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Higher Derivative Quantum Gravity Near Four Dimensions
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We investigate the role of the Gauss-Bonnet term for then = 4 andn = 4− ε renormalization group, for both
conformal and general versions of the theory. The cancellation of the quantum effects of the Gauss-Bonnet term
in then = 4 limit represents an efficient test for the correctness of previous calculations and also resolves two
long-standing problems concerning quantum corrections in quantum gravity. In the case ofn = 4− ε renor-
malization group there is a number of new nontrivial fixed points, that may indicate to a rich nonperturbative
structure of the theory. At the same time, if we do not treatε as a small parameter, the renormalization group is
spoiled by an extensive gauge fixing ambiguity.

It is well known that the conventional way of quantiza-
tion of General Relativity leads to a non-renormalizable the-
ory [1–3]. An alternative way of quantizing gravity is to
introduce some higher derivative terms into a classical ac-
tion, treating them at the same footing as the lower-derivative
(Einstein-Hilbert and cosmological) terms, in such a way that
the new quantum theory is renormalizable [4] (see also [5]).
The renormalizability of higher derivative quantum gravity
(HDQG) enables one to establish the asymptotic freedom in
the UV limit [6–9] and explore the possible role of quantum
gravity in the asymptotic behavior for GUT-like models [10]
(see [11] for the general introduction to the subject).

The price for the renormalizability of HDQG is the unphys-
ical pole in the spin-two sector of the tree-level propagator of
the renormalizable quantum gravity. The pole corresponds to
a state with negative kinetic energy or with a negative norm
in the state space. Such unphysical states (massive ghosts) [4]
have masses with a magnitude of the Planck order, still they
spoil unitarity of the S-matrix, making the whole approach of
HDQG rather doubtful. A number of attempts to overcome the
problem of massive ghosts has been undertaken. In particular,
one can construct ghost-free models ofR2-type gravity with
torsion [12], but the renormalizability is lost in these models
[13]. A very interesting possibility is to investigate the non-
perturbative structure of the theory, e.g., through the resum-
mation of quantum corrections to the graviton propagator or
through the1/N approximation [14, 15]. Unfortunately none
of these approaches can give definite answer related to the
presence of ghost in the asymptotic states of the exact propa-
gator [16]. However, due to the importance of the problem, it
looks reasonable to consider other possible non-perturbative
approaches to HDQG, in particular then = 4− ε renormal-
ization group which proved to be a powerful tool in statistical
mechanics [17], quantum field theory [18] and also in quan-
tum gravity, where then = 2− ε approach was quite fruitful
[19–22].

The classical action of HDQG inn = 4− ε dimensions has
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is the square of Weyl tensor,E = R2
µναβ−4R2

αβ +R2 is the in-
tegrand of the Gauss-Bonnet term, which is topological (Euler
characteristic) inn = 4, κ2 = 16πG, whereG is the Newton
constant,Λ is the cosmological constant andλ, ρ, ξ, τ are
independent parameters in the higher derivative sector of the
action. Without R2-term, the higher derivative sector of the
theory possesses (inn = 4 case) local conformal invariance,
hence this version represents special interest.

As far as our purpose isn = 4− ε renormalization group,
it is not correct to ignore the role of the Gauss-Bonnet term.
Indeed this term is topological in four dimensions, but still it
may play some important role at the quantum level, becoming
very important forn 6= 4. In the previous publications [23, 24]
we have performed an explicit calculations taking this term
into account and clarified this issue. Here we present, without
much technical details, the general review of these works.

The nontrivial role of the Gauss-Bonnet term is known
since the work of Capper and Kimber [25]. The topologi-
cal nature of this term atn = 4 is closely related to its dif-
feomorphism invariance. However, when theory is quantized
using the Faddeev-Popov procedure, this symmetry is broken
such that the vector space extends beyond physical degrees of
freedom. After quantization, not only spin-2, but also spin-1
and spin-0 components of quantum metric become relevant,
and the topological term creates new vertices of interaction
between these components. Therefore, the loops may be, in
principle, affected by the presence of the topological term.
One can expect that after including the topological term, the
gauge-fixing condition should modify and eventually compen-
sate the new vertices. Indeed, this is exactly what happens in
n = 4 but of course not for4− ε, where we meet a non-trivial
effect of the Gauss-Bonnet term in both conformal and gen-
eral HDQG theories [23, 24].
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The renormalization group equations in bothn = 4 and
n = 4− ε cases are completely defined by the trace of the co-
incidence limit of the coefficienta2(x,x′) of the Schwinger-
DeWitt proper-time expansion. However, in both cases these
equations demonstrate an essential gauge-fixing ambiguity. In
the framework of the background field methodgµν → g′µν =
gµν + hµν we introduce the general linear gauge fixing con-
dition, such that the one-loop effective action is given by the
expression [8]

Γ̄(1)[gµν] =
i
2

ln DetĤ − i
2

ln DetYαβ −
− i ln DetĤgh, (2)

whereĤ is bilinear (in the quantum fields) form of the action
(1), taken together with the gauge-fixing term

SGF = µn−4
Z

dnx
√

g χαYαβ χβ . (3)

Ĥgh is bilinear form of the action of the Faddeev-Popov
ghosts,µ is the renormalization parameter in dimensional reg-
ularization.

The gauge fixing conditionχµ and and the weight operator
Yµν have the form

χµ = ∇λhλµ+β∇µh

Yµν =
1
α

(
gµν¤+ γ∇µ∇ν−δ∇ν∇µ

)
, (4)

whereαi = (α, β, γ, δ) are arbitrary gauge-fixing parameters.
The action of the Faddeev-Popov ghosts is

Sgh = µn−4
Z

dnx
√

gC̄µ (
Hgh

)ν
µ Cν ,

Ĥgh =
(
Hgh

)ν
µ =−δν

µ¤−∇ν∇µ−2β∇µ∇ν . (5)

The gauge-fixing dependence of the effective action in
HDQG has been considered in [8, 24, 26]. We denoteΓ(αi)
the effective action corresponding to arbitrary values of gauge

parametersαi and Γm = Γ(α(0)
i ) calculated for special val-

ues of these parameters,α(0)
i . Our purpose is to evaluate the

expression for the difference between the two effective actions
Γ(αi)− Γm. Despite this expression may be rather compli-
cated [26], the local part of it (which is the only one rele-
vant for the renormalization group in theMS-scheme which
we use here) may be easily evaluated without special calcula-
tions. For this end we remember that the gauge dependence
of counterterms has to disappear on the classical mass-shell.
Hence we can write

Γ(αi) = Γm+
Z

dnx
√

g fµν(αi)
δS

δgµν
, (6)

where fµν(αi) is some unknown function. The integration
is taken overn-dimensional space, because our target is the
renormalization group inn = 4− ε dimensions.

The object of our interest here is the local part of the effec-
tive actions Γm andΓ(αi), both have the same dimension as
the classical equations of motionδS/δgµν. Thereforefµν(αi)
is a symmetric dimensionless tensor and the unique choice for
it is fµν(αi) = gµν · f (αi) where f (αi) is a numerical quantity.
Thus we arrive at the relation

Γ(αi) = Γm+ f (αi) ×
Z

dnx
√

ggµν
δS

δgµν
. (7)

The gauge-fixing dependence is proportional to the trace of
classical equations of motion. Simple calculation [24] for an
arbitraryn yields the following result:

Γ(αi) = Γm + f (αi) × µn−4
Z

dnx
√
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{[

2x+
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2

+2(n−1)z
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(¤R)

+
n−4

2

(
xR2
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µν +zR2) − n−2

2κ2 R+
nΛ
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}
. (8)

For n = 4 the coefficients of theE, C2 and R2 terms are
gauge-fixing invariant [26]. Consequently the corresponding
renormalization group equations are universal, providing in-
formation about the UV limit of the theory. At the same time,
(¤R)-type pole is gauge-fixing dependent and therefore the
parameter τ in (1) is not an essential one. The immediate
conclusion is that there is no much interest to calculate the
renormalization ofτ, especially if the calculation is done for
a particular gauge-fixing. The renormalization of Einstein-
Hilbert and cosmological terms is gauge-fixing dependent, but
the dimensionless combinationκ2Λ is an essential coupling

constant with invariant renormalization relation.

In then = 4− ε case the situation is more complicated. An
important consequence of the eq. (8) is that neither one of
the parametersx,y,z,τ,κ,Λ is essential in then = 4− ε case.
However, gauge-fixing dependence is concentrated in a single
numerical functionf (αi) and therefore we can easily extract
combinations of the couplings which are essential parameters.

The calculational details can be found in [23] for the con-
formal quantum gravity and in [24] for the general version
including the Einstein-Hilbert sector. The expression for the
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divergent part of the 1-loop effective action is

Γ̄(1)
∣∣∣
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where
1
ε

=
µn−4

(4π)2(n−4)
andβ(n)

1,2,..,6 are cumbersome

functions of n, different for the conformal [23] and general
[24] cases of HDQG.

In the conformal case, after taking then→ 4 limit in the
coefficient of the pole term, we obtain

Γ(1)
div =

1
ε

Z
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√−g
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30

C2
}

(10)

The coefficients in the above expression coincide with the
ones Fradkin and Tseytlin [8] and later on by Antoniadis,
Mazur and Mottola [27]. At the same time we observe there is
no
R √−gR2-type divergence [8] and hence there is no need

to apply the conformal regularization [28, 29] in order to ob-
tain multiplicatively renormalizable conformal theory at one
loop order.

Despite the one-loop divergences are conformal invariant,
this symmetry is broken at the one-loop level in the finite part
of the effective action. The divergences of the

R √−gC2 andR √−gE-type produce the anomalous violation of the Noether
identity,

32π2
√−g

gµν
δΓ̄(1)

δgµν
=

(
bE+wC2 +α′¤R

)
, (11)

where b = −87
20, w = 199

30 and α′ = α′(αi , ...) is some func-
tion of arbitrary gauge fixing parameters [26], which contains
also an additional arbitrariness [30]. At the level of one-loop
effective action we meet the well-known form of the quantum
correction to the classical action of conformal HDQG [26, 31]

Γ = Sc[gµν]−α′
Z
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Here ∆4 = ¤2 + 2Rµν∇µ∇ν − 2
3R¤ + 1

3(∇µR)∇µ is the four
derivative conformal invariant operator acting on the dimen-
sionless scalars and the two such scalarsϕ and ψ are auxil-
iary fields.

An interesting question is whether the renormalizability of
the conformal invariant version of HDQG will be broken at
higher loops. In this respect the mentioned arbitrariness in

the one-loop
R √−gR2-type contribution gains special impor-

tance. The remarkable difference between this case and the
standard semiclassical one is that in the last case the

R √−gR2

belongs to the action of external field and one is always free
to introduce this term with an arbitrary coefficient already at
the classical level. In conformal quantum gravity, introducing
such term would completely change the physical content of
the theory. Hence we can not fix the arbitrariness by fixing the
renormalization condition for the

R √−gR2 term and there-
fore higher loop non-conformal counterterms (except leading
log’s, of course) are also arbitrary. It is difficult to make defi-
nite conclusion concerning renormalizability in this situation.

Our results show, anyway, that the conformal quantum
gravity can be regarded as a good approximation. The cor-
responding procedure means that one can start from the the-
ory with a very small coefficient of the

R √−gR2 term. Due
to the one-loop renormalizability of the conformal theory this
coefficient will remain very small at the quantum level. If we
consider the conformal quantum gravity in this framework,
the problem of ambiguity of the anomalous

R √−gR2 term is
irrelevant and we can regard this theory as a useful particular
example of the higher derivative quantum gravity models.

In the general non-conformal case of HDQG then → 4
limit, the pole term has the form
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This result perfectly agrees with the one of Avramidi and
Barvinsky [9]. This coincidence shows that the effect of the
Gauss-Bonnet term is not relevant for the one-loop renormal-
ization.

Despite theρ-dependence cancels out in theε → 0 limit,
the 4−ε renormalization group equations do not assume ex-
actly the form of the known equations in four dimensions, and
theε-dependence is not simple, because the4−ε β-functions
are sensitive toO(ε)-corrections which depend onρ. In fact,
the situation with 4− ε renormalization group equations is
even more complex, because one has to account for the arbi-
trariness coming from the choice of a gauge-fixing condition.
Taking the gauge-fixing arbitrariness (8) into account, we ar-
rive at the complete form of4− ε renormalization group
equations for the three parameters

dρ
dt

= −ερ + ερ f (αi)+ρ2 β1 ,

dλ
dt

= −ελ + ελ f (αi)−2λ2 β2 ,

dξ
dt

= −εξ + εξ f (αi)−ξ2 β3 . (14)

Our strategy concerning the issue of gauge fixing dependence
will be as follows. We construct two essential parameters -
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some combinationsθ andω of the effective charges(λ,ρ,ξ).
Let us takeθ = λ/ρ , ω =−3λ/ξ. The coefficient−3 in the
second expression provides correspondence with the notations
of [8, 9]. The renormalization group equations for these pa-
rameters are free from the gauge-fixing ambiguity. The equa-
tions for the chargesθ andω will be explored in order to estab-
lish the UV stable fixed points. After that we shall consider
the equation for the remaining effective charge, with the in-
variant combinationsθ andω at the fixed point. In this way
we can learn the asymptotic UV behaviour corresponding to a
given fixed point.

According to (14), the renormalization group equations for
θ andω are independent on the gauge arbitrariness and have
the following universal form:

dθ
dτ

=−2θβ2−β1 ,
dω
dτ

=−2ωβ2−3β3 . (15)

Hereτ(t) is a new parameter defined by

dτ =
λ(t)
(4π)2 dt , (16)

where λ(t) is a solution of the renormalization group equa-
tions (see [24]). For a while we assume that the limitτ→ ∞
corresponds to the UV limitt → ∞ , as it was in the standard
n = 4 renormalization group.

The numerical investigation of the equations (15) has been
performed for a special small values ofε. This analysis has
shown a number of new fixed points, which do not have place
in the four dimensional case. We can meet non-Gaussian new
fixed point which are stable in both UV and IR and also saddle
point - type fixed points. One can consider this as an indica-
tion to a possible rich non-perturbative structure of the theory.
We present the fixed points for one particular case in Table 1.

Fixed Point θ ω Stability

1 0.33516 -5.38892 Saddle
2 4.61183 -1.60198 UV-Unstable
3 -4.31710-1.47066 UV-Unstable
4 -4.44192-0.15162 Saddle
5 4.80565 -0.06229 Saddle
6 0.33782 -0.00283 UV-Stable
7 -3.94162 0.03123 UV-Unstable
8 -4.11072 0.07230 Saddle

Table 1. The list of the fixed points for the case
ε = 0.1.

The physical interpretation of these fixed points is not a
simple matter. In order to understand the situation better, let
us consider the analytical form ofλ(t) in the vicinity of some
fixed point (ω0,θ0). For this end, the expressionβ2 must
be rewritten in terms ofω andθ, which should be further re-
placed byω0 and θ0. After performing this, independent on

the values ofω0 and θ0 we arrive at the equation

dλ
dt

= aλ−b2λ2 , (17)

where

a =−ε+ ε f (αi) and b2 = 2β2(ω0 ,θ0) . (18)

Let us remark that the parameterb in the last equation depends
only on the values(ω0 ,θ0), while the parametera depends
also on the choice of a gauge-fixing condition and therefore
can be made arbitrary.

The solution of eq. (17) is straightforward

λ(t) =
aλ0eat

bλ0 (eat−1)+a
, λ0 = λ(0) . (19)

Starting from this relation, we integrate (16) and arrive at the
explicit form of τ

τ(t) =
1
b

ln
[
a+bλ0 (eat−1)

]
+C, (20)

whereC is an irrelevant integration constant. It is easy to see
that the assumption ofτ → ∞ in the UV is not correct, for it
depends on the gauge fixing here. Indeed, this means that the
physical interpretation of the4− ε renormalization group is
not a simple matter, obviously it can not be achieved through
the calculations only.

Let us remember that the successful application of the
4− ε renormalization group is essentially non-perturbative
and therefore it is not a trivial issue to combine this approach
with the one-loop approximation. Indeed the consideration of
this sort may be justified only in case there are no other more
reliable access to a non-perturbative regime (HDQG is exactly
the case) and it is not a surprise it requires an additional input
anyway. If we want consider4− ε renormalization group si-
multaneous with the one-loop approximation, the quantityε
must be considered small by definition and only linear effects
in ε can be taken into account. If we accept this view, the
problem of “total” gauge fixing dependence gets solved and
we meet an asymptotically free theory with nontrivial fixed
points. Only a real non-perturbative treatment, however, can
help to give definite answer about whether these new fixed
points really take place or whether the quantum corrections to
the graviton propagator has desirable form. The situation is,
therefore, quite similar to the one with another “nonperturba-
tive” approaches to HDQG.
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