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Renormalization Group (RG) is a powerful method for investigating quantum effects of matter fields on
curved background. The formalism of RG in curved space is well known since 1984, but its applications to
cosmology and black hole physics require more knowledge and opens a new interesting field of study. We review
recent results about the derivation of renormalization group in a mass-dependent scheme and also consider
ambiguities of conformal anomaly using dimensional and covariant Pauli-Villars regularizations.

review and introduction). The weak side of tM&-based RG

The Effective Action of vacuum (EA) is a most useful ob- is the problem of interpretation qf and related difficulties

ject to parametrize the quantum effects within quantum field"”f ap[lalylng RG’ €.9.1n cosmology. histi d
theory in curved space-time [1, 2]. Sometimes this approach AN alternative way is to use some more sophisticate

is refereed to as semiclassical approximation, in order to enﬁchim%fbreno(;rgaéz_au%n, Wr;:.cmwﬁwdl;%t bg urpvergal one
phasize that the metric is not quantized. The EA is a metric®S theMS-base Is, but which should be designed espe-

dependent functional, at one-loop level it consists of the clas(—:ial_Iy for the give_n application. Unfortunately, there is no co-
ariant renormalization scheme except M8 one. Further-

sical action of vacuum and the contributions of closed Ioop§’

of free matter fields. At higher loops the fields interactions be M°re: the known renormalization schemes (e.g. the momen-

come relevant. However, the practical derivations of the EAUM subtraction scheme) of renormalization are not really ap-

are mainly restricted by the one-loop order and here we Shaﬁropriate for the use in the gravitational framework. Still the
also work in the framework of this approximation. dn— 4 momentum subtraction scheme enables one to extract some

even the contributions of free matter fields are very Comp”_relgvant informa}tick)}n, part Ofl it will be re\ﬂewe%_below. Thg
cated to calculate, and this task has been successful only fgain purpose o the original papers on the su jecf[ was to In-
some particular cases. The word “particular” corresponds t estigate Fhe phenomenor_w of decogpllng of massive fields at
the choice of both the model for the quantum field and the®W Energies for the free fields of different spin [7], the the-

one for the background classical metric. The most remarkabl8"Y with Spontanequs SV’T‘me”V Breaking [8], for one par-
ficular example of interacting theory [9] and also to clarify

example is the case of massless conformal invariant fields o | andi bl ina th ; |
the cosmological (homogeneous and isotropic) metric back29M€ 'oNg-standing problem concerning the conformal anom-

ground, where the EA can be derived exactly [3, 4]. This re-aly [10].

sult has been obtained through integration of conformal anom- The main goal of the works [7._9] was to formulate the ef-
Jectlve approach for quantum field theory in curved space-

time. The notion of decoupling is an important aspect of ef-
) T ) ) o fective approach. At classical level decoupling means that a
The investigation of EA in more complicated situations, heavy field doesn’t propagate at low energies. This can be

in particular for massive fields, requires a choice of the apeasily seen observing the propagator of a massive particle at
proximation and of the calculational scheme. In this respecfow energy

the seminal role belongs to the Renormalization Group (RG), )
which enables one to reduce the information about compli- 1 ~ 1 0 (k> K2 < M2. 1)
cated non-local quantum contributions to the relatively simple k2+M2 M2 M4 )’

dependence on a single parameterThe most simple and  The decoupling theorem explains how the suppression of the

most formal version of RG, based on the Minimal Subtractiongffects of heavy particles occurs at quantum level. Let us start

MS renormalization scheme, has been successfully applied 9om the pedagogical example and consider QED in flat space.
the quantum field theory in curved space (see, e.g. [2] for thne 1-1oop vacuum polarization is

z
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TAlso at Tomsk State Pedagogical University, Russia sional regularization. In th#S renormalization scheme the

renormalization group for the analysis of the EA.
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B-function BWS results from acting‘g‘p(f—u on the form factor where we used notations

of By 2 40]

A=1+=In =
+ R P

- a
. ®
Obviously, constant formfactors mean z@functions forA
This B-function can not tell us about the decoupling. In orderandG. The situation for the higher derivative terms is quite
to define physica-function, let us apply the mass-dependentdifferent. For the Weyl term th@-function is
renormalization scheme. Subtracting the divergencg?at

1 2—a
2+a

2
M2 and taking derivativééM - we arrive at __ 1 1 1 &-4
, EM e L=tz \Te2 180 e )
e 1 M?x(1 —x) .
Be = 2 o dxx(1—x) M%) In the UV and IR limits we have
- 1 1 n?
The UV limit (M >> me) gives  Be = BYS and in the IR limit 7Y = ~Gneizo (p2> :
(M < mg) we meet a quadratic decoupling compared to the 1 02 ot
UV B-function (Appelquist & Carazzone theorem [11]) IR_ _ r r )
and By =—Tegqamz me T O\ e ®
e M? M4 _ . .
Be = 602 @ +0 P (4)  The last formula is nothing but the Appelquist & Carazzone

theorem for gravity. Herg is the momentum of the linearized

In order to derive decoupling theorem for gravity we havedravitational fieldhy, on flat background.
considered massive fields on the classical metric background For theR? term the situation is very similar. The bulky
[7]. As we have already mentioned above, there is ngXxpressions for thB-function can be found in [7], the com-
completely covariant technique compatible with the massparison of the UV and IR limits manifests standard quadratic
dependent renormalization schemes. We have performed calecoupling
culations within the linearized gravity on the flat background

Ow = Nw + hw. The corrections to the graviton propagator By — _ 1 g2 O(ﬁ)
come from the standard Feynman diagrams [7] or may be de- 2 2(4m)? p2/’
rived using the covariant heat-kernel solution in the second 2 /R z 4
: e R _ P e, &1 "
order in curvature approximation [12, 13]. 5 = 12(4m? [Z 15 630} + O(m“)' 9)

The polarization operator must be compared to the tensor

structure of the vacuum Lagrangian Similar results for the decoupling take place for the massive
1 fermion and massive scalar cases [7]. The difference with the
———(R+2N\)+ a1C? + ayE + agOR+ asR%. contributions of massive scalar consists in the coefficients of
16nG the samea-dependent terms. One important consequence of
this difference can be observed in the theory with broken su-
Persymmetry. If we assume that all particles of the MSM are
very light compared to ths-particles, we arrive at the plot of
e Bo-function for the local R°-term (see Fig. 1). At this
E?ot the valuea = 2 corresponds to the UV limit and the value
a= 0 corresponds to the IR limit. One can see that the sign of
B Z 44y 1 3 - 1 this B-function is changing on the way from UV to IR. This
rd = axvg { . <, + ,) +& mzR(— + 1) change of sign leads to the transition from stable to unstable
24m2 | 2 \e 2 € regimes [14] in the model of anomaly-induced inflation [15].
1 1 Vo 22 In the theory with Spontaneous Symmetry Breaking (SSB)
+§vaa|3[@+kw} cH +R[£ +kR} Re. (8  the situation is essentially more complicated. In this case,
even at the tree level one has an infinite number of non-local

L=

HereC? = CﬁvaB is the square of the Weyl tensor afdis
the integrand of the Gauss-Bonnet topological invariant (Eule
characteristicE = RS, — 4R4, + R,

In the case of massive scalar we meet, after performing al

the integrations, the following EA:

1 1 s - 1 terms in both vacuum and induced actions of gravity, and all
where 2 = >~ +n (%) , &€=8&—5. Theformfactors those non-local terms in the vacuum action get renormalized

for the higher derivative terms are at the quantum level. However, the standard decoupling law
for the higher derivative terms holds in this case too [8].

8A 2 1 i = i

kv = kw(a) = " 4= An expansion gy = N + hw works well for higher
15a*  45a2 = 150 derivative terms, but not foA and G. Why did we ob-
= 1-3A 2A\: tain Br = By = 0 in the momentum-subtraction scheme?

_ _ AF2
ke = kr(@) =A% +( 18 +Q)E Let us remind that the sam@-functions are non-zero in
A A A 1 7 the MSrenormalization scheme [2]. In fact, the running in

_|_

o 1822 + er 10822 2160’ (6)  the momentum-subtraction scheme means the presence of a
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the result (10) provides a perfect fit with théR term in the

1 local (means with respect to local conformal symmetry) con-
formal anomaly obtained by the point-splitting method [18],
0.8 (-regularization [19] and other methods (see [1] for the re-
0.6 view)
0.4 1 2
TH>= — 5 [3C°—E+20R 12
o2 <>~ a0y | TR @)
05 i e 5 whereC? = C?(4) = RS s — 2R3, + (1/3)R? iis the square of
0.2 the Weyl tensor ah = 4 andE = Rme —4R4, + R is the
0.4 integrand of the Gauss-Bonnet invariant. We added these two

terms for consistency, despite our main attention will be paid
to theOR term. Let us notice that the above result has been
obtained via the massless conformal limit in the massive and
FIG. 1: The plotB,(a) demonstrating the change of sign between non-conforr‘r\gl (generallyg # 1/6) theory. Indeed, for any
UV and IR. & #1/6, the R2term is subject of infinite renormalization
procedure and therefore the above limit is ambiguous. In-
deed, this situation may look quite trivial, because the term of
our interest is local. However, a rglevant detail is that, in the
conformal theory, the counterterm oR? type is not needed,

f(0) = In(O/?)-like formfactor. In QED, in the UV limit
we meet the term

e v e O hence one can thing that the ambiguity is nothing but a conse-
—fF“vF“ +——5FvIn|—= FW fa » choi f larizati h
4 3(4m)2 12 quence of a “wrong” choice of regularization scheme.
The anomaly can be seen as a consequence of an infinite
Similarly in gravity it is possible to insert regularization of the higher derivative terms in the vacuum
Vo action. The simplest way to derive the conformal anomaly is
Cuog F(O)CM* or  RF(O)R using the dimensional regularization [6], however this calcula-

tion meets certain problem. The usual scheme of calculation
[6] is as follows. The renormalized 1-loop EA is a sum of
three parts

in the higher derivative sector. However, no insertion is possi
ble for A and1/G, sincedJA = 0 and(IR is a total derivative.

Does it mean thaBy and g really equal zero? From
our point of view the answer is negative, for otherwise we 1 _ (1
meet a divergence between the mass-dependent renormaliza- ren = Siac+ T+ ASac,
tion scheme andSscheme in the UV where they are sup- whereS,,. is the classical vacuum action. Indeed, this action
posed to be the same. Perhaps calculations on a flat backan be chosen to be conformal invariant for the case of confor-
ground are not appropriate for deriving the renormalizatiormal matter [20]. Furthermord; ) is the non-renormalized
group equations foA and1/G. This hypothesis is quite nat- quantum correction, which is divergent, conformal invariant
ural, especially because flat space is not a classical solution {@as far as the matter field was formulated conformal invariant
the presence of the cosmological constant. Let us notice that n £ 4 and non-local. Finally,
the practical derivation of the decoupling law t#hrand1/G L
may have very interesting cosmological and astrophysical ap- _ 2
plications [16]. ASiac = (4m2(n—4) (3c°~E+20R)

One of the applications of our expression for the effective. L . . .
action of massive fields (5) is the new way of analyzing the'S the Iocal_counterterm which is not conformal myanant is
conformal anomaly — a typical phenomenon for the quantizeél.I # 4. Obviously, the anomaly comes from the unique non-
massless fields on classical curved background [17]. conformal component, that 58S ac.

As an example, consider scalar field 2 SAS/ac

T=<Tl>=-—9g
H v
1 = 1 V3™ 0w
L=3 {(D¢)2+mz¢2+ <E+6> R¢2} .
For theC? andE terms the application of this formula leads us,
Inthem= 0, £ = 1/6 limit of (5) we obtain, in theR R2 sector, unambiguously, to the expression (12). Let us now consider
7 the remaining term and see that in this case the situation is
1 4, 1/2 more complicated. Indeed
1218042 9 %9 R, (10) z

n =
Due to the identity S0 d"x,/g (OR) = 0.

2 5 -
-—= d*x,/—gR = 1200R. (11)

V=0 3G

. . . . ... R
This shows that, in the dimensional regularization, tteR-
type counterterm does not contribute to fAR term in the
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anomaly. Of course, this is not a natural output, especiallj23, 24]. The Pauli-Villars regularization implies introducing
because the anomaly for the global conformal symmetry doesassive auxiliary fields with distinct Grassmann parity which
depend on all counterterms. Furthermore, other regularizatioocancel all (quartic, quadratic, log.) divergences in a covariant
schemes also link the two coefficients in a direct way, so hergvay

we meet a divergence between the results obtained in distinct

o Z
regularizations. B N 4 2 _ 2
Accordjng to [6], the R term in the anomaly is coming Seg= izo d*xy/G{(0¢:)%+ (&R+n¥)¢7} .
from the ~ C2?-type counterterm via the identity -
z The physical scalar fiel¢l = ¢o is conformak = 1/6, mp =0

)

2
- n
20,v B0 d"x,/g

2
C(4) = (C?-~Z0R). (13) and bosonisy = 1.
n—4|, 4 3 On the other hand, the Pauli-Villars regulatods (i =

_ . 1,...,N) are massivem = ;M # 0 and can have either
Hence T = —(2/3)Bweyi IR+ ... For the scalar and spinor bosonics = 1 or fermionic statistics = —2. Since they are

fields this relation gives the same result as other regularizatioHOt observed, there is no violation of the spin-statistics theo-
schemes. However, for the vector field and also for the highe'rem here '

derivative scalar [3] and fermion [22] the coefficients are dif-
ferent. Hence it is reasonable to look again at the definitio
(13).

After UV limit M — oo we arrive at the vacuum EA. The
alculation is based on our result (5), as we already men-

R : i . Wi hat the Pauli-Vill I ighth
Why we have to choostS,as= | /GC?(4)?. In fact, if we tioned. We assume that the Pauli-Villars regulators might have

) ) : ._non-conformal coupling®; # . The regularized effective ac-
choose the square of the Weyl tensor in an arbitrary d|men3|0{i1On is Pling& 7 5 g
d,

N
= 4 2 r_I%> =i F<1) 3 ia/\ 3
CZ(d)—RﬁwB—d_zRﬁ\,—k(d_l)(d_2>R2, (14) 9 A'L“mi;S i (M &N

whered = 4+ O(n—4), the corresponding counterterm will whereA is an auxiliary momentum cut-off. All divergences
be perfectly consistent with its destination, for it is local andcancel out due to the Pauli-Villars conditions, which have, in
cancels the divergence in the one-loop EA. However the resuftur case, the following form:

for the (OR) term in the anomaly essentially depends on the
choice of d. E.g. forC?(n) there is nodJR term at all and _ 1 tic di
for thed = n+vy- [n—4] the OR term is proportional to an iZ\S - (quartic divs.)
arbitrary parametey. We can conclude that the dimensional

regularization does not predict the coefficient of fhie term

in the anomaly. Let us notice that the change of parameter N ) N 1 )
y in the counterterm which we adg [8Y by handsis com- _ZSM = _213 (Ei - 6) =0; (quadratic)
pletely equivalent to addingfinite ~ R? term to the classical 1= =

action. Adding this term is absolutely safe procedure, because

it is not a subject of infinite regularization. From the point of N N 1\ 2

view of renormalizability this term is not necessary but it is Zis pi4 = Zis (Ei — > =0; (log.)
not forbidden either. Hence the arbitrariness we have found in i= i= 6

the dimensional regularization is nothing else but the conseg simple solution of these equations is
guence of the identity (11). This arbitrariness takes place also
for other fields and finally the coefficienat in the general ex- S12345= (1,4,-2,2,-2),
pression for the anomaly

N

TH> = [wC?+bE+o'00R 15
< T >= [WC’+bE+a'0R] (15) 2 yaas=(43134), &=2+1/6.

can not be defined within the dimensional regularization. We _ ) )
remark that this arbitrariness is exactly the same we alreaz?“?mat'vely we can choose &| = 1/6, so there is an arbi-
met when taking the massless conformal limit in the effectivelfariness here.

action of a massive scalar theory with an arbitr&ry The conformal anomaly in the covariant Pauli-Villars regu-
In order to complete the story we can answer the follow-/arization is given by

ing question: is it possible to observe an arbitrariness’in

in some other regularization? In order to address thisissue __1 | 1 - iCer 125— -+ | OR

we need another example of covariant regularization which (4m)2 | 180 120 180 ’

should admit certain freedom in choosing regularization para-
meters. And our result for the effective action (5) enables usvhere
to build the regularization of this sort. N
Consider covariant version of the Pauli-Villars regular- 3=3%s (Ei -~ })2 In H‘Z
ization, known from Yang-Mills and Chern-Simons theories I; 6 ’
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Again, we meet an ambiguity. It is easy to see that, exactly asonstants. The derivation of EA on a more complicated back-
in the dimensional regularizatign case, the ambiguity is relatedrounds in necessary for obtaining thgs&inctions, which

to the freedom to add the finite \@Rz—term to the classical can help us in order to prove or disprove the possibility of a
vacuum action. time-dependent cosmological constant [16]. The same cal-

The only way to fix the ambiguity o’ is through a spe- culation is vital for further theoretical development of the
cial renormalization condition for the \@Rz-term. In the anomaly-induced inflation model [15]. An important appli-
free scalar theory this looks as an additional complication, beeation of our calculation [7] of the effective action for mas-
cause this term is not renormalized. But ag we know fromsive scalar field is better understanding of the ambiguity in
the literature [21], in the interacting theory the,/gR>-type  the conformal anomaly im = 4, the issue which produced a
counterterm emerges anyway at higher loops and, thereforégng-standing doubts [17]. We have seen that the dimensional
this extra condition does not lead to an essential modificatiomegularization does not enable one to predict a coefficiént
of the theory structure. At that point gne has to remembeand that a similar ambiguity takes place in other calculational
that the dynamical effect cpmes from the\/ng-term, and schemes, including taking a conformal limit in a massive the-
not from the total derivative ,/gLIR. Looking from this per-  ory and in the powerful Pauli-Villarspregularization. At the
gpective, we can see that the renormalization condition for theame time the ambiguity concerns only /gLIRin the anom-

/GR-term is fixing the initial point of the renormalization aly and the induced dynamics coming from the vacuum effec-
group trajectory for the corresponding coupling, and not theive actign can be made completely unambiguous by introduc-
shape of the trajectory. In other words, the curve shown at thang the \/gﬁ—term into classical action and imposing the
Figure 1 remgjns valid if we impose the renormalization con-corresponding renormalization condition at quantum level.
dition for the ~ ,/gR-term in a proper way. As a result the
model (_)f ano_maly-mduced inflation is not jeopardized by theAcknowIedgments
o’ ambiguity in the conformal anomaly.
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