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RESUMO

O sistema energético mundial atualmente passa por uma grande transicao na qual
conversores eletronicos de poténcia ganham cada vez mais importancia. Nesse contexto,
conversores de fonte de tensao assim como sua associagao em um conversor BTB, sao
bastante comuns e tém ganhado relevancia. Essa dissertacao de mestrado entao apresenta
a modelagem matematica desses dois conversores em uma estratégia de representacao
multivariavel. Dois sistemas-teste sao projetados: um sistema composto de um conversor
fonte de tensdo conectando a rede CA ao barramento CC, onde uma fonte de corrente
CC ¢ utilizada para representar o perfil de poténcia de uma microrrede CC, e um sistma
composto de um conversor BTB que interconecta dois sistemas CA. Para o primeiro
sistema duas estratégias de controle multivariavel sao apresentadas: um regulador linear
quadratico (LQR) e de um controlador robusto, baseado na alocagao de polos através
de desigualdades matriciais lineares. Ambos os controladores sdo projetados para que o
conversor tolere um fluxo de poténcia bidirecional. Ja para o segundo sistema, um tnico
controlador é projetado, também baseado na alocacao de polos através de desigualdades
matriciais lineares. Neste caso, o controlador ¢ projetado para que o conversor BTB possa
lidar com fluxo bidirecional de poténcia, além de incertezas e distiirbios nos parametros
que compoe o sistema AC conectado a um dos terminais do conversor. Ambos os sistemas
sao implementados em um ambiente de simulagao digital e as respostas dinamicas sao

avaliadas e comparadas.

Palavras-chave: Conversores Fontes de Tensao. Modelagem Multivariavel. Controladores

Multivariaveis.






ABSTRACT

The world’s energy system is currently undergoing a major transition in which
power eletronic converters gain more importance. In this context, voltage-sourced convert-
ers just like their association on Back-To-Back converters, are rather common and have
gained more relevance. This master thesis then presents the mathematical modeling of
both converters in a multivariable representation strategy. Two test systems are designed:
one system composed of a voltage-sourced conveter connecting an AC grid to a DC bus,
in which a DC current source is used to represent the power profile of a DC microgrid,
and a system composed of a BTB converter that interconnects two AC systems. For
the first system, two multivariable control strategies are presented: a linear quadratic
regulator (LQR) and a robust controller which is based on pole placement via linear matrix
inequalities. Both controllers are designed so the converter might deal with a bidirectional
power flow. For the second test system, one single controller is designed and it is based on
pole placement via linear matrix inequalities. In this case, the controller is designed so
the BTB converter might deal with bidirectional power flow, while being resilient against
uncertainties and disturbances in the parameters that compose the AC system connected
to one of the converter’s terminals. Both systems are implemented in a digital simulation

environment and their dynamic responses are assessed and compared.

Keywords: Voltage-Sourced Converters. Multivariable Modeling. Multivariable Con-

trollers.
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1 INTRODUCTION

1.1 Background

The world is currently undergoing a major transition regarding energy systems
which have important effects in the power sector. Concerns with environmental impacts
and with nations’ energy security have bolstered the research on alternative and renewable
sources of energy. As many governments use specialized policies to push for the deployment
of renewable energy sources, Wind and Solar Photovoltaics (PV) have experienced a major

increase in the past few years (COZZI; GOULD, 2017).

This energy transformation, however, is not only limited to large renewable-based
power plants nor it is restricted to the power industry alone. Concerning the former, it is
possible to cite the Distributed Energy Resources (DER) which have been drawing the
attention of both industry and academia, especially when associated with the various
types of microgrids. Moreover, the energy transition has also been present in the vehicle
industry such as cars and even airplanes. Although all these cases might appear to be
disconnected, they have many things in common and the main actors that are shared by

all these different examples are the power electronic converters.

For example, when the subject is microgrids, they can be AC, DC or hybrid and
they are normally composed of multiples sources of energy, mainly renewable-based, and
loads which are commonly connected at distributed-level grids (OLIVARES et al., 2014).
The conection of microgrids in the point of common coupling is generally performed by
power electronic converters, such as the Voltage-Sourced Converter (VSC), which operates
using specially designed controllers that guarantee a safe and adequate operation for all
components composing the microgrid (ORNELAS-TELLEZ et al., 2017).

In fact, the integration of microgrids to the bulk power system introduces many
challenges regarding the control these interface converters. As an illustration, it is possible
to mention the bidirectional power flows that should be natural in these connections
(OLIVARES et al., 2014). A microgrid might have many non-dispatchable power surces
and, therefore, it might have to deal with a power flow constantly being inverted from the
two connected systems. In this cases, generated and consumed energy might not always be
in balance and when power demand by the loads connecte to the microgrid is high, energy
must be drained from the bulk power system. The contrary might also occur, when power
demand by those loads is low, energy must be sent to the power system. This subject has
been the main topic of different research publications in literature, especially the proper
design of controllers that can properly handle these issues (CHEN et al., 2016; MIRANDA
et al., 2013).

Voltage-sourced converters can also be combined for creating new power electronic

devices that are used in solutions proposed for power system enhancement and improvement.
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Among these devices, the Back-To-Back (BTB) converter is one of the most common
topologies used in industry to perform low-power and low-voltage connection between two
AC systems. The Back-to-Back based on Voltage Source Converter (BTB-VSC) consists
in two VSCs sharing a common link on the DC side while performing the interconnection
of two different AC systems. BTB converters are frequently used in Unified Power Quality
Conditioners (UPQC) and in applications related to renewable energy generation such as
wind generators connected to the grid (BLAABJERG; LISERRE; MA, 2011; CHEN, 2013).
These controlled power electronic devices can be especially designed in order to make the
grid more resilient and robust, and its usage has been increasing due to some interesting
characteristics such as: (i) the provision of wide control in bidirectional power flow and (ii)
independent control of active and reactive power allowing a flexible operation (FRIEDLI et
al., 2011). Furthermore, these two characteristics, when combined, lead to the interesting
property of rapid manipulation of power flows in order to provide the balance between
two different systems (RODRiGUEZ—CABERO; SANCHEZ; PRODANOVIC, 2016).

It is evident that the control approach is essential in order to take advantage
of the important benefits associated with the single VSC and with the BTB-VSC. The
conventional control strategy designed for these converters is based on two loops: the inner
and the outer (RODRIGUEZ-CABERO; SANCHEZ; PRODANOVIC, 2016). The inner
controller usually deals with the AC current injected by each or by the single VSC while
the outer controller addresses the DC link capacitor voltage. In order for this strategy to
work properly and the controllers to be designed independently, the inner loop should have
much faster action than the outer loop (YAZDANI; IRAVANI, 2010). As an illustration,
this conventional configuration of two control loops is shown in (ALCALA et al., 2011) to

perform the regulation of a BTB converter dealing with bidirectional power flow.

Although the conventional control approach is well established, many different
alternative strategies have been proposed lately in the literature. One example of an
alternative control strategy, when dealing with these converters, is the full state-feedback.
In (RODRIGUEZ—CABERO; SANCHEZ; PRODANOVIC, 2016) a unified multi-variable
strategy is proposed to control a BTB converter with LCL output filters. The proposed
state feedback strategy is found to deal very well with transient mismatches of power flow
and to outperform the traditional inner-outer loop approach. In (OSORIO et al., 2018) a
robust control strategy is proposed to a grid-connected inverter. Results show that the
controller ensure a stable operation and good performance for a set of uncertainties related

to the grid equivalent inductance and resistance at the Point of Common Coupling (PCC).

Therefore, it is clear that new strategies for regulating VSC and BTB converters
are welcome and that new studies should be performed so it could facilitate researchers to
take advantage of the best of features each controlled converters has to offer. Therefore,
in this context, this study presents a multivariable approach for modeling and control

of a single voltage-sourced converter and for a back-to-back converter. In addition, this
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study presents the comparison of two multivariable control strategies for the VSC, while

assessing the robustness of a multivariable approach for the BTB converter.

1.2 Objectives and Scope
This master thesis has the following objectives:

e To present and describe mathematical tools that are used in the modeling theory of
power electronic converters together with tools that are used for studying dynamical
systems, such as stability and linearization procedures. These techniques should
be presented with enough detail to allow future students to read this report, to
comprehed the subject and apply the concepts to design multivariable control

strategies for power electronic converters.

e To present and scrutinize multivariable mathematical models for a single Voltage-
Sourced and for Back-to-Back converters. Moreover, this master thesis should
also perform linearization of such converters’ numerical models for obtaining linear

representations, enabling the design of multivariable linear control systems.

e Present two multivariable control strategies, the LQR and LMI-based robust pole
placement approaches, design the controllers, test and assess their performance in a
system composed by a single VSC that interfaces a DC and an AC system, while

dealing with bidirectional power flow.

e Design an LMI-based robust pole placement control strategy for the BTB converter
that is able to deal with bidirectional power flow and to uncertainties or disturbances
that can occur in the parameters that compose one of the two AC systems being

connected to the converter.

e Implement and test both systems in a simulation environment.

1.3 Outline

The remainder of this master thesis is organized as follows: Chapter 2 presents the
theoretical foundations for linear algebra and for dynamic systems that are used in the
modeling of both converters and control strategies. In Chapter 3, the mathematical model
for the converters is obtained by using some of the tools presented in previous chapters.
Chapter 4 presents applies the linearization concepts to the studied converters, while
multivariable linear control strategies are presented. The controller design procedure and
numerical implementation of the control strategies is carried out in Chapter 5, together
with a description of the experiments to be performed for testing controller performance for
the appropriate converter. The simulation results are presented and discussed in Chapter

6. Conclusions are drawn in Chapter 7.
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2 THEORY FUNDAMENTALS

The study presented here tries to use concepts and techniques already consolidated
in the dynamical systems and linear algebra fields to build a better interpretation and
understanding for phenomena observed in the analysis and control of power electronic
devices. Therefore, it is obviously necessary to describe the techniques and concepts that
are essential for the work developed in this study. In order to do so, this chapter lays all
the foundation and summarizes the important theoretical aspects that are needed for the

complete understanding of the present master thesis.

2.1 LINEAR ALGEBRA

This section is concerned with the presentation of some basic concepts related to
the vectors and matrices. The concepts related to norms are important for understanding
sizes and, consequently, distances. On the other hand, the concepts related to matrix

decompositions are going to be extremely useful when linear systems are being studied.

2.1.1 Vector and Matrices Norm

The concept of norm || - || is needed for the definitions of sizes and distances that are
used in different topics of this work. First, let us introduce the three necessary conditions
for a function to be considered a norm. Let x;, x5 be vectors in R™ and v € R. Then,
according to (TREFETHEN; III, 1997), the vector norm should satisfy the following

i. [|x1]| > 0 and ||x;]] = 0= x; =0,
i [[x1 4 Xof| < [lxa | + %2,

i, vl = [yl

Under these assumptions, a really useful norm is the p—norm. They are defined as

Il = (Z |:cj|p) - (2.1)

where x = [z 29 -+ x; -+ x,]". The most useful norms are p = 1,2, co (ZHOU; DOYLE,

1998). For a n x 1 vector x, these norms can be described as

Ix[li = 21+ 22+ + 2, (2.2)
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Ix|l2 = /2% + 23 + - + 22 = xTx, (2.3)

where the superscript T stands for the transpose operation, and

Iolloo = mmase ;1. (2.4)

Concerning matrices, the most important norms for this study are the induced
norms (TREFETHEN; III, 1997)(ZHOU; DOYLE, 1998). These types of norms are
calculated as a ratio between the norms of two vectors. The idea behind the induced norm
is that a matrix A € R™*" can be interpreted as a linear map between a vector x € R"
and a vector Ax € R™. Hence, if the matrix norm defining as the largest possible ratio
between the p-norm of Ax and x it will, in fact, present how the matrix can stretch or

reduce a vector. Therefore, the p-norm of a matrix can be defined as

[ A,

|A][p = sup , (2.5)
"oz X[l
or
|All, = sup [|Ax],. (2.6)
[x[lp=1
In this work, unless it is stated otherwise, the operation || - || will be equivalent to
the 2-norm. Hence
%[ = lIx]l2, (2.7)
and
[A[] = A2 (2.8)

2.1.2 Matrix Decompositions

Properties regarding matrices are really important for linear systems. Among all
factorizations, the eigendecomposition and the singular value decomposition are really

useful for the study presented here and, thus, they are going to be discussed next.
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2.1.2.1 FEigenvalue and FEigenvectors

The Eigendecomposition of a matrix is of extreme importance for the study
conducted here. This is due the relation between eigenvalues of a matrix and the dynamic
behavior of the linear system described by that matrix. These concepts are going to be
further discussed later in this very chapter, but for now it is important to describe what is

an eigenvalue and an eigenvector.

First, let A € R™™". Then, it is possible to raise the question wether exists a
non-zero vector q; € R™! such that the linear transformation Aq; produces a vector
colinear with q; (DERUSSO; CLOSE; ROY, 1990). If such vector exists, then q; and Aq,
are proportional to each other and their proportionality scalar constant is Ay, which is
said to be the eigenvalue (DERUSSO; CLOSE; ROY, 1990). In this situation, q; is said
to be the right eigenvector corresponding to eigenvalues A;. Therefore, for each eigenvalue,

it is possible to write the following equation:

where ¢ = 1,2,... n. If all equations are written simultaneously, we have that
AQ = QA, (2.10)
or
A=QAQ, (2.11)
where
A0 0
0 Xy -+ 0
A=| o, (2.12)
0 0 Am
and
Q=[a @ - qu- (2.13)

First note that A is a diagonal matrix and that the eigenvalue decomposition

allows matrix A to be represented as A = Q 'AQ. This is called diagonalization and it
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is important to state that not every system is diagonalizable. However, this will not be
the case in this study and the interested reader can reffer to (DERUSSO; CLOSE; ROY,
1990) for ways of addressing this problem with Jordan blocks.

2.1.2.2  Singular Value Decomposition

Next is another extremely important matrix representation, the Singular Value
Decomposition or SVD. This is because the SVD is incredibly helpful to determine things
such as the 2—norm of a matrix and singular vectors can be used to determine if input
output relations are weak or strong. First it is necessary to state that the SVD exists for
every matrix and that its singular values are unique (ZHOU; DOYLE, 1998). For instance,

let A € R™ " then exist unitary matrices

T = {vl vy - vm} e Cv, (2.14)
V= [Vl vy - Vn} e Ccv, (2.15)
(2.16)

where v; € C™!, v; € C™*! are unit vectors for all 7 such that

A =YXV (2.17)

where T denotes the conjugate transpose,

o 0 -+ 0
0 o9 -+ 0

s=| 7 (2.18)
0 0 - o,

and oy > 09 > -+ > 0, > 0 (ZHOU; DOYLE, 1998). The fact that matrices v and V
are unitary means that Y'Y = Y'Y = VIV = VVT = I, where I, is the n x n identity

matrix.

One interesting fact about this decomposition is that it is possible to demonstrate
that ||A|| = 0. Therefore, the 2-norm of a matrix can be calculated as its largest singular
value (ZHOU; DOYLE, 1998). However, since we defined that the induced norm of a
matrix is a measure of how much it can stretch (or compress) a vector, it is clear that
the SVD might be an indicator of how this matrix can stretch or compress vectors in

determined directions. Indeed, note that (2.17) can be re-written as
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AV =73,
o 0 - 0
0 o9 -+ 0
Alvi vy - Vn}:[vl V2 - Unm . .. e (2-19)
0 0 - o,
Therefore, for i = 1,2,...,m we have that
AVZ' = 0;V;. (220)

Since v; and v; are unit vectors, we have that the matrix multiplication A is
stetching vector v; by ;. Note that v; and v; are not necessarily colinear and, therefore,
the matrix multiplication A can also rotate vector v;. But what is important to note here
is that the singular vector vy is the direction that will have the largest stretching or the
smallest compression, while v,, is the direction that will have the smallest stretching or
largest compression (ZHOU; DOYLE, 1998). In an input/output perspective, an input in
the direction of vy will have the largest gain, while an input in the direction of v, will
have the smallest one. This can be very helpful when deciding for controlling inputs and

controlled variables.

2.2 NON-LINEAR SYSTEMS

The field of dynamical systems is ancient and its origins can be traced to the time
when Newton invented calculus and studied motion problems (STROGATZ, 2018). Since
then, the field has experienced tremendous growth, and many different problems arose,
such as chaos. Here, however, the scope will be limited to a very interesting topic on
dynamical systems. In fact, non-linear systems are rather common and virtually everything
exhibit a behavior that can be expressed by a non-linear equation. Even components that
are called linear are only considered to be so in a specific domain of validity. Moreover,
linear systems can be seen as a very special case of non-linear systems and, therefore, it is

indispensable to dedicate a short part of this chapter to the latter.

In order to limit the scope of this work even further, it is necessary to point out that
this thesis is mainly concerned with systems described by differential equations rathern
than by iterated maps (also called difference equations)(STROGATZ, 2018). Moreover,
for the phenomena that will be investigated, there is no need to cover the concepts related
to partial differential equations and, therefore, this thesis will be concerned only with

ordinary equations, dealing with only one independent variable.
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As it was previously mentioned, many devices that are commonly studied using
linear dynamics are, in fact, non-linear. The power electronic devices studied in this
thesis are not an exception and this fact will be shown later. A non-linear system can be
described as a finite set of coupled first-order ordinary differential equations (KHALIL;
GRIZZLE, 2002) as shown below.

jzl@) = fl (xl(t)vxZ(t>7 an<t)7 ul(t)v u2(t)7 7u7“(t)7t) )
By(t) = fo(x1(t),22(t), . .. xn(t), ur(t), us(t), ..., un(t), 1),
() = Fo (21 (8)22(8), - on(£), 02 (£), un (), - (£, 1) (2.21)

This set of equations can be further simplified into a more compact version, as it is

described below.

x(t) = f (x,u,t), (2.22)
where
$1(t) Uy (t) fl (X7 >t
To(l Uo (T ,u,t
xt = "1 un = "0 ran = |

Zn(t) up(t) fo(x,1,)
Note that the elements of the n x 1 state vector x(t), i.e. x1(t),z2(t), ..., x,(t), are
called state variables. The elements of the r x 1 input vector u(t), i.e. ui(t),us(t),. .. u.(t),

are called input variables. The elements from the n x 1 vector f are the non-linear functions

that define the dynamic behavior of each state variable.

In (2.22), it is possible to observe an explicit dependency on the time variable ¢t. A
special case of this system would be the case where (2.22) only implicit depenedency on ¢.
In that case the system is said to be autonomous and can be represented by the following

equation.

x(t) = £ (x.u). (2.23)

Furthermore, it is also possible to consider systems that does not have any external

forces acting on them. Or there might be a case where the vector f does not have an
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explicit dependency on input variables. This means that the dynamic behavior of the
state variables can be described by the state variables alone. This type of system is known

as unforced system and can be represented as the equation below.

x(t) = f (x). (2.24)

The reader must notice that the bold font was chosen to represent vector quantities
while the normal font was chosen to represent scalar values. In addition to that, this work
is mainly concerned with autonomous systems and, therefore, a special attention is given
to equations (2.23) and (2.24).

2.2.1 Equilibrium and Stability

The concept of equilibrium point is very important when studying dynamical
systems. In an unforced autonomous system, a vector x* is said to be the equilibrium if
the following equation is true (KHALIL; GRIZZLE, 2002).

f(x*) = 0. (2.25)

The underlaying concept here is that if the system starts at point x*, it will remain
at x* for any t > 0. Many nonlinear systems exhibit more than one equilibrium points
and they can have different properties regarding stability. Now, consider that x* is an
equilibrium point and that x' is a point in the vicinity of x*. In fact, consider it as close
to x* as desired. If the dynamical system is started in x' and x* is a stable equilibrium
point, the trajectory of the dynamical system will converge to a region near x*. On the
other hand, if x* is an unstable equilibrium point, the trajectory of the dynamical system

is likely to diverge from x*.

The reader must notice that any system with state variables x can have its variable
changed in order to shift the equilibrium point x* to the origin 0. This will facilitate the
understanding of the concepts related to stability and they do not constitute any loss of
generality of the concepts described here (KHALIL; GRIZZLE, 2002). In fact, note that if

X = x — X", then

%(t) = %(t) — x*(t) = £(x) — 0 = £(x) = x(t). (2.26)

Therefore, it is more convenient to study the stability of the origin x = 0 than of a
particular point x = x*. Furthermore, the concept of stability related to the equilibrium
point can be formalized as it is done in (KHALIL; GRIZZLE, 2002). Based on this

reference, the equilibrium point x = 0 is
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e said to be stable if, for each € > 0, there exists d(¢) > 0 such that

|x(to)|| < = [|x(t)]| <&, Vt>0, (2.27)
e said to be unstable if it is not stable,

In addition to that, the system descrbied above is said to be asymptotically stable

if it is stable and d can be chosen in such way that
Ix(to)|l < = tle x(t) = 0. (2.28)

This mans that the states’ trajectory not only stay in the vicinity of x* = 0 but

they converge to it.

2.2.2 Lyapunov Stability

Now that the definition of stability is stated, it is necessary to answer whether
or not a system described by Eq. (2.24) is stable. In order to answer this question, it is
important to understand the technique developed by Lyapunov to assess the stability of a
system. In fact, the tehorem developed by Lyapunov show the sufficient conditions for an

autonomous unforced system to be considered stable or not.

First, consider an autonomous unforced system described by Eq. (2.24) and with
equilibrium at the origin f(x*) = 0. In his theorem, Lyapunov’s shows that a certain
class of functions, V(x) : S — R, can be used to determine the stability of such system
(KHALIL; GRIZZLE, 2002). In this case, S C R" is a domain that contains the point x*
and V(x) is continuously differentiable. In addition to that, V(x) must be a function such
that

V(0) =0, (2.29)

and

V(x) >0, VvVxeS§-—{0}. (2.30)

Under the conditions stated on equations (2.29) and (2.30), we have that if

vV 8Vd—x—a—vf(x)gOin S, (2.31)

V) =5 = ox @~ ox

then x = 0 is stable. Furthermore, if
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. ov. oVdx IOV

Vv R i 0inS —10 2.32
then x = 0 is asymptotically stable. In this work, we are not going to be worried about
the proof of this theorem, but the interested reader can find it in (KHALIL; GRIZZLE,

2002).

Now, let us try to understand what the theorem is actually saying. It first states
that a real-valued function V' (x) that is calculated using the state vector x of the dynamic
system should have value 0 in the origin, which is where we defined our equilibirium, and
should have positive values everywhere else. In addition to that, the derivative of V'(x)
must have a non-positive value for the system to be considered stable or a strict negative
value, everywhere but the origin, for the system to be considered asymptotically stable.
So, Lyapunov’s theorem is actually showing that to determine the stability of a system, it
is necessary to design and test functions V'(x) to meet the sufficient conditions that will

imply in stability or asymptotical stability.

Assessing one system’s properties using another function, might be really counte-
rintuitive to some. However, the function V' can, many times, be intuitively interpreted as
the energy of the system that is being studied. In that case, note that the energy might be
set to be the reference value in the equilibrium point and, therefore, it should be positive
everywhere else. In addition to that, if the energy of the unforced autonomous system
does not increase over time, it means that it is bounded and that the system is stable.
Moreover, if the energy decreases over time, it means that the system is asymptotically
stable. Of course, this is view is just a raw simplification of what is behind Lyapunov’s
theorem, but it might help us understand some other fundamental concepts described in

this work.

2.2.3 Linearization

Although many important properties can be analyzed using the theory behind the
study of dynamical systems, there are many more consolidated and robust tools developed
for the study of linear systems. In fact, many artifacts from linear algebra simplify the
analysis of systems with linear dynamics. Furthermore, the dynamics of nonlinear systems,
under certain conditions, can be unambiguously mapped into a linear space. Therefore,
the study of such nonlinear system can be simplified, what makes the linearization tool is

of great interest.

First, consider the unforced autonomous system described by Eq. (2.24), conti-
nuously differentiable and that it has its equilibrium point at x = 0. Then, because of
the continuity property (KHALIL; GRIZZLE, 2002), we can write that exists a point z

between the origin 0 and a general point x, such that
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o

f(x) —£(0) = I

(x—0). (2.33)

X=2z

However, since x = 0 is the equilibrium, £(0) = 0 and, therefore,

o

f(x)—a—x

X. (2.34)

X=2z

In addition, notice that Eq. (2.34) can be re-written as

X + <8f ) X. (2.35)
x=0 aX x=0

The first term of the right-hand side of Eq. (2.35) can be defined as

_of
COx

_of
ox

X=z

f(x)

of

— = A
ox x

x=0

: (2.36)

where A is a n x n matrix. The second term of the right-hand side of Eq. (2.35) can be

written as

of
ox
In (KHALIL; GRIZZLE, 2002), it is shown that g(x) tends to 0 when x approaches

the origin. This suggests that, around the neighborhood of the equilibrium point, the

) x = g(x). (2.37)

X=2z x=0

nonlinear dynamics of the unforced autonomous system can be linearly represented as

x(t) = f(x) =~ Ax. (2.38)

A similar result can be obtained by using Taylor expansion of function f(x) around
the equilibrium point (ASTROM; MURRAY, 2010). This is, in fact, a more common
approach to what it was shown in this work. In addition to that, the Taylor expansion
approach can be used to further extend the linearization process to forced autonomous
systems, as the one described in Eq. (2.23) (ASTROM; MURRAY, 2010). This process is

known as Jacobian linearization and yields the following approximation around the origin.

x(t) = f(x,u) ~ Ax + Bu, (2.39)
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where A is the n x n matrix defined as

of
A=— 2.40
aX x=0,u=u ’ ( )
and B is the n x r matrix defined as
of
B=_""— 2.41
du x=0,u=ueq ( )

2.3 LINEAR SYSTEMS

We therefore have just shown that even nonlinear systems with complicated dyna-
mics can be represented with linear equations under certain conditions. Now, let us analyze
the characteristics of these special representations and the simplifications we achieve by

working with linear systems. First, consider a linear system represented by

x(t) = Ax(t) + Buf(t), (2.42)
where A is the n x n state matrix, x is the n x 1 state vector, B is the n x r input matrix
and B is the r x 1 input vector. In addition, consider that x(0) = x*. If the linear system

is unforced, i.e. u = 0, we can further simplify the system so it can be represented by an

unforced linear system as described below.

x(t) = Ax(t). (2.43)

2.3.1 Solution of Linear Systems

In order to simplify our analysis, consider the dimension of our system to be n = 1.

In this particular situation, Eq. (2.43) becomes

11 (t) = anx(t). (2.44)

This differential equation has as solution

11(t) = 21(0)e™, (2.45)
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where e is Euler’s number. Note that if a;; € R is greater than zero, x4(t) grows indefinetely
with time while if it is negative, the solution decays with time until it reaches zero. If
ay; € C, then we have that our analysis should be done only for the real part of a;;. This

solution can be easily verified because

d

(J;l(())ea“t) = apz1(0)e™" = ay 2 (t). (2.46)

This approach is something that we can extend to look for the solution of (2.43).

In fact, consider that

A%t A%t
eAt:I+At+7+T+---, (2.47)
and note that
d A A%t A%t A3t Ar
%e :A+At+7+...:A I+At+7+?+... = Ae?t. (2.48)

It is important to observe that, in fact, we have just shown in Eq. (2.48) that
the expression in Eq. (2.47) is a candidate solution to the linear system in Eq. (2.43)
(DERUSSO; CLOSE; ROY, 1990). Indeed, the solution to the latter is defined as
x(t) = e'x(0). (2.49)
However, observe that if A is diagonal, then each state has an independent equation
like the one presented in Equation (2.44) and, therefore, the matrix exponential can be
calculated easily. In fact, note that we can use the eigenvalue decomposition to represent
this linear system of differential equations as a diagonal system.

%(t) = Ax = QAQ 'x. (2.50)

We can multiply the equation above by Q! in the left to obtain

Q'x(t) = AQ 'x. (2.51)

Therefore, if z = Q~'x(t), then we have that
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4(t) = Az. (2.52)

Note that each non-zero element of A, i.e. an eigenvalue, is associated with one
state of z and it is called a mode. Therefore, we can conduct a similar analysis to what
was done for the scalar case, concluding that the eigenvalues of A would be crucial for
determining the stability of linear systems. In fact, if all eigenvalues from A have their
real part to be less than zero, then A is said to be Hurwitz (KHALIL; GRIZZLE, 2002;
SONTAG, 2013; DULLERUD; PAGANINI, 2013; LIU; YAO, 2016).

2.3.2 Linear Systems Stability

Now that we have already discussed how to extract the linear representation of a
dynamic system and analyzed how to calculate its solution, it is necessary to talk about
the system’s stability. In the previous section, we realized that there must be a relation
between the eigenvalues of a matrix and stability of the system it represents. In order
to understand this relation, let us try to check the stability of a linear system using a

Lyapunov function. First, consider the existance of a symmetric matrix P such that

x"Px >0, Vx—{0}. (2.53)

Matrix P would be then called positive definite. Now, suppose that

AP+ PA =-Y, (2.54)
where Y is positive semi-definite, i.e., xTYx > 0 for all x — {0}. If such matrix exists,
then, it is possible to declare V(x) such that

V(x) = x"Px. (2.55)

Note that V(x) > 0 for all x — {0} and that V(0) = 0. In addition, note that

V(x) = ‘?t/ = X"Px + x"Px = (Ax)"Px + x"P (Ax),
=x"(ATP + PA)x = —x"Yx. (2.56)

Therefore, we have that V(x) < 0 and that the unforced linear system is stable
by Lyapunov’s conditions (KHALIL; GRIZZLE, 2002; SONTAG, 2013; DULLERUD;
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PAGANINTI, 2013; LIU; YAO, 2016). Note that if Y is positive definite, then V(x) < 0
and the system is considered to be asymptotically stable. This result means that in the
case of linear systems we can try to find a positive definite matrix P instead of looking for

a specific Lyapunov function V' (x).

In addition to that, it is possible to find many equivalent statements to the existence
of such matrix P, given a certain linear system characterized by state matrix A(KHALIL;
GRIZZLE, 2002; SONTAG, 2013; DULLERUD; PAGANINI, 2013; LIU; YAO, 2016).

However, the most interesting one is that

A is Hurwitz < 3 P > 0, such that ATP + PA <0, (2.57)

where the relation > 0 is true for a positive definite matrix, while < 0 is true for a negative
definite matrix. This means that, if A is Hurwitz, we can find some Lyapunov function
using P that proves the system stability. Therefore, we can verify linear systems’ stability

just by studying the eigenvalues of their state matrix.

2.4 PERTURBATION THEORY AND AVERAGING TECHNIQUE

Up to now, this work covered how to find all necessary attributes to verify the
equilibrium and stability of non-linear and linear systems. It is important to understand
that the previous analysis is based upon the assumption that a perfect model of a system
can be unequivocally obtained and that the analytical solutions for these dynamical systems
are easy to find. However, this is not the case (or required) in practical problems. In fact,
models and even controllers are simplified and analytical solutions can be approximated

in order to facilitate complex analyses in the real world.

Although, it is necessary to highlight that simplifications and approximations can
be done with the adequate mathematical rigor. As a matter of fact, there are important
analytical theorems behind the approximations based on what is asymptotic method
(KHALIL; GRIZZLE, 2002). The asymptotic method is the underlying concept for the
perturbation method and the averaging technique that are discussed in this section and it

is thoroughly studied in (SANDERS; VERHULST; MURDOCK, 2007).

The main goal in this section is to introduce us to techniques that allow us to:

i. approximate the solution of a differential equation describing a switching dynamical

system;

ii. draw important conclusions about the equilibrium and the stability of a switching
dynamical system by analyzing the equilibrium and the stability of its averaged

system.
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This section, is therefore, extremely important in modeling and designing efficient
control systems for high-frequency switching devices such as the voltage-sourced converter
studied here. Hence, let us first have a brief introduction to the perturbation theory in

order to understand and be ready to use the averaging technique.

2.4.1 Perturbation Theory

Suppose a non-autonomous dynamic system described by Equation (2.58).
x(t) = f(x,t,e), (2.58)

where ¢ is a small parameter, x(¢y) = n(¢) and f : R" x Rt x [—£¢,60] = R™ is a piece-wise
continuous function. The latter condition is important to this study since we are dealing

with power electronic switching devices.

The perturbation method aims to approximate the solution of the system described

in (2.58) depending on how small the parameter ¢ is. In fact, if € = 0, we have
x(t) = f(x,t,0), and x(to) = n(0) = no. (2.59)

Suppose now that the unperturbed system described in (2.59) has a unique solution
xo(t) for all ¢ in the time interval [to,t;]. Then, there exists € < gy and a positive constant
 such that (KHALIL; GRIZZLE, 2002):

Ix(t.) — xo(t)]| < Kle|, VE € [to,t]. (2.60)

As one can easily see, an error between the solution of the perturbed system and
the solution of the unperturbed system can be obtained. Furthermore, it is important to
highlight that, although we do not know the value of x, we know that for a sufficiently

small |e], the product k|e| will be small enough.

Furthermore, it is of great interest to create better approximations of the solution
x(t,e) to reduce the error to fit into a desirable tolerance, independently of the value of
e. In fact, it is possible to show that, under the conditions assumed for the system in
Equation (2.58) and supposing that n(e) and its N first derivatives are continuous over
the interval [—e¢,e0], an approximation can be derived by using a finite expansion of the
Taylor series (KHALIL; GRIZZLE, 2002), as shown in (2.61). Note that the first term of
the right-hand side of Equation (2.61) denotes the approximation for solution x(t,e), while
the second term, Ry, denotes the remainder of the approximation (KHALIL; GRIZZLE,
2002).

N-1

x(te) = > xu(t)e’ + eVRu(t,e), Vt € [to,ta]- (2.61)
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Moreover, it is possible to show that there exists € € [—€q,&¢], such that the error
of the approximation will be bounded by the term shown in Equation (2.62) (KHALIL;

GRIZZLE, 2002).

< kle|N, Vt € [to,t]. (2.62)

x(t,e) — kz_ X (t)e*

For a practical engineering problem, one may ask what is the real benefit of
calculating an approximate solution instead of finding the exact analytical solution of the
system in (2.58). The answer for this question lies in how much work it is necessary to
create a good approximation. The approximate solution will be effective if a small order
for the Taylor series approximation results in a small error and/or if the approximated
solution is considerably simpler than the original solution, x(¢,¢) (KHALIL; GRIZZLE,
2002).

The perturbation theory is much more dense than what was presented here. Howe-
ver, the important concept for this study, is the fact that approximations for solutions can
be derived with mathematical rigor. It is also important for the reader to note that the
Taylor approximation shown in Equation (2.61) and the error bound shown in (2.62) are
valid for all ¢ in the time interval [to,t1]. This means that, from what was shown in this
study, stability of the approximated solution will not imply in the stability of the exact
solution. This is because there is no guarantee that the error bound will be valid for all
t in RT, and therefore, there is no guarantee that the convergence of the approximated
solution will imply in the convergence of the original solution x(t,e) to a neighborhood of
the stable equilibrium point of the approximated solution. This problem will be further

discussed in the next subsection.

2.4.2 Averaging

The averaging method has many applications in the study of complex dynamical
systems, and thus, it is the object of study of many papers and books. The technique is
commonly applied to dynamical systems that can be written in the following standard

form (KHALIL; GRIZZLE, 2002; SANDERS; VERHULST; MURDOCK, 2007):
x(t) = ef(x,te), 0 <e <1, x(ty) = Xo, (2.63)
where f(x,t,e) is a continuous and T-periodic function, meaning that

f(x,t,e) =f(x,t +T). (2.64)

Note that the periodicity condition is related to the function itself and not to
the variables of the function. In addition, it is important to note that, in the standard

form, the function f(x,t,e) should be continuous. However, important results are obtained
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for piece-wise continuous functions in (MEERKOV, 1973) which are verified for power
electronic converters in (KREIN et al., 1990).

The averaging method will approximate the original solution of the system, say x(t),
by averaging the function f(x,t,e) at ¢ = 0, with respect to time ¢ (KHALIL; GRIZZLE,
2002; SANDERS; VERHULST; MURDOCK, 2007). In order to do so, it is necessary to
introduce the average operator, that will be used in the right-hand side of Equation (2.63).

The average equation can be defined as
1 rt
fo(x) = = / £(x,7,0)dr. (2.65)
T Ji—r

Note that if the average operation is defined as a limit with 7" tending to infinity,
there is no need for function f to be periodic. The new averaged system can then be
defined as the following autonomous system

d
%i@ = efay(X), X(0) = xo. (2.66)

Hence, as in a specific closed interval of time, it is possible to show the following

statement (MEERKOV, 1973; SETHNA; MORAN, 1968).

tim (1) = %(1)| = 0. ¥t € [t0. 7. (267)

for any positive constant x. This result is not going to be proven here but the interested
reader is referred to Theorem 1.3 in (MEERKOV, 1973) and Theorem A in (SETHNA;
MORAN, 1968). Notice that the previous result is an extension of Equations (2.60) and
(2.62). It is very important to observe that, as it is shown in Corollary 1.2 of Theorem 1.3
in (MEERKOV, 1973), when the parameter ¢ tends to zero, the time interval where the
limit is valid tends to [ty, + 00). This is extremely important for the study developed in
this work and this principle is going to be tested in Subsecao 3.4.3. In fact, this result
is used in (KREIN et al., 1990) and in (SUN; GROTSTOLLEN, 1992) to show that the
average solution of power-electronic-related systems will be arbitrarily close to the original

solution if ¢ is small enough.

In (KREIN et al., 1990), the Krylov-Bogoliubov-Miltropolsky (KBM) generalized
averaging approach is presented as an effective way to calculate a general approximation
of the original solution, like the one shown in Equation (2.61), using the average function,
in an iterative procedure. The KBM method can be used if better approximations are

needed for a fixed parameter €. The method is based on the following change of variables
x(t) = X(t) + ev1(t,X) + 20 (t,%) + - - - . (2.68)

where functions v are T'—periodic. The dynamical system will then be describe by the

following equation

X
—~
~+
~—
Il

eG1(X) + £2Gy(X) + 3G3(X) + - - - . (2.69)
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As it was shown in (2.62), the error for the approximation will be as small as
desired by increasing the number of terms used. In this work, the KBM approach is used

later in the averaging process for the voltage-sourced converter dynamic equation.
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3 MODELING METHODOLOGY

This chapter presents the mathematical modeling of power electronic components
and some important processes that are essential for their connection to the grid and stable
operation. The following sections will describe mathematically how to model the studied
converters, their switching behavior and modulation strategy, and, finally, the techniques
used to synchronize power electronic converters to the grid. Theoretical concepts that are
presented in Chapter 2 are used here for obtaining important mathematical models of the

studied power electronic devices.

3.1 PULSE-WIDTH MODULATION

In current power applications there are many switching strategies commonly used.
The pulse-width modulation, or PWM, is a one of the most common approach used to
modulate gate triggering signal in power electronic devices. This subject is well discussed
in many references such as (KASSAKIAN; SCHLECHT; VERGHESE, 1991; YAZDANT,
IRAVANI, 2010; MOHAN; UNDELAND; ROBBINS, 2003; BACHA et al., 2014; SUNTIO;
MESSO; PUUKKO, 2017). In this section, the basic concepts of the Sinusoidal Pulse-
Width Modulation (SPWM) are described, the relationship between modulation function
and the average of the switching functions is obtained and, finally, the harmonic content
of the PWM output is discussed.

3.1.1 Basic Concepts

The PWM is the switching strategy used in this work and it is fundamental for the
development of the voltage-sourced converter’s average model, covered in Subsegao 3.4.3.
The main principle of operation for a pulse-width modulation strategy can be observed in
Figura 1. The modulating signal, m(t), is compared with the carrier signal, ¢(t) to produce
the switching signals s;(f) and s4(f). The frequency of the carrier, also known as switching
frequency, or f,, is usually much higher than the rate of change of the modulating signal,
m(t) (YAZDANI; IRAVANI, 2010). It is important to note that the signal m(t) does not
need to be a sinusoidal function as depicted in Figure 1 and, in power electronic circuits,
this signal is used as a control output (KASSAKIAN; SCHLECHT; VERGHESE, 1991;
YAZDANTI; IRAVANI, 2010). The carrier signal is a triangular wave in the PWM strategy

used with a sinusoidal modulating signal.

The switching signals s;(t) and s4(t) are complementary to one another in order
to avoid the short circuit of the DC side. These signals can be assigned to have Boolean
values, such as true or false but it is rather usual to attribute integer values to their
output, such as 1 for true and 0 for false. In practical circuits their output is converted

into the proper gate voltages or currents levels that are necessary to turn a switch on
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Figure 1 — Basic circuit for generating PWM switching signal.
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Source: Author (2022).

or off. Considering that s;(t) and s4(t) have integer outputs, it is possible to write the

following equation to define them:

= [ =0 o)
0, if m(t) < c(t),

= [0 =<0 )
L, if m(t) < c(t),

In order to illustrate the PWM concept, let us consider a triangular carrier c(t)
with frequency f, = 1200 Hz and peak amplitude of 1 V and a sinusoidal modulation

signal m(t) as described in Equation 3.3 below.

m(t) = 0.9sin (2760t + 0.1) V. (3.3)

Note that the frequency of ¢(t) is 20 times higher than the frequency, f,, = 60, of
m(t). If both signals, ¢(t) and m(t) were compared in a circuit like the one depicted in
Figure 1, they would produce the switching signals s;(f) and s4(¢) as shown in Figure 2.

The curve in red is m(t), while the triangular wave in blue is ¢(t).

3.1.2 Average Over One Period

The average of the switching signals is crucial for the averaging of the power
electronic devices, which is absolutely necessary for stability analysis and control design.
The average is usually performed over one period of the triangular wave ¢(t), and commonly
called instantaneous average. First, let us consider the period of ¢(t) depicted in Figure
3. Note that in the upper plot, curve m(t), in red, is almost constant for the time where
the inequality c(¢) > m(t) holds. This approximation occurs only if the carrier frequency,

fs, is large if compared to the modulating signal frequency. Suppose that c(t) > m(t) is
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Figure 2 — PWM signal originated by comparing ¢(t) and m(t).
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Source: Author (2022).
true for (1 — d)T, where Ty is the period of ¢(t). The comparison of m(t) with ¢(t) would
result in sq(t) and s4(t) shown in central and bottom plots from Figure 3.

Note that, over one period of ¢(t), s1(t) is one for dTy, while s4(t) is one for (1—d)T5.

Hence, if both switching functions are averaged over one period Ty, it is possible to obtain:

t+Ts dT
/ s1(T)dr = dr = dTj, (3.4)
¢

0

t+Ts (1—d)Ts
/ su(7)dr = / dr = (1 - d)T,. (3.5)
t 0
In addition, note that
t+Ts
[ ) = si(mldr = [d— (1= D] T, = Tu(2d 1), (3.6)
t

Now, let us try to establish a relation between the value of m(¢) and the value of d
based on triangle symmetry. Observe Figure 4, it was made based on Figure 3.

By triangle symmetry, we can write the following equation

‘/peak - m(t) _ 2‘/peak:
(1—d)Ts T, '

(3.7)

that can be simplified into

m(t) = (2d — 1)Vyean- (3.8)
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Figure 3 — Behavior of m(t), s;(t) and s4(t) over one period of ¢(t).
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Figure 4 — Triangle symmetry for averaging switching functions over one period.
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Source: Author (2022).



45

It is rather common to set the peak amplitude of the triangular wave to be Vpeor = 1,
just as the one seen in Figure 3. Hence, over each period T of the carrier, it is possible to
write that

mi#) = 7{ / () = sa()] dr = 24— 1. (3.9)

The relation described in Equation (3.9) will be necessary to perform the averaging
of the converter and to draw the relation between the switching functions s;(t), s4(t) and

the control variable, which is the modulation index m(t).

3.1.3 Harmonic Content of the Output

In order to analyze the harmonic content of the output determined by the PWM it
is necessary to use Fourier Series. Consider the following function v(¢) as the output of a

PWM switching strategy:
v(t) = s1(t) — sa(t). (3.10)

This function v(¢), determined by the modulation index described in (3.3), has the

behavior shown in Figure 5.

Figure 5 — Example of output voltage v(t).
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Recall that the modulation function has frequency f,, while the carrier has a
different fundamental frequency, f;. The common Fourier analysis, however, can only
describe functions with one fundamental frequency. Therefore, another type of approach
is needed. In fact, the double Fourier series deals with that issue (BENNETT, 1933).
Suppose a modulation function m(t) as described in Equation (3.11) In addition, consider

that the carrier wave has angular frequency w, and initial phase 6.

m(t) = M cos (wmt + ) - (3.11)
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Then, the double Fourier series associated with v(¢) described by (3.10) and

generated with the modulation function (3.11) is given by equation (3.12) (BENNETT,
1933; BING; SUN, 2011).

V2 (t)

V1 (t)

v(t) = M cos (wnt + 0,,) i {nj (mﬂM) - sin (T) * COS [m(wst+00)]}+

= 2
+3 3 L, (e

m—l—n)
-sin | ——
m=1n=%1

] - cos [m(wst + 0c) + n(wnt + Qm)]}

Ug(t)

(3.12)

where .J,,(x) are Bessel functions of the first type. Bessel functions are divided into two
types, J,(x) and Y, (z). The first is known as Bessel function of the first type, while the
latter is known as Bessel function of the second type. These function types are the linearly
independent solution of the differential equation presented in Equation (3.13), where n is
a complex number (WATSON, 1944).
) 4 pa) + (2 ) f) =0 3.13)

d da? dx ‘ ‘

The solution f(z) = J,(z) is presented in Equation (3.14), while some examples
of that solution are presented in Figure 6. Note that J,(—z) = (—=1)"J,(x) (WATSON,
1944).

Ju() = 9 / 7 eiacostno) gg. (3.14)
st Jo

Now, back on the output of the PWM, note that the Fourier series representation
of v(t), presented in Equation (3.12), has, essentially, three components. The first term,
v1(t), represents the modulation signal, m(t), that appears in the output voltage v(t).
The second term, vy(t), represents the harmonic content coming from the carrier wave
component and its harmonics. The third and final term, v3(t), represents the harmonic
content coming from side-band components. As an example, consider the modulation
function described in Equation (3.3) and a carrier function with frequency f; = 1200 Hz.
The frequency spectrum of the PWM output v(¢) is shown in Figure 7. It is important
to note that many of the side-band components have negligible value. In addition, it is
important to observe that the PWM strategy induces the harmonic components to appear
in very high frequencies, making it easy to filter them without altering the fundamental
frequency component. This fact is one of the main reasons why the PWM strategy is very
common in industry applications (BING; SUN, 2011).
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Figure 6 — Example of Bessel functions of the first type forn =0, n =1, n =2 and n = 3.
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Figure 7 — Frequency spectrum of the PWM output.
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3.2 SPACE PHASOR AND REFERENCE FRAMES

This section discusses the modeling approach by using space phasor representation.
This modeling strategy is well described in (YAZDANI; IRAVANI, 2010) and many things

from this section can be found in that reference.

3.2.1 Space Phasor

The space-phasor approach is well suited for the simplification of three-phase system
models (YAZDANTI; IRAVANTI, 2010). The main idea of the approach is to be able to reduce
the number of equations describing the system and, therefore, simplify the control design
required. This approach can be seen as linear transformation, mapping one function in R?
into one function in C. In order to understand the mapping, let us consider a balanced
three-phase quantity (current, voltage or even time-varying inductances) represented by
Equation (3.15).

ha(t) =Acos (wt + 0y) ,

2
hb(t) =Acos (CL)t + 90 - ;) ) (315)
he(t) =Acos (wt + 600 + 2;) ;

where A is the amplitude, w is the variable’s angular frequency and 6y is the initial phase
displacement. Note that variables h,(t), hy(t) and h.(t) have a phase displacement of 27/3
between themselves. The space phasor can be obtained by the following transformation
matrix Ty, : R3 — C.

20 |
Tsph:§[690 &5 e IF], (3.16)

where e is the exponential function and j is the notation of an imaginary number. It
should be highlighted that the use of the constant 2/3 ensures an amplitude invariant

transformation. Thus, the space phasor can be represented by

ha(t) 5 ha(t)
T (1) = Topn | hu(t) =Sl ¥ eIF] ),
he(t) he(t)
ﬁ(t):i ha(£)e7® + by () 5 + ho(t)e 95| (3.17)

ga(t) gb(1) ge(t)

Recalling the Euler representation for a sinusoidal function, it is possible to write



49

that:
A, . ) ) ) A, ) )
ga(t) = 5 (ejwteﬁo + e*]‘*’te*ﬁo) o0 — 5 (ert6390 + e*JWte*ﬁO) :
A x o A ) . ) ) om
a(t) = 5 (ejwtejeoe I 4 emiwtem J90€J7> 5 3 (ejwtejeo + e—Jwte—Jﬁoe—J%> 7
A, o ) ) o o A, . ) o og
ge(t) = 5 (ej“tejaoej% + e*]w'fe’]eoeﬂ%) eIF = 3 (63“%390 + efj‘“te’jeoej%) )
(3.18)
Therefore, Equacao 3.17 can be rewritten as
— 2
h(t) = 3 [9a(8) + go(t) + 9(0)],
27 A A . . . on
— g 3= 5 ejwtejeo +3= 5 —jwte—J90 (630 + e—]% + ej%)} . (3'19)

Recall that ¢/ + ¢ 9% +¢i5 =0. T hus, the space phasor representation of the
system described in Equation 3.15, is:

T (1) = A et — peet, (3.20)

h

Note that h is a complex number that can be interpreted as a phasor. In addition,

it is important that the reader recall that

h = Acosfy+ jAsinb,. (3.21)

Note that the original wave functions h,(t), hy(t) and h.(t), can be easily retrieved

from the state phasor by using the following equation.

ha(t) = R{H (1)} .
— 27
ho(t) = R{ 7 (t)e 75}, (3.22)
he(t) = R {ﬁ(t)ej%”} .
Furthermore, it is crucial to describe how power is calculated in space phasors
domain. In order to do so, consider a three-phase, three-wire system where i,(t) + i,(t) +

i.(t) = 0. In the space-phasor representation, instantaneous active, reactive and apparent
powers are represented, respectively, by (YAZDANI; IRAVANI, 2010):

p(t) = %{27@)?*@)}, (3.23)
o) = S {;7(@?*@)}, (3.24)
s(t) = plt) + jalt) = 5 7 ()T (0), (3.25)

where the superscript (*) represents the complex conjugate.
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3.2.2 Harmonic Representation on Space Phasors

Now, suppose that instead of Equation (3.15), the three-phase quantities are now
represented with one additional harmonic component such as in Equation (3.26). Note
that the harmonic component has its frequency equal to a multiple of the fundamental

frequency w.

ha(t) = Acos (wt + 6y) + A, cos (nwt),
2nm

2
hy(t) = Acos (wt + 0y — ;) + A, cos (nwt — 3) ; (3.26)

2 2
he(t) = Acos (wt + 6y + ;) + A,, cos (nwt + ?) )

If the transformation from Equation (3.16) is applied in (3.26), it is possible to
obtain (3.27).

T () = heP + B o (8), (3.27)
where
ﬁn(t) = ?glejnwt + éngge_j””t, (3.28)
and
g1 =14 e 3 DF 4 oin-1ZF (3.29)

gy = 1 4+ DT | milnt D (3.30)

Note that the term % g167™* rotates in counterclockwise direction while the term
%gge_j”wt rotates in clockwise direction. This is the reason why reference (YAZDANTI,
IRAVANTI, 2010) names the first term “positive-sequence” and the second term “negative-

sequence”. Now note that:

e if n=3m + 1, where m = 1,2, ..., it is possible to observe that g, = 3 and g, = 0.
Hence, harmonics such as 4, 7" 10%" 13!, 16" ... rotate in counterclockwise

direction and, therefore, are considered “positive-sequence” harmonics;

o if n =3m + 2, where m = 0,1,2,..., it is possible to observe that g; = 0 and g, = 3.
Hence, harmonics such as 274 5t 8" 11t 14" 17" . rotate in clockwise direction

and, therefore, are considered “negative-sequence” harmonics;

e and if n = 3m, where m = 1,2, ..., it is possible to observe that g; = go = 0. Hence,
harmonics such as 3™, 6" 9" 12t 15" . do not rotate and, therefore, h,(t) = 0

for those components.
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In addition, note that the system presented in Equation (3.26) presents harmonics
that are multiple from the fundamental frequency w. However, as it was seen in Section
3.1, PWM strategies induces harmonics to appear in multiples of the carrier’s frequency
and in its side-bands. Therefore, the space-phasor harmonic representation that was
derived here is not well-suited for dealing with PWM-based switched models. Instead,
the representation here can be of great advantage for modeling systems where harmonics

which are multiple from the fundamental frequency appear.

3.2.3 of3 - Frame Representation

The ap-frame representation is focused on the fact that you can decompose the
space phasor representation into two orthogonal waves. Therefore, the transformation

matrix called T, maps a function from R?® into another function at R%. Consider that

T (1) = halt) + jhs(t). (3.31)
Therefore, we can write that
, halt
ha(t) + jhg(t)=§[ej0 &5 eI ()|,
he(t
ha(t)
ha<t>+jh5<t>=§[1 (—;ﬂ“f) (—i—ﬂf)] wo|. G3)
he(t

[h w] 2| _; _; halt

i ho(t) | - (3.33)
h (t)] 3 V3 V3

5 s L

Since, functions h,(t) and hg(t) are orthogonal, they can be represented through

cosine and sine functions. Hence, define

A(t) = Jh2(t) + 3 (1), (3.34)

and
cos (0(t)) = ha(t) _ ha(t)
A(t) h2(t) + h3(t) -
sin(0(t)) = el 7@ (3.35)

A() R2(t) + h3(t)
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Therefore, it is possible to write that

halt) = A(t) cos (6())

(3.36)
hs(t) = A(t)sin (0(t)) .

It is important to highlight that if and only if the three-phase variable set {h,(t),hy(t),h.(t)}
is balanced and free of harmonic components, A(t) is a constant and 6(t) is a ramp
function. As a consequence, the signals h,(t) and hg(t) becomes orthogonal sinusoidal
signals. Furthermore, according to (3.23) and (3.24), if a three-phase system is represented

in its af-frame equivalent, the power can be represented by

(1) = 5 [oalt)iat) + v3(0is(0)] (3.31)
() = 5 [ua(t)is() + vs(1)ia()] (3.38)

3.2.4 dq - Frame Representation

In dg-frame representation, another mapping will be adopted. In this case, the
reference frame rotates. The angular frequency is usually chosen to be equal to the
fundamental frequency of the quantities h,(t) and hg(t), reducing the the variability of
the result. First, let us analyze how to obtain the dg-frame representation from «af-frame.
In this case, the transformation Rg,[e(t)] will map the functions h,(t) and hg(t) from R?
back into R?, by using the following

- %

ha(t) + jh(t) = B (t)e 70 = [ha(t) + jhg(t)] e 7, (3-39)

where

(W) =2+ [ "wo(r)dr (3.40)

Note that this mapping actually reduces the variability of the a-frame representa-
tion by rotating the reference axis with the factor e 7). By separating real and imaginary

parts, we have that the transformation Ry,[e(t)] : R? — R? is represented by:

Raq[e(1)]

[hd(t)] ) {coss(t) sine(t)] {ha@)] | (3.41)

hy(t) —sine(t) cose(t)| |hp(t)

If the transformation from Equation (3.33) is used in (3.41), the result will describe

transformation T 4,[e(¢)] that maps from R? to R? as described below.

Tag[e(t)]
cose(t) cos <8(t) - 2;) cos <€(t) + 2;) ha(t)

ho(1) | - (3.42)
sine(t) sin (5(15) — 3) sin (5(75) + ) hc(i)

1
> D>
< a

/N I/~
~ ~
N—" ——
| I |

Il
W N
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Tn addition, note that
Rayle(t)]™" = Rag[—e(t)] = R [e(1)], (3.43)
and
Tygle(t)] ™ = Tag[—e(t)] = Thy[e(t)]. (3.44)
Moreover, if A(t) is defined as

A(t) = /13(t) + B2(8), (3.45)

the dq reference frame becomes
ha(t) + jhe(t) = A(t)e? =0, (3.46)

Note that, if ¢ is set to be equal to 6, then h,(t) = 0. Furthermore, the three-phase

power represented in dq reference frame is

p(t) = 5 [oalt)ialt) + va(1)ig(0)] (3.47)
alt) = 5 [ualt)iglt) + v (B)ial?)]. (3.45)

Now, let us turn our attention back to (¢). This angle, which is described in
Equation (3.40), varies with time and it is core principle of setting a rotating reference
frame. In fact, there are different ways to set function (¢) depending on the application.
For instance, in grid-connected converters, it is rather usual to set £(t) to be equal the grid
angle 0(t) = wt + 6. When doing so, the active power, which is described in Equation
(3.48), is proportional to i4(t) current while reactive power is proportional to i,(t). This

will be explored in a further chapter of this work.

3.3 RESISTOR-INDUCTANCE BRANCHES

This section describes the modeling of resistor-inductance branches which are

essential for the modelling of the converter’s dynamic.

3.3.1 Transformer

The first resistor-inductance branch that need to be described is the transformer. A
transformer is a very important device in a power system because it allows the connection
of two AC subsystems with different voltage levels. A simple single-phase transformer
is basically composed of two coils of copper wire wrapped around a single core made
of magnetic material (CHAPMAN, 2005; KRAUSE et al., 2002). The most famous
single-phase transformer model is the Steinmetz model (STEINMETZ, 1895), which is
represented by the circuit depicted in Figure 8.
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Figure 8 — Single-phase transformer circuit from Steinmetz model.
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The transformer circuit is composed of inductances L, and L, that represent the
leakage flux that does not flow through the core. Resistances r, and ry are placed to
represent copper losses due to Joule effect on coil winding wires. The parallel branch, here
called excitation branch, is made of two components connected in parallel, inductance
L,, and resistance R.. The former is placed in the model in order to account for the
effect of magnetizing the ferromagnetic core. The latter is a way to take into account
core losses due to hysteresis and eddy currents. Finally, the ideal transformer performs
the last connection to establish a relation between the the quantities in the primary and

secondary side. A more detailed explanation for each component of this model can be
found in (CHAPMAN, 2005).

Although the model is shown to be very accurate in many occasions, non-linearities
are not taken into account. The non-linear behavior occurs in the components represented
in the excitation branch and are basically due to the saturation of the ferromagnetic core.
These effects are briefly described in (CHAPMAN, 2005), but are thoroughly examined in
(ENRIGHT, 1996). However, the linear Steinmetz model is preferred for this work because

saturation effects are not very meaningful for control design purposes.

In addition to neglecting the saturation effects happening in the ferromagnetic core,
other aspects can be simplified. In fact, the excitation current, i.e. the current flowing
through the excitation branch, is very small if compared to the current flowing to the
ideal transformer. Therefore, the excitation branch can be omitted and the single-phase

transformer becomes the system depicted in Figure 9 below.

Figure 9 — Single-phase transformer circuit without excitation branch.
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Source: Author (2022).
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Furthermore, the inductor and resistor from the secondary side can be referred to
the primary by using the transformer ratio. This will make the single-phase transformer to
be modeled as a simple resistor-inductance branch, with i = r, +n?r, and Ly = L, +n?L,.

The simplified transformer is depicted in Figure 10 below.

Figure 10 — Simplified single-phase transformer model.
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Source: Author (2022).

The circuits presented in Figures 8, 9 and 10 represent the behavior in individual
phases only. The association of this circuits into three-phase schemes are well-suited for
modeling multi-phase banks of single-phase transformers, where each phase is magnetically
independent from the other (ENRIGHT, 1996). Furthermore, in studies involving transient
studies, often consider transformers with magnetically independent units (ENRIGHT,
1996; BICKFORD; HEATON, 1986). Three-limb transformers have a different type of
modelling that what was presented in this work up to now. This is because the different
magnetic fields will result in self- and mutual-inductances. These transformers are well
described in references (CHERRY, 1949; ENRIGHT, 1996; ENRIGHT et al., 1997) and

the representation of a multi-limb transformer is shown in Figure 11.

Figure 11 — Representation of a three-limb three-phase transformer.
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Therefore, if each phase is modeled by an independent magnetic circuit, a three-
phase transformer can be represented by equation (3.49). Note that, since three magneti-

cally independent units were used to represent the three-phase transformer, each phase



o6

has an independent equation.

p ia(t) 70 0 | |il(t) . Vpria(t) — NVsec.a(t)

% ib(t) = 0 _L}jt 0 ib(t) + f Upm',b(t) - nvsec,b(t) : (349)
. — . t
ie(t) 0 0 L—R;t ic(t) Uprie(t) — NUsec.c(t)

3.3.2 Grid Equivalent

In order to perform an adequate study of a device that is connected to the power
grid, it is necessary to represent the mains by an equivalent circuit. This is normally done
by using a Thévenin equivalent (DOMMEL, 1986). The Thévenin equivalent circuit is
basically a voltage source, Vg, connected to an equivalent impedance, Z;,. In three-phase
systems, the impedance can be represented by phase resistors connected to magnetically-
coupled inductors. The representation of such equivalent system is displayed in Figure
12 below. Note that the block is made to represent the three-phase magnetically-coupled

inductors.

Figure 12 — Thévenin equivalent in a three-phase system.
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Source: Author (2022).

If the system is symmetrical, the Thévenin equivalent system would also result in

a symmetrical equation, which is represented in equation (3.50).

Lo Lo L[] [-Ra 0 0 ][] [rastt) = vast®
Ly Ls Lpm 7 ()| = 0 —Ru 0 ()| + [voa(t) —vpa(t) | - (3.50)
Ly L, L io(t) 0 0 =Ryl |i.(?) Vo1 (t) — vea(t)

where Ry, is the Thévenin equivalent resistance, Ly is the equivalent self inductance, and
L,, is the equivalent mutual inductance.
3.3.3 Balanced Equivalent System Representation

Equivalent systems can be obtained with an association of the transformer equation

presented in (3.49) and the grid equivalent equation presented in (3.50). First, suppose
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that
i + 1 + 1. = 0. (3.51)

This equation is true for symmetrical balanced cases and for unbalanced cases with
no zero-sequence component, i.e., three-phase three-wire systems. Therefore, equation

presented in (3.50) can be written as:

Lsiia(t) + Lm(jt lin(t) +ic(t)] = —Runia(t) + va1(t) — va2(1),
Lsi’ib(t) + Lm(jt [ia(t) + ’ic(t)] = _Rthib(t) + 'Ub,l(t) _ Ub,g(t), (3_52)
Lsiic(t) + Lmi [ia(t) +ip(t)] = —Renic(t) + ver(t) — vea(t).

dt dt

Which can be further simplified into

(Ly — Ly,) jtz‘a(t) = —Rupia(t) + va1(t) — va2(t),

(Ls — Ly,) C;iib(t) = —Runtp(t) + vp1(t) — vpa(t), (3.53)
d . .

(Ly — Ly,) %zc(t) = —Rupic(t) + ve1(t) — vea(t).

Furthermore, if the transformer, described by (3.49), and the balanced symmetrical
Thévenin equivalent, described by (3.53), are connected in series, it is possible to write
that:

(Lo = L L) ialt) = = (Res + R ialt) + tpat) = moin(t),
(Ls — L + Ly) jtz'b(t) = — (Rin + Ry) is(t) + vpp(t) — nupa(2), (3.54)
(Lo = L+ 1) Siet) = = (Rt Re)elt) + e6) = noea(t).

If Leg=Ls — Ly, + Ly, Reqg = Ry, + Ry, then

d

Lquia@) - _Reqia(t) + Up@(t) — NVq,2 (t)’
d . -

Leygivlt) = =Rugiv(t) + vpa(t) = nvna), (3.55)
d . -

LeQ%Zc(t) = —RquC(t) + UP,C(t) - nqu(t)-

Since the system is considered to be balanced, it is possible to use the Space Phasor

theory presented in Section 3.2 to simplify equation (3.55) even further. In fact, by using
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Tspp transformation and selecting Ny = 79, it is possible to write the following space

phasor representation for equation (3.55):

d—

Loy 1 (8) = Ry T (1) + T () — Ty(t). (3.56)

At this point, it is important to highlight a partial conclusions that can be drawn
from this section. The connection of a three-phase transformer, built with individual
and independent magnetic structures per phase, connected to a magnetically coupled
three-phase Thévenin equivalent could be simplified into a simple resistor-inductor branch.
Moreover, the three-phase equation could be re-written as a single equation by using the
space phasor methodology. This fact actually makes the analysis on three-phase converter,

on Section 3.4, more simple and concise.

3.4 VOLTAGE-SOURCED CONVERTER

In order to describe a correct and adequate model of the VSC and of the BTB
converter, its fundamental components need to be well described. Therefore, this section
will start by describing switching device model, then it will introduce the switching and
the average model of the half-bridge converter. Later, the half-bridge converter model will
be extended to the voltage-sourced converter (VSC). The state-space approach will be
preferred due to the advantages that we can extract from that representation. Furthermore,
in this section, the reader will see analysis that are based in the discussion conducted in

all previous sections of this chapter.

3.4.1 Switching Device Model

One of the most common example of switches used in VSCs is the Insulated-Gate
Bipolar Transistor, or IGBT (BALIGA, 1979). Another example is the Integrated Gate
Commutated Thyristor, or IGCT. These switches should be fully-controllable, meaning
that both turn-on and turn-off moments are controlled by a signal in its gate. Besides, the
switch should be a reverse-conducting device, usually achieved by connecting a transistor
and a diode in anti-parallel (MILANO; MANJAVACAS, 2019). In this study, IGBT
switches are going to be used. They are well suited for voltage levels up to 6.5 kV and
moderate switching frequency (< 50 kHz) (KASSAKIAN; SCHLECHT; VERGHESE,
1991).

Figure 13 depicts a representation of a non-ideal switch. The diode D is an ideal
diode, meaning that it starts conducting when the anode-cathode voltage is greater than
zero. The DC-source connected to the diode’s anode, vy;, represents the forward threshold
voltage. It means that when a voltage greater than vy; is applied to the diode it will
be turned-on and a current 74 will flow through it. The value of vy may vary due to

the composition of the diode but it is typically very small, specially if compared to the
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Figure 13 — Diagram of a non-ideal IGBT.
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voltage applied over the entire switch (MOHAN; UNDELAND; ROBBINS, 2003). The
transistor denoted by S is also an ideal component, meaning that when the appropriate
voltage signal is applied in its gate, the transistor starts conducting current ¢,. The
DC-source connected in series with S represents the occurring on-state voltage drop. For
both components, the resistance r,, represents the voltage drop proportional to the current

that appear when those components are turned-on.

In this work, the on-state voltage drop vy, of the transistor S and the forward
threshold voltage vy of the diode D are negligible if compared to the voltage level of the
converters (YAZDANI; IRAVANI, 2010). Therefore these values are going to be ignored
and set to be vy, = vy = 0. For a more detailed representation, these values can be added
to the model. The resistances 7., ¢ and r,, p are going to be considered as having the
same value, r,,. Next section will describe how this resistance can be included in the

model.

3.4.2 Half-bridge Converter Switching Model

The half-bridge converter is a DC/AC converter and its operation is essential for
the study of three-phase VSCs. This converter is composed of two switching devices as
the non-ideal IGBT described in last section. Upper IGBT is composed of transistor S;
and diode Dy, while lower IGBT is composed of Sy and D,. In addition, two DC voltage
sources are connected to the DC terminal of this converter. The AC terminal is connected
to a AC voltage source through an RL branch. Figure 14 depicts the half-bridge converter

and all of its devices and connections.

Now, let us derive the mathematical equations that fully characterize the dynamic
behavior of the half-bridge converter. This analysis is made based on (YAZDANI; IRAVANI,
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Figure 14 — Half-bridge converter with non-ideal IGBTs.
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Source: Author (2022).

2010). First, note that the upper current and lower current can be described as

ip(t) = Gsw1(t) = igin (1), (3.57)
Zn<t> = _isw,4(t) + Z'di,4(t)' (358)

In addition, note that
i(t) = ip(t) +in(t). (3.59)

Now, let us make an analysis supposing that ¢ > 0. In this case, consider that S;
is on, while Sy is off. Both diodes Dy and D, are reverse biased and, therefore, they do
not conduct. In addition, Sy is off and, hence, i5,4 = 0. This will result in i,(t) = isy,1(%)
and i, (t) = 0. With respect to v;(t) we can write the following equation:

QMQ:vAw—%w—mmmﬂozfg—ww—nﬂmﬂw. (3.60)

Note that i(t) = i,(t) = isy,1(t). Therefore, the dynamic equation for the VSC
connected to the grid is

di(t
Mﬂ:RM@+Lm22+%@,
c . . Algw1(t
U; — VUsw — ’ronlsw,l(t) - Reqzswﬂ(t) + Leq ’ d;fl( ) + Ug(t),
Ve i1 (1)

5 Vsw — Ug(t) = (Req + ron) isw,l(t) + Leg

- (3.61)
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When S; turns off and S4 turns on, there is a moment where S; and D4 conduct
at the same moment for a brief time interval. This small time interval where both devices
are conducting is essential to the development of a non-ideal model for the half-bridge
converter. This effect will result in power losses that will be ignored in this study. After
that, ig,,1(t) = i,(t) will become zero and 4,(t) = i4 4. Therefore, the equation for v;(t)

becomes:

. Ude .
Ve (t) = v (t) — Vi — Tontaia(t) = —7d — Ua; — Tonlaia(t). (3.62)

Now, i(t) = in(t) = i4;4(t). Hence, the differential equation can be written as

_% — vgi — Vg(t) = (Reg + Ton) fasa(t) + Leg did;;(t). (3.63)
It is possible to perform a similar analysis for i(t) < 0 yielding
Ve(t) = Up(t) + Vo + Tonfain (t) = % + Vs + Tomiain (1), (3.64)
and
i = 0g(t) = = (e + Ton) aia (t) — Leqdid;i(t), (3.65)
for S on and S, off, and
Ve(t) = Un(t) + Vs + Toniswal(t) = —% + Vs + Toniswa(t), (3.66)
and
5 g = Uy(t) = = (Reg + Ton) i (£) = Leq‘w, (3.67)

for S; on and S off. As it was discussed in previous section vy, and vy are small, specially
if compared to vg./2 and, hence, let us assume vz, = vg; = 0. Under this reasonable

assumption, let us analyze the equations for v(¢) when S; is on and Sy is off

U(t) = % - Tonisw,1<t) = % - Tonip<t),
(3.68)
VUde . Vde .
o(t) = 5+ Toniaia(t) = ¢ = Tonip(0).

Therefore, both equations described the same identity for v(t) and the differential

equation describing the dynamic behavior of the half-bridge converter is

o | i (1)
o Vg(t) = (Reg + Ton) isw,1(t) + LeqT’
digi1(t)

- - (Req + Ton) idi71(t) - Leq
dip(t)
dt

dt ’

= (Req + Ton) ip(t) + Leg (3.69)
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Similarly, we can perform a similar analysis for v(¢) when S, is on and S is off,
resulting in

Vdec Vde

'U(t) = 5 = Tonidiél(t) = T4 - Tonin(t)a
2 ’ 2
(3.70)
Vde . Vde .
0(t) = =" + Toniswalt) = =57 = Tonin(0).
Which will lead to the following dynamic equation
Vde . dig; a(t)
—7 — Ug(t) = (Req + Ton) ZdiA(t) + Leq77
i g 4(t
= - (Req + 7,on) isw,4<t> - Leq : d74< >7
t
din(t
= (Reg + T'on) in(t) + Leg Zdi ). (3.71)
Now, consider the following switching functions
1, when S is on,
s1(t) = (3.72)
0, when S; is off.
and
1, when S, is on,
s4(t) = (3.73)
0, when S, is off.

Note that sq(t) + s4(t) = 1 and that s;(¢)s4(t) = 0 for all £. In addition, note that
ip(t) = i(t)s1(t) and that 4, (f) = i(t)s4(t). Hence,

o(t) = |95 = raniy (1) 51(0) + [~ = ria(®)] a0,

0(t) = 5 [s1() = s4(8)] = ron lip(E)s1(£) + in (B)ss(1)].

0(t) = 5 [s1() = s4(8)] = ron [i(1)s3(8) + ()53 (1)

0(t) = 5 [s1() = s1(8)] = Toni(t) [s1(8) + sa(E)]

0(t) = = [s1(t) = 5(8)] = Tuni(2): (3.74)

Which will lead us to the following differential equation

Vde

di(t)

) [51(t) — 54(t)] — vg(t) = (Reg + 7on) i(t) + Leqw. (3.75)
Finally, the model can be completely characterized by the following set of equations
dZ(t) (Req + Ton) . (1 Vg (t)
- P + = ()~ (0] 5
Vde .
o) =51 (t) = sa(t)] — reni(t), (3.76)

ip(t) = s1(t)i(t),
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The power can be divided into three stages: the DC power coming from the DC
source, or Ppo(t), the AC power observed in the terminals of the VSC, or P (t), and the
AC power in the terminals of the AC source, or Ps(t). For Ppc(t) we can write that

. . Ude . Vde .
Ppc(t) = vp(t)ip(t) + va(t)in(t) = —ilt)s1(t) — —ilt)sa(?),
Ppo(t) = Si(t) [s1() = sa(t)]. (3.17)

For P,(t), it is possible to derive that

Pt) = wi(®)i(t) = = [s1(8) = sa(t)]i(¢) = ron®(2),

PA(t) = Poc(t) — roni?(0). (3.78)

Note that the power loss Piyss(t) = Ppc(t) — Pi(t) is equal to r,,i%(t). Therefore,
using this representation, it is possible to account for losses in the converter and the
representation of the half-bridge is not fully ideal. For the value of P,(t) it is possible to
write that

P,(t) = v, (t)i(t). (3.79)

All these equations will correctly represent a switching half-bridge converter, but
the model can still be enhanced to represent other types of phenomenon (YAZDANTI;
IRAVANI, 2010) ignored in this study. In fact, the set of equations in (3.76) is considered
to be suitable for the analysis performed in this work. In addition, it is very important
to note, at this point, that there’s no explicit relationship between the modulation index
m(t), which is the only control variable in a half-bridge converter, and the state variables
(YAZDANTI; IRAVANI, 2010). Therefore, it is necessary to work on (3.76) in order to
express the dynamic behavior of the system as a function of its state and control variables.
This is the main motivation behind the average model for the half-bridge converter,

discussed in next subsection.

3.4.3 Half-bridge Converter Averaged Model

The averaging of fast-switching devices is a well known strategy to represent a
circuit’s dynamic behavior in a very convenient manner for control design (KASSAKIAN;
SCHLECHT; VERGHESE, 1991). The average representation of a circuit is well-suited for
the study conducted here, since closed-loop control systems often present great attenuation
for high frequencies (YAZDANTI; IRAVANI, 2010). Therefore, dynamics in low frequencies

are more relevant for the process of designing an adequate controller.

In the literature, it is possible to find the averaging process of power electronic
converters in different ways. References such as (KASSAKIAN; SCHLECHT; VERGHESE,
1991; YAZDANT; IRAVANI, 2010; MOHAN; UNDELAND; ROBBINS, 2003; BACHA et al.,
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2014; SUNTIO; MESSO; PUUKKO, 2017; SHARIFABADI et al., 2016; TEODORESCU;
LISERRE; RODRIGUEZ, 2011) develop the process in a less mathematically rigid manner.
In these references, the averaging of a variable is presented and the technique is applied to
the differential equation without showing any restrictions to the method. In this work,
however, the averaging process is carried out in a more rigid manner, as it is shown in
(KREIN et al., 1990; SUN; GROTSTOLLEN, 1992). This is done by taking into account

the theory presented in Section 2.4 and some results obtained in Subsection 3.1.2.

Hence, let us first consider the differential equation that was presented in (3.76):

dl(t) _ (Req + Ton) . Vde Ug<t)
A e U qu 1(6) = sa(0)] = = (3.80)

Note that this equation does not have the form required for the application of
the averaging process as it was shown in Section 2.4, i.e. & = ef(x,u,e). To apply the
averaging, a small parameter € needs to be introduced in (3.80) (KREIN et al., 1990). In
this work, this small parameter is set to be the switching period, i.e. ¢ =T and, to do so,

it is necessary to scale the time frame as shown in (3.81). Recall that Ty = é
T =t. (3.81)
By using the scale in (3.81), differential equation (3.80) can be re-written as

(KREIN et al., 1990):

di(t)  dt di(t) T  (Reg +10n)
dr  dr dt °° Leg

i(r) + 2”5; [51(7) = s4(7)] — UQL(:)} (3.82)

Note that T is, in fact, a very small parameter when the switching frequency fs is
very large. Therefore, it is possible to apply the averaging in equation (3.82), as described
in equations (2.68) and (2.69), yielding the following KBM equations.

j,(T) =i(7) + TV, (7,i(7)) + T2Vo(7,i(7)) + T2W3(7,i(7)) + -+ -, (3.83)
diz(:) = T,G1(i(7)) + T2G,(i(7)) + T3G5(i()) + - - - (3.84)

In order to make annotations easier to follow, let us omit the arguments of functions

U and G. If equation (3.83) is differentiated with respect to 7, it is possible to write

di(t)  di(7) AU,  ,d¥y _.d¥s
= T. T T cee .
dr dr 1 dr 1 dr tis dr + (3.85)

The left side of equation (3.85) can be replaced by the following equation.

A0 g { iy 1 e ) - () - 2

=T, {—W F(T) +T. U, + TSQ\II2 + .. } + % [s1(7) — sa(T)] — Ug(T)}
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In order to simplify the right-hand side of Equation (3.85) it is important to recall

that
av, dv, dV,di dU, d\lf
= —— = T. T? .
e i i ( WG+ T2Gy + ). (3.87)
where x = 1,2,3, - --. Hence, the right-hand side of Equation (3.85) can be re-written as:
di dv AV
Z(T)+TS Lkt 3 :{TSG1+T3G2+--~]+
dr dt dr
av, d¥, 9
+ T, [d +— (T.Gy + T2G2 + - )]‘F
AV dv
+ 7172 [ - 2 4+ d2 (TG1+T2G2+ )1 4+ (3.88)

Replacing (3.86) and (3.88) in (3.85) yields

T, {—<R+L“’”> [i(7) + ToWy + T2 4 -+ | + ﬁ € [51(7) = sa(7)] — ”gg)} -

A, L A,

=|1.Gy + T2Gy + - ]+T[d7 -

(T.Gy + T2Gy + - )‘|+

dVy, dWs,
T2
[ dr R di

(T.Gy + T2Gy + - )]+ (3.89)

To find functions G or ¥ one needs to separate Equation (3.89) using polynomial
identity. A large order KBM equation, i.e. solving (3.89) for a large number of terms,
would give as a result an incredible refined approximation. However, for this work, we only
need to find 1, which should be equal to the first order average of the dynamic system
described by Equation (3.80). Function ¥ is also calculated here, but for a different
reason. Hence, for term 75 it is possible to write the following equation:

(Reg + Ton)=, Ve 0,(7) v,
Leq Z(T) + 2Leq [81(7—) 84(7—)] Leq dT ‘

= G1(1) + (3.90)

Here, let us solve for Gy by taking the average of (3.90) over one period with
respect to 7 (KREIN et al., 1990).

1 gt 1 gt AV,
7_19/25_,115 == 7_:S/t_TS [Gl(l)m] dr. (391)

Recall that W, is Ty—periodic and that the average of s1(7) — s4(7) is given in
Equation (3.6). Hence

- (Req + Ton)—- (T)
G = —— 2d —1 . 3.92
() = el e (g - - 2 (3.92)
Note that replacing (3.92) in (3.90) yields
dv .
o v [s1(7) — s4(7) — 2d + 1]. (3.93)

dr 2L,
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Therefore
U (1) = —2 [ [s1(1) = sa(7) — 2d + 1] dT = — w(7) — —2 (24 — 1) (3.94)
(7 _2Leq (7 ne T = 2L, T 2L, T, .

where

w(r) = 7, when s;(7) =1, (3.95)

—7, otherwise.

Finally, by replacing (3.92) and (3.94) in equations (3.84) and (3.83), it is possible

to obtain the following approximate KBM equations

i(7) = i(r) + TW, (1) = i(7) + T, [ ;qu(T) - ;Ld:q (2d 1)71 , (3.96)
di(t) _ . (Req + Ton)- Vde vy(7)
D~ mon) =1 |- T i e a2 O

Note that, on (3.96), the first term describes the average value of the current,
while the second term describes a first order approximation of the current ripple over one
switching period T;. In addition, if Equation (3.97) is re-scaled to time frame again, it

gives as result the following equation

di(t)  (Reg+ rm)-.( 4 e V()

_ 3.8
dt L, Wor Lo (3.98)

where m(t) = 2d — 1 as it was shown in (3.9).

As one can see, Equation (3.98) is exactly the same equation obtained when applying
the less rigorous averaging process found in (YAZDANI; IRAVANI, 2010). However, in the
present work, it is possible to use perturbation theory to extract important conclusion from
the averaged system. In fact, since the KBM approach was used, an error bound between
the actual and the average system can be calculated using Equation (2.62). In addition,
note that Equation (3.97) is true within the frame of one time-period, but its re-scaled
counterpart, (3.98), is valid for every ¢t € R. Hence, using perturbation theory, it is
possible to guarantee that the error will remain bounded and stability of the approximated

solution will imply in the stability of the exact solution.

The KBM approach is also interesting because it allows the original signal i(t)
to be reconstructed from i(t) by adding functions ¥, as described in (3.83). In order to
show how this could be done, ¥, (7) was calculated as it is described in (3.96). In fact, a

comparison between average, approximate and exact solutions is depicted in Figure 15.

Note that the in the upper part of the figure, a comparison between solutions ()
and i(t) is presented. In the lower part, a comparison between the exact solution and
the approximate value presented in equation (3.96) is displayed. Note that the average

value is, indeed, smoother than i(¢) and that the approximation using (3.96) is very close
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Figure 15 — Comparison of average, approximate and exact solutions for current behavior.
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Source: Author (2022).

to the exact solution. In order to reproduce these results, the reader should consider a
system where R, + 7on, = 75.4mS), Loy = 2mH, vs(t) = 180sin (2760t) V', vg. = 200V,
m(t) = 0.9sin (2760t 4+ 0.1) V', and switching frequency equal to f; = 1200 Hz. The
reader should also consider initial state as i(0) = 3.499A and an appropriate small time

step to integrate both equations.

3.4.4 Averaged Three-Phase Two-Level VSC

The three-phase, two-level, VSC is presented in Figure 16 and it is basically
composed of three half-bridge converters associated to the same capacitor (YAZDANT,
IRAVANI, 2010). Transformer and grid equivalent resistors, which are presented in Sub-
section 3.3, can be added together with r,,, lumping them into R. On a similar way, it
is possible to obtain inductance L by lumping all magnetic effects from transformer and
the three-phase grid Thévenin equivalent presented in Sub-section 3.3. As it was shown
previously, all these effects can be represented by an RL branch like the one depicted in
Figure 16.

Moreover, it is possible to use the results from subsections 3.3 and 3.4.3 to describe

the three-phase, two-level, VSC in an average space-phasor equation as

Li?(t) = —37@) + Ed;(t)m(t) — (). (3.99)

where the average value of the DC bus voltage v4. can also be adopted by using the

KGM approach. Equation (3.99) can be transformed into a5-reference frame by using the
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Figure 16 — Diagram representing a three-phase voltage-sourced converter.
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¥ Cye == Vde (D

Source: Author (2022).

relation stated in (3.31), as follows.

L [iat) + ia(t)] = = R [iat) + jis(®)] + 2 [y (8) + jma(t)] -

dt
- [779,0c(t) + ].1_)97[3(75)] : (3-100)

By separating real and imaginary components from equation (3.100) it is possible to

assemble the dynamic equation system that represents the three-phase VSC in af-frame:

d- R- Vae(t) 1_

—ia(t) = ——ia(t) + Ma(t) — +Uga(t),

dt L 72L L (3.101)
d - R—, ’Udc(t) 1

£Zﬁ(t) = _Zlﬁ(t) + Tmﬁ@) - Z@gﬁ(t)-

Alternatively, it is also possible to transform equation (3.99) into dg-reference frame
by using relation stated in Equation (3.39). First let us consider the left-hand side of
equation (3.99).

[ia(t) + jig(t)] - ;Zte(t)Liq(t) + jis(t)de(t).

L9 {fialt) + Gia(0)] @0} = 1 2
(3.102)

t

However, if the angle €(¢) comes from a Phase-Locked Loop, its derivative is the

angular speed of the grid, w(t). Hence

th {Pd(t) +ﬁq(t)} eﬂ‘s(t)} — {th Fd(t) +ﬂq(z€)} — w(t)Liy(t) + jw(t)LEd(t)} pe(t)

(3.103)
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Furthermore, the right-hand side of equation (3.99), in dg-frame, becomes

L {jt [ia(t) + Jig(t)] — w(t) Lig(t) + jw(t)Lz'd(t)} =0 = —R [ia(t) + jig(t)] O+

Vac(t)
2

[ma(t) + jmqg(£)] O — [Bga(t) + j0(8)] 7.
(3.104)

+

Finally, by separating real and imaginary components from equation (3.104) it is

possible to assemble the dynamic equation system that represents the three-phase VSC in

dg-frame:
;ltid(t) _ —Jzz‘d(t) +w()iy (1) + z_’d;g)md(t) - iﬁg,d(t), 5105
Lault) = ~@ia) ~ i)+ D) — L)

Now, it is important to derive the equation which describes the transient behavior
for the DC capacitor. In order to do so, it is necessary to perform a simple analysis on the
power flowing through the converter. The power coming from the DC current source, Pj,,
is divided into two. The first term goes to the capacitor and it is named F,,,. The second
term goes to the converter and, if the VSC device is modeled as ideal, the power goes to

the AC system as P,,;. Figure 17 depicts this phenomena.

Figure 17 — Representation of the power flowing through the converter.
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Source: Author (2022).

The power balance equation can be easily obtained and it is given by

Pin = Pca,p + Pout~ (3106)

However, the power coming from the DC source can be written as

Pin = 14c(1)V4c(1), (3.107)
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where v4. is the averaged voltage over the DC capacitor denoted in Figures 16 and 17.

The power flowing through the capacitor, P, can be described as

Pcap = icap(t)vdc( ) [Cdcj Udc( )] ﬁdc(t). (3108)

In addition, the power flowing out of the VSC to the AC side can be derived from
Equations (3.38) and (3.48), and recalling that the voltage synthesized by the VSC can
be written as a function of the modulating signal m(t) and the DC voltage vg.(t). In
af-frame, it is possible to write

304c(t)

Pout = 4

[0 ()ia(t) + ma(t)is(t)] (3.109)
while in dg-frame, the output power can be expressed as

31_12:@@) [md(tﬁd(t) —i—mq(t)gq(t)} . (3.110)

Pout =

Therefore, if Equations (3.107),(3.108) and (3.109) are replaced in Equation (3.106),

it is possible to write the following equation.

oo ()5 (t) = [odc e >] clt) + 20 (o 0 0) + ma 3] . (3110

By dividing the entire equation by v, (t) and recollecting the terms, it is possible
to write the differential equation that describes the DC capacitor behavior in aS-frame as

shown below.

C(thﬁdc(t) =— 4é’,dcma(t)ia(t) - 4édcm5(t)55(t) + chc(lt> (3.112)

On the other hand, if Equations (3.107),(3.108) and (3.110) are replaced in Equation
(3.106), the following equation can be written.

d

’édc(t>77dc( ) lCdcd Udc( )] ,l—)dc(t) + 317dc(t) -

. [ma(t)ia(t) + mqy(1)ig(t)] - (3.113)

Once again, by dividing the entire equation by v4.(t) and collecting the terms, it
is possible to write a differential equation describing the dynamic behavior of the DC

capacitor, but in dg-frame this time.

d_ . 3 _ 3 . iae(t)
Z0ac(t) = = Cdcmd(t)zd(t) - @mq(t)zq(t) + dc*dc . (3.114)
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Hence, if the model of a VSC is required in aS-frame, it is possible to put Equations
(3.101) and (3.112) to write the system of equations described in (3.115).

< R Uae(t) 1_

ia(t) = =Fia(t) + 77 malt) = TU0alt),

jtiﬁ(t) = —Jziﬁ(t) + Ud;gf) mg(t) — }Jﬂgﬁ(t), (3.115)
3 7 idc<t>

If the dg-frame model is required, it is necessary to put Equations (3.105) and
(3.114) to write Equation (3.116).

d- R _ Dae(t) 1
d—zd(t) = —sz(t) + w(t)iy(t) + 5T ma(t) — ngyd(t),
D540) = ~o0)ilt) — ift) + Wi 1) - L0al0), (3.116)

_ . 3 3 = ch(t>
dtvdc(t) = 4Cd0md(t)zd(t) —4Cdcmq(t)zq(t) + Cr

Note that Equations (3.115) and (3.116) have multiplications between control
variables and state variables and, thus, both system of equations are considered to be
nonlinear. In addition, this study is focused on control using dg-frame and, therefore,
system (3.116) will be the only set of equations describing the VSC dynamic behavior

that will be considered from now on.

3.5 BACK-TO-BACK CONVERTER

The Back-To-Back (BTB) converter is very straight forward to describe. Two VSCs
are connected, back-to-back, having one common DC link and capacitor between them. A

BTB converter connecting two different AC systems is depicted in Figure 18.

If the two AC systems are independent, the mathematical dynamical model of each
VSC is rather simple to be obtained. Each converter can be modeled as an independent
VSC, as described in set of equations (3.105). Hence, the AC dynamic for each VSC in

dg-frame can be written as
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Figure 18 — Diagram representing the BTB-VSC interconnecting systems 1 and 2.
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Source: Author (2022).

d- Ri- o Bt .

aa(t) = = Taa (1) + i) + 2D (1) = L0000,

d- - Ry - Vge(t 1

iaa(t) = —rOiaa(®) — i0a )+ s (1) = a0,

i (3.117)

d - Ry- - Vet 1 _

%ng(t) = _i2d72<t) + WQ(t)ZqQ(t) + (21152)771(1/,2(15) — Evgjdyg(t%

d - - : Ve (1) 1

o2t = —wat)iaalt) = Fiaalt) + 5 7"mga(t) = 7 Ugga(t).

Note that there’s only one equation missing: the equation that determines the
dynamic behavior of the DC capacitor. In order to find such equation it is, once again,
necessary to look into the power flowing through the converter, as it was done with the
VSC. This time, the power flow through the BTB is depicted by Figure 19. Note that the

power coming out of VSC 1, P, going to the capacitor, P4y, and the power going out of

VSC 2, P, add up to be equal to zero.

Figure 19 — Diagram showing the power flow through the BTB-VSC.
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Based on this Figure, it is easy to write the following power balance equation
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Py 4 Pop+ P, = 0. (3.118)

The power flowing out of each converter can be written using Equation (3.110),
while the power flowing through the capacitor can be described, once again, by (3.108).

Hence, it is possible to rewrite Equation (3.118) as

?ﬂidi(t) (a1 ()i () + mg 1 (£)ig (1)] + Cdcjtvdc(t)] Vae(t)+
) [ 0aa®) + maalOinalt)] = . (3:119)

By dividing the entire equation by Cy.v4.(t) and collecting the terms, it is possible
to write a differential equation describing the dynamic behavior of the DC capacitor of

the BTB converter, in dg-frame.

d 3md71(t)—

’L'djl(t) o Sm%l(t)—, 3md,2(t)—_

3mq,2(t)—_
10, ig(t) — 10, iagp(t) —

1C,la2lt): (3.120)

Hence, the set of equations that describes the dynamical behavior of a BTB

converter can be written when putting together equations (3.120) and (3.117), as it is

shown in
jt%d,l(ﬂ _ —ﬁéd,l(w + w1 (i) + USCL(? mas (f) — Lllag,d,1<t),
iaa(0) = —r(0ian(®) — T2iqa ) + 2 g () = L-5p0000),
O balt) = —3%25’5) aa (1) - 3Té;£t>iq,l(t) - 3%zit)‘d,2(t) - 3%2”(,2(75),
Fiaa(0) = ~ i)+ n(0ia () + 2L imgalt) = 1-%paale),
jt%qg(t) = —ws(t)iga(t) — 2%q,2<t) + ”;CL(z)mq,z(t) - ;vg,q,z(t)-

(3.121)
3.6 PHASE-LOCKED LOOP

The controllers for all converters studied here are designed in synchronous reference
frame, i.e., dg-frame. In this coordinate system, the representation of quantities in d
and ¢ axis are expected to be stationary under steady state condition (ALMEIDA, 2011;
YAZDANI; IRAVANI, 2010). In order to be able to create such control systems, it is
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necessary to leverage some special devices called Phase-Locked Loop (PLL) systems.
Although PLLs are absolutely fundamental for the development of control systems in
dg-axis, the main purpose of the PLL system is to synchronize the quantities synthesized
by the converter to the respective quantities observed in the grid in which the converter is

connected.

Because of these important functions, PLLs have been extensively studied and their
implementation scrutinized in the past decades. Therefore, this section aims to briefly
describe one robust and easy-to-implement technique that has been quite successful in many
different applications. The rather simple PLL structure presented here is, indeed, shown
to reject distortions while detecting the correct positive sequence component. In addition,
the system has a robust performance even under unbalanced conditions (LIMONGI et al.,
2007).

The system presented here is the DSOGI-PLL (RODRIGUEZ et al., 2006) and it
has mainly two components: the Synchronous Reference Frame PLL (SRF-PLL) structure
and the Double Second Order Generalized Integrator (DSOGI). First, let us describe the

former.

3.6.1 Synchronous Reference Frame Based Design

This PLL’s first structure is actually its core. In grid-connected converters, the
SRF-PLL is used to find frequency and phase of the grid’s voltage. This allows the
converter to synthesize its quantities accordingly and in synchrony with the grid. The
mechanism behind its working procedure lies in the Synchronous Reference Frame or,
the dq space. As it was previously mentioned, the Park transform is designed in a way
that the axes move at the same speed as the voltage quantities. When this happens, the
decomposition of the voltage quantities becomes quasi-static and the representation of the
quantities becomes stationary. In addition to that, a compensator Cps(s) is used in order
to find the p angle used in Park transform in order to synchronize the ¢ axis in such way
that the voltage quantity is completely aligned with the d axis, leaving the ¢ component

null.

Figure 20 depicts the usual SRF structure. Note that the compensator is placed
on the ¢ axis in order to make it to be 0 in steady state. The compensator used in an
SRF can be as simple as a proportional-integral compensator that will drive the error (g

quantity) to zero.

In order to tune the parameters for the compensator is necessary to, first, understand

the dg quantities outputted by the af-block. They can be described as
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Figure 20 — Diagram representing a PLL based on Synchronous Reference Frame (SRF).
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Source: Author (2022).

(3.122)

where \7g is the amplitude of the grid’s voltage, w, is the grid’s angular frequency and ¢,
is the voltage’s fundamental component phase. The compensator should then be such that

it can track the following equation

p = Wt + ¢y (3.123)

If this is done successfully, the dg quantities become

Vgd = \79008 (wWgt + ¢y — p) = \A/gcos (0) = ‘Z,,

) R (3.124)
Vgq = Vgsin(wyt + ¢, — p) = Vysin (0) = 0.
If the controller’s transfer function is determined by
1
CP[(S) = Kpi (1 + ) s (3125)
Sdp;

and by using the linear approximation which considers that p ~ wyt + ¢,, we can write

the closed loop transfer function as

Gpr(s) = ' = . (3.126)
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All the details of this process and an in depth discussion on how to tune the
parameters of an SRF are available at (ALMEIDA, 2011). The main idea is that Eq.

(3.126) can be compared to the following transfer function

28w, s + w2

3.127
82 4 28wy + w2’ ( )

G(s) =

where w,, is the undamped natural frequency and £ represents the damping. Comparing
Equations (3.126) and (3.127), it is possible to obtain the following relation.

2w,
Kpi = :‘;57
9, (3.128)
T .= sz‘/g
pt ngl

It is also important to note that a good dynamic performance can be achieved with
¢ = 0.7 and w,, = 100 radians per second (ALMEIDA, 2011).

3.6.2 Double Second Order Generalized Integrator

The SRF-PLL described in the previous subsection performs really well when the
voltage is balanced and has very low distortion. However, this is not encountered in
practical scenarios. Especially considering the fact that voltage measured in the Point
of Common Coupling (PCC) presents distortions coming from the connection with the
VSC. Hence, it is desireable to add some robustness in the SRF structure. This is done by
adding two band-pass filters called Second Order Generalized Integrator (SOGI) in order
to filter fundamental components the o and [ quantities calculated from measured values.
The common structure for a SOGI is presented in Figure 21. Note that it has two outputs:
v, and qu;,z. The first is supposed to be the component of v,s in w, and the latter is

quadrature version of the first output, but lagging in 90 degrees.

The parameters w, and k can be set for the desired performance. Since this band-
pass system is used to filter the fundamental component of o and [ axes, it is reasonable
to think that w, should correspond to the fundamental angular frequency of the grid
w, = 2160 ~ 376.99. In addition, this band-pass filter could have an adaptive structure,
where w, comes from the SRF (RODRIGUEZ et al., 2006). In this present study, w, is
kept constant in w, = 377. Moreover, the performance of the SOGI filter can be improved
by choosing a good value for k. In (ALMEIDA, 2011) and in (RODRIGUEZ et al., 2006)
analyses are conducted and, in both, it is concluded that k& = /2 is, indeed, an appropriate

value for the gain.

Furthermore, if one SOGI is deployed in the o axis and another one in § axis,

then a positive sequence circuit detector can be easily implemented. The analysis for such
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Figure 21 — Diagram representing a Second Order Generalized Integrator (SOGI).
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circuit is presented in (ALMEIDA, 2011) and in (RODRIGUEZ et al., 2006) and only the

final result will be presented here. It is possible to demonstrate mathematically that

+
(03

(v, — av}) » (3.129)

(v — qvl) (3.130)

(%

N — DN —

Vs
where v and v;f are the positive sequence components in a— and J—axis, respectively.

3.6.3 DSOGI-PLL

The DSOGI-PLL (RODRIGUEZ et al., 2006) can finally be assembled by combining
the structures presented previously and its structure is presented in Figure 22. Note that
Double SOGI (DSOGI) architecture is used in order to filter the fundamental component
of a— and f—axis from the grid voltage. The outputs from DSOGI structure are used
to compute the positive sequence component in a— and f—axis which are then used
as input in the SRF-based PLL. This structure is found to be robust and to perform
well under different types of disturbances, unbalances and distortions (ALMEIDA, 2011;
RODRIGUEZ et al., 2006) and, therefore, it is the PLL structure used in this work.
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Figure 22 — Diagram for the Double SOGI-based SRF-PLL (DSOGI-PLL).
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4 LINEAR SYSTEMS AND LINEAR CONTROL

This chapter aims at using the outcomes from previous chapters, especially the
models for single VSC and BTB converter, in order to obtain linear models that are
appropriate for the control techniques that are presented here. To address this goal, the
chapter first presents the single VSC model together with its linearization, the control
strategy modeling and the final augmented state-space system, which condenses not only
the dynamic process of the converter but also the controller dynamics in one single linear
representation. Later on, the BTB converter undergoes the same procedure, resulting in
an augmented system representing not only the BTB converter but its controllers as well.
Finally, the chapter presents linear control strategies that have major importance for this
study, i.e., Linear Quadratic Regulators and LMI-based Robust Pole Placement strategies.
The outcomes of this chapter are promptly used in the following steps of this research

which are presented in the next chapter.

4.1 SINGLE VSC

This first section starts by using the single VSC converter model which is presented
in the previous chapters. The linearization procedure is succeded by the selection of control
signals, the description of its linear representation in state variables and the incorporation
of the controller into the system’s linear representation, resulting in an augmented system.
This augmented representation is then used in the controller design procedure that has its

fundamentals presented in the third section of this chapter.

4.1.1 Equilibrum and Linearization

Consider the system of dynamic equations that is presented in (3.116) and is now
re-written in (4.1). Note that the frequency w(t) is now represented as a constant value,
meaning that the frequency imposed by the grid is considered to be constant during the
analysis period or to have negligible variance. Moreover, note that the states are i4(t),
i,(t) and g.(t); the control variables are mg(t) and m,(t); the variables v, 4(t), 9,,,(t) and

i4.(t) are considered to be disturbances to the VSC system.

Falt) =~ ule) + wia(®) + D () — Laate),

d. . - R- Bae(t) 1_ .
Cétzq(t) = —wzdét) — Zia(t) + 5 I my(t) — ng,?(t()t,) (4.1)
G 0ae(t) = =g malt)ialt) — gemg(1)iglt) + chidc .

In last subsection the system model was shown to be nonlinear and, in order to

use linear controllers, it is necessary to linearize the equations. The nonlinear system
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can have its dynamic behavior approximated to a linear system in a region around the
equilibrium (KHALIL; GRIZZLE, 2002). Therefore, for the linearization process the value
of any variables in the linearized operation point is needed. In addition, any averaged
variable (state, input or disturbance) z(¢) can be written as the sum of its steady state

component Z with its small-signal variation Z(t).

Zt)=Z+z2(t) = 2(t) = z(t) — Z. (4.2)
Recall that
d _ d N d .
ZAl) =2 (Z+7) =% (4.3)

Also recall that, derivative terms are equal to zero at the equilibrium point, and,
hence, the states, inputs and disturbances can be calculated using only their steady state
values for obtaining the equlibrium point. By using an appropriate PLL system such
as the one described in Subsection 3.6.1, quadrature axis voltage V,, is equal to zero
while the direct axis voltage V, 4 is equal to the peak value of the wave in steady state
(RODRIGUEZ et al., 2006). The voltage over the capacitor V. is kept constant in the
operation of the BTB in a predetermined value. Furthermore, in this study, the reference
value of reactive power is set to be zero. Hence, the quadrature current I, is also equal to
zero as it is shown in Eq. (3.48) (YAZDANI; IRAVANTI, 2010). The initial DC current /4.
is the last variable that is needed for finding the equilibrium point and it must be known
beforehand. Hence, all the other missing variables can be calculated as listed in Eq. (4.4)
(SUNTIO; MESSO; PUUKKO, 2017).

o, Vet V) lacVacR+ V2,
d — ‘/dc ;
I, = 4[dc
d — 3Md’ (44)
2LIdw
M, = )
T Ve

Using all assumptions described above, the system can be linearized around a
determined equilibrium point given by grid and the converter’s parameters and the DC

bus current ;.. The resulting set of equations, written in a state-space representation,
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that shows the small-signal behavior for the whole system is shown in equation (4.5).

7 _R My 7 Vae
d td L w 2L td 2L 0 -
B S (U Y 71 I ISR R B Vae | |
dt a | — L 2L q 2L m
0 _3My _ 3Mg 0 D 31, 314 q
de 4Cqc 4C g, de 4C, 4C . (4 5)
0 —1 0 ide
+10 0 —1|| Uya
1 ~
Cue 0 0 Vg.q

4.1.2 Modeling Integral Action and Control Variables

The model is written using a synchronous reference frame and hence, all variables
that had a sine-like oscillatory natural behavior, such as average terminal voltage and
currents have now a stationary behavior. This means that, instead of using resonant
controllers which are able to meet sinusoidal references, the designed controllers must
be able to follow a stationary-value reference (YAZDANI; IRAVANI, 2010). According
to the internal model principle (LIU; YAO, 2016), just an integral action is sufficient to
meet a null steady state error condition. In this study, variables i, and 7. are going to
be controlled for meeting an appropriate reference. The g— axis current has its value
proportional to reactive power being injected by the converter at the point of common
coupling (YAZDANI; IRAVANI, 2010). The DC bus voltage indirectly controls the d—axis
current and, in relatively lower frequencies, such as the grid’s synchronous frequency, it is
the most appropriate variable to be controlled (SOUZA et al., 2021). The DC bus voltage
is usually controlled to have its value constant throughout the entire time, allowing a
stable and safe operation for the power-electronic converters. In addition, recall that there
are two controlled variables because there are two control actions, the modulation indices
mgq and 1my.

Consider now the g—axis control loop, where an integral action is used to reduce
the steady-state error to zero. The block diagram that represents this action is shown in
Figure 23 . Note that z; is the error between averaged quadrature-axis output current

reference value, 7; and the measured averaged value.

Hence, it is possible to translate the block diagram into an equation as in

*

s =g =1y — (I + ig). (4.6)

1 =1 q

where overscript ( * ) means the reference value. Similarly, it is possible to write an

analogous equation for the DC bus voltage as it is shown in Equation (4.7).

Ty = 626 — Uge = ?720 — (Vdc + 77dc)- (47)
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Figure 23 — Diagram representing an integrator control for the g—axis current.

Source: Author (2022).

Equations (4.6) and (4.7) can be rewritten with a state-space representation as it

is shown in equation (4.8)

14
d | 1 0 -1 0 ~
— = lg +
dt ) 0 0 —1 ~

Vde

. (4.8)

Lo | ir—1,
0 1| | 0 — Ve

Moreover, note that variables 7,4 and 94, are outputs of the PLL system and,

therefore, these variables that are normally associated with disturbances to the system

can be readily used in a feed-forward scheme. In fact, suppose that

- N 2
mg = uq + ﬁvg,m
(4.9)
- N 2
myg = Ug + V—vg,q.

C

in which @4 and @, are the auxiliary new control variables. Hence, the system becomes

more resilient against disturbances coming from the AC grid side, as shown in Equation
(4.10).

Lo 0 |r . 0 -+ 0 iin
Ve mq 1 ~
0 Y o0 0 =L 54
2L m L 9,
_8lg 3l | | T 1 0 0 by
L 4Cq4c 4Cq. | Cge 9.4 (4 10)
" Ve ' .
K 0 i, 0
0 Vac + 10 | ta
2L il
3l 314 L 79 1
L 4Cdc 4Cdc a Cdc

4.1.3 Augmented System

Now that the controller action is also written in state-space form, it is possible to

integrate its matrix equation into the system’s dynamic behaviorial equations. This is
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done by augmenting the original linear system presented in Eq. (4.5) for including Eq.
(4.8). In addition to that, it is also interesting to change the control variables to 4 and
t, from Eq. (4.9) in order to be less susceptible to disturbances, as shown in Eq. (4.10).
Therefore combination of all equations results in the augmented system matrix equation
shown in (4.11).

Avsc Xvsc Bysc

-4 - ~—
id —Bw oo 0] 4 e 0
~ Mq ~ . —
g lq —W —]\%; Sr 00 iq 0 ‘2/dLI i
~ _ 3M, 3M, ~ 31 314
G| T | = e 0 000 e |+ -R SR
T 0 -1 0 0 0| = 0 0 1
T 0 0 =10 0| 0 0
T kL A - (4.11)
’__/%_
O 0 O Vyvsc
—_—
00 (1) -1,
+10 0 e @;C:vdc
100 Ude
01 0

In addition to that, it is necessary to find an output matrix that represents the
quantities that are being measured in our system. For this particular study, all augmented

states can be directly measured and, therefore, the outputs can be determined as

Yvsc Cysc Xvsc
= = = ~—"
Yuse,1 10000 id
Yuse,2 01 00O Eq
Yvse,3 =0 01 0O f)dc (412)
Yusc,4 00010 T
Yvse,5 00 0 01 i)

where the subscript vsc is used to identify the set of matrices that is used for the single
VSC system presented in this subsection. Both Equations (4.11) and (4.12) are used in
posterior analyses for designing and tuning the VSC controller. In fact, note that it is

possible to write the system of equations shown in (4.13).

}.(VSC == A‘VSCXVSC + BVSCuVSC + FVSCVVSC7
(4.13)

Yvse = Cvscxvsc .
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4.2 BTB SYSTEM

Similarly to what is done with the single VSC system, this section aims at using
the BTB model presented in previous chapters for obtaining a linear model that is ideal
for the controller design. Besides that, a model for the integral action and the control
variables is done and presented in its state-space representation. The combination of these
two linear models results in an augmented system which is used in later chapters for an

appropriate controller strategy implementation and tuning.

4.2.1 Equilibrum and Linearization

For the BTB, consider the set of Equations (3.121) which is now rewritten as (4.14).
Note that angular frequencies from both BTB’s sides are now considered to be constant

and that the order of the equations is now restructured.

C;iid,l(t) = —}L%?d,l(t) + wrig(t) + U;(:L(f)md,l(t) - ;Ug,d,l(t),
Zji%l(t) — —wrigq(t) — ]jiiqi(t) + @gz(f)mq,l(t) - Lllvg,q,l( )
Fiaa(®) =~ iaalt) +nigalt) + 2 Dina(t) — - Tyaalt)
;iiq,z(t) — —niaa(t) — ?jiqg(t) + “;CL(z)mq,z(t) _ ;vg,q,z(t),
jtvdc(t) = —wid,l(t) - wiq,l(ﬂ - wldz(t) - wiqﬂ(ﬂ'

(4.14)

This set of equation can then undergo the same procedure applied to the lineariza-
tion of the single VSC, recalling that average values (denoted by a bar over the variable)
can be written as the sum of their steady state component (denoted by capital letter) with
its small-signal variation (denoted by the tilde over the variable). By using an appropriate
PLL system, quadrature-axis voltages V, ,1 and V, ,» measured at the point of common
coupling are equal to zero while the direct axis voltages V, 41 and Vj 42 are equal to the
peak value of the phase-to-ground AC wave in steady state (RODRIGUEZ et al., 2006).
The voltage over the capacitor V. is kept constant in the operation of the BTB in a
predetermined value, guaranteeing a safe operation for both converters. In addition, in this
study, the reference value of reactive power is set to be zero on both sides and, therefore,
the quadrature-axis currents I, ; and /, 2 are also equal to zero. Finally, by setting a power

reference Py, the steady state values of all other variables can be calculated as listed in
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(4.15) (SUNTIO; MESSO; PUUKKO, 2017).

L 2P
a1 = Wy
2Vga1 + 2R 1q,
My, = 2o i
B Vae
2011450,
M, = 2ot
T Va
. (4.15)
Vodz + \/Vg,d,z + 2V Ro Mg 14,
Mg, = ,
Ve
_ Maala,
4.2 My,
2L2]d 29
M,, = ——2" =,
2 Vdc

By using the principles of linearization that are presented in previous chapters
and recalling equations (4.2) and (4.3) that are applied to the single VSC example, it is
possible to find the linear system presented in Equation (4.16). Note that, in this case,
there are four control variables and five states. Grid voltage quantities can be interpreted

as disturbances to the system’s dynamics.

~ R R ~
1d,1 — I, w1 0 0 s | [
H _ _ R’ Mg A
d 11 w1 I, 0 0 2L, g1
i — _ Ry Maps | |7
dt 14,2 0 0 Ty W9 2o 14,2 +
5 _ _ R My,2 7
lq,2 0 0 w2 Lo 2Ly | |'e?
- 3Maq  3Mg1  3Mas  3Mg» ~
K2 s ic 1c i 0| [Vac]
Vae 0 0 0 —L 0 0
211 ~ I ~
v, mgqn 1 Vg,d,1
0 Sde 0 0 0 - 0
2L, ?;h L1 ,17
Vie q,1 1 9,q,1
+ 0 0 o 0 B +1 0 0 ~1I; 0 R
mq2 Vg,d,2
0 0 0 Vo 0 0 0o -+
2L> m Lo o
_3lgy 3lgn 3lan 3lgo q,2 0 0 0 0 9,4,2
4C 4C 4C 1C | L i
(4.16)

4.2.2 Modeling Integral Action and Control Variables

Once again, it is important to recall that the model is written using a synchronous
reference frame and, therefore, the designed controllers must be able to follow a stationary-
value reference (YAZDANT; IRAVANI, 2010). Once again, an integral action is sufficient
for meeting a null steady state error condition (LIU; YAO, 2016). In this study, the

reactive power of both sides must be kept under the desired condition, which means that
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ig1 and i, must be controlled. In addition, the voltage over the DC link, 94 must be
controlled to an appropriate constant value during the operation. Finally, it is necessary
to meet a reference value for power set to one of the sides of the BTB converter. If the
first side is chosen, the current Zdl must be controlled, which is the case in this study.
Therefore four integral actions are added for reducing steady state errors to zero and, once
again, the controller state variable is chosen to be the output of the integral block acting

on the error, just like in Figure 23. Hence, it is possible to write equation (4.17) for the

controller.
xl 1 0 0 ;‘” 10 0 0] [, — I
d|ae| |0 —10 A 01 0 0], —1I
dt |z | [0 0 0 -1 9o 0 1 of i, g | (4.17)
4 0 0 0 0 -1 ?2 000 1] v -V
de

*

where over-script ( * ) means the reference value. Once again, note that variables
corresponding to the voltage at the point of common coupling such as Uy4.1, Ug.q,1, Ug,d,2
and 7,49 are outputs of the PLL system. Thus they can be readily used in a feed-forward

scheme as it was shown for the single VSC system. Therefore

N N 2

mg1 = Ug1 + v Vg.d,15
dc

N N 2 .

mq71 = uq71 + ‘/;l Ug7q7]-7
c

(4.18)

- . 2

My = Uga + Vo Vg.d,25
dc

- N 2

mq’2 - uq72 + ‘/d Ug"LZ'

C

in which 4, and ,; are the auxiliary new control variables for VSC-1 and @42 and @,
are the new control variables for VSC-2. Hence, the system becomes more resilient against

disturbances coming from the AC grid side. In fact, note that the term

e 0 0 0 -+ 0 0
! Mg 1 ! Ugd,1
0 T 0 0 o 0 —& (O I
Mg 1 Vg,q,1
q9, 9,9,
0 0 S 0 S ) 0 —% 0 || (4.19)
Va md’2 1 Ug7d72
0 0 0 L 0 0 0 -2+
2 s 2 ~
C3lgy 3Iga 3lap 3l | |2 0 0 0 Vg,q,2
4C 4C 4C 4C | L J
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can be simplified into the term

e 00 0

1 U
Vie d,1

0 =0 0o ||
Ug,1

q7
0 0 S 0 |- (4.20)
V. Uq,2
dc

0 0 0 e ||

_31(171 _31[171 _3Id72 _3Iq72 uQvQ
L 4C 4C 4C 4C

4.2.3 Augmented System

Now that the integral action has its dynamic behavior written in state-space form
and the control variables are re-written, it is possible to expand the original system to
include these modifications. Hence, the augmented state-space system can be written as it
is shown in equation (4.21) below by combining equations (4.16), (4.17) and by noticing
that (4.19) and (4.20) are equivalent.

a1 &y 0 0 4200 0 0] lia
g e 0 3200 0 0] i
ia2 0 0 =& w20 0 0 0| i
78 i I P A T O R
at |Vl =T i e —ae e 00000 00|+
) -1 0 0 0 0 000 0|«
s 0 -1 0 0 0 000 0|z
o 0 0 0 ~1 0 00 0 0]
4 0 0 0 0 —1 00 0 0f |a
R - S (4.21)
Ye o0 0 0 | 0 0 0 0
0 e 0 0 | ,. (0000 -
0 0 3= 0 |To 000 01T
o 0o 0 Zd’l 0000 Zfl_ !
e K R I
0 0 0 o .7 1ooof| ™ ¥
o0 o o o |[tm2l o1 g oo LYV
0 0 0 0 0010
0 0 0 0 | 00 0 1]

In addition to that, the output matrix can, once again, be written as an identity
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matrix, meaning that all states can be measured, as it is depicted in Eq. (4.22).

Ybtb Cbtb Xbtb
s ] (100000 0 0 0] [ig]
Yotv,2 0100000 0 0fig
Yotb,3 00100000 0f|ig
Yutb,a 00010000 0f]ig
Yovs | =10 00 01 0 0 0 0] |7 (4.22)
Yntb.6 00000100 0] |z
Yotb,7 0 0O0OO0OO0OO0OT1TO0 0f]ax
Ynib,s 00000O0O0 1 0f]|ax
Yntb,9 00000000 1f[z

where the subscript btb is used to identify the set of matrices that is used for the BTB-VSC
system presented in this subsection. Finally it is possible to write the system of equations
shown in (4.23).

Xbtb = AbtbXbtb + BbtbUbtb + FbtbVbtb, (4.23)

Ybtb = CbtbXbtb-

4.3 LINEAR SYSTEM CONTROL

In the previous sections of this chapter, the basis to understand the criteria
necessary for stability of a system was established. In this section, however, we study ways
of controlling and stablizing systems. This section will be the cornerstone of the control

design proposed in this very document.

4.3.1 Observability and Controllability

The concepts of observability and controllability are extremely important for linear
multivariable control system design and, therefore, they can be found in almost every
control engineering book (ASTROM; MURRAY, 2010; DERUSSO; CLOSE; ROY, 1990;
ZHOU; DOYLE, 1998). Hence, there is no need to go in depth to each of these concepts
but to merely describe it and show a way to verify if a system is observable and/or

controllable. First, consider a linear system to be defined as

(4.24)
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where y(t) is the p x 1 output vector, C is the p x n output matrix, v(t) is the [ x 1
disturbance input, F is the n x [ disturbance gain matrix and x(t), u(¢), A and B are
the vectors and matrices already discussed in Equation (2.42). For observability and
controllability tests, the system is considered to have negligible disturbances and, therefore,

the disturbance input and its associated gain matrix are ignored.

Let us start with observability. A system is said to observable when all of its modes,
i.e. dynamical behavior that compose each state, are present in y(¢). This means that the
output vector is formed by a combination of the states and there is no state that is not
represented in the ouput. Hence, no zero columns must be present in the output matrix
C (DERUSSO; CLOSE; ROY, 1990) and in order to test if the pair (C,A) is observable,

it is sufficient and necessary that

C
CA
O =| CA? (4.25)

_CAn_l_

is full-column rank (ZHOU; DOYLE, 1998). Otherwise, the pair (C,A) is said to be

unobservable.

On the other hand, controllability is related to the impact that inputs have on state
variables. Loosely, a dynamical system is said to be controllable if, for any state variable
with specified initial and final conditions, there exists an input signal that can drive the
state from its initial value to its determined final value using a finite and specified amount
of time (ZHOU; DOYLE, 1998). It means that the influence the input vector has on state
variables does not vanish with time. Hence, controllability is a way of determining the
coupling between inputs and states or, even more specifically, the modes of the system
(DERUSSO; CLOSE; ROY, 1990). The input matrix B, then, cannot have zero rows in
order the system to be considered controllable. In addition, to be sure that the pair (A,B)

is controllable, it is sufficient and necessary that

C=[B AB A’B --- A"'B] (4.26)

is full-row rank (ZHOU; DOYLE, 1998). Otherwise, the pair (A,B) is said to be uncon-
trollable.

4.3.2 Full-State Feedback Control

The main control strategy that is used in this study is the full-state feedback. This

type of controller uses all the state variables in the feedback loop and it can be really
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valuable in systems where all the states need to be measured for other reasons, such as
protection. In these situations, there would not be any additional efforts in adding new
measurement units and the full-state feedback controller could be rather useful. In this

control strategy, the input signal is defined as

u(t) = Kx(t), (4.27)

where K is the 7 x n control gain matrix. Now, if we replace equation (4.27) in the first

equation of (4.24) we have that

x(t) = Ax(t) + BKx(t) + Fv(?), (4.28)

which can be further simplified into the following closed-loop system representation

AcL

x(t) = [A + BK]x(t) + Fv(t). (4.29)

where the subscript CL stands closed-loop. This means that the dynamics of the closed
loop system is determined by the eigenvalues of Acy. In addition, if the pair (A,B) is
completely controllable, then K can be found such that all eigenvalues of Acy, can be
arbitrarily placed in the complex plane (DERUSSO; CLOSE; ROY, 1990). By finding an
appropriate controll gain matrix K it is possible to drive the system to be asymptotically
stable and to behave dynamically according to some specifications that are previously
set. It is also worth mentioning that while the full-state feedback strategy does not alter
controllability, it can destroy observability of a system (DERUSSO; CLOSE; ROY, 1990)
because the observability pair to be tested would change to (C,Acy).

4.3.3 Linear Quadratic Regulators

This optimal control strategy is well-known and it concerns finding an input u(t)
that can drive the state vector x(t) to a small neighborhood of the origin (i.e. equilibrium
point) at some time instant (ZHOU; DOYLE, 1998). In addition to that, practical systems
do not have infinite amount of energy to spend on control actions. Therefore, it is also
necessary to minimize the energy spent on driving the system to equilibrium (ZHOU;
DOYLE, 1998). In addition to that, some performance requirements on the states might

also be desired.

The Linear Quadratic Regulator (LQR) problem, then, becomes to find input u(t)

that minimizes the function
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T
S t 0 t
J= / x(t)1Q X 4y (4.30)
o |u(t)| [0 R |u(t)
where the weight matrix for state variables Q is positive semi-definite and the weight matrix
for manipulated variables R is positive definite matrices (ZHOU; DOYLE, 1998; SON-

TAG, 2013; RODRIGUEZ-CABERO; SANCHEZ; PRODANOVIC, 2016; ANDERSON;
MOORE, 2007). Note that equation (4.30) can be re-written to become

J= /Oo (x"Qx + u"Ru) dt. (4.31)
0

Note that if the state vector is driven to equilibrium, then the first term inside the
integral, xTQx, would vanish, making .J to be finite-valued. In addition to that, note that
minimizing the second term inside the integral is to minimize the energy spent on the
control action trhoughout the process of driving the state vector to the equilibrium. In
addition, note that if we use a full-state feedback law and ignore the terms related to the

reference, we would end up minimizing the following function:

o

J = [xTQx + (Kx)TRKx] dt,
0

J— / ” (xTQx + xTKTRKX) df,
0

J= " XT(Q + K'RK) x dt. (4.32)
0

It is important to observe that the problem of finding the input vector u(t) was
now replaced by finding the control gain matrix K. This gain matrix can be tuned by
adopting different values to matrices Q and R. These matrices can be determined in such
way that the closed loop control system performs as desired. The entire problem is, then,

narrowed to finding K that stabilizes the closed loop state matrix Acr and minimizes

min / T XT(Q + K'RK) x dt. (4.33)
0

If the linear system described by the pair (A,B) is controllable, then it is guaranteed
that a gain matrix K exists such that the constrains listed above are satisfied (ANDERSON;
MOORE, 2007).

4.3.4 Robust Pole Placement

Strategies concerning pole placement are rather common in linear systems. However,

the strategy here discussed makes usage of Linear Matrices Inequalities or LMI (DUAN;



92

YU, 2013). For example, the matrix inequality regarding the stability of a linear system,
presented in Equation (2.57), is an LMI. This is because given A, we want to find a
positive-definite P such that

ATP + PA <0, (4.34)

or, in other words, we want to find P such that, for every x # 0, we have that

X" (ATP + PA)x < 0. (4.35)

In fact, consider that a full-state feedback control strategy is applied and disconsider

the terms related to the references. If that is case, we have that

AcL = A + BK, (4.36)

as we have already described previously. Hence, to guarantee that Ay, is stable, we would
neet it to be Hurwitz. As it is stated in (2.57), we then need to find a positive-definite P
such that

ALLP +PAcp < 0. (4.37)

If we replace (4.36) in (4.37) we would have that

(A+BK)"P+P (A +BK) <0,
AP + PA + K'B'P + PBK < 0. (4.38)

At this point it is important to highlight two interesting properties. One is that,
if you multiply one LMI by a positive-definite matrix, then the relation expressed in the
LMI will remain unchanged (LIU; YAO, 2016). The second property is that if P is a
positive-definite matrix, then its inverse P~! is also positive-definite (LIU; YAO, 2016).
Therefore, if we multiply Equation (4.38) by P~! on the left and on the right, we would
end up with

P'ATPP ' + P'PAP ' + P 'K'BTPP ! + P"'PBKP ! < 0,
P 'AT+ AP '+ P 'K'B"+ BKP ' <0. (4.39)
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Equation (4.39) is said to be a bilinear matrix inequality, because it has the
multiplication of two matrices that are actually unknowns of our problem (LIU; YAO,
2016). Therefore, in order to solve this issue, it is possible to make a variable change.
We can, for example, make that W = KP~!. In addition, let us use Py = P! to avoid

representing the inverse at all times. Therefore, (4.39) can be rewritten as the LMI below.

P;AT + AP; + WTBT + BW < 0. (4.40)

Hence, to solve this problem we need to find matrices P, positive definite, and
W, which satisfy the LMI in (4.40), making the closed loop system asymptotically stable.
However, sometimes, it is desirable that the stable system shows a dynamic performance
according to some predetermined specifications. This is the main principle behind pole-
placement techniques(DERUSSO; CLOSE; ROY, 1990), where the eigenvalues are chosen
based on the specifications and then matrix K is calculated based on the predetermined

eigenvalues.

However, in the present study, we want to determine a region in the complex plane
where the closed loop eigenvalues can be located. This type of state feedback control
is, therefore, concerned with finding a gain matrix K which guarantees that all poles
are located inside a region in complex plane, say S, while there exists positive definite
matrix P that satisfies the LMI in (4.40) (LIU; YAO, 2016). The solution can be found
by assembling a system of LMIs that must be solved simultaneously using an optimization
procedure (DUAN; YU, 2013; DULLERUD; PAGANINI, 2013). Consider a convex region
S in the complex plane in which all closed loop eigenvalues must be located. A typical
region § is represented in Figure 24. The convexity of the region is necessary in order to
guarantee that the system of LMIs can be solved using convex optimization techniques
(DUAN; YU, 2013). As one can see, the region is completely defined by three parameters:
a, 6 and p. Variable « is related to the real part of the smallest eigenvalue allowed or the
eigenvalue most closely located to the imaginary axis. This parameter is strictly related
to the smallest setling time ¢, allowed for the system (ASTROM; MURRAY, 2010). The
settling time ¢, indicates how much time is needed in order for the system to achieve its
steady state value after a disturbance. Variable 6 on the other hand is closely related
to the minimum damping coefficient allowed for this system. In fact, the damping ratio,
which is commonly used in the analysis of linear systems using the frequency domain,
and the angle @ are related through & = cos (ASTROM; MURRAY, 2010). Therefore, 6
is associated with the time needed for an oscillation caused by a disturbance to vanish
from the dynamic response of the system. The larger the damping, the faster a sinusoidal
oscillation vanishes. Finally, parameter p is related to the largest eigenvalue allowed in
the system. This value is usually used to limit how fast a system can respond to some

disturbance and, in addition, it can be use to filter fast dynamics coming from measurement
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systems or the original system. Limiting the maximum size of an eigenvalue is necessary

in order to provide robustness to the practical implementation of the control system.

Figure 24 — Convex S region and its parameters «, p e 6.
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Source: Author (2022).

In order to place all the closed loop eigenvalues inside a region characterized by
parameters «, p and 6, one must solve the set of linear matrix inequalites shown in

(4.41) (DUAN; YU, 2013). By finding the appropriate matrices Py and W, one can easily
calculate the gain matrix K = WP needed for the full-state feedback control system

design.

20P1 + APy + PIAT + BW + WTBT < 0,
I - AP; + BW

PAT+ WTBTH P

[ (AP; + P;AT+ BW + WTBT)sinf  (AP; — P{AT + BW — WTBT) cos 0 2o

(—AP; +P;AT—BW + WTBT)cosf) (AP;+ PiAT+ BW + WTBT)sin ¢
(4.41)

=<0,
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5 STUDIED TEST SYSTEMS AND CONTROLLER DESIGN

In this chapter, the two studied test systems have their simulation diagrams
presented together with parameters values used during implementation. These values are
also used to tune the different controllers. Besides that, this section also shows how the
simulation experiment is set-up on a digital environment and how the controller action
might be implemented. It is also important to recall that each of the test systems undergoes

a different type of simulation, depending on the stated objectives for the experiment.

5.1 SINGLE VSC SYSTEM

Consider the VSC interfacing an AC and a DC systems, as depicted in Figure
16 and recall the linear dynamic representation shown in equation (4.13). These are the

references for structuring the experiments that are conducted with the single VSC system.

5.1.1 Experiment Description

In this set of experiments, both control strategies, the LQR and the robust pole
placement, are designed and tested in the same system while it undergoes changes in the
power profile. The VSC interfaces an AC grid and a DC bus, which changes its power
demand. In the first moment, there is no power exchange between the DC and the AC
system and therefore P = (), but later the power injected by the DC side into the AC
grid increases until it reaches P]'**. After that, the DC side changes its power profile,
consuming —P™" from the AC terminal. Therefore, it is possible to say that the VSC
converter tested in this experiment and its control system should be able to deal with
a bidirectional power-flow between the DC bus and the AC grid. The values of power
adopted for the experiment are displayed in Table 1.

Table 1 — Input power values for the single VSC test system.

Description Value

Initial DC bus input power (P/m) ow
Maximum DC bus input power (P/**) 30 kW

wm

Minimum DC bus input power (P7")  -30 kW

Source: Author (2022).

5.1.2 System Description and Parameters

The diagram representing the single VSC system that is tested in this study is
depicted in Figure 25. The dashed lines correspond to control and measurement signals that

are used in the different devices that compose the test system and electrical connections
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are represented with a solid dark line. Note that, in this test system, the grid is considered
to be an ideal voltage source and, therefore, there is no RL branch between the point of
common coupling and the actual grid. The effect of a non-ideal grid is considered in the
BTB test system.

Figure 25 — Single VSC test system diagram.
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Source: Author (2022).

The system depicted in Figure 25 has its parameters listed on Table 2. These
values are extremely important for the numerical calculation of the linear system, needed

for designing both control strategies analyzed in this experiment.

Table 2 — Single VSC System Parameters.

Description Value & Unit
RMS Line Voltage at PCC (v ms) 220V
Peak Phase-to-Ground Voltage at PCC (‘Z]) 180 V
Grid Frequency (f) 60 Hz
Grid Angular Frequency (w) 376.99 rad/s
DC Bus Capacitance (Cy,) 2 mF
Capacitor Parallel Resistance (r,) 1 kQ
DC Bus Voltage (Vy) 400 V
Line Equivalent Inductance (L) 2 mH
Line Equivalent Resistance (R) 75,4 mS)
Switching Frequency ( f;) 20 kHz

Source: Author (2022).

The PLL system represented in Figure 25 is the same one described in Section 3.6.
There, it is stated that, for the SRF-based PLL controller, a good performance is achieved
with £ = 0.7 and w,, = 100 radians per second. By replacing these values, and the value of

VQ from Table 2, on equation (3.128) it is possible to obtain the values displayed in Table
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3. In addition, both SOGI filters used in the PLL have w, and k fixed at the values shown
also in Table 3.

Table 3 — Phase-Locked Loop system parameters.

Description Value
Proportional Gain from SRF’s controller (K,;) 0.7788 rad
Integral Time Constant from SRF’s controller (7,,) 0.0140 s
SOGI’s band-pass frequency (w;) 377 rad/s
SOGI’s gain (k) 1.4142 V/V

Source: Author (2022).

Note that, because the DC bus voltage is expected to be maintained under a
constant value during the entire simulation, the current I;. can be calculated from the
power value as

P,

[ = = 5.1
=3 (5.1)

where P, can be P Pmar or Pitit. Hence, by using the value of V. from Table 2 it is
possible to use equation (5.1) for calculating the maximum and minimum values of 74,

that the converter should be able to deal. Those values are summarized in Table 4.

Table 4 — Input DC current values for the single VSC test system.

Description Value

Initial input DC current (I7%) 0A
Maximum nput DC current (I7%*) 75 A
Minimum input DC current (I7%") -75 A

Source: Author (2022).

5.1.3 Control Design

Now that the system’s parameters are presented the control design process can
be performed by using the theory stated in previous chapters but especially in Section
4.3. The process to calculate the state feedback matrix for the LQR and the Robust Pole

Placement strategies is shown in this Subsection.

51.3.1 LOR

The first task in designing an LQR for the studied test system is to find a steady
state operation point in which the system is going to be linearized. The task however is
not trivial since the experiment involves bidirectional power flow and, therefore, a change

in operation point during the simulation, leading to a change in the linear system being
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considered for control design. Hence, it is necessary to pick a point that should be within
the input power range stated on Table 1 and its corresponding DC bus current range,
shown in Table 4. Because there is no definitive rule to chose such value, suppose a
design where P, = 20kW is chosen. By using equation (5.1), it is possible to find the
corresponding value for I;.. In addition to that, because the PLL is considered to be
effective the value of V, 4 is expected to be equal to ‘797 while the value of V, , is expected
to be 0 due to the appropriate tracking. Finally, the quadrature current reference 52 is
set to zero and, therefore, the corresponding steady state value of that variable is also

expected to be zero. These pieces of information are summarized in Table 5.

Table 5 — Equilibrium conditions for LQR design.

Description Value
Input Power (P;,) 20 kW
Input Current (/) 50 A
Tracked Voltage Value on Direct Axis at the PCC (V, 4) 180 V
Tracked Voltage Value on Quadrature Axis at the PCC (V) oV
Quadrature Axis Current (I,) 0A

Source: Author (2022).

It is possible to use the values listed on Tables 2 and 5 on equations (4.4) for
determining additional initial conditions needed for obtaining a linear system. These

variables are listed in Table 6.

Table 6 — Calculated steady state variables for LQR design.

Description Value
Direct Axis Modulation Index (My) 0.927109351546722 V
Direct Axis Current (/) 71.908094288386636 A

Quadrature Axis Modulation Index (M,)  0.271087128900045 V/

Source: Author (2022).

The information listed in Tables 2, 5 and 6 can be used to calculate the matrices
from equation (4.11). The result is shown in equation (5.2), where the subscript L on

matrices stands for LQR. Note that v} is kept constant and equal to 400 V, while 5; is



kept to be 0 A.
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Avsc,L Xvsc
iy [ 377000  376.9911 231.7773 0 0] | 7y
p iq —376.9911 —37.7000 67.7718 0 0| | 4,
pn Do —347.6660 —101.6577 0 0 0| | 94
I O —1 O 0 0 T
To i O 0 —1 0 0_ I i)
BVSC,L Fysc <52)
- - ’__/%_
10° 0 . 00 0 Vyse
0 10°| 7~ 00 0 i
Uu,
+ [—26970 0 [fi +10 0 500| | u5, — 400
u ~
0 0 e 10 0 Tde
0 0 | 01 0|

Matrices Ayger, and Byger, can be combined for assembling controllability matrix
Cuse,r.- When assessing its rank using Matlab, it is possible to check that C,s,r, is full rank,
meaning the pair (Aysc,L,Bvser) is fully controllable and it is possible to find a matrix
Ksc 1, using the LQR strategy. As it is shown in equation (4.33), it is necessary to have
matrices Q and R for designing an LQR-based controller. These are weight matrices and

their values is shown in equations (5.3) and (5.4).

100 0
010 0
Q=10 0 1 0 (5.3)
000 10 0
000 0 10°
R:FOO 0]. 6.4
0 100

Matrix Ky 1, is then calculated using function 1qr from Matlab, which has matrices
Avser, Bysern, Q and R as inputs, in that order. The result, which has been multiplied
by minus one for coherence with the mathematical representation adopted in this study, is

shown in Equation (5.5).

—0.0660 0.0002 0.1592 —3.5230

0.0015 —0.1092 0.0050 99.9379

—31.6031
—1.1141 |

Kvsc,L - [
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5.1.3.2 Robust Pole Placement

This LMI-based strategy can take into consideration a range of operation conditions
instead of using only one point as it was shown in the LQR design. This is done by using
the maximum and minimum values of P, from Table 1 for creating two sets of LMIs
that will be solved simultaneously. For that purpose, two sets of linear systems must be
calculated; one for P and, consequently, to I7%® and another one for P and 7.

However, both calculations will take into consideration the parameters that are listed in
Table 7

Table 7 — Equilibrium conditions for robust controller design.

Description Value
Tracked Voltage Value on Direct Axis at the PCC (V, 4) 180 V
Tracked Voltage Value on Quadrature Axis at the PCC (V) (%
Quadrature Axis Current (I,) 0A

Source: Author (2022).

For the condition where P, = P™" and, therefore, Iy, = I7"", it is possible to
calculate the variables from Eq. (4.4). The results are shown on Table 8. The subscript ;

is going to be used as a reference for this condition.

Table 8 — Calculated steady state variables for minimum power in robust controller design.

Description Value
Direct Axis Modulation Index (Mg min) 0.855955662603689 V/
Direct Axis Current (Lgmin) -116.8284811573242 A

Quadrature Axis Modulation Index (M i) -0.440432997760684 V

Source: Author (2022).

Now the information listed in Tables 2 and 8 can be used to calculate the matrices
from equation (4.11). The result is shown in equation (5.6), where the subscript R on

matrices was added as a reference to robust pole placement. Note once again that that v},
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and Ej; are kept constant and equal to 400 V and 0 A, respectively.

Avsc,R,l Xvsc
- - ~—
i —37.7000 376.9911 213.9889 0 Of | 44
; iq —376.9911 —37.7000 —110.1082 0 0| | i,
o | Dac | = |—320.9834 165.1624 0 0 0| Dae
) 0 ~1 0 0 0| | =
i) 0 0 —1 0 0 i)
Bvsc,R,l Fysc (56)
—_—— - —
10° 0| 00 0 Vyse
0 10°/7- 7 (00 0 i
u
+ 143810 0 {fl + (0 0 500| | v — 400
u ~
0 0 ! 10 0 ide
0 0 | 01 0

For the condition where P;,, = P]*" and I, = I;'*", the results are shown on Table

9. The subscript 5 is going to be used as a reference for this condition.

Table 9 — Calculated steady state variables for maximum power in robust controller design.

Description Value
Direct Axis Modulation Index (Mg maz) 0.940102030193714 V
Direct Axis Current (Igmaz) 106.3714328745725 A

Quadrature Axis Modulation Index (M mq,) 0.401010854484692 V

Source: Author (2022).

Avysc,R,2 Xvsc
i, ] [ =37.7000  376.9911  235.0255 0 0] [ iy
p iy —376.9911 —37.7000 100.2527 0 0| | %,
o | Be | =|-3525383 1503791 0 0 0| | @
T 0 -1 0 0 0 T
Ty 0 0 —1 00 Lo
) ) ) Bysc,r,2 Fysc o <5'7)
100 0] 00 0] __ v
0 10°|=——= Jo o0 o i
+1-39800 0 [“d +10 0 500/ | @5 — 400
o ol|Lt™l |10 o e
0 0 | 01 0|
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The pair Ayser,1 and Byger 1, and the pair Ayger2 and Byger,2 can be used
for calculating controllability matrices Cysc,1 and C,sc 2, respectively. By using Matlab for
assessing their ranks, it is possible to find that both are full rank, meaning that both pairs
are fully controllable and that one single matrix Kysc r can be found. For that purpose, it
is first necessary to determine the area S that will contain the poles for all the operation
points within the desired power range. The values for the parameters that define area S
are listed in Table 10.

Table 10 — Pole placement region information for controller design.

Description Value
Minimum attenuation (avs.) 129 st
Minimum damping (6,s.) 45 °
Maximum radius (pysc) 12566.37 s7!

Source: Author (2022).

Using the parameters listed in Table 10 and matrices Ayser,1; BvseR.1, AvseR 2

and Bygc R, 2, it is possible to write the following set of LMIs

2avscPI + AVSC,R,IPI + PIAvsc,R,lT + Bvsc,R,IW + WTBVSC,R,IT = 07
20005cP1 + Avse R 2P1 + P1Avsc R 2" + Byse r2W + WTByscr 2" < 0,

_pvscPI Avsc,R,lPI + Bvsc,R,lw <0
)
PrAvser1’ + WTByser1'+ —pPuscP1 |
_pvscPI Avsc,R,2PI + Bvsc,R,2W <0 (5 8)
, .
_PIAvsc,R,ZT + WTBVSC,R,2T+ _pvscPI ]
1\/Ivsc,l sin evsc Lvsc,l COs evsc <0
. )
_stc,l COs 6)fusc 1\/Ivsc,l S1n evsc_
Mvsc,2 sin evsc Lvsc,2 COs evsc <0
. )
_stc,2 COs 6)fusc 1\/Ivsc,2 S1n evsc_

where

1\/Ivsc,l = Avsc,R,lPI + PIAvsc,R,lT + Bvsc,R,IW + WTBVSC,R,1T7
MVSC,2 - Avsc,R,2PI + PIAvsc,R,ZT + Bvsc,R,2W + WTBvsc,R,2T7
Lvsc,l = Avsc,R,lPI - PIAvsc,R,lT + Bvsc,R,lw - WTBVSC7R71T)
Lvsc,2 = Avsc,R,2PI - PIAvsc,R,2T + Bvsc,R,2W - WTBVSC,R,ZTa
stc,l = _AVSC,R,IPI + PIAvsc,R,lT - Bvsc,R,lw + WTBVSC,R,lTa
stc,2 = _Avsc,R,2PI + PIAVSC,R,2T - Bvsc,R,2W + WTBVSC,R,2T-

(5.9)
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These LMIs can be simultaneously solved by using a Matlab Toolbox for LMIs and

appropriate commands. The final result is shown in Equation (5.10).

—0.0487 —0.0005 0.0549 —0.4255 —6.5895

_ . (5.10)
0.0033 —0.0544 0.0005 7.1143 —0.0629

Kvsc,R

5.1.4 Controller Implementation

In order to implement the controller, let us create a general approach where K.
represents both the LQR and LMI-based gain matrices that are calculated in previous

sections. In fact, consider that

Kvsc: kll k12 k13 k14 k15 . (511)
k21 k22 k23 k24 k25

Then, recall that

myg = Md + Thd, (5 12)
mg = M, +m,.

Since the small signal variation comes from the variable exchange done in Eq. (4.9),

it is possible to write that

mg = Mg+ %@g,d + g,

e 5.13

mg = M, + 2T, + . (5:13)
q a7 v, Y94 q

Recall that steady state value of v, 4 is ‘79 while the expected value of v, , under

steady state is 0. In addition, recall that uyse = KyseXvse. Hence

mq = Mg+ % (Ug,d — ‘7;;) + k11ig + Kiaig + k130ae + k1amy + k157, (5.14)

mg = My + Vldcvg,q + ko1ig + k22€q + kozUge + koa1 + kosTa.
By recalling equation (4.2) it is possible to write

mqg = Mg + %a (Ug,d - ‘A/g) + ki1 (iq — 1g) + ki2(ig — 1) + k13(0ge — Vae) + k1ay + k15,

my = Mq + %dc’l]g,q + k?21 Gd — [d) + kQQ(gq — [q) + k23<6dc — vdc) + k?24.7)1 + k25ZL’2.
(5.15)
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If the integrators are to be implemented digitally, it is possible to write that

z1[tr] = 1 [teo1] (tr — temr) = (0[te—1] — iq[tr—1]) Aty

(5.16)
Tolte] = wolth—1](tr — tho1) = (Vg lth—1] — Vac[te—1]) Aty
where Aty is the time step used by the controller. When using P/ = (), the values from

Table 2 and equations (4.4) it is possible to numerically implement the controller as

mg = 0.9 + 0.005 (vg,q — 180) + ki1ig + K12ty + k13(Vae — 400) + kyazy + k1572,

mg = 0.005’097(1 + k’glgd + k??gq + k23(1_}dc — 400) -+ ]{?24371 + k25ZL‘2,
(5.17)

and

T [tk] = —Eq [tk_l]Atk,

a[t] = (400 — Daelty_1]) Aty (518)

5.1.5 Experiment Set-Up

The experiment is assembled in PSIM®, for two simulations, each testing one of
the controllers developed in this section. The diagram that shows the different components
of the simulated system is shown in Figure 26. Note that the control is executed by a C
Block component, in the bottom right part of the diagram. The simulation step used for

this system is tgep, = 1 ps.

The entire system is simulated for 1.5 seconds. At first, the input power P;, changes
instantaneously from 0 to 20 kW at instant ¢ = 0.2 s. Later on the input power changes,
again instantaneously, from 20 kW to 30 kW, or P at t = 0.5 s. From ¢ = 0.8 s
tot =12 s, P, changes from P/ to P/"" i.e., —30 kW in a ramp. This change in
power profile allows us to have insights on the proposed controllers’ performance under a

bidirectional power flow.

5.2 BTB-VSC SYSTEM

Now, consider the BTB-VSC that performs the interface of two independent AC
systems, as depicted in Figure 18 and recall the linear dynamic representation shown in
equation (4.23). The next subsections add the sufficient information about the performed

experiment in the studied test system.
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Figure 26 — Simulation diagram for the single VSC test system.
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Source: Author (2022).

5.2.1 Experiment Description

In this experiment, the controller is designed using the robust pole placement
strategy and the system is tested under two different conditions. The first condition is the
change in power flow that is seen in the single VSC test system. Here, the same values of
power shown in Table 1 are considered and, therefore, there is a bidirectional power-flow

between both AC systems. The power values are shown in Table 11.

Table 11 — Input power values for the single VSC test system.

Description Value

Terminal 1 Maximum Power (P]"*) 30 kW
Terminal 1 Minimum Power (P™") -30 kW

Source: Author (2022).

The second condition that is tested in this experiment is a change in the parameters
that compose the grid. This is done in order to simulate a disturbance that occurs in the
power grid, here represented by the AC system connected to terminal 2. Any disturbance
that occurs within the equivalent power grid would affect the values of resistance and
inductance that compose the RL branc connecting the voltage source to the PCC. The
details about the values that are used in this experiment are discussed on the next

subsections.
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5.2.2 System Description and Parameters

The BTB-VSC system that is tested in this study is depicted as a simplified diagram
in Figure 27. Once again, dashed lines correspond to control and measurement signals
while electrical connections are represented with a solid dark line. Note that terminal one
is directly connected to a voltage source via the RL filter, while terminal two is connected
to a power grid, represented by an ideal voltage source in series with an RL branch, as it

was discussed in Chapter 3.

Figure 27 — BTB-VSC test system diagram.

iabc,l iabc,Q
Ug,1 «— Vi1 A V2 — Vg2
VSC 1 |« VSC 2
I T |\—|_ T I
! Ll Rl : + : Rvsc L'usc | Rg Lg
| - . L . - |
1 PN | i 2
PLL}------ [abe 7] . [abeqk--=---- PLL
— PWM | ! | PWM —
qu:l w1 : 'dq,l 7T U|dc ES :idq,2 w2 /quﬂ
I Mabpe,1! !
I X v X I
I

9 ¢
| SIS ooIoIC ] Controller [ 77777777 77T Tl !

Source: Author (2022).

Note that equivalent resistance and inductance in terminal two are divided into
VSC and grid values. The VSC value is fixed and it is equal to the ones at terminal one.
On the other hand, grid values are considered to be within a certain range. These pieces

of information are summarized on Table 12.

Table 12 — BTB-VSC system parameters.

Description Values
VSC Terminal Equivalent Inductance (L) 2 mH
VSC Terminal Equivalent Resistance (Rys.) 75 mS)
Grid Equivalent Inductance Range (L) 0.2 2] mH
Grid Equivalent Resistance Range (R, [5 75] mS

Source: Author (2022).

The remaining parameters for the system depicted Figure 27 are listed on Table
13. Once again, these values are used for the numerical calculation of the linear systems
which are needed for designing the assessed control strategy. Both PLL circuits that are
employed for synchronization with systems at terminals one and two are designed following
the same principle that is presented in the single VSC test system. Both PLL are also

tuned using the same parameters as the ones shown in Table 3.
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Table 13 — BTB-VSC system parameters.

Description Value
RMS Line Voltage at both PCC (v yms) 220 V
Grid Frequency (f) 60 Hz
Grid Frequency (w) 376.99 rad/s
DC Bus Capacitance (Cy.) 2mF
Capacitor Parallel Resistance (r,) 1 kQ
DC Bus Voltage (V) 500 V
System 1 Equivalent Inductance (L) 2mH
System 1 Equivalent Resistance (R;) 75 mf)

System 2 Equivalent Inductance (L = Lyse + Ly) 2.2 4] mH
System 2 Equivalent Resistance (Ry = Rysc + R,) [80 150] m&2
Switching Frequency for both VSCs (f;) 20 kHz

Source: Author (2022).

5.2.3 Control Design

As it was already discussed, the LMI-based robust pole placement strategy assessed
in this study can take into consideration a range of operation conditions. The different
operation conditions that are studied here take into consideration the variation of three
parameters: power reference in terminal one, grid resistance and grid inductance. Since
each parameter has a maximum and a minimum value, the total number of possible
combinations is 23 = 8. Therefore, eight different linear systems should be considered and

their description is summarized in Table 14.

Table 14 — Combination of operating conditions.

Condition Terminal One Grid Grid
Number Power Resistance Inductance
1 pjrin R;]”” LZ””
2 pyen Ry Ly
3 pen Ry Ly
4 pen Ry Ly
5 pprar Ry Ly
6 pprex Ry Ly
7 P{?’Laﬁ R;ﬂaﬁ? Lgnn
8 P{nam R;nax Lgnax

Source: Author (2022).

The linear matrices are calculated taking into consideration the parameters for
the different combinations described in Table 14, the values on Table 13 and the initial
conditions stated on Table 15. Recall that values related to measured voltages are outputs

from the PLL circuit, while quadrature current reference values are always set to zero.
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Table 15 — Equilibrium conditions for BTB controller design.

Description Value
Tracked Voltage Value on Direct Axis at Terminal 1 (Vj 41) 180 V
Tracked Voltage Value on Quadrature Axis at Terminal 1 (V1) oV
Initial Qudrature Current in Terminal 1 () 0A
Tracked Voltage Value on Direct Axis at Terminal 2 (V} 42) 180 V/
Tracked Voltage Value on Quadrature Axis at Terminal 2 (V) oV
Initial Quadrature Current in Terminal 2 (7, ) 0A

Source: Author (2022).

Combining the information available in all Tables, it is possible to solve the set
of equations (4.15) for all eight cases and to assemble the pair (Aptp,Bpen) for each case.
The matrices resulting from the calculation procedure performed for each case are omitted
but the process is analogous to the one presented for the single VSC controller strategy
based on robust pole placement via LMIs. Now that matrices are ready, it is necessary to
determine the regio S in which the poles should be all located. The parameters that allow

such region to be assembled are summarized in Table 16.

Table 16 — Pole placement region information for BTB controller design.

Description Value
Minimum attenuation () 121.2 s71
Minimum damping (Gp) 50 °
Maximum radius (o) 12566.37 s+

Source: Author (2022).

By using the pair of matrices (Aptp,Bptb) assembled for each case and the para-
meters available on Table 16, it is possible to assemble the eight sets of equations (4.41)
that are solved simultaneously. Once again, they are solved using a Matlab Toolbox for

LMIs and appropriate commands. The final result is shown in (5.19).

Kpe = [Ks K- (5.19)

where

—0.0575 —0.0017 —0.0462 0.0014  0.0874
0.0028 —0.0442 —0.0017 —0.0007 0.0007

K, = , (5.20)
0.0030  0.0001 —0.0257 —0.0042 —0.0028

0.0089 —0.0014 0.0081 —0.0669 —0.0116



and

1.1280 —0.1700 0.0164 —11.1748
~1—0.2385  6.1297  0.1163  —0.0027
¢ |—4.3244 —0.0155 —0.0937  1.6905

—0.8086 0.2023 11.0824  1.8159

5.2.4 Controller Implementation
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(5.21)

The controller implementation here is done similarly to what is presented for the

single VSC but with the corresponding variables and matrices. In this case, suppose a

matrix equation as

mg1| _ Mg + W‘lcvgg,l K 2%1 : fan K
s Md2+i(vgd2_‘792> + K id,Q Iio | + K¢
T Vae T ’ lg2 — g2
Mg,2 _ Mo+ ﬁvwg | | Vde — Vae |
where
zy[tg] = (gz,l[tk—ﬂ —dg1[te_1]) Aty,
woltr] = (51 [te—1] — iga[te—1]) Aty
w3[te] = (45 olth—1] — igalte—1]) Ay,
Talte] = (V3e[te-1] — Vac[tr—1]) Aty

X1
X2
€3

Xyg

(5.22)

(5.23)

If the system is initialized with P{"* = 0, it is possible to use the parameters on

Tables 13 and 15 and equations (4.15) for numerically implementing the controller as

: _
mai| 0.9 40.004(v,41 — 180) o
1q,1
0.004 _q’
Mal| _ Vol + K 1d.2 + K.
M2 0.9 + 0.004(vg.4.2 — 180) ¢
14,2
0.004 e
Mgq,2 Vg,q,2 Bae — 500

Ty
X2
T3

T4

Y

(5.24)
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where

]
} _ ’ (5.25)
]

5.2.5 Experiment Set-Up

The BTB-VSC test system and the LMI-based controller are implemented in
PSIM® for two simulations. Each simulation is designed to test the controller in different
conditions: a switch in the power flow and a disturbance in the line parameters of the
grid. The diagram depicted in Figure 28 shows the different components of the simulated
system. Note that, once again, the control is executed by a C Block component, shown
in the bottom part of the diagram. The simulation step used for both simulations is

tstep = 1 s and both simulation last for 0.6 second.

Figure 28 — Simulation diagram for the BTB-VSC test system.
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Source: Author (2022).

In the first simulation, the grid resistance and inductance are maintained constant
throughout the simulation, totalling Ry = 100m{2 and L, = 3.2mH. The power reference
changes from 0 to 10kWW and then to 30kW in ¢ = 0.1 s and ¢ = 0.2 s, respectively. The
power reference changes again to —30kW in a ramp starting from ¢ = 0.3 and ending
at t = 0.4 s. In the second simulation, the power reference changes from 0 to 30kW in
t = 0.1 s and is kept constant in the rest of the simulation. At ¢ = 0.32 s, grid inductance
value in the PCC changes abruptly from Lo = 2.2 to Ly = 4, while resistance is constant
and equal to Ry = 100mS2. This is done in order to simulate a disturbance in the power

grid modifying its equivalent inductance value which is represented in the model.



111

6 SIMULATIONS RESULTS

This chapter summarizes the results found when simulating the two studied systems
in the different conditions that are presented in the previous chapter. Results are first
separated into the different studied test systems and, then, they are grouped according to

what is being tested in the particular simulation experiment.

6.1 SINGLE VSC SYSTEM

This section summarizes the results for the studied single VSC system. The results
are separated into the different controllers that are tested with this system. Recall that
the main event that happens in this simulation is the power flow between the DC and the

AC systems that changes during the simulation.

6.1.1 LQR Results

The results related to the single VSC system controlled by an LQR are shown in
this subsection. The active input power reference and the actual measured input power are
presented on Figure 29. It is possible to note that the controller can track the reference
for the designed value of 20 kW and also for the values of 0 kW and 30 £W. However,
note that, when the power flow between the DC and the AC systems is inverted, the
LQR-based controller cannot track the reference anymore, compromizing the stability of

the entire system.

Figure 29 — Active input power reference and the actual measured value for the VSC
controlled by the LQR.
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Source: Author (2022).

This fact is corroborated by Figure 30, in which the behavior of the DC bus voltage
along with the reference value are depicted. Note that the voltage has variations in time

instants in which the value of P;, changes, such ast = 0.2 s and t = 0.5 s. However, as
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one can observe, the controller acts rapidly to restore the DC bus voltage to its reference
value. Once again, note that in the instant in which the input power shows an unstable

behavior, the controller cannot act on the maintenance of the DC bus voltage.

Figure 30 — DC bus voltage behavior for the VSC controlled by the LQR.
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Source: Author (2022).

The behaviors of all three-phase currents, i,(t), i5(t) and i.(t), along with direct-axis
component current, ig(t) are shown in Figures 31 and 32. In the former, it is possible to
observe that the currents present the expected behavior, increasing their magnitude as
input power P, successively increases. However, as one can observe in the latter Figure,

the controller fails at the instant in which the input power is completely inverted.

Figure 31 — Current behavior for the LQR-controlled VSC during time interval between
0.15 and 0.65 s.
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Source: Author (2022).

The unstable behavior that is presented in Figures 7?7, 7?7 and ?? can be more

deeply understood when the eigenvalues for the closed loop system are presented. Figure
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Figure 32 — ICurrent behavior for the LQR-controlled VSC during time interval between
0.775 and 1.225 s.
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33 depicts the closed loop eigenvalues of the LQR-controlled single VSC system while P,
varies from P to P Note that for some values of Py, there is a pair of eigenvalues
that appears on the right-hand side of the complex plane, justifying the observed unstable
dynamics. The issue that caused this instability is the fact that the LQR controller was
designed for a single operation point, i.e., P, = 20 kW, and the behavior under other
operating points is not taken into consideration during the design procedure. One option
that could solve this problem would be to iteratively design the LQR controller while
checking if all operating points have stable eigenvalues. Although it is not guaranteed
that the system is stable between two data points representing stable operating conditions,
this root-locus-inspired routine could allow some preliminary assessment of the system’s

overall stability.

6.1.2 Robust Pole Placement Results

The results related to the single VSC system controlled by the LMI-based robust
pole placement controller are shown in this subsection. First, the active input power
reference is compared with the actual measured value in Figure 34. Note that, this time,
the controller enables the system to properly follow the power reference, even during the

power flow inversion that occurs between instants ¢ = 0.8s and t = 1.2s.

The behavior of the DC-bus voltage, together with the reference value, is presented
on Figure 35. Note that variations are observed soon after the time instants where the
input power P;, changes its value. However, the LMI-based controller acts on returning

the DC-bus voltage to its designed steady state value.
The behaviors of all three-phase currents, i,(t), ,(t) and i.(t), on the VSCs terminal
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Figure 33 — Closed-loop eigenvalues using LQR-based controller for different values of P,.
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Figure 34 — Active input power reference and the actual measured value for the VSC using
the robust controller.
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along with the corresponding direct-axis component current, i4(t) are shown in Figures 36
and 37. It is easy to observe that, differently to what is observed for the VSC using an
LQR-based controller, the currents maintain a stable behavior even after the input power

has been completely inverted.

The closed loop eigenvalues for different values of P;, together with the desired
region S (dashed dark lines) are shown in Figures 38 and 39. Note that all the eigenvalues,
for all operating points, are located inside the desired region of the complex plane, allowing
the system to have desired performance under different operating conditions. It is also

important to note that this was achieved by only considering two equilibrium points: the
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Figure 35 — DC bus voltage behavior for the VSC using the robust controller.
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Figure 36 — Current behavior for the VSC using a robust controller during time interval
between 0.15 and 0.65 s.
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max min
extremes P/’ and P]'"".

6.2 BTB-VSC SYSTEM

This section summarizes the results obtained on the simulation of the BTB-VSC
system. Results are separated for the two different simulations that are conducted in this
study: the power inversion and the disturbance involving the equivalent RL branch on
terminal 2. In addition to that, this section starts by showing the closed loop eigenvalues
for the eight different operating points that are considered for the controller design on
Figures 40 and 41. Note that all eigenvalues are located inside the desired region &, which

is drawn using dashed dark lines. As it was already mentioned, the design procedure only
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Figure 37 — Current behavior for the VSC using a robust controller during time interval
between 0.775 and 1.225 s
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Figure 38 — Closed loop poles for the single VSC system using the robust controller.
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needs to consider the extreme of each range of operating conditions. Similarly to the
single VSC test system, it is expected that all closed loop poles for all different operating
conditions to be located inside S by using the LMI-based technique.

6.2.1 Bidirectional Power Flow Simulation

First, consider the simulation where the power flow between AC systems one and
two is inverted. The power behavior on terminal one is presented on Figure 42 and note
that the power reference value is met with a smooth behavior. Also observe that the power

inversion is performed without any issue.

Because of that, the three-phase currents also change accordingly, with a smooth
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Figure 39 — Closed loop poles for the single VSC system using the robust controller.
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Figure 40 — Closed loop poles for the BTB-VSC system.

1 X194 T = T
o //// \\\\\
7~ ~
.lﬁ. 0.5 // \\\\ n
n 4 S~
o OF *% * * K M H**:}
= -~
@ \ _ -
= \ -~
2050 N -7
E o -
\\ //
-1 ! t \\\1// I 1 !
-12000 -10000 -8000 -6000 -4000 -2000 0

Real Axis [s71]

Source: Author (2022).

behavior, when the power reference is changed, as it is shown in Figure 43. Note that
there is no overshoot that can be observed, even when the reference changes abruptly as

in a step function.

The DC-bus voltage behavior during the simulation is shown in Figure ?7. Note
that changes in the voltage value are observed in the instants where the power reference
changes. However, the voltage value has less than 10V variation for any terminal one

power reference change, accounting for approximately 1.5% variation of its reference value.



Figure 41 — Zoom in closed loop poles for the BTB-VSC system.
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Figure 42 — Power behavior in terminal 1 of BTB-VSC for power flow inversion case.
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6.2.2 Line Impedance Disturbance Simulation

0.6

Now, consider the simulation where the line inductance value changes mid-simulation

from 0.2 to 2 mH at time instant t = 0.32 s. First note that the power reference for

terminal one changes from 0 to 30 kW at t = 0.1 s and then it is kept constant at the

maximum value for the rest of the simulation. This is

shown in Figure 45. Note that,

at the instant in which the inductance value changes, there is a small sag in the instant

power measured in terminal one.
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Figure 43 — Current injected in terminal 2 of BTB-VSC for power flow inversion case.
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Figure 44 — Voltage over DC bus capacitor for power flow inversion case.
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The line inductance change, which is considerable, translates into small changes
in the three-phase currents as it is depicted in Figure 46. Note that the disturbance is
almost negligble in the three-phase currents.

In addition to that, the DC bus voltage has less than 5 V' variation during the
line inductance change, as it is presented in Figure 46. This variation corresponds to less
than 1%, showing that the design controller deals very well with abtupt changes in grid

impedance and with bidirectional power flow variations between the two AC systems.



CCCCC

Figure 46 — Current injected in terminal 2 of BTB-VSC for grid impedance disturbance
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Figure 47 — Voltage over DC bus capacitor for grid impedance disturbance case.
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7 CONCLUSION

In this study, the mathematical fundamentals for modeling voltage-sourced conver-
ters is laid down and then used in different parts of the research presented here. Linear
algebra concepts, such as norm and eigenvalue matrix decomposition, are described given
the application context on power electronics converters. Theoretical tools commonly used
in the study of nonlinear systems, such as averaging and linearization, are described
with appropriate details and are applied for obtaining adequately precise models for the
converters assessed in this study. The ammount of detail and theoretical content in this
study can be further used as a guide for future students that aim at understanding the
modeling of power electronic devices and control applications related to these converters

that are currently becoming more frequent in power systems worldwide.

The models that are obtained in this study match the ones that are commonly
present in literature, although sligthly different techniques are used for obtaining the
average model, for example. In addition to that, the results provided in this paper
corroborate to the fact that models obtained in this study are adequate for control
purposes, especially if linear techniques are used. In fact, state-space representation is
used for exploring a multivariable approach, allowing modern control techniques to be

implemented and tested in different converters and simulations.

Two multivariable control strategies are developed, implemented and assessed for
controlling a single VSC interfacing a DC and an AC systems: an LQR-based controller
and an LMI-based robust pole placement strategy. The DC bus system is connected to a
current source that can be used to represent energy consumption or generation on that
side of the system. Both strategies are tested in order to assess each control’s performance
under the different power profiles demanded by the DC-bus-connected system. Results
show that, although the LQR might seem simpler in the controller development, especially
considering the state feedback gain matrix calculation, it might not be straightforward
when designing such controller for different operating points. In fact, an appropriate design
would have to undergo successive iterations to assess the system’s overall stability under
the different equilibria. This is illustrated by the fact that the obtained controller, which
was designed considering one operating point, was not stable when large values of power
are being consumed by the DC system. On the other hand, the LMI-based pole placement
strategy used in this study took presented a stable behavior for all values of input power
by the DC bus, even negative ones. This is because the control design procedure takes
these extreme values into consideration and guarantee that, if a state-feedback gain matrix
is found, the system will be stable for all values within the range of the limit points used

in the design.

Comparing both strategies, their practical implementation is basically the same
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and what changes is just the gain matrix. The LQR-based strategy requires less efforts in
preparing the matrices that will be used in the control design procedure. However, it is
clear that the controller is strongly dependant on the equilibrium used for obtaining the
linear matrices. If more parameters are expected to vary, then the design procedure of a
stable controller starts to become harder and tiresome. On the other hand, the LMI-based
approach was shown to be more versatile, showing a stable and adequate dynamic response

for the different operating points assessed during simulation.

The versatility of such multivariable strategy was then the subject of testing in the
second experiment executed in this study. After the development of a state-pace model
for the BTB-VSC system interconnecting two AC systems, the LMI-based robust pole
placement strategy was also used for obtaining an appropriate controller for the system
being studied. In this case, the control approach was focused not only in allowing a
bidirectional power flow over the converter, but also on enabling the BTB-VSC to deal
with uncertainties in grid equivalent inducance and resistance at the PCC and possible

disturbances that could affect these variables.

The controller is designed, again, using a multivariable approach; taking the
dynamic behavior of both AC sides and the DC-link capactor into consideration for one
singl controller to deal with both sides. In fact, this is extremely important for its robust
performance and, although the set of LMI equations that need to be solved simultaneously
is not straightforward to obtain, implementation of the resulting controller is rather
simple. The implemented control strategy allows the BTB-VSC to operate succssfully
under different grid conditions and power reference values without any issues. The results
provided in this study show that the LMI-based controller has a very robust performance
under bidirectional power flow and disturbances on grid equivalent impedance. Controlled
variables presented smooth dynamic with small overshoot for step changes in reference
values and for abrupt change in grid equivalent inductance value. Therefore, considering
all the advantages that are observed in this paper, the LMI-based robust pole placement
strategies are shown to be very promising alternative control approaches for VSC- and
BTB-based systems and, hence, they should be relevant for power electronic applications

on power systems in the upcoming years.
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