should reduce the computational
complexity and the dependence of user’s defined parameters. Both problems are very
interesting to be investigated, especially the latter when does not exists the knowledge
from the specialist.

1.1 OBJECTIVES

Aiming to deal with the well posed problems, the objective of this thesis are
summarized as follows:

• To propose the extension of type-1 and singleton FLS single output (T1-FLS)
to multiple outputs (T1-FLSMO), enabling to deal with MCP without the need
of binary decomposition strategies, and consequently, to avoid its computational
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complexity. In addition, to present performance analyses in terms of accuracy and
convergence speed based on well-known data sets provided by UCI Machine Learning
Repository [20].

• To introduce the use of scaled conjugate gradient (SCG) into training procedures
for T1-FLS and T1-FLSMO, which can reduce the dependence of user’s defined
parameters, increase the classification performance during the training phase through
the approximation of the multiplication of the Hessian matrix H by the directional
vector v (i.e., Hv). Additionally, to show how the differential operator R{·} can be
successfully used to compute the exact value of Hv and, as consequence, to come
up with additional increase in the convergence speed during the training phase and
computational complexity reduction when compared with the computational of H
and v.

1.2 WORK ORGANIZATION

This thesis is organized as follows:

• Chapter 2 formulates the problem and introduces T1-FLSMO for dealing with
MCP. In this regard, will be described a special attention to T1-FLS is given in the
formulation problem to emphasize the need for introducing the T1-FLSMO.

• Chapter 3 introduces the SCG and SCGR training methods for T1-FLS and T1-
FLSMO. The aspects of SCG and others gradient training methods are discussed
and its adaptation for T1-FLS and T1-FLSMO are presented. Also, details of
the differential operator R{·} to compute the exact value of Hv for T1-FLS and
T1-FLSMO are provided.

• Chapter 4 discussed performance results based on two approaches: The prime analysis
the influence of the training methods, while the latter focuses on the performance in
terms of the FLS models discussed for dealing with MCP.

• Chapter 5 presents the main aspects and conclusions of the proposed model and
training methods in this thesis, summarizing the main contributions and the directions
for future works.

Additionally, the Appendix A and B presents the detailed deduction of equations
to compute the Hv for T1-FLSMO and T1-FLS respectively using R{·}.
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2 TYPE-1 AND SINGLETON FUZZY LOGIC SYSTEM FOR CLASSIFI-
CATION PROBLEMS

The multiclass classification problem is one of the principal branch in machine
learning, formulated by the discrimination of patterns in more than two classes (discrimi-
nating between two classes is denominated binary classification). This problem exists in
distinct research fields, such as biomedical [21], surveillance and security [22], computer
vision [23], [24], [25], industrial [26], [27], and many others.

In general, the technique used to solve MCP may be organized into two categories:
having a single output (binary classifier) and having multiple outputs (multiclass classifier).
The binary classifier handles MCP using different strategies, the simplest and most applied
are One-vs-One (OvO) [28] and One-vs-All (OvA) [29]. The OvO strategy groups each
pair of classes by decomposing the original set of classes in several binary subsets of
classes, requiring to use Υ (Υ− 1)/2 classifiers, where Υ ∈ N∗ is the number of classes. At
final decision stage of the OvO strategy, the chosen class is obtained by a voting scheme
performed by all classifiers and the class with the highest votes win. In the OvA strategy,
the classification problem is decomposed in Υ binary problems, and each problem is formed
to distinguish one class from all remaining classes. Several contributions show that the
OvO strategy is better than OvA [30,31]; however, this advantage is somehow attenuated
because an increasing and relevant computational cost is associated with the number of
the classes increases.

Regarding MCP solved by FLS, it is necessary a decomposition strategy due to the
fact that FLS has only one output. Based on this strategy, the researchers improve the
performance of FLS by focusing on improvements on the training methods. In this regard,
the authors in [32] proposed a adaptation of the inference in fuzzy association rule-based
classification model, aiming to produce more accurate aggregations and, as consequence,
to improve the classification through the OvO and OvA strategies. Moreover, in [33] was
used a FLS-based classification technique with binary decomposition strategy (i.e. OvO
and OvA) to deal with MCP, attempting to study the best method in decision stage of
classification. Furthermore, the authors in [2] improved the classification performance
in MCP introducing the CG training method, which uses the second order information
for training FLS. In addition, [27] improved the training method of FLS in terms of
computational complexity and convergence speed, by using a cost function derived from
the Adaptive Filter Theory [34], which was named Set-Membership adaptive training
technique. This technique can reduces remarkably the computational complexity and
increase the convergence speed during the training phase, in comparison to the steepest
descent (SD) method. The aforementioned proposal improve indirectly the solution of
MCP using FLS and, as a consequence, exists a rising of fuzzy rules demanded to design
FLS for several binary classification problems. The solution of this problem based on FLS
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demands the design of FLS with multiple outputs.

In an attempt to overcome the limitation of FLS for handling MCP, this chapter
proposes the extension of T1-FLS to the so-called T1-FLS multiple outputs (T1-FLSMO).
The most important aspect of T1-FLSMO is that to deal with MCP with only one classifier,
consequently, it can remarkably reduce the computational complexity of the FLS-based
classifier when OvO and OvA strategies are taken into account.

This chapter is organized as follows: Section 2.1 presents the T1-FLS with single
output and formulates the problem for introducing T1-FLSMO, and in Section 2.2 details
the idea behind T1-FLSMO and shows that T1-FLS is a particular case of T1-FLSMO.

2.1 PROBLEM FORMULATION

The classification problem may be stated as mapping between a vector x ∈ RP×1

and a label. The input space is thereby divided into decision regions whose boundaries are
called decision boundaries or decision surfaces [35]. In this context, each decision region is
assigned to one class. The FLS classifier maps the input vector to the decision regions by
using IF-THEN rules. T1-FLS was proposed in [19], for handling classification problem,
by adopting singleton fuzzification, max-product composition, product implication1 and
height defuzzification. As result, the output of T1-FLS is expressed as [19]

fs (x) =

M∑
l=1

θl
P∏
k=1

µF l
k

(xk)
M∑
l=1

P∏
k=1

µF l
k

(xk)
, (2.1)

where xk is the k-th element of the vector x, which is constituted by P features, ∏ denotes
the product operator, µF l

k
(xk) is the membership function associated with the k-th input

of the l-th rule and θl is the weight associated with the l-th rule, l = 1, · · · ,M . Figure 1
shows a diagram block for T1-FLS. The subscript ‘s’ in fs (x) makes it clear that this is a
type-1 and singleton FLS with single output. T1-FLS adopts the gaussian membership
function, which is given by

µF l
k

(xk) = exp

−1
2

xk −mF l
k

σF l
k

2
 , (2.2)

where mF l
k
and σ2

F l
k
are the mean and the variance respectively, for a given set of input-

output pairs
(
x(q) : y(q)

)
, where ’q’ denote the q-th iteration.

By using T1-FLS, the solution of binary classification problem may be understood
as the minimization of a given cost function. Usually, the cost function is expressed as [19]

J
(
w(q)

)
= 1

2
[
fs
(
x(q)

)
− y(q)

]2
, (2.3)

1 t-norm
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where q = 1, . . . , Q, and Q is the number of patterns used for training the T1-FLS, w(q)

denotes the vector of parameters for T1-FLS at the q-th iteration. Note that the vector
w(q) is expressed as

w(q) =
[
mF 1

1
(q) , · · · ,mF 1

P
(q) , · · · ,mFM

1
(q) , · · · ,mFM

P
(q) , · · · ,

σF 1
1

(q) , · · · , σF 1
P

(q) , · · · , σFM
1

(q) , · · · , σFM
P

(q) , · · · , (2.4)

θ1 (q) , · · · , θM (q)]T .

It is important to emphasize that T1-FLS has only a single output, this characteristic
imply in binary decomposition strategy dependence when MCP applies. This dependence
turn this model less attractive if the number of classes are large. At this moment, it is
important to highlight that the defuzzification is responsible for T1-FLS having only one
output. Therefore, it seems to be the starting point for introducing modification in FLSs
that will allow them to have multiple outputs. Focusing on defuzzification of T1-FLS,
Section 2.2 introduces a simple and effective modification that allow a T1-FLS has several
outputs.

Figure 1: Type-1 fuzzy logic system with a single output.
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2.2 THE PROPOSED TYPE-1 AND SINGLETON FUZZY LOGIC SYSTEM MULTI-
PLE OUTPUT

The extension of the T1-FLS multiple output will be called type-1 and singleton
fuzzy logic system multiple output (T1-FLSMO). The inference block of T1-FLSMO is
shown in Figure 2. In other words, T1-FLSMO is the T1-FLS with multiple outputs.

Figure 2: Type-1 fuzzy logic system multiple output.

In this context, let us assume that T1-FLS adopt singleton fuzzification, max
product composition, product implication2 and height defuzzification. Then, it is well-
established that in height defuzzification, each rule output fuzzy set is replaced by a
singleton (θl) at the point having maximum membership in that output set, and afterward,
calculates the centroid of the type-1 set comprised of these singletons. Instead of have a
(θl) only for each rule, T1-FLSMO assumes the existence of a singleton (θl) for each output
(t) too, forming the matrix of singletons for height deffuzification, which is expressed as

Θ =


θ1

1 θ1
2 · · · θ1

M

θ2
1 θ2

2 · · · θ2
M

... ... . . . ...
θΥ

1 θΥ
2 · · · θΥ

M

 , (2.5)

where t = 1, · · · ,Υ. Therefore, the output of T1-FLSMO using the height deffuzification
is given by

y(q) = fsmo

(
x(q)

)
= ΘΦ

(
x(q)

)
, (2.6)

where
fsmo

(
x(q)

)
=
[
f 1
smo

(
x(q)

)
, f 2
smo

(
x(q)

)
, · · · , fΥ

smo

(
x(q)

)]T
, (2.7)

Φ
(
x(q)

)
=
[
φ1
(
x(q)

)
φ2
(
x(q)

)
· · · φM

(
x(q)

) ]T
(2.8)

2 t-norm
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and φl (x) is a fuzzy basis function (FBF) [19], which is expressed as

φl (x) =

P∏
k=1

µF l
k

(xk)
M∑
l=1

P∏
k=1

µF l
k

(xk)
. (2.9)

The subscript smo in equation (2.6) means that it refers to a type-1 and singleton FLS with
multiple outputs. In other words, the T1-FLS uses the rules to compute the single output,
and the T1-FLSMO uses all the same rules to compute several outputs, which is similar
with a neural network with several outputs. Given a set of input-output pairs

(
x(q) : y(q)

)
,

where ’q’ denote the q-th iteration, the MCP can be understood as a minimization of the
following cost function:

J
(
w(q)

)
= 1

2
∑Υ

t=1

(
f tsmo

(
x(q)

)
− yt (q)

)2
, (2.10)

where w(q) denotes the parameter vector for the T1-FLSMO, which is expressed as

w(q) =
[
mF 1

1
(q) , · · · ,mF 1

P
(q) , · · · ,mFM

1
(q) , · · · ,mFM

P
(q) , · · · ,

σF 1
1

(q) , · · · , σF 1
P

(q) , · · · , σFM
1

(q) , · · · , σFM
P

(q) , · · · , (2.11)

θ1
1 (q) , · · · , θ1

M (q) , · · · , θΥ
M (q) , · · · , θΥ

M (q)
]T
.

Also the gradient vector ∇J
(
w(q)

)
is given by

∇J
(
w(q)

)
=
∂J

(
w(q)

)
∂mF 1

1
(q) , · · · ,

∂J
(
w(q)

)
∂mF 1

P
(q) , · · · ,

∂J
(
w(q)

)
∂mFM

1
(q) , · · · ,

∂J
(
w(q)

)
∂mFM

P
(q) , · · · ,

∂J
(
w(q)

)
∂σF 1

1
(q) , · · · ,

∂J
(
w(q)

)
∂σF 1

P
(q) , · · · ,

∂J
(
w(q)

)
∂σFM

1
(q) , · · · ,

∂J
(
w(q)

)
∂σFM

P
(q) , · · · , (2.12)

∂J
(
w(q)

)
∂θ1

1 (q) , · · · ,
∂J
(
w(q)

)
∂θ1

M (q) · · ·
∂J
(
w(q)

)
∂θΥ

1 (q) , · · · ,
∂J
(
w(q)

)
∂θΥ

M (q)

T ,
in which the derivatives of J

(
w(q)

)
with regard to parameters mF l

k
(q), σF l

k
(q) and θtl (q),

are as follows:

∂J
(
w(q)

)
∂mF l

k
(q) =

Υ∑
t=1

([
f tsmo

(
x(q)

)
− yt (q)

] [
θtl (q)− f tsmo

(
x(q)

)])
aF l

k
(q)φl

(
x(q)

)
, (2.13)

∂J
(
w(q)

)
∂σF l

k
(q) =

Υ∑
t=1

([
f tsmo

(
x(q)

)
− yt (q)

] [
θtl (q)− f tsmo

(
x(q)

)])
bF l

k
(q)φl

(
x(q)

)
(2.14)

and
∂J

(
w(q)

)
∂θtl (q) =

[
f tsmo

(
x(q)

)
− yt (q)

]
φl
(
x(q)

)
, (2.15)
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where aF l
k

(q) and bF l
k

(q) are given by:

aF l
k

(q) =
x

(q)
k −mF l

k
(q)

σ2
F l

k
(q) (2.16)

and

bF l
k

(q) =

(
x

(q)
k −mF l

k
(q)
)2

σ3
F l

k
(q) , (2.17)

respectively. Finally, it is important to notice that the concepts of T1-FLSMO related
to the extended version of the height defuzzification, can be introduced in other kind of
defuzzification types of LFS.

2.2.1 Relationship with the type-1 and singleton fuzzy logic system single
output

A particular case of the T1-FLSMO is obtained when it has a unique output Υ = 1,
which reduces T1-FLSMO to T1-FLS [19]. Using the singleton fuzzification, max-product
composition, product implication3 and height defuzzification, the T1-FLS output has the
form given by equation (2.1) which also can be expressed as

fs (x) =
M∑
l=1

θlφl (x). (2.18)

Given a set of input-output pairs
(
x(q) : y(q)

)
, (2.10) reduces to (2.3) and the gradient

given by (2.13), (2.14) and (2.15) result in the following equation:

∂J
(
w(q)

)
∂mF l

k
(q) =

[
fs
(
x(q)

)
− y (q)

] [
θl (q)− fs

(
x(q)

)]
aF l

k
(q)φl

(
x(q)

)
, (2.19)

∂J
(
w(q)

)
∂σF l

k
(q) =

[
fs
(
x(q)

)
− y (q)

] [
θl (q)− fs

(
x(q)

)]
bF l

k
(q)φl

(
x(q)

)
(2.20)

and
∂J

(
w(q)

)
∂θl (q)

=
[
fs
(
x(q)

)
− y (q)

]
φl
(
x(q)

)
, (2.21)

respectively. A comparison between the deduction of T1-FLS in [19] and (2.19)–(2.21)
confirms that T1-FLS is a particular case of T1-FLSMO.

3 t-norm
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3 T1-FLSMO AND T1-FLS TRAINED BY SCALED CONJUGATE GRA-
DIENT AND SCALED CONJUGATE GRADIENT WITH DIFFEREN-
TIAL OPERATOR R{·} METHODS

In general, supervised training methods mainly make use of first-order information
of cost function. A popular gradient based method is the steepest descent (SD), which
uses the first-order information. Its form and its calculations are simple; however, it offers
slow convergence rate [36]. Therefore, the first-order information based methods are not
suitable for handling cost functions with complex problems, usually stopping in a poor
local minimal. Some alternative methods have been developed by exploiting second-order
information and, as a consequence, increased convergence rate can be reached [37], [9].

The convergence rates of the methods based on the second-order information are
higher than those yielded by the first-order information methods [38], [39]. Nevertheless,
using second-order information for large scale problems adds some difficulties, such as: i)
the evaluation of the Hessian matrix, ii) the calculation of its inverse matrix, and iii) the
large memory usage [40]. To overcome these difficulties and to speed up the training process,
one approach is to estimate the Hessian matrix or its inverse [9], [41], [42], [43]. Another
approach is to calculate the Hessian matrix directly from eigenvectors corresponding to
its largest eigenvalues [44]. A third approach is the calculation of the Hessian matrix by
using the first-order information as in the conjugate gradient (CG) method [9]. The CG
method uses the line-search technique to determine the current step size [45], [46].

A well-know variation of the CG method is the scaled conjugate gradient (SCG)
method. The SCG method is based on the second-order information supervised learning
procedure [36], [47], [48]. In the SCG method two gradients are calculated per iteration:
the first gradient is calculated with a small step size, and the second gradient is calculated
with a large step size. Also the SCG method executes a trust-region technique rather
than the line-search technique to scale the step size. The line search technique uses a
model function to generate a search direction, focusing on to determine a suitable step
length along this direction. With the use of the trust-region technique [49], [50], a region is
defined around the current search point, ‘trusting’ the model function to be an appropriate
representation of the cost function to be minimized, choosing the step size to be the
approximate minimizer of the model in this region. A trust-region technique is more
robust than a line-search techniques [36], [51], and line search technique requires more
user’s dependence parameters to determine the step size, something that increases the
time interval and for hardware resource usage demanded by a training procedure. This
disadvantage is eliminated in the SCG method by using the trust-region technique as it is
well-addressed in the Levenberg-Marquardt method [51], [52].

Aiming to classify defects in railroad switch machines, the authors in [2] proposed
a type-1 and singleton fuzzy logic system trained by the conjugate gradient method (CG



21

T1-FLS), resulting in a higher performance and convergence speed in comparison with
previous classification techniques based on Bayes, the artificial neural network and the
type-1 and singleton fuzzy logic system trained by steepest descent method (SD T1-FLS).
However, this work showed a higher dependence of user’s parameters and higher complexity
due to the calculation of full Hessian matrix. In order to overcome this problem, the
type-1 and singleton fuzzy logic systems trained by scaled conjugate method (SCG T1-FLS
and SCG T1-FLSMO) is proposed. Avoiding the computing of Hessian matrix, the SCG
T1-FLS and SCG T1-FLSMO approximate the multiplication of the Hessian matrix by the
directional vector. This fact can result in round-off problems and can limit the capability
to reach a global minimum of a cost function.

In an attempt to improve the performance of the SCG T1-FLS and SCG T1-
FLSMO, this thesis also propose the calculation of theHv based on the differential operator
R{·} [53], in which H and v are the Hessian matrix and directional vector, respectively.
It results in T1-FLS trained by SCG with the differential operator R{·} [47], [48], [54].
The acronym adopted for these models are SCGR T1-FLS and SCGR T1-FLSMO. The
main idea behind of the SCGR T1-FLS is to compute exactly Hv, and, as a consequence,
to yield a higher performance and convergence speed in comparison with the SCG T1-FLS.
This increase of convergence speed is a remarkable results if a limited number of epochs is
used. As a matter of fact, an effective training is a very difficult task to be accomplished
and the situation may worsen when a specific application demands a periodic update of
the parameters of the model (i.e. the classification technique needs to be retrained to
cover new patterns). In this regard, the increase of the convergence speed during the
training phase of the design of a classification technique without decreasing its accuracy is
an interesting problem to be addressed as it was very-well addressed in chapter 1.

In this context, this chapter introduces the SCG T1-FLS and SCG T1-FLSMO,
which is capable of reducing the dependence of user’s parameters, increasing the classi-
fication performance and decreasing the computational complexity during the training
phase through the approximation of Hv. Moreover, it introduces the use of the differential
operator R{·} to compute the exact value of Hv and to come up with additional increase
on the convergence speed, during the training phase and under a limited number of epochs.

This chapter is organized as follows: Section 3.1 explains the limitations of the
main gradient training methods and formulate the problem; while Section 3.2 introduces
the SCG training method and its principal concepts. Also it is presented the training
algorithm used in T1-FLS and T1-FLSMO by SCG and SCGR methods, as well as, how
to use the differential operator R{·} to calculate Hv for T1-FLS and T1-FLSMO.
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3.1 PROBLEM FORMULATION

Considering the FLS introduced in chapter 2 T1-FLSMO, together with singleton
fuzzification, max-product composition, product implication1 and height defuzzification,
its output is described by equation (2.6). The best classification rate is achieved when the
cost function given by equation (2.10) is minimized, which is directly related to the values
of parameters mF l

k
, σF l

k
and θtl , which are obtained at the end of training phase.

Different methods can be devised to update the parameters of a T1-FLSMO.
In general, they are based on a local iterative process which uses the gradient of the
cost function ∇J

(
w(q)

)
to search in its neighborhood a w(q+1) which minimizes the cost

function. The CG methods are also based on this iterative process but choose the search
direction and step size more carefully by using second-order information [2] [55] and/or
using the line-search techniques [56] [57]. The authors in [2] discussed a comparison
between SD and CG methods applied to the training procedure of a type-1 and singleton
FLS. As expected, the CG methods were faster than the SD method by achieving a higher
accuracy. However, this work showed the higher existing dependence of user’s parameters
(such as the step-length α(q), and the parameters used to obtain the next search direction
β(q)) and higher computation complexity, especially when the use of CG method requires
the calculation of the Hessian matrix.

The issues aforementioned occur in training procedure of the methods. In addition,
when employed a procedure which require less parameters defined by user, the time used to
design the model consequently is reduced. This reduction, also entails that the specialist
and not specialist users having the same chance to achieve the convergence of the method,
independently from its knowledge. Moreover, the second-order training methods which
computes the Hessian matrix has a large computational cost and memory usage do not be
attractive for large-scale problems. In order to contour these issues, Section 3.2 introduces
the SCG training method, and usage of the differential operator R{·} to T1-FLSMO.

3.2 T1-FLSMO TRAINED BY SCALED CONJUGATE GRADIENT

The idea to be exploited is to introduce the SCG method for training T1-FLSMO.
The SCG method was firstly proposed in [36] and further improved in [51] it consists in
exploiting a conjugate direction does not need any line-search technique [45, 58]. As a
consequence, the dependence of user’s parameters are reduced. The main contribution
of the SCG method is to estimate the term s(γ) = H

(
w(q)

)
v(γ) in the current epoch γ,

where v(γ) is a directional vector and H
(
w(q)

)
is the Hessian matrix, which is obtained

by the derivation of the gradient vector of the cost function ∇J
(
w(q)

)
in relation to the

1 t-norm
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fuzzy parameters mF l
k

(q), σF l
k

(q), θtl (q). The term s(q) can be approximated as follows:

s(γ) ≈ H
(
w(q)

)
v(γ) ≈

∇J
(
w(q) + εv(γ)

)
−∇J

(
w(q)

)
ε

, 0 < ε� 1. (3.1)

Note that equation (3.1) avoids computing the Hessian matrix, thereby reducing the
computational complexity and memory usage [51].

If the value of the vector w(q) results in a negative definite Hessian matrix, then the
use of a negative step-length α(q) have to be avoided. Basically, a positive scale parameter
λ ∈ IR+ is added to the diagonal of H

(
w(q)

)
. If λ is sufficiently large, the Hessian matrix

become positive definite and, as a consequence, it yields a positive α(q). Taking a large
value for λ implies a small step size in the direction of search vector v(γ), that is, the
first-order information will predominate over the second-order information. In a similar
way, if the scale parameter λ has a small value, the second-order information will have
a more prominent influence than the first-order one on the value of α(q). To allow the
adaptation of λ during the training procedure, SCG includes steps inherited from trust
region techniques. Basically, it decreases λ in regions where the quadratic model is a good
local approximation, and increases λ in regions where the quadratic approximation is poor.
A detailed description of all necessary steps for implementing SCG can be found in [47,51].

The algorithm used to implement the SCG method, which was proposed in [51]
define −∇J

(
w(q)

)
as the initial update direction when (q = 1), computing all the next

directions conjugated from it. However, −∇J
(
w(1)

)
can not point to the correct direction

that minimizes the cost function. Thus, the algorithm presented in [51] assumes small
values for α(γ), resulting ∆(γ) = 0. This fact avoids the convergence of the parameters of
the model. To overcome this problem, the SCG [51] method is modified as follows: when
∆(γ) = 0, it is assumed that v(γ) = r(γ) = −∇J

(
w(q+1)

)
where q is a index representing

the chosen initial direction given by q-th pattern. In other words, the actual direction is
changed by the negative value of the gradient of the next pattern. Figure 3 shows the
roadmap of algorithm used to implement the modified version of the SCG method, which
is used for training T1-FLSMO. It is important to emphasize that the SCG method must
be trained only with the batch mode [51].
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Input: Weight vector w(1),
scalars 0 < ε ≤ 10−4, 0 < λ(1) ≤ 10−6 and
λ̄(1) = 0.

1 Output: Minimum weight vector
(
w(γ+1)).

2 γ = 1 and success=true;
3 q = 1 ;
4 Set v(γ) = r(γ) = −∇J

(
w(q));

5 if success = true then // calculate the
second order information

6 ε(γ) = ε
/∣∣v(γ)

∣∣;
7 s(γ) =(

∇J
(
w(γ) + εv(γ))−∇J

(
w(γ)))/ε(γ);

8 δ(γ) = v(γ)T s(γ);
9 end

10 \\ scale the δ(γ)

11 δ(γ) = δ(γ) +
(
λ(γ) − λ(γ)) ∣∣v(γ)

∣∣2;
12 if δ(γ) ≤ 0 then // make Hessian matrix

positive definite

13 λ
(γ) = 2

(
λ

(γ) − δ(γ)
/∣∣v(γ)

∣∣2);
14 δ(γ) = −δ(γ) + λ(γ)

∣∣v(γ)
∣∣2;

15 λ(γ) = λ̄(γ);
16 end
17 \\ Calculate the step size

18 υ(γ) = v(γ)T r(γ);
19 α(γ) = υ(γ)/δ(γ);
20 \\ Calculate the comparison parameter;
21 ∆(γ) =

2δ(γ) [J (w(γ))− J
(
w(γ) + α(γ)v(γ))]/υ(γ)2;

22 if ∆(γ) > 0 then // a successful reduction
in error can be made

23 w(γ+1) = w(γ) + α(γ)v(γ);
24 r(γ+1) = −∇J

(
w(γ+1));

25 λ
(γ) = 0, success = true;

26 if γ mod N = 0 then // restart the
algorithm

27 v(γ+1) = r(γ+1);
28 else
29 β(γ) =

(∣∣r(γ+1)
∣∣2 − r(γ+1)T r(γ)

)/
υ(γ);

30 v(γ+1) = r(γ+1) + β(γ)v(γ);
31 end
32 if ∆ ≥ 0.75 then // reduce the scale

parameter
33 λ(γ) = 1

4λ
(γ);

34 end
35 else if ∆(γ) = 0 then// change the initial

direction
36 q = q + 1 and go to line 2;
37 else
38 λ

(γ) = λ(γ);
39 success = false;
40 end
41 if ∆k < 0.25 then // increase the scale

parameter

42 λ(γ) = λ(γ) +
(
δ(γ) (1−∆(γ))/∣∣v(γ)

∣∣2);
43 end
44 if r(γ) 6= 0 then
45 γ = γ + 1 and go to line 3;
46 end
47 terminate and return w(γ+1) as desired minimum

weight vector;

Figure 3: The algorithm of the proposed SCG method for training T1-FLS and
T1-FLSMO.

3.2.1 The SCG method with the differential operator R{·}

It is well-know that equation (3.1) reduces the computational complexity due to the
fact that it is not necessary to calculate the Hessian matrix H

(
w(q)

)
[2]. Its principle is

the same of finite differences and as a consequence, it can result in round off problems and,
limit the capability for reaching the local minimum of the cost function. In order to avoid
this problem, also is proposed to compute the exact value of H

(
w(q)

)
v(γ) for FLS by the

differential operator R{·} [53]. As a result, the T1-FLSMO trained by the SCG method
with the differential operator R{·} is called SGCR T1-FLSMO. The differential operator
R{·} uses the definition of the derivative to compute the exact value of H

(
w(q)

)
v(γ),

which is given by

s(γ) = H
(
w(q)

)
v(γ) = lim

r→0

∇J
(
w(q) + rv(γ)

)
−∇J

(
w(q)

)
r

, (3.2)
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where r ∈ IR. From (3.2), we have

H
(
w(q)

)
v(γ) = Rv

{
∇J

(
w(q)

)}
= ∂

∂r
J
(
w(q) + rv(γ)

)∣∣∣∣∣
r=0

. (3.3)

It is important to emphasize that the differential operator R{·} has the same rules and
properties of derivative. Through the use of the differential operator R{·}, the equations
of Hv for T1-FLS and, T1-FLSMO are introduced.

Likewise mentioned at the end of chapter 2, when T1-FLSMO has a single output
(Υ = 1) it reduces to T1-FLS. Therefore, all statements from SCG algorithm introduced
in this chapter for T1-FLSMO is also valided for T1-FLS. For sake of simplicity, the
deductions to obtain Hv for T1-FLSMO and T1-FLS are presented in Appendix A and B,
respectively.
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4 NUMERICAL RESULTS

This chapter discusses performance analyses of the proposals described in chapters
2 and 3. To do so, data sets provided by UCI Machine Learning Repository [20] are used.
The analyses are performed in terms of the following perspectives: a comparison between
SCG and SCGR training methods and a comparison between the T1-FLSMO and T1-FLS
to deal with MCP. In both comparisons, 5-fold cross-validation was performed [59]. In
other words, each data set is randomly split into 5 subsets, then each subset is used as
test sets for a classifier built on the remaining four subsets. For all FLS classifiers, the
input variables were normalized to the [−1, 1] interval and the batch mode was applied.

To carry out numerical analyses, all performance metrics are expanded to t-student
distribution. The chosen performance metrics are: accuracy, mean squared error (MSE),
Kohen’s kappa coefficient [60] and F-score [61]. The Kohen’s kappa and the F-score
performance metrics are obtained by using the values of the confusion matrix of the
classification (i.e. true positives, true negatives, false positives and false negatives). These
metrics achieve a value equal to 1 it correct classification occurs and equal to 0 for wrong
classification. For instance, in a binary data set with 1000 patterns, in which 950 is from
class A and 50 is from class B, if the classifier output assign all the patterns to class A, the
accuracy is 0.95; however, the F-Score and Kohen’s kappa values are equal to 0, indicating
the wrong classifications. It is assumed γ = 200 epochs for the training phase and there is
no stop criteria during this phase. Moreover, thirty percent of the training data set was
used to assemble the validation set, in which the parameters vector w(γ) output of the
classifier is the parameter vector which achieves the highest accuracy in validation check
among all the all epochs.

The FLS classifiers are composed of two rules for each class, totalizing M = 2Υ
number of rules for each classifier. The first rule for each class is heuristically created
using the mean and the variance from all inputs of the respective class, which can be
synthesized by

rulet1 =
{
mt
F 1

1
, σtF 1

1
,mt

F 1
2
, σtF 1

2
, . . . ,mt

F 1
k
, σtF 1

k

}
, (4.1)

in which rulet1 refers to the values of the membership functions related to the first rule
from t-th class. The second rule is a modified version of the first rule. Basically, it has
heuristically adopted that the mean value of the Gaussian membership functions are scaled
by a value U ∈ IR. As a result,

rulet2 =
{
Umt

F 2
1
, σtF 2

1
, Umt

F 2
2
, σtF 2

2
, . . . , Umt

F 2
k
, σtF 2

k

}
, (4.2)

represents the 2nd rule. In this work, U = 0.2 is heuristically adopted.
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4.1 TRAINING METHOD COMPARISON

In order to investigate only the training methods, thereby it is selected only binary
classification data sets, which are listed in table 1. For comparison purpose, SD T1-FLS [26]
and CG T1-FLS [2] are compared.

The adopted step size for SD T1-FLS and CG T1-FLS is α = 0.01. Note that, if a
lower value of α is specified than the convergence rate is slow; however, a high value of α
may result in a lack of convergence. In addition, the algorithm for CG T1-FLS follows
the roadmap proposed by Fletcher and Reeves [62] to update the parameter β(γ), which
is used to determine the next direction. For both SCG T1-FLS and SCGR T1-FLS, the
value of initial Lagrange coefficient is λ1 = 10−15 and N = 10. The infinitesimal increment
is ε = 10−5 for SCG T1-FLS. The performance gains in term of accuracy and convergence
speed is not relevant when other values are adopted, something that was heuristically
observed carrying out several numerical simulations. The initial value for θl adopted are
equal a ‘1’ to the rules regard to the class 1 and ‘−1’ to the rules from class 2.

Data Sets Number of Samples Input Features
1. Australian 106 7
2. Haberman 306 3
3. Heart 270 13
4. Ionosphere 351 34
5. Liver Disorders 345 6
6. Pima 768 8
7. Sonar 208 60

Table 1: Details of datasets to perform the training method analysis.

4.1.1 Convergence speed analysis

Figures 4, 5 and 6 show the performance in terms of convergence speed and MSE
during the training phase, considering only relevant folds when a limited number of epochs
applies. The k-th fold presented in the figures is the data set tested by one of the k subset,
and trained by the remaining four. It can be noted that the proposals achieve higher
convergence speed than SD T1-FLS and CG T1-FLS, owing the fact of SCG T1-FLS and
SCGR T1-FLS use second order information and the trust-region technique during the
training phase. In addition, the SCGR T1-FLS which uses the differential operator R{·},
obtained a slight improvement in terms of convergence speed in comparison to the SCG
T1-FLS. It is worth noting that the SCG T1-FLS and the SCGR T1-FLS are consistent
and offer similar convergence speed to other folds and data sets.
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Figure 4: Sonar data set: performance of T1-FLS on 4th fold. (a) Accuracy. (b) MSE.
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Figure 5: Pima data set: performance of T1-FLS on 1st fold. (a) Accuracy. (b) MSE.
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Figure 6: Ionosphere data set: performance of T1-FLS on 3rd fold. (a) Accuracy. (b)
MSE.
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4.1.2 Classification rate analysis

Table 2 lists the classification rate for the proposed SCG T1-FLS and SCGR
T1-FLS in comparison with the models in [2,26]. Based on the mean and deviation values
of the results, one can note that the best performance for all investigated data sets, during
the training phase are achieved by the SCG T1-FLS and SCGR T1-FLS. However, in test
phase all methods achieves similar performance, with exception in Ionosphere data set, in
which the SCGs T1-FLS attain the best performance. The Cohen’s Kappa and F-Score
metrics accentuate this observation. Another important result is that the SCG and SCGR
methods achieve the lower values of MSE, especially in Australian, Heart and Ionosphere
data sets.

Data set Method Training
accuracy %

Test
accuracy (%)

Training
MSE

Training
Cohen’s Kappa

Test
Cohen’s Kappa

Training
F-score

Australian

SD T1-FLS [26] 89.22 (1.20) 85.07 (5.20) 0.34 (0.04) 0.78 (0.03) 0.70 (0.06) 0.89 (0.01)
CG T1-FLS [2] 89.64 (1.11) 83.04 (6.64) 0.34 (0.02) 0.79 (0.03) 0.65 (0.06) 0.89 (0.02)
SCG T1-FLS 91.97 (1.24) 81.59 (10.17) 0.28 (0.03) 0.80 (0.03) 0.62 (0.07) 0.90 (0.03)

SCGR T1-FLS 91.87 (1.71) 83.04 (6.32) 0.27 (0.03) 0.78 (0.03) 0.65 (0.06) 0.89 (0.02)

Haberman

SD T1-FLS [26] 77.08 (3.44) 74.49 (7.07) 0.66 (0.07) 0.28 (0.10) 0.21 (0.17) 0.63 (0.07)
CG T1-FLS [2] 77.78 (4.35) 74.17 (6.14) 0.64 (0.08) 0.28 (0.10) 0.18 (0.17) 0.63 (0.06)
SCG T1-FLS 82.11 (3.08) 73.84 (6.23) 0.55 (0.05) 0.23 (0.11) 0.26 (0.16) 0.59 (0.12)

SCGR T1-FLS 80.94 (4.64) 75.16 (6.08) 0.56 (0.05) 0.21 (0.11) 0.24 (0.17) 0.58 (0.13)

Heart

SD T1-FLS [26] 88.34 (3.14) 81.11 (8.91) 0.35 (0.05) 0.59 (0.06) 0.62 (0.11) 0.80 (0.24)
CG T1-FLS [2] 90.20 (2.00) 82.96 (7.03) 0.31 (0.06) 0.60 (0.06) 0.65 (0.10) 0.80 (0.25)
SCG T1-FLS 97.35 (0.88) 80.00 (9.08) 0.11 (0.03) 0.70 (0.05) 0.59 (0.11) 0.85 (0.19)

SCGR T1-FLS 97.48 (0.73) 80.74 (8.06) 0.10 (0.03) 0.71 (0.05) 0.61 (0.11) 0.85 (0.19)

Ionosphere

SD T1-FLS [26] 63.93 (3.92) 64.68 (2.32) 0.76 (0.02) 0.36 (0.06) 0.37 (0.10) 0.64 (0.04)
CG T1-FLS [2] 72.67 (2.68) 68.08 (5.53) 0.64 (0.02) 0.28 (0.08) 0.21 (0.14) 0.61 (0.12)
SCG T1-FLS 96.55 (4.62) 87.73 (7.90) 0.11 (0.13) 0.88 (0.03) 0.73 (0.08) 0.94 (0.05)

SCGR T1-FLS 96.45 (7.21) 88.29 (8.73) 0.09 (0.15) 0.90 (0.03) 0.73 (0.08) 0.95 (0.09)

Liver Disorders

SD T1-FLS [26] 73.99 (2.81) 65.22 (7.80) 0.76 (0.05) 0.43 (0.07) 0.25 (0.12) 0.71 (0.03)
CG T1-FLS [2] 75.34 (24.41) 67.54 (10.22) 0.67 (0.49) 0.53 (0.06) 0.32 (0.12) 0.77 (0.03)
SCG T1-FLS 84.87 (2.14) 64.64 (5.53) 0.50 (0.06) 0.49 (0.06) 0.25 (0.12) 0.74 (0.06)

SCGR T1-FLS 86.74 (2.86) 64.06 (8.74) 0.45 (0.06) 0.53 (0.06) 0.25 (0.12) 0.76 (0.05)

Pima

SD T1-FLS [26] 79.12 (2.04) 73.96 (4.83) 0.57 (0.05) 0.52 (0.04) 0.41 (0.08) 0.76 (0.02)
CG T1-FLS [2] 80.88 (3.54) 73.31 (5.66) 0.53 (0.06) 0.53 (0.04) 0.39 (0.08) 0.77 (0.02)
SCG T1-FLS 86.56 (2.37) 73.57 (3.99) 0.43 (0.05) 0.54 (0.04) 0.39 (0.08) 0.77 (0.05)

SCGR T1-FLS 86.70 (3.46) 73.70 (4.81) 0.43 (0.06) 0.54 (0.04) 0.41 (0.08) 0.77 (0.04)

Sonar

SD T1-FLS [26] 96.74 (2.93) 72.08 (11.66) 0.14 (0.05) 0.85 (0.04) 0.42 (0.14) 0.93 (0.10)
CG T1-FLS [2] 98.45 (3.46) 75.95 (9.83) 0.08 (0.12) 0.92 (0.03) 0.50 (0.13) 0.96 (0.08)
SCG T1-FLS 99.66 (0.62) 76.96 (7.05) 0.01 (0.02) 0.93 (0.03) 0.53 (0.13) 0.96 (0.04)

SCGR T1-FLS 98.79 (2.98) 74.56 (9.92) 0.04 (0.11) 0.88 (0.04) 0.48 (0.14) 0.94 (0.07)

Table 2: Performance in terms of the mean and deviation for each metric with 95%
t-student confidence interval.

4.2 CLASSIFICATION MODEL ANALYSIS COMPARISON

The aim of this section is to investigate the performance of FLS classification
models when MCP is considered. In this context, T1-FLS using the OvA decomposition
strategy [26] and T1-FLSMO are compared. The selected data sets to carry out this
analysis are listed in Table 3.

The adopted step size for SD T1-FLS and SD T1-FLSMO is α = 0.01. Considering
SCG T1-FLSMO and SCGR T1-FLSMO, the initial values of Lagrange coefficient is
λ1 = 10−15 and N = 10. For SCG T1-FLSMO, the infinitesimal increment is ε = 10−5.
A length-Υ vector codifies the output of the data sets, assigning 1 to the element with
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the presence of the pattern and -1 in the element that does not have the presence of the
pattern. The performance gains in term of accuracy and convergence speed is not relevant
when other values are assumed. The initial parameters of θtl are equal to ‘1’ for rules
of ‘t’ class in the output ‘t’ and ‘−1’ to remaining rules. To perform the analysis of the
computational complexity, a comparison is carried out by the quantities of the classifier
update parameters for a hypothetical problem with 3, 5 and 10 classes, varying the number
of rules between one and fifty (i.e. M ∈ [1, 50]).

Data set Number of
samples

Input
features

Number
of classes

Total number of rules
T1-FLS + OvA T1-FLSMO

Contraceptive 1,473 9 3 12 6
Ecoli 336 8 8 32 16
Iris 150 4 3 12 6
Wine 178 13 3 12 6

Table 3: Details of data sets used to perform the classification proposal analysis.

4.2.1 Convergence speed analysis

Figures 7, 8, 9 and 10 show the convergence speed and the MSE in terms of the
epochs number for T1-FLSMO. Note that only the most representative k-th fold is shown.
Despite the data sets were well mapped by T1-FLSMO, it may be noted that higher
convergence speeds are achieved by SCG methods than SD methods, owing to the use of
second order information during the training phase. This result reinforces the conclusions
obtained in subsection 4.1.2.
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Figure 7: Contraceptive data set: performance of T1-FLSMO on 4th fold. (a) Accuracy.
(b) MSE.
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Figure 8: Ecoli data set: performance of T1-FLSMO on 3rd fold. (a) Accuracy. (b) MSE.
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Figure 9: Iris data set: performance of T1-FLSMO on 4th fold. (a) Accuracy. (b) MSE.
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Figure 10: Wine data set: performance of T1-FLSMO on 5th fold. (a) Accuracy. (b) MSE.
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4.2.2 Classification rate analysis

In table 4 are listed the classification rates and performance metrics of T1-FLSMO
and T1-FLS [26] based on the OvA decomposition strategy. The training accuracy shows
that T1-FLSMO offers lower performance in Contraceptive and Ecoli data sets. On the
remaining data sets, its performance was similar to T1-FLS with the OvA decomposition
strategy. Focusing on the test accuracy and the Test Cohen’s Kappa metric, similar
performance are noted. Concerning in MSE values, it is concluded the T1-FLS with OvA
decomposition strategy achieves the lowest values. This fact can be explained by the
T1-FLS with OvA decomposition strategy has a specialist classifier for each class, while
the T1-FLSMO uses the same classifier for all classes.

Data set Method Training
accuracy %

Test
accuracy (%)

Training
MSE

Training
Cohen’s Kappa

Test
Cohen’s Kappa

Training
F-score

Iris

SD T1-FLS [26] 96.73 (1.51) 95.00 (5.70) 2.96 (0.00) 0.95 (0.03) 0.92 (0.05) 0.97 (0.01)
SD T1-FLSMO 97.14 (1.41) 93.33 (6.25) 0.23 (0.11) 0.93 (0.03) 0.90 (0.06) 0.93 (0.06)
SCG T1-FLS 100.00 (0.00) 97.50 (2.21) 0.03 (0.04) 1.00 (0.00) 0.96 (0.04) 1.00 (0.00)

SCG T1-FLSMO 98.21 (2.04) 94.17 (7.54) 0.13 (0.14) 0.94 (0.03) 0.91 (0.05) 0.96 (0.04)
SCGR T1-FLS 100.00 (0.00) 97.50 (2.21) 0.01 (0.01) 1.00 (0.00) 0.96 (0.04) 1.00 (0.00)

SCGR T1-FLSMO 98.21 (0.91) 96.67 (3.61) 0.11 (0.05) 0.94 (0.03) 0.95 (0.04) 0.96 (0.04)

Contraceptive

SD T1-FLS [26] 49.43 (0.57) 48.33 (2.09) 3.00 (0.00) 0.19 (0.03) 0.17 (0.05) 0.37 (0.00)
SD T1-FLSMO 56.61 (1.43) 54.92 (2.30) 2.21 (0.02) 0.32 (0.03) 0.29 (0.05) 0.52 (0.03)
SCG T1-FLS 63.61 (1.13) 55.67 (1.19) 1.95 (0.06) 0.43 (0.03) 0.30 (0.05) 0.62 (0.01)

SCG T1-FLSMO 59.35 (2.37) 55.46 (2.51) 2.08 (0.09) 0.35 (0.03) 0.30 (0.05) 0.56 (0.02)
SCGR T1-FLS 64.02 (1.65) 55.06 (1.15) 1.93 (0.06) 0.44 (0.03) 0.30 (0.05) 0.62 (0.02)

SCGR T1-FLSMO 60.17 (1.46) 55.67 (1.95) 2.06 (0.06) 0.35 (0.03) 0.31 (0.05) 0.56 (0.02)

Wine

SD T1-FLS [26] 100.00 (0.00) 96.62 (1.73) 0.05 (0.02) 1.00 (0.00) 0.95 (0.05) 1.00 (0.00)
SD T1-FLSMO 99.60 (0.73) 93.24 (4.33) 0.03 (0.06) 0.99 (0.01) 0.90 (0.06) 0.93 (0.04)
SCG T1-FLS 100.00 (0.00) 97.17 (2.68) 0.00 (0.00) 1.00 (0.00) 0.96 (0.04) 1.00 (0.00)

SCG T1-FLSMO 99.39 (1.20) 94.37 (2.72) 0.05 (0.09) 0.97 (0.02) 0.91 (0.06) 0.98 (0.03)
SCGR T1-FLS 100.00 (0.00) 97.17 (2.68) 0.00 (0.00) 1.00 (0.00) 0.96 (0.04) 1.00 (0.00)

SCGR T1-FLSMO 99.60 (0.73) 95.49 (3.34) 0.03 (0.06) 0.98 (0.01) 0.93 (0.05) 0.99 (0.01)

Ecoli

SD T1-FLS [26] 88.56 (2.91) 83.25 (5.54) 1.02 (0.24) 0.84 (0.03) 0.77 (0.06) 0.72 (0.07)
SD T1-FLSMO 82.58 (6.55) 79.91 (6.26) 1.04 (0.30) 0.74 (0.04) 0.71 (0.07) 0.38 (0.10)
SCG T1-FLS 94.15 (1.00) 82.51 (8.35) 0.45 (0.06) 0.92 (0.02) 0.76 (0.06) 0.79 (0.11)

SCG T1-FLSMO 91.76 (2.41) 84.00 (11.38) 0.53 (0.12) 0.86 (0.03) 0.78 (0.06) 0.60 (0.19)
SCGR T1-FLS 94.68 (1.15) 83.62 (7.47) 0.41 (0.06) 0.93 (0.02) 0.77 (0.06) 0.83 (0.16)

SCGR T1-FLSMO 92.55 (1.73) 83.63 (8.13) 0.50 (0.11) 0.86 (0.03) 0.77 (0.06) 0.62 (0.19)

Table 4: Performance in terms of the mean and deviation for each metric with 95%
t-student confidence interval.
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4.2.3 Computational complexity analysis

Figure 11 shows a comparison of the number fuzzy update parameters for T1-FLS
with OvA and T1-FLSMO, in terms of the number of rules between one and fifty in a
data set with ten input features (P = 10). From figure, it can be stated that T1-FLSMO
reduces computational complexity significantly when the number of rules increases and
especially when the number of classes grows. Additionally, from Table 3 and 4 it is noted
that T1-FLSMO has similar performance to T1-FLS, but it is obtained by using a half of
number of rules demanded by the T1-FLS.
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Figure 11: Comparison of the quantity of update parameters for T1-FLS with OvA and
T1-FLSMO for different quantities of outputs for a data set with 10 input features.
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5 CONCLUSION

This thesis has investigated FLS to deal with MCP by introducing two contributions.
First is a new fuzzy model which deals with MCP without the use of binary decomposition
strategy (T1-FLSMO) and second, the use of the SCG and SCGR methods for training
T1-FLSMO and T1-FLS. Aiming to validate the proposals, well-known classification data
sets provided by UCI Machine Learning Repository were adopted.

The chapter 2 has addressed in to reduce the classifier complexity when the FLS
deals with multiclass classification problems. The FLS applied in MCP requires a binary
decomposition strategy due to the fact that FLS has only a single output. The use of binary
decomposition strategy rises the number of the classifier for dealing with MCP, mainly
when the number of the class growth. In order to avoid the use this strategy, the T1-FLS
is extended to have a multiple outputs (T1-FLSMO). The computational simulations and
numerical results, showed that T1-FLSMO reduces significantly the number of total fuzzy
rules used in MCP when compared with T1-FLS, consequently, reducing the computational
complexity. The performance of the T1-FLS with OvA strategy is better than T1-FLSMO
in almost all data sets on training phase in terms of accuracy and MSE values. However,
the performance of both methods resulted in similar testing performance which justifies
the usage of T1-FLSMO in MCP. Also, T1-FLSMO demands a half of the number rules
used by T1-FLS with the same performance for the chosen data sets. Additionally, SCG
T1-FLSMO and SCGR T1-FLSMO resulted in the fast convergence rate and the best
performance in comparison with SD-T1FLSMO.

Chapter 3 has introduced the SCG training method for T1-FLSMO and its parti-
cular case T1-FLS. The SCG method avoids the use of Hessian matrix approximating the
Hv using the calculus of two gradients per iteration. This method reduces the dependence
of user’s parameters to guarantee the convergence during training phase. In attempt to
improve the performance of SCG, also, was proposed the SCGR method, which calculates
the exact value of Hv through the differential operator R{·}. The computational of the
exact Hv in SCG is important to avoid round-off problem, and to increase the capability of
the method to reach a global minimum of the cost function. The numerical results showed
that SCG T1-FLS and SCGR T1-FLS resulted in fast convergence rates than SD T1-FLS
and the CG T1-FLS. Additionally, these proposed models achieve higher classification rate
in training and test phase, and fewer values of MSE if a limited number of epochs applies.
Highlighting the highest value of Cohen’s Kappa and F-Score metrics achieved by SCGR
in all datasets, the proposed models turn out to be a very attractive option due to the
higher performance in T1-FLSMO and T1-FLS (i.e. achieving higher classification rate in
few epochs) than those obtained with SD T1-FLS and CG-T1FLS.
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5.1 FUTURE WORKS

Future efforts can be addressed in order to:

• extend the concept of T1-FLSMO to the interval and singleton type-2 fuzzy logic
system [63].

• apply the SCG method for the interval and singleton type-2 fuzzy logic system
reducing the dependence of user’s parameters and to achieve a fast convergence
speed avoiding to compute the full hessian matrix.

• apply the differential operator R{·} in the interval and singleton type-2 fuzzy logic
system, allowing to use the SCGR method and any second-order algorithm which
makes use of the Hv.
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Appendix A – Deduction of the H
(
w(q)

)
v(q) from R{·} operator for

T1-FLSMO

Considering the algorithm presented in Figure 3, we know that v(q) = ∇J
(
w(q)

)
.

To compute the H
(
w(q)

)
v(q) with the differential operator R{·}, we can apply the R{·}

operator separately in each gradient of the cost function, as follow:
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For reasons of simplicity the following notations have been adopted:

et (q) = f tsmo

(
x(q)

)
− yt (q) (A.5)

and
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. (A.6)
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The terms of Rv
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are given by
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Analyzing for j 6= l, we obtain
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if j = l and i 6= k, then (A.9) is replaced by
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Analyzing for j 6= l, we obtain:
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Analyzing for j 6= l, we obtain
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Analyzing for j 6= l, we obtain
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Analyzing for j 6= l, we obtain
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Analyzing for j 6= l, we obtain
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Rm
F

j
i

{
∇θt

l
J
(
w(q)

)}
= Rm

F
j
i

{[
f tsmo

(
x(q)

)
− yt (q)

]
φl
(
x(q)

)}
. (A.32)

Analyzing for j 6= l, we obtain

Rm
F

j
i

{
∇θt

l
J
(
w(q)

)}
= φl

(
x(q)

) M∑
j=1

( p∑
i=1

(
aF j

i
(q) vmj

i

)
· · ·

· · ·
(
etθj (q)− et (q)

)
φj
(
x(q)

)) (A.33)

if j = l, then (A.33) is replaced by

Rm
F

j
i

{
∇θt

l
J
(
w(q)

)}
= φl

(
x(q)

) p∑
i=1

(
aF l

i
(q) vml

i

)
· · ·

· · ·
(
etθl

(q)φl
(
x(q)

)
+
(
1− φl

(
x(q)

))
et (q)

)
.

(A.34)

Rσ
F

j
i

{
∇θt

l
J
(
w(q)

)}
is obtained as follows:

Rσ
F

j
i

{
∇θt

l
J
(
w(q)

)}
= Rσ

F
j
i

{[
f tsmo

(
x(q)

)
− yt (q)

]
φl
(
x(q)

)}
. (A.35)
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Analyzing for j 6= l, we obtain

Rσ
F

j
i

{
∇θt

l
J
(
w(q)

)}
= φl

(
x(q)

) M∑
j=1

( p∑
i=1

(
bF j

i
(q) vσj

i

)
· · ·

· · ·
(
etθj

(q)− et (q)
)
φj
(
x(q)

)) (A.36)

if j = l, then (A.36) is replaced by

Rσ
F

j
i

{
∇θt

l
J
(
w(q)

)}
= φl

(
x(q)

) p∑
i=1

((
bF l

i
(q) vσl

i

)
· · ·

· · ·
(
etθl

(q)φl
(
x(q)

)
+
(
1− φl

(
x(q)

))
et (q)

))
.

(A.37)

Rθt
j

{
∇θt

l
J
(
w(q)

)}
is obtained as follows:

Rθt
j

{
∇θt

l
J
(
w(q)

)}
= Rθt

j

{[
f tsmo

(
x(q)

)
− yt (q)

]
φl
(
x(q)

)}
, (A.38)

Rθt
j

{
∇θt

l
J
(
w(q)

)}
= φl

(
x(q)

) M∑
j=1

(
φj (q) vθt

j

)
. (A.39)
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Appendix B – Deduction of the H
(
w(q)

)
v(q) from R{·} operator for

T1-FLS

Considering the algorithm presented in Figure 3, we know that v(q) = ∇J
(
w(q)

)
.

To compute the H
(
w(q)

)
v(q) with the differential operator R{·}, we can appply the R{·}

operator separately in each gradient of the cost function, as follow:

Rv
{
∇J

(
w(q)

)}
=
[
Rv

{
∇m

F l
k

J
(
w(q)

)}
· · ·

(B.1)

· · ·Rv

{
∇σ

F l
k

J
(
w(q)

)}
Rv

{
∇θl

J
(
w(q)

)}]
,

where

∇m
F l

k

J
(
w(q)

)
=
∂J

(
w(q)

)
∂mF 1

1
(q) , · · · ,

∂J
(
w(q)

)
∂mF 1

p
(q) , · · ·

(B.2)

. . . ,
∂J
(
w(q)

)
∂mFM

1
(q) , · · · ,

∂J
(
w(q)

)
∂mFM

p
(q)

 ,

∇σ
F l

k

J
(
w(q)

)
=
∂J

(
w(q)

)
∂σF 1

1
(q) , · · · ,

∂J
(
w(q)

)
∂σF 1

p
(q) , · · ·

(B.3)

· · · ,
∂J
(
w(q)

)
∂σFM

1
(q) , · · · ,

∂J
(
w(q)

)
∂σFM

p
(q)


and

∇θl
J
(
w(q)

)
=
∂J

(
w(q)

)
∂θ1 (q) , · · · ,

∂J
(
w(q)

)
∂θM (q)

 . (B.4)

For reasons of simplicity the following notations have been adopted:

e(q) = fs
(
x(q)

)
− y(q), (B.5)

eθl
(q) = θl(q)− fs

(
x(q)

)
, (B.6)

aF l
k

(q) =
x

(q)
k −mF l

k
(q)

σ2
F l

k
(q) (B.7)

and

bF l
k

(q) =

(
x

(q)
k −mF l

k
(q)
)2

σ3
F l

k
(q) . (B.8)
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• Deduction of the Rv

{
∇m

F l
k

J
(
w(q)

)}

Rv

{
∇m

F l
k

J
(
w(q)

)}
is obtained as follows:

Rv

{
∇m

F l
k

J
(
w(q)

)}
= Rm

F
j
i

{
∇m

F l
k

J
(
w(q)

)}
+ · · ·

· · ·Rσ
F

j
i

{
∇m

F l
k

J
(
w(q)

)}
+Rθj

{
∇m

F l
k

J
(
w(q)

)}
,

(B.9)

The terms of Rv

{
∇m

F l
k

J
(
w(q)

)}
are given by

Deduction of Rv

{
∇m

F l
k

J
(
w(q)

)}
:

Rm
F

j
i

{
∇m

F l
k

J
(
w(q)

)}
is obtained as follows:

Rm
F

j
i

{
∇m

F l
k

J
(
w(q)

)}
= Rm

F
j
i

{[
fs
(
x(q)

)
− y(q)

]
· · ·

· · ·
[
θl (q)− fs

(
x(q)

)]
φl
(
x(q)

)
aF l

k
(q)
}
.

(B.10)

Analyzing for j 6= l, we obtain:

Rm
F

j
i

{
∇m

F l
k

J
(
w(q)

)}
= aF l

k
(q)φl

(
x(q)

) M∑
j=1

( p∑
i=1

(
aF j

i
(q) vmj

i

)
· · ·

· · ·
(
eθj

(q) eθl
(q)− eθj

(q) e (q)− e (q) eθl
(q)
)
φj
(
x(q)

))
,

(B.11)

if j = l and i 6= k, then (B.11) is replaced by

Rm
F

j
i

{
∇m

F l
k

J
(
w(q)

)}
= aF l

k
(q)φl

(
x(q)

)( p∑
i=1

(
aF l

i
(q) vml

i

)
· · ·

· · ·
(
e (q) eθl

(q)− 2e (q) eθl
(q)φl

(
x(q)

)
+ (eθl

(q))2φl
(
x(q)

))) (B.12)

and if i = k, then (B.12) is exchanged by

Rm
F

j
i

{
∇m

F l
k

J
(
w(q)

)}
=
(
aF l

k
(q)
)2
φl
(
x(q)

)
· · ·

· · · vml
k

(
e (q) eθl

(q)− 2e (q) eθl
(q)φl

(
x(q)

)
+ (eθl

(q))2φl
(
x(q)

))
· · ·

· · · − e (q) eθl
(q)φl

(
x(q)

) vml
k

σ2
F l

k

.

(B.13)
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Rσ
F

j
i

{
∇m

F l
k

J
(
w(q)

)}
is obtained as follows:

Rσ
F

j
i

{
∇m

F l
k

J
(
w(q)

)}
= Rσ

F
j
i

{[
fs
(
x(q)

)
− y(q)

]
· · ·

· · ·
[
θl (q)− fs

(
x(q)

)]
φl
(
x(q)

)
aF l

k
(q)
}
.

(B.14)

Analyzing for j 6= l, we obtain

Rσ
F

j
i

{
∇m

F l
k

J
(
w(q)

)}
= aF l

k
(q)φl

(
x(q)

) M∑
j=1

( p∑
i=1

(
bF j

i
(q) vσj

i

)
· · ·

· · ·
(
eθj

(q) eθl
(q)− eθj

(q) e (q)− e (q) eθl
(q)
)
φj
(
x(q)

))
,

(B.15)

if j = l and i 6= k, then (B.15) is replaced by

Rσ
F

j
i

{
∇m

F l
k

J
(
w(q)

)}
= aF l

k
(q)φl

(
x(q)

)( p∑
i=1

(
bF l

i
(q) vσl

i

)
· · ·

· · ·
(
e (q) eθl

(q)− 2e (q) eθl
(q)φl

(
x(q)

)
+ (eθl

(q))2φl
(
x(q)

))) (B.16)

and if i = k, then (B.16) is replaced by:

Rσ
F

j
i

{
∇m

F l
k

J
(
w(q)

)}
= aF l

k
(q) bF l

k
(q) vσl

k
φl
(
x(q)

)
· · ·

· · ·
(
e (q) eθl

(q)− 2e (q) eθl
(q)φl

(
x(q)

)
+ (eθl

(q))2φl
(
x(q)

))
· · ·

· · · − 2vσl
k
φl
(
x(q)

)
e (q) eθl

(q)

(
x

(q)
k −mF l

k
(q)
)

σ3
F l

k
(q) .

(B.17)

Rθj

{
∇m

F l
k

J
(
w(q)

)}
is obtained as follows:

Rθj

{
∇m

F l
k

J
(
w(q)

)}
= Rθj

{[
fs
(
x(q)

)
− y(q)

]
· · ·

· · ·
[
θl (q)− fs

(
x(q)

)]
φl
(
x(q)

)
aF l

k
(q)
}
.

(B.18)

Analyzing for j 6= l, we obtain

Rθj

{
∇m

F l
k

J
(
w(q)

)}
= aF l

k
(q)φl

(
x(q)

)
· · ·

· · ·

 M∑
j=1

(
φj
(
x(q)

)
vθj

)
(eθl

(q)− e (q))
 ,

(B.19)
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if j = l and i 6= k, then (B.19) is replaced by:

Rθj

{
∇m

F l
k

J
(
w(q)

)}
= aF l

k
(q)φl

(
x(q)

)
vθl
· · ·

· · ·
(
eθl

(q)φl
(
x(q)

)
+
(
1− φl

(
x(q)

))
e (q)

)
.

(B.20)

•Deduction of Rv

{
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F l
k

J
(
w(q)
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Rv

{
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F l
k

J
(
w(q)

)}
= Rm

F
j
i

{
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F l
k

J
(
w(q)

)}
· · ·

· · ·+Rσ
F

j
i

{
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F l
k

J
(
w(q)

)}
+Rθj

{
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F l
k

J
(
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.

(B.21)

Rm
F

j
i

{
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F l
k

J
(
w(q)

)}
is obtained as follows:
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F

j
i

{
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F l
k

J
(
w(q)

)}
= Rm

F
j
i

{[
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(
x(q)

)
− y(q)

]
· · ·

· · ·
[
θl (q)− fs

(
x(q)

)]
φl
(
x(q)

)
bF l

k
(q)
}
.

(B.22)

Analyzing for j 6= l, we obtain

Rm
F

j
i

{
∇σ

F l
k

J
(
w(q)

)}
= bF l

k
(q)φl

(
x(q)

) M∑
j=1

( p∑
i=1

(
aF j

i
(q) vmj

i

)
· · ·

· · ·
(
eθj

(q)eθl
(q)− eθj

(q)e(q)− e(q)eθl
(q)
)
φj
(
x(q)

))
,

(B.23)

if j = l and i 6= k, then (B.23) is replaced by

Rm
F

j
i

{
∇σ

F l
k

J
(
w(q)

)}
= bF l

k
(q)φl

(
x(q)

)( p∑
i=1

(
aF l

i
(q) vml

i

)
· · ·

· · ·
(
e(q)eθl

(q)− 2e(q)eθl
(q)φl

(
x(q)

)
+ (eθl

(q))2φl
(
x(q)

))) (B.24)

and if i = k, then(B.24) is replaced by
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F

j
i

{
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F l
k

J
(
w(q)

)}
= bF l

k
(q) aF l

k
(q)φl

(
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)
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k
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(
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(
x(q)

)
+ (eθl

(q))2φl
(
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(
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)
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k

(
x
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k
(q)
)

σ3
F l

k
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Rσ
F

j
i

{
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F l
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J
(
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is obtained as follows:
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F

j
i

{
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F l
k

J
(
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F
j
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(
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)
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]
· · ·

· · ·
[
θl (q)− fs

(
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φl
(
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)
bF l

k
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Analyzing for j 6= l, we obtain
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F

j
i

{
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F l
k

J
(
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)}
= bF l

k
(q)φl

(
x(q)
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( p∑
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(
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i
(q) vσj

i
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(q)eθl
(q)− eθj
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)
φj
(
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(B.27)

if j = l and i 6= k, then (B.27) is replaced by
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F

j
i

{
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F l
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J
(
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)}
= bF l

k
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(
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(
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i
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(
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(
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and if i = k, then (B.28) is replaced by
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F

j
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F l
k

J
(
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(
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k
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(
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k
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(
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)
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(
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(B.29)

Rθj

{
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F l
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J
(
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is obtained as follows:

Rθj
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J
(
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fs
(
x(q)

)
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]
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)
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Analyzing for j 6= l, we obtain

Rθj

{
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F l
k

J
(
w(q)
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= bF l

k
(q)φl

(
x(q)

)
· · ·
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)
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if j = l, then (B.31) is replaced by

Rθj

{
∇σ

F l
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J
(
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k
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(B.32)

•Deduction of Rv
{
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J
(
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(B.33)

Rm
F

j
i

{
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J
(
w(q)
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is obtained as follows:
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F

j
i

{
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J
(
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i
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(
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)
− y(q)

]
φl
(
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. (B.34)

Analyzing for j 6= l, we obtain
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j
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{
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i
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φj
(
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(B.35)

if j = l, then (B.35) is replaced by
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(B.36)

The equations for Rσ
F

j
i

{
∇θl

J
(
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)}
are obtained as follows:
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Analyzing for j 6= l, we obtain
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if j = l and i 6= k, then (B.38) is replaced by
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is obtained as follows:
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)
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(
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)
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)
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