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ABSTRACT

The wagons are submitted to stressing cycles with heavy loads, increasing their
bogie defects through springs fatigue, then, the capacity to detect critical freight cars
conditions enables to guarantee the safety production and high productivity of trans-
portation systems. The image processing and computational intelligence techniques are
increasingly participating in the solution for this scenario, especially human interpretable
and self-evolve models which can learn new classes actively without human experts’ involve-
ment to self-evolve and perform classification on out-of-sample images. In this sense, this
dissertation presents a new approach model for the classification of wagon bogie springs
condition through images acquired by a wayside equipment. As such, we are discussing
the application of a semi-supervised learning approach based on a deep rules-based (DRB)
classifier learning approach to achieve a high classification of a bogie, and check if they
either have spring problems or not. We use a pre-trained VGG19 deep convolutional
neural network to extract the attributes from images to be used as input to the Fuzzy Rule
Based (FRB) layer of the semi-supervised DRB (SSDRB) classifier and evaluated with
euclidean, cosine, manhattan, minkowski, chebyshev distance measures. The performance
is calculated based on the dataset composed of images provided by a Brazilian railway
company which covers the two spring condition : normal condition (no elastic reserve
problems) and bad condition (with elastic reserve problems). Also, an additive Gaussian
noise levels, Cauchy noise and Laplace noise are applied to the images to challenge the
proposed model and to represent possible problems on image acquisition. Finally, we
discuss the performance analysis of the semi-supervised DRB (SSDRB) classifier and its
distinctive characteristics with each distance measure compared with other classifiers. The
reported results demonstrate a relevant performance of the SSDRB classifier applied to
the questions raised as well the importance of evaluation of distance measure to achieve a

high classification.

Keywords: Evolving Fuzzy Systems. Railway applications. Wagons Bogie Springs. Artifi-

cial Intelligence. Imaging Processing.



RESUMO

Vagoes sao submetidos a ciclos de estresse com cargas pesadas, aumentando seus
defeitos no truque por fadiga de molas, entao, a capacidade de detectar condi¢oes criticas
dos vagoes de carga permite garantir a producao com seguranca e alta produtividade dos
sistemas de transporte. As técnicas de processamento de imagens e inteligéncia computa-
cional estao cada vez mais participando da solugao para este cenario, principalmente os
modelos interpretdveis e auto-evolutivos que podem aprender novas classes ativamente
sem o envolvimento de especialistas humanos para auto-evoluir e realizar a classificagao
em imagens fora da amostra. Nesse sentido, esta dissertacao apresenta um novo modelo
de abordagem para a classificacao do estado das molas dos truques dos vagoes através de
imagens adquiridas por um equipamento as margens da ferrovia. Como tal, é discutido
a aplicacao de uma abordagem de aprendizado semi-supervisionado baseada em uma
abordagem de aprendizado de classificador baseado em regras profundas (DRB) para obter
uma alta classificagdo do truque e verificar se eles molas com problemas ou nao. Uma
rede neural convolucional profunda VGG19 pré-treinada é usada para extrair os atributos
de imagens a serem usados como entrada para a camada de regras baseadas em fuzzy
(FRB) do classificador semi-supervisionado DRB (SSDRB) e avaliados com as métricas
de distancia euclidiano, cosseno, manhattan, minkowski and chebyshev. O desempenho
¢é calculado com base no conjunto de dados composto por imagens fornecidas por uma
empresa ferroviaria brasileira que abrange as duas condig¢oes de mola: condi¢ao normal
(sem problemas de reserva eldstica) e condi¢do ruim (com problemas de reserva eldstica).
Além disso, niveis de ruido gaussiano, ruido de Cauchy e ruido de Laplace sdo aplicados as
imagens para desafiar o modelo proposto e representar possiveis problemas na aquisicao de
imagens. Por fim, discutimos a analise de desempenho do classificador semi-supervisionado
DRB (SSDRB) e suas caracteristicas distintivas a cada medida de distdncia comparada
com outros classificadores. Os resultados relatados demonstram um desempenho relevante
do classificador SSDRB aplicado as questoes levantadas, bem como a importancia da

avaliacdo da medida de distancia para alcancar uma classificacao alta.

Palavras-chave: Sistemas Fuzzy Evolutivos. Aplicagoes ferroviarias. Molas de truque do

vagao. Inteligéncia artificial. Processamento de Imagens.
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1 INTRODUCTION

Since the emergence of steam-powered machines, rail transportation has become
an effective solution for connecting urban centers, as well as a low-cost alternative to
the industries’ transactions. Due to these circumstances, the wagons are submitted to

stressing cycles with heavy loads, increasing their bogie defects through springs fatigue.

In this context, image processing and computational intelligence techniques are
increasingly participating in the solution for this scenario. Since their capacity to detect
critical wagon conditions enables to guarantee the safety production and high productivity

of this system of these transportation systems.

Gu and Angelov, in [1] introduced deep rule-based (DRB) classifiers [2, 3, 4]. The
DRB classifier is a general approach that serves as a strong alternative to current deep
neural network (DNN) [2, 3, 4]. It is non-parametric, non-iterative, highly parallelizable

and computationally efficient; it achieves very high classification rates, surpassing other
methods [4].

Moreover, it further extends the DRB classifier [1] with a self-organising, self-
evolving semi-supervised learning strategy by exploiting the idea of “pseudo label” naturally
with its prototype-based nature. Starting with a small amount of labelled training images,
the semi-supervised DRB (SSDRB) classifier is able to pseudo-label remaining images
based on the ensemble properties of the training images using non-parametric measures
[5]. As semi-supervised learning is leveraged to obtain labeled cluster samples without
a full retraining [6], the SSDRB classifier also can self-organize its system structure and
self-update recursively with the pseudo-labelled data and, thus, it supports real-time

streaming data processing.

The proposed SSDRB classifier also inherits the advantage of the DRB classifier’s
transparency as its semi-supervised learning process only concerns the visual similarity
between the identified prototypes and the unlabelled samples, which is highly human
interpretable compared with the state-of-the-art approaches, SVM [7] and deep learning

networks [8].

Furthermore, as mentioned in [1], the proposed SSDRB classifier cannot only
perform classification on out-of-sample images but also support recursive online training
on a sample-by-sample basis or a chunk-by-chunk basis. Moreover, unlike other semi-
supervised approaches, the proposed approach can learn new classes actively without
human experts’ involvement to self-evolve [9], therefore, it is very important to present
SSDRB for the railway sector. However, the prototypes are identified directly from the
training data in a non-parametric, self-organizing manner. Accordingly, they are the
most representative prototypes representing local maxima in data density and the chosen

distance measure affect directly the performance of SSDRB [10].
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1.1 OBJECTIVES

This master’s thesis discusses the architecture and approach of a semi-supervised
deep rule-based (SSDRB) algorithm [2, 3, 4, 1] based on cosine dissimilarity as a distance
measure to deal with the classification of wagon bogie springs conditions identifying if
they are or are not in bad condition. Furthermore, this work evaluates the performance in
terms of euclidean, minkowski, manhattan, chebyshev distance measures on the SSDRB

algorithm process to classify the springs conditions.

The performance is calculated based on the dataset composed of images provided
by a Brazilian railway company which covers the two spring condition : normal condition
(no elastic reserve problems) and bad condition (with elastic reserve problems). Also, an
additive Gaussian noise levels, Cauchy noise and Laplace noise are applied to the images

to challenge the proposed model and to represent possible problems on image acquisition.

In addition, the reported results are compared with other results from classifiers
present in the literature, namely: K-Nearest Neighbors (KNN), Linear SVM, Decision
Tree, Randon Forest, Neural Net, Adaboost, Naive Bayes and QDA.

1.2 CONTRIBUTIONS

The main contributions of this work are summarized below:

e The model discussed in this paper has advantages that are not covered by classical
methods, such as a learning process that is easy to interpret by a specialist; online
or offline training; the capability to classify images outside the sample; capability to

deal with uncertainty;

o The study of the wagon bogie springs conditions through SSDRB and the evaluation
of distance measures on SSDRB applied to the classification to determine which one

best suits the proposed problem has never been addressed before;

o The evaluation of SSDRB results in the classification of the wagon bogie springs
conditions in comparison with other classifiers present in the literature (K-Nearest
Neighbors (KNN), Linear SVM, Decision Tree, Randon Forest, Neural Net, Adaboost,
Naive Bayes and QDA);

o The performance analysis of the SSDRB and other classifiers on classification of the
wagon bogie spring conditions which is added to the images a Gaussian noise levels,
Cauchy noise and Laplace noise to challenge the models and represent the possible

problems on image acquisition;
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« We use a pre-trained vgg-verydeep-19 deep convolutional neural network (VGG19)
[11] to extract the attributes of the images. By this, the proposed model can learn

abstract resources and obtain higher precision;

o We present the performance analysis in terms of the classification accuracy using a

dataset with images acquired from railway wayside equipment.

And our major conclusions are:

o The use of VGG19 as a feature extractor is effective for this application;

o The SSDRB classifier with minkowski distance achieved the best average accuracy
results on the study compared with other distance measures applied on SSDRB and
other classifiers. However, the SSDRB classifier with manhattan distance achieved
the best benefit-cost ratio results on the study compared with other distance measures
applied on SSDRB e other classifiers;

e Through the obtained results, the SSDRB classifier proved to be an excellent alter-
native for the classification of wagon bogie springs conditions. It is an interpretable
model easily understandable by humans and it can assist in the inspection process
along the rail, by reducing inspection times, ensuring greater reliability and availabi-

lity of the wagons.

1.3  WORK ORGANIZATION

The remainder of this work is organized as follows: Chapter 2 deals with the
formulation of the problem. Chapter 3 aims to discuss the concept of SSDRB and distance
measures on SSDRB algorithm. Chapter 4 describes the database and the result of the
proposed metrics and comparisons with other classifiers present in the literature. The last
chapter describes the conclusions, final observations of the work and the presentation of

future works.



15

2 PROBLEM FORMULATION

The bogie suspension springs are a fundamental part of the wagon’s damping
set which has the function of dissipating the energy caused by some unwanted vertical

movements that occur in railway dynamics.

As wagon bogies springs are the main part of suspension and damping, the classifi-
cation of its condition is a critical development to assist the railway companies in verifying

its railway conditions and safety along with granting higher services reliability.

In 2017, 11 wagons of a 33 wagon freight train traveling north of Ely have derailed as
presented in the Figure 1. The derailment accident occurred by ineffective damping on the
wagon bogies [12]. The line was blocked, affecting passenger services from Peterborough
and Cambridge to Stansted Airport and London for 7 days. Rail experts say the cost of
the derailment could top £1.0 million [13].

As shown in the Figure 2, a similar accident already occurred 10 years before
when a line was closed for six months as result of derailment caused by bogie’s suspension
problems [14, 12]. The river Ouse had been shut to traffic and Network Rail had to create
a 1.3km access route to the site to recover the stricken wagons that were left teetering over
the river Ouse [15, 16]. In addition, Network Rail had to rebuild the rail bridge across the

River Ouse which cost around £9.0 million [17].

Figura 1 — A crane’s lifting the derailed wagons in Cambridgeshire
[18]
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T

Figura 2 — The derailed wagons of freight train on Ely rail bridge
[19]

According to ANTF (Brazilian National Association of Railway Transporters) [20],
the volume of goods transported by the railroads increased by 95% in the period from
1997 to 2019.

In 2019, approximately US$ 600 million was invested, allowing for a significant
growth in the rolling stock fleet. In 1997, the railroads had 1,154 locomotives and in 2019,
they already totaled 3,405 units, representing an increase of 195%. In the same period, the
number of wagons went from 43,816 to 115,434, representing an increase of 163%. This
trend causes an increase in speed and loads transported, changing the dynamic wheel-rail

contact, thus increasing the probability of bogie spring defected.

Defects in the springs occur due to different reasons, for example, as a result of
fatigue, due to repetitive passages over the rail components, such as welds, joints, and
switches, or due to the impacts of defect wagons bogies springs. If bogie spring defected
grow and are delayed, they can lead to high maintenance costs. Therefore, it is essential a

rapid and automatic defect detection.

Accordingly, the proposed model can reduce the impact of overhauls on trains
operation, since it enables a preventive maintenance routine, which makes it possible for
interventions to be carried out only when anomalies are observed. Furthermore, it is an
interpretable model easily understandable by humans, making it replicable to other types

of wagons and scalable along the rail, thus reducing time spent on inspection.
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Based on perspective, it is necessary, especially because it results in order to:

o Prevent accidents caused by unexpected failures;

o Reduces the number of unproductive hours in maintenance;
o Eliminates the manual process of visual inspection;

e Reduces the number of recurrent preventive interventions;

o Reduces the probability of brinelling on a bearing;

o Ensures greater reliability and availability of the wagons;

o Increases the productivity of rail operations, given the reduction in frequency and

time of operational maintenance;

» Reduces the TST (Time Stopped Train) index through the increase in the meantime
between failures (MTBF).

Taking into account the scenario previously exposed in this Section, this work
aims to classify the two main conditions that can occur with the wagon bogie springs:
springs with elastic reserve (without defect) and springs without elastic reserve (with bad

condition).

As shown in Figure 3, the springs have no elastic reserve problems and It is noted

because the springs have space between their turns.

However, in Figure 4 is shown no space between their turn what is a critical defect

because they do not have damping capacity anymore.



Figura 3 — Bogie springs without defect
[21]
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Figura 4 — Bogie springs with bad condition
[21]
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3 THE PROPOSAL: SSDRB

DRB architecture is shown in Figure 5. The input I consists of a wagons bogies
springs image and is subject to a normalization of pixel values up to a range of [0,255]
[22]. Subsequently, the image is scaled to 227x227 pixels to increase generalization and

reduce computational complexity [22].

The VGG19 is used for resource extraction due to its simpler structure and better
performance. The extracted data are processed by the fuzzy rule-based (FRB) layer, which
constitutes a massively parallel set of nebulous irrigations of the AnYa type O-order fuzzy
[23], which is the basis of the DRB classifier. Then, there is no need to define ad hoc

association functions on FRB layer [10].

Finally, the decision-making classifies the images based on the degree of similarity

with the prototypes generated in the training stage.

""""""""""" T FRB Layer
Fuzzy Rule ¢ =1 (without defect)
Data Cloud$™!
E _.._.._.._--—--—--—--—--—-‘ :
¥ 3 i X 5 E
Normalization X /X Data Cloud§™* | _ ;
La}fer i DL s — E E u i :/
i frt | —
A : Sl 8
! c=1 N R 5
; ?#E@:’?ffu_;f _______ —| | &
' s i = |3
: : N =
Scaling | Fuzzy Rule ¢ =2 (with bad condition) i -% ]
Layer ' 5 { 9 ;
: T T N e e s T ; —
ik - =]
! ¥ B4 A
w X X Data Clouds=% |_ 2| o
. it ol l z 2|1 =
Extract vectors i btk M8 &
features of . - : =1 |E
image Layer — | c=2 |
Pre-trained deep I_)af ‘.I_C‘!_‘].l*';dﬂ? ey
convolutional neural
VGGI9 ;

Figura 5 — Architecture of the DRB classifier to wagon bogie springs condition [1]

The use of a pre-trained deep convolutional neural networks to extract global
vectors of image features to train generic classifiers is an alternative widely used since

it allows the classifier to learn more abstract and discriminative attributes of high level
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obtaining greater precision [22, 24]. In this work, the VGG19 is used to vectors extracted
from the wagon bogie spring images that have a dimension of [1,4096] [24].

A previously mentioned FRB layer is the learning mechanism of the DRB classifier.
The FRB subsystems are independent of each other and can be changed without influencing
the others. Furthermore, each FRB subsystem contains a set of massively parallel fuzzy
rules, formulated around generalized prototypes P or learned from the corresponding class
segments. As they all have the same consequence can be combined through the logical

connector “OR", as follows:

IF (I ~ P%) OR (I ~ P{) OR... OR (I ~ P§.) THEN (CLASS c) (3.1)

In Eq. 3.1 “~"denotes similarity; ¢ = 1,2, ..., C'; N¢ is the number of prototypes of

the " class.

During the training process, the prototypes are identified from the data density in
the feature space and from these prototypes the corresponding fuzzy rules are generated
X7 (Xf = Xq1,X12, ..., X1,m) [25] where for this paper it was adopted M = 4096 and the

following distance measures was evaluated on the similarity rule of the classifier.

3.1 DISTANCES MEASURES

The corresponding fuzzy rules generated from the data density in the feature space
for each prototype are used for identifying the underlying patterns and, thus, it is the key
to the similarity rule of the classifier [9]. Because of the very high dimensionality of the
feature vectors, Gu and Angelov, in [1] use cosine dissimilarity as the distance measure
[1, 25, 26].

However, it is well known that different distance types have different abilities in
disclosing the ensemble properties and mutual distribution of the data, and the differences
are even more significant in higher dimensional data spaces [27, 28]. Choosing the most
suitable distance type for a specific problem is of great importance for a meaningful
classifier result [29]. Then, each following distance measures is used to evaluate the

performance of the SSDRB to classify the springs conditions.

3.1.1 Cosine

In problems whose dimensions are large, it is very common to use the cosine

distance. This distance measures the cosine of the angle between two nonzero vectors.

The cosine distance between x; e x; is formulated as:

deos (X4, %) = \/2 — 2cos Oy, x; (3.2)
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where 6%7 represents the angle between x; and x; in a Euclidean space. With this, it is

possible to represent the inner product of the two vectors as:

cos f _ xxp) i X3 (3.3)
Xi,Xj = .
R | <1 |5 <3 | <1 ([P e

but the norm of z; is:

M
||Xl|| =\ X’HX] Zx (34)
i=1

After some manipulation, it is possible to arrive at the cosine dissimilarity as the

distance measure given as [30]:

M . .
deos (Xi, Xj) = \/2 — 208 Ox, x, = J2 — 221':1 i ’

ENE

Xi % H (3.5)

il %l

3.1.2 Euclidean

The Euclidean distance, named after the Greek mathematician Euclid (about 325
BC to 265 BC), between two data samples, x;, x; € {x}¢, is calculated based on the
following equation [31]:

deuC(Xian> = HXl - Xj|| = \JZ :17” x], (3'6)

The Euclidean measure is the most used measure due to its simplicity and com-
putational efficiency despite attributing equal weight and importance to each of the M

dimensions.

3.1.3 Minkowski

The Minkowski distance, named after the German mathematician Hermann Min-
kowski (1864-1909), is used when it is necessary to identify and, in fact, ignore irrelevant
features and when there are a large number of anomalous clusters. This distance is a
normalized vector space, which can generalize the Euclidean distance, the Manhattan

distance and the Chebychev distance, and is given by:

M

Amin (Xi, X5) = (Z(ml - %‘,l\)hy (3.7)

=1
For h = 1 we have the Manhattan distance, h = 2 the Euclidean distance and

for h — oo the Chebychev distance. For other values of h there are no specific names.
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Therefore, for the present work, in order to differentiate the results of euclidean, manhattan
and chebychev distances, h = 1.5 was chosen to compare the use of Minkowski distance to
the others.

3.1.4 Manhattan

The Manhattan distance (also known as City Block) is included in the same family
of distance functions as a special Minkowski case where h = 1. The expression to calculate

the distance between x; e x; is:

M
dman<xi7xj) = Z \l'i,l - xj,z\ (3-8)
=1

where the module || denotes absolute values. We can see by analyzing the above equation

that the distance is the sum of the absolute differences of their Cartesian coordinates.

3.1.5 Chebychev

The Chebychev distance, named after the Russian mathematician Pafnuty Chebyshev
(1821-1894), It is also known as chessboard. It is also a special Minkowski case for h — oo.

The expression to calculate the distance between x; e x; is:

dche(Xiy Xj) = m?x \xi,l - Qij,l\ (3-9)

where the module || denotes absolute values. We can see by analyzing the above equation
that the distance is defined as the greatest of difference between two vectors along any

coordinate dimension.

3.2 DRB TRAINING PROCESS

The DRB training process is mentioned in [4] in which, the DRB classifier identifies
prototypes of the segments of the observed images of each class in an autonomous and
non-parametric way and forms clouds of data around the prototypes of similar segments

of the same class.

In this way, the C rules of massively parallel diffuse parallel C' order of the type
AnYa in total are formed (learned) through the training processes independently, based

on the identified prototypes.
The detailed training process for the FRB subsystems is described in [2] and [32],

and the main procedure of the training process is summarized in pseudocode form, as

shown in the Algorithm 1.
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Algoritmo 1 Algorithm: Training process of the FRB subsystem
Distance measure: Cosine

1: While new feature vector xj of the ¢ class is available
2 Lowp — 1y (||xx]| is the norm of xy);

3: ii. If (k=1) Then

1. pte <— xp (e is the global mean)

2. Ne¢— Lipeq — a3 Sep — Liren ¢— 1o;

support; 7. is the radius, 79 = /2 — 2cos(%))
iii. Else

1.Update global mean; ji. +— (k — 1)5¢ + %&;
9:  2.Calculate the density of zy:

1
10: D<$k) = ”ka_“TI'f
11: 3. Update the deuncsities of prototypes (j = 1,2, ..., N.);
12: D(z}) = ——+—
Pe,j—He

A nell?
13: 4. If (min(D(p.;)) < D(zx) < max(D(p.;))) Then;
14: -Find nearest prototype: pn. = argmin(||zx — pel|);
15: -If (|log — penll > 7en) Then;
16: ¥ Ne¢— Ne+ Lipen, ¢— @i Sen. ¢— Liren, <— To;
17: Else
18: * Den — Scm(swﬂj)c—ﬁscifﬂ
19: ¥ Sem ¢— Sem + 112, — 3(r2, + (1 — 1Penll®));
20: End If
21:  5.Else
22: Nc — Nc + 1;pc,Nc < Tk, Sc,Nc — 1;TC,NC < 7To;
23: 6. End If
24: iv. End If

25: v. Generate/update the AnYa type fuzzy rule;
26: End While

(N, is the number of prototypes; p.1 is the first prototype; S, is the corresponding
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3.3 DRB TEST PROCESS

Once the training process is completed, the classification of new images can be
performed using the identified FRB. As shown in [1], during the validation process, each
test image receives a confidence score from the fuzzy rules identified in the training stage
[4]:

V°(I) = maz(exp(—d*(z, p;))) (3.10)

As a result, for each testing image, a vector of 1 x C' dimensional scores of confidence
of the nearest prototypes (one per spring’s condition class) is generated by the same measure

distance chosen in 3.2 and detail in 3.1.

Y1) = [y (I), (1) (3.11)

The label of this testing image is decided by using the “winner-takes-all” principle

Label = argmax(y°(1)) (3.12)

3.4 SSDRB

In the SSDRB classifier, after the training step performed by the DRB with the
labeled images, the model has the ability to learn from the unlabeled images. For a set
of images {U} with U unlabeled images, a confidence vector v(U;) = (i = 1,2,...,U) is
extracted from each U image using Eq. 3.10.

The images that satisfy the Eq. 3.13 condition will be used to update the meta-

parameters.

LE(y™ 5 (Us) > ¢ -y (Us)) (3.13)

Where 7% (U;) denotes the highest score of confidence; v**™**(U;) denotes the

second highest score; ¢(¢ > 1) is a free parameter.
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4 EXPERIMENTAL RESULTS

Based on the theory addressed in the previous topic, tests were carried out to

evaluate the classification model proposed in this work.

4.1 DATA BASE

The database used in this application is made from wagons bogies of Brazilian
railway company MRS Logistica S.A. [33]. Such database is composed of images that are
captured by a railway wayside equipment fixed to the MRS railroad in order to capture

wagons bogies images each time the train passes through the site.

The images are taken from both wagon sides when it is crossing through the
equipment and the examples of the images contained in the database are shown in the
Figures 3 and 4. In addition, it is important to mention that the wagons are empty when
they pass through the site, i.e., it means the springs expected standard condition is that

they are not compressed and the springs should have space between their turns.

The types of bogie that can be used on freight wagons may vary according to the
type of wagon. Nonetheless, for each type of bogie the springs type and its geometric
distribution are particular to each bogie type. Therefore, for the present work we used

bogie images that correspond to the most representative portion of the main transport
flow of MRS Logistica S.A.

The experiment was conducted by collecting 250 images evenly distributed over
different periods of the day which 125 presented wagon bogie with springs without elastic

reserve problems and 125 images in which correspond to bogie with elastic reserve problems.

In addition, all datasets were presented to the classifier 200 times using the Monte
Carlo holdout method [34], therefore, the data were randomly divided into training and
testing sets at each round. Moreover, in each interaction, the dataset was distributed for
the test phase in an equal and random way, with the premise of 70 % of the database for

training and 30 % for testing.

Furthermore, the tests performed with the SSDRB classifier were done in offline
mode and considering ¢ = 1.2 and all simulations were performed in the MATLAB 2017
environment running with an Intel Core i7-3537U CPU at 2.00GHz with 12GB DDR4
2700MHZ and in operational system Windows 10 64-bit.

For the representation of possible occurrences of defects in the acquired images
and in order to challenge the proposed models, we added three different intensities of
Additive white Gaussian noise (AWGN) in all dataset, PSNR = 20 dB, PSNR = 6 dB
and PSNR = 3 dB as shown in Figure 6 and 7. The peak signal to noise ratio (PSNR)

[35] is the most used parameter to measure a corrupted image quality when compared
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to the original one [36]. The three different intensities adopted values for the PSNR is
enough to report problems that can occur due some factors, such as dirt in the lens of the

equipment responsible for acquiring the images [37, 38, 39, 40]

Such parameter is the ratio between the maximum possible power of a signal
and the power of corrupting noise that affects the fidelity of its representation. It is
computationally lightweight and is usually expressed in terms of the logarithmic decibel
scale. There is an inverse relationship between PSNR and MSE. So, the higher the value
of PSNR indicates the best image quality. Considering a noise-free m = n monochrome
image [ and its noisy approximation K, we can calculate the PSNR from a corrupted

image as follows:

PSNR = 1010, (222) (4.1)
- glO MSE .
where
1 m—1 n—l
MSE = — j)] (4.2)
=0 ]=O

In Eq.4.1, the elements of the matrix are represented by using linear pulse-code
modulation (PCM) [41] with B bits per sample, where the maximum is 2% — 1. Therefore,
the value 2552 denotes the maximum possible pixel value of the image, due to the fact of

the pixels in this work are represented using 8 bits per element.

In practical applications, the measurement noise can be heavy-tailed non-Gaussian
noise [42, 43, 44]. Therefore, as propose of white Gaussian noise applied in the original
dataset, Cauchy noise [45] and the Laplace noise [46] were added in all dataset in order to
evaluate the classifiers and in addition to represent possible of non-Gaussian variations
problems on image acquisition. The Cauchy noise where applied with location parameter
xo = 0 and scale parameter v = 1. The Laplace noise was added with location parameter
1 = 0 and scale parameter b = 35. The corrupted images result of which noise is shown in

Figure 6 and 7.
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© | "

Figura 6 — Demonstrative image considering Bogie springs without defect. a) Original
Image b) Image corrupted with AWGN - PSNR = 20 dB, ¢) Image corrupted with AWGN
- PSNR = 6 dB, d) Image corrupted with AWGN - PSNR = 3 dB, e¢) Image corrupted

with Cauchy noise and f) Image corrupted with Laplace noise.
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(e) (f)

Figura 7 — Demonstrative image considering Bogie springs with bad condition. a) Original
Image b) Image corrupted with AWGN - PSNR = 20 dB, ¢) Image corrupted with AWGN
- PSNR = 6 dB, d) Image corrupted with AWGN - PSNR = 3 dB, e¢) Image corrupted

with Cauchy noise and f) Image corrupted with Laplace noise.
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4.2 PERFORMANCE ANALYSIS

To evaluate the performance of the SSDRB classifier with cosine, euclidean, min-

kowski, manhattan, chebyshev distance measures, the results were compared with the
following classifiers published in the literature: KNN [47], Linear SVM [48], Decision Tree
[49], Random Forest [50], Artificial Neural Network [51], AdaBoost [52], Naive Bayes [53]
and QDA [54].

Each classifier published in the literature was implemented through the Scikit-learn

package and their default parameters as presented below [55]:

KNN

n_neighbors=>5, *, weights="uniform’, algorithm="auto’, leaf size=30, p=2,

metric="minkowski’, metric_params=None and n_ jobs=None

Linear SVM

penalty="12", loss="squared__hinge’, *, dual=True, tol=0.0001, C=1.0,
multi_ class=’ovr’, fit_intercept=True, intercept_ scaling=1, class weight=None,

verbose=0, random_ state=None and max_iter=1000

Decision Tree

*criterion="gini’, splitter="best’, max depth=None, min samples split=2,
min_samples leaf=1, min_weight_fraction leaf=0.0, max_features=None,
random__state=None, max_leaf nodes=None, min__impurity decrease=0.0,

class_ weight=None and ccp_alpha=0.0

Random Forest

n_estimators=100, *, criterion="gini’, max depth=None, min samples split=2,
min_samples_leaf=1, min_ weight_ fraction_ leaf=0.0, max_features=’sqrt’,
max_leaf nodes=None, min_impurity decrease=0.0, bootstrap=True,
oob_score=False, n_jobs=None, random__state=None, verbose=0,
warm__start=False, class_weight=None, ccp_alpha=0.0 and

max_ samples=None

o Artificial Neural Network

hidden_ layer_sizes=(100,), activation="relu’, * solver="adam’, alpha=0.0001,
batch_size="auto’, learning_rate='constant’, learning rate init=0.001,
power_t=0.5, max__iter=200, shufle=True, random__state=None, tol=0.0001,
verbose=False, warm__ start=False, momentum=0.9,
nesterovs__momentum="True, early stopping=False, validation_ fraction=0.1,
beta_1=0.9, beta_ 2=0.999, epsilon=1e-08, n_iter no_ change=10 and
max_ fun=15000
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o AdaBoost

base estimator=None, *, n_ estimators=50, learning rate=1.0,
algorithm="SAMME.R’ and random__ state=None

« Naive Bayes

* alpha=1.0, fit prior=True, class prior=None and min categories=None

« QDA

* priors=None, reg_param=0.0, store_covariance=False and tol=0.0001

The numerical results presented in Table 1, 2, 3, 4, 5 and 6 show the overall
performance results for the Original dataset, images with white Gaussian noise (AWGN)
PSNR of 20 dB, 6 dB and 3, images with Cauchy noise and images with Laplace noise,
respectively. Four metrics were used to measure performance during the test phases:
Accuracy, Mean Square Error (MSE), Cohen’s kappa coefficient [56] and F-score [57].



Tabela 1 — Performance metrics for overall results - Original Dataset

Test Test Test Test Training Test
Method
Accuracy (%) MSE (%) Kappa (%) F-Score (%) Time (s) Time (s)
SSDRB
06.15 (& 1.81) | 3.85 (£ 1.81) | 92.30 (£ 3.62) | 96.15 (£ 1.77) |  13.3 (£ 2.8) | 214 (+ 3.2)
(Cosine)
SSDRB
06.80 (& 1.54) | 3.20 (£ 1.54) | 93.61 (& 3.08) | 96.74 (£ 1.58) |  2L.7 (£ 1.9) | 39.7 (& 2.4)
(Euclidean)
SSDRB
97.26 (£ 1.44) | 2.74 (£ 1.44) | 94.53 (£ 2.87) | 97.10 (£ 1.51) | 725 (£ 14.3) | 418.2 (£ 7L7)
(Minkowski)
SSDRB
07.15 (£ 1.63) | 1.63 (£ 1.63) | 94.30 (£ 3.26) | 97.06 (£ 1.71) |  32.2 (£ 5.1) | 127.5 (£ 12.6)
(Manhattan)
SSDRB
05.93 (& 2.11) | 4.07 (£ 2.11) | 91.85 (& 4.22) | 95.91 (& 2.06) 84 (£37)| 101 (£5.7)
(Chebyshev)

KNN 05.15 (4 1.81) | 4.85 (£ 1.81) | 90.30 (& 3.61) | 95.14 (& 1.81) 8 (£5.9) | 275 (+6.9)
Linear SVM |  95.59 (£ 1.96) | 4.41 (£ 1.96) | 91.17 (£ 3.92) | 95.58 (£ 1.96) |  35.6 (£ 7.4) | 18.2 (£ 6.0)
Decision Tree | 90.10 (£ 2.70) | 9.90 (£ 2.70) | 80.20 (& 5.39) | 90.08 (& 2.71) | 227.3 (£ 31.4) 8 (£ 5.9)

Randon Forest |  93.02 (& 2.49) | 6.98 (& 2.49) | 86.03 (£ 4.98) | 93.00 (£ 2.50) |  20.4 (& 7.4) 5 (& 7.4)
Neural Net | 93.53 (£ 4.24) | 6.47 (£ 4.24) | 87.05 (& 8.49) | 93.45 (£ 4.62) | 988.5 (£ 383.4) 1(£77)
Adaboost 94.52 (4 2.22) | 5.48 (£ 2.22) | 89.03 (£ 4.44) | 94.51 (£ 2.22) | 452.4 (£ 121.5) | 155.3 (£ 9.2)
Naive Bayes | 04.48 (£ 2.01) | 552 (£ 2.01) | 88.96 (& 4.02) | 94.46 (£ 2.02) |  17.8 (£ 54) | 23.2 (£ 7.8)
QDA 66.44 (£ 7.41) | 33.56 (£ 7.41) | 32.88 (& 14.82) | 66.20 (£ 7.42) | 187.3 (£ 12.5) | 27.8 (& 4.6)

(43



Tabela 2 — Performance metrics for overall results - White Gaussian Noise (AWGN) -

PSNR of 20 dB

Test Test Test Test Training Test
Method
Accuracy (%) MSE (%) Kappa (%) F-Score (%) Time (s) Time (s)
SSDRB
05.53 (£ 2.34) | 4.47 (£ 2.34) | 91.05 (& 4.60) | 95.54 (£ 2.26) |  16.0 (£ 3.6) | 24.1 (& 4.5)
(Cosine)
SSDRB
06.56 (£ 1.65) | 3.44 (£ 1.65) | 93.12 (£ 3.31) | 96.51 (£ 1.68) |  21.1 (£2.2) | 39.1 (£ 2.9)
(Euclidean)
SSDRB
96.91 (& 1.58) | 3.00 (£ 1.58) | 93.81 (£ 3.17) | 96.84 (£ 1.64) | 78.0 (£ 15.6) | 446.9 (£ 74.6)
(Minkowski)
SSDRB
06.88 (£ 1.70) | 3.12 (£ 1.70) | 93.76 (& 3.40) | 96.81 (£ 1.75) |  28.7 (£ 2.0) | 118.9 (& 5.25)
(Manhattan)
SSDRB
05.28 (£ 2.43) | 2.43 (£ 4.72) | 90.55 (£ 4.85) | 95.33 (£ 2.31) | 8.6 (£ 3.60) | 10.1 (£ 2.8)
(Chebyshev)

KNN 05.19 (£ 1.75) | 4.81 (£ 1.75) | 90.38 (£ 3.49) | 95.18 (& 1.76) 5(£56) | 281 (+6.7)
Linear SVM | 95.22 (£ 1.81) | 4.78 (£ 1.81) | 90.45 (£ 3.62) | 95.22 (£ 1.81) | 348 (£ 7.1) | 17.8 (£ 5.5)
Decision Tree 90.16 (4 2.93) | 9.84 (£ 2.93) | 80.32 (£ 5.86) | 90.14 (£ 2.94) | 225.2 (£ 26.0) 2 (£ 6.3)

Randon Forest | 92.50 (£ 2.38) | 7.50 (4 2.38) | 85.00 (£ 4.76) | 92.49 (£ 2.39) 20.0 (£ 7.2) 0 (£ 7.6)
Neural Net | 93.65 (£ 4.22) | 6.35 (£ 4.22) | 87.29 (£ 8.43) | 93.55 (& 4.86) | 966.7 (& 331.0) 5 (£ 7.7)
Adaboost 05.18 (£ 1.95) | 4.82 (£ 1.95) | 90.37 (& 3.90) | 95.18 (& 1.95) | 451.7 (& 194.1) | 151.6 (< 17.6)
Naive Bayes | 94.45 (£ 1.91) | 555 (£ 1.91) | 88.90 (£ 3.82) | 94.44 (£ 1.92) |  16.6 (£ 3.7) | 2L1 (& 7.6)
QDA 64.7 (£ 7.08) | 35.30 (£ 7.08) | 20.39 (& 14.15) | 64.48 (£ 7.14) | 178.2 (£ 10.8) | 27.4 (& 5.3)

€€



Tabela 3 — Performance metrics for overall results - White Gaussian Noise (AWGN) - PSNR of 6 dB
Test Test Test Test Training Test
Method
Accuracy (%) MSE (%) Kappa (%) F-Score (%) Time (s) Time (s)
SSDRB
96.22 (£ 1.95) | 3.78 (& 1.95) | 92.43 (£ 3.91) | 96.18 (& 1.95) 15.3 (& 2.8) | 23.8 (& 4.2)
(Cosine)
SSDRB
96.56 (& 1.58) | 3.44 (& 1.58) | 93.12 (£ 3.17) | 96.52 (+ 1.59) 23.4 (£34) | 42.0 (+ 3.8)
(Euclidean)
SSDRB
96.92 (£ 1.53) | 3.08 (£ 1.53) | 93.84 (& 3.06) | 96.85 (£ 1.58) 75.5 (£ 15.1) | 434.2 (£ 75.8)
(Minkowski)
SSDRB
96.84 (£ 1.57) | 3.16 (£ 1.57) | 93.68 (& 3.14) | 96.77 (£ 1.63) 36.2 (£ 10.6) | 142.5 (£ 25.2)
(Manhattan)
SSDRB
05.75 (4 2.12) | 4.25 (£ 2.12) | 91.50 (£ 4.24) | 95.75 (+ 2.09) 8.7 (£ 1.3)| 103 (£ 1.2)
(Chebyshev)

KNN 94.64 (£ 1.98) | 5.36 (= 1.98) | 89.28 (& 3.96) | 94.63 (£ 2.00) 2 (£5.3) 29.0 (£ 6.7)
Linear SVM 94.53 (£ 2.10) | 547 (£ 2.10) | 89.07 (£ 4.19) | 94.53 (£ 2.10) 36.9 (£ 7.8) 18.6 (£ 6.1)
Decision Tree 88.72 (£ 3.02) | 11.28 (£ 3.02) | 77.43 (£ 6.05) | 88.70 (£ 3.04) | 233.1 (£ 29.5) 5 (£ 6.5)

Randon Forest | 91.07 (£ 2.60) | 8.93 (£ 2.60) | 82.13 (& 5.19) | 91.04 (& 2.61) 20.1 (£ 7.0) | 5.88 (& 7.5)
Neural Net 93.18 (£ 4.16) | 6.82 (£ 4.16) | 86.36 (£ 8.33) | 93.11 (£ 4.37) | 940.7 (£ 293.5) T (£7.8)
Adaboost 94.09 (4 2.19) | 5.91 (& 2.19) | 88.18 (& 4.37) | 94.08 (£ 2.19) | 456.5 (& 266.9) | 155.2 (& 11.2)
Naive Bayes | 90.96 (& 2.42) | 9.04 (& 2.42) | 81.91 (& 4.84) | 90.94 (& 2.43) 18.1 (£5.7) | 22.4 (+ 7.8)
QDA 64.20 (£ 7.39) | 35.80 (£ 7.39) | 28.39 (+ 14.78) | 63.94 (£ 7.48) | 179.3 (£ 14.3) 26.3 (£ 7.2)
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Tabela 4 — Performance metrics for overall results - White Gaussian Noise (AWGN) - PSNR of 3 dB
Test Test Test Test Training Test
Method
Accuracy (%) MSE (%) Kappa (%) F-Score (%) Time (s) Time (s)
SSDRB
06.53 (£ 2.22) | 3.47 (£ 2.22) | 93.05 (& 4.45) | 96.53 (& 2.16) 12.3 (& 1.3) | 19.2 (& 1.56)
(Cosine)
SSDRB
96.53 (& 1.67) | 3.47 (&£ 1.67) | 93.05 (£ 3.35) | 96.48 (£ 1.71) 21.7 (£2.8) | 402 (+3.1)
(Euclidean)
SSDRB
96.86 (& 1.66) | 3.14 (& 1.166) | 93.72 (& 3.32) | 96.80 (£ 1.71) | 85.9 (£ 13.1) | 478.2 (& 65.2)
(Minkowski)
SSDRB
96.68 (£ 1.60) | 3.32 (£ 1.60) | 93.35 (£ 3.19) | 96.63 (£ 1.64) 41.1 (£ 2.5) | 150.3 (£ 5.2)
(Manhattan)
SSDRB
06.49 (4 2.23) | 3.51 (£ 2.23) | 92.97 (£ 4.47) | 96.47 (+ 2.20) 10.4 (+£2.9) | 11.9 (& 2.8)
(Chebyshev)

KNN 94.93 (& 2.07) | 5.07 (£ 2.07) | 89.87 (& 4.14) | 94.92 (& 2.08) 3(£54)| 28.0 (£ 6.3)
Linear SVM | 97.10 (£ 1.47) | 2.90 (+ 1.47) | 94.20 (£ 2.93) | 97.10 (£ 1.47) 33.2 (£ 5.8) 16.2 (£ 3.7)
Decision Tree | 92.20 (& 2.78) | 7.71 (& 2.78) | 84.59 (& 5.57) | 92.28 (& 2.79) | 255.5 (& 24.7) 8 (£ 5.9)

Randon Forest | 92.80 (£ 2.35) | 7.20 (& 2.35) | 85.61 (& 4.70) | 92.78 (&£ 2.37) |  19.78 (£ 7.1) 4 (£ 7.6)
Neural Net 94.63 (£ 4.82) | 5.38 (£ 4.82) | 89.25 (£ 9.65) | 94.51 (£ 5.66) | 927.3 (£ 381.3) 0 (£ 7.6)
Adaboost 95.87 (£ 1.99) | 4.13 (£ 1.99) | 91.74 (£ 3.97) | 95.86 (£ 1.99) | 450.9 (£ 136.7) | 155.4 (£ 9.4)
Naive Bayes | 93.86 (& 2.13) | 6.14 (& 2.13) | 87.73 (& 4.26) | 93.83 (& 2.16) 17.8 (£ 5.4) | 20.1 (+ 7.0)
QDA 67.10 (£ 6.39) | 32.90 (% 6.39) | 34.20 (£ 12.78) | 66.86 (+ 6.41) | 179.4 (£ 10.8) 26.9 (£ 5.3)
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Tabela 5 — Performance metrics for overall results - Cauchy noise

Test Test Test Test Training Test
Method
Accuracy (%) MSE (%) Kappa (%) F-Score (%) Time (s) Time (s)
SSDRB
05.75 (£ 2.19) | 4.25 (£ 2.19) | 9150 (& 4.39) | 95.72 (£ 2.19) |  14.2 (£ 1.9) | 224 ( 2.5)
(Cosine)
SSDRB
06.05 (£ 1.88) | 3.95 (£ 1.88) | 92.11 (& 3.77) | 96.00 (£ 1.91) | 204 (£ 5.7) | 374 (£ 3.1)
(Euclidean)
SSDRB
96.99 (£ 1.69) | 3.01 (£ 1.69) | 93.99 (& 3.39) | 96.80 (= 1.80) |  66.5 (£ 7.1) | 389.2 (£ 28.8)
(Minkowski)
SSDRB
06.41 (£ 1.82) | 3.50 (£ 1.82) | 92.82 (£ 3.63) | 96.36 (£ 1.85) |  20.2 (£ 6.9) | 118.8 (& 8.3)
(Manhattan)
SSDRB
05.51 (& 2.24) | 4.49 (£ 2.24) | 91.01 (£ 4.48) | 95.50 (& 2.17) 81(£1.2)| 95 (£ 14)
(Chebyshev)

KNN 04.45 (£ 2.32) | 5.54 (£ 2.32) | 88.91 (& 4.65) | 94.44 (& 2.33) T(£49)| 295 (£ 6.4)
Linear SVM | 95.16 (£ 2.17) | 4.83 (£ 2.17) | 90.33 (£ 4.35) | 95.16 (£ 2.18) |  37.8 (£ 7.8) | 194 (£ 7.2)
Decision Tree | 90.88 (& 3.21) | 9.11 (£ 3.21) | 81.77 (£ 6.43) | 90.87 (& 3.22) | 222.3 (& 30.4) 1 (+6.2)

Randon Forest | 92.38 (& 2.45) | 7.61 (& 2.45) | 84.77 (£ 4.90) | 92.36 (& 2.46) | 21.33 (£ 7.7) 2 (£ 7.7)
Neural Net | 9272 (£ 4.53) | 7.27 (£ 4.53) | 85.45 (£ 9.06) | 92.63 (£ 4.79) | 937.3 (£ 383.9) 9 (£78)
Adaboost 04.20 (£ 2.23) | 5.71 (£ 2.23) | 88.57 (&£ 4.47) | 94.27 (& 2.45) | 453.8 (£ 155.8) | 154.1 (£ 11.2)
Naive Bayes | 93.28 (£ 2.23) | 6.71 (£ 2.23) | 86.57 (& 4.46) | 93.27 (£ 2.24) |  17.3 (£ 4.8) | 21.2 (£ 7.5)
QDA 65.00 (£ 7.43) | 34.90 (£ 7.43) | 30.10 (£ 14.87) | 64.86 (£ 7.44) | 177.3 (£ 11.2) | 24.6 (£ 5.9)

9¢



Tabela 6 — Performance metrics for overall results - Laplace noise

Test Test Test Test Training Test
Method
Accuracy (%) MSE (%) Kappa (%) F-Score (%) Time (s) Time (s)
SSDRB
05.36 (& 2.40) | 4.64 (£ 2.40) | 90.73 (& 4.80) | 95.40 (£ 2.28) |  13.1 (£ 1.4) | 21.9 (+ 1.6)
(Cosine)
SSDRB
06.11 (& 1.83) | 3.89 (£ 1.83) | 92.23 (& 3.65) | 96.07 (£ 1.83) |  20.6 (£ 1.9) | 38.9 (£ 2.4)
(Euclidean)
SSDRB
96.13 (£ 1.67) | 3.87 (£ 1.67) | 92.26 (& 3.34) | 96.07 (£ 1.70) |  62.8 (£ 4.1) | 366.4 (£ 16.6)
(Minkowski)
SSDRB
96.13 (£ 1.76) | 3.84 (£ 1.76) | 92.32 (& 3.52) | 96.11 (& 1.80) |  30.4 (£ 18.3) | 122.7 (+ 35.4)
(Manhattan)
SSDRB
05.34 (£ 2.25) | 4.66 (£ 2.25) | 90.68 (& 4.49) | 95.35 (& 2.17) 81 (x£1.4)| 97 (£13)
(Chebyshev)

KNN 04.19 (& 2.07) | 5.81 (£ 2.07) | 88.38 (& 4.13) | 94.17 (& 2.08) 3(£55) | 285 (+6.5)
Linear SVM |  93.95 (£ 2.06) | 6.04 (& 2.06) | 87.91 (£ 4.13) | 94.17 (£ 2.08) |  36.6 (£ 7.9) | 18.3 (£ 5.9)
Decision Tree | 90.45 (£ 3.48) | 9.54 (£ 3.48) | 80.90 (& 6.97) | 90.43 (& 3.49) | 227.4 (£ 28.5) 7 (£ 5.9)

Randon Forest | 91.63 (& 2.65) | 8.36 (£ 2.65) | 83.27 (£ 5.31) | 91.61 (& 2.67) 19.5 (& 6.9) 0 (£ 7.7)
Neural Net | 93.19 (£ 3.65) | 6.80 (£ 3.65) | 86.38 (£ 7.30) | 93.13 (£ 3.84) | 826.1 (& 197.5) 9 (+ 7.7)
Adaboost 94.30 (4 2.14) | 5.69 (£ 2.14) | 88.61 (£ 4.27) | 94.29 (£ 2.14) | 454.2 (£ 173.6) | 152.7 (£ 10.1)

Naive Bayes | 93.50 (& 2.08) | 6.49 (& 2.08) | 87.01 (& 4.14) | 93.48 (& 2.09) 16.7 (£ 3.9) | 21.8 (& 7.6)
QDA 62.20 (£ 6.71) | 37.70 (£ 6.72) | 24.58 (& 13.44) | 62.05 (£ 6.77) | 180.6 (£ 14.2) |  26.6 (& 4.9)

LE
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4.3 STATISTICAL ANALYSIS

The accuracy metric results in Table 1, 2, 3, 4, 5, and 6 was evaluate by Shapiro—Wilk
test of normality where the data are normally distributed and the null hypothesis is not
rejected when the p-value greater than 0.05 [58]. As present in the Table 7 the results show
the data are normally distributed for overall accuracy metric results, then the statistical

analysis was performed as in [59].

Therefore the two-sample t-test was applied for the test accuracy metric in order
to evaluate the results in Table 1, 2, 3, 4, 5, and 6. Considering two sets of samples G,
and G, the two-sample t-test allows us to infer assumptions from two independent data

samples and to verify their statistical validity. This statistical test is expressed as:

G — G

L e (4.3)
_91 _G2
Lg1 L92

where Gy, Gs, O’é . and 052 are the means and standard deviations values of the samples
belonging to G; and Gs, respectively. Also, Lg, = #{G1} and Lg, = #{G>}, in which #
denotes the Cardinality operator. The degree of freedom is defined as Lg, + Lg, — 2. In
addition to the determination of 7, it becomes important to infer the hypothesis, which
are given by:

Ho:Gi =G,

Hi: Gy # Go

Given a significance level «, usually around 0.05, the p-value is calculated from 7 and

(4.4)

represents the lowest value of a to reject the null hypothesis (Hy). Thus, values of the

p-value below o means that the null hypothesis is not true [60].

The sets of samples G; and G, of Eq. (4.3) are the test accuracy metric obtained
for the 200 times. SSDRB classifier with minkowski distance presents best SSDRB average
accuracy results in which scenario listed in table 1, 2, 3, 4, 5 and 6. Then, G; refers to
SSDRB classifier with minkowski distance and G, can denote which other SSDRB with
others distance measures and others classifier methods, as listed in Table 8, 9, 10 and 11.
The degree of freedom presented in these statistical tests is 64, which is relatively high, so

there is no need to verify the normality of error distributions [60].

Table 8 presents the results of the two-sample t-test performed for the test accuracy
metric in Table 1 and the results of the t-test for Table 2, 3 and 4 are presented in Table
9. In addition, the Table 10 and Table 11 presents the results of the two-sample t-test
performed for the test accuracy metric in Table 5 and 6, respectively. The rejection of the
null hypothesis are indicated by the letters ‘W’ and ‘L’ representing respectively the wins
and the losses of the method tested. Meanwhile the acceptance of the null hypothesis is
described by ‘E’ which means equality of the tested methods.



Tabela 7 — p-value from Shapiro-Wilk test for the accuracy metric for overall results

Method Original | AWGN - PSNR | AWGN - PSNR | AWGN - PSNR Cauchy noise | Laplace noise
Dataset 20 dB 6 dB 3 dB
SSDRB (Cosine) 0.29 0.61 0.55 0.64 0.68 0.24
SSDRB (Euclidean) 0.50 0.56 0.48 0.52 0.12 0.42
SSDRB (Minkowski) 0.31 0.14 0.28 0.65 0.18 0.17
SSDRB (Manhattan) 0.31 0.17 0.23 0.63 0.16 0.11
SSDRB (Chebyshev) 0.74 0.46 0.59 0.38 0.17 0.29
KNN 0.48 0.65 0.38 0.54 0.58 0.48
Linear SVM 0.30 0.59 0.37 0.61 0.49 0.36
Decision Tree 0.22 0.25 0.49 0.43 0.11 0.35
Randon Forest 0.24 0.54 0.56 0.6 0.09 0.09
Neural Net 0.29 0.59 0.42 0.72 0.48 0.27
Adaboost 0.44 0.38 0.7 0.34 0.48 0.32
Naive Bayes 0.63 0.52 0.54 0.52 0.56 0.16
QDA 0.60 0.29 0.61 0.76 0.48 0.56

6€



Tabela 8 — Statistical analyses performed by two-sample t-test for the test accuracy metric for overall results - Original Dataset

Dataset g1 Go p-value  Lower Upper Ho
boundary  boundary
Original Dataset SSDRB (Minkowski) SSDRB (Cosine) 0.00 0.79 1.44 W
SSDRB (Minkowski) SSDRB (Euclidean)  0.00  0.17 0.75 W
SSDRB (Minkowski) SSDRB (Manhattan) 0.46 -0.19 0.42 E
SSDRB (Minkowski) SSDRB (Chebyshev) 0.00 0.98 1.69 W
SSDRB (Minkowski) KNN 0.00  1.79 2.43 W
SSDRB (Minkowski) LinearSVM 0.00 1.34 2.01 W
SSDRB (Minkowski) DecisionTree 0.00 6.41 7.28 W
SSDRB (Minkowski) RandomForest 0.00 3.96 4.76 W
SSDRB (Minkowski) NeuralNet 0.00 2.90 3.96 W
SSDRB (Minkowski) AdaBoost 0.00 2.38 3.10 W
SSDRB (Minkowski) NaiveBayes 0.00 2.44 3.13 W
SSDRB (Minkowski) QDA 0.00 29.77 31.88 W

ov



Tabela 9 — Statistical analyses performed by two-sample t-test for the test accuracy metric for overall results - White Gaussian Noise
(AWGN)

Dataset [ Go p-value  Lower Upper Ho
boundary  boundary
AWGN - PSNR = 20 dB SSDRB (Minkowski) SSDRB (Cosine) 0.00 0.99 1.77 W
SSDRB (Minkowski) SSDRB (Euclidean)  0.03 0.03 0.66 W
SSDRB (Minkowski) SSDRB (Manhattan) 0.87 -0.30 0.35 E
SSDRB (Minkowski) SSDRB (Chebyshev) 0.00 1.23 2.03 W
SSDRB (Minkowski) KNN 0.00 1.9 2.04 W
SSDRB (Minkowski) LinearSVM 0.00 1.35 2.02 W
SSDRB (Minkowski) DecisionTree 0.00 6.39 7.35 W
SSDRB (Minkowski) RandomForest 0.00 3.86 4.64 W
SSDRB (Minkowski) NeuralNet 0.00 2.52 3.56 W
SSDRB (Minkowski) AdaBoost 0.00 1.38 2.09 W
SSDRB (Minkowski) NaiveBayes 0.00 2.11 2.80 W
SSDRB (Minkowski) QDA 0.00 31.20 33.33 W
AWGN - PSNR = 6 dB SSDRB (Minkowski) SSDRB (Cosine) 0.00 0.36 1.05 W
SSDRB (Minkowski) SSDRB (Euclidean)  0.02  0.05 0.66 W
SSDRB (Minkowski) SSDRB (Manhattan) 0.60 -0.22 0.39 E
SSDRB (Minkowski) SSDRB (Chebyshev) 0.00  0.81 1.53 W
SSDRB (Minkowski) KNN 0.00 1.93 2.63 W
SSDRB (Minkowski) LinearSVM 0.00 2.03 2.75 W
SSDRB (Minkowski) DecisionTree 0.00 7.79 8.71 W
SSDRB (Minkowski) RandomForest 0.00 5.66 6.51 WY
SSDRB (Minkowski) NeuralNet 0.00 3.54 5.00 W
SSDRB (Minkowski) AdaBoost 0.00 2.44 3.18 W
SSDRB (Minkowski) NaiveBayes 0.00 5.66 6.36 W
SSDRB (Minkowski) QDA 0.00 31.67 33.78 W
AWGN- PSNR =3 dB  SSDRB (Minkowski) SSDRB (Cosine) 0.09 -0.05 0.72 E
SSDRB (Minkowski) SSDRB (Euclidean)  0.04 0.00 0.66 W
SSDRB (Minkowski) SSDRB (Manhattan) 0.26 -0.14 0.50 E
SSDRB (Minkowski) SSDRB (Chebyshev) 0.06 -0.02 0.76 E
SSDRB (Minkowski) KNN 0.00 155 2.29 W
SSDRB (Minkowski) LinearSVM 0.13  -0.55 0.07 E
SSDRB (Minkowski) DecisionTree 0.00 4.16 5.09 W
SSDRB (Minkowski) RandomForest 0.00 3.52 4.36 W
SSDRB (Minkowski) NeuralNet 0.00 1.20 2.48 W
SSDRB (Minkowski) AdaBoost 0.00 0.58 1.30 W
SSDRB (Minkowski) NaiveBayes 0.00 2.62 3.37 W
SSDRB (Minkowski) QDA 0.00 28.84 30.68 W

17



Tabela 10 — Statistical analyses performed by two-sample t-test for the test accuracy metric for overall results - Cauchy noise

Dataset g1 G p-value  Lower Upper Ho
boundary  boundary

Cauchy noise SSDRB (Minkowski) SSDRB (Cosine) 0.00 0.50 1.78 W
SSDRB (Minkowski) SSDRB (Euclidean)  0.24 -0.13 0.51 E

SSDRB (Minkowski) SSDRB (Manhattan) 0.35 -0.48 0.17 E

SSDRB (Minkowski) SSDRB (Chebyshev) 0.00 0.69 1.44 W

SSDRB (Minkowski) KNN 0.00  2.14 2.94 W

SSDRB (Minkowski) LinearSVM 0.00 1.44 2.21 W

SSDRB (Minkowski) DecisionTree 0.00 5.60 6.61 W

SSDRB (Minkowski) RandomForest 0.00 4.19 5.02 W

SSDRB (Minkowski) NeuralNet 0.00 3.59 4.94 W

SSDRB (Minkowski) AdaBoost 0.00 2.31 3.1 W

SSDRB (Minkowski) NaiveBayes 0.00 3.31 4.1 W

SSDRB (Minkowski) QDA 0.00 30.83 32.96 W

4%



Tabela 11 — Statistical analyses performed by two-sample t-test for the test accuracy metric for overall results - Laplace noise

Dataset g1 Go p-value  Lower Upper Ho
boundary  boundary

Laplace noise SSDRB (Minkowski) SSDRB (Cosine) 0.00 0.36 1.17 W
SSDRB (Minkowski) SSDRB (Euclidean)  0.94 -0.33 0.36 E

SSDRB (Minkowski) SSDRB (Manhattan) 0.98 -0.34 0.33 E

SSDRB (Minkowski) SSDRB (Chebyshev) 0.00 0.40 1.18 W

SSDRB (Minkowski) KNN 0.00 157 2.31 W

SSDRB (Minkowski) LinearSVM 0.00 1.80 2.54 W

SSDRB (Minkowski) DecisionTree 0.00 5.14 6.22 W

SSDRB (Minkowski) RandomForest 0.00 4.06 4.93 W

SSDRB (Minkowski) NeuralNet 0.00 2.38 3.50 W

SSDRB (Minkowski) AdaBoost 0.00 1.45 2.20 W

SSDRB (Minkowski) NaiveBayes 0.00 2.25 2.99 W

SSDRB (Minkowski) QDA 0.00 32.87 34.80 W

197
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4.4 DISCUSSION OF RESULTS

As shown in Table 1, the SSDRB classifier with the minkowski distance metric
presents the best average accuracy result. Nevertheless, it also presents the lowest standard
deviation for the accuracy results and, in addition, the best result for the kappa test and
F-score. However, the training time for the SSDRB classifier with the minkowski distance
metric is the longest among the SSDRB classifiers with each distance metric while the

testing time is the longest among all classifiers.

Nevertheless, it can be noted that these particularities of results are repeated for
Table 2, 3, 5, 6 in which the images were corrupted with PSNR 20dB, PSNR 6dB, Laplace
and Cauchy, respectively. That is, the SSDRB classifier with the minkowski distance
metric presents the best result of average accuracy, kappa test and F-score, but with a

high computational cost given the high training time and test time.

As shown in Table 4, despite maintaining an average accuracy of the SSDBR
classifier above 96%, the Linear SVM classifier presented a better average accuracy result,
lower standard deviation for the accuracy results and better result for the kappa test
and F -score. In addition, the training and testing time with the presented Linear SVM
classifier are significantly lower when compared to SSDRB with the minkowski distance

metric, which is the SSDRB metric with the best average accuracy for corrupted images
with PSNR 3dB.

Furthermore, the results presented in Tables 1, 2, 3, 4, 5 and 6 show that the
SSDRB classifier with the manhattan distance metric can be an excellent alternative given
that the average accuracy is close to the results obtained with the minkowski metric and
statistically equal as presented in Tables 8, 9, 10 and 11. In addition, as observed in
all tables of results, the SSDRB classifier with the manhattan distance metric presents
significantly lower training time and test time when compared to the SSDRB with the

minkowski distance metric.
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5 CONCLUSIONS

The work discusses the application of image processing techniques and computa-
tional intelligence by introducing the SSDRB classifier to the analysis of its results in
the classification of wagon bogie springs. VGG19 was used for preprocessing the images,
which proved to be very effective in extracting attributes from images due to its simple

structure and better performance.

Compared to the classical classifiers, the SSDRB classifier showed higher accuracy
in tests. The SSDRB with minkowski distance results turned out to be a great alternative
since they presented the best result for the original dataset. Despite it was not presented
the best result numerically for images with PSNR of 3dB where Linear SVM results
showed higher accuracy, the results are statistically equal and the results of SSDRB has

shown the maintenance of mean accuracy greater than 96% even to non-Gaussian noises.

Futhermore, in Tables 8, 9, 10 and 11 it is showed equality of the tested methods
SSDRB minkowski distance and SSDRB manhattan distance. Then, the manhattan
distance results ended up being a good choice as it features a shorter training time and

shorter testing time compared to the SSDRB with minkowski distance.

In addition, the model presented in this paper has other advantages that are not
covered by classical methods, such as a learning process that is easy to interpret by a
specialist, online or offline training, the ability to classify images outside the sample and

ability to deal with uncertainty:.

Detecting and classifying the condition of bogie springs can be done in the present
context, generating a significant reduction in cost and time. It is therefore worth mentioning
that the use of intelligent systems can support decision-making processes, increasing the

flexibility and efficiency of the process.

Intelligent systems can assist in decision-making processes, bringing more agility
and efficiency to the process. In this respect, the SSDRB classifier is an attractive
alternative to quickly and efficiently diagnosing and classifying the condition of the wagon

bogie springs, reducing costs and time spent on inspection.

The model discussed in this paper is limited in the definition of meta-parameters
such as the ¢ of the semi-supervisor DRB and h of minkowski distance. Therefore, as
future work it is intended to optimally define the meta-parameters using the effective
method reported in literature like presented in [61]. In addition, we intend to improve the
process by researching more efficient techniques for pre-processing image classification and
to explore the implementation of dataset augmentation in order to increase the database
and evaluate the results of the different SSDRB distance metrics.
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