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Resumo
As exigências de localidade, positividade dos estados e positividade da energia dão origem
a comportamentos ruins dos campos quânticos em distâncias pequenas (singularidades
UV). Quando tenta-se construir campos quânticos para partículas de spin s ≥ 1 que
satisfazem esse princípios fundamentais, acaba-se ganhando interações não-renormalizaveis.
Para spins um e dois, existem campos, no contexto de teorias de calibre, com o mesmo
bom comportamento UV que o campo escalar para spin zero. Entretanto, é necessária a
introdução de um espaço de estados não-físico, assim como campos não-físicos (ghosts).
Motivado por trabalhos anteriores, nós investigamos campos quânticos, para bósons
massivos de spin arbitrário, possuindo o mesmo comportamento UV que o campo escalar
(s = 0), porém que agem num espaço de Hilbert sem ghosts e são covariantes por
transformações de Poincaré. Esses campos, entretanto, não possuem mais localização
pontual, estando localizados, ao invés, em semi-retas no espaço de Minkowski que se
extendem em direções tipo-luz (strings tipo-luz).
Palavras-chave: Campos quânticos. Localização em strings. Localização em strings
tipo-luz. Singularidades das funções de dois pontos.





Abstract
The combined requirements of locality, positivity of states and positivity of energy lead to
bad short distance behaviour of quantum fields (UV singularities). When one tries to build
quantum fields for particles of spin s ≥ 1 that still satisfy these fundamental principles,
one ends up with non-renormalizable interactions. For spin one and two, there exist fields
in the context of gauge theory with the same good UV behaviour as the scalar field for
spin zero. However, for this one has to introduce an unphysical state space, as well as
unphysical fields (ghosts). Motivated by previous works, we begin to investigate quantum
fields, for massive bosons of any spin, that have the same good UV behaviour as the scalar
field (s = 0), act in a Hilbert space without ghosts and are Poincaré covariant. These
fields are, however, no longer point-local, being localized instead on semi-infinite lines in
Minkowski space extending to lightlike infinity (lightlike strings).
Keywords:Quantum Fields. String-localization. Lightlike string-localization. Two-point
functions singularities
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Introduction

One can say that quantum field theory tries to combine the principles of quantum
physics and classical relativistic field theory, e.g. eletromagnetism. In this point of view,
fields are the necessary objects to implement the interaction between matter particles.
An interesting result that hints at this is the so-called ”No-interaction” theorem [1]. The
main realm of quantum field theory, is the theory of elementary particles, that speaks
of the fundamental components of matter and its interactions. Furthermore, this theory
often presents an incredible agreement between theoy and experiment. This success comes
from a broad arsenal of powerful modelling methods, based on quantization of classical
interactions and the gauge principle. However, these methods often tend to break the
fundamental principles inherited from relativity and quantum physics.

From quantum physics, one has that the states of a system (electron in a Hydrogen
atom, electron in a metal, photons...) must be described by vectors in some Hilbert space
and the observable quantities are represented by self-adjoint operators on this space.
Relativity talks about Spacetime, its causality structure and how different observers access
the infomation on a system. For short, one has basically three fundamental principles

• Relativistic Covariance: tells how different observers extract infomation from a
system.

• Locality (Einstein causality)

• Positivity of the states (Hilbert space positivity): for a probabilistic interpretation
of measurable quantities

However, these principles lead to bad short distance behaviour of the quantum
fields (ultraviolet singularities), which destroys the predictivity of models describing the
interaction of some types of particles. Well-known prescriptions for getting quantum fields
with better UV (ultraviolet) behaviour usually breaks the principles, e.g. introduction
of unphysical state space (non-positivity) and unphysical fields [2]. One alternative that
keeps the Hilbert space positivity and covariance, yielding a good UV behaviour are the
so-called spacelike String-local fields [3, 4]. In this work we begin to explore the alternative,
hinted in [4, footnote 3], of lightlike string-localized fields, for massive bosons.

This dissertation is divided in two chapters. The first chapter starts with a section
revising key concepts on the structure of spacetime, how relativistic covariance enters in
quantum mechanics and the description of multi-particle systems. Then, we talk about the
usual point-local fields and use them to ilustrate the fundamental principles and important
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aspects related to interaction, such as renormalizability. Following that we introduce the
lightlike String-local fields.

The second chapter is divided into three sections. The first section contains the
geometrical (Minkowski geometry) results on lightlike strings such as the time ordering,
causal separation, separation by wegdes, among others. In the second section we construct
the lightlike string-localized fields from the concept of Wigner intertwiners and explore
the particular case of string fields given by line integral over pointlike fields. In the third
section is the result on the scaling degree the two-point functions of the lightlike string
fields.
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1 General Aspects of Quantum Fields

1.1 Preliminaries

In this section we give a brief overview of key aspects of the theory of relativity
and how it steps in quantum physics by giving a characterization of fundamental particles
[5]. We also introduce the structure of Fock Space, which is needed for studying systems
with a undetermined number of particles.

1.1.1 Relativistic spacetime

When working with quantum field theory (QFT) in the contex of high energy
physics it is essential that we take into account the relativistic nature of particles (in
contrast, many applications of QFT in condensed matter physics do not consider this
relativistic nature). Hence we start by giving a overview of the key concepts of the theory
of special relativity.

The theory of relativity abandons the galilean view of independent space and time,
and consider them as parts of a new entity, namely spacetime. Points in spacetime, called
events, are idealizations of real world (objective) occurences happening in a small region of
space and taking an instant. Denoting spacetime by M, an event x ∈M can be described
by an element of R× R3 = R4,

x = (x0, x1, x2, x3) (1.1)

with x0 = ct and ~x = (x1, x2, x3), where c is the speed of light, t is the time and ~x is
the position vector relative to a frame of reference. The fundamental principle of special
relativity is the constancy of the speed of light with respect to all inertial reference frames
(inertial observers), ie if

(x0 − y0)2 − |~x− ~y|2 = 01 (1.2)

in one frame of reference then this also holds in another uniformly moving frame

(x′0 − y′0)2 − |~x′ − ~y′|2 = 0 (1.3)

Using this, one can prove that the quadratic form q (spacetime interval), given in one
frame by

q(x, y) = (x0 − y0)2 − |~x− ~y|2, where x, y ∈M (1.4)
1 The events x,y satisfiying this condition are those who can be connected by a light ray
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does not depend on the choice of the frame, ie

(x0 − y0)2 − |~x− ~y|2 = q(x) != q′(x) = (x′0 − y′0)2 − |~x′ − ~y′|2 (1.5)

Apart from events, one can also define vectors in spacetime (also called four-vectors) in
the following way:
First, given two pairs of events (x1, y1), (x2, y2) ∈M2, define equilavence relation

(x1, y1) ∼ (x2, y2) :⇔ yµ1 − x
µ
1 = yµ2 − x

µ
2 , for µ = 0, 1, 2, 3 (1.6)

here µ labels coordinates for the events with respect to some reference frame. This relation
is well-defined if one only allows linear inhomogeneous change of coordinates 2 (further on
will be clear that this restriction is sufficient). Second, define a four-vector as a equilavence
class of this relation and denote the space of all four-vector by D(M).

Now lets look at the transformations that preserve this quadratic form (that relate
different uniformly moving frames),ie the transformations L such that

∀x ∈M : q(Lx, Ly) = q(x, y) (1.8)

The set of all such transformations form the so-called Poincaré group P . Every Poincaré
transformation can be written as

(Lx)µ = aµ + Λµ
νx

ν (1.9)

where a ∈ R4 and Λ is a (linear) Poincaré transformation that leaves the origin fixed,
called a Lorentz transformation.
Given two Poincaré transformations (a1,Λ1) and (a2,Λ2), their group product is

(a1,Λ1)(a1,Λ2) = (a1 + Λ1a2,Λ1Λ2) (1.10)

Let x, y ∈ M and denote the four-vector they form by
−−−→
(x, y). Notice that every

Poincaré transformation is a linear inhomogeneous transformation, hence our definition
of four-vectors holds in every inertial frame, furthermore q(x, y) only depends on the
equilavence class (vector), allowing one to define q

(−−−→
(x, y)

)
:= q(x, y). One important

remark is that given a reference frame, one can identify M to D(M) (and both to R4) 3

The quadratic form gives rise to a indefinite inner product. Given v, w ∈ D(M),

v · w := 1
4 {q(v + w)− q(v − w)} , where x, y ∈M (1.11)

2 A linear inhomogeneous transformation of coordinates is of the form:

x′ν = Aνµx
µ + bν (1.7)

where A is a invertible matrix and b ∈ R4.
3 Let x, y ∈ M. Given a reference frame, consider the event o = (0, 0, 0, 0) (the origin), then x can

be indentified to the four-vector
−−−→
(o, x) and the four-vector

−−−→
(x, y) can be identified to the event with

coordinates (y0 − x0, ~y − ~x) (motivated by this, we will denote the vector
−−−→
(x, y) also by y − x).



1.1. Preliminaries 17

in a frame of reference it takes the form

v · w = v0w0 − ~v · ~w (1.12)

and one also has that
q(v) = v · v ≡ v2 (1.13)

Spacetime endowed with this invariant quadratic form (and consequently with this inner
product) is called Minkowski space.

The Lorentz transformations form a subgroup L ⊂ P , the so-called Lorentz group.
The transformation Λ ∈ L can also be characterized by being a linear map that preserves
the inner product

∀v, w ∈ D(M) : Λv · Λw = v · w (1.14)

The Lorentz group decomposes into the following connected components:

• L↑+ (proper orthochronous Lorentz group): detΛ = 1, Λ0
0 ≥ 1. These transformations

preserve space and time orientation.

• L↓+: detΛ = 1, Λ0
0 ≤ −1, eg −1

• L↑−: detΛ = −1, Λ0
0 ≥ 1, eg parity P (x0, ~x) = (x0,−~x)

• L↓−: detΛ = −1, Λ0
0 ≤ −1, eg time reflection T (x0, ~x) = (−x0, ~x)

The Poincaré group P decomposes accordingly, but only elements of the P↑+ component
correspond to physically realizable transformations, making it the relativistic invariance
group.

Let’s introduce some key definitions and concepts on the causal structure of
spacetime.

Definition 1. Consider a four-vector v ∈ D(M), one says that

(i) v is timelike if v2 ≡ v · v > 0

(ii) v is lightlike if v2 ≡ v · v = 0

(iii) v is spacelike if v2 ≡ v · v < 0

Definition 2. Given x ∈M and R ⊂M, define

(i) The future lightcone of x: V+(x) := {y ∈M|(y − x)2 > 0 ∧ (y − x)0 > 0}

(ii) The past lightcone of x: V−(x) := {y ∈M|(y − x)2 > 0 ∧ (y − x)0 < 0}

(iii) The boundary of the future lightcone of x: ∂V+(x) := {y ∈M|(y − x)2 = 0 ∧ (y − x)0 > 0}
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(iv) The boundary of the past lightcone of x: ∂V−(x) := {y ∈M|(y − x)2 = 0 ∧ (y − x)0 < 0}

(v) V±(x) := V±(x) ∪ ∂V±(x)

(vi) The causal complement of R: R′ := {z ∈M|∀y ∈ R : (z − y)2 < 0}

Definition 3. Given x, y ∈M and R, R̃ ⊂M, define the following notions:

(i) R and R̃ are said to be causally disjoint if R ⊆ (R̃)′ (⇔ R̃ ⊆ R′)

(ii) Time ordering of events: y succeeds x, writing y � x, if y /∈ V−(x)

(iii) R � R̃ :⇔ ∀x ∈ R ∀x̃ ∈ R̃ : x � x̃

Remarks:

(i) All these notions are invariant under the proper orthochronous Lorentz group L↑+.

(ii) A v ∈ D(M) is said to be causal if v2 ≥ 0. One says that a causal four-vector
v is future[past]-directed if v0 > 0[< 0], for some reference frame. Given this
characterizations, one can stablish a cone structure in D(M) 4 defining V± := {v ∈
D(M)|v2 > 0 ∧ v0 > 0[< 0]}, V± := {v ∈ D(M)|v2 ≥ 0 ∧ v0 > 0[< 0]} and
∂V± := {v ∈ D(M)|v2 = 0 ∧ v0 > 0[< 0]}

(iii) Consider v = y − x with x, y ∈ M. If v is timelike, then there exists one observer
(velocity smaller than c) that can witness both x and y; if v is lightlike, one has that
x and y can be connected by a light signal and; if v is spacelike, then x and y could
only be witnessed by a observer traveling faster than light (impossible), in that case,
one says that x and y are causally separated (or causally disjoint).

(iv) y � x is equivalent to the existence of a reference frame for which y0 > x0.

(v) The set V+(x) consists of all events that can be influenced (either by a observer of
light signal) by x ∈M and, analogously, V−(x) consists of all events that influence
x ∈M.
For clarity sake, we stress the difference between the relation � from the relation �
found in [6, 7]. These authors say that x causally preceeds y (x� y) if y ∈ V+(x),
and call V+(x) the causal future of x. The adopted definition, y � x, contains the
case x� y, but allows also the case where x and y are causally separated.

4 Actually, in General Relativity the causal structure (cone structure) given by the indefinite inner
product is initially defined for four-vectors
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1.1.2 Poincaré symmetry in Quantum Mechanics and Integer Spin Represen-
tations of the Poincaré Group

Here we provide some key definitions and results on how the theory of relativity is
combined with quantum mechanics giving rise to the Wigner characterization of elemetary
relativistic quantum systems (particles).

The states of a quantum system are described by rays in a Hilbert space (H, 〈·, ·〉)
5. A Poincaré transformation L ∈ P↑+ transforms single particle states into single particle
states,

Φ̂ 7→ T̂LΦ̂ = Ψ̂ (1.16)

The system has Poincaré symmetry (relativistic symmetry) if all physical properties are
left invariant under all transformation T̂L, ie for all Φ,Ψ ∈ H the transitions probabilities
(ray products)

〈Φ̂, Ψ̂〉 := |〈Φ,Ψ〉|2
‖Φ‖2‖Ψ‖2 (1.17)

must remain the same,
〈T̂LΦ̂, T̂LΨ̂〉 = 〈Φ̂, Ψ̂〉 (1.18)

For such transformations T̂L that leave the ray product invariant, one has the following
theorem by Wigner [8].

Theorem 1. Let T̂ be an invertible and ray product preserving map of the rays of a Hilbert
space H. Then there is an invertible, R− linear and isometric map T : H → H with the
property

T̂ Φ̂ = T̂Φ, for Φ ∈ H (1.19)

T is unique up to a factor of modulus 1 and is either unitary or antiunitary.

For the case of L ∈ P↑+, TL is unitary. If one performs two Poincaré transformations
L1 and L2, one has that

T̂L1T̂L2 = T̂L1L2 (1.20)

and for the operators TL it follows

TL1TL2 = eiω(L1,L2)TL1L2 , with ω(L1, L2) ∈ R (1.21)

The map L ∈ P↑+ 7→ TL satisfiying the condition above is a so-called ray representation or
projective representation of the Poincaré group. Fortunatly, there is another theorem by
Wigner and Bargmann[8] that provides a true representation, rather than a projective one.
5 A ray in a Hilbert space is a set of the form:

Φ̂ := {cΦ|c ∈ C} ≡ CΦ, where Φ ∈ H (1.15)
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Theorem 2. For every continuous ray representation L 7→ T̂L of the proper orthochronous
Poincaré group P↑+ there is a strongly continuous unitary representation U of the twofold
covering group Pc 6 ,such that

̂U(a,A)Φ = T̂a,Λ(A)Φ̂ (1.29)

with the covering map Λ.

Now we give the Wigner definition of a elemetary particle: The Hilbert space of states
of a elemetary relativistic particle is the representation space of a irreducible, continuous,
unitary positive-energy7 representation of Pc. What remains is the mathematical problem
of determining this representations.

Quoting the result on the classification of the irreducible representation: The uni-
tary irreducible positive-energy representations of P↑+ are labeled by the mass m ≥ 0 and
spin s ∈ 1

2N0. In this dissertation, we will consider only massive particles (m > 0) of
integer spin (s ∈ N0), ie bosons, and thus recall explicitly only these representations.
A integer spin representation U (m,s) can be viewed as a true representation, ie a represen-
tation of P↑+ and not of the covering group Pc, thus

U (m,s) :P↑+ −→ B(H(m,s)) (1.30)
(a,Λ) 7→ U (m,s)(a,Λ) (1.31)

6 The group P↑+ is two-fold connected with covering group being the so-called inhomogeneous SL(2,C),
which we will denote as Pc. This group consist of pairs (a,A) with a being a translations and
A ∈ SL(2,C). The group SL(2,C) is the covering group of L↑+ with covering homomorphism

Λ :SL(2,C) −→ L↑+ (1.22)
A 7→ Λ(A) ≡ ΛA (1.23)

defined in the following way:

1. Consider the bijective linear map

x 7→ x
∼

= x01 + ~x · ~σ =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(1.24)

from Minkowski space into the space of hermitian 2x2 matrices, where ~σ = (σ1, σ2, σ3) are the
Pauli matrices. It holds that

detx
∼

= x · x ≡ x2 (1.25)

2. Λ(A) is then defined by:
ΛAx
∼

= Ax
∼
A∗ (1.26)

One can see that for A1, A2 ∈ SL(2,C),

ΛA1A2 = ΛA1ΛA2 (1.27)

and
ΛA1 = ΛA2 ⇔ A1 = ±A2 (1.28)

This equation ilustrates the double cover, since A and −A define the same Lorentz transformation.
7 This means that the spectrum of the energy-momentum operators, the generators of translations, is

restricted to V+
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with H(m,s) being the representation space (ie single-particle space) and B(H(m,s)) the
space of all bounded linear operators on it.
The spin characterizes an irreducible unitary representation D(s) of the little group
(stabilizer group) in L↑+ of a reference momentum p̄ on the mass shell for m > 0,

H+
m := {p ∈ R4|p · p = m2, p0 > 0} (1.32)

This subgroup is the rotation group, SO(3), and the representation D(s) acts in C2s+1, the
so-called little Hilbert space. The representation U (m,s) is induced by D(s) as follows:

• H(m,s) = L2 (H+
m, dµm;C2s+1), where dµm is the Lorentz invariant measure on H+

m.

• U (m,s) acts according to

(U (m,s)(a,Λ)ψ)(p) = eip·aD(s) (R(Λ, p))ψ(Λ−1p) (1.33)

Here R(Λ, p) ∈ SO(3) is the so-called Wigner rotation, defined by

R(Λ, p) := B−1
p ΛBΛ−1p (1.34)

where Bp, p ∈ H+
m, is a family of Lorentz transformations such that Bp : p̄ 7→ p.

This representation extends to the full Poincaré group by adjoining representers for the
space reflection P (or parity transformation) and the time reflection T = −P . Indeed,
all integer spin representations D(s) extend to O(3), and by an appropiate choice of the
family Bp, the representation U (m,s) extends naturally to the parity transformation by(

U (m,s)(P )ψ
)
(p) = D(s)(P )ψ(Pp). (1.35)

Similarly, one can adjoin an anti- unitary representer of the time reflection to the
representation of O(3), and one can define an anti-unitary involution U (m,s)(T ) by(

U (m,s)(T )ψ
)
(p) := D(s)(T )ψ(−Tp). (1.36)

(See [4] for details.) Note that the anti-unitary representer of the PT transformation
PT ≡ −1 is now given by(

U (m,s)(−1 )ψ
)
(p) = D(s)(−1 )ψ(p), (1.37)

where D(s)(−1 ) is the anti-untiary operator D(s)(T )D(s)(P ).

Given a reference system, we identify the momentum space to R4: p 7→ (p0, · · · , p3).
The Lorentz product then reads p · p = p2

0 − |~p|2 with |~p|2 = p2
1 + p2

2 + p2
3. The Lorentz

invariant measure on the mass shell is

dµm(p) = d3~p

2ωm(~p) , ωm(~p) .= (|~p|2 +m2) 1
2 . (1.38)

We choose the reference system such that the reference momentum p̄ is identified with
(m, 0) in R4. Then the space- and time-reflections are given by

P : (x0, x) 7→ (x0,−x), T : (x0, x) 7→ (−x0, x). (1.39)
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1.1.3 Fock space

So far we only talked about single-particle spaces, however is of the most interest
to treat systems with an undertermined number of particles, ie systems where one can
have creation and annihilation of particles. The method of passing from a single-particle
description to a multi-particle description is often called second quantization. We provide
some of the key definitions and concepts along the lines of [9, 10].

Consider a arbitrary single-particle Hilbert space, H1, eg H1 = L2(R3), spinless
non-relativistic particle, or H1 = H(m,s), spin-s relativistic particle. The Hilbert space that
describes a n-particle system is obtained as follows: First, consider the Hilbert space

Hn := H1 ⊗H1 ⊗ · · · ⊗ H1︸ ︷︷ ︸
n times

≡ H1
⊗n (1.40)

A typical vector on Hn is of the form

Φn = φ1 ⊗ φ2 ⊗ · · · ⊗ φn, where φ1, · · ·φn ∈ H1 (1.41)

or is given by a linear combination of such vectors. The inner product on Hn is given by

(Ψn,Φn)n := (ψ1, φ1)1 · · · (ψn, φn)1 (1.42)

with (·, ·)1 being the inner produc on H1.
Then, we must take into account that quantum particles are indistinguishable and, con-
sequently, obey either Bose-Einstein or Fermi-Dirac statistics. The states Φn must be
substituted by either

E+
n Φn = 1

n!
∑
π∈Sn

φπ(1) ⊗ · · · ⊗ φπ(n) (1.43)

or
E−n Φn = 1

n!
∑
π∈Sn

sgn(π)φπ(1) ⊗ · · · ⊗ φπ(n) (1.44)

where Sn is the symmetric group on n letters and sgn(π) is the sign of the permutation π ∈
Sn. The operators E+

n and E−n are projection operators 8 to, respectively, the symmetrized
(bosonic) and anti-symmetrized (fermionic) parts of Hn. The true physical n-particle spaces
are

H±n = E±nH1
⊗n (1.47)

Having the description of multi-particle systems with a fixed number of particles,
we now want to describe a system that can be in any multi-particle state (ie a system with
8 E±n satisfy:

(E±n )2 = E±n (1.45)
∀Φn,Ψn ∈ Hn : (Ψn, E

±
n Φ)n = (E±n Ψn,Φ)n (1.46)
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an undertermined number of particles). In order to do this, one introduces the Fock space

H± ≡ F±(H1) =
∞⊕
n=0
H±n (1.48)

where H0 = C. The state Ω = (1, 0, 0, · · · ) is the so-called vaccum state . An element of
H± is an infinite sequence of states

Φ = (c,Φ1, · · · ,Φn, · · · ) (1.49)

with c ∈ C and Φn ∈ H±n . The Fock space is also a Hilbert space, with inner product

(Φ,Ψ) :=
∞∑
n=0

(Ψn,Φn)n (1.50)

and all Φ ∈ H± have finite norm, ie

‖Φ‖2 =
∞∑
n=0
‖Φn‖2

n <∞ (1.51)

Now we introduce operators some important operators on H±. Given a unitary operator
U1 on H1; eg U1 = U (m,s)(a,Λ), the operator that implements the Poincaré transformation
(a,Λ) from last section; one defines the so-called second quantization U of U1, that acts
on H±, by

UΩ := Ω (1.52)

(UΦ)n := (
n⊗
j=1

U1)Φn (1.53)

The operator U does not change the particle number of the system, but there exist
operators that do change. The creation operator a∗(φ) creates a particle in the state
φ ∈ H1

a∗(φ)Ω = (0, φ, 0, · · · ) ≡ φ (1.54)
(a∗(φ)Φ)n =

√
nE±n (φ⊗ Φn−1); n = 1, 2, · · · (1.55)

Given the creation operator a∗(φ), one defines the annihilation operator for a state φ ∈ H1,
a(φ), as its adjoint. The vaccum state is characterized by the property

∀φ ∈ H1 : a(φ)Ω = 0 (1.56)

One can also determine the commutation/anticommutation relations for the creation and
annihilation operators, those being

[a(φ), a∗(ψ)]∓ = (φ, ψ)1 (1.57)
[a(φ), a(ψ)]∓ = 0 = [a∗(φ), a∗(ψ)]∓ (1.58)
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The + sign stands for commutation (bosons) and the − sign stands for anticommutation
(fermions).

As we stated in the last section, in this dissertation we will only consider bosons.
An important remark, however, is that we previously refered to bosons as massive particles
of integer spin, in contrast to the above definition of them as symmetrized n-particle states.
The equilavence of the two characterizations is a general feature of Relativistic Quantum
Field Theory, namely the Spin-Statistics theorem [11], which asserts that integer spin
particles obey Bose-Einstein statistics and half-integer spin particles obey Fermi-Dirac
statistics.

1.2 Free quantum fields

Having determined the state spaces and the relativistic transformation laws of the
various types of relativistic particles and constructed their Fock spaces, for the description
of multi-particle states, ones aim now is to construct operators that create particle states
from the vaccum. These operators are called free quantum fields and are built from
creation and annihilation operators. Quantum fields are going to be used for building
the S matrix, central object of the description of scattering experiments involving the
interactions between the given particles, and for this one requires that the fields satisfy

• Relativistic Covariance

• Locality (or Einstein causality)

• Positivity of the states (for a probabilistic interpretation)

1.2.1 The point-local Scalar and Vector fields

Let’s ilustrate these properties with scalar and vector fields, since we are only
treating integer spin particles.

(i) Scalar field:

Given the representation U (m,0)9 of a massive spinless particle acting on L2(H+
m, dµm)

(state space) and writing symbolically the creation and annihilation operators as

a∗(ψ) =:
∫
H+
m

dµm(p)ψ(p)a∗(p) (1.59)

a(ψ) =:
∫
H+
m

dµm(p)ψ(p)a(p) (1.60)

9 The representation of the little group is trivial



1.2. Free quantum fields 25

where ψ ∈ L2(H+
m, dµm), one constructs the field as

ϕ(x) = (2π)− 3
2

∫
H+
m

dµm(p)
(
eip·xa∗(p) + e−ip·xa(p)

)
(1.61)

remembering that this expression must be understood in the sense of distributions.
ϕ(x) is an operator-valued distribution in the sense that its matrix elements are
tempered distributions 10.

The positivity of states follows from the construction. The scalar field transforms
under a trivial representation of P↑+

U(a,Λ)ϕ(x)U(a,Λ)∗ = ϕ(a+ Λx) (1.62)

where U is the second quantization of U (m,0). The locality is expressed as follows

[ϕ(x), ϕ(y)] = 0, if (x− y)2 < 0 (1.63)

, i.e. the field ’operator’ commutes with respect to causally disjoint events (that are
points in M, thus the denomination point-like fields/localization). An important
remark is that the locality of the field is equivalent to the symmetry of the so-called
two-point function,

wscl(x− y) ≡ (Ω, ϕ(x)ϕ(y)Ω) = (2π)−3
∫
H+
m

dµm(p)e−ip·(x−y) (1.64)

with respect to the interchange x↔ y.

(ii) Vector field:

Given the representation U (m,1) of a massive spin-1 particle acting on L2(H+
m, dµm;C3)

(state space), one can construct the so-called Proca field Apµ as in [8].
The positivity is also satisfied by construction. The field is hermitean and it transforms
under P+ (covariance) as

U(a,Λ)Apµ(x)U(a,Λ)∗ = Λν
µA

p
ν(a+ Λx), (1.65)

Apµ is (point-)localized in the same sense as the scalar field

[Apµ(x), Apν(x)] = 0, if (x− y)2 < 0 (1.66)

and its two-point function is given by

wpµν(x− y) ≡ (Ω, Apµ(x)Apν(y)Ω) = (2π)−3
∫
H+
m

dµm(p)e−ip·(x−y)Mp
µν(p) (1.67)

where
Mp

µν(p) = −gµν + pµpν
m2 (1.68)

10 A tempered distribution is a distribution over the so-called Schwarz space, S(R4), of rapidly decreasing
C∞ functions on R4
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An important remark is that higher spin(s ≥ 2) local covariant free fields can also
be contructed using the so-called Wigner intertwiners, which for point-local fields can
found in [8, 12].

1.2.2 Considerations on interacting point-local fields and ultraviolet (UV)
divergences

The combined requirements of locality, positivity of states and positivity of energy
lead to bad short distance behaviour of quantum fields (UV singularities). In the construc-
tion of interacting models one starts from a given set of particle types with corresponding
free fields and an interaction Lagrangean Lint, which is a Wick ordered polynomial of free
fields [9] and describes the coupling between the various particles. Let g be a test function.
The S matrix is given by the formal series of operators

S(gLint) :=
∞∑
n=0

in

n!

∫
dx1 · · · dxng(x1) · · · g(xn)T [Lint(x1) · · ·Lint(xn)] (1.69)

where T · · · denotes the time-ordered product, eg

T [Lint(x)Lint(x′)] =

Lint(x)Lint(x′) , se x � x′

Lint(x′)Lint(x) , se x′ � x

The Physical S matrix is obtained by taking the so-called adiabatic limit where g(x) goes
to a constant (Infrared problem). The time-ordered distributions are recursively fixed only
outside the set of coinciding arguments, eg T [Lint(x)Lint(x′)] is fixed only for x 6= x′, and
the extension into this set is unique only after specifying some normalization constants
(UV problem) , which is done so as to satisfy physically motivated (re-)normalization
conditions. If the number of normalization constants increases without bound with the
order n of the series, the theory is called non-renormalizable, now if the total number
of constants appearing in all orders is finite, then the theory is called renormalizable. A
non-renormalizable theory has a weaker predictive power.

These time ordered products T [Lint(x1) · · ·Lint(xn)] can be expanded using Wicks
Theorem [9] in a sum involving the time-ordered two-point functions, eg considering
T [Lint(x)Lint(x′)] with Lint =: ϕ(x)3 : ,

T : ϕ(x)3 : : ϕ(x′)3 : =: ϕ(x)3ϕ(x′)3 : + 9(Ω, Tϕ(x)ϕ(x′)Ω) : ϕ(x)2ϕ(x′)2 : +
+ 9(Ω, T : ϕ(x)2 : : ϕ(x′)2 : Ω) : ϕ(x)ϕ(x′) : + (Ω, T : ϕ(x)3 : : ϕ(x′)3 : Ω)

The UV behaviour of the time-ordered distributions can be traced back to the UV behaviour
of the two-point functions, and the UV behaviour of the latter is determined by its so-called
scaling degree.
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The scaling degree of a two-point function w(x−x′) quantifies its singular behaviour
when ξ ≡ x − x′ = 0, ie a scaling degree ω means that w scales like λ−ω under ξ 7→ λξ.
Let us give the precise definition:

Definition 4. Let u(ξ) be a distribution on R4. We define the scaling degree of u, denoted
by sd(u), as 11

inf
ω∈R

{
∀f ∈ D(R4) : λω〈uλ, f〉 λ→0−→ 0

}
(1.70)

where the rescaled distribution uλ is defined as

〈uλ, f〉 := 〈u, fλ〉 with fλ(ξ) := λ−4f(λ−1ξ)

The knowledge of the scaling degrees of the two-point functions allow us to calculate
the so-called scaling dimension of the interaction Lagrangean. This scaling dimension is
defined as follows: the scaling dimension of a free field is half the scaling degree of its
two-point function and the scaling dimension of a Wick product of different fields(eg an
interaction Lagrangean) is the sum of the scaling dimensions of the fields. The scaling
dimension of the interaction Lagrangean allows to inquire about the renormalizability
of the given model in the sense that if the lagrangean of a given model (in 4 spacetime
dimensions) have scaling dimension larger than 4, then the model is non-renormalizable[9].

The point-like scalar field has a good UV behaviour, since its two-point function
scaling degree is 2, however like we stated in the begining of the section, the requirements
of locality and positivity (of states and energy) on the fields lead to a bad UV behaviour,
more precisely[4, 12], the optimal scaling degree for a spin-s quantum satisfiying the above
assumptions is 2s + 2. The Proca field Ap has scaling dimension 2. The high scaling
degrees for these fields excludes its use in the pertubative (S matrix given by a formal
series) construction of renormalizable interacting models for s ≥ 1. For spin one and two,
there exist fields in the context of gauge theory with the same good UV behaviour as the
scalar field for spin zero (scaling degree 2)[2]. However, for this one has to introduce an
unphysical state space (unphysical in the sense that it contains stated with negative norm,
not allowing a probabilistic interpretation), as well as unphysical fields (ghosts). In the
contruction of interacting models, the unphysical degrees of freedom have to be divided
out in the end by requiring gauge (of BRTS) invariance of observables and the S matrix.

1.2.3 The alternative of String-localized Quantum Fields

Like was pointed in the previous section, when one tries to build quantum fields
for particles of spin s ≥ 1 that still satisfy the fundamental conditions of Hilbert space
positivity, Poincaré covariance and Einstein causality (locality) one ends up with non-
renormalizable interactions. Some ways to avoid the non-renormalizability break one or
11 D(R4) is the space of compactly supported test functions on R4
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more of the fundamental conditions we stated. However in [4], (continuing the work done
on [13, 3]) were constructed free quantum fields for massive bosons of any spin which have
the same good UV behaviour of the scalar field, act in a Hilbert space without ghosts and
are Poincaré covariant. The price to pay is that these fields are no longer point-local , in
the sense of (1.63), but are localized in semi-infinite lines

Sx,e = x+ R+
0 e (1.71)

where x ∈M and e is a spacelike vector, the so-called (spacelike) Strings. These fields are
thus called string-localized fields. In this dissertation we begin to explore the alternative,
hinted in [4, footnote 3], of lightlike string-localized fields.

A quantum tensor field localized on lightlike strings is a mutliplett of operator-
valued distributions ϕµ1···µk(x, e), where x is a point in Minkowski space and e is in the
forward light cone ∂V+ ≡ H+

0
12. It is a distribution in x and a function in e , that is to say,

it needs to be smeared only in x. This is an advantage in contrast to spacelike string-local
fields, since they must be considered as distributions also in e.

The lightlike string emanating from x in the direction e, Sx,e := x + R+
0 e, is the

localization region of ϕµ1···µk(x, e) in the sense of compatibility of quantum observables:
If the strings Sx,e and Sx′′,e′ are causally disjoint for all x′′ in an open neighborhood of x′,
then

[ϕµ1···µk(x, e), ϕµ′1···µ′k(x
′, e′)] = 0. (1.72)

It is further required that the family transform as a tensor under a unitary representation
U of the proper orthochronous Poincaré group P↑+:

U(a,Λ)ϕµ1···µk(x, e)U(a,Λ)−1 = ϕα1···αk(a+ Λx,Λe) Λα1
µ1 · · ·Λαk

µk , (1.73)

where a ∈ R4 is a translation and Λ is a Lorentz transformation. (We use Einstein’s sum
convention in repeated Lorentz indices.) We say that the field is a free field for a given
particle type if it creates from the vacuum only single particle states of the given type.
Like stated before, we consider here only massive bosons, i.e.particles with positive mass,
m > 0, and integer spin, s ∈ N0.

12 Note that H+
0 is the mass-shell for m = 0
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2 Definitions, constructions and results on
Lightlike String-local Quantum Fields

The chapter is divided into three sections. The first section contains the geometrical
(Minkowski geometry) results on lightlike strings such as the time ordering, causal separa-
tion, separation by wegdes, among others. In the second section we construct the lightlike
string-localized fields from the concept of Wigner intertwiners and explore the particular
case of string fields given by line integral over pointlike fields. In the third section is the
result on the scaling degree of the two-point functions of the lightlike string fields.

2.1 Geometrical results on Strings

We start by remembering the key definitions (2,3 from section 1.1.1) concerning
the causal structure on M.
Given x, y ∈M and R, R̃ ⊆M,

• y � x :⇔ y /∈ V−(x)

• R � R̃ :⇔ ∀x ∈ R ∀x̃ ∈ R̃ : x � x̃

• R′ := {z ∈M|∀y ∈ R : (z − y)2 < 0}

• R and R̃ are causally disjoint if R ⊆ (R̃)′

We also introduce the important concept of an wedge following [14, 15]. We give two
equivalent characterizations:

• Given a reference frame such that M 3 x = (x0, x1, x2, x3), we define the standard
Wedge W1 as

W1 :=
{
x ∈ R4| x1 >

∣∣∣x0
∣∣∣} , (2.1)

All other wedges are defined as Poincaré transforms of W1, ie

W = ΛW1 + a , for (a,Λ) ∈ P↑+ (2.2)

• Let e, e′ ∈ ∂V+ linearly independent and x ∈M. One defines a wedge as the following
set:

W (x; e, e′) := {y ∈M|(y − x) · e > 0 ∧ (y − x) · e′ < 0}
(2.3)
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In the following subsections we present our propositions concerning the causal properties
of the strings.

2.1.1 Causal complement, causal disjointness and wedge separation

Proposition 1. Let Sx,e be a future-directed lightlike string. Then,

(Sx,e)′ =
{
y ∈M|(y − x)2 < 0 ∧ (y − x) · e ≥ 0

}
Proof. Let y ∈ (Sx,e)′, which also reads as ∀α ∈ R+

0 : [y − (x+ αe)]2 < 0. However

[y − (x+ αe)]2 = (y − x)2 − 2α(y − x) · e+ α2
���:

0
e · e < 0

• For α = 0, one gets (y − x)2 < 0.

• For α 6= 0 one gets (y − x)2 − 2α(y − x) · e < 0, however

(y − x)2 − 2α(y − x) · e < 0⇒ (y − x) · e ≥ 0

because otherwise there would exist an α0 ∈ R+
0 such that

(y − x)2 − 2α0(y − x) · e > 0

which is a contradiction.

Therefore, (Sx,e)′ ⊆ {y ∈M|(y − x)2 < 0 ∧ (y − x) · e ≥ 0}.

Now lets prove the other inclusion (⊇).
Consider y ∈M such that (y − x)2 < 0 and (y − x) · e ≥ 0. Then,

∀α ∈ R+
0 : [y−(x+αe)]2 = (y−x)2−2α(y−x)·e+α2

���:
0

e · e = (y − x)2︸ ︷︷ ︸
<0

− 2α(y − x) · e︸ ︷︷ ︸
≥0︸ ︷︷ ︸
≤0

< 0

Therefore, (Sx,e)′ ⊇ {y ∈M|(y − x)2 < 0 ∧ (y − x) · e ≥ 0}

Proposition 2. Let Sx,e and Sx′,e′ be future-directed lightlike strings. Then,

Sx,e ⊂ (Sx′,e′)′ ⇔ (x− x′)2 < 0 ∧ (x′ − x) · e ≥ 0 ∧ (x− x′).e′ ≥ 0

Proof. Lets prove the two implications:

(⇒) Using proposition 1, one gets:

Sx,e ⊂ (Sx′,e′)′ ⇔ ∀α ∈ R+
0 : [(x+ αe)− x′]2 < 0︸ ︷︷ ︸

(i)

∧ [(x+ αe)− x′] · e′ ≥ 0︸ ︷︷ ︸
(ii)
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(i) ∀α ∈ R+
0 : (x− x′)2 + 2α(x− x′) · e+ α2���:

0
e · e < 0

• For all α = 0, one gets (x− x′)2 < 0

• For all α 6= 0, one gets (x− x′).e ≤ 0 (⇔ (x′ − x).e ≥ 0)
(because otherwise there would exist a α0 ∈ R+

0 s.t. (i) ≥ 0.)

(ii) ∀α ∈ R+
0 : (x− x′) · e′ + α

>0︷ ︸︸ ︷
e · e′ ≥ 0

• For α = 0, one gets (x− x′) · e′ ≥ 0

(⇐) Let x, x′ ∈M and e, e′ ∈ D(M) such that

(x− x′)2 < 0 ∧ (x′ − x) · e ≥ 0 ∧ (x− x′).e′ ≥ 0

and take α ∈ R+
0 . One then gets

• [(x+ αe)− x′]2 = (x− x′)2 + 2α(x− x′) · e = (x− x′)2 + 2α︸︷︷︸
>0

(x− x′) · e︸ ︷︷ ︸
≤0

< 0

• [(x+ αe)− x′] · e′ = (x− x′) · e′︸ ︷︷ ︸
≥0

+α e · e′︸ ︷︷ ︸
>0

≥ 0

Therefore, Sx,e ⊂ (Sx′,e′)′

Corollary 1. Let Sx,e and Sx′,e′ be future-directed lightlike strings. There exists a neigh-
borhood U ′ of x′ such that

∀x′′ ∈ U ′ : Sx,e ⊂ (Sx′′,e′)′,

if and only if,

(x− x′)2 < 0 ∧ (x′ − x) · e > 0 ∧ (x− x′).e′ > 0

Proof. (⇐) Consider the following functions qi : x′′ ∈ M 7→ qi(x′′) ∈ R, i = 1, 2, 3, given
by 

q1(x′′) = (x′′ − x)2

q2(x′′) = (x′′ − x) · e

q3(x′′) = (x− x′′) · e′

One has that q1, q2, q3 are all continuous functions and furthermore, q1(x′) < 0 and q2,3 > 0.
Since continuous functions preserve its sign in a neighborhood of a point, there exists a
neighborhood U ′ of x′ such that

∀x′′ ∈ U ′ : q1(x′′) < 0 ∧ q2(x′′) > 0 ∧ q3(x′′) > 0

which implies that
∀x′′ ∈ U ′ : Sx,e ⊂ (Sx′′,e′)′
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(⇒) One has that

∀x′′ ∈ U ′ : (x− x′′)2 < 0︸ ︷︷ ︸ (I) ∧ (x′′ − x) · e ≥ 0︸ ︷︷ ︸ (II) ∧ (x− x′′).e′ ≥ 0︸ ︷︷ ︸ (III)

The first condition, (I), gives (x− x′)2 < 0, since x′ ∈ U ′. By the same token, conditions
(II) and (III) yield

(x′ − x) · e ≥ 0 ∧ (x− x′).e′ ≥ 0

Note that one cannot have (x′ − x) · e = 0 = (x − x′).e′, since, in this case, the open
neighborhood U ′ of x′ would contain points x′′ satisfiying (x−x′′).e′ < 0 and/or (x′′−x).e <
0, which is a contradiction.

Proposition 3. Let Sx,e and Sx′,e′ be non-parallel, causally disjoint, future-directed lightlike
strings. Then, there exists a pair of wegdes WL,WR such that W ′

L = WR, W ′
R = WL,

Sx,e ⊆ WL and Sx′,e′ ⊆ WR.

Proof. By proposition 2, the fact that the strings are causally disjoint reads as

Sx,e ⊂ (Sx′,e′)′ ⇔ (x− x′)2 < 0 ∧ (x′ − x) · e ≥ 0 ∧ (x− x′).e′ ≥ 0

Furthermore, one must have e 6= e′, since the lightlike strings are non-parallel. Lets
explicitly contruct the pair of wedges. Define

WR := {y ∈M|[y − (x+ x′

2 )] · e > 0 ∧ [y − (x+ x′

2 )] · e′ < 0}

WL := {y ∈M|[y − (x+ x′

2 )] · e < 0 ∧ [y − (x+ x′

2 )] · e′ > 0}

Notice that W ′
L = WR, W ′

R = WL and that:

• Sx′,e′ ⊆ WR

Let α ∈ R+
0 .

[(x′ + αe′)− (x+ x′

2 )] · e = [x
′ − x
2 + αe′] · e = 1

2

≥0︷ ︸︸ ︷
(x′ − x) · e+

≥0︷ ︸︸ ︷
αe′ · e ≥ 0

[(x′ + αe′)− (x+ x′

2 )] · e′ = [x
′ − x
2 + αe′] · e′ = 1

2

≤0︷ ︸︸ ︷
(x′ − x) · e′+α

=0︷ ︸︸ ︷
e′ · e ≤ 0

• Sx,e ⊆ WL

Let α ∈ R+
0 .

[(x+ αe)− (x+ x′

2 )] · e = [x− x
′

2 + αe] · e = 1
2

≤0︷ ︸︸ ︷
(x− x′) · e+α

=0︷︸︸︷
e · e ≤ 0

[(x+ αe)− (x+ x′

2 )] · e′ = [x− x
′

2 + αe] · e′ = 1
2

≥0︷ ︸︸ ︷
(x− x′) · e′+

≥0︷ ︸︸ ︷
αe · e′ ≥ 0
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Corollary 2. Let Sx,e and Sx′,e′ be non-parallel, future-directed lightlike strings. If Sx,e and
Sx′′,e′ are causality disjoint for all x′′ in some open neighborhood on x′, then there exists a
pair of wegdes WL,WR such that W ′

L = WR, W ′
R = WL, Sx,e ⊆ WL and Sx′,e′ ⊆ WR.

Proof. By the corollary 1, we have that

(x− x′)2 < 0 ∧ (x′ − x) · e > 0 ∧ (x− x′).e′ > 0 (2.4)

Using theses inequalities one can show that the same wegdes of proposition 3 perform the
separation Sx,e ⊆ WL, Sx′,e′ ⊆ WR.

These results on wedge separation of strings will be applied in the proof of locality
of the strings fields.

2.1.2 Useful lemmas

Lemma 1. Let e ∈ D(M) be lightlike and future-directed and ξ ∈ D(M) arbitrary.

(i) ξ causal ∧ ξ · e < 0⇒ ξ past-directed

(ii) ξ causal ∧ ξ · e > 0⇒ ξ future-directed

(iii) ξ · e = 0 ∧ {e, ξ}L.I. ⇒ ξ · ξ < 0

Lemma 2. Let v, w ∈ D(M). Then,

(i) v2, w2 ≥ 0 and v, w future-directed ⇒ v · w ≥ 0

(ii) v2 = 0 and v · w = 0⇒ w2 ≤ 0

(iii) v2 = 0 , w2 ≥ 0 and v · w = 0⇒ w2 = 0 e v ‖ w,
where v ‖ w :⇔ ∃κ ∈ R s.t. v = κw

The proofs of the lemmas are found in the Appendix.

2.1.3 Time ordering of strings

Proposition 4. Let y ∈M and Sx,e be a future-directed lightlike string. Then,

y � Sx,e ⇔ (y − x) · e ≥ 0 ∧ y /∈ Rx,e

where Rx,e := x+ Re.
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Proof. Let’s prove both implications:

(⇒) Contrapositive: (y − x) · e < 0 ∨ y ∈ Rx,e ⇒ ¬(y � Sx,e)

One has three cases:

(I) (y − x) · e < 0 ∧ (y − x)2 ≥ 0

Applying item (i) of Lemma 1 for ξ = y − x, one gets

y − x past-directed ⇒ y ∈ V−(x)⇒ ¬(y � x)⇒ ¬(y � Sx,e)

(II) (y − x) · e < 0 ∧ (y − x)2 < 0

For α ≥ (y−x)2

2(y−x)·e > 0, one has

• [y−(x+αe)]2 = (y−x)2−2α(y−x)·e+α2���:
0

e · e ≥ (y−x)2−2
[

(y−x)2

2(y−x)·e

]
(y−x)·e =

0

• [y − (x+ αe)] · e = (y − x) · e︸ ︷︷ ︸
<0

−α���: 0
e · e < 0

Thus, by item (i) of Lemma 1 for ξ = y − (x+ αe), one arrives at

y − (x+ αe) past-directed ⇒ y ∈ V−(x+ αe)⇒ ¬(y � x+ αe)⇒ ¬(y � Sx,e)

(III) y ∈ Rx,e = Sx,e ∪ (Rx,e \ Sx,e)

• y ∈ Sx,e ⇒ ¬(y � Sx,e)

• y ∈ Rx,e \ Sx,e ⇒ y− x past-directed ∧ (y− x)2 = 0⇒ y ∈ V−(x)⇒ ¬(y �
Sx,e)

(⇐) (y − x) · e ≥ 0 ∧ y /∈ Rx,e ⇒ y � Sx,e

Dividing in two cases:

(I) (y − x) · e = 0 ∧ y /∈ Rx,e

Applying item (iii) from Lemma 1 for ξ = y − x, one has that (y − x)2 < 0. Now
take α ∈ R+

0 .

[y − (x+ αe)]2 = (y − x)2 − 2α����
��:0

(y − x) · e + α2
���:

0
e · e < 0⇒



2.1. Geometrical results on Strings 35

⇒ ∀α ∈ R+
0 : y ∈M \ V−(x+ αe)⇒ ∀α ∈ R+

0 : y � x+ αe⇒ y � Sx,e

(II) (y − x) · e > 0 ∧ y /∈ Rx,e

• (II.1) (y − x) · e > 0 ∧ (y − x)2 < 0

∀α ∈ R+
0 : [y − (x+ αe)]2 = (y − x)2︸ ︷︷ ︸

<0

−2α(y − x) · e︸ ︷︷ ︸
≤0

+α2
���:

0
e · e < 0⇒

⇒ ∀α ∈ R+
0 : y ∈M \ V−(x+ αe)⇒ y � Sx,e

• (II.2) (y − x) · e > 0 ∧ (y − x)2 ≥ 0

∀α ∈ R+
0 s.t. 0 ≤ α ≤ (y − x)2

2(y − x) · e : [y− (x+αe)]2 ≥ 0 ∧ [y− (x+αe)] · e > 0

Using item (ii) from Lemma 1, one gets

y − (x+ αe) future-directed ⇒ y ∈ V+(x+ αe) ⊆M \ V−(x+ αe)

∀α ∈ R+
0 t.q. α > (y − x)2

2(y − x) · e : [y − (x+ αe)]2 < 0⇒ y ∈M \ V−(x+ αe)

Thus,
∀α ∈ R+

0 : y ∈M \ V−(x+ αe)⇒ y � Sx,e

This completes the proof.

Proposition 5. Let Sx,e and Sx′,e′ be future-directed lightlike strings. Then,

Sx′,e′ � Sx,e ⇔ (x′ − x) · e ≥ 0 ∧ Sx′,e′ ∩Rx,e = ∅

Proof.
Sx′,e′ � Sx,e ⇔ ∀y ∈ Sx′,e′ : y � Sx,e

Using proposition 4, this is equivalent to

∀y ∈ Sx′,e′ : (y−x)·e ≥ 0 ∧ y /∈ Rx,e ⇔

∀α ∈ R+
0 : [(x′ + αe′)− x] · e ≥ 0︸ ︷︷ ︸

(i)

 ∧ Sx′,e′∩Rx,e = ∅

(i) ∀α ∈ R+
0 : [(x′ + αe′)− x] · e ≥ 0⇔

⇔ ∀α ∈ R+
0 : (x′ − x) · e+

≥0︷ ︸︸ ︷
αe · e′ ≥ 0⇔ (x′ − x) · e ≥ 0
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Thus,

∀α ∈ R+
0 : [(x′ + αe′)− x] · e ≥ 0 ∧ Sx′,e′ ∩Rx,e = ∅ ⇔

⇔ (x′ − x) · e ≥ 0 ∧ Sx′,e′ ∩Rx,e = ∅

This last proposition can be employed in the future to the construction of the
time-ordered products of fields necessary for the study of interacting theories.

2.1.4 Secondary results: Chronological future and past, and causal complete-
ness

Proposition 6. Let Sx,e be a future-directed lightlike string. Then,

(i) V+(Sx,e) = V+(x)

(ii) V−(Sx,e) = {y ∈M|(y − x).e < 0}

Proof. (i) Let’s prove both inclusions:

(⊇)
V+(Sx,e) :=

⋃
y∈Sx,e

V+(y) =
⋃

α∈R+
0

V+(x+ αe) ⊇ V+(x)

(⊆)
y ∈ V+(Sx,e)⇒ ∃α ∈ R+

0 : y ∈ V+(x+ αe)

One has to look at two cases:

• α = 0⇒ y ∈ V+(x)

• α 6= 0⇒ y ∈ V+(x+ αe)⇒ [y − (x+ αe)]2 > 0 ∧ [y − (x+ αe)] · e > 0
That gives,

0 < [y − (x+ αe)] · e = (y − x) · e
0 < [y − (x+ αe)]2 = (y − x)2 − 2α(y − x) · e⇒ (y − x)2 > 2α(y − x) · e > 0

Applying item (ii) from Lemma 1 for ξ = y − x, one arrives at y ∈ V+(x).

(ii) Let’s prove both inclusions:

(⊇)
Let y ∈M such that (y − x).e < 0. One has two cases:
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• (y − x) · e < 0 ∧ (y − x)2 ≥ 0

Using item (i) from Lemma 1 for ξ = y − x, one arrives at

y ∈ V−(x)⇒ ∀α ∈ R+
0 : V−(x+ αe)⇒ y ∈ V−(Sx,e)

• (y − x) · e < 0 ∧ (y − x)2 < 0
Taking α > (y−x)2

2(y−x)·e > 0, one has

[y − (x+ αe)]2 = (y − x)2 − 2α(y − x) · e︸ ︷︷ ︸
>0

+α2 e · e︸︷︷︸
=0

> 0

[y − (x+ αe)] · e = (y − x) · e︸ ︷︷ ︸
<0

−α e · e︸︷︷︸
=0

< 0

Using item (i) from Lemma 1 fro ξ = y − (x+ αe), one gets

y ∈ V−(x+ αe)⇒ y ∈ V−(Sx,e)

(⊆)

y ∈ V−(Sx,e)⇒ ∃α ∈ R+
0 : y ∈ V−(x+ αe)⇒ 0 > [y − (x+ αe)] · e = (y − x) · e

Proposition 7. Let Sx,e be a future-directed lightlike string. Then, Sx,e is causally complete,
that is, Sx,e = (Sx,e)′′

Proof. One has that Sx,e = (Sx,e)′′ ⇔ Sx,e ⊆ (Sx,e)′′ ∧ (Sx,e)′′ ⊆ Sx,e.

The logical statement Sx,e ⊆ (Sx,e)′′ is a tautology that follows from the definition
of causal complement [7]. Thus, it only remains to prove: (Sx,e)′′ ⊆ Sx,e.

(Sx,e)′′ ⊆ Sx,e :⇔ ∀y ∈M : (y ∈ (Sx,e)′′ ⇒ y ∈ Sx,e) ⇔
contrapositive

⇔ ∀y ∈M : (y /∈ Sx,e ⇒ y /∈ (Sx,e)′′)

The below assertion also follows from the definition of causal complement [7].

∀R ⊆M : R′ = M \
(
V+(R) ∪ V−(R)

)
Setting R = (Sx,e)′, one gets

∀y ∈M :
(
y /∈ Sx,e ⇒ y ∈

(
V+(S ′x,e) ∪ V−(S ′x,e)

))
Let y ∈M \ Sx,e and consider the following cases:
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(I) (y − x) · e < 0

Take z ∈M \Rx,e such that (z − x) · e = 0 and notice that, z ∈ (Sx,e)′ and

(y − z) · e = [y + (x− x)− z] · e = (y − x) · e︸ ︷︷ ︸
<0

+ (x− z) · e︸ ︷︷ ︸
=0

< 0

• (I.1) (y − z)2 ≥ 0

Using item (i) from Lemma 1 for ξ = y − z, one has

(y−z)2 ≥ 0 ∧ (y−z)·e < 0⇒ (y−z) past-directed ⇒ y ∈ V−(z) ⊆ V−(S ′x,e)⇒ y /∈ (Sx,e)′′

• (I.2) (y − z)2 < 0

Taking α ≥ (y−z)2

2(y−z)·e > 0, one gets

[y − (z + αe)]2 = (y − z)2 − 2α(y − z) · e ≥ (y − z)2 − 2
(

(y − z)2

2(y − z) · e

)
= 0

[y − (z + αe)] · e = (y − z) · e︸ ︷︷ ︸
<0

−α e · e︸︷︷︸
=0

< 0

and using, once more, item (i) from Lemma 1 from ξ = y− (z+αe), one arrives
at

y − (z + αe) past-directed ⇒ y ∈ V−(z + αe) ⊆ V−(S ′x,e)⇒ y /∈ (Sx,e)′′

(II) (y − x) · e > 0

Take z ∈M \Rx,e such that (z − x) · e = 0 and notice that, z ∈ (Sx,e)′ and

(y − z) · e = [y + (x− x)− z] · e = (y − x) · e︸ ︷︷ ︸
>0

+ (x− z) · e︸ ︷︷ ︸
=0

> 0

• (II.1) (y − z)2 ≥ 0

Using item (ii) do Lemma 1 for ξ = y − z, one has

(y − z)2 ≥ 0 ∧ (y − z) · e > 0⇒ (y − z) future-directed ⇒ y ∈ V+(z) ⊆ V+(S ′x,e)⇒
⇒ y /∈ (Sx,e)′′

• (II.2) (y − z)2 < 0
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Taking α = (y−z)2

2(y−z)·e < 0, one gets

[y − (z + αe)]2 = (y − z)2 − 2α(y − z) · e = (y − z)2 − 2
(

(y − z)2

2(y − z) · e

)
= 0

[y − (z + αe)] · e = (y − z) · e︸ ︷︷ ︸
>0

−α e · e︸︷︷︸
=0

> 0

and using again the item (ii) from Lemma 1 for ξ = y− (z+αe), one arrives at

y − (z + αe) future-directed ⇒ y ∈ V+(z + αe) ⊆ V+(S ′x,e)⇒ y /∈ (Sx,e)′′

(III) y /∈ Sx,e ∧ (y − x) · e = 0

• (III.1) y /∈ Rx,e

Straightfoward, since {y ∈M|y /∈ Rx,e ∧ (y − x) · e = 0} ⊆ (Sx,e)′

• (III.2) y ∈ Sx,−e \ {x}

Take z ∈ (Sx,e)′ such (z − x) · e > 0 ∧ (z − y)2 ≥ 0 and notice that

(y − z) · e = (y − x) · e︸ ︷︷ ︸
=0

+ (x− z) · e︸ ︷︷ ︸
<0

< 0

Using item (i) from Lemma 1 for ξ = y − z, one arrives at

(y−z)2 ≥ 0 ∧ (y−z)·e < 0⇒ (y−z) past-directed ⇒ y ∈ V−(z) ⊆ V−(S ′x,e)⇒ y /∈ (Sx,e)′′

2.2 Lightlike string-local fields

2.2.1 Considerations on wedges

First we see some properties related to Wedges which will be use in the proof of
locality of the string-local fields.

Consider the wedge W1,

W1
.=
{
x ∈ R4| x1 >

∣∣∣x0
∣∣∣} , (2.5)

together with the one-parameter group Λ1(·) of Lorentz boosts which leave W1 invariant,
and the reflection j1 across the edge of the wedge. More specifically, Λ1(t) acts ascosh(t) sinh(t)

sinh(t) cosh(t)


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and j1 acts as the reflection on the coordinates x0 and x1, leaving the other coordinates
unchanged. As in equation (2.2), general wedge regions are the Poincaré transforms of W1.
For the wedge

W = ΛW1 + a , with (a,Λ) ∈ P↑+ (2.6)

one defines the corresponding boosts ΛW (·) and reflection jW by

ΛW (t) := (a,Λ) Λ1(t) (a,Λ)−1, jW := (a,Λ) j1 (a,Λ)−1. (2.7)

(See [14] for well-definedness.) The reflection jW results from analytic extension of the
(entire analytic) L+(C)-valued function ΛW (z) at z = iπ, and j1 also can be represented
(in 4 dimensions) as the composition of the PT transformation with a π-rotation about
the 1-axis, j1 = −R1(π).

2.2.2 Remarks on the general construction of lightlike string-local free fields

As pointed out in section 1.2.3, we want to contruct free quantum fields for higher
spin particles without giving up on fundamental properties, such as the Hilbert space
positivity, Poincaré covariance and locality, and still get a renormalizable interacting
theory. The alternative proposed was to introduce the so-called string-localized fields and
in this dissertation we explore some aspects of lightlike string-localized fields, equations
(1.73) and (1.72).

LetH be the Bosonic Fock space over the irreducible spaceH(m,s) for single particles
of mass m and spin s, U be the second quantization of the single particle representation
U (m,s) and Ω the invariant Fock space vaccum. We want to construct here not only vector
or tensor fields, but an N -component field ϕr(x, e), r = 1, . . . , N , which transforms in a
covariant way under some matrix representation D of the Lorentz group, i.e. Eq. (1.73) is
replaced by

U(a,Λ)ϕr(x, e)U(a,Λ)−1 =
N∑
r′=1

ϕr′(a+ Λx,Λe) D(Λ)r′r. (2.8)

and are covariant under the parity transformation P : (x0, x) 7→ (x0,−x), i.e., the
representations U and D extend to the orthochronous Lorentz group and Eq. (2.8) also
holds for Λ = P . We give a a brief sketch 1 on the contruction of lightlike string-local
quantum fields from the point of view of intertwiners, along the lines of [4] (for fields
localized on spacelike strings).

The idea is to construct objects that link (or intertwine) the transformation
behaviour of the field ϕr(x, e) (under the N -dimensional representation D) to the trans-
formation behaviour of one-particle states (under the 2s+ 1-dimensional representation
1 A complete description of the contruction is under current investigation [16]
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D(s)), which the field creates from the vaccum, i.e. for p ∈ H+
m(

ϕr(x, e)Ω
)
(p) := (2π)− 3

2 eip·x vr(p, e) ∈ C2s+1. (2.9)

calling the family of C2s+1-valued distributions vr(p, e), the intertwiner of the field ϕr.
Considering the case when the particle and anti-particle coincide,there is a C2s+1-valued
distribution vcr(p, e), the so-called conjugate intertwiner, such that for p ∈ H+

m(
ϕr(x, e)∗Ω

)
(p) := (2π)− 3

2 eip·x vcr(p, e) ∈ C2s+1.. (2.10)

We interpret the family vr(p, e) as a linear map from some N -dimensional vector space h

with basis {e(1), . . . , e(N)}, the “target space” of the field, to C2s+1 via

v(p, e) e(r) := vr(p, e) ∈ C2s+1, (2.11)

and the matrix D(Λ)r′r, in (2.8), as a linear endomorphism of h. Now we give a precise
definition of these intertwiners, making explicit the intertwining property and demanding
a further property of analyticity.

Definition 5 (Intertwiners). A family of distributions vr, r = 1, . . . , N , is called a Wigner
intertwiner from D to D(s) if
i) it satisfies the intertwiner relation

D(s)
(
R(Λ, p)

)
◦ v(Λ−1p,Λ−1e) = v(p, e) ◦D(Λ), Λ ∈ L↑. (2.12)

ii) For almost all p and all e, the function R+ 3 t 7→ vr(p, te) ∈ C2s+1 is the boundary
value of an analytic function z 7→ ṽr(p, ze) on the upper complex half plane R + iR+ and
satisfies the following bound: There is a positive function M on H+

m which is locally L2

w.r.t. dµ and polynomially bounded, and for every pair of compact subsets K of the upper
complex half plane and Θ ⊂ H+

0 there is a constant c = cK,Θ such that for all (z, e) ∈ K×Θ
holds

‖ṽr(p, ze)‖ ≤ cM(p). (2.13)

(The norm on the l.h.s. refers to the little Hilbert space C2s+1..)
(iii)Given a Wigner intertwiner v, its conjugate vc is defined by

D(s)(−1 ) ◦ vc(p, e) ◦ C = v(p,−e) ◦D(−1 ). (2.14)

Here, v(p,−e) arises from v(p, ze) via analytic continuation from z = 1 to z = −1 through
the upper half plane, and D(−1 ) arises from the unit component via analytic continuation
through the complex proper Lorentz group L+(C).2 Further, C is the anti-linear involution
defined by

C
N∑
r=1

zr e(r)
.=

N∑
r=1

zr e(r).

2 Note that all finite dimensional representations D extend analytically to the complex Lorentz group
L+(C), and that the latter is path connected. A path from 1 to −1 is for example Λ1(is), s ∈ [0, π],
composed with R1(α), α ∈ [0, π].
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Note that D(−1 ) is linear, while D(s)(−1 ) is anti-linear. This conjugate intertwiner vc

satisfies the same relation (2.12), but with D(Λ) replaced by the componentwise complex
conjugate D(Λ). v is called self-conjugate if v = vc.

The condition (ii) involving analyticity properties of the intertwiners is motivated by
the assumption that lightlike string fields should satisfy the so-called Bisognano-Wichmann
property [17], which holds for spacelike string fields [18]. This condition will be used to
prove string-localization.

One then constructs a free field via the Wigner intertwiners, as follows: Let a∗(ψ)
and a(ψ), ψ ∈ H(m,s), denote the creation and annihilation operators. Given f ∈ S(R4),
define the following single particle vectors 3

ψr(p) = (2π)− 3
2 f̂(p)vr(p, e) ψcr(p) = (2π)− 3

2 ˆ̄f(p)vcr(p, e) (2.16)

The free field for the Wigner intertwiner v is given by4

ϕr(f, e) := a∗(ψr) + a(ψcr), (2.17)

Let us re-write it in the usual informal notation

a∗(ψ) =:
∫
H+
m

dµm(p)
2s+1∑
k=1

ψk(p)a∗(p, k) a(ψ) =:
∫
H+
m

dµm(p)
2s+1∑
k=1

ψk(p)a(p, k) (2.18)

where the superscript k denotes the components with respect to a basis {e(k)} in C2s+1, ie,
ψ(p) =

2s+1∑
k=1

ψk(p)e(k). Then 5

ϕr(x, e) = (2π)− 3
2

∫
H+
m

dµm(p)
2s+1∑
k=1

{
eip·xvkr (p, e)a∗(p, k) + e−ip·xvrc,k(p, e)a(p, k)

}
(2.20)

It is hermitean if and only if the intertwiner is self-conjugate, vc = v.

The two-point function of two such fields ϕ1,r and ϕ2,r with respective Wigner
intertwiners v1 and v2 comes out as

( Ω, ϕ1,r(x, e)ϕ2,r′(x′, e′)Ω ) =(2π)−3
∫
H+
m

dµm(p) e−ip·(x−x′) Mϕ1ϕ2
r,r′ (p, e, e′) (2.21)

Mϕ1ϕ2
r,r′ (p, e, e′) = ( vc1r(p, e), v2r′(p, e′) )C2s+1 , (2.22)

3 We adopt the following convention for the Fourier transform f̂ , whose inverse we denote by f̌ :

f̂(p) .=
∫
d4x eip·xf(x), f̌(x) = (2π)−4

∫
d4p e−ip·xf(p). (2.15)

4 Considering the case when the anti-particle coincides with the particle
5 Of course, rigorously speaking, ϕ(x, e) is informally defined by

ϕr(f, e) =
∫
d4x f(x)ϕr(x, e). (2.19)
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where ( ·, · ) and ( ·, · )C2s+1 denote the scalar products in Fock space H and in the little
Hilbert space C2s+1, respectively. Mϕ1ϕ2

r,r′ (p, e, e′) is called the on-shell part of the two-point
function. Note that positivity of the two-point function is satisfied by construction[11].
Another important remark is that this construction holds for point-local fields as well by
symply neglecting the e-variable.

Proposition 8. Let v(p, e) be a Wigner intertwiner from D(s) to D in the sense of
Definition 5, and let vc(p, e) be defined by Eq. (2.14). Then the field defined in Eq. (2.20)
is a distribution in the weak sense.6 It is string-localized and covariant in the sense of
Eqs. (1.72) and (2.8), furthermore, the CPT symmetry holds:

U(−1 )ϕr(x, e)U(−1 )−1 =
N∑
r′=1

ϕr′(−x,−e)∗D(−1)r′r. (2.23)

Proof. The (weak) distribution property, covariance (2.8) and CPT symmetry (2.23) are
shown as in [4]. The proof of string-locality (1.72) is analogous to the proof for spacelike
strings in [4], using the appropriated results for wegde separation and analyticity of the
lightlike string fields. Therefore, we quote the proof with the modifications related to the
lightlike causal character.

Suppose, Sx,e and Sx′,e′ satisfy the condition for Eq. (1.72), ie Sx,e and Sx′′,e′ are
causally disjoint for all x′′ in an open neighborhood of x′. This implies, by corollary 2,
that there is a wedge region W such that Sx,e ⊂ W and Sx′,e′ ⊂ W̊ ′, where W̊ ′ denotes
the interior of the causal complement of W . Let jW and ΛW (t) be the reflection and
the boosts, respectively, corresponding to W , i.e., jW .= (a,Λ) j1 (a,Λ)−1 and ΛW (t) .=
(a,Λ)Λ1(t)(a,Λ)−1 ifW = (a,Λ)W1 ≡ a+ΛW1. Denote by gt the proper non-orthochronous
Poincaré transformation ΛW (−t)jW . Then one verifies the relation

(
Ω, ϕr(x, e)∗ϕr′(g−1

t x′, g−1
t e′)Ω

)
=
∑
s,s′

( Ω, ϕs′(x′, e′)ϕs(gtx, gte)∗Ω ) D(gt)srD(gt)s′r′ . (2.24)

(We have successively used invariance of Ω under U ≡ U(gt), anti-unitarity of U , namely
( Ω, ψ ) = (U−1Ω, ψ ) = (Uψ,Ω ), and then covariance (2.8) and the CPT symmetry (2.23).
Finally we have adjoined the field operators to the right hand side of the scalar product.)
The matrix-valued function D(gt) (and hence D(gt)) is entire analytic in the boost
parameter t. Note that jW and ΛW (t) commute, hence g−1

t = g−t, and that for t in the
strip R + i(0, π) the imaginary parts of gtx and g−tx′ lie in the forward light cone V+ and
the imaginary parts of gte, and g−te′ lie in the closure of the forward light cone, V+ (see
for example Eq. (A.7) in [3]). Now the two-point function is an analytic function of the
second x-variable in the tube R4 + iV+ due to the support of its Fourier transform, and
6 More precisely, its matrix elements between state vectors with finite particle numbers are distributions.
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also of the second e-variable due to the analyticity of the intertwiner function. Therefore
Eq. (2.24) extends, by the Schwarz reflection principle, from the boundary at Im t = 0
over the entire strip to the upper boundary, and the boundary values at t = iπ coincide
for both sides. But ΛW (±iπ) = jW , i.e., g±iπ = 1, and thus Eq. (2.24) at t = iπ is just
the locality of the two-point functions. This implies locality of the fields by the usual
Jost-Schroer arguments.

2.2.3 String-local fields as line integrals over point-local fields

Following [4], all string-localized fields we are treating in this dissertation can be
viewed as n-fold line integrals over point fields. These integrals are to be understood in
the following sense. Let n ∈ N and let ϕp(x) be some free point-local field. (It may be a
tensor field, but we omit the tensor indices). Then for fixed e ∈ H+

0 and ν ∈ N define

ϕ(ν)(x, e) :=
∫ ν

0
ds1 · · ·

∫ ν

0
dsn ϕ

p
(
x+ (s1 + · · ·+ sn)e

)
(2.25)

It exists as a distribution in x and a function in e. The point-local field ϕp(x) creates
bosons of spin s and mass m, furthermore it has intertwiner function vp, which satisfies a
similar relation to (2.12) with the e-variable neglected, ie

D(s)
(
R(Λ, p)

)
◦ vp(Λ−1p) = vp(p) ◦D(Λ), Λ ∈ L↑. (2.26)

Now we want to see if in the limit ν →∞, ϕ(ν)(x, e) gives a lightlike string-local field.

Lemma 3. l Let ϕ(ν)(x, e) be the field given by (2.25). Then

(i) the intertwiner of ϕ(ν)(x, e) is

vν(p, e) = in

(p · e)n (1− eiνp·e)n vp(p) (2.27)

(ii) the field ϕ(ν)(x, e), as ν →∞, converges to the covariant lightlike string-local field
ϕ(x, e), defined by its intertwiner

v(p, e) = in

(p · e)n v
p(p), (2.28)

in the sense that the two point-funtion

wν(x− x′, e, e′) = (Ω, ϕ(x, e)ϕ(ν)(x′, e′)Ω) (2.29)

converges in D′(R4) 7 to

w(x− x′, e, e′) = (Ω, ϕ(x, e)ϕ(x′, e′)Ω) (2.30)
7 D′(R4) is the space of distributions over D(R4)
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The proof is found in the appendix. With the result (ii) one can prove [11] that for
all n ∈ N0,

(Φ, ϕ(ν)(x, e)Ψ) ν→∞−→ (Φ, ϕ(x, e)Ψ)

for all Φ,Ψ ∈ Dn := span{ϕ(x1, e)ϕ(x2, e) · · ·ϕ(xn, e)Ω}. Hence we will denote the field
ϕ(x, e) by

ϕ(x, e) ≡
∫ ∞

0
ds1 · · ·

∫ ∞
0

dsn ϕ
p
(
x+ (s1 + · · · sn)e

)
. (2.31)

and its intertwiner by

v(p, e) = tn(p, e) vp(p). (2.32)

where tn(p, e) := in

(p·e)n .

For later reference, we exhibit the two-point function of these line integrals. Let
ϕp1(x) and ϕp2(x) be free point-local fields for the same particle type, let Mp(p) be the
on-shell part of its two-point function, which is a polynomial [8]. Let, for i = 1 and 2,
ϕi(x, e) be the string-localized field constructed from ϕp1(x) by an ni-fold line integral as in
Eq. (2.31). Recalling Eq. (2.32), the on-shell part of the corresponding two-point function
w(x− x′, e, e′) .= ( Ω, ϕ1(x, e)ϕ2(x′, e′)Ω ) is then given by

M(p, e, e′) = in2−n1 Mp(p)
(p · e)n1(p · e′)n2

. (2.33)

2.3 Scaling degree of the two-point functions

Consider the following lightlike string-local fields:

ϕi(x, e) =
∞∫
0

ds1 · · ·
∞∫
0

dsniϕ
P (x+ (s1 + · · ·+ sni)e), i=1,2

where ϕP is a point-local field with the on shell part of its two-point function, MP , being
a polynomial of degree d.
The two-point function wm(x − x′, e, e′) = (Ω, ϕ1(x, e)ϕ2(x′, e′)Ω), labeled by the mass
m > 0, is given by

wm(x− x′, e, e′) = (2π)−3
∫
H+
m

dµm(p)e−ip·(x−x′)tn1(p, e)tn2(p, e′)MP (p) (2.34)

Although wm(x− x′, e, e′) is a function of the e-variables, for the calculation of the scaling
degree, we want to consider the smearing 8 also in e and e′, i.e. see tn(p, e) as a distribution
8 ie the procedure of multiplying by a suitable function and integrating with respect that function

variable
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in D′(H+
0 ) 9. Hence, after the smearing with f ∈ D(R4) and h, h′ ∈ D(H+

0 ) we have

wm(f, h, h′) ≡
∫
d4ξf(ξ)

∫
H+

0

dσ(e)h(e)
∫
H+

0

dσ(e′)h′(e′)wm(ξ, e, e′) = (2.35)

= 2π
∫
H+
m

dµm(p)f̌(p)MP (p)tn1(p, h)tn2(p, h′) (2.36)

where for p ∈ H+
m e h ∈ D(H+

0 ),

tn(p, h) :=
∫
H+

0

dσ(e)h(e) in

(p · e)n (2.37)

The following lemma is going to be used to calculate the scaling degree of wm.

Lemma 4. Given p ∈ H+
m and h ∈ D(H+

0 ), consider tn(p, h) defined by (2.37). Then, one
has that

tn(p, h) =
∞∫
0

ds1 · · ·
∞∫
0

dsnh̃ ((s1 + · · · sn)p)) (2.38)

where
h̃(p) :=

∫
H+

0

dσ(e)h(e)ei(p·e) (2.39)

and furthermore, there exists a constant K ∈ R such that, for all p ∈ H+
m, the following

bound holds
|tn(p, h)| ≤ K

p0n
(2.40)

The proof is found in the appendix.

Now we determine the UV behaviour of the two-point function wm defined above
by calculating its scaling degree.

Definition 6. Let u(ξ, e, e′) be a distribution on R4 ×H+
0 ×H+

0 . We define the scaling
degree of u, denoted by sd(u), with respect to ξ after smearing in e, e′ as

inf
ω∈R

{
λω〈uλ, f ⊗ h⊗ h′〉

λ→0−→ 0
}

for all f ∈ D(R4), h, h′ ∈ D(H+
0 ) (2.41)

where the rescaled distribution uλ is defined as

〈uλ, f ⊗ h⊗ h′〉 := 〈u, fλ ⊗ h⊗ h′〉 with fλ(ξ) := λ−4f(λ−1ξ)

Proposition 9. Let wm(ξ, e, e′) be the two-point function given by (2.35), then the scaling
degree of wm after smearing in the e-variables is the maximum of 0 and d+ 2− (n1 + n2)

9 Note that H+
0 ≡ H

+
m=0

!= ∂V+ \ {0}
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Proof. First assume that MP is homogeneous of degree d. Let f ∈ D(R4), h, h′ ∈ D(H+
0 )

and consider the rescaled two-point function

wλm(f, h, h′) = 2π
∫
H+
m

dµm(p)f̌(λp)MP (p)tn1(p, h)tn2(p, h′) (2.42)

where has been used that f̌λ(p) = f̌(λp). Performing the change of variables λp→ p and
using dµm(λ−1p) = λ−2dµλm(p), one arrives at

wλm(f, h, h′) = 2πλ−d−2+(n1+n2)
∫

H+
λm

dµλm(p)f̌(p)MP (p)tn1(p, h)tn2(p, h′)

Using that |MP (p)| ≤ C0 (ωλm(~p))d, |tni(p, h)| ≤ N (ωλm(~p))−ni (lemma 4), |f̌(p)| ≤
C(1 + |~p|)−r and setting n = n1 + n2 one has

|wλm(f, h, h′)| ≤ 2πλ−d−2+n
∫
d3~pϕ(~p) (ωλm(~p))d−n−1

where ϕ(~p) := NC0C(1 + |~p|)−r is a λm-independent C∞(R3) function that decreases more
rapidly than |~p|r. Using that

1
(ωλm)2 ≤

1
|~p|2

we can rewrite the above expression as

|wλm(f, h, h′)| ≤ 2πλ−d−2+n
∫
d3~pϕ(~p) (ωλm(~p))d−n+1 |~p|−2 (2.43)

• Consider d− n+ 1 ≥ 0.

For λ ∈ [0, 1], it holds that ωλm(~p) ≤ ωm(~p) a, consequently, for ε > 0

|λ(d+2−n)+εwλm(f, h, h′)| ≤ 2πλε
∫
d3~pϕ(~p) (ωm(~p))d−n+1 |~p|−2︸ ︷︷ ︸

<∞

λ→0−→ 010

Hence

sd(wm) = d+ 2− n

• Consider d− n+ 1 < 0.

The fact that ωm(κ) ≥ m and ωm(κ) ≥ κ+m√
2 , supplies us with the following bound

(ωλm(κ))d−n+1 ≤
√

2(λm)d−n+2

κ+ λm

10 Taking r such that r − (d− n+ 1) > 1, which is always possible, makes the integral convergent
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Considering λ ∈ [0, 1] and subistituing the above bound in wλm one has that, for
ε > 0:

|λ0+εwλm(f, h, h′)| ≤ λε8π2√2md−n+2
∞∫
0

dκ
ϕ(κ)
k + λm

=

= λε8π2√2md−n+2


m∫

0

dκ
ϕ(κ)
k + λm︸ ︷︷ ︸
(I)

+
∞∫
m

dκ
ϕ(κ)
k + λm︸ ︷︷ ︸

(II)


Noticing that

(I)
m∫
0
dκ ϕ(κ)

k+λm ≤ C1
m∫
0

dκ
k+λm = C1 ln(1+λ

λ
) ≤ C1 ln( 2

λ
)

(II)
∞∫
m
dκ ϕ(κ)

k+λm ≤
∞∫
m
dκ ϕ(κ)

k
≤ C

∞∫
m

dκ
κr+1 = C2 <∞

One arrives at

|λεwλm(f, h, h′)| ≤ λε8π2√2md−n+2
[
C1λ

ε ln( 2
λ

) + C2λ
ε
]
λ→0−→ 0

Hence,
sd(wm) = 0

If the polinomial MP is not homogeneous, the lower degree monomials will contribute
with terms yielding lower scaling degrees by the same token.

One sees that, by choosing the number of integrations ni, the scaling dimension
(half of the scaling degree) of the initial fields ϕPi , namely d+ 2, can be lowered to zero.
Thus one has a better perspective on building renormalizable interactions.
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Conclusion

Our results on the properties of lightlike string-local quantum show that these are
indeed a very interesting alternative relative to both the usual point-local fields and the
spacelike string-local fields. With respect to point-local fields, the lightlike string fields
studied have, just as spacelike ones, the desired advantage of the good UV behaviour
without giving up the fundamental assumptions of positivity, covariance and locality.
Furthermore, when comparing them to the spacelike ones, we note that they have simpler
analytical expressions, they are functions with respect to the e-variable, and analyticity
properties (definition 5, item (ii)). The future perpectives consist in give a complete
characterization of these fields, in the point of view of Wigner intertwiners, and embark
on the construction of interacting models [4, Outlook].
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APPENDIX A – Proof of the Lemmas

A.1 Proof of the Lemmas

Proof of Lemma 1. (i) Let e be lightlike and future-directed and ξ causal (ξ · ξ ≥ 0).
Let’s prove the contrapositive

(ξ · e < 0⇒ ξ past-directed) ⇔
contrapositive

(ξ0 ≥ 0⇒ ξ · e ≥ 0)

One has that

• ξ0 ≥ 0 ∧ ξ · ξ ≥ 0⇒ (ξ0)2 ≥ |~ξ|2 ⇒ ξ0 ≥ |~ξ|

• e0 > 0 ∧ e · e = 0⇒ (e0)2 = |~e|2 ⇒ e0 = |~e|

Therefore,
ξ0e0 = ξ|~e| ≥ |~ξ||~e|

CS
≥ |~ξ · ~e| ≥ ~ξ · ~e⇒ ξ · e ≥ 01

(ii) Let e be lightlike and future-directed and ξ causal (ξ · ξ ≥ 0). Let’s prove the
contrapositive

(ξ · e > 0⇒ ξ futuro) ⇔
contrapositive

(ξ0 < 0⇒ ξ · e ≤ 0)

One has that

• ξ0 < 0 ∧ ξ · ξ ≥ 0⇒ (ξ0)2 ≥ |~ξ|2 ⇒ ξ0 ≤ −|~ξ|

• e0 > 0 ∧ e · e = 0⇒ (e0)2 = |~e|2 ⇒ e0 = |~e|

Therefore,
ξ0e0 = ξ|~e| ≤ −|~ξ||~e|

CS
≤ −|~ξ · ~e| ≤ ~ξ · ~e⇒ ξ · e ≤ 0

(iii) Let e be lightlike and future-directed and {e, ξ} L.I.

0 = ξ0e0 − ~ξ · ~e ⇒
e0>0

ξ0 =
~ξ · ~e
e0

ξ · ξ = (ξ0)2 − |~ξ|2 = |
~ξ · ~e|2

(e0)2 − |~ξ|
2 CS
<
|~ξ|2|~e|2

(e0)2 − |~ξ|
2 = 0⇒ ξ · ξ < 0

Proof of Lemma 2. (i) One has that
1 CS means that we used the Cauchy-Schwarz inequality for the spatial part of the inner product,ie for

~u,~v ∈ R3, |~u · ~v| ≤ |~u||~v|
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• v2 ≥ 0⇒ (v0)2 ≥ |~v|2 ⇒ |v0| ≥ |~v| v
0>0⇒ v0 ≥ |~v|

• w2 ≥ 0⇒ (w0)2 ≥ |~w|2 ⇒ |w0| ≥ |~w| w
0>0⇒ w0 ≥ |~w|

Therefore,

v0w0 ≥ |~v||~w|
CS
≥ |~v · ~w| ≥ ~v · ~w ⇒ v · w = v0w0 − ~v · ~w ≥ 02

(ii) One has that
v2 = 0⇒ (v0)2 = |~v|2

Thus,

v ·w = 0⇒ v0w0 = ~v · ~w ⇒ (w0)2 = |~v · ~w|
2

(v0)2

CS
≤ |~v|2

(v0)2︸ ︷︷ ︸
=1

|~w|2 ⇒ w2 = (w0)2 − |~w|2 ≤ 0

(iii) One has that

(I) v2 = 0⇒ (v0)2 = |~v|2

(II) w2 ≥ 0⇒ (w0)2 ≥ |~w|2

(III) v · w = 0⇒ v0w0 = ~v · ~w

Therefore,

(III)⇒ (v0)2(w0)2 = |~v · ~w|2
CS
≤ |~v|2|~w|2 (I)⇒ (w0)2 ≤ |~w|2 (II)⇒ w2 = (w0)2 − |~w|2 = 0

Using (III) together with w2 = 0 and (I),

|~v · ~w|2 = (v0)2(w0)2 = |~v|2|~w|2 ⇒ ~v ‖ ~w ⇔ ∃κ ∈ R : ~v = κ~w

Using (III) and the above result,

v0w0 = ~v · ~w ⇒ v0w0 = (κ~w) · ~w = κ|~w|2 = κ(w0)2 ⇒ v0 = κw0

Thus, one arrives at
v = κw

Proof of Lemma 3. (i)
First, consider ϕ(ν)(x, e)Ω(

ϕ(ν)(x, e)Ω
)

(p) =
∫ ν

0
ds1 · · ·

∫ ν

0
dsn

(
ϕp
(
x+ (s1 + · · ·+ sn)e

)
Ω
)

(p)
2 CS means that we used the Cauchy-Schwarz inequality for the spatial part of the inner product,ie for

~u,~v ∈ R3, |~u · ~v| ≤ |~u||~v|
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Equation (2.20) for the point-local field ϕp yields(
ϕp
(
x+ (s1 + · · ·+ sn)e

)
Ω
)

(p) = (2π)− 3
2 eip·(x+(s1+···+sn)e)vp(p) (A.1)

and hence(
ϕ(ν)(x, e)Ω

)
(p) = (2π)− 3

2 eip·x
(∫ ν

0
ds1 · · ·

∫ ν

0
dsne

i(s1+···+sn)p·e
)
vp(p) =

= (2π)− 3
2 eip·x

(∫ ν

0
dseis(p·e)

)n
vp(p) =

= (2π)− 3
2 eip·x

in

(p · e)n (1− eiνp·e)nvp(p)

Therefore,
vν(p, e) = in

(p · e)n (1− eiνp·e)n vp(p)

Inspecting the above equation and using (2.26), one easily verifies that it is a Wigner
intertwiner for a lightlike string-local field (definition 5).

Now, lets show that wν(x− x′, e, e′) is well-defined. Let f ∈ D(R4), by (2.21) one
has

wν(f, e, e′) ≡
∫
d4ξf(ξ)wν(ξ, e, e′) = (2π)

∫
H+
m

dµm(p)f̌(p)(−1)n(1− eiνp·e′)n
(p · e)n(p · e′)n MP (p)

(A.2)
where Mp is the on-shell part of the two-point function of ϕp, which is a polynomial [8].
Now,

|wν(f, e, e′)| ≤ 2π
∫ d3~p

2ωm(~p)
|f̌(p)||MP (p)|
|~e|n|~e′|n

|1− eiνp·e′|n
(ωm(~p)− ~p · ê)n(ωm(~p)− ~p · ê′)n ,

where ê := ~e
|~e| (analogous for ê

′). Using that |1−eiνp·e′ |n ≤ 2n and ωm(~p)−~p·ê′ ≥ ωm(~p)−|~p|
(also for ê) we get

|wν(f, e, e′)| ≤ (2π)
∫ d3~p

2ωm(~p)
|f̌(p)||MP (p)|
|~e|n|~e′|n

2n
(ωm(~p)− |~p|)2n

Considering spherical coordinates (κ = |~p|, ~n) and using the fact that, there exists a κ0 > 0
such that for all κ > κ0

ωm(κ)− κ ≥ m3

κ2 (A.3)

we have
|wν(f, e, e′)| ≤ I1 + I2

where

I1 = 2π
κ0∫
0

κ2dκ
∫
S2

dΩ(~n) 1
2ωm(κ)

|f̌(κ, ~n)||MP (κ, ~n)|
|~e|n|~e′|n

2n
(ωm(κ)− κ)2n

I2 = 2π
∞∫
κ0

κ2dκ
∫
S2

dΩ(~n) 1
2ωm(κ)

|f̌(κ, ~n)||MP (κ, ~n)|
|~e|n|~e′|n

2n
(ωm(κ)− κ)2n
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The first integral, I1, is finite since f̌ is of rapid decrease and ωm(κ)− κ > 0. Using (A.3)
and the bound ωm(κ) ≥ κ, one sees that

I2 ≤ π

∞∫
κ0

dκ
∫
S2

dΩ(~n) |f̌(κ, ~n)||MP (κ, ~n)|
|~e|n|~e′|n

2nκ4n+1

m6n

which is also finite since f̌ is of rapid decrease. This show that wν(x−x′, e, e′) is well-defined.
(ii)
By the same considerations, one also shows that ϕ(x, e) given by v(p, e) is also a lightlike
string-local field, and that w(x− x′, e, e′) is also well-defined.

Now let’s show that wν(x − x′, e, e′) ν→∞−→ w(x − x′, e, e′). Considering wν(x −
x′, e, e′)− w(x− x′, e, e′), where

w(x− x′, e, e′) = (2π)−3
∫
H+
m

dµm(p)eip·(x−x′) (−1)nMP (p)
(p · e)n(p · e′)n

one has

wν(f, e, e′)− w(f, e, e′) = (2π)
∫
H+
m

dµm(p)f̌(p)(−1n)(1− eiνp·e′)n − 1
(p · e)n(p · e′)n MP (p)

Lets show that the following integral,∫
H+
m

dµm(p)F (p)eiνp·e′ , where F (p) := f̌(p)MP (p)
(p · e)n(p · e′)n , (A.4)

goes to zero, as ν goes to infinity. With this one can conclude the desired convergence.
Pick a reference frame where e′ = (1, 0, 0, 1) and define p± := p0± p3, note that p · e′ = p+.
One can then write

dµm(p) = dp+dp1dp2

p+
≡ dp+d

2~%

p+

p− = m2 + |~%|
p+

and ∞∫
0

dp+

2p+

∫
d2~% F (m

2 + |~%|
p+

, p+, ~%)eiνp+

Writing eiνp+ = (iν)−1∂p+e
iνp+ and using the standard integration-by-parts trick (of Fourier

analysis) n-times, one gets

1
2inνn

∞∫
0

dp+

∫
d2~% ∂np+

F (m2+|~%|
p+

, p+, ~%)
p+

 eiνp+

Now, we want to show that
∣∣∣∂np+

(
F
p+

)∣∣∣ ≤Mn(p) ∈ L1. For this, lets show∣∣∣∣∣∂
k
p+F

pl+

∣∣∣∣∣ ≤M ′
n(p) ∈ L1
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Since F ∈ S(R4), for arbitrary N ∈ N and some κ0 > 0∣∣∣∣∣∂
k
p+F

pl+

∣∣∣∣∣ ≤ c

pl+
(1 + p2

− + p2
+ + |~%|2)−N ≤ cp−2N−l

+ ⇒
∂kp+F

pl+
∈ L1for p+ > κ0

Now, using that p− = m2+|~%|2
p+

, we get
∣∣∣∣∣∂

k
p+F

pl+

∣∣∣∣∣ ≤ cp2N−l
+ (p2

++(m2+|~%|2)2+p4
++p2

+|~%|2)−N ≤ c m−4Np2N−l
+ ⇒

∂kp+F

pl+
∈ L1for p+ < κ0

This concludes the proof.

Proof of Lemma 4. Lets divide the proof in 3 steps:

(i) Firtly, lets prove that p 7→ h̃(p) decreases rapidly on V+ ⊇ H+
m.

Consider p ∈ V̊+ ⊇ H+
m (m 6= 0) choose a basis {e(µ)}µ=1,2,3,4 such that e(0) = p

|p| ,
where |p| := √p · p.

h̃(p) =
∫ d3~e

2|~e|h(|~e|, ~e)eip·e =
∫ d3~e

2|~e|h(|~e|, ~e)ei|p||~e|

Using spherical coordinates (κ, ~n) with κ = |~e| and ~n ∈ S2,

h̃(p) = 1
2

∫
S2

dΩ(~n)
∞∫
0

dκf(κ, ~n)ei|p|κ with f(κ, ~n) := κh(κ, ~n)

For λ ∈ R, consider λ 7→ h̃(λp).

h̃(λp) = 1
2

∫
S2

dΩ(~n)
∞∫
0

dκf(κ, ~n)eiλ|p|κ

Using the indentity eiλ|p|κ = 1
iλ|p|∂κ(eiλ|p|κ) together with integration-by-parts l times

one gets

|h̃(λp)| ≤ 1
λl|p|l

∫
S2

dΩ(~n)
∞∫
0

dκ|∂lκf(κ, ~n)|


︸ ︷︷ ︸
<∞

Hence, the limit

lim
ν→∞

ν∫
0

ds1 · · ·
ν∫

0

dsnh̃ ((s1 + · · ·+ sn)p) (A.5)

exists.

(ii) Consider the following family of functions
{

h(e)
(p·e+iε)n

}
ε∈R+

0
, satisfying

• lim
ε→0

h(e)
(p·e+iε)n = h(e)

(p·e)n
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• | h(e)
(p·e+iε)n | ≤ |

h(e)
(p·e)n |

3

Applying Lebesgues theorem on dominated convergence, one has

tn(p, h) :=
∫
H+

0

dσ(e)h(e) in

(p · e)n = lim
ε→0

∫
H+

0

dσ(e)h(e) in

(p · e+ iε)n

Noticing that

in

(p · e+ iε)n =
 ∞∫

0

dseis(p·e+iε)

n =
∞∫
0

ds1 · · ·
∞∫
0

dsne
i(s1+···+sn)(p·e+iε)

and using Fubinis theorem,

tn(p, h) = lim
ε→0

∞∫
0

ds1 · · ·
∞∫
0

dsne
−(s1+···+sn)ε

∫
H+

0

dσ(e)h(e)ei(s1+···+sn)(p·e)


︸ ︷︷ ︸

h̃((s1+···+sn)p)

(A.6)

Considering now, the family of functions
{
e−(s1+...+sn)εh̃ ((s1 + · · ·+ sn)p)

}
ε∈R+

0
sat-

isfiying

• lim
ε→0

e−(s1+...+sn)εh̃ ((s1 + · · ·+ sn)p) = h̃ ((s1 + · · ·+ sn)p)

• |e−(s1+...+sn)εh̃ ((s1 + · · ·+ sn)p) | ≤ |h̃ ((s1 + · · ·+ sn)p) |

and using again Lebesgues theorem, one has

tn(p, h) =
∞∫
0

ds1 · · ·
∞∫
0

dsnlim
ε→0

e−(s1+...+sn)εh̃ ((s1 + · · ·+ sn)p) =

=
∞∫
0

ds1 · · ·
∞∫
0

dsnh̃ ((s1 + · · ·+ sn)p)

(iii) Having proved that

tn(p, h) = lim
ν→∞

tn(ν)(p, h) , where tn(ν)(p, h) :=
ν∫

0

ds1 · · ·
ν∫

0

dsnh̃ ((s1 + · · ·+ sn)p)

(A.7)
we now determine a bound for it. Performing the change of variables si → p0si, for
i = 1, ..., n,

tn(ν)(p, h) = 1
pn0

p0ν∫
0

ds1 · · ·
p0ν∫
0

dsnh̃

(
(s1 + · · ·+ sn) p

p0

)

3 The dominating function | h(e)
(p·e)n | is integrable on H+

0 since m 6= 0
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Using that h̃ decreases rapidly in V+ we have that

|tn(ν)(p, h)| ≤ CN
pn0

p0ν∫
0

ds1 · · ·
p0ν∫
0

dsn

[
1 + (s1 + ...+ sn)

∥∥∥∥∥ pp0

∥∥∥∥∥
1

]−N

Since
∥∥∥ p
p0

∥∥∥
1

:=
∣∣∣∣∣p0

p0

∣∣∣∣∣︸︷︷︸
=1

+
3∑
i=1

∣∣∣ pi
p0

∣∣∣ ≥ 1

|tn(ν)(p, h)| ≤ Kν

pn0

where

Kν = CN

p0ν∫
0

ds1 · · ·
p0ν∫
0

dsn [1 + (s1 + ...+ sn)]−N <∞

Then,
|tn(p, h)| = lim

ν→∞
|tn(ν)(p, h)| ≤ lim

ν→∞

Kν

pn0
= K

pn0

where K = lim
ν→∞

Kν <∞.



59

Bibliography

1 WIGNER, E.; DAM, H. V. Instantaneous and asymptotic conservation laws for
classical relativistic mechanics of interacting point particles. Phys. Rev., v. 142, p. 838,
1966. 13

2 SCHARF, G. Quantum Gauge Theories. New York: Wiley, 2001. 13, 27

3 MUND, J.; SCHROER, B.; YNGVASON, J. String–localized quantum fields and
modular localization. Commun. Math. Phys., v. 268, p. 621–672, 2006. 13, 28, 43

4 MUND, J.; OLIVEIRA, E. T. String-localized free vector and tensor potentials for
massive particles with any spin: I. Bosons. ArXiv:1609.01667v2. 13, 21, 27, 28, 40, 43, 44,
49

5 WIGNER, E. P. On unitary representations of the inhomogeneous Lorentz group.
Ann. Math., v. 40, p. 149, 1939. 15

6 HAWKING, S.; ELLIS, G. The Large Scale Structure of Space–time. London and New
York: Cambridge Univ. Press, 1973. 18

7 THOMAS, L.; WICHMANN, E. On the causal structure of Minkowski spacetime. J.
Math. Phys., v. 38, p. 5044–5086, 1997. 18, 37

8 WEINBERG, S. The Quantum Theory of Fields I. Cambridge: Cambridge University
Press, 1995. 19, 25, 26, 45, 54

9 FREDENHAGEN, K. Quantum Field Theory. Hamburg, 2009.
ArXiv:http://unith.desy.de/research/aqft/lecture_notes/quantum_field_theory.
22, 26, 27

10 SCHARF, G. Finite Quantum Electrodynamics. Berlin: Springer, 1995. 22

11 STREATER, R. F.; WIGHTMAN, A. PCT, Spin and Statistics, and all that. New
York: W. A. Benjamin Inc., 1964. 24, 43, 45

12 WEINBERG, S. Feynman rules for any spin. Phys. Rev., v. 133, p. B1318–B1320,
1964. 26, 27

13 MUND, J.; SCHROER, B.; YNGVASON, J. String–localized quantum fields from
Wigner representations. Phys. Lett. B, v. 596, p. 156–162, 2004. 28

14 BRUNETTI, R.; GUIDO, D.; LONGO, R. Modular localization and Wigner particles.
Rev. Math. Phys., v. 14, p. 759–786, 2002. 29, 40

15 BORCHERS, H. J. On revolutionizing quantum field theory with Tomita’s modular
theory. J. Math. Phys., v. 41, p. 3604–3673, 2000. 29

16 FIGUEIREDO, F. D. O.; MUND, J. Work in progress. 40

17 HAAG, R. Local Quantum Physics. second. Berlin, Heidelberg: Springer, 1996. (Texts
and Monographs in Physics). 42



60 Bibliography

18 MUND, J. The Bisognano-Wichmann theorem for massive theories. Ann. H. Poinc.,
v. 2, p. 907–926, 2001. 42


	Title page
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	Contents
	Introduction
	General Aspects of Quantum Fields
	Preliminaries
	Relativistic spacetime
	Poincaré symmetry in Quantum Mechanics and Integer Spin Representations of the Poincaré Group
	Fock space

	Free quantum fields
	The point-local Scalar and Vector fields
	Considerations on interacting point-local fields and ultraviolet (UV) divergences
	The alternative of String-localized Quantum Fields


	Definitions, constructions and results on Lightlike String-local Quantum Fields
	Geometrical results on Strings
	Causal complement, causal disjointness and wedge separation
	Useful lemmas
	Time ordering of strings
	Secondary results: Chronological future and past, and causal completeness

	Lightlike string-local fields
	Considerations on wedges
	Remarks on the general construction of lightlike string-local free fields
	String-local fields as line integrals over point-local fields

	Scaling degree of the two-point functions

	Conclusion
	Appendix
	Proof of the Lemmas
	Proof of the Lemmas

	Bibliography


