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Renormalization Group (RG) is a powerful method for investigating quantum effects of matter fields on
curved background. The formalism of RG in curved space is well known since 1984, but its applications to
cosmology and black hole physics require more knowledge and opens a new interesting field of study. We review
recent results about the derivation of renormalization group in a mass-dependent scheme and also consider
ambiguities of conformal anomaly using dimensional and covariant Pauli-Villars regularizations.

The Effective Action of vacuum (EA) is a most useful ob-
ject to parametrize the quantum effects within quantum field
theory in curved space-time [1, 2]. Sometimes this approach
is refereed to as semiclassical approximation, in order to em-
phasize that the metric is not quantized. The EA is a metric-
dependent functional, at one-loop level it consists of the clas-
sical action of vacuum and the contributions of closed loops
of free matter fields. At higher loops the fields interactions be-
come relevant. However, the practical derivations of the EA
are mainly restricted by the one-loop order and here we shall
also work in the framework of this approximation. Ind = 4
even the contributions of free matter fields are very compli-
cated to calculate, and this task has been successful only for
some particular cases. The word “particular” corresponds to
the choice of both the model for the quantum field and the
one for the background classical metric. The most remarkable
example is the case of massless conformal invariant fields on
the cosmological (homogeneous and isotropic) metric back-
ground, where the EA can be derived exactly [3, 4]. This re-
sult has been obtained through integration of conformal anom-
aly [5, 6], showing the importance of anomaly and the related
renormalization group for the analysis of the EA.

The investigation of EA in more complicated situations,
in particular for massive fields, requires a choice of the ap-
proximation and of the calculational scheme. In this respect
the seminal role belongs to the Renormalization Group (RG),
which enables one to reduce the information about compli-
cated non-local quantum contributions to the relatively simple
dependence on a single parameterµ. The most simple and
most formal version of RG, based on the Minimal Subtraction
MS renormalization scheme, has been successfully applied to
the quantum field theory in curved space (see, e.g. [2] for the
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review and introduction). The weak side of theMS-based RG
is the problem of interpretation ofµ and related difficulties
with applying RG, e.g. in cosmology.

An alternative way is to use some more sophisticated
scheme of renormalization, which would not be universal one
as theMS-based RG is, but which should be designed espe-
cially for the given application. Unfortunately, there is no co-
variant renormalization scheme except theMS one. Further-
more, the known renormalization schemes (e.g. the momen-
tum subtraction scheme) of renormalization are not really ap-
propriate for the use in the gravitational framework. Still the
momentum subtraction scheme enables one to extract some
relevant information, part of it will be reviewed below. The
main purpose of the original papers on the subject was to in-
vestigate the phenomenon of decoupling of massive fields at
low energies for the free fields of different spin [7], the the-
ory with Spontaneous Symmetry Breaking [8], for one par-
ticular example of interacting theory [9] and also to clarify
some long-standing problem concerning the conformal anom-
aly [10].

The main goal of the works [7–9] was to formulate the ef-
fective approach for quantum field theory in curved space-
time. The notion of decoupling is an important aspect of ef-
fective approach. At classical level decoupling means that a
heavy field doesn’t propagate at low energies. This can be
easily seen observing the propagator of a massive particle at
low energy

1
k2 +M2 ≈

1
M2 + O

(
k2

M4

)
, k2 ¿M2 . (1)

The decoupling theorem explains how the suppression of the
effects of heavy particles occurs at quantum level. Let us start
from the pedagogical example and consider QED in flat space.
The 1-loop vacuum polarization is

−e2 θµν

2π2

Z 1

0
dxx(1−x) ln

m2
e + p2x(1−x)

4πµ2 , (2)

whereθµν = (pµpν− p2gµν) andµ is the parameter of dimen-
sional regularization. In theMS renormalization scheme the
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β-functionβMS results from actinge
2µ d

dµ on the form factor
of θµν

βMS
e =

e3

12π2 . (3)

This β-function can not tell us about the decoupling. In order
to define physicalβ-function, let us apply the mass-dependent
renormalization scheme. Subtracting the divergence atp2 =
M2 and taking derivativee

2M d
dM we arrive at

βe =
e3

2π2

Z 1

0
dxx(1−x)

M2x(1−x)
m2

e +M2x(1−x)
.

The UV limit (M Àme) gives βe = βMS
e and in the IR limit

(M ¿ me) we meet a quadratic decoupling compared to the
UV β-function (Appelquist & Carazzone theorem [11])

βe =
e3

60π2 ·
M2

m2
e

+ O
(

M4

m4

)
. (4)

In order to derive decoupling theorem for gravity we have
considered massive fields on the classical metric background
[7]. As we have already mentioned above, there is no
completely covariant technique compatible with the mass-
dependent renormalization schemes. We have performed cal-
culations within the linearized gravity on the flat background
gµν = ηµν + hµν. The corrections to the graviton propagator
come from the standard Feynman diagrams [7] or may be de-
rived using the covariant heat-kernel solution in the second
order in curvature approximation [12, 13].

The polarization operator must be compared to the tensor
structure of the vacuum Lagrangian

L =− 1
16πG

(R+2Λ)+a1C
2 +a2E +a3¤R+a4R2.

HereC2 = C2
µναβ is the square of the Weyl tensor andE is

the integrand of the Gauss-Bonnet topological invariant (Euler
characteristic)E = R2

µναβ−4R2
µν +R2.

In the case of massive scalar we meet, after performing all
the integrations, the following EA:

Γ̄(1)
s =

Z d4x
√

g

2(4π)2

{
m4

2
·
(1

ε
+

3
2

)
+ ξ̃m2R

(1
ε

+1
)

+
1
2

Cµναβ

[ 1
60ε

+kW

]
Cµναβ +R

[ ξ̃2

2ε
+kR

]
R

}
. (5)

where 1
ε = 1

2−w + ln
(

4πµ2

m2

)
, ξ̃ = ξ− 1

6. The formfactors

for the higher derivative terms are

kW = kW(a) =
8A

15a4 +
2

45a2 +
1

150
,

kR = kR(a) = Aξ̃2 +
(1−3A

18
+

2A
3a2

)
ξ̃

+
A

9a4 −
A

18a2 +
A

144
+

1
108a2 −

7
2160

, (6)

where we used notations

A = 1+
1
a

ln

∣∣∣∣
2−a
2+a

∣∣∣∣ , a2 =
4¤

4m2−¤ .

Obviously, constant formfactors mean zeroβ-functions forΛ
andG. The situation for the higher derivative terms is quite
different. For the Weyl term theβ-function is

β1 = − 1
(4π)2

(
1

18a2 −
1

180
− a2−4

6a4 A

)
. (7)

In the UV and IR limits we have

βUV
1 =− 1

(4π)2

1
120

+O
(

m2

p2

)
,

and βIR
1 =− 1

1680(4π)2

p2

m2 +O
(

p4

m4

)
. (8)

The last formula is nothing but the Appelquist & Carazzone
theorem for gravity. Herep is the momentum of the linearized
gravitational fieldhµν on flat background.

For theR2 term the situation is very similar. The bulky
expressions for theβ-function can be found in [7], the com-
parison of the UV and IR limits manifests standard quadratic
decoupling

βUV
2 = − 1

2(4π)2 ξ̃2 +O
(m2

p2

)
,

βIR
2 = − p2/m2

12(4π)2

[
ξ̃2− ξ̃

15
+

1
630

]
+O

( p4

m4

)
. (9)

Similar results for the decoupling take place for the massive
fermion and massive scalar cases [7]. The difference with the
contributions of massive scalar consists in the coefficients of
the samea-dependent terms. One important consequence of
this difference can be observed in the theory with broken su-
persymmetry. If we assume that all particles of the MSM are
very light compared to thes-particles, we arrive at the plot of
the β2-function for the local

R
R2-term (see Fig. 1). At this

plot the valuea= 2 corresponds to the UV limit and the value
a= 0 corresponds to the IR limit. One can see that the sign of
this β-function is changing on the way from UV to IR. This
change of sign leads to the transition from stable to unstable
regimes [14] in the model of anomaly-induced inflation [15].

In the theory with Spontaneous Symmetry Breaking (SSB)
the situation is essentially more complicated. In this case,
even at the tree level one has an infinite number of non-local
terms in both vacuum and induced actions of gravity, and all
those non-local terms in the vacuum action get renormalized
at the quantum level. However, the standard decoupling law
for the higher derivative terms holds in this case too [8].

An expansion gµν = ηµν + hµν works well for higher
derivative terms, but not forΛ and G. Why did we ob-
tain βΛ = β1/G ≡ 0 in the momentum-subtraction scheme?
Let us remind that the sameβ-functions are non-zero in
the MS-renormalization scheme [2]. In fact, the running in
the momentum-subtraction scheme means the presence of a
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FIG. 1: The plotβ2(a) demonstrating the change of sign between
UV and IR.

f (¤) = ln(¤/µ2)-like formfactor. In QED, in the UV limit
we meet the term

−e2

4
FµνFµν +

e4

3(4π)2 Fµν ln

(
−¤

µ2

)
Fµν .

Similarly in gravity it is possible to insert

Cµναβ f (¤)Cµναβ or R f(¤)R

in the higher derivative sector. However, no insertion is possi-
ble forΛ and1/G, since¤Λ = 0 and¤R is a total derivative.

Does it mean thatβΛ and β1/G really equal zero? From
our point of view the answer is negative, for otherwise we
meet a divergence between the mass-dependent renormaliza-
tion scheme andMS-scheme in the UV where they are sup-
posed to be the same. Perhaps calculations on a flat back-
ground are not appropriate for deriving the renormalization
group equations forΛ and1/G. This hypothesis is quite nat-
ural, especially because flat space is not a classical solution in
the presence of the cosmological constant. Let us notice that
the practical derivation of the decoupling law forΛ and1/G
may have very interesting cosmological and astrophysical ap-
plications [16].

One of the applications of our expression for the effective
action of massive fields (5) is the new way of analyzing the
conformal anomaly – a typical phenomenon for the quantized
massless fields on classical curved background [17].

As an example, consider scalar field

L =
1
2

{
(∇ϕ)2 +m2ϕ2 +

(
ξ̃+

1
6

)
Rϕ2

}
.

In them= 0, ξ = 1/6 limit of (5) we obtain, in the
R

R2 sector,

− 1
12·180(4π)2

Z
d4xg1/2R2 . (10)

Due to the identity

− 2√−g
gµν

δ
δgµν

Z
d4x

√−gR2 = 12¤R. (11)

the result (10) provides a perfect fit with the¤R term in the
local (means with respect to local conformal symmetry) con-
formal anomaly obtained by the point-splitting method [18],
ζ-regularization [19] and other methods (see [1] for the re-
view)

< Tµ
µ >=

1
360(4π)2

[
3C2−E +2¤R

]
, (12)

whereC2 = C2(4) = R2
µναβ−2R2

µν +(1/3)R2 is the square of

the Weyl tensor atn = 4 andE = R2
µναβ− 4R2

µν + R2 is the
integrand of the Gauss-Bonnet invariant. We added these two
terms for consistency, despite our main attention will be paid
to the¤R term. Let us notice that the above result has been
obtained via the massless conformal limit in the massive and
non-conformal (generally,ξ 6= 1/6) theory. Indeed, for any
ξ 6= 1/6, the

R
R2 term is subject of infinite renormalization

procedure and therefore the above limit is ambiguous. In-
deed, this situation may look quite trivial, because the term of
our interest is local. However, a relevant detail is that, in the
conformal theory, the counterterm of

R
R2 type is not needed,

hence one can thing that the ambiguity is nothing but a conse-
quence of a “wrong” choice of regularization scheme.

The anomaly can be seen as a consequence of an infinite
regularization of the higher derivative terms in the vacuum
action. The simplest way to derive the conformal anomaly is
using the dimensional regularization [6], however this calcula-
tion meets certain problem. The usual scheme of calculation
[6] is as follows. The renormalized 1-loop EA is a sum of
three parts

Γ(1)
ren = Svac+ Γ̄(1) +∆Svac,

whereSvac is the classical vacuum action. Indeed, this action
can be chosen to be conformal invariant for the case of confor-
mal matter [20]. Furthermore,̄Γ(1) is the non-renormalized
quantum correction, which is divergent, conformal invariant
(as far as the matter field was formulated conformal invariant
in n 6= 4 and non-local. Finally,

∆Svac = − 1
(4π)2(n−4)

(
3C2−E +2¤R

)

is the local counterterm which is not conformal invariant is
n 6= 4. Obviously, the anomaly comes from the unique non-
conformal component, that is∆Svac.

T =< Tµ
µ >=− 2√

g
gµν

δ∆Svac

δgµν
.

For theC2 andE terms the application of this formula leads us,
unambiguously, to the expression (12). Let us now consider
the remaining term and see that in this case the situation is
more complicated. Indeed

δ
δgµν

Z
dnx

√
g (¤R) ≡ 0.

This shows that, in the dimensional regularization, the
R

¤R-
type counterterm does not contribute to the¤R term in the
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anomaly. Of course, this is not a natural output, especially
because the anomaly for the global conformal symmetry does
depend on all counterterms. Furthermore, other regularization
schemes also link the two coefficients in a direct way, so here
we meet a divergence between the results obtained in distinct
regularizations.

According to [6], the ¤R term in the anomaly is coming
from the

R
C2-type counterterm via the identity

2gµν
δ

δgµν

Z
dnx

√
g

C2(4)
n−4

∣∣∣∣
n→4

= (C2− 2
3
¤R). (13)

Hence T =−(2/3)βWeyl·¤R+ .... For the scalar and spinor
fields this relation gives the same result as other regularization
schemes. However, for the vector field and also for the higher
derivative scalar [3] and fermion [22] the coefficients are dif-
ferent. Hence it is reasonable to look again at the definition
(13).

Why we have to choose∆Svac=
R √

gC2(4)?. In fact, if we
choose the square of the Weyl tensor in an arbitrary dimension
d,

C2(d) = R2
µναβ−

4
d−2

R2
µν +

2
(d−1)(d−2)

R2 , (14)

whered = 4+ O(n−4), the corresponding counterterm will
be perfectly consistent with its destination, for it is local and
cancels the divergence in the one-loop EA. However the result
for the (¤R) term in the anomaly essentially depends on the
choice of d. E.g. forC2(n) there is no¤R term at all and
for the d = n+ γ · [n− 4] the ¤R term is proportional to an
arbitrary parameterγ. We can conclude that the dimensional
regularization does not predict the coefficient of the¤R term
in the anomaly. Let us notice that the change of parameter
γ in the counterterm which we add tōΓ(1) by handsis com-
pletely equivalent to adding afinite

R
R2 term to the classical

action. Adding this term is absolutely safe procedure, because
it is not a subject of infinite regularization. From the point of
view of renormalizability this term is not necessary but it is
not forbidden either. Hence the arbitrariness we have found in
the dimensional regularization is nothing else but the conse-
quence of the identity (11). This arbitrariness takes place also
for other fields and finally the coefficientα′ in the general ex-
pression for the anomaly

< Tµ
µ >=

[
wC2 +bE+α′¤R

]
(15)

can not be defined within the dimensional regularization. We
remark that this arbitrariness is exactly the same we already
met when taking the massless conformal limit in the effective
action of a massive scalar theory with an arbitraryξ.

In order to complete the story we can answer the follow-
ing question: is it possible to observe an arbitrariness inα′
in some other regularization? In order to address this issue
we need another example of covariant regularization which
should admit certain freedom in choosing regularization para-
meters. And our result for the effective action (5) enables us
to build the regularization of this sort.

Consider covariant version of the Pauli-Villars regular-
ization, known from Yang-Mills and Chern-Simons theories

[23, 24]. The Pauli-Villars regularization implies introducing
massive auxiliary fields with distinct Grassmann parity which
cancel all (quartic, quadratic, log.) divergences in a covariant
way

Sreg =
N

∑
i=0

Z
d4x

√
g
{
(∇ϕi)2 +(ξiR+m2

i )ϕ
2
i

}
.

The physical scalar fieldϕ≡ ϕ0 is conformalξ = 1/6, m0 = 0
and bosonics0 = 1.

On the other hand, the Pauli-Villars regulatorsϕi (i =
1, . . . ,N) are massivemi = µiM 6= 0 and can have either
bosonicsi = 1 or fermionic statisticssi = −2. Since they are
not observed, there is no violation of the spin-statistics theo-
rem here.

After UV limit M → ∞ we arrive at the vacuum EA. The
calculation is based on our result (5), as we already men-
tioned. We assume that the Pauli-Villars regulators might have
non-conformal couplingsξi 6= 1

6. The regularized effective ac-
tion is

Γ̄(1)
reg = lim

Λ→∞

N

∑
i=0

si Γ̄
(1)
i (mi ,ξi ,Λ) ,

whereΛ is an auxiliary momentum cut-off. All divergences
cancel out due to the Pauli-Villars conditions, which have, in
our case, the following form:

N

∑
i=1

si = −1; (quartic divs.)

N

∑
i=1

siµ
2
i =

N

∑
i=1

si

(
ξi − 1

6

)
= 0; (quadratic)

N

∑
i=1

siµ
4
i =

N

∑
i=1

si

(
ξi − 1

6

)2

= 0; (log.)

A simple solution of these equations is

s1,2,3,4,5 = (1,4,−2,2,−2) ,

µ2
1,2,3,4,5 = (4,3,1,3,4) , ξi = µ2

i +1/6.

Alternatively we can choose allξi = 1/6, so there is an arbi-
trariness here.

The conformal anomaly in the covariant Pauli-Villars regu-
larization is given by

T =
1

(4π)2

[
1

180
E− 1

120
C2 +

(
12δ− 1

180

)
¤R

]
,

where

δ =
N

∑
i=1

si

(
ξi − 1

6

)2
ln µ2

i ,
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Again, we meet an ambiguity. It is easy to see that, exactly as
in the dimensional regularization case, the ambiguity is related
to the freedom to add the finite

R √
gR2-term to the classical

vacuum action.
The only way to fix the ambiguity inα′ is through a spe-

cial renormalization condition for the
R √

gR2-term. In the
free scalar theory this looks as an additional complication, be-
cause this term is not renormalized. But as we know from
the literature [21], in the interacting theory the

R √
gR2-type

counterterm emerges anyway at higher loops and, therefore,
this extra condition does not lead to an essential modification
of the theory structure. At that point one has to remember
that the dynamical effect comes from the

R √
gR2-term, and

not from the total derivative
R √

g¤R. Looking from this per-
spective, we can see that the renormalization condition for theR √

gR2-term is fixing the initial point of the renormalization
group trajectory for the corresponding coupling, and not the
shape of the trajectory. In other words, the curve shown at the
Figure 1 remains valid if we impose the renormalization con-
dition for the

R √
gR2-term in a proper way. As a result the

model of anomaly-induced inflation is not jeopardized by the
α′ ambiguity in the conformal anomaly.

In conclusion, we have established the background of an
effective approach to QFT in curved space-time. In particu-
lar, the first derivation of the renormalization group in a phys-
ical mass-dependent scheme has been performed. Unfortu-
nately, the calculation was possible only in the framework of
a linearized gravity approximation, that is why we did not ob-
tain the physicalβ-functions for the cosmological and Newton

constants. The derivation of EA on a more complicated back-
grounds in necessary for obtaining theseβ-functions, which
can help us in order to prove or disprove the possibility of a
time-dependent cosmological constant [16]. The same cal-
culation is vital for further theoretical development of the
anomaly-induced inflation model [15]. An important appli-
cation of our calculation [7] of the effective action for mas-
sive scalar field is better understanding of the ambiguity in
the conformal anomaly inn = 4, the issue which produced a
long-standing doubts [17]. We have seen that the dimensional
regularization does not enable one to predict a coefficientα′
and that a similar ambiguity takes place in other calculational
schemes, including taking a conformal limit in a massive the-
ory and in the powerful Pauli-Villars regularization. At the
same time the ambiguity concerns only

R √
g¤R in the anom-

aly and the induced dynamics coming from the vacuum effec-
tive action can be made completely unambiguous by introduc-
ing the

R √
gR2-term into classical action and imposing the

corresponding renormalization condition at quantum level.
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