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RESUMO

A Transcrição Fonética Automática (APT) é a tecnologia que automatiza o pro-
cesso de converter fala em transcrições fonéticas. Ela é crucial para melhorar a precisão
dos sistemas de Reconhecimento Automático de Fala (ASR). Modelos de aprendizado pro-
fundo, como wav2vec 2.0, têm mostrado desempenho notável em aprender características
fonéticas a partir de dados. No entanto, eles requerem corpora de fala transcritos foneti-
camente, que são escassos em idiomas como o Português Brasileiro (PT-BR). O principal
objetivo desta pesquisa é estabelecer uma abordagem sistemática para gerar um conjunto
de dados com transcrições fonéticas automáticas para PT-BR a partir de corpora de ASR
disponíveis. Utilizando ferramentas de conversão de Grafema para Fonema (G2P), o ob-
jetivo é otimizar o processo de transcrição e aprimorar o treinamento dos modelos APT.
Pesquisamos corpora de fala em PT-BR adequados para treinar modelos APT, selecio-
nando, por 昀椀m, o corpus CORAA ASR. Além disso, avaliamos cinco conversores G2P
para PT-BR, padronizando as transcrições segundo um quadro referência de fonemas em
PT-BR. O conversor G2P do FalaBrasil alcançou a menor taxa de discordância entre as
ferramentas selecionadas, e foi usado para transcrever o corpus CORAA ASR utilizado
para o ajuste do modelo fonético. O ajuste 昀椀no em 10 horas de áudio retornou uma
taxa de erro de fonemas (PER) de 15,87% no conjunto de testes. Outrossim, o modelo
apresentou altas pontuações médias de con昀椀ança por fonema, bem como pouca confusão
entre fonemas, e foi compartilhado no repositório da Hugging Face, contribuindo para a
pesquisa de ASR em PT-BR.

Palavras-chave: transcrição fonética automática, reconhecimento automático de fala, con-
junto de dados de fala, português brasileiro, grafema para fonema



ABSTRACT

Automatic Phonetic Transcription (APT) is the technology that automates the
process of converting speech into phonetic transcriptions. It is crucial for improving the
accuracy of Automatic Speech Recognition (ASR) systems. Deep learning frameworks,
such as wav2vec 2.0, have shown remarkable performance in learning phonetic features
from data. However, they require phonetically transcribed speech corpora, which are
scarse in languages such as Brazilian Portuguese (PT-BR). The primary objective of
this research is to establish a systematic approach for generating a dataset with auto-
matic phonetic transcriptions for PT-BR from available ASR corpora. By leveraging
Grapheme-to-Phoneme (G2P) conversion tools, the aim is to streamline the transcription
process and enhance the training of APT models. We researched PT-BR speech corpora
suitable for training APT models, ultimately selecting the CORAA ASR corpus. Addi-
tionally, we evaluated 昀椀ve G2P converters for PT-BR, standardizing the transcriptions
according to a reference phoneme chart. FalaBrasil’s G2P achieved the lowest discor-
dance rate among the selected G2P tools, leading to its selection for transcribing the
CORAA ASR corpus used in 昀椀ne-tuning. The 昀椀ne-tuning on 10 hours of audio yielded a
15.87% PER (Phoneme Error Rate) on the test set. In addition, the model presented high
average con昀椀dence scores per phoneme, as well as little confusion between phonemes. It
was then shared on the Hugging Face repository, contributing to ASR research in PT-BR.

Keywords: automatic phonetic transcription, automatic speech recognition, speech dataset,
brazilian portuguese, grapheme-to-phoneme
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1 Introduction

Automatic speech recognition (ASR) is an important technology to enable and
improve the human–human and human–computer interactions. Speech technology has
changed the way we live and work and has become one of the primary means for humans
to interact with some devices (DENG, 2016).

ASR as user interface has become ever more useful and pervasive (LI et al., 2015),
embodied in voice search, short message dictation, and virtual speech assistants (DENG,
2016). ASR can also support the medical and education sectors (ALHARBI et al., 2021).
Equally important is the development of deep learning techniques powered by big data
and signi昀椀cantly increased computing ability (DENG, 2016).

As highlighted by Nassif et al. (2019), the majority of papers published since
2006 have employed deep neural networks (DNNs) for ASR. They bene昀椀t from the large
amount of speech data and transcriptions available on the internet. To train such networks,
a large dataset of audio data is essential to ensure robustness and generalization in the
transcriptions.

Automatic Phonetic Transcription (APT) is sub昀椀eld of ASR that focuses on tran-
scribing speech in the phoneme level. APT can be applied in 昀椀elds such as phonology,
linguistics, education, and medicine, where detailed phonetic analysis is required. In this
work, we center our attention on the critical role of a labeled dataset for improving the
accuracy of APT models, emphasizing how such a resource is instrumental in advancing
the e昀昀ectiveness of phonetic transcription tasks.

1.1 Problem description

The industry has developed a broad range of commercial products where ASR as
a consumer-centric technology increasingly require robustness in noisy everyday environ-
ments. However, reliably recognizing spoken words in realistic acoustic environments is
still a challenge (LI et al., 2015). In this sense, accurate phoneme recognition is crucial to
the improvement of ASR systems. Bhatt et al. (2023) stated that phoneme recognition is
in昀氀uenced by the duration of the phoneme, speaking rate, style, accent, contextual e昀昀ects,
age, gender, health condition, training and testing environments. The study also exposed
that existing works su昀昀ered with the confusion of phonemes within the same category
and the lack of state-of-the-art resources.

In addition, the training of APT models with manual phonetic transcriptions is
costly and impractical due to the lack of such resource for most speech recognition tasks.
According to Van Bael et al. (2007), manual veri昀椀cation of phonetic transcriptions is
time-consuming and expensive. Several challenges revolve around obtaining phonetic
transcriptions - the time required, the high costs incurred, the often limited accuracy
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obtained, and, especially for speech technology applications, the need to transcribe large
amounts of data. It is equally important to consider the subjectivity of human transcrip-
tions and the complex methodology needed to generate them (CUCCHIARINI; STRIK,
2003). Especially for under-resourced languages, ensuring reliability and validity can be
challenging due to the lack of trained professionals available to engage in this task.

An e昀昀ective approach for generating phonetic transcriptions to train APT systems
is to use Grapheme-to-Phoneme (G2P) conversion. G2P convert orthographic transcrip-
tions, commonly available in speech corpora, into phonetic transcriptions. This process is
especially useful for Portuguese, where datasets with phonetic transcriptions are limited,
and G2P tools targeting this language can quickly produce such dataset from other avail-
able datasets. Even so, the absence of comprehensive studies evaluating the accuracy of
G2P converters for ASR in Portuguese raises questions about whether these converters
meet the expected standards. There is no consensus on which phoneme representation
format, G2P algorithm, or lexicon symbolizes the state of the art in Portuguese, which
further underscores the complexity of this issue (SANTOS; BARONE; ADAMI, 2008).
There are also other factors involved, such as the di昀昀erent accents within Portuguese,
that need each their own phonetic representations.

1.2 Justi昀椀cation

Bhatt et al. (2023) argued that there is a need to investigate phoneme recognition
to improve speech recognition as an accurate recognition of phonemes leads to improved
speech recognition. Van Bael et al. (2007) investigated several studies that reported the
bene昀椀ts of using APTs for the development of ASR systems. APT can provide more
nuanced information about the spoken units and aid in the recognition of words. There-
fore, the determination of a vocabulary of phonemes and a dataset of phonetic transcrip-
tions suitable for training APT models for Portuguese serves as a foundation to which
researchers and students can build upon. Ideally, this research also aims to provide a
standard that can be adapted to other languages as well, especially since several G2P
converters are already readily accessible for a wide range of languages.

Cucchiarini e Strik (2003) claims that APTs o昀昀er several advantages for phonetic
research. One advantage is that they can achieve uniformity in phonetic transcription,
which is difficult to achieve with human transcribers. Another advantage is that they
can generate phonetic transcriptions of large amounts of data that would otherwise be
too time-consuming and expensive to transcribe manually. Furthermore, APTs can help
control for biases that may be present in human transcriptions.

The possibility of transcribing readily available speech corpora using G2P holds
the promise of streamlining the training process for APT models, producing fairly reli-
able training phonetic transcriptions. In addition, by providing a phonetic transcription



15

dataset, this work could contribute to enhancing the versatility of APT models, poten-
tially bene昀椀ting applications like voice assistants, phonetic transcription tasks, and more.

Lastly, by sharing our 昀椀ne-tuned APT model for Brazilian Portuguese (PT-BR)
using the latest ASR technology, wav2vec 2.0, we aim to o昀昀er an updated perspective on
APT models for this language. Our model will be ready for out-of-the-box APT tasks.

1.3 Objectives

The main objectives of this research revolve around addressing challenges in APT
for PT-BR. Firstly, the focus is on developing a robust methodology to create a labeled
dataset for phonetic transcription. This was done by using G2P tools to produce phonetic
transcriptions from existing graphemic annotations of speech corpora. The aim is to pro-
vide accurate phonetic transcriptions to facilitate the training of APT models, overcoming
the limitations associated with manual transcriptions. This approach not only streamlines
the training process but also enhances the scalability and accessibility of APT models.

Secondly, our objective is to enrich the resources available for the utilization and
昀椀ne-tuning of APT models in the PT-BR language. This entails sharing a PT-BR APT
model 昀椀ne-tuned on the proposed dataset, accompanied by performance metrics and a
comparative analysis with existing work. Through this initiative, we seek to contribute
not only to the accessibility of specialized APT models but also to the benchmarking and
further re昀椀nement of APT technology for PT-BR.

1.4 Organization

This document is organized into 5 chapters. Chapter 2 provides the theoretical
foundation necessary to fully understand the conducted work. The topics addressed are
ASR, speech corpora, phonetic representations, and G2P conversion. The chapter also
presents a selection of related work and an analysis of similarities and di昀昀erences between
them. Chapter 3 outlines the materials and methods used in the development of our
work. Chapter 4 presents the results and an analysis of the phonetic transcriptions and
the APT models. Finally, Chapter 5 discusses the conclusions and suggests areas for
future research.
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2 Literature Review

This chapter presents a critical exploration of existing works relevant to the 昀椀eld
of APT and its applications in PT-BR. We aim to provide a comprehensive overview of
the current state of knowledge, seeking to contextualize APT in ASR and highlight key
concepts, common practices, and state-of-the-art methods. This examination is integral to
shaping the theoretical framework and methodology of the current research, contributing
to a deeper understanding of the proposed dataset.

2.1 Theoretical Foundation

This section establishes the conceptual framework for our study on APT in PT-
BR, serving as a guide to the subsequent analysis and methodology to contribute to the
understanding of APT in the context of PT-BR.

2.1.1 ASR

According to Li et al. (2015), “ASR is the process and the related technology for
converting the speech signal into its corresponding sequence of words or other linguistic en-
tities by means of algorithms implemented in a device, a computer, or computer clusters”.
In other words, ASR is a technology that aims to convert human speech into syntactic
and semantic features of language, enabling machines to comprehend and interpret spoken
language. Essentially, it involves capturing a relevant signal and transforming it into per-
tinent information, i.e., recognizing a pattern in the (speech) signal (O’SHAUGHNESSY,
2008).

The goal of an ASR system is to accurately and efficiently convert a speech sig-
nal into a text message transcription of the spoken words, independent of the device
used to record the speech (i.e. microphone), the speaker’s accent, or the acoustic environ-
ment in which the speaker is located (e.g., quiet office, noisy room, outdoors) (RABINER;
SCHAFER, 2007). ASR tasks vary in 4 dimensions, presented below (JURAFSKY; MAR-
TIN, 2023):

• Vocabulary size. The vocabulary can contain up to 60,000 words in open-ended
tasks like transcribing videos or human conversations.

• Context. Read the speech, in which humans read aloud, for example in audiobooks,
is easier to recognize than conversational speech, for example, for transcribing a
business meeting.

• Channel and noise. Speech is easier to recognize if it’s recorded in a quiet room
with head-mounted microphones than if it’s recorded by a distant microphone on a
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noisy city street, or in a car with the window open.

• Accent or speaker-class characteristics. Speech is easier to recognize if the speaker
is speaking the same dialect or variety that the system was trained on, while speech
by speakers of regional or ethnic dialects, or speech by children can be quite difficult
to recognize if the training data is not diverse enough.

On the other hand, APT concentrates on the transcription of phonemes in speech.
It consists of 昀椀nding the best possible sequence of phonemes that are contained in a
given speech sample (LOPES; PERDIGAO, 2011). The classi昀椀cation and recognition of
phonemes are considered the primary tasks of ASR systems irrespective of application
domain (MALAKAR; KESKAR, 2021).

2.1.1.1 Deep learning for APT

Deep learning architectures have revolutionized the 昀椀eld of speech processing by
demonstrating remarkable performance across various tasks (MEHRISH et al., 2023).
DNNs are conventional multilayer perceptrons (MLPs) with many hidden layers and are
capable of learning from unstructured data by using 昀椀ne-tuning done with the backprop-
agation technique (KUNAPULI; BHALLAMUDI, 2021). DNNs automate the feature
extraction processes and observe patterns in the data that allow them to cluster inputs
appropriately. It has been shown that they can capture discriminative information re-
garding the internal structure of phonetic data (RIZWAN; ANDERSON, 2016).

Traditional DNN approaches like Recursive Neural Networks (RNNs) have been
successfully applied to Automatic Phoneme Recognition (APR), including phone prob-
ability estimation, phoneme classi昀椀cation, sequence labeling, phoneme recognition, and
acoustic modeling (MALAKAR; KESKAR, 2021). However, as supervised learning mod-
els, RNNs require the building of specialist models for individual tasks and application
scenarios that require a signi昀椀cant amount of labeled training data. Thus, it is difficult to
apply this to dialects and languages for which there are limited resources (MOHAMED
et al., 2022).

In this context, Transformer-based approaches have gained more attention for their
ability to perform exceptionally well in end-to-end speech recognition systems (YEH et al.,
2019). Transformers learn the representations of speech via self-supervised learning, which
involves unsupervised pre-training followed by supervised 昀椀ne-tuning. Self-supervised
learning can easily incorporate expert-derived priors into the training process by tasking
the model to recover known signal transformations that are repetitively derived without
the need for annotated data (RAVANELLI et al., 2020). This is exceptionally convenient
in scenarios where there is a limited amount of annotated training data, as is often the case
in APT. In this work, we concentrate on leveraging wav2vec 2.0, a framework based on
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a Transformer model, for phonetic transcription in Portuguese. Additionally, we explore
multilingual approaches, which o昀昀er the 昀氀exibility to recognize phonemes associated with
the Portuguese language.

2.1.1.2 wav2vec 2.0

wav2vec 2.0 is a framework for self-supervised learning of representations from
raw audio data. It is able to learn powerful representations from unlabeled speech data
(BAEVSKI et al., 2020), including speech units common to several languages. This ca-
pability proves bene昀椀cial in scenarios where there are small amounts of unlabeled speech
since under-resourced languages can bene昀椀t from languages for which more data is avail-
able (BAEVSKI; CONNEAU; AULI, 2020). The process of learning from large amounts of
unannotated data is known as pre-training, which allows the model to adjust parameters
and learn the underlying speech units.

Mihajlik, Révész e Tatai (2002) cite that a key point in adjusting the parameters
of a speech recognizer is the need for the transcription of the recorded training speech.
The same holds true for the pre-trained wav2vec 2.0 models, which need to be 昀椀ne-tuned
for a speci昀椀c task, though with a much smaller amount of annotated data, to perform
speech-to-text transcription. In the case of APT, having an annotated dataset of phonetic
transcriptions is of paramount importance to the model 昀椀ne-tuning, because it allows the
model to recognize a speci昀椀c set of phonemes from the audio signal and carry out the
phonetic transcription.

The wav2vec 2.0 model architecture is displayed in Figure 1.

Figure 1 – wav2vec 2.0 architecture. Source: (BAEVSKI et al., 2020).

The model is composed of a multi-layer convolutional feature encoder f : X → Z
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which takes as input raw audio X and outputs latent speech representations z1, ..., zT for
T time-steps. They are then fed to a Transformer g : Z → C to build contextualized
representations c1, ..., cT capturing information from the entire sequence. The output of
the feature encoder is discretized to qt with a quantization module Z → Q to represent the
targets in the self-supervised objective. The bene昀椀t of wav2vec 2.0 is that it builds context
representations over continuous speech features, and self-attention captures dependencies
over the entire sequence of latent representations end-to-end.

To pre-train the model, a certain portion of Z is masked, the aim of the pre-
training step is not to reconstruct the continuous representations directly, but to identify
the correct quantized latent representation for the masked time step among a set of
distractors. The representations of speech are learned by solving a contrastive task Lm,
which requires distinguishing the true quantized latent speech representation from the
distractors. This is augmented by a diversity loss Ld to encourage the model to use
possible speech units equally often. The total loss is:

L = Lm + Ld

After pre-training on unlabeled speech, the model can be 昀椀ne-tuned on labeled data
with a Connectionist Temporal Classi昀椀cation (CTC) objective to be used for downstream
speech recognition tasks (BAEVSKI et al., 2020).

2.1.1.3 Evaluation Metrics

The information within this subsection is predominantly sourced from the audio
course authored by Gandhi et al. (2023).

When assessing speech recognition systems, we compare the system’s predictions
to the target transcriptions. There are three categories of errors, which can be computed
on the word level or on the character level:

• Substitutions (S): where the wrong word (or character) is transcribed (“sit” instead
of “sat”)

• Insertions (I): where there is an extra word (or character) in the transcription

• Deletions (D): where a word was removed from the transcription

When assessing the performance of an ASR model, the Word Error Rate (WER)
is the de facto metric. It calculates substitutions, insertions, and deletions on the word
level, according to equation 2.1.

WER =
S + I + D

N
(2.1)
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In Equation 2.1, N represents the number of words in the reference transcription.
A lower WER signi昀椀es fewer errors in the system’s transcriptions. The ideal speech
recognition system would achieve a WER of zero.

In turn, the Character Error Rate (CER) assesses systems on the character level,
according to equation 2.2.

CER =
S + I + D

N
(2.2)

In Equation 2.2 N represents the number of characters in the reference transcrip-
tion. Likewise, a lower CER indicates better performance. The Phone Error Rate (PER)
is an alternative to the CER commonly used in the evaluation of APT models. It is
calculated as the CER, except that each phoneme is considered an individual character.

For ASR systems, WER is usually favored over CER due to its emphasis on con-
textual understanding, requiring systems to accurately grasp the context of predictions.
For instance, if the system predicts “sit” instead of the correct tense “sat”, it indicates
a failure to comprehend the relationship between verb and tense in the sentence. There-
fore, it provides a more comprehensive evaluation of system performance. However, in
speci昀椀c applications like phoneme recognition systems, CER becomes preferable because
it assesses precision at a 昀椀ner, character-level granularity.

A common metric in APT utilized to identify the accuracy of the predicted
phonemes is the confusion matrix, which represents the prediction summary in matrix
form, showing how many predictions are correct and incorrect per class. It helps in un-
derstanding the classes that are being confused by the model as other classes (TIWARI,
2022). In its normalized form, the confusion matrix is adjusted to express values within
the 0-1 range. This normalization is achieved by scaling the rows to the 0-1 range, pro-
viding a more intuitive representation of prediction accuracies. As an example, for the
transcription /jɛə/ (“yeah”) predicted as /jeə/, we would have the confusion matrix given
in Table 1.

Reference
e j ə ɛ

Predicted

e 0 0 0 1
j 0 1 0 0
ə 0 0 1 0
ɛ 0 0 0 0

Table 1 – Example confusion matrix.

Table 1 compares the phonemes predicted by the system against the actual or
reference phonemes from the dataset. The matrix is organized into rows and columns,
where each row corresponds to the reference phonemes, and each column corresponds to
the predicted phonemes. The four main components of a confusion matrix are:
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• True Positives (TP): The number of phonemes correctly predicted by the system,
where both the reference and predicted phonemes match.

• True Negatives (TN): The number of instances where non-occurring phonemes are
correctly identi昀椀ed as such.

• False Positives (FP): The number of times the system predicts a phoneme that is
not present in the reference, indicating an incorrect positive prediction.

• False Negatives (FN): The number of times the system fails to predict a phoneme
that is present in the reference, indicating a missed positive prediction.

In addition, the accuracy represents the overall correctness of the phoneme recog-
nition system. It is calculated as the ratio of the sum of true positives (correctly predicted
phonemes) and true negatives (correctly identi昀椀ed non-occurring phonemes) to the total
number of predictions. Equation 2.3 displays the formula for accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.3)

The accuracy can also be calculated as the ratio of the sum of the main diagonal
of the confusion matrix and the sum of the confusion matrix. In simpler terms, accuracy
measures the proportion of correctly identi昀椀ed phonemes (both positive and negative) out
of all the predictions made by the system. A high accuracy value indicates that the system
is performing well in correctly identifying phonemes, while a lower accuracy suggests more
errors in the predictions. The accuracy of the example above would be:

Accuracy =
2

3
≈ 0.66

2.1.2 Speech Corpora

A speech corpus (plural speech corpora) is a large collection of audio recordings of
spoken language, optionally accompanied by additional text 昀椀les containing transcriptions
of the words spoken and the time each word occurred in the recording. Speech corpora
can be divided into two types: read speech, also known as prepared speech, which includes
excerpts from books, news broadcasts, word lists, and number sequences; and spontaneous
speech, which includes narratives, meetings, debates, dialogs, and phone conversations
(RICHEY, 2020).

There are several corpora available to ASR destined for di昀昀erent purposes, each
with di昀昀erent types of annotation. According to Raso e Mello (2012), “the value of a
corpus can only be measured in terms of its success in meeting the purposes for which
it was created”. Therefore, it is foremost to understand the context of application for
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which a corpus was created and the type of annotation used. In order for it to be useful
for research it needs to be labeled in some way, with a minimum requirement being the
transcription of spoken words in standard orthography. Sometimes additional linguistic
information can be provided: syllables, sounds, intonation, dis昀氀uencies, 昀椀lled pauses (e.g.
“um”, “uh”), and the phonetic transcription (RICHEY, 2020).

Some speech corpora are provided with a phonemic lexicon that can be used to gen-
erate a hypothetical canonical phonetic representation of the orthographic transcripts. In
addition, a handful of speech corpora may partially provide broad phonetic transcriptions
with the help of human transcribers in order to ensure a more accurate representation of
the material (Van Bael et al., 2007).

2.1.3 Phonetic Representations

The preparation of a dataset of phonetic transcriptions require the adoption of
notational standards for representing these transcriptions, as well as, criteria for deciding
which phonemes the dataset will encompass. The following subsections address the key
elements utilized to take such decisions.

2.1.3.1 International Phonetic Alphabet

The International Phonetic Alphabet (IPA) is an international alphabet used by
linguists to accurately represent the wide variety of sounds (phones or phonemes) in hu-
man speech, aiming to provide the academic community worldwide with a notational
standard for the phonetic representation of all languages. The IPA is an important re-
source for allowing accurate phonetic transcriptions in a language, and it will be used
from here on to represent the phonemes in PT-BR.

2.1.3.2 PT-BR Phonemes

There is no consensus about which phonemes are present in PT-BR, therefore
there is no uni昀椀ed phoneme chart. For this work, we adopt the set of consonants present
in Ivo (2019a) (Figure 2) and the set of vowels present in Ivo (2019b) (Figure 3).

Figure 2 displays similar sounds side by side in each cell, which account for sounds
that could be considered equivalent in Portuguese. In addition to the phonemes displayed
in Figure 2, we also opted to include the consonants /w/, /w̃/, /j/, and /ȷ/̃ because they
appeared in the examples of the cited material.

We stress the di昀昀erence between phones and phonemes: the 昀椀rst are the physical
speech sounds, that is the language-independent units shared by all languages (LI et al.,
2021). In contrast, phonemes are the minimal — language-dependent — units that dis-
tinguish between words, i.e., between one meaning and another (MITTERER; CUTLER,
2006). Allophones are sets of phones within a language that correspond to the same
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Figure 2 – Phoneme chart of PT-BR consonants

Figure 3 – Phoneme chart of PT-BR vowels

phoneme; although indistinguishable within that language, they may constitute separate
phonemes in other languages (LI et al., 2020).

The so-called Extended Speech Assessment Methods Phonetic Alphabet (X-SAMPA)
is a keyboard-compatible coding for the entire set of IPA symbols that aims to o昀昀er the
basis of an international standard machine-readable phonetic alphabet (WELLS, 1995).
The mapping of X-SAMPA and IPA symbols used in this work is presented in Appendix A.
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2.1.4 G2P converters

These tools are typically language-speci昀椀c and hold signi昀椀cant importance in the
context of APR due to their capability to generate labeled datasets for training APT
models. A study by Jouvet, Fohr e Illina (2012) shows that the training process of ASR
systems that use transcriptions derived from G2P models is quite robust to some errors
in the pronunciation lexicon, whereas pronunciation lexicon errors are harmful in the
decoding process of the neural network. Thus, using a robust G2P converter is foremost
for minimizing errors in the APT model.

G2P models convert words to their phonetic pronunciations. They are an impor-
tant module in text-to-speech (TTS) and ASR systems. Two main G2P approaches are:
knowledge-based (rule-based) and data-driven (SAR; TAN, 2019). Knowledge-based mod-
els use pre-de昀椀ned rules and pronunciation dictionaries to generate phonetic transcriptions
but they are highly language-dependent and require expert linguistic knowledge to design.
Hence they require signi昀椀cant manual e昀昀ort to build, and have limited adaptivity on un-
seen words. On the other hand, data-driven methods incorporate learning, such as Long
Short-Term Memory (LSTM) and Transformer-based attention models (ENGELHART;
ELYASI; BHARAJ, 2021). They learn from a corpus of word-phonetic transcription pairs
without explicit modeling of linguistic knowledge. The advantages of such an approach
are that the technique is reusable for di昀昀erent sets of data (e.g. di昀昀erent languages or
dialects) and are more robust against unseen words (BOSCH; DAELEMANS, 1993).

2.2 Related Work

In this section, we survey the existing literature on APR, with a speci昀椀c emphasis
on the training data, G2P methods, and APT strategies. The review not only explores
the state-of-the-art methods but also highlights similarities and di昀昀erences among select
works, o昀昀ering comparisons with the proposed methodology — speci昀椀cally, the prepara-
tion of a training dataset for APT in PT-BR.

The identi昀椀cation of relevant literature was facilitated by the Google Scholar search
engine, employing keywords such as “Automatic Speech Recognition”, “phonetic tran-
scription”, “automatic phonetic transcription”, “automatic phoneme recognition”, “Por-
tuguese”, “Brazilian Portuguese”, “multilingual”, and “dataset”. Criteria for selection
included prioritizing recent publications, similarity in methodology, alignment of goals,
and a focus on either multilingual APT or APT speci昀椀c to PT-BR.

2.2.1 Datasets

Aguiar e Costa-Abreu (2023) proposed a methodology to collect and release a
speech dataset for PT-BR. The data was collected from a playlist of TEDx talks in
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Portuguese available on the TEDx channel. The authors used available automatic or
human-generated captions and performed a forced alignment with the Montreal Forced
Aligner to generate the time intervals for each word and phoneme in the captions. This
approach proved very useful because the authors could release a large PT-BR speech
dataset with phonetic annotations, though it is not yet publicly available. The dataset
also features a variety of Portuguese accents and demographic information. This study
relates to the current thesis for providing the methodology used to generate the dataset,
though it creates a new speech corpus, instead of utilizing existing ones.

Dijkstra (2021) employed a comparable approach when it comes to the phonetic
transcription. They used Praat with the EasyAlign plugin to transcribe the Sid and LaPS
Benchmark 16k PT-BR datasets, obtaining phonetic transcriptions and alignments. While
this study is closely aligned with the current research in providing phonetic transcripts
for PT-BR corpora, our work proposes the use of G2P converters for faster and more
adaptable transcription. However, this study stands out for o昀昀ering phoneme alignments
in PT-BR, valuable information for various ASR systems.

Two of the selected works targeted speci昀椀cally APT for low-resource languages. Li
et al. (2020) focused on phone recognition for two indigenous languages. They derived
phonemic transcriptions from standard transcriptions of 12 rich-resource languages using
the Epitran G2P tool Mortensen, Dalmia e Littell (2018) and trained a multilingual
allophone system. The study proposed a mapping of articulatory features, thus being able
to infer phonetic information for unknown phonemes, which is very useful for multilingual
APT. Using a slightly di昀昀erent approach, Yi et al. (2021) 昀椀ne-tuned wav2vec 2.0 models on
the CALLHOME corpus for six low-resource languages, mapping graphemes to phonemes
through lexicons provided by the corpus.

Xu, Baevski e Auli (2022) trained a single multilingual model on labeled data
from several languages, enabling zero-shot phoneme recognition. The training data cov-
ered 26 languages from the Common Voice corpus, including PT-BR; 19 languages from
the Babel corpus; and six languages from the Multilingual LibriSpeech corpus. They used
Espeak and Phonetisaurus G2P converters for obtaining phonetic transcriptions. Simi-
larly, Taguchi et al. (2023) used training data from seven languages of CommonVoice 11.0,
transcribing them into IPA semi-automatically, and employed both Epitran and manual
rules for G2P conversion, manually checking the quality of phonetic transcriptions. In
addition, the study assembled a test set of manually annotated phonetic transcriptions
of four low-resource languages from Common Voice.

Klumpp et al. (2022) introduced Common Phone, a gender-balanced, multilingual
corpus with approximately 116 hours of speech from six languages of the Common Voice
corpus. The corpus was enriched with automatically generated phonetic segmentation.
This was done by estimating the true pronunciation from the ideal (G2P) and recognized
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(ASR) pronunciations. The training split from Common Phone was used to 昀椀ne-tune
a wav2vec 2.0 base model. While providing a valuable speech corpus for APT, it is
important to note that this corpus does not include PT-BR audio recordings.

Quintanilha (2017) developed a dataset from an ensemble of four PT-BR speech
datasets. While not speci昀椀cally designed for APT, this work o昀昀ers a detailed overview
of ASR, end-to-end speech recognition, and preparation of the training, test, and evalu-
ation datasets, utilizing popular PT-BR speech corpora. Junior et al. (2023) presented
CORAA (Corpus of Annotated Audios) ASR, a publicly available dataset for PT-BR
ASR, featuring 290 hours of audios with validated transcriptions. The corpus includes
both prepared and spontaneous speech, and was assembled with the goal of improving
PT-BR ASR models.

In short, for the related works that targeted APT, Li et al. (2020), Taguchi et
al. (2023), Yi et al. (2021), and Xu, Baevski e Auli (2022) employed G2P methods to
generate the phonetic transcriptions; and Aguiar e Costa-Abreu (2023), Klumpp et al.
(2022) and Dijkstra (2021) relied on software to infer the phonetic transcriptions from
audio inputs and their corresponding orthographic transcriptions.

2.2.2 APT strategies

Dijkstra (2021) developed a technique for APT targeting PT-BR that uses Mel
Frequency Cepstral Coefficients (MFCC) and 昀椀lter banks for acoustic processing and
convolutional neural networks (CNNs) together with LSTMs for phoneme classi昀椀cation.
The Kaldi Speech Recognition Toolkit was used to extract the spectral features from
the sound samples. Then, CNNs augmented with LSTMs were trained for phoneme
classi昀椀cation with an output CTC layer to obtain the transcriptions. In addition to PT-
BR, the authors also used the TIMIT dataset for English APT. In contrast to this work,
our work aims to evaluate the performance of APT with wav2vec 2.0, which has been
more widely used in the recent literature.

Nedjah, Bonilla e de Macedo Mourelle (2023) proposed an ASR system based on
phoneme identi昀椀cation for PT-BR that can classify phones in real time through a set of
spectral characteristics extracted from the speech signal. The authors used an ensemble
of neural network experts, allowing to divide the decision space, and a RNN as a dynamic
post-processing step to mitigate the oscillation generated by the static classi昀椀cation of
samples. This work di昀昀ers from the current thesis for performing a continuous classi昀椀-
cation of isolated phonemes, rather than a continuous phonetic transcription of words.
Dijkstra (2021) mentions that the identi昀椀cation of speech units does not require the iden-
ti昀椀cation of pauses. In contrast, APT is a more complex task that requires recognizing
words and syllables.

The task of multilingual APT and zero-shot phoneme recognition is addressed in
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several studies. Xu, Baevski e Auli (2022), Klumpp et al. (2022), and Taguchi et al.
(2023) presented the 昀椀ne-tuning of multilingual wav2vec 2.0 models for speech-to-IPA
transcriptions, taking advantage of previously learned phones in several languages to
identify phonemes in other languages. Xu, Baevski e Auli (2022) stands out for propos-
ing a mapping of phonemes of training languages to target languages using articulatory
features, such as voicing or the place and manner of articulation. These studies share
similarities with the current thesis, as they all employ multilingual wav2vec 2.0 models
to infer phonemes in a target language. However, the proposed models have an extensive
vocabulary, a characteristic that may introduce potential ambiguity and variability in
the phonetic transcriptions. This thesis aims to present a simpler model with a shorter
vocabulary.

Li et al. (2020) presented a self-supervised learning model for multilingual phoneme
recognition that incorporates knowledge of phonology through an allophone layer. They
also explicitly modeled language-independent phones, building a universal phone recog-
nizer that, combined with a manually curated database of phone inventories, can be cus-
tomized into 2,000 language dependent recognizers. This work showcases the potential of
creating adaptable and language-speci昀椀c phoneme recognition models from multilingual
ASR systems. It di昀昀ers from the previous papers for using a modi昀椀ed Problem Agnostic
Speech Encoder (PASE+) instead of wav2vec 2.0. This architecture combines a convo-
lutional encoder followed by multiple neural networks, called workers, tasked to solve
self-supervised problems (LI et al., 2020).

Regarding studies focusing on ASR rather than APT for PT-BR, Quintanilha
(2017) presented a character-based end-to-end speech recognition system for PT-BR using
LSTM and CTC, varying the number of layers, applying di昀昀erent regularization methods,
and 昀椀ne-tuning several other hyperparameters. This study contributes to the understand-
ing of training and 昀椀ne-tuning ASR models. In contrast, Junior et al. (2023) introduced
a 昀椀ne-tuned version of the wav2vec 2.0 XLSR-53 model originally proposed by Ruder,
Søgaard e Vulić (2019). This study serves as a potential benchmark for comparing WERs
with other wav2vec 2.0 solutions in PT-BR, including APT systems. Similarly, Grosman
(2021), Grosman (2022), and Gris et al. (2022) have shared 昀椀ne-tuned wav2vec 2.0 models
tailored for ASR in PT-BR.

Furthermore, AI at Meta provides a 昀椀ne-tuned version for PT-BR of XLSR-53
(RUDER; SØGAARD; VULIĆ, 2019). These models are freely available on the Hug-
ging Face repository. However, the absence of a 昀椀ne-tuned wav2vec 2.0 APT model for
Portuguese highlights the importance of sharing one speci昀椀cally tailored for this language.

In summary, the reviewed literature o昀昀ers a comprehensive overview of both mul-
tilingual and PT-BR APT resources. The studies discussed not only highlight the chal-
lenges associated with APT but also introduce innovative methodologies to address the
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persistent issue of limited phonetic transcriptions. Notably, Dijkstra (2021) and Junior
et al. (2023) have made signi昀椀cant contributions by introducing updated APT and ASR
resources, respectively, in PT-BR. However, the existing gap in the availability of speech
corpora with comprehensive phonemic transcriptions for PT-BR underscores the neces-
sity for a more targeted approach. The current work addresses this gap by providing
a dataset of phonetic transcriptions derived from existing PT-BR speech corpora. Ad-
ditionally, sharing a 昀椀ne-tuned APT model with this dataset aims to catalyze further
advancements in the evolving 昀椀eld of APT for PT-BR.
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3 Materials and Methods

This chapter outlines the procedures employed to address the challenges identi昀椀ed
in the related work and contribute to the 昀椀eld of APT for PT-BR. The aim is to provide a
clear and replicable framework for the development of a training dataset and the sharing
of a 昀椀ne-tuned APT model. To attain these objectives, we have outlined the following
work昀氀ow:

1. Research and curate PT-BR speech corpora suitable for ASR, and assess their rep-
resentativeness and suitability for robust APT model training;

2. Analyze the characteristics of the audios and of the speakers in the selected speech
corpus;

3. Adopt a reference PT-BR phoneme chart;

4. Investigate and evaluate G2P converters for PT-BR, considering factors such as
discordance, accent, and suitability for converting a large transcription dataset;

5. Adjust the G2P outputs to match reference phoneme chart and de昀椀ne the training
vocabulary;

6. Fine-tune APT models on the training set and assess their PERs on the test set;

7. Analyze PERs across di昀昀erent phoneme groups, identifying phonemes with the high-
est and lowest error rates;

8. Document the process of creating the dataset and share it, together with the 昀椀ne-
tuned model;

3.1 Dataset

To compile a dataset of accurate phonetic transcriptions for PT-BR, extensive
research of speech corpora for ASR in this language was conducted. This included an
analysis of corpus types, context, objectives, size, and audio quality. Standard Google and
Google Scholar search engines were employed, utilizing combinations of keywords such as
“speech corpus”, “Brazilian Portuguese”, “multilingual”, “Automatic Speech Recognition”,
and “phonetic transcription” in both English and Portuguese to identify relevant resources.
The relevant information for the identi昀椀ed speech corpora is compiled in Table 2.
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In Table 2, blank cells indicate non-available data. This table underscores the
scarcity of speech corpora with readily available phonetic transcriptions in PT-BR, as
only two — Spoltech and MF — of the selected corpora provide this data. MF (Batista;
Dias; Neto, 2022) provides not only orthographic and phonetic transcriptions but also time
stamps for forced phonetic alignment, however it is only 15 min long and features one
female and one male speaker. The West Point corpus o昀昀ers a pronunciation dictionary for
generating automatic phonetic transcriptions from the orthographic transcriptions. The
lack of further resources for APT for PT-BR corroborates the need for a freely accessible
dataset with phonetic transcriptions aimed at APT for this language.

Junior et al. (2023), authors of the CORAA ASR corpus, emphasize that PT-BR
ASR models are commonly trained with an ensemble of Common Voice, Sid, VoxForge,
and LapsBM — datasets featuring non-conversational speech. They also stress the im-
portance of incorporating speech of various genres, from interviews to informal dialogues
and conversations, in training robust ASR systems. This is because ASR systems trained
on read style and clean speech (or even on prepared speech) often face performance drops
when confronted with informal conversations in dynamic and noisy settings. Hence, it is
imperative to leverage speech corpora containing spontaneous speech in uncontrolled en-
vironments to enhance ASR system applicability across diverse contexts. It is also crucial
to include as many varieties of speakers as possible, aiming to increase accessibility of the
ASR system. For this reason, we prioritized the CORAA ASR corpus for our work.

3.1.1 CORAA ASR

CORAA ASR encompasses 昀椀ve validated corpora (ALIP, C-ORAL-BRASIL I,
NURC Recife, SP2010, and TEDx Portuguese talks) adapted for the task of ASR (JU-
NIOR et al., 2023). The corpus is divided into three datasets — train (286.31 h), dev
(5.76 h), and test (11.63 h), and covers four primary accents — São Paulo (state), São
Paulo (capital), Minas Gerais, and Recife — and miscellaneous accents. Figure 4 shows
the distribution of these accents in the corpus.

Most audios have a Recife accent, however the São Paulo and Minas Gerais accents
comprise a substantial part of the dataset too. There are also a few audios in European
Portuguese (PT-PT) but, since our study focuses on PT-BR, we opted not to include the
PT-PT audio-transcriptions in our dataset.

Figure 5 displays the speech styles present in the training set. 74.37% of the audios
contain spontaneous speech, while 14.08% contain prepared speech and 11.55% contain
both spontaneous and read speech.

In addition, the CORAA corpus contains validated audio-transcription pairs. Through
a simple web interface, annotators veri昀椀ed each audio-transcription pair, upvoting valid
ones and downvoting those with problems. Six scenarios led annotators to reject a pair,
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Figure 4 – Accent distribution.

Figure 5 – Speech style distribution.

speci昀椀cally:

1. Voice overlapping;

2. Low volume of the main speaker’s voice, making the audio incomprehensible;

3. Word truncation;

4. Too many words in the transcript (compared to the audio);

5. Too few words in the transcript (compared to the audio);

6. Words swapped (transcript unaligned).

Moreover, 昀椀ve conditions determined whether a pair was considered valid, namely:
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1. Valid without problems;

2. Valid with 昀椀lled pause(s);

3. Valid with hesitation;

4. Valid with background noise/low voice but understandable;

5. Valid with little voice overlapping.

Table 3 shows that approximately 80.21% of audio-transcription pairs received at
least one up vote, and 96.60% received no down votes— demonstrating high-quality stan-
dards. Additionally, no pair in the published corpus has more downvotes than upvotes.
To select top-tier audio-transcription pairs, we kept those with at least one up vote (mean-
ing they were reviewed at least once) and without any down votes, totaling 293,610 pairs
or 76.81% of the data. This ensures greater accuracy and reliability in our dataset.

Number of Votes Upvote Downvote
0 19.98 96.53
1 64.64 3.40
2 7.60 0.07
3 7.78 0.00

Table 3 – Percentage of votes for 402456 audio-transcription pairs.

Table 4 shows the percentages of problems in the audios or lack thereof (no iden-
ti昀椀ed problem).

Number of Votes Hesitation Filled Pause Noise Or Low Second Voice No Identi昀椀ed
Problem

0 91.50 94.69 Voice 97.62 33.12
1 7.25 4.47 31.85 2.11 56.02
2 0.91 0.55 3.04 0.24 7.53
3 0.34 0.29 0.59 0.04 3.32

Table 4 – Percentage of votes for 382258 audio-transcription pairs.

Additionally, though 35.94% contain at least one identi昀椀ed problem, we decided
to keep these audios in our dataset to re昀氀ect the original characteristics of the corpus.
This will also allow for 昀椀ne-tuning a more robust APT model, able to deal with minor
interference in the audios.

Figure 6 shows the histogram of the duration of the 昀椀ltered audios. The di昀昀erent
corpora within CORAA ASR, with a large diversity of audio types, explain the variability
in the duration.
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Figure 6 – Boxplots of the duration of the audios in the proposed dataset.

3.1.2 G2P

We tested several G2P converters for PT-BR on a dataset of manually veri昀椀ed
words with phonetic transcriptions scraped from the “Portal da Língua Portuguesa”, or
“Portuguese Language Portal” in English. The portal is an organized repository of lan-
guage resources aimed at both the general public and the scienti昀椀c community (COR-
REIA; ASHBY; JANSSEN, 2010). The Portal has a phonetic dictionary of nearly 53,400
words in 10 Portuguese accents, including Luanda, Rio de Janeiro, São Paulo, Maputo,
Lisbon, and Díli). We adopted the standard São Paulo phonetic transcriptions as reference
transcriptions because we found that this particular PT-BR accent was more generalizable
to other regions of Brazil.

word category transcription
a artigo a
á-bê-cê nome masculino ˌa.bˌe.sˈe
a-pro·pó·si·to nome masculino a.pɾo.pˈɔ.zi.tʊ
à-von·ta·de nome masculino ˌa.võ.tˈa.dʒi
a·a nome feminino a.ˈa

Table 5 – Head of the Portuguese Language Portal’s dataset

As shown in Table 5, the original data included primary and secondary stress marks
and special characters. These markers were removed from the transcriptions. We also used
an iterative process of transcribing the dataset with the G2P converters, analyzing the
words with the highest PERs, and manually correcting any faulty transcriptions identi昀椀ed
in the dataset. In this process, some inaccuracies that contributed to a higher PER were
corrected, such as in the examples shown in Table 6.

The choice of the G2P converters was made by extensively investigating the liter-
ature and online repositories such as GitHub and GitLab.
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Error Frequency
Duplicated transcriptions 686
Transcriptions that consist only of /ou/ 26
Wrong or missing suffix 3
Transcriptions that correspond to other words 2
Transcription with an invalid phoneme 1

Table 6 – Errors identi昀椀ed in the Portuguse Language Portal’s database

FalaBrasil G2P was presented by Neto et al. (2011), Silva et al. (2006) as a rule-
based G2P converter with stress determination for PT-BR, which has self-contained rules
that do not rely on other algorithms such as syllabic division or plural identi昀椀cation.

eSpeak (DUDDINGTON, 1995) and eSpeak-NG (DUNN, 2015) are both multi-
lingual and open source software TTS synthesizers for Linux and Windows. They use a
phonemization rule engine for each of the supported languages, which include PT-BR and
PT-PT. The eSpeak-NG project emerged with the intention of cleaning up the existing
eSpeak codebase, adding new features, and improving the supported languages (DUNN,
2015).

Novak, Minematsu e Hirose (2016) introduced Phonetisaurus, an open-source G2P
conversion toolkit that leverages the OpenFst library. Phonetisaurus is a data-driven G2P
trained with a variation of the joint multigram approach with the Weighted Finite-State
Transducer paradigm. The Phonetisaurus repository contains a PT-BR model trained on
a pronunciation dictionary.

To conclude, Epitran is a multilingual, multiple back-end system for G2P trans-
duction which is distributed with support for 61 languages. Epitran (MORTENSEN;
DALMIA; LITTELL, 2018) uses a mapping-and-repairs approach to G2P. It is expected
that there is a mapping between graphemes and phonemes that can do most of the work
of converting orthographic representations to phonological representations (HULDEN;
GORMAN; LEE, 2014). For this reason, Epitran works best with phonetically consistent
languages.

The G2P converters were evaluated as to the discordance rate between the gen-
erated automatic transcriptions and the reference transcriptions. This rate, calculated
as the PER, embed variations in phonetic inventories, accents, representations of certain
phoneme groups, and any potential errors in the generated G2P transcriptions, although
these are difficult to precisely identify. The original vocabularies of each G2P tool, as
well as the vocabulary of the reference phoneme charts and of the phonetic dictionary, are
included in Appendix B. To better evaluate the discordance rates, we selected a random
10% sample of the dataset, i.e. 5337 words, that is enough to represent the population.

In addition, in order to better compare the G2P quality, we transformed the vo-
cabularies of the dictionary and the G2P converters according to the reference phoneme
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charts discussed in Section 2.1.3.2. Furthermore, even though the charts do not include
the approximants /j/ and /w/, we kept these phonemes wherever they appeared because
they are present in the examples included in Ivo (2019a) and Ivo (2019b). The transformed
vocabularies, as well as the rules used in this process, are included in Appendix C.

In summary, we chose the G2P tool that yielded the lowest discordance rate to
transcribe the CORAA ASR corpus. The only correction made in the transcriptions was
the pronunciation of “aham”, initially transcribed as /aãw̃/, then corrected to /ãχã/, after
consultation with a student of Linguistics. The transcribed corpus was then used to 昀椀ne-
tune the wav2vec 2.0 model, as detailed in Section 3.2. The datasets, con昀椀guration 昀椀les,
and Python scripts are made available in this GitHub repository1.

3.2 PT-BR APT model

To de昀椀ne the train, test and dev sets of the wav2vec 2.0 model, we selected audios
with a duration between the 昀椀rst quartile (Q1) and the third quartile (Q3) represented
in Figure 6, delimiting the interval [1.17, 2.48]. We also 昀椀ltered out transcriptions that
contained only one phoneme, such as “ah”, “uh”, and “eh”, to avoid including audios with
little voice activity, which would not add much information to the wav2vec 2.0 model.

Furthermore, we de昀椀ned three subsets of the transcribed train set of the CORAA
ASR, comprising 1 hour, 10 hours, and 60 hours of audio. The aim was to evaluate the
impact of the train set size in the 昀椀nal result. The randomly selected test set and dev set
comprised 1 hour of audio each.

There are a number of pre-trained multilingual wav2vec 2.0 models, such as XLS-
R (RUDER; SØGAARD; VULIĆ, 2019) and XLSR-53 (BABU et al., 2022), which can
undergo 昀椀ne-tuning in order to be used in APT tasks. We used XLSR-53 and we followed
the tutorials by Platen (2021) and Kitahara (2021) to prepare the dataset, the tokenizer,
and the feature extractor, and to perform the 昀椀ne-tuning. The model vocab was encoded
using a custom encoding in order to keep the tokens with a length of 1, which facilitated
the evaluation of the model. The best 昀椀ne-tuned model is shared in the Hugging Face
repository2. The graphs showing the 昀椀ne-tuning progress are included in Appendix D.
We also share the training con昀椀gurations in Appendix E but they are also included in the
GitHub repository.

1 <https://github.com/caiocrocha/Brazilian_Quick_APT>. Accessed: July 2, 2024.
2 <https://huggingface.co/caiocrocha/wav2vec2-large-xlsr-53-phoneme-portuguese>.

Accessed: July 2, 2024.
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4 Results

In this chapter, we present the results and discussion of the selection process of
the G2P converter and of the 昀椀ne-tuning of the PT-BR APT model.

The experiments were divided in two parts. In the 昀椀rst part, we analyzed the
performance of the selected G2P tools on the Portuguese Language Portal’s dataset. In
Section 4.1, we present the discordance rates in relation to the reference transcriptions
and we investigate transcription errors. In the second part, we 昀椀ne-tuned the wav2vec 2.0
model on the transcribed CORAA datasets. In Section 4.2, we analyze the performance
of the 昀椀ne-tuned wav2vec 2.0 models and we examine the confusion between phonemes.

4.1 G2P

The discordance rates for each G2P converter before and after the transformation
according to the mapping detailed in Appendix C are presented in Table 7.

G2P Discordance rate before Discordance rate after
eSpeak 0.3076 0.2550
eSpeak-NG 0.3075 0.2548
FalaBrasil 0.2980 0.2257
Epitran 0.5237 0.4904
Phonetisaurus 0.4332 0.4020

Table 7 – Discordance rates before and after the transformation of the G2P transcriptions.

FalaBrasil yielded the lowest discordance rate after the transformation of the vo-
cabulary. Meanwhile, eSpeak-NG and eSpeak come in second and third and obtained
very similar results because they di昀昀er only in the version of the G2P converter. Even
though these three present modestly high discordance rates, we couldn’t 昀椀nd any obvious
errors in their outputs. On the other hand, Epitran and Phonetisaurus presented some
evident errors and thus obtained much higher discordance rates. Epitran’s transcriptions
included the phoneme /k/ instead of /ʃ/ in words like “charuto” and “chalé”. Phonetisaurus’
transcriptions replaced /l/ with /w/ and /z/ with /s/ in words like “oleaginoso”. In addition,
both confused /r/ for /χ/ in words like “micro”.

Another crucial factor that contributed to a higher discordance rate was the G2P
accent. Though we couldn’t 昀椀nd information on the accents adopted for each G2P tool,
we observed that they utilized varied PT-BR accents. eSpeak and eSpeak-NG were likely
constructed to generate transcriptions in the standard São Paulo accent. Epitran is
likely representative of a Northeastern PT-BR accent, as it features the phoneme /ʃ/
in the plural of words (“S chiado”) and the open-mid vowels /ɛ/ and /ɔ/ in words such as
“nordestino”. We couldn’t determine the precise accent of FalaBrasil and Phonetisaurus,
though they very likely represent a standard Southeastern accent. Because the Portuguese
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Language Portal’s database features the standard São Paulo accent, eSpeak, eSpeak-
NG, and FalaBrasil took bene昀椀t from this. On the other hand, Epitran obtained higher
discordance rates, though they were also due to the aforementioned transcription errors.

In addition, we calculated the discordance rate by word for the G2P tools. Figure
7 shows these discordance rates for FalaBrasil and eSpeak-NG.
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Figure 7 – Histogram of the discordance rates by word for FalaBrasil and for eSpeak-NG.

The histogram shows that FalaBrasil had a peak of discordance rate in the range
[0.1, 0.3] but it presented very few words with a discordance rate higher than 0.6. On the
other hand, eSpeak-NG had a more even distribution of discordance rates, stretching up
to 1.0, meaning that it had more words with a very low discordance rate but also words
with a very high discordance rate.

4.2 PT-BR APT model

We 昀椀ne-tuned three models with 1 hour, 10 hours, and 60 hours of audio each,
which we named XLSR-APT-1h, XLSR-APT-10h, and XLSR-APT-60h respectively. The
PERs for each model are presented in Table 8.

Model
Dataset Dev Test

1h 0.8301 0.7963
10h 0.2197 0.1587
60h 0.2190 0.1600

Table 8 – PER of the 昀椀ne-tuned models on each set.
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XLSR-APT-10h achieved the lowest PER on the test set, indicating that 10 hours
of audio were sufficient for satisfactory performance. Adding 50 more hours to the train
set did not improve the model, as shown by XLSR-APT-60h’s PER. In contrast, XLSR-
APT-1h had a PER 400% higher, highlighting its signi昀椀cantly poorer performance.

Table 9 displays the accuracy of each model, showing how well the predicted
phonemes matched the expected ones.

Model
Dataset Dev Test

1h 0.58 0.58
10h 0.89 0.92
60h 0.89 0.92

Table 9 – Accuracy of the 昀椀ne-tuned models on each set.

XLSR-APT-1h had a low accuracy, con昀椀rming its poor performance. In contrast,
XLSR-APT-10h and XLSR-APT-60h achieved a reasonable accuracy, indicating accept-
able performances. Sections 4.2.1 and 4.2.2 provide a more in-depth analysis of the
performance of each model.

4.2.1 Con昀椀dence analysis

To get a better sense of the models’ predictions, we plotted box plots of the
con昀椀dence scores by predicted phoneme, shown in Figure 8.

Figure 8a shows that XLSR-APT-1h presented little con昀椀dence in its predictions.
In addition, the support of the predicted phonemes is lower than in the reference tran-
scriptions, which indicates that the model performed poor transcriptions. This is a very
evident hint that the model did not properly learn the phonemes in the train set.

Figures 8b and 8c show that, for the XLSR-APT-10h and XLSR-APT-60h models,
while some phonemes exhibited higher variance in con昀椀dence scores, the median con昀椀-
dence level, denoted by the black horizontal line in each bar, remained consistently high
across all phonemes. This suggests overall con昀椀dence in the models’ predictions. However,
the considerable variance in certain phonemes indicates challenges in recognizing speci昀椀c
utterances. Potential reasons for this include errors in the G2P output, unclear or mu昀툀ed
speech, and external noise.
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(a) XLSR-APT-1h

(b) XLSR-APT-10h

(c) XLSR-APT-60h

Figure 8 – Boxplot of the con昀椀dence scores by predicted phoneme for the test set.
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4.2.2 Confusion analysis

The confusion matrices presented in Figure 9 provide a detailed view of the models’
accuracy, showing the correct predictions in the diagonal and the wrong predictions in the
o昀昀-diagonal cells. “<pad>” is the padding token used as CTC-blank label, representing
predictions where the models could not identify any speci昀椀c phoneme.
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Figure 9 – Confusion matrices for the test set.

Figure 9a shows that XLSR-APT-1h confused all phonemes with “<pad>”, expos-
ing yet again that the model failed to predict the phonemes in the test set. On the other
hand, Figures 9b and 9c depict a much improved performance, with few confusions be-
tween phonemes. However, they are very similar, revealing that XLSR-APT-60h did not
bring any noticeable improvements over XLSR-APT-10h. When analyzing the phonemes
with highest confusion, we can observe confusions between similar vowels, such as /ɛ/ and
/e/, /ɔ/ and /o/, /ũ/ and /u/, /ĩ/ and /i/. Additionally, close consonants are also confounded,
such as /ʃ/ and /s/, /ɲ/ and /ȷ/̃. At last, some phonemes, such as /j/, /ȷ/̃, /w/, /w̃/, /ɲ/,
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and /χ/, were mistaken for “<pad>”, indicating that the models had trouble recognizing
them.
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5 Conclusion

This research aimed to explore a methodology to create a dataset of phonetic tran-
scriptions for PT-BR from existing ASR corpora. Based on a thorough literature review
of PT-BR speech corpora, we analyzed their extensiveness, the diversity of accents, their
昀椀tness to APT model training, their price, and their license. We discovered a lack of APT
resources tailored for PT-BR, as highlighted by Aguiar e Costa-Abreu (2023), Dijkstra
(2021). The main speech corpora found to have human-validated phonetic transcriptions
were MF (Batista; Dias; Neto, 2022) and Spoltech (SCHRAMM et al., 2006). However,
these speech corpora are either small, as is the case of MF, or paid, such as Spoltech. On
the other hand, several speech corpora are large enough and present text transcriptions
that can be used for the training of ASR models.

We chose CORAA ASR (JUNIOR et al., 2023) to develop a dataset of phonetic
transcriptions derived with FalaBrasil’s G2P converter (NETO et al., 2011). The choice
of the G2P tool was made by analyzing the G2P output compared to the Portuguese
Language Portal’s dictionary (CORREIA; ASHBY; JANSSEN, 2010) of phonetic tran-
scriptions. We also adopted a reference phoneme vocabulary (IVO, 2019a; IVO, 2019b)
and standardized the phonetic transcriptions (Appendix C). FalaBrasil’s G2P presented
the lowest discordance rate among the selected G2Ps. Moreover, we concluded that stan-
dardizing the phonetic transcriptions reduced the phoneme discordance rate by up to
24%.

The transcribed dataset of phonetic transcriptions derived from CORAA ASR
was used to 昀椀ne-tune three XLSR-53 wav2vec 2.0 models (RUDER; SØGAARD; VULIĆ,
2019) for APT in PT-BR. We found that the model 昀椀ne-tuned on 10 hours of audio
achieved satisfactory performance, obtaining a 15.87% PER on the test set. By analyzing
the con昀椀dence scores per class, we observed that it presented high mean con昀椀dence scores.
However, there were some exceptions, such as /j/, /ȷ/̃, /w/, /w̃/, /ɲ/, and /χ/, which had a
higher con昀椀dence score variance. Similarly, by analyzing the confusion matrix, we noted
that /ɛ/, /e/, /ɔ/, /o/, /ũ/, /u/, /ĩ/, /i/, /ʃ/, /s/, /ɲ/ and /ȷ/̃ presented confusion rates up to
20%, indicating that the prediction accuracy could still be improved.

One reason for such confusions might be the di昀昀erence between the G2P tran-
scriptions used for training and the actual uttered phonemes. The training transcriptions
derived with FalaBrasil’s G2P account for one accent but the audios include several ac-
cents, such as the Recife, Minas Gerais, standard and non-standard São Paulo accents.
In consequence, the model has certainly encountered di昀昀erent pronunciations of the same
words. Since wav2vec 2.0 jointly learns contextualized speech representations and an
inventory of discretized speech units (BAEVSKI et al., 2020) (phones), these di昀昀erent
phonemic representations for the same contexts (words) coupled with non-matching G2P
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transcriptions may have introduced confusion during the 昀椀ne-tuning process. In fact, /ʃ/
and /s/, /ɛ/ and /e/, /ɔ/ and /o/ are allophones in PT-BR that vary according to the accent.
The fact that, according to Figure 4, 65% of the audios in the corpus feature the Recife
accent, characterized by the pronunciation of /ʃ/, /ɛ/, and /ɔ/ in certain contexts, contrarily
to the accent featured in FalaBrasil’s G2P accent, which presents rather /s/, /e/, /o/ for
the same contexts, also supports this hypothesis.

One solution to this problem could involve using a di昀昀erent G2P tool for each
accent featured in the corpus, increasing the likelihood that the phonetic transcriptions
match the actual utterances and reducing confusion. Additionally, optimizing the 昀椀ne-
tuning hyperparameters could further enhance the outcome.

Additionally, the study by Bhatt et al. (2023) underscored that researchers used
triphone-based context-dependent phonemes to reduce the contextual e昀昀ect, improving
phoneme recognition. The authors also stated that identifying voicing is essential for con-
sonant recognition, because there is often an important distinction between voiced and
unvoiced stops, as well as voiced and unvoiced fricatives. Similarly, identifying nasaliza-
tion is crucial for accurate vowel recognition. Therefore, increasing the representation of
both unvoiced and voiced stops, as well as voiced and unvoiced fricatives and nasal vowels
in the training set, could lead to improved phoneme recognition.

To conclude, we highlight the potential use of this work for phoneme recognition
applications in PT-BR, such as speech therapy, educational assessment, language learning,
linguistic research, and the development of ASR technology.
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APPENDIX A – X-SAMPA to IPA

l l
u u
k k
a a
s s
S ʃ
r r
t t
m m
i i
o o
f f
w w
Z ʒ
e∼ ẽ
j∼ j̃
R ʁ
e e
j j
i∼ ĩ
n n
z z
v v
a∼ ã
w∼ w̃
E ɛ
b b
X χ
d d
dZ dʒ
p p
O ɔ
g ɡ
o∼ õ
tS tʃ
u∼ ũ
J ɲ
L ʎ

Table 10 – X-SAMPA codes (left) and IPA symbols (right).
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APPENDIX B – Phoneme vocabularies

The vocabularies of the reference phoneme charts, the Portuguse Language Portal,
and the G2P converters are presented below:

Reference phoneme charts: ['p', 'b', 't', 'd', 'k', 'ɡ', 'tʃ', 'dʒ', 'f ', 'v', 's', 'z', 'ʃ', 'ʒ', 'χ', 'ɣ', 'h', 'ɦ',
'm', 'n', 'ɲ', 'ɾ', 'r', 'ɹ', 'l', 'ʎ', 'i', 'ĩ', 'ɪ', 'e', 'ẽ', 'ɛ', 'ə', 'ã', 'a', 'ʊ', 'ũ', 'u', 'õ', 'o', 'ɔ']

Portuguese Language Portal: ['a' 'b' 'e' 's' 'p' 'ɾ' 'o' 'ɔ' 'z' 'i' 't' 'ʊ' 'v' 'õ' 'dʒ' 'w' 'x' 'tʃ' 'g' 'd'
'j' 'ə' 'k' 'ə̃' 'ʃ' 'ʒ' 'f ' 'm' 'ẽ' 'n' 'u' 'l' 'r' 'ʎ' 'ɛ' 'ɛ̃' 'ɲ' 'ũ' 'ĩ' 'ɨ' 'ɐ̃' 'h' 'ŋ' 'ɫ' 'ɔ̃']

eSpeak: ['l' 'u' 'k' 'æ' 's' 'ʃ' 'a' 'ɾ' 't' 'ʊ' 'm' 'i' 'r' 'o' 'f ' 'ʒ' 'e' 'ɪ' 'ŋ' 'x' 'w' 'n' 'z' 'v' 'ɐ̃' 'ʊ̃' 'b' 'ɛ'
'd' 'dʒ' 'y' 'j' 'p' 'ɔ' 'ɡ' 'tʃ' 'ũ' 'ɲ']

FalaBrasil: ['l' 'u' 'k' 'a' 's' 'ʃ' 'r' 't' 'm' 'i' 'o' 'f ' 'w' 'ʒ' 'ẽ' 'ȷ'̃ 'ʁ' 'e' 'j' 'ĩ' 'n' 'z' 'v' 'ã' 'w̃' 'ɛ' 'b' 'χ'
'd' 'dʒ' 'p' 'ɔ' 'ɡ' 'õ' 'tʃ' 'ũ' 'ɲ' 'ʎ']

Epitran: ['l' 'u' 'k' 'ɐ' 'ʃ' 'ɾ' 't' 'o' 'm' 'i' 'ʁ' 'f ' 'ʒ' 'ɛ̃' 'ɛ' 'j' 'n' 'z' 'v' 's' 'ɐ̃' 'w̃' 'b' 'e' 'd' 'kʷ' 'a' 'p'
'ɔ' 'ɡ' 'ȷ'́ 'ĩ' 'w' 'ɡʷ' 'ũ' 'õ' 'ȷ'̃ 'dʒ' 'ẽ' 'ẃ' 'lʒ']

Phonetisaurus: ['ɫ' 'u' 'k' 'a' 's' 'ʃ' 'ʁ' 't' 'o' 'm' 'i' 'f ' 'g' 'e' 'ʒ' 'n' 'v' 'ɐ̃' 'b' 'ɛ' 'd' 'p' 'ɔ' 'z' 'ɲ' 'ẽ'
'ã' 'ʎ' 'õ' 'ʀ' 'ɾ' 'dʒ' 'w']

The vocabularies after the transformation according to the reference phoneme
charts are presented below:

Portuguese Language Portal: ['l' 'u' 'k' 'ə' 's' 'ʃ' 'a' 'ɾ' 't' 'ʊ' 'm' 'i' 'o' 'f ' 'w' 'ʒ' 'e' 'ɲ' 'χ' 'j'
'n' 'z' 'v' 'ã' 'b' 'ẽ' 'ɛ' 'd' 'dʒ' 'ĩ' 'p' 'ɔ' 'ɡ' 'õ' 'tʃ' 'ũ' 'r' 'ʎ' 'h']

eSpeak: ['l' 'u' 'k' 'a' 's' 'ʃ' 'ɾ' 't' 'ʊ' 'm' 'i' 'r' 'o' 'f ' 'ʒ' 'e' 'ɪ' 'n' 'χ' 'w' 'z' 'v' 'ã' 'ʊ̃' 'b' 'ɛ' 'd' 'dʒ'
'j' 'p' 'ɔ' 'ɡ' 'tʃ' 'ũ' 'ɲ']

FalaBrasil: ['l' 'u' 'k' 'a' 's' 'ʃ' 'r' 't' 'm' 'i' 'o' 'f ' 'w' 'ʒ' 'ẽ' 'ȷ'̃ 'χ' 'e' 'j' 'ĩ' 'n' 'z' 'v' 'ã' 'w̃' 'ɛ' 'b' 'd'
'dʒ' 'p' 'ɔ' 'ɡ' 'õ' 'tʃ' 'ũ' 'ɲ' 'ʎ']

Epitran: ['l' 'u' 'k' 'ɐ' 'ʃ' 'ɾ' 't' 'o' 'm' 'i' 'χ' 'f ' 'ʒ' 'ẽ' 'ɛ' 'j' 'n' 'z' 'v' 's' 'ã' 'w̃' 'b' 'e' 'd' 'a' 'p' 'ɔ' 'ɡ'
'ȷ'́ 'ĩ' 'w' 'ũ' 'õ' 'ȷ'̃ 'dʒ' 'lʒ']

Phonetisaurus: ['w' 'u' 'k' 'a' 's' 'ʃ' 'χ' 't' 'o' 'm' 'i' 'f ' 'ɡ' 'e' 'ʒ' 'n' 'v' 'ã' 'b' 'ɛ' 'd' 'p' 'ɔ' 'z' 'ɲ'
'ẽ' 'ʎ' 'õ' 'ɾ' 'dʒ']
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APPENDIX C – Transformation mapping

ŋ → n
ɨ → i
ə̃ → ã
ɐ̃ → ã
ɛ̃ → ẽ
ɔ̃ → õ
x → χ
g → ɡ
æ → a
ʁ → χ
ʀ → χ
ɡʷ → ɡ
kʷ → k
ẃ → w
lʲ → ʎ
y → i
ỹ → ɲ
ɫ → w

Table 11 – Mapping to transform the transcriptions according to the reference vocabulary.



53

APPENDIX D – Fine-tuning progress

Figure 10 displays each models’ 昀椀ne-tuning progress.

(a) XLSR-APT-1h

(b) XLSR-APT-10h

(c) XLSR-APT-60h

Figure 10 – Fine-tuning progress.
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APPENDIX E – Fine-tuning con昀椀guration

Listings 1, 2, and 3 include the con昀椀g.json 昀椀les used to 昀椀ne-tune the wav2vec 2.0
models.

{
"run_name": "Wav2Vec-fine-tuning-phonemes",
"run_description": "Fine tuning phonemes",
"seed": 42,

"sampling_rate": 16000,

"num_hidden_layers": 24,

"vocab":{
"vocab_path": "wav2vec2_phoneme_1h/vocab.json",
"blank": "<pad>",
"silence": "|",
"unk": "<unk>"

},

"batch_size": 32,
"mixed_precision": true,
"early_stop_epochs": 50,

"epochs": 100,
"lr": 5e-5,
"gradient_accumulation_steps": 1,

"logging_steps": 100,
"load_best_model_at_end": true,
"save_total_limit": 2,
"warmup_ratio": 0,
"warmup_steps": 0,

"num_loader_workers": 8,

"freeze_feature_extractor": true,
"attention_dropout": 0.1,
"activation_dropout": 0.1,



55

"hidden_dropout": 0.1,
"feat_proj_dropout": 0.1,
"mask_time_prob": 0.1,
"layerdrop": 0.1,
"gradient_checkpointing": true,

"output_path": "wav2vec2_phoneme_1h/output",

"dataset_cache": "wav2vec2_phoneme_1h/datasets",

"datasets":{
"train":

[
{

"name": "csv",
"path": "csv",
"data_files":

["wav2vec2_phoneme_1h/input/metadata_train_final_g2p_ipa_sample_1h.csv"],↪→

"text_column": "transcript_encoded",
"path_column": "file_path"

}
]

,
"devel":

[

{
"name": "csv",
"path": "csv",
"data_files":

["wav2vec2_phoneme_1h/input/metadata_dev_final_g2p_ipa_sample_1h.csv"],↪→

"text_column": "transcript_encoded",
"path_column": "file_path"

}
]
,

"test":
{

"name": "csv",
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"path": "csv",
"data_files":

["wav2vec2_phoneme_1h/input/metadata_test_final_g2p_ipa_sample_1h.csv"],↪→

"text_column": "transcript_encoded",
"path_column": "file_path"

}
}

}

Listing 1 – XLSR-APT-1h 昀椀ne-tuning con昀椀guration.

{
"run_name": "Wav2Vec-fine-tuning-phonemes",
"run_description": "Fine tuning phonemes",
"seed": 42,

"sampling_rate": 16000,

"num_hidden_layers": 24,

"vocab":{
"vocab_path": "wav2vec2_phoneme_10h/vocab.json",
"blank": "<pad>",
"silence": "|",
"unk": "<unk>"

},

"batch_size": 32,
"mixed_precision": true,
"early_stop_epochs": 50,

"epochs": 100,
"lr": 1e-5,
"gradient_accumulation_steps": 1,

"logging_steps": 100,
"load_best_model_at_end": true,
"save_total_limit": 2,
"warmup_ratio": 0,
"warmup_steps": 0,
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"num_loader_workers": 8,

"freeze_feature_extractor": true,
"attention_dropout": 0.1,
"activation_dropout": 0.1,
"hidden_dropout": 0.1,
"feat_proj_dropout": 0.1,
"mask_time_prob": 0.1,
"layerdrop": 0.1,
"gradient_checkpointing": true,

"output_path": "wav2vec2_phoneme_10h/output",

"dataset_cache": "wav2vec2_phoneme_10h/datasets",

"datasets":{
"train":

[
{

"name": "csv",
"path": "csv",
"data_files":

["wav2vec2_phoneme_10h/input/metadata_train_final_g2p_ipa_sample_10h.csv"],↪→

"text_column": "transcript_encoded",
"path_column": "file_path"

}
]

,
"devel":

[

{
"name": "csv",
"path": "csv",
"data_files":

["wav2vec2_phoneme_10h/input/metadata_dev_final_g2p_ipa_sample_1h.csv"],↪→

"text_column": "transcript_encoded",
"path_column": "file_path"
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}
]
,

"test":
{

"name": "csv",
"path": "csv",
"data_files":

["wav2vec2_phoneme_10h/input/metadata_test_final_g2p_ipa_sample_1h.csv"],↪→

"text_column": "transcript_encoded",
"path_column": "file_path"

}
}

}

Listing 2 – XLSR-APT-10h 昀椀ne-tuning con昀椀guration.

{
"run_name": "Wav2Vec-fine-tuning-phonemes",
"run_description": "Fine tuning phonemes",
"seed": 42,

"sampling_rate": 16000,

"num_hidden_layers": 24,

"vocab":{
"vocab_path": "wav2vec2_phoneme_60h/vocab.json",
"blank": "<pad>",
"silence": "|",
"unk": "<unk>"

},

"batch_size": 32,
"mixed_precision": true,
"early_stop_epochs": 50,

"epochs": 100,
"lr": 1e-5,
"gradient_accumulation_steps": 1,
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"logging_steps": 100,
"load_best_model_at_end": true,
"save_total_limit": 2,
"warmup_ratio": 0,
"warmup_steps": 0,

"num_loader_workers": 8,

"freeze_feature_extractor": true,
"attention_dropout": 0.1,
"activation_dropout": 0.1,
"hidden_dropout": 0.1,
"feat_proj_dropout": 0.1,
"mask_time_prob": 0.1,
"layerdrop": 0.1,
"gradient_checkpointing": true,

"output_path": "wav2vec2_phoneme_60h/output",

"dataset_cache": "wav2vec2_phoneme_60h/datasets",

"datasets":{
"train":

[
{

"name": "csv",
"path": "csv",
"data_files":

["wav2vec2_phoneme_60h/input/metadata_train_final_g2p_ipa_sample_60h.csv"],↪→

"text_column": "transcript_encoded",
"path_column": "file_path"

}
]

,
"devel":

[

{
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"name": "csv",
"path": "csv",
"data_files":

["wav2vec2_phoneme_60h/input/metadata_dev_final_g2p_ipa_sample_1h.csv"],↪→

"text_column": "transcript_encoded",
"path_column": "file_path"

}
]
,

"test":
{

"name": "csv",
"path": "csv",
"data_files":

["wav2vec2_phoneme_60h/input/metadata_test_final_g2p_ipa_sample_1h.csv"],↪→

"text_column": "transcript_encoded",
"path_column": "file_path"

}
}

}

Listing 3 – XLSR-APT-60h 昀椀ne-tuning con昀椀guration.


