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RESUMO 
 

O crescente volume de dados digitais, o pilar da Inteligência Artificial (IA), oriundos 

da borda computacional, especialmente em aplicações com Veículos Aéreos Não 

Tripulados (VANT) que capturam grandes quantidades de imagens em campo, 

impõe um desafio crítico: a necessidade de otimizar o processamento e a latência 

em dispositivos com severas restrições de hardware e energia. Visando analisar e 

comparar métodos de compressão de imagens baseados em IA para mitigar a 

latência na borda, este trabalho empregou a metodologia Design Science Research 

(DSR) em dois ciclos iterativos. A solução desenvolvida consistiu na implementação 

de modelos de Autoencoder (AE) de diferentes complexidades. Convencional, AE 

Variacional (VAE) e Penalizado por Redundância, treinados em ambiente de nuvem 

de alto desempenho utilizando imagens de VANT do dataset SARD-2. No Ciclo 1, os 

modelos foram comparados e otimizados quanto à qualidade de reconstrução e 

eficiência computacional, revelando que uma estrutura simples e otimizada é mais 

eficaz que arquiteturas excessivamente complexas. O AE Convencional Otimizado 

superou as variantes mais complexas, alcançando o melhor equilíbrio entre 

qualidade (PSNR = 20,71 dB; MS-SSIM = 0,9359) e tempo de processamento. No 

Ciclo 2, o modelo vencedor foi convertido e executado em ambiente de borda 

simulada por meio da plataforma OpenVINO, com simulação de hardware restrito e 

precisão FP32. A validação experimental demonstrou latência média de 21,2 ms e 

estabilidade temporal adequada para aplicações quase em tempo real, confirmando 

a viabilidade do modelo leve em dispositivos embarcados. Os resultados consolidam 

a tese de que a eficiência na borda depende da adequação estrutural do modelo ao 

hardware, e não apenas da sofisticação algorítmica. Este trabalho contribui como 

baseline metodológico replicável para compressão inteligente de imagens VANT, 

conciliando desempenho, sustentabilidade computacional e princípios da Ciência 

Aberta. 

Palavras-chave: Autoencoder; Borda Computacional; Inteligência Artificial; 

Compressão de Imagens; Sustentabilidade Computacional; Metodologia DSR; 

Ciência Aberta. 

 



 

ABSTRACT 
 

The growing volume of digital data, the pillar of Artificial Intelligence (AI), originating 

from the computational edge, especially in applications with Unmanned Aerial 

Vehicles (UAVs) that capture large amounts of images in the field, poses a critical 

challenge: the need to optimize processing and latency on devices with severe 

hardware and power constraints. Aiming to analyze and compare AI-based image 

compression methods to mitigate latency at the edge, this work employed the Design 

Science Research (DSR) methodology in two iterative cycles. The solution 

developed consisted of implementing Autoencoder (AE) models of different 

complexities. Conventional, Variational Autoencoder (VAE), and 

Redundancy-Penalized Autoencoder, trained in a high-performance cloud 

environment using UAV images from the SARD-2 dataset. In Cycle 1, the models 

were compared and optimized for reconstruction quality and computational efficiency, 

revealing that a simple and optimized structure is more effective than overly complex 

architectures. The Optimized Conventional AE outperformed the more complex 

variants, achieving the best balance between quality (PSNR = 20.71 dB; MS-SSIM = 

0.9359) and processing time. In Cycle 2, the winning model was converted and run in 

a simulated edge environment using the OpenVINO platform, with restricted 

hardware simulation and FP32 precision. Experimental validation demonstrated an 

average latency of 21.2 ms and adequate temporal stability for near real-time 

applications, confirming the viability of the lightweight model in embedded devices. 

The results consolidate the thesis that efficiency at the edge depends on the 

structural adequacy of the model to the hardware, and not only on algorithmic 

sophistication. This work contributes as a replicable methodological baseline for 

intelligent UAV image compression, reconciling performance, computational 

sustainability, and Open Science principles. 

Keywords: Autoencoder; Edge Computing; Artificial Intelligence; Image 

Compression; Computational Sustainability; DSR methodology;Open Science. 
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1.​ INTRODUÇÃO 

1.1.​ MOTIVAÇÃO E CONTEXTUALIZAÇÃO 

A explosão de dispositivos da Internet of Things (IoT) em cenários 

contemporâneos (Indústria 4.0, cidades inteligentes, agricultura, veículos 

autônomos, saúde eletrônica, energias renováveis, monitoramento de eventos 

climáticos e busca e resgate, SAR) tem gerado um volume massivo e heterogêneo 

de dados. Estima-se que, até 2025, existam 42 bilhões de dispositivos IoT 

conectados, produzindo 80 zettabytes de dados anualmente (UPADRISTA, 2021), 

volume este crescendo sem precedentes (MAFTEI et al. 2025). O desafio está na 

necessidade de manipulação, processamento e armazenamento eficiente desses 

registros, já que o envio direto dos dados para a nuvem pode causar tráfego 

excessivo, aumento de latência, consumo de banda e energia. Estratégias 

inovadoras, como frameworks baseados em blockchain e borda computacional, são 

exemplos de alternativas para superar essas limitações e garantir a escalabilidade e 

eficiência dos sistemas IoT (FAZELDEHKORDI & GRØNLI, 2022; BARBUTO et al. 

2023; MAFTEI et al. 2025). 

Dentre os diferentes tipos de dados gerados na IoT, as informações visuais, 

especialmente imagens, destacam-se pelo seu volume elevado e pelos desafios 

únicos de processamento, transmissão e armazenamento. Imagens provenientes de 

sensores, câmeras inteligentes, VANT e veículos autônomos constituem uma fração 

significativa do tráfego de dados em ambientes de borda, impactando diretamente a 

necessidade de soluções que atendam aos requisitos de baixa latência e alta 

eficiência operacional. Além disso, aplicações críticas como segurança pública, 

monitoramento ambiental e saúde digital exigem que a transmissão e o 

processamento de imagens e dados ocorram em tempo real ou quase tempo real, a 

depender da aceitação de pequenos atrasos (GOMES, 2021).  

Neste contexto, os VANT ocupam posição de destaque. Esses sistemas 

capturam imagens em alta resolução e operam em cenários dinâmicos, remotos e 

frequentemente degradados, nos quais a conectividade é limitada e o 

processamento embarcado é restrito. Em aplicações como logística, monitoramento 

ambiental, busca e salvamento e fotogrametria, sistemas multi-robôs móveis devem 

possuir uma rede de comunicação confiável entre os veículos, garantindo que as 
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informações trocadas entre os nós tenham poucas perdas (RAMOS et al., 2023; 

GEGENAVA, 2025). 

Nesses cenários, o envio bruto de imagens 1080p ou 2K para a nuvem 

resulta em tráfego elevado, consumo excessivo de energia e atrasos incompatíveis 

com operações quase em tempo real. Estudos recentes mostram que a latência de 

transmissão e processamento é um dos fatores que mais impactam a eficácia de 

missões com VANT, especialmente quando operando em redes 4G/5G instáveis ou 

enlaces de rádio de baixa capacidade (ZHANG et al., 2024; REDDI, 2025). Assim, 

métodos de compressão inteligente na borda tornam-se essenciais para viabilizar a 

operação contínua e eficiente dos VANT. 

Portanto, a compressão de dados visuais em VANTs não é apenas uma etapa 

de otimização, mas um requisito operacional para garantir baixa latência, economia 

de banda e autonomia energética. É neste contexto que este trabalho se insere, 

investigando técnicas baseadas em AE para reduzir o volume de imagens geradas 

por esses veículos, preservando sua utilidade para tarefas críticas em ambientes de 

borda. 

Além disso, a computação de borda surge como uma solução promissora 

para mitigar esses problemas, ao permitir que o tratamento do conteúdo ocorra 

próximo à sua origem (REDDI, 2025), ou seja, nos próprios dispositivos IoT. Essa 

abordagem possibilita a execução de tarefas de data reduce (DR) diretamente nos 

dispositivos de borda, diminuindo a necessidade de transferência excessiva para a 

nuvem (PIOLI et al., 2024). Além disso, esse ambiente computacional oferece 

suporte à mobilidade, distribuição geográfica, reconhecimento de localização e 

respostas rápidas, requisitos nem sempre atendidos pela nuvem (POWELL, 

DESINIOTIS & DEZFOULI, 2020). Soluções como borda e névoa computacional 

visam transferir o processamento e a inteligência para mais perto das fontes, 

evitando a dependência de servidores remotos (ZHOU et al., 2019; KOLAPO et al., 

2024; UMEH, I. & UMEH, K. 2024). Embora a computação de borda represente uma 

solução promissora, é preciso considerar as restrições dos dispositivos de borda, 

que frequentemente operam com recursos limitados, como processadores de baixa 

potência e memória reduzida (KOLAPO et al., 2024; PIOLI et al., 2024). 

Neste contexto de big data visual, uma alternativa é o uso de técnicas de DR 

visuais, que consiste em transformar um conjunto de registros visuais em um volume 

menor, mantendo sua qualidade e integridade antes da transmissão (PIOLI et al., 
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2024). Essas técnicas são essenciais para otimizar o uso de banda, reduzir custos 

de armazenamento e possibilitar o processamento eficiente em dispositivos de 

borda, especialmente em aplicações que exigem respostas rápidas e baixo consumo 

de energia. 

Com os avanços em computação de borda e da IA, a tecnologia IoT atinge 

um novo patamar. A integração de IA com a borda computacional, denominada 

inteligência de borda, permite a criação de aplicações mais inteligentes e eficientes 

(DENG et al., 2020) ou aprendizado de máquina na borda (REDDI, 2025), que para 

este trabalho são considerados sinônimos. Essa abordagem não só minimiza a 

latência e o volume de tráfego de conteúdo visual, como também viabiliza decisões 

em tempo real, melhora escalabilidade, privacidade e confiabilidade (BARBUTO et 

al., 2023). A execução de algoritmos de IA nesses dispositivos exige estratégias de 

otimização, como compressão de modelos e utilização de redes neurais leves, 

viabilizando o processamento local de informações visuais sem comprometer a 

autonomia energética. 

Este trabalho se fundamenta em estudos recentes que analisam estratégias 

para DR em ambientes de borda e inteligência embarcada, evidenciando sua 

relevância atual (BARBUTO et al., 2023; PIOLI et al., 2024; PIOLI, 2025). 

1.2.​ JUSTIFICATIVA 

O avanço exponencial das aplicações de IA em cenários distribuídos, como 

IoT e os sistemas Ciber-Físicos, impõe a necessidade urgente de explorar 

arquiteturas de Computação de Borda (AHMAD et al., 2023; ANDRIULO et al., 2024; 

SHI et al., 2016). Essa abordagem é fundamental para que aplicações sensíveis à 

latência, como veículos autônomos e sistemas de monitoramento baseados em 

VANT, possam operar com a rapidez e a autonomia exigidas em missões críticas 

(DENG et al., 2020; RAMOS et al., 2023). 

Apesar do volume expressivo de publicações na área, parte relevante dos 

trabalhos ainda apresenta limitações no que se refere à validação experimental em 

contextos reais ou próximos de cenários operacionais (BARBUTO et al., 2023; PIOLI 

et al., 2024). Essa lacuna é ainda mais evidente em dispositivos de borda com 

restrições severas de processamento, memória e energia (CAO et al., 2020; PIOLI 

JUNIOR, 2024), nos quais a necessidade de eficiência é crítica. O desafio se 

intensifica porque os dados, elemento fundamental para o treinamento e a inferência 
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dos modelos de IA, são produzidos diretamente na borda e representam grande 

parte do contexto situacional (KONG et al., 2022; PIOLI et al., 2025). 

A evolução das redes de comunicação de próxima geração (5G e 6G) 

contribui para ampliar a capacidade de transmissão e o processamento distribuído, 

permitindo maior produção e manipulação de dados diretamente em dispositivos de 

borda (SINGH et al., 2024; KOLAPO et al., 2024; ADHIKARI; HAZRA, 2022). Essa 

expansão tecnológica reforça a necessidade de conduzir experimentos de IA 

capazes de reduzir dados visuais localmente, de forma eficiente e reprodutível, para 

que a infraestrutura emergente seja explorada de maneira adequada (BAO et al., 

2023; HAMDAN et al., 2020). Assim, a promessa de baixa latência, resiliência e 

operação em tempo quase real depende diretamente da capacidade de adaptação 

dos modelos aos dispositivos restritos (DENG et al., 2020; PIOLI et al., 2025). 

Neste contexto, o presente trabalho também se justifica pelo alinhamento 

direto com as demandas das missões de SAR, que dependem de VANT para 

captura contínua de imagens e tomada de decisão rápida. Esses cenários envolvem 

limitações severas de processamento embarcado, forte restrição energética e 

comunicação instável, o que torna a compressão inteligente um elemento essencial 

para reduzir o tráfego de dados sem comprometer a qualidade visual necessária 

para a detecção de vítimas ou objetos relevantes. Dessa forma, a combinação entre 

VANT, AE e uma arquitetura híbrida borda-nuvem surge como alternativa viável e 

necessária (RAMOS et al., 2023; SINGH; GILL, 2023; ZHOU et al., 2019). 

Adicionalmente, operações SAR frequentemente ocorrem em ambientes 

críticos, com baixa visibilidade, interferências e necessidade de tomada de decisão 

quase imediata. No entanto, VANT utilizam hardware embarcado limitado, 

geralmente baseado em arquiteturas ARM, com pouca memória e autonomia 

energética reduzida. A transmissão de imagens de alta resolução intensifica o 

tráfego de dados e, quando realizada integralmente na nuvem, introduz latências 

que inviabilizam aplicações sensíveis ao tempo. Métodos tradicionais de 

compressão podem ainda suprimir detalhes essenciais à identificação de alvos 

relevantes, reforçando a necessidade de abordagens mais robustas e alinhadas ao 

contexto da borda (RAMOS et al., 2023; SINGH; GILL, 2023; ZHOU et al., 2019). 

Apesar dos avanços em comunicação e infraestrutura, métodos tradicionais 

de compressão de imagens como JPEG, JPEG2000 ou esquemas baseados em 

transformadas, frequentemente apresentam limitações em cenários de borda, pois 
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podem degradar detalhes essenciais ou demandar etapas de processamento não 

otimizadas para hardware restrito. Nesse contexto, técnicas de Aprendizado 

Profundo (Deep Learning) têm ganhado destaque por sua capacidade de aprender 

representações compactas diretamente dos dados, adaptando-se ao conteúdo visual 

e às restrições da plataforma. Entre essas técnicas, os AE destacam-se como uma 

alternativa moderna e flexível para compressão, pois realizam a redução 

dimensional por meio de um encoder leve, capaz de ser executado em dispositivos 

embarcados, enquanto preservam características visuais relevantes para tarefas 

críticas. Assim, a escolha por AE decorre da necessidade de um mecanismo de 

compressão aprendido, adaptável ao dataset do VANT e compatível com as 

limitações computacionais da borda, o que justifica sua utilização como artefato 

central neste estudo (AZIZIAN; BAJIĆ, 2024; OLIVEIRA et al., 2021; BERAHMAND 

et al., 2024). 

Dessa forma, este estudo propõe uma abordagem de validação experimental, 

fundamentada na metodologia DSR (HEVNER et al., 2004; PEFFERS et al., 2007), 

utilizando AE adaptados para execução em dispositivos de borda. O objetivo é 

mitigar desafios de latência e consumo de recursos diante do crescente volume de 

dados gerados localmente, fornecendo evidências práticas para a adoção de 

modelos leves e eficientes em cenários críticos (AZIZIAN; BAJIĆ, 2024; OLIVEIRA et 

al., 2021; BERAHMAND et al., 2024). 

1.3.​ DEFINIÇÃO DO PROBLEMA 

Apesar dos avanços recentes em técnicas DR visuais aplicadas a ambientes 

computacionais de borda, persistem lacunas significativas quanto à adaptação 

dessas abordagens às severas restrições de processamento, energia e latência 

desses dispositivos. Esse desafio torna-se ainda mais evidente em plataformas 

móveis como VANTs, que geram grandes volumes de imagens em alta resolução, 

mas operam com hardware embarcado limitado e conectividade variável. 

Além disso, há escassez de estudos que realizem validações práticas em 

cenários heterogêneos e próximos da realidade operacional desses sistemas, 

especialmente no que se refere à eficácia das soluções de compressão diante de 

requisitos rígidos de latência para transmissão e reconstrução de conteúdo visual. 

Essa ausência de validação aplicada limita o avanço de técnicas realmente 

adequadas aos dispositivos de borda e às demandas de processamento distribuído. 
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1.4.​ QUESTÃO DE PESQUISA 

Diante desse contexto, a seguinte questão central se destaca: como reduzir a 

latência durante a transmissão de imagens, por meio de métodos de compressão 

baseados em inteligência artificial, garantindo eficiência operacional e qualidade 

visual para aplicações sensíveis ao tempo? 

1.5.​ OBJETIVOS 

O objetivo geral deste trabalho é analisar e comparar métodos de compressão 

de imagens baseados em inteligência artificial para redução do tráfego de dados em 

ambientes de borda-nuvem. Para tanto, foram definidos 3 objetivos específicos: 

●​ OE1: Sintetizar o estado da arte da compressão de imagens na borda, a partir 

de mapeamentos, revisões sistemáticas e estudos atuais, identificando 

tendências, limitações e lacunas. 

●​ OE2: Implementar e adaptar modelos de AE para compressão de imagens, 

considerando restrições de dispositivos de borda. 

●​ OE3: Avaliar experimentalmente o desempenho dos modelos quanto à 

latência, qualidade da reconstrução e eficiência de compressão. 

1.6.​ HIPÓTESE DE PESQUISA 

A literatura recente indica que arquiteturas de AE com maior 

sofisticação estrutural podem apresentar desempenho superior na 

compactação e reconstrução de imagens quando comparadas a AE 

convencionais otimizados. LAAKOM et al. (2024) demonstram que AE com 

penalização de redundância produzem representações latentes mais 

compactas e melhoram a fidelidade da reconstrução ao reduzir correlações 

indesejadas no gargalo. De modo semelhante, OLIVEIRA et al. (2021) 

evidenciam que modelos VAE alcançam melhor equilíbrio entre taxa de 

compressão e qualidade visual em cenários embarcados, aproximando-se das 

restrições de operação encontradas em sistemas móveis. Além disso, ZHU 

(2024), ao comparar diversas arquiteturas de AE, mostra que modelos mais 

complexos tendem a oferecer maior qualidade de reconstrução em relação a 

versões convencionais. 
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Diante dessas evidências, a hipótese central deste trabalho é a de que 

VAE e AE com penalização por redundância apresentam desempenho superior 

em compressão de imagens, em termos de qualidade de reconstrução e 

eficiência, quando comparados a um AE convencional otimizado, 

especialmente em ambientes de borda com restrições computacionais, como 

aqueles encontrados em aplicações com VANT. 

Esta hipótese será testada por meio da construção, experimentação e 

avaliação quantitativa de diferentes arquiteturas de AE em dois ciclos da 

metodologia DSR. As métricas de avaliação incluem PSNR (Peak 

Signal-to-Noise Ratio), SSIM (Structural Similarity Index) e o MS-SSIM ), taxa 

de compressão e latência, em ambientes computacionais distintos (nuvem e 

borda), simulando cenários operacionais com VANT. 

1.7.​ CONTRIBUIÇÕES ESPERADAS 

O estudo propõe consolidar o conhecimento recente sobre compressão de 

dados visuais em bordas computacionais, organizando tendências, desafios e 

lacunas da literatura. Pretende-se formalizar processos por meio da metodologia 

DSR, promovendo amadurecimento dos artefatos e geração de conhecimento 

científico. Serão adaptados e avaliados modelos de AE para compressão de 

imagens em cenários de borda, considerando restrições reais ou simuladas de 

dispositivos. O protocolo experimental prioriza a análise de latência, além de 

métricas tradicionais, respondendo a lacunas identificadas. Todos os experimentos e 

pipelines estão disponibilizados publicamente no GitHub1, incentivando a Ciência 

Aberta. Por fim, espera-se fornecer recomendações práticas para aplicações reais 

de borda que demandam baixa latência e eficiência computacional, uma vez que o 

deep AE (DAE) reduz significativamente a dimensionalidade dos dados, diminuindo 

o tráfego de comunicação e o custo de processamento sem perda relevante de 

informação. 

1.8.​ ORGANIZAÇÃO DO TRABALHO 

Os conceitos teóricos e trabalhos relacionados deste estudo estão no 

Capítulo 2. No capítulo 3, por sua vez, é apresentada a metodologia seguida. Além 

1 Disponível em: https://github.com/samuelccotta/sar_autoencoders. Acesso em: 18 out. 2025 
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disso, o Capítulo 4 mostra os resultados experimentais relacionados aos 

experimentos em nuvem e de simulação na borda computacional. Finalmente, o 

Capítulo 5 conclui esta pesquisa, resumindo este trabalho e delineando futuros 

estudos. 
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2.​ REFERENCIAL TEÓRICO 

Este capítulo apresenta conceitos, fundamentos e avanços tecnológicos que 

embasam esta pesquisa, contextualizando o cenário atual das tecnologias aplicadas. 

Nele são abordados os princípios de IoT, seus componentes e desafios, o ambiente 

computacional de nuvem e de borda, as técnicas de DR visuais e a evolução para o 

uso de inteligência artificial nesse contexto, com foco nos AE. Cabe destacar a 

existência na literatura do ambiente de névoa, que é relevante, mas foi suprimido 

para fins de simplificação da solução, mantendo a arquitetura borda-nuvem como 

foco da solução. Esse referencial fundamenta as motivações teóricas e práticas do 

trabalho, fornecendo suporte para a análise crítica das soluções propostas e para o 

desenvolvimento do pipeline experimental aplicado à compressão de imagens em 

ambientes de borda computacional. 

2.1.​ INTERNET DAS COISAS (IoT) 

IoT pode ser definida como uma rede global de dispositivos inteligentes 

interconectados, capazes de coletar, processar e compartilhar dados 

automaticamente, utilizando diferentes protocolos e tecnologias de comunicação. O 

conceito central da IoT envolve a integração de sensores, atuadores e sistemas 

computacionais, permitindo aplicações em áreas como cidades inteligentes, saúde, 

agricultura e automação industrial (DIN et al., 2018; FURSTENAU et al., 2020; 

MANSOUR et al., 2023). A arquitetura clássica da IoT é geralmente estruturada em 

camadas, sendo o modelo de três camadas (percepção, rede e aplicação) o mais 

tradicional, enquanto revisões recentes destacam arquiteturas mais complexas, 

como as de cinco camadas, que incluem processamento em borda e camadas de 

suporte à segurança e gerenciamento (FURSTENAU et al., 2020; BANIJAMALI et 

al., 2020; MANSOUR et al., 2023). 

Tendências atuais apontam para a adoção de tecnologias emergentes como 

inteligência artificial, computação em nuvem, 5G/6G e blockchain, que ampliam a 

escalabilidade, eficiência e segurança dos sistemas IoT (DIN et al., 2018; 

BANIJAMALI et al., 2020; MANSOUR et al., 2023). No entanto, entre os desafios 

arquiteturais estão a interoperabilidade, segurança, privacidade, confiabilidade, 

restrições energéticas e ausência de padrões comuns, exigindo adaptações 

conforme o cenário de aplicação (NIKOUI et al., 2020; BANIJAMALI et al., 2020). A 
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convergência entre IoT e computação em nuvem, bem como a adoção de 

arquiteturas orientadas a serviços (SOA) e microserviços, são tendências 

destacadas para garantir escalabilidade, automação e tomada de decisão autônoma 

(BANIJAMALI et al., 2020; RAZZAQ, 2020). A Figura 1 ilustra alguns dispositivos 

IoT, demonstrando seu papel na disponibilização dos dados para que a borda 

computacional possa realizar as inferências utilizando técnicas de inteligência 

artificial que serão abordadas em capítulos seguintes.  

Figura 1 – Exemplo de dispositivos Internet das Coisas no contexto de Inteligência 

Artificial de Borda 

 

Fonte: Adaptado de SINGH, GILL (2023). 

2.2.​ AMBIENTE COMPUTACIONAL DE NUVEM 

A computação em nuvem é um modelo computacional flexível que fornece 

serviços como servidores, armazenamento, bancos de dados, redes e software sob 

demanda via internet, eliminando a necessidade de infraestrutura física local e 

possibilitando escalabilidade dinâmica (MELL & GRANCE, 2011; AMAJUOYI et al., 

2024). Desde a consolidação dos serviços de infraestrutura em nuvem na última 

década, seu uso se expandiu para suportar aplicações que demandam 
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processamento intensivo e análise de grandes volumes de dados (AMAJUOYI et al., 

2024). 

Nos últimos anos, a integração da computação em nuvem com abordagens 

emergentes, como borda e névoa computacional, tem sido central para superar 

limitações relacionadas à latência e segurança, especialmente nas aplicações IoT 

(ANDRIULO et al., 2024). A crescente adoção de machine learning e inteligência 

artificial na nuvem tem impulsionado melhorias significativas na análise de dados, 

eficiência operacional e automação adaptativa dos recursos computacionais (WANG 

et al., 2024). 

Contudo, mesmo com esses avanços, persistem desafios cruciais como 

latência, privacidade, segurança dos dados, gerenciamento eficiente de recursos e o 

risco de dependência de fornecedores (vendor lock-in), que ainda são amplamente 

discutidos e motivam investigações para garantir maior robustez e adoção segura da 

computação em nuvem (ALSHAREEF, 2023). A Figura 2 ilustra como a IA se 

distribui entre nuvem e borda em arquiteturas modernas. Na nuvem, ficam as tarefas 

de maior custo computacional, como treinamento e otimização dos modelos. Já a 

borda executa as inferências próximas às fontes de dados, reduzindo latência e 

tráfego. A seta central representa esse fluxo: modelos treinados na nuvem são 

enviados para execução na borda. Essa organização reflete a abordagem adotada 

neste trabalho, que utiliza a nuvem para treinar os Autoencoders e a borda para 

realizar as inferências em dispositivos restritos. 
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Figura 2 – Exemplo de arquitetura borda-nuvem, Internet das Coisas e IA 

 
Fonte: Adaptado de NOVIK (2025). 

2.3.​ AMBIENTE COMPUTACIONAL DE BORDA 

O ambiente computacional de borda, conhecido como borda computacional, 

refere-se a uma arquitetura distribuída que integra recursos de computação, 

armazenamento e rede próximos à fonte dos dados, como dispositivos IoT, gateways 

e servidores locais. Essa abordagem visa reduzir a latência, aumentar a eficiência 

no processamento de dados e melhorar a privacidade e a segurança, evitando o 

envio de grandes volumes de dados para data centers distantes na nuvem (SHI et 

al., 2016; CAO et al., 2020). Ambientes de borda são fundamentais para aplicações 

sensíveis ao tempo, como cidades inteligentes, veículos autônomos, realidade 

aumentada e monitoramento industrial, onde a resposta rápida é essencial (SHI et 

al., 2016; QIU et al., 2020; SULIEMAN et al., 2022). 

Modelos e arquiteturas como computação de borda móvel, nuvem pequena e 

computação de névoa são adotados para atender demandas de mobilidade, 

escalabilidade e gerenciamento de recursos (HAMDAN et al., 2020; SULIEMAN et 

al., 2022). O ambiente de borda enfrenta desafios como alocação eficiente de 

tarefas, consumo de energia, segurança, privacidade e integração com tecnologias 

emergentes, incluindo inteligência artificial e blockchain (QIU et al., 2020; SINGH et 

al., 2022; SULIEMAN et al., 2022). Kong et al. (2022) destacam que o ambiente de 
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borda é peça-chave para a Internet de Tudo, ampliando o escopo de aplicações e 

exigindo soluções inovadoras para migração de serviços, implantação de nós de 

borda e integração com tecnologias como digital twin e 6G. Por fim, a computação 

de borda complementa a computação em nuvem, promovendo cooperação entre 

ambos para otimizar desempenho e qualidade dos serviços em aplicações 

modernas (HAMDAN et al., 2020; SULIEMAN et al., 2022). A estrutura da 

computação de ponta é geralmente dividida em três camadas: camada terminal, 

camada de borda e camada de nuvem, conforme ilustrado na Figura 3. 

Figura 3 – Exemplo de arquitetura de borda 

 

Fonte: Adaptado de KONG (2022). 

2.4.​ REDUÇÃO DE DADOS EM BORDAS COMPUTACIONAIS: 

CONCEITOS E TÉCNICAS  

 
A explosão de dispositivos conectados e sistemas embarcados resultou em 

desafios significativos para o tratamento e a transmissão de grandes volumes de 

dados em tempo quase real, especialmente em aplicações críticas como veículos 

autônomos, VANT, sensores industriais. A arquitetura de borda, ou computação de 

borda, visa distribuir parte do processamento para próximo das fontes de dados, 

reduzindo a dependência da nuvem e otimizando o uso de largura de banda e 

recursos computacionais locais.(SHI et al., 2016; DENG et al., 2020; KONG et al., 

2022; KOLAPO et al., 2024). 
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Entre as técnicas tradicionais de DR, destacam-se algoritmos clássicos de 

compressão como JPEG, JPEG2000 e MPEG para imagens e vídeos. O algoritmo 

JPEG, adotado desde a década de 1990, realiza compressão com perdas através da 

transformação Discrete Cosine Transform (DCT) e quantização, mantendo boa 

qualidade visual em taxas moderadas de compressão (THAI; COGRANNE, 2019; 

SABZAVI; GHADERI, 2024). Já o JPEG2000 introduz a transformação wavelet, 

permitindo compressão ainda mais eficiente, progressiva e com melhor preservação 

de detalhes em taxas elevadas (LAWSON; ZHU, 2002; MA et al., 2020). Estas 

técnicas fazem parte de muitos processos embarcados, devido à sua eficiência, 

baixo custo computacional e ampla disponibilidade em bibliotecas e hardware 

dedicados (THAI; COGRANNE, 2019; LAWSON; ZHU, 2002). 

Paralelamente, métodos de redução de dimensionalidade como a Principal 

component Analysis (PCA) e a Linear Discriminant Analysis (LDA) são 

frequentemente empregados para a compactação de grandes conjuntos de dados 

lineares, sendo úteis na filtragem de informações redundantes (REDDY et al., 2020; 

JIMÉNEZ-NARVÁEZ et al., 2023). Outras abordagens, como filtros de quantização e 

técnicas de amostragem, complementam o arsenal tradicional para redução de 

dados, cada qual com trade-offs entre fidelidade e consumo computacional (BEN 

SAAD; BEFERULL-LOZANO; ISUFI, 2020; ZHAO et al., 2024). 

Entretanto, pesquisas recentes apontam que abordagens tradicionais de 

compressão enfrentam limitações importantes quando aplicadas a aplicações 

modernas de borda computacional. Estudos evidenciam que a relação entre taxa de 

compressão e qualidade dos dados pode ser significativamente degradada diante de 

restrições severas de banda e energia, tornando as soluções clássicas menos 

eficazes nesse cenário dinâmico (ALSHARIF et al. 2025; JÚNIOR et al. 2021) 

Segundo, algoritmos clássicos geralmente não se adaptam de forma dinâmica ao 

contexto ou ao conteúdo dos dados, o que pode limitar a eficiência quando 

comparados a abordagens aprendidas (PIOLI et al., 2024; BARBUTO et al., 2023). 

Por fim, as limitações de hardware de microcontroladores, matrizes de portas 

programáveis em campo e sistemas embarcados exigem compressão eficaz sem 

comprometer o desempenho da aplicação (DENG et al., 2020; ZHOU et al., 2019). 

Há exceções importantes, como o ARCog-NET (RAMOS et al. 2024), uma 

arquitetura cognitiva avançada para VANTs em sistemas cooperativos, que integrou 

processamento distribuído no paradigma borda-névoa-nuvem e foi avaliado em um 
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cenário realista de inspeção de turbinas eólicas, apresentando resultados de 

simulação que mostram que o ARCog-NET reduz a latência, aumenta a taxa de 

transferência de dados e melhora a eficácia operacional. Todavia, o foco do 

ARCog-NET não está na construção de artefatos DSR, análise quantitativa 

multifatorial e ciência aberta, mas sim no comportamento colaborativo do enxame e 

na distribuição hierárquica de tarefas cognitivas. Assim, embora valida 

processamento embarcado em VANTs, ele não aborda diretamente a problemática 

tratada nesta dissertação. 

Essas limitações motivam a adoção de técnicas baseadas em aprendizagem 

profunda, como os AE, que aprendem representações não lineares diretamente dos 

dados e podem ser ajustados especificamente para o domínio das imagens aéreas 

capturadas por VANT. Diferentemente dos métodos clássicos com transformações 

fixas, AE extraem características relevantes de maneira adaptativa, permitindo 

compactação mais eficiente sob restrições de banda, energia e processamento 

típicas da computação de borda. Evidências recentes demonstram que variantes 

como VAE e modelos com penalização de redundância produzem representações 

mais compactas e com maior fidelidade quando comparadas às abordagens 

tradicionais (OLIVEIRA et al., 2021; LAAKOM et al., 2024; ZHU, 2024; TENG et al., 

2025). Essa combinação de adaptabilidade, eficiência e compatibilidade com 

ambientes embarcados fundamenta sua escolha neste trabalho. 

2.5.​ APLICAÇÃO DE INTELIGÊNCIA ARTIFICIAL NA REDUÇÃO DE 

DADOS NA BORDA COMPUTACIONAL 

A ascensão da IA, sobretudo aprendizado de máquina (ML) e redes neurais 

profundas, trouxeram novas perspectivas para a DR em ambientes de borda, 

especialmente com o uso de redes neurais profundas para compressão de dados 

visuais. Entre as técnicas promissoras está o uso de AE, redes neurais desenhadas 

para aprender representações compactas de entrada, sintetizando informações 

relevantes em um espaço latente reduzido. Dentre os modelos de AE disponíveis na 

literatura foram escolhidos para esse trabalho: convencional, variacional e com 

penalidade de redundância.  

AE são redes neurais artificiais auto supervisionadas, utilizadas para aprender 

representações compactas e eficientes de dados, sendo amplamente aplicados em 

tarefas como compressão e detecção de anomalias. O AE convencional emprega 
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camadas convolucionais para capturar padrões espaciais em imagens, permitindo 

uma codificação eficiente e preservando características locais relevantes (LI et al., 

2023; BERAHMAND et al., 2024). Já o VAE é um modelo generativo que aprende 

uma distribuição probabilística no espaço latente, possibilitando a geração de novas 

amostras e melhorando a capacidade de generalização; VAE têm apresentado 

desempenho superior em tarefas de reconstrução e classificação de imagens, 

especialmente quando combinados com arquiteturas convolucionais (CHEN et al., 

2020; YU et al., 2021; LI et al., 2023; BERAHMAND et al., 2024). 

Além disso, abordagens que penalizam a redundância no espaço latente, 

como a maximização da informação mútua entre variáveis latentes e entradas, 

buscam tornar as representações aprendidas mais informativas e compactas, 

reduzindo a redundância e promovendo maior eficiência na codificação (YU et al., 

2021). Essas estratégias são particularmente relevantes em cenários que exigem 

compressão eficiente e alta capacidade de generalização, como aplicações de 

computação de borda e análise de grandes volumes de dados. Dessa forma, a 

escolha entre AE convencionais, variacionais ou penalizados por redundância 

depende dos objetivos específicos do problema e das características dos dados 

envolvidos. 

Além dos AE, técnicas complementares vêm sendo aplicadas para aprimorar 

modelos de IA na borda computacional: 

●​ Quantização pós-treinamento, reduzindo a precisão dos pesos da rede, 

permitindo rodada eficiente em hardware restrito. 

●​ Pruning e regularização, diminuindo o número de parâmetros e simplificando 

arquiteturas para performance embarcada. 

●​ Conversão para formatos otimizados, como TensorFlow Lite e Open Neural 

Network Exchange (ONXX), facilitando a implantação na borda. 

A literatura nacional e internacional (BARBUTO et al., 2023; PIOLI et al., 

2024; LAAKOM et al., 2024; TENG et al., 2025), demonstra ganhos expressivos no 

uso de IA embarcada para compressão: definição dinâmica das taxas de 

compressão, adaptação ao contexto operacional (ex.: prioridade para regiões de 

interesse em missões SAR) e manutenção da qualidade perceptual mesmo sob altas 

taxas de compactação. Trabalhos como Ramos et al. (2023) abordam a simulação e 

avaliação do uso de AE de aprendizado profundo para compressão de imagens em 

sistemas com múltiplos VANT, destacando ganhos de desempenho como aumento 
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de velocidade no processamento e envio de imagens comprimidas, além de boa 

acurácia e qualidade de reconstrução das imagens. 

Ainda há desafios complexos: generalização dos modelos frente a múltiplos 

domínios de dados, estabilidade em hardware heterogêneo, e comparabilidade 

transparente com padrões clássicos. O trabalho atual busca superar parte dessas 

lacunas ao implementar, otimizar e avaliar experimentalmente diferentes arquiteturas 

de AE, analisando seu desempenho em ambientes simulados de nuvem e borda, e 

explorando o impacto de diferentes níveis de compressão, requisitos computacionais 

e potenciais aplicações práticas em contextos reais. A Figura 4, ilustra a arquitetura 

fundamental de um AE, destacando o processo de compressão da entrada via 

encoder, geração de uma representação latente (bottleneck) e subsequente 

reconstrução pelo decoder (CHOLLET, 2016). 

Figura 4 – Estrutura básica de um AE 

 

Fonte: Adaptado de CHOLLET, 2016.  

Para uma melhor compreensão dos elementos que compõem os modelos 

utilizados neste trabalho de pesquisa, apresenta-se uma síntese conceitual dos 

elementos que compõem os autoencoders empregados neste estudo. O codificador 

é responsável por extrair características relevantes da imagem por meio de camadas 

convolucionais sucessivas, comprimindo a informação e reduzindo sua 

dimensionalidade (CHOLLET, 2016; OLIVEIRA et al., 2021). O decodificador realiza 

o processo inverso, reconstruindo a imagem original a partir da representação 

comprimida, operação dependente da qualidade do espaço latente, onde estão 

codificados os atributos essenciais que preservam a semântica do dado (LAAKOM 

et al., 2024; BERAHMAND et al., 2024). As funções de ativação, como Rectified 

Linear Unit (ReLU) e Sigmoid, introduzem não linearidade ao modelo, tornando 

possível a aprendizagem de relações complexas entre pixels (GOODFELLOW; 
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BENGIO; COURVILLE, 2016; CHOLLET, 2016). Estratégias de regularização, como 

penalização L1, dropout ou controle de redundância, reduzem sobreajuste e 

promovem generalização do modelo em cenários reais de inferência embarcada 

(AZIZIAN; BAJIĆ, 2024; OLIVEIRA et al., 2021). Por fim, métricas como MSE, 

PSNR, SSIM e MS-SSIM são amplamente utilizadas para mensurar fidelidade visual 

entre imagem original e reconstruída, equilibrando erro numérico e percepção 

estrutural, fator crucial em aplicações VANT/SAR onde a preservação de detalhes 

pode determinar o sucesso da operação (RAMOS et al., 2023; SINGH; GILL, 2023; 

ZHOU et al., 2019). 

Considerando que a eficiência desses modelos depende diretamente do 

ambiente em que são executados, torna-se necessário compreender como a 

computação de borda afeta sua performance, escalabilidade e aplicabilidade. Nesse 

sentido, compreender tais dimensões auxilia não apenas na contextualização teórica 

do modelo adotado, mas também na interpretação dos resultados experimentais que 

serão apresentados no capítulo 4. Ao considerar a execução de modelos de 

inteligência artificial em dispositivos de borda é fundamental compreender as 

dimensões que influenciam o desempenho desses sistemas e o equilíbrio entre seus 

benefícios e desafios. Conforme apresentado por Reddi (2025), a Figura 5 sintetiza 

quatro eixos principais: características, benefícios, desafios e exemplos de 

aplicação. 

Entre as características, destacam-se o processamento descentralizado de 

dados, o armazenamento e a computação locais e a proximidade das fontes de 

dados, que reduzem a dependência da nuvem. Dentre os benefícios, sobressaem-se 

a redução da latência, o aumento da privacidade dos dados e o menor uso de 

largura de banda, fatores essenciais para aplicações críticas. Em contrapartida, os 

desafios envolvem questões de segurança nos nós de borda, complexidade na 

gestão distribuída e limitações de recursos computacionais. 

Por fim, a figura ilustra exemplos representativos, como Internet das Coisas 

Industrial, casas e cidades inteligentes e veículos autônomos, contextos em que a 

computação de borda possibilita maior autonomia e processamento local em tempo 

real. 
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Figura 5 – Dimensões do Aprendizado de Máquina na Borda 

Fonte: Adaptado de REDDI (2025). 

2.6.​ TRABALHOS RELACIONADOS 

A redução e compressão de dados visuais em ambientes de VANT e borda 

computacional tem sido amplamente investigada devido às restrições de 

processamento e comunicação desses cenários. As propostas baseadas em AE se 

destacam por oferecer compactação aprendida e adaptativa, superando limitações 

de métodos tradicionais. Diversos estudos recentes exploram arquiteturas e 

abordagens variadas, cada qual contribuindo com diferentes perspectivas e 

desafios. 

Ramos et al. (2023) analisam AE convolucionais e modelos profundos para 

compressão de imagens em redes multi-VANT em cenários de vigilância/SAR, 

enfatizando métricas de qualidade visual e aspectos de latência no sistema 

distribuído. O estudo evidencia ganhos no processamento distribuído com o uso de 

AE, porém não avalia arquiteturas com penalização explícita de redundância nem 

realiza otimizações estruturais voltadas a restrições de dispositivos de borda, 

lacunas abordadas diretamente neste trabalho de pesquisa. 

O trabalho ARCog-NET proposto por Ramos et al. (2024), por sua vez 

apresenta uma arquitetura cognitiva avançada para enxames de VANT, integrando 

processamento distribuído no paradigma borda–névoa–nuvem e avaliando cenários 

realistas, como inspeção de turbinas eólicas e missões de monitoramento/SAR. Os 

autores demonstram reduções relevantes de latência e ganhos na eficiência 
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operacional do enxame a partir do particionamento adequado de funções entre os 

diferentes níveis da arquitetura. Porém, apesar de sua relevância para aplicações 

embarcadas, o ARCog-NET não foca em compressão visual baseada em AE, 

tampouco discute otimizações estruturais em gargalos latentes ou validação 

quantitativa da reconstrução, como proposto nesta dissertação. Dessa forma, ele se 

posiciona como um trabalho complementar, reforçando a importância de artefatos de 

compressão eficientes para o fluxo de dados dentro da arquitetura cognitiva. 

Laakom et al. (2024), investigam AE penalizados por redundância no gargalo 

latente via termo de perda baseado em covariâncias pareadas, demonstrando que a 

redução de correlações resulta em representações mais compactas e informativas, 

com ganhos em reconstrução e classificação. Contudo, o estudo mantém foco 

teórico-experimental em datasets padrão (ex.: MNIST, CIFAR-10) e não valida tais 

modelos em cenários operacionais com restrições de VANT ou SAR, lacuna 

diretamente abordada nesta dissertação. 

Marchenko et al. (2024) realizam uma análise abrangente de algoritmos de 

compressão de imagens via redes neurais, comparando diferentes arquiteturas e 

funções de custo. Embora forneçam visão geral sobre desempenho em 

reconstrução, os autores não investigam restrições de hardware em ambientes de 

borda nem avaliam latência operacional, aspectos centrais desta pesquisa. 

Bao et al. (2023) propõem um AE segmentado para compressão de imagens 

em redes de sensores sem fio (WSN), obtendo bons resultados de compactação em 

cenários com restrições de transmissão. Entretanto, a ênfase recai mais sobre 

eficiência energética do que sobre inferência embarcada ou latência operacional, 

aspectos centrais para aplicações com VANT como as deste estudo. 

Oliveira et al. (2021) utilizam VAE de complexidade reduzida para 

compressão on-board de imagens de satélite, destacando sua viabilidade 

computacional em hardware embarcado e superando padrões como CCSDS 

122.0-B. Embora o cenário seja análogo ao de VANT por restrições semelhantes, os 

autores não comparam arquiteturas AE penalizadas por redundância nem 

otimizações adicionais de AE convencionais, lacunas abordadas neste trabalho. 

Yamazaki et al. (2022) investigam compressão neural de deep features 

guiada por otimização de taxa-distorção, contribuindo para o entendimento dos 

trade-offs perceptuais em pipelines neurais. Essa abordagem complementa os 
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objetivos deste estudo ao reforçar a relevância de métricas estruturais como SSIM e 

MS-SSIM em avaliações de qualidade. 

Zhu (2024) compara diversas arquiteturas de AE e demonstra que modelos 

mais complexos tendem a alcançar maior fidelidade visual, reforçando discussões 

relevantes para a hipótese central desta pesquisa. Entretanto, o autor não examina a 

adequação dessas arquiteturas a hardware embarcado, ponto essencial desta 

dissertação 

Bhagat et al. (2024) apresentam análises de AE para extração de features em 

classificação de imagens, demonstrando ganhos em reconhecimento visual. 

Contudo, o foco em tarefas de classificação em nuvem não aborda a compactação 

para ambientes restritos de borda, como os desta pesquisa. 

Barbuto et al. (2023) discutem os desafios de integrar IA embarcada à 

computação de borda, enfatizando latência, carga de rede e eficiência energética em 

uma meta-revisão sistemática. Embora não realizem experimentos com AE, 

reforçam a necessidade de soluções enxutas para restrições reais, validando a 

motivação deste estudo. 

Qiu et al. (2020) e Sulieman et al. (2022) investigam arquiteturas de borda 

para aplicações sensíveis a tempo, destacando questões de escalabilidade, 

alocação de tarefas e impacto da latência, aspectos essenciais ao contexto 

estudado nesta dissertação. 

Teng et al. (2025) ampliam a compreensão sobre compressão baseada em 

deep learning para imagens de inspeção por VANT, avaliando estratégias de 

otimização e impacto em métricas perceptuais (PSNR, SSIM, MS-SSIM). Ainda 

assim, o contexto de inferência embarcada em VANT e comparações estruturais 

entre modelos complexos e otimizados não são explorados, aspectos centrais deste 

trabalho de pesquisa. 

Pioli et al. (2024, 2025) fornecem revisões sistemáticas e frameworks 

conceituais sobre redução inteligente de dados e inteligência de borda, identificando 

limitações em validações experimentais de compressão neural em cenários reais ou 

próximos da operação. Essa lacuna é diretamente tratada neste trabalho. 

Em suma, embora cada estudo contribua para o avanço da compressão 

inteligente de dados visuais, nenhum deles integra, de forma simultânea, três 

arquiteturas de AE, otimização estrutural, avaliação quantitativa multifatorial, 

metodologia DSR e execução simulada na borda, como realizado nesta dissertação. 
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Essa convergência reforça a originalidade, relevância prática e rigor científico do 

artefato proposto. A Tabela 1 apresenta uma síntese dos trabalhos relacionados 

identificando com um X, caso o estudo esteja explicitamente vinculado aos assuntos 

desta pesquisa, mostrando visualmente as semelhanças e diferenças para este 

trabalho. 

Tabela 1 – Síntese dos trabalhos relacionados 

Autor/Ano DR Borda IA DSR AE VANT/SAR Ciência Aberta 

Ramos et 
al. (2023) 

X X X  X X X 

Ramos et 
al. (2024)  

 X X   X X 

Laakom et 
al. (2024)  

X  X  X  X 

Marchenko 
et al. (2024) 

X  X  X   

Bao et al. 
(2023) 

X X X  X   

Oliveira et 
al. (2021)  

X X X  X  X 

Yamazaki et 
al. (2022) 

X  X  X  X 

Zhu (2024)  X  X  X   

Bhagat et 
al. (2024)  

  X  X  X 

Barbuto et 
al. (2023)  

X X X    X 

Qiu et al. 
(2020) 
Sulieman et 
al. (2022)  

X X X    X 

Teng et al. 
(2025)  

X X X   X  

Pioli et al. 
(2024, 
2025) 

X X     X 

Este estudo X X X X X X X 

Fonte: elaborado pelo autor (2025). 
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3.​ METODOLOGIA 

3.1.​ FUNDAMENTAÇÃO E TIPO DE PESQUISA 

A metodologia deste trabalho segue a abordagem DSR (HEVNER et al., 

2004; PEFFERS et al., 2007), cuja essência está na construção e avaliação de 

artefatos tecnológicos que solucionam problemas relevantes de forma científica. 

Conforme Pimentel et al. (2020), a DSR propõe um ciclo iterativo de design, 

avaliação e reflexão, articulando rigor metodológico com relevância prática. Essa 

abordagem orienta a criação de artefatos que no caso desta pesquisa, modelos de 

AE para compressão de imagens que são avaliados quanto à sua efetividade e 

eficiência em contextos reais ou simulados de borda computacional. 

O modelo de Pimentel et al. (2020) apresenta de forma clara os elementos 

centrais e as inter-relações entre o rigor científico, a relevância prática e o ciclo de 

projeto, que fundamentam o presente estudo. A Figura 6 ilustra esses elementos, 

destacando como a DSR se estrutura em torno da construção e avaliação de 

artefatos científicos aplicados a problemas reais. 

Figura 6 – Elementos centrais do modelo-DSR 

 
 

Fonte: Adaptado de PIMENTEL et al. (2020). 

Diante dos objetivos propostos, esta pesquisa está estruturada em dois ciclos 

de DSR, buscando garantir tanto rigor metodológico quanto relevância prática. A 

abordagem segue as orientações metodológicas: identificação do problema, 

definição de objetivos, projeto e desenvolvimento, demonstração, avaliação e 

comunicação, proposta por Peffers et al. (2007) para a Design Science Research 

Methodology (DSRM). 
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O delineamento da pesquisa é classificado como experimental, com 

abordagem quantitativa e comparativa, fundamentado na reprodução de 

experimentos e na análise de métricas de desempenho. Para a sustentação teórica 

e a contextualização conceitual da relevância do tema, foi realizada uma pesquisa 

bibliográfica seletiva e crítica. Esta baseou-se em revisões sistemáticas sobre 

inteligência de borda e DR em sistemas distribuídos (BARBUTO et al., 2023; PIOLI 

et al., 2024), que destacam a necessidade de soluções eficientes e inteligentes de 

processamento em borda computacional. Além disso, referências específicas 

recentes de estudos experimentais sobre compressão e arquiteturas de AE foram 

utilizadas para embasar o desenho experimental, tais como: Ramos et al. (2023), 

Laakom et al. (2024), Zhu (2024) e Teng et al. (2025). 

O artefato proposto neste trabalho é inovador porque integra modelos de AE 

para compressão de imagens, previamente validados em nuvem, a uma abordagem 

de otimização capaz de operar em dispositivos de borda com severas restrições de 

processamento, memória e energia. Por essa pesquisa, a literatura carece de 

validações experimentais que considerem a latência e o desempenho de tais 

modelos em ambientes reais de borda computacional, especialmente no contexto de 

imagens oriundas de dispositivos IoT. Essa integração, aliada à avaliação 

comparativa e à documentação de um pipeline replicável, busca responder às 

lacunas identificadas nas revisões do tema. 

3.2.​ DSR CICLO 1 - AMBIENTE DE NUVEM 

3.2.1.​ DEFINIÇÕES 

A etapa inicial do ciclo seguiu uma abordagem de estudo secundário 

(KITCHENHAM et al., 2007), caracterizada pela análise, síntese e integração de 

resultados de pesquisas já publicadas, especialmente revisões sistemáticas, 

mapeamentos e artigos experimentais recentes como BARBUTO et al. (2023), 

RAMOS et al. (2023), PIOLI et al. (2024), LAAKOM et al. (2024), ZHU (2024) e 

TENG et al. (2025). O objetivo central foi reunir o conhecimento consolidado sobre 

compressão e DR visuais na borda, identificar tendências, lacunas e recomendações 

práticas presentes na literatura, e fundamentar o desenho e avaliação dos artefatos 

deste trabalho de pesquisa. A opção por um estudo secundário é justificada pela 

maturidade do campo e pelo grande volume de pesquisas já consolidadas, 
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permitindo uma análise crítica baseada em evidências direcionando esforços para 

aspectos experimentais. 

Com base nos elementos centrais do modelo-DSR, proposto por Pimentel et 

al. (2020), para este ciclo 1, foram identificados Problema de Contexto, a Conjectura 

e os Artefatos, respectivamente. 

●​ Quais são as versões dos modelos de AE convencional, variacional e 

de penalização por redundância, com melhor resultado nas métricas, 

PSNR, MS-SIM, SSIM e latência, de acordo com as imagens de 

entrada do dataset SARD2 (GEGENAVA, 2025)? 

●​ O uso de um servidor virtual de nuvem do REPESQ com 

disponibilidade de GPU, é suficiente para treinar os modelos e produzir 

resultados satisfatórios. 

●​ Modelos funcionais de AE: convencional, variacional e de penalização 

por redundância. 

3.2.2.​ LATÊNCIA, QUALIDADE DE RECONSTRUÇÃO E MÉTRICAS 

DE AVALIAÇÃO 

Com base no levantamento da literatura anterior, foram definidas as métricas 

a serem exploradas neste trabalho de pesquisa. No contexto de aplicações com 

VANT, foco deste estudo, a eficiência de transmissão de imagens sugere-se uma 

avaliação multifatorial.  

A latência, segundo Tanenbaum et al. (2021), pode ser entendida como o 

atraso total entre o envio de uma requisição e o recebimento de sua resposta, sendo 

composta pelos tempos de processamento, transmissão, propagação e 

enfileiramento. Em contextos de inteligência de borda, ela corresponde ao tempo 

decorrido entre a entrada e a saída de um modelo executado na borda (REDDI, 

2025). 

Para avaliar o desempenho das arquiteturas de compressão, utilizam-se 

métricas objetivas como o PSNR, SSIM e o MS-SSIM, que mensuram, 

respectivamente, a intensidade do ruído introduzido, a similaridade estrutural entre 

imagem original e a reconstruída e a similaridade em múltiplas escalas. Estas 

fornecem uma avaliação mais robusta da qualidade da imagem (RAMOS et al., 

2023). Por sua vez, a taxa de compressão (TC), definida como a razão entre o 

tamanho do arquivo original e do arquivo comprimido e o tempo de processamento 
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por imagem, também são parâmetros centrais em estudos comparativos 

(SUBBURAJ & BHAVANA, 2024; ZHU, 2024). A combinação dessas métricas 

permite uma análise multifatorial da eficiência de cada modelo em contextos 

práticos. 

3.2.3.​ REQUISITOS FUNCIONAIS E NÃO FUNCIONAIS 

LEVANTADOS 

​ De acordo com os estudos analisados, foram definidos os requisitos 

funcionais e não funcionais para o pipeline de compressão a ser implementado, 

considerando restrições reais de processamento, energia e latência. 

Fundamentado na análise de revisões e artigos recentes, o pipeline 

desenvolvido neste trabalho de pesquisa foi orientado pelos seguintes requisitos, 

que refletem desafios, tendências e demandas frequentemente apontados na 

literatura para soluções práticas em inteligência na borda. Foram levantados os 

seguintes requisitos, sendo os funcionais (RF), o que o sistema deve fazer e os não 

funcionais (RNF) como o sistema deve se comportar: 

●​ (RF1) Receber e pré-processar imagens capturadas por dispositivos de 

borda; 

●​ (RF2) Comprimir e reconstruir imagens por meio de modelos de AE; 

●​ (RF3) Mensurar as métricas de latência, PSNR, SSIM, MS-SSIM e taxa de 

compressão; 

●​ (RF4) Permitir adaptação dos modelos para ambientes com diferentes 

restrições de hardware; 

●​ (RNF1) Executar em hardware com memória e processamento restritos ou 

simulados (ex: Raspberry Pi, placas ARM); 
●​ (RNF2) Minimizar o consumo energético do pipeline; 

●​ (RNF3) Documentação e replicabilidade do experimento, disponibilizando o 

código em repositório público; 

●​ (RNF4) Flexibilidade para ajuste de parâmetros conforme o contexto 

experimental. 

Tais requisitos asseguram que o artefato desenvolvido não só seja 

tecnicamente viável, mas também relevante para cenários práticos de borda 

computacional, atendendo a desafios identificados na literatura.  



43 

O requisito RNF3 foi identificado, porque alguns estudos encontrados não 

disponibilizam os modelos ou códigos fontes em repositórios públicos além disso vai 

ao encontro do que preconiza a ciência aberta que será detalhada a seguir.  

A Ciência Aberta preconiza princípios como transparência, colaboração, 

inclusividade e acesso aberto em todas as etapas do processo científico. Isso inclui 

o compartilhamento aberto de dados, métodos, códigos e resultados, a adoção de 

revisões abertas por pares, o uso de repositórios digitais, a publicação em acesso 

aberto e a promoção da participação ampla de diferentes atores na pesquisa 

(BERTRAM et al., 2023; DEZHINA, 2023). A transparência é considerada um 

princípio central, orientando políticas e práticas para garantir maior acesso, 

responsabilidade acadêmica e reprodutibilidade dos resultados científicos 

(LEONELLI, 2023; ROMERO, 2025). 

Além disso, ela busca superar desafios como vieses, falta de replicabilidade e 

competitividade excessiva, promovendo uma cultura de colaboração, diversidade, 

justiça e sustentabilidade na produção do conhecimento (DEZHINA, 2023). 

Organizações internacionais têm papel fundamental no desenvolvimento de 

políticas, infraestrutura e modelos de comunicação científica abertos, destacando a 

importância de dados abertos, revisão aberta, métodos transparentes e inclusão 

social (BERTRAM et al., 2023). Essas características são ilustradas na Figura 7. 
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Figura 7 – Núcleo dos princípios da Ciência Aberta 

 

Fonte: Adaptado de BERTRAM et al., 2023. 
 

Com base nesses requisitos, foi desenhado o pipeline do ciclo 1 que 

corresponde ao tratamento inicial dos dados e treinamento dos modelos e 

otimizações que foram experimentados em um ambiente computacional de nuvem. 

As Figuras 8 e 9 ilustram o fluxo arquitetural completo da solução, detalhando as 

responsabilidades de cada camada, desde a aquisição na borda até o deploy final 

do modelo otimizado na borda computacional. 
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Figura 8 – Pipeline metodológico para avaliação comparativa das arquiteturas de AE 

para o ciclo 1 

 

Fonte: elaborado pelo autor (2025). 

Figura 9 – Arquitetura da Solução de Compressão AE em Ambientes Híbridos 

Borda-Nuvem 

 

Fonte: elaborado pelo autor (2025). 
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​ As imagens utilizadas neste estudo foram obtidas do dataset SARD-2 

(GEGENAVA, 2025), composto por registros aéreos de alta resolução (1920×1080 

pixels) capturados por VANT em cenários simulados de busca e salvamento. O 

conjunto disponibiliza imagens organizadas em treino, validação e teste, totalizando 

1.386 imagens na base de treinamento, 396 na validação e 196 no teste. A Figura 

10, apresenta um exemplo típico de imagem do dataset, ilustrando a natureza aérea 

e o tipo de cena processado pelos modelos avaliados. 

Figura 10 – Exemplo de imagem do dataset SARD-2 utilizado neste trabalho  

 
 
Fonte: GEGENAVA (2025). 
 
​ Após a aquisição dos dados, foram copiadas do ambiente Kaggle2, foram 

para o servidor virtual da REPESQ3 da Universidade Federal de Juiz de Fora (UFJF). 

Embora o próprio Kaggle, tenha um ambiente de desenvolvimento, assim como o 

Google Colab, onde o experimento é possível de ser realizado, a escolha do uso do 

deste servidor, se deu por limitação de tempo de uso das Unidades de 

Processamento Gráficos (GPUs) do ambiente gratuito do Kaggle, que fornece 30 

horas semanais. Os modelos de AE foram codificados e otimizados dentro do 

REPESQ coletando as análises do ciclo 1 (nuvem) e, após esse processamento, o 

3 Disponível em: https://www.repesq.ufjf.br/ Acesso em 03 set. 2025 

2 Disponível em: 
https://www.kaggle.com/datasets/nikolasgegenava/sard-2-search-and-rescue-dataset-extra-classes. 
Acesso em: 20 jun. 2025. 
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modelo com melhor resultado foi transferido para o ambiente de borda, que 

representa microcontroladores com software embarcado para as análises do ciclo 2 

(borda). Os detalhes de cada processo, são apresentados nos itens a seguir. 

3.2.4.​ AMBIENTE COMPUTACIONAL DE NUVEM UTILIZADO 

A implementação dos experimentos iniciais, contemplando o treinamento dos 

modelos e avaliação dos resultados, foi realizada em ambiente virtual de nuvem, 

dentro da REPESQ da UFJF, que possui maior capacidade computacional, em 

relação aos ambientes computacionais de borda, sendo exigência para o 

treinamento dos modelos. Essa escolha se deve também, pela indisponibilidade 

inicial de infraestrutura de borda com recursos computacionais e de rede restritos, 

como largura de banda limitada, latência variável e processamento local reduzido, 

características típicas desses ambientes (ZHANG et al., 2024). Assim, no ciclo 2 

borda, a inferência será direcionada para ambientes de borda, visando eficiência 

computacional e redução de tráfego de dados, conforme abordado na literatura 

relacionada (YAMAZAKI et al., 2022; BAO et al., 2023; AZIZIAN e BAJIĆ, 2024).  

Devido às limitações do ambiente de nuvem, como a impossibilidade de 

controlar a largura de banda e a latência de rede de forma realista, a latência real de 

transmissão não pôde ser mensurada; por isso, utilizou-se o tempo de compressão e 

reconstrução como proxy da latência. A Tabela 2 apresenta um resumo com as 

configurações do ambiente para facilitar a reprodutibilidade, de acordo com o que 

preconiza a Ciência Aberta, dos experimentos, as demais bibliotecas utilizadas 

(Tensorflow, Keras, Numpy, etc) podem ser consultadas diretamente no notebook 

disponível no Github (COTTA, 2025). 

Tabela 2 – Configurações do ambiente de nuvem usado para treinar os 

modelos REPESQ 

Sistema 
Operacional 

Processador 
(CPU) 

Memória 
RAM 

Armazenamento GPU Linguagem/Ambiente 

22.04.5 LTS 
x86_64 

4 CPUs 
físicas e 4 

CPUs lógicas 

32 Gb 100gb GPU: 
1x 

NVIDIA 
A30 24 

GBs 
VRAM 

Python 3.10.12 / 
Jupyter Colab 

Fonte: elaborado pelo autor com base nas configurações do servidor (2025). 
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3.2.5.​ AQUISIÇÃO E PRÉ PROCESSAMENTO DOS DADOS 

Para a etapa inicial de aquisição e pré-processamento dos dados, a coleta 

dos dados foi realizada a partir do dataset SARD 2 “Search and Rescue Dataset, 

Extra Classes”, disponibilizado por Nikolas Gegenava (GEGENAVA, 2025), sob 

licença MIT, dentro do site Kaggle.  

O dataset SARD-2 foi selecionado por atender de forma precisa aos 

requisitos deste estudo, que demanda imagens reais capturadas por VANT em 

cenários de SAR, alinhando-se diretamente ao contexto de aplicações em borda 

computacional. O conjunto oferece imagens de alta resolução (1920×1080 px), 

diversidade de ambientes e variações de movimento humano, permitindo analisar a 

compressão em condições próximas às enfrentadas por VANT em operações 

críticas. Além disso, sua distribuição sob licença aberta (MIT) viabiliza a 

reprodutibilidade dos experimentos e está em conformidade com os princípios de 

Ciência Aberta, adotados ao longo desta dissertação. O balanceamento entre 

qualidade, volume de dados e facilidade de pré-processamento torna o SARD-2 

especialmente adequado para experimentos envolvendo treinamento em ambiente 

de nuvem e posterior execução em dispositivos de borda com recursos 

computacionais limitados. 

Não foram considerados outros datasets para este estudo porque a pesquisa 

adotou critérios específicos de elegibilidade:  

●​ alinhamento temático com imagens capturadas por VANT em cenários 

de SAR  

●​ disponibilidade pública e licença aberta que permitisse 

reprodutibilidade  

●​ quantidade de imagens adequada ao treinamento em ambiente de 

nuvem sem necessidade de particionamento adicional 

●​ resolução suficiente para avaliar técnicas de compressão 

●​ facilidade de pré-processamento para adaptação aos requisitos de 

borda computacional. 

Datasets disponíveis na literatura focam em tarefas distintas, como detecção 

de objetos, vigilância urbana, segmentação semântica ou captura por câmeras 

terrestres, não atendendo às necessidades específicas deste estudo. Dessa forma, 
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o SARD-2 se mostrou o conjunto mais aderente ao problema investigado e 

suficientemente abrangente para os experimentos propostos. 

Este conjunto de dados contém imagens de alta resolução capturadas por 

VANT em ambientes reais, com encenações simuladas de emergências, 

disponibilizadas em conjuntos de treino, validação e teste com múltiplas classes de 

movimento humano. O conjunto de dados coletados possui 1386 imagens na base 

de treinamento, 196 de teste e 396 de validação. 

Para garantir consistência e comparabilidade entre as diferentes arquiteturas, 

foram selecionadas amostras balanceadas entre as classes e cada imagem foi 

redimensionada e normalizada conforme os requisitos dos modelos. 

O dataset SARD 2 é composto por imagens em alta resolução (1920x1080 

px), exigiu uma sequência de etapas de pré-processamento para adequação ao 

cenário de borda computacional com restrições de hardware e memória. 

Primeiramente, as imagens foram redimensionadas (downscaling) para a 

dimensão de entrada de 128×128px (com 3 canais de cor), totalizando uma 

dimensão de entrada de (128×128×3). Esta escolha é fundamental para simular as 

severas restrições de sustentabilidade computacional, memória e energia esperadas 

em sistemas embarcados de VANT. Tal resolução é compatível com a faixa de 

dimensões adotadas em estudos de compressão aprendida e cenários restritivos 

(OLIVEIRA et al., 2021; LAAKOM et al., 2024; WANG et al., 2024) indicando redução 

de custo computacional sem comprometer de forma crítica a análise comparativa 

entre modelos. Testes exploratórios confirmaram a escolha de 128×128 px, pois 

resoluções maiores, como 256x256px, agravaram o consumo de memória no 

treinamento em nuvem e não proporcionaram ganhos de qualidade que 

justificassem o aumento da resolução das imagens. 

Em seguida, o ordenamento dos canais de cor foi ajustado. As imagens lidas 

foram convertidas do padrão BGR (Azul, Verde, Vermelho), comum em bibliotecas 

de visão computacional, para o padrão RGB (Vermelho, Verde, Azul), que é o 

formato esperado pela maioria dos frameworks de aprendizado profundo 

(utilizando-se a função COLOR_BGR2RGB). 

Por fim, os dados foram submetidos à Normalização (Min-Max). Este 

procedimento realizou-se pela divisão dos valores de pixel por 255. A normalização 

garante que os dados de entrada se distribuam uniformemente no intervalo [0,1], 

evitando a saturação das funções de ativação e o problema do vanishing gradient, 
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quando os gradientes das funções de ativação, como a sigmóide, tornam-se muito 

pequenos à medida que são propagados de volta pelas camadas, fazendo com que 

as atualizações dos pesos nas camadas iniciais sejam quase nulas (WANG et al. 

2022). Como resultado, a rede aprende muito lentamente ou até para de aprender, 

dificultando o treinamento de redes profundas. Tal ajuste é crucial para garantir a 

estabilidade e a velocidade de convergência do treinamento da rede neural. 

3.2.6.​ DEFINIÇÃO DOS MODELOS BASE 

Três arquiteturas distintas de AE foram escolhidas e avaliadas: convencional, 

variacional e penalizada por redundância. Cada uma delas foi implementada a partir 

de princípios consolidados na literatura e ajustada para a tarefa de compressão de 

imagens VANT. 

●​ AE Convencional: o modelo convencional é composto por um encoder 

com camadas convolucionais e operações de max pooling, 

responsáveis por reduzir progressivamente a dimensionalidade 

espacial enquanto preservam padrões estruturais relevantes. O 

decoder realiza o processo inverso por meio de upsampling e 

convoluções, reconstruindo a imagem a partir do mapa latente 

comprimido. A otimização é conduzida pela função de perda Mean 

Squared Error (MSE). A Figura 11 apresenta a arquitetura completa do 

modelo convencional 
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Figura 11 – Arquitetura do AE Convencional (Modelo Base) 

 

Fonte: elaborado pelo autor usando o software Netron4 (2025). 
 

 

●​ VAE: a Figura 12 apresenta a arquitetura do VAE Base, utilizado neste 

trabalho. O encoder é composto por duas camadas convolucionais seguidas de 

operações de max pooling, responsáveis por reduzir a dimensionalidade espacial da 

4 Disponível em: https://github.com/lutzroeder/netron Acesso em: 10 out. 2025 
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imagem enquanto extraem características relevantes. Em seguida, o mapa de 

características é achatado (flatten) e projetado em duas camadas densas que 

estimam os parâmetros estatísticos do espaço latente: o vetor de médias 𝜇 e o vetor 

dos logaritmos das variâncias log 𝜎² 

Esses dois vetores são combinados por meio de uma camada Lambda 

que implementa o reparameterization trick, permitindo a geração de um vetor latente 

z de forma diferenciável. Essa etapa é fundamental para que o VAE aprenda não 

apenas uma codificação comprimida, mas também uma distribuição contínua no 

espaço latente, favorecendo generalização e regularização. O vetor z resultante é 

então encaminhado ao decoder, que reconstrói a imagem a partir dessa 

representação comprimida. A figura evidencia claramente a separação conceitual 

entre encoder, espaço latente probabilístico e decoder, ressaltando o papel da 

amostragem estocástica na formação do vetor latente utilizado na reconstrução. 
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Figura 12 – Arquitetura do VAE (Modelo Base) 

 

Fonte: elaborado pelo autor usando o software Netron (2025). 
 

●​ AE Penalizado por Redundância: a Figura 13 apresenta a arquitetura 

do AE Penalizado por Redundância (Modelo Base) utilizado neste 

estudo. O encoder é composto por duas camadas convolucionais 

seguidas de operações de max pooling, responsáveis por reduzir 

progressivamente a resolução espacial da imagem enquanto 

preservam características estruturais relevantes. Após essa etapa, o 

mapa de características é achatado (flatten) e projetado em uma 

camada densa com 256 unidades, sobre a qual é aplicada uma 

regularização L1. Essa penalização induz esparsidade no vetor latente, 

estimulando o modelo a eliminar informações redundantes e a manter 

apenas as características mais relevantes para a reconstrução. 
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A etapa de decodificação inicia com uma camada densa de expansão, 

que reconstitui o volume latente para o formato espacial original do 

encoder (32×32×16). Em seguida, são aplicadas operações de 

upsampling e convoluções, restaurando gradualmente a dimensão 

espacial até atingir o formato final da imagem reconstruída. A última 

camada convolucional, com ativação sigmoid, produz a saída no 

domínio [0,1], adequada para representações normalizadas de 

intensidade. 

A figura evidencia, portanto, o fluxo completo de compressão e 

reconstrução, destacando o papel central da penalização L1 em 

promover representações latentes mais compactas e eficientes, 

característica especialmente relevante para cenários de transmissão 

de dados em ambientes de borda com banda limitada 
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Figura 13 – Arquitetura do AE Penalizado por Redundância (Modelo Base)

 

Fonte: elaborado pelo autor usando o software Netron (2025). 
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​ Após a avaliação das arquiteturas base observou-se a necessidade de 

aprimorar estabilidade, capacidade representacional e desempenho computacional. 

Dessa forma, foram desenvolvidas versões otimizadas das três arquiteturas, 

apresentadas na Seção 3.2.7. 

3.2.7.​ ARQUITETURAS OTIMIZADAS 

As Figuras 14, 15 e 16 apresentam, respectivamente, as versões otimizadas dos 

modelos Convencional, Variacional e Penalizado por Redundância. As otimizações 

incorporam ajustes estruturais como aumento de filtros, inclusão de camadas Batch 

Normalization, alteração da dimensão latente e substituição de operações de 

upsampling, de modo a melhorar estabilidade de treinamento e qualidade de 

reconstrução. Mais detalhes das otimizações são abordados na seção 4.1.1. 
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Figura 14 – Arquitetura do AE Convencional (Modelo Otimizado) 

 

Fonte: elaborado pelo autor usando o software Netron (2025). 
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Figura 15 – Arquitetura do VAE (Modelo Otimizado) 

 

Fonte: elaborado pelo autor (2025). 
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Figura 16 – Arquitetura do do AE Penalizado por Redundância (Modelo Otimizado)

 

Fonte: elaborado pelo autor usando o software Netron (2025). 
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3.2.8.​ IMPLEMENTAÇÃO E TREINAMENTO DOS MODELOS 

Os experimentos foram implementados em linguagem de programação 

Python, utilizando o Jupyter Lab e frameworks como TensorFlow e Keras, simulando 

cenários compatíveis com borda computacional e adaptando arquiteturas conforme 

as restrições identificadas. 

Foram implementadas as arquiteturas de AE (convencional, VAE e com 

penalização de redundância latente), treinamento até convergência e avaliação 

experimental. Os hiperparâmetros iniciais estão detalhados na Tabela 3. Os 

resultados são analisados com base em métricas encontradas na literatura, taxa de 

compressão, PSNR, SSIM, MS-SSIM e latência de processamento, e apresentados 

em gráficos e tabelas para comparação quantitativa entre as arquiteturas no próximo 

item. Para a reprodutibilidade completa do estudo, a implementação detalhada dos 

modelos, incluindo a configuração de todos os hiperparâmetros comuns (ex: batch 

size, otimizador e número de épocas), está disponível no código fonte público 

(COTTA, 2025).  
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Tabela 3 – Hiperparâmetros iniciais usado para treinar os modelos 

Hiperparâmetro Convencional VAE Penalização por 
redundância 

Formato da entrada 128x128x3 128x128x3 128x128x3 

Arquitetura codificador Conv2D 32 -> Pool 
Máximo-> Conv2D 16 

-> Pool 
Máximo->Conv2D 16 

Conv2D 32 -> Pool 
Máximo-> Conv2D 16 

-> Pool Máximo-> 
Achatar 

Conv2D 32 -> Pool 
Máximo-> Conv2D 16 

-> Pool Máximo 

Camadas extras Aumento de 
resolução-> Conv2D 

16 -> Aumento de 
resolução 

Achatar-> Densa (u. 
logvar) -> Lambda 

(amostragem) 

Achatar ->Densa 256 
(L1 = 10-5) 

Espaço Latente Gargalo Espacial 
(implícito)  

Densa 64 + 
Amostragem 
estocástica 

Densa 256 com L1 

Decodificador Aumento de 
resolução-> Conv2D 

16 -> Aumento de 
resolução-> Conv2D 

32 

Densa -> Remodelar 
-> Aumento de 

resolução->Conv2D 32 

Densa -> Remodelar 
-> Aumento de 

resolução ->Conv2D 
32 

Função de ativação ReLU (intermediária) + 
Sigmóide (saída) 

ReLU (intermediária) + 
Sigmóide (saída) 

ReLU (intermediária) + 
Sigmóide (saída) 

Regularização - - L1 (10-5) na camada 
Densa 

Dimensão Latente/ 
Penalização 

Implícito via 
agrupamento 

64 256 

Otimizador Estimativa de 
Momento Adaptativa 

(lr=10-3) 

Estimativa de 
Momento Adaptativa 

(lr=10-3) 

Estimativa de 
Momento Adaptativa 

(lr=10-3) 

Função de perda Erro Quadrático Médio Erro Quadrático Médio Erro Quadrático Médio 

Fonte: elaborado pelo autor (2025). 

 

A Tabela 3 apresenta um resumo de hiperparâmetros adotados para cada 

uma das arquiteturas iniciais de AE avaliadas neste trabalho. Para o encoder, 

utilizaram-se duas camadas convolucionais seguidas de operações de MaxPooling, 

enquanto no decoder a reconstrução ocorre através de camadas de Upsampling e 

Conv2D, estratégia que favorece a extração e recuperação de características visuais 

essenciais. O espaço latente, que sintetiza a informação comprimida, é modelado de 

forma implícita no AE convencional (via pooling), explicitamente em uma camada 

Dense com 64 neurônios no VAE (acompanhada de amostragem estocástica) e com 
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256 neurônios no modelo penalizado, o qual também incorpora regularização L1 

(10-5) para induzir esparsidade. As funções de ativação empregadas foram ReLU 

nas camadas intermediárias e Sigmoid na camada de saída, adequadas para 

imagens normalizadas. Para a otimização, foi utilizado o algoritmo Adaptive Moment 

Estimation (Adam) com taxa de aprendizado de 10-3 e a função de perda MSE (erro 

quadrático médio), que mede a diferença global entre as imagens original e 

reconstruída.  

A escolha de hiperparâmetros como taxa de aprendizado, tamanho do lote, 

número de camadas e tamanho das entradas deve ser guiada por critérios 

empíricos, considerando limitações computacionais e o objetivo de evitar overfitting, 

que é um problema comum em aprendizado de máquina em que um modelo se 

ajusta de forma excessivamente precisa aos dados de treinamento, em vez de 

aprender os padrões e relacionamentos subjacentes aos dados, ele memoriza o 

ruído e as flutuações irrelevantes, levando a um mau desempenho com novos 

dados. 

 Parâmetros como batch sizes, variam comumente entre 32 e 256 e taxas de 

aprendizado entre 0,01 e 0,0001. Além disso, não há um conjunto universal de 

hiperparâmetros ideais, e o ajuste fino é geralmente feito empiricamente para cada 

tarefa (GOODFELLOW et al., 2016). Todos os modelos foram treinados até a 

convergência da função de perda, utilizando o otimizador Adam e early stopping 

para evitar o overfitting.  

Os hiperparâmetros adotados, como taxa de aprendizado entre 10⁻² e 10⁻⁵, 

tamanhos de batch variando de 16 a 256, otimizador Adam, função de ativação 

ReLU e dimensões de entrada, seguem recomendações amplamente reconhecidas 

na literatura contemporânea (LAAKOM et al., 2024; ZHU, 2024). 

A escolha do Adam justifica-se mesmo em cenários com grandes volumes de 

dados, devido à sua eficiência de convergência em redes profundas e sua robustez 

em ambientes não convexos, conforme demonstrado em aplicações de engenharia 

preditiva e séries temporais complexas (Chen et al., 2025; Bouhanch, 2025). 

Já a função de ativação ReLU permanece uma escolha padrão em 

autoencoders convolucionais, inclusive em modelos aplicados a ambientes 

industriais e sistemas de diagnóstico embarcados, por sua estabilidade numérica, 

simplicidade e eficiência computacional (Chae et al., 2025). 
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Essas escolhas foram ajustadas com base nas restrições computacionais 

disponíveis e nos objetivos experimentais, promovendo uma boa relação entre 

desempenho, tempo de treinamento e reprodutibilidade. 

3.2.9.​ AMBIENTE COMPUTACIONAL DE BORDA SIMULADO 

​ A tabela 4 abaixo, apresenta os parâmetros que foram utilizados para 

simulação de um ambiente computacional de borda. Esses também podem ser 

verificados no repositório público5 deste trabalho de pesquisa. O desafio não é só o 

modelo, mas a pilha de software de implantação (deployment stack). A otimização 

ONXX/OpenVINO foi crucial, conforme apresentado no capítulo de resultados. 

Tabela 4 – Ambiente computacional de borda simulado com OPENVINO6 

Parâmetro Valor Simulado Descrição/Efeito 

Dispositivo CPU (ou GPU / MYRIAD) Simula execução em hardware 
de borda (ARM, CPU etc.) 

Precisão numérica FP32, pois FP16 falhou Reduz memória e latência com 
leve perda de precisão 

Resolução de entrada 128×128×3 Compatível com restrições de 
VANT e sistemas embarcados 

Latência simulada 1.2–2.5× da latência base Adiciona jitter para simular 
carga variável 

Energia estimada lat_ms × 0.0025 mJ Proporcional à latência 
(restrição energética) 

Aquecimento 5 execuções Estabiliza caches antes da 
medição 

Execuções 30 rodadas Calcula média, p95 e mínima 
da latência 

Normalização [0,1] (Min–Max) Evita saturação e acelera 
convergência 

Log de resultados resultados_edge.csv Registra métricas PSNR, 
SSIM, MS-SSIM e latência 

Fonte: elaborado pelo autor (2025). 

6 Disponível em: https://github.com/openvinotoolkit/openvino Acesso em: 12 jan. 2025 
5 Disponível em https://github.com/samuelccotta/sar_autoencoders. Acesso em 18 out. 2025.  
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As análises quantitativas dos resultados serão discutidos no capítulo 4 à luz 

das lacunas apontadas pela literatura, subsidiando a definição de oportunidades 

para o ciclo seguinte. 

3.3.​ DSR CICLO 2 - AMBIENTE DE BORDA 

Com base nas limitações e oportunidades do ciclo anterior, foram ajustados 

os requisitos para refletir as restrições mais severas de dispositivos de borda, 

incluindo consumo energético, memória e capacidade de processamento.​

​ Os modelos foram otimizados para execução local em ambientes de borda 

usando OpenVINO e o formato ONNX, empregando técnicas como compressão de 

modelos, quantização e arquiteturas mais leves, com o objetivo de minimizar a 

latência e viabilizar o processamento embarcado. Essas otimizações tornam-se 

necessárias porque dispositivos de borda possuem restrições severas de memória, 

processamento e energia, o que limita a execução eficiente de modelos tradicionais 

de AE (KONG et al., 2022; HAMDAN et al., 2020). A conversão para ONNX, aliada 

ao uso de quantização, podas e arquiteturas compactas, reduz significativamente o 

tamanho do modelo e o custo computacional, diminuindo o tempo de inferência e 

permitindo processamento em tempo quase real sem dependência da nuvem 

(LAAKOM et al., 2024; ZHU, 2024; REDDI et al., 2025). Além disso, em cenários 

críticos como VANT/SAR, onde há instabilidade de comunicação e decisões rápidas 

são essenciais, a execução local contribui para maior resiliência, autonomia 

operacional e confiabilidade do sistema. 

Desta forma, uma nova rodada experimental foi conduzida, buscando aferir, 

sempre que possível, a latência eficiência dos modelos embarcados, além das 

métricas convencionais.​
​ Os resultados do ciclo otimizado foram comparados com os do ciclo inicial e 

confrontados com recomendações da literatura, buscando evidenciar ganhos, 

limitações e implicações práticas para aplicações reais. 

Todo o pipeline experimental, configurações de modelos e código-fonte foram 

devidamente documentados e publicados em repositório público7, conforme prática 

recomendada em DSR e Ciência Aberta, para fomentar a replicação e extensão por 

outros pesquisadores (COTTA, 2025).  

7 Disponível em https://github.com/samuelccotta/sar_autoencoders. Acesso em 18 out. 2025.  
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4.​ RESULTADOS EXPERIMENTAIS 

4.1.​  CICLO 1 - AMBIENTE DE NUVEM 

4.1.1.​ AVALIAÇÃO EMPÍRICA 

Os experimentos realizados, confirmaram a conjectura e permitiram avaliar os 

artefatos, que para este estudo são os modelos de AE, na tarefa de compressão e 

reconstrução de imagens provenientes de VANT em cenários de SAR. Os resultados 

quantitativos das métricas analisadas, são apresentados na Tabela 5, sendo 

ilustrados comparativamente na Figura 11. Esses indicadores foram escolhidos não 

só pelo valor técnico, mas pela relevância direta para missões reais de SAR, em que 

cada milissegundo de latência e cada ganho de fidelidade visual podem significar 

uma resposta mais rápida e eficaz em campo. Os resultados dos modelos iniciais 

(Base), indicaram necessidade de melhorias e otimizações até se chegar ao modelo 

final que, os resultados serão apresentados a seguir. 

Tabela 5 – Resultados Comparativos para as arquiteturas avaliadas 

Modelo PSNR SSIM MS-SSIM Tempo 
(s) 

Resumo de parâmetros de Otimização 

Convencional Base 17.66 0.54 0.86 0.25 --- 

VAE Base 15.01 0.13 0.44 0.26 --- 

Redundância Base 12.28 0.06 0.21 0.27 --- 

Convencional 

Otimizado FINAL 

20.71 0.80 0.93 0.26 filter_max: 64 

Batch Normalization 

kernel_regularizer = l2(10-4) 

Conv2DTranspose 

Arquitetura assimétrica 

VAE Otimizado 

FINAL 

13.40 0.07 0.26 0.28 beta=0.01, L=128 

Redundância 

Otimizado FINAL 

14.21 0.09 0.33 0.28 l1_reg=10-6, L=512 

Fonte: elaborado pelo autor (2025). 
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A diferença de tempo observada no VAE pode ser explicada pela própria 

estrutura probabilística desse modelo. Diferentemente do AE convencional, o VAE 

precisa estimar os vetores de média (μ) e desvio padrão (σ) e realizar a etapa de 

latent sampling por meio do reparameterization trick, conforme apresentado por 

CHEN et al. (2020), YU et al. (2021) e OLIVEIRA et al. (2021). Essa operação 

envolve cálculos adicionais e a criação de tensores intermediários, elevando o custo 

computacional do encoder. Além disso, o VAE possui duas projeções latentes (μ e 

σ), aumentando o número de operações em comparação ao AE convencional, como 

também destacado por BERAHMAND et al. (2024). Dessa forma, a maior latência 

observada para o VAE é coerente com as diferenças estruturais da arquitetura. 

As otimizações dos modelos se concentraram em três pilares: 

capacidade/estabilidade, regularização estrutural e ajuste do espaço latente. O 

parâmetro filter_max: 64 dobrou a capacidade do encoder para extrair 

características da imagem. A introdução de BatchNormalization (normalização em 

lotes) e kernel_regularizer=l2(10-4) aumentou a estabilidade do treinamento e 

preveniu o overfitting. No decoder, o uso de Conv2DTranspose em uma arquitetura 

assimétrica (encoder e decoder com profundidades diferentes), permitiu a 

reconstrução de imagens com maior fidelidade.  

Nos modelos específicos, o ajuste de beta=0,01 no VAE priorizou a qualidade 

de reconstrução sobre a suavidade do espaço latente, enquanto a combinação de 

um baixo fator de penalidade l1_reg=10−6 com uma grande Dimensão Latente 

(L=512) no modelo de Redundância foi necessária para tentar manter alguma 

qualidade de imagem, mitigando a perda de informação imposta pela penalidade de 

redundância.  

No treinamento o aumento do número de épocas para 800 foi o mais 

assertivo para os modelos, foram utilizados os callbacks Learning Rate Scheduler e 

EarlyStopping para ajustar dinamicamente a taxa de aprendizado e interromper o 

treinamento quando não houvesse mais melhoria na validação, prevenindo 

overfitting e otimizando o tempo computacional. 

Esses hiperparâmetros foram ajustados com base em suas funções 

específicas em cada arquitetura: no VAE, o parâmetro beta controla o equilíbrio entre 

a fidelidade da reconstrução e a regularização do espaço latente (quanto maior o 

beta, mais suave e generalizado o espaço, porém com perda de detalhes visuais). 

Já a dimensão latente (L) define a capacidade de representação do bottleneck, 
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valores maiores tendem a capturar mais variabilidade, mas aumentam o custo 

computacional.  

Por fim, no modelo com penalização de redundância, o coeficiente “l1_reg” 

atua como fator de esparsidade, induzindo o modelo a eliminar redundâncias no 

vetor latente. Esses ajustes visam encontrar o ponto de equilíbrio entre qualidade 

perceptiva e eficiência de compressão, conforme observa-se nas Tabelas 5 e 7. A 

tabela 6, demonstra os valores de perda de cada modelo. 

Tabela 6 – Loss final de cada modelo 

Modelo Loss final (treino) 

Convencional Base ≈ 0,019 

Convencional Otimizado ≈ 0,009 

VAE Base ≈ 0,028 

VAE Otimizado ≈ 500 

Redundância Base ≈ 0,059 

Redundância Otimizado ≈ 0,037 

Fonte: elaborado pelo autor (2025). 

 

Os valores de SSIM dos modelos base, em especial o SSIM ≈ 0,06 da 

arquitetura com penalização de redundância, são compatíveis com reconstruções 

quase aleatórias e indicam que esses modelos não aprenderam uma representação 

latente útil para o dataset, caracterizando falha de treinamento e/ou configuração 

excessivamente compressiva do gargalo. Isso torna essencial documentar 

explicitamente a verificação de convergência: a loss dos modelos base estaciona em 

patamares relativamente altos (por volta de 0,028 no Convencional, ≈0,032 no 

Variacional e ≈0,038 no Redundância), enquanto o Convencional Otimizado alcança 

loss em torno de 0,009, o que explica o salto de SSIM para a faixa de 0,8 e confirma 

que a iteração do ciclo DSR corrigiu o problema. As curvas de treinamento mostram 

que nos modelos base a perda desce rápido e depois se estabiliza com diferença 

pequena entre treino e validação, sugerindo um regime de underfitting (capacidade 

insuficiente ou gargalo muito restrito) mais do que overfitting clássico, ao passo que 

nos modelos otimizados as curvas continuam decrescendo até um platô mais baixo, 

com boa sobreposição entre loss de treino e validação, o que sustenta o argumento 
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de que houve convergência adequada apenas após as otimizações estruturais e de 

regularização aplicadas no ciclo 1. Os plots de cada histórico de treinamento estão 

disponíveis no repositório público deste estudo (COTTA, 2025). 

Figura 17 – Comparação gráfica das métricas entre os modelos base e 

otimizados 

 

Fonte: elaborado pelo autor (2025). 

No experimento apresentado na Figura 17, cada modelo foi executado uma 

única vez por imagem do conjunto de teste, totalizando N execuções, onde N 

corresponde ao número de amostras da base de teste. Como a latência é medida 

individualmente por imagem, o valor reportado na figura representa a média 

agregada sobre todas essas execuções, o que fornece uma estimativa estável do 

comportamento do modelo em condições normais de avaliação. 

A robustez dessa média decorre do fato de que a avaliação é realizada sobre 

um conjunto extenso de amostras, o que reduz a influência de variações pontuais. 

Além disso, os experimentos foram conduzidos em um ambiente controlado (mesmo 

hardware, mesma carga de GPU/CPU, ausência de outros processos interferindo), 

minimizando a variabilidade externa. 

Optou-se por não apresentar o desvio padrão porque, neste contexto 

específico, a latência de inferência dos modelos convolucionais é quase 

determinística, com baixa variabilidade entre execuções quando comparada à 
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variabilidade entre arquiteturas. Estudos anteriores sobre compressão neural e 

avaliação em borda mostram comportamento similar, com variação mínima entre 

execuções sucessivas em hardware dedicado (KONG et al., 2022; LAAKOM et al., 

2024). 

Observa-se que, para o modelo Convencional Otimizado FINAL, o MS-SSIM 

(0,93) supera o SSIM (0,80), invertendo a relação usual MS-SSIM ≤ SSIM. Essa 

inversão, embora contraintuitiva, é coerente com imagens SAR ruidosas e 

downscaling agressivo: o MS-SSIM, que pondera múltiplas escalas de análise, 

captura melhor a preservação de texturas speckle em escalas finas, enquanto o 

SSIM (escala única) penaliza perdas de bordas globais. No Ciclo 2 (borda), a 

relação se normaliza ligeiramente (SSIM=0,82; MS-SSIM=0,96), confirmando que a 

otimização OpenVINO preserva estruturas multi-escala mesmo sob restrições 

computacionais. 

A avaliação comparativa dos modelos de AE revelou diferenças significativas 

entre as arquiteturas-base e suas versões otimizadas, especialmente em termos de 

qualidade de reconstrução e eficiência de processamento. Vale destacar, que antes 

de se chegar aos resultados, foram testados os seguintes parâmetros que foram 

descartados dos modelos VAE e Redundância, conforme exposto na Tabela 7. Além 

disso, testes com a função de perda combinada (MSE + SSIM) e o uso de (Keras 

Tuner/Optuna) foram explorados na busca de melhores hiperparâmetros, mas não 

foi considerado na análise final, devido a dificuldades de salvamento e carregamento 

dos modelos VAE para esse contexto e dataset. Todos os resultados estão no 

repositório do experimento dentro da pasta results.  
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Tabela 7 – Resultado dos parâmetros testados nos modelos VAE e de 

Redundância descartados. 

Modelo PSNR SSIM MS-SSIM Tempo (s) Resumo parâmetros 
de Otimização 

VAE 

Otimizado  

14.8372 0.1244 0.4182 0.2738 beta=0.1,L=128 

VAE 

Otimizado  

13.3675 0.0746 0.2604 0.2797 beta=0.01,L=256 

Redundância 

Otimizado  

14.3642 0.1052 0.3515 0.2743 l1_reg=10−6,L=512 

Redundância 

Otimizado  

12.2730 0.0605 0.2110 0.2764 l1_reg=10−7,L=512 

Redundância 

Otimizado  

14.2196  0.0983 0.3329 0.2868 l1_reg=10−6,L=1024 

Fonte: elaborado pelo autor (2025). 

​ As métricas de tempo foram obtidas a partir da média de 50 execuções 

consecutivas, após estabilização das rotinas TensorFlow. Assim, eventuais variações 

transitórias (jitter) foram amortecidas, garantindo consistência estatística entre os 

valores comparados. 

4.1.2.​ ANÁLISE EM QUALIDADE DE RECONSTRUÇÃO 

​ O desempenho em qualidade de imagem é dominado pela arquitetura 

Convencional Otimizada FINAL. O modelo alcançou os melhores resultados em 

todas as métricas de qualidade: PSNR: 20,7116 dB (significativamente superior aos 

demais), SSIM: 0,8010. MS-SSIM: 0,9359.  

​ O valor de PSNR = 20,71 dB, obtido para o modelo Convencional Otimizado 

Final, está dentro da faixa esperada para reconstrução de imagens SAR do conjunto 

SARD-2, caracterizadas por alto ruído de speckle e contraste não linear. Estudos 

recentes em compressão e reconstrução de imagens SAR com AE relatam valores 

de PSNR tipicamente na faixa de 22 dB a 24 dB para arquiteturas otimizadas, como 

demonstrado por Cardona-Mesa et al. (2025), que analisaram cerca de 240 

arquiteturas de autoencoders e identificaram desempenhos representativos nessa 
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faixa para reconstrução e redução de speckle em imagens SAR.​ 

​ Para imagens de satélite ópticas, Sri et al. (2025) reportaram desempenho 

médio superior em PSNR, em torno de 25 dB, com SSIM moderado, refletindo a 

menor presença de ruído e a maior linearidade de contraste nesses dados em 

comparação com SAR. Portanto, embora o PSNR obtido para SAR seja 

numericamente inferior ao de imagens ópticas, ele representa uma reconstrução 

estruturalmente satisfatória, especialmente quando corroborado pelos índices 

elevados de SSIM (0,8010) e MS-SSIM (0,9359), que indicam preservação 

perceptual significativa mesmo sob restrições de tempo real e processamento 

embarcado. 

​ Em contraste, os modelos VAE e Redundância (tanto nas versões base 

quanto nas otimizadas) apresentaram uma qualidade de reconstrução notavelmente 

inferior. O modelo Redundância (Base) obteve o desempenho inferior, com PSNR de 

apenas 12,2808 dB, indicando que, embora a penalização da redundância no 

manifold latente reduza correlações, ela comprometeu severamente a fidelidade da 

reconstrução neste cenário. A otimização implementada na arquitetura Convencional 

(aumentando o PSNR de 17,6680 dB para 20,7116 dB) foi a que apresentou o ganho 

de qualidade mais expressivo entre os modelos avaliados.​ 

​ Ainda assim, para aplicações embarcadas em VANTs, valores de PSNR 

abaixo de aproximadamente 25 dB tendem a indicar perda perceptível de qualidade, 

de modo que o desempenho atual deve ser considerado preliminar para esse 

contexto. A qualidade obtida é aceitável para inspeção humana exploratória, 

especialmente quando combinada com índices estruturais como SSIM e MS-SSIM, 

mas há margem clara para evolução em estudos complementares, por exemplo, 

mitigando efeitos do downscaling e refinando a arquitetura e os hiperparâmetros. 

​ Trabalhos conduzidos em condições distintas de dataset, resolução e taxa de 

bits reportam PSNR absolutos mais elevados, por exemplo, ≈40 dB em cenários 

específicos (RAMOS et al. 2023). No presente estudo, o objetivo não é maximizar 

PSNR absoluto, mas avaliar o equilíbrio entre qualidade e custo computacional sob 

restrições típicas de borda (resolução 128×128, forte compressão, inferência com 

foco em latência). Assim, a contribuição reside no ganho relativo entre arquiteturas 

dentro do mesmo protocolo experimental e na manutenção de latência competitiva, 

fatores críticos em VANT/SAR. A diferença observada ultrapassa o ganho estatístico: 

representa, na prática, uma reconstrução muito mais nítida e útil para a detecção de 
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alvos em imagens aéreas, o que reforça o potencial operacional do modelo proposto 

em contextos de vigilância e resgate. 

​ As diferenças entre os modelos, evidenciadas pelas métricas PSNR, SSIM e 

MS-SSIM, mostraram-se consistentes em múltiplas execuções. Para o escopo deste 

estudo, testes estatísticos adicionais não foram necessários, uma vez que as 

variações entre as arquiteturas foram observáveis e expressivas. 

4.1.3.​ ANÁLISE DE DESEMPENHO EM EFICIÊNCIA 

COMPUTACIONAL (TEMPO DE PROCESSAMENTO) 

​ A latência média observada para o processo de compressão e reconstrução 

apresentou pouca variação entre todas as arquiteturas avaliadas. Os tempos de 

processamento permaneceram em uma faixa estreita, entre 0,2507 s (Convencional 

Base) e 0,2868 s (Redundância Otimizado Final), indicando estabilidade temporal 

mesmo diante de diferentes estruturas e funções de perda. Embora as arquiteturas 

possuam graus distintos de complexidade, incluindo variações com redundância e 

abordagens variacionais, não foram verificadas diferenças significativas de latência 

que justificassem a priorização de um modelo em detrimento de outro quanto ao 

desempenho temporal. O modelo de melhor qualidade, Convencional Otimizado, 

manteve tempo médio de 0,2654 s, valor semelhante ao do modelo mais rápido, 

demonstrando que o ganho de fidelidade não implicou aumento expressivo no custo 

computacional. 

​ Cabe destacar que esses tempos referem-se à média de múltiplas execuções 

consecutivas realizadas em ambiente local de validação, refletindo o tempo total de 

compressão e reconstrução por imagem. No item 4.2, avalia-se a execução do 

modelo em ambiente de borda simulado, utilizando o OpenVINO Runtime (Tabela 4), 

de modo a mensurar a latência de inferência otimizada e a qualidade da 

reconstrução sob condições operacionais típicas de VANT. 

4.1.4.​ ANÁLISE DA TAXA DE COMPRESSÃO 

Além da avaliação de qualidade de reconstrução e do desempenho 

computacional, é necessário analisar a eficiência de compressão obtida por cada 

modelo, uma vez que a redução do tamanho dos dados é um dos objetivos centrais 
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deste trabalho. Assim, esta subseção apresenta a Taxa de Compressão (TC) obtida 

por cada arquitetura, calculada conforme a equação abaixo. 
 𝑇𝐶 =  𝑇𝐴𝑀𝐴𝑁𝐻𝑂 𝐷𝐴 𝐼𝑀𝐴𝐺𝐸𝑀 / 𝑇𝐴𝑀𝐴𝑁𝐻𝑂 𝐷𝐴 𝑅𝐸𝑃𝑅𝐸𝑆𝐸𝑁𝑇𝐴ÇÃ𝑂 𝐿𝐴𝑇𝐸𝑁𝑇𝐸

 

A Tabela 8 apresenta os valores de TC obtidos para cada modelo, 

considerando o tamanho do vetor latente e sua relação com o tamanho original da 

imagem (128 × 128 × 3). 

Tabela 8 – Taxa de compressão obtida pelas arquiteturas no Ciclo 1 

Modelo Dimensão da Imagem Dimensão do latente Taxa de Compressão 

Convencional 
Base 

128 x 128 x 3 = 49152 32 x 32 x 16 = 16384 3:1 

Convencional 
Otimizado 

128 x 128 x 3 = 49152 32 x 32 x 32 = 32768 1,5:1 

VAE Base 128 x 128 x 3 = 49152 64 768:1 

VAE Otimizado 128 x 128 x 3 = 49152 128 384:1 

Redundância 
Base 

128 x 128 x 3 = 49152 256 192:1 

Redundância 
Otimizado 

128 x 128 x 3 = 49152 512 96:1 

Fonte: elaborado pelo autor (2025). 

Observa-se que os modelos VAE apresentam as maiores taxas de 

compressão, reduzindo de forma extremamente agressiva o volume de dados (768:1 

no modelo inicial e 384:1 no modelo otimizado). Essa característica está diretamente 

associada ao reduzido tamanho do vetor latente, o que implica perda significativa de 

informações estruturais, refletida nos menores valores de SSIM e MS-SSIM 

apresentados na Seção 4.1.2. 

Os modelos com penalização de redundância apresentam compressões 

intermediárias (192:1 e 96:1), proporcionando um equilíbrio entre redução de dados 

e preservação estrutural. Já os AE puramente convolucionais, Convencional inicial e 

Convencional otimizado, apresentam taxas substancialmente menores (3:1 e 1,5:1), 

pois mantêm grandes mapas de ativação no espaço latente. Apesar disso, essas 

arquiteturas tendem a produzir melhores reconstruções visuais, dado o menor grau 

de compactação. 
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De modo geral, os resultados confirmam o trade-off entre compressão e 

qualidade de reconstrução, evidenciando que taxas de compressão mais altas 

tendem a degradar a estrutura da imagem, enquanto compressões mais 

conservadoras preservam maior fidelidade visual. Essa análise complementa as 

discussões anteriores e contribui para a justificativa da escolha do modelo 

Convencional Otimizado como artefato preferencial ao final do Ciclo 1. 

4.2.​ CICLO 2 - AMBIENTE DE BORDA 

4.2.1.​ AVALIAÇÕES 

 
Este tem como objetivo avaliar o modelo de AE com melhores valores do ciclo 

anterior em um ambiente de borda simulado.  

A simulação de execução em ambiente de borda foi realizada por meio do 

OpenVINO Runtime 2025.38, utilizando o modelo exportado, que foi convertido para 

o formato ONXX, que é um padrão aberto para modelos de aprendizado de máquina 

e que permite a interoperabilidade entre diferentes estruturas e ferramentas Foi 

simulada também a configuração de dispositivo CPU com restrição simulada de 

latência (jitter).  

O processo de conversão automática para precisão FP16 (que são formatos 

em bits, de ponto flutuante que indicam a quantidade de bits usados para 

representar um número), foi tentado via conversor OPENVINO e Python, com 

fallback para execução FP32, o que assegura compatibilidade com diferentes 

versões da biblioteca. 

Embora modelos para dispositivos de borda tipicamente utilizem 

representações reduzidas como FP16 ou INT8, dado que essas quantizações 

diminuem o uso de memória, energia e latência, houve a tentativa de aplicar essa 

otimização no presente trabalho, utilizando ferramentas como OpenVINO e ONXX. 

Contudo, devido a limitações específicas das bibliotecas com a arquitetura adotada 

(camadas convolucionais combinadas com Batch Normalization e regularização), a 

conversão não pôde ser concluída com sucesso sem comprometer a integridade do 

modelo. 

8 Disponível em: https://github.com/openvinotoolkit/openvino Acesso em: 12 jan. 2025 
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Apesar disso, os resultados obtidos em FP32 demonstraram desempenho 

satisfatório para os objetivos do estudo, com latências compatíveis com operação 

em tempo quase real no ambiente testado. Assim, mesmo não sendo possível 

aplicar a quantização integral, o desempenho final permaneceu dentro das 

expectativas para o cenário investigado, sem prejuízo à validade dos resultados 

obtidos, e reforçando a viabilidade das arquiteturas avaliadas para compressão de 

imagens em ambientes de borda. 

Conforme descrito na Tabela 4, o ambiente computacional de borda foi 

configurado no OpenVINO Runtime com 30 execuções consecutivas de inferência, 

das quais 5 foram destinadas ao aquecimento (warm-up) para estabilização de 

caches e alocação de memória. As 25 execuções válidas restantes foram realizadas 

sob carga variável simulada (jitter de 1,2–2,5× da latência base), permitindo calcular 

métricas estatisticamente consistentes de desempenho. Assim, foram obtidos o 

tempo médio de inferência (≈ 21 ms), a latência p95 (≈ 29 ms) e a latência mínima (≈ 

13 ms), valores que se mostram condizentes com operação quase em tempo real 

em ambientes embarcados. As métricas de fidelidade (PSNR ≈ 29 dB, SSIM ≈ 0,82, 

MS-SSIM ≈ 0,96) demonstram considerada preservação estrutural e perceptual, 

confirmando a viabilidade do AE para compressão de imagens de VANT em borda, 

com resultados superiores aos obtidos no primeiro ciclo experimental. 

Os resultados obtidos neste estudo, apresentam desempenho condizente 

com aplicações de compressão e processamento quase em tempo real em 

ambientes embarcados de VANT. A latência observada é compatível com os valores 

relatados em arquiteturas otimizadas para inferência em borda, como o 

EfficientDet-EdgeUAV proposto por Su et al. (2025), que alcança tempos de 

execução da ordem de 20–25 ms, assegurando operação em tempo real em 

cenários de busca e resgate. Quanto à fidelidade da reconstrução, as métricas 

observadas se situam ligeiramente abaixo das obtidas em métodos recentes de 

compressão SAR de alta qualidade, como os de Lukin et al. (2025), que reportaram 

a relação sinal-ruído de pico entre 33 e 36 dB e MS-SSIM superiores a 0.98 em 

compressão visualmente sem perdas, e Kim et al. (2025), que obtiveram PSNR 

entre 31 e 35 dB e SSIM de 0.90 a 0.94 em compressão baseada em similaridade 

estrutural de nuvens de pontos. Apesar dessa diferença, o equilíbrio alcançado entre 

qualidade e eficiência computacional demonstra que o modelo proposto é adequado 

para aplicações em SAR-VANT com restrições de energia e processamento, 
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conforme também discutido por Zhang et al. (2025) e Cheng et al. (2025), que 

destacam a relevância da otimização conjunta de latência e consumo energético em 

sistemas de computação de boda móveis, reforçando a importância de arquiteturas 

de borda com latência inferior a 30 ms para aplicações em tempo quase real. Assim, 

os valores obtidos neste trabalho podem ser considerados tecnicamente satisfatórios 

e coerentes com o estado da arte para compressão de imagens SAR em sistemas 

VANT com capacidade de operação quase em tempo real. 

A Figura 18 apresenta o tempo médio de inferência obtido durante a 

simulação de execução do modelo de AE em ambiente simulado de borda, 

considerando 30 execuções sucessivas. A barra azul representa a latência média (≈ 

21,2 ms), enquanto a barra de erro indica a diferença até o percentil 95 (≈ 29,4 ms), 

refletindo a variação temporal (jitter) típica de dispositivos com recursos 

computacionais limitados. Os resultados demonstram que o modelo mantém 

desempenho adequado para operações quase em tempo real, uma vez que o tempo 

médio por inferência permanece abaixo de 30 ms, correspondendo a 

aproximadamente 47 frames por segundo equivalentes. A baixa latência observada 

confirma que o modelo é viável para aplicações de compressão de imagem em 

VANT com processamento local na borda, sem comprometer o tempo de resposta. 
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Figura 18 – Latência média e percentil 95 (p95) do modelo avaliado em 

ambiente de borda. 

 
Fonte: elaborado pelo autor (2025). 

A Figura 19, apresenta as métricas PSNR, SSIM e MS-SSIM calculadas a 

partir da comparação entre imagens originais e reconstruídas. O valor de PSNR = 

29,16 dB indica uma reconstrução com baixo nível de ruído e boa preservação de 

intensidade. 

O SSIM = 0,82 demonstra que a estrutura das imagens foi amplamente 

mantida após a compressão, enquanto o MS-SSIM = 0,96 evidencia alta fidelidade 

perceptual em múltiplas escalas de análise. Esses valores confirmam a eficiência da 

compressão realizada pelo AE, mantendo equilíbrio entre taxa de redução e 

qualidade visual, requisito essencial para missões SAR em tempo quase real. A 

reconstrução apresenta qualidade comparável a técnicas clássicas de compressão 

(como JPEG2000), com vantagem de ser adaptável e executável em hardware de 

borda. 
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Figura 19 – Métricas de qualidade de reconstrução do modelo de AE 

 
Fonte: elaborado pelo autor (2025). 

 

Dando continuidade à análise de desempenho temporal, a Figura 20 mostra a 

latência mínima, média e p95, detalhando a dispersão das latências de inferência 

entre execuções repetidas. Ao invés de apresentar apenas valores médios, esse tipo 

de gráfico evidencia o quanto a latência oscila ao longo do tempo, característica 

crítica em cenários de borda, onde processamento e disponibilidade de hardware 

podem variar significativamente. A distribuição dos pontos demonstra que o modelo 

opera de forma estável na maior parte das amostras, mas com picos eventuais que 

representam flutuações de execução inerentes ao ambiente de borda. Essa 

visualização permite compreender não apenas o quão rápido o modelo processa as 

imagens, mas o quão consistente ele se mantém sob repetidas execuções. 

Observa-se que a diferença entre o tempo mínimo (≈ 13,4 ms) e o percentil 95 

(≈ 29,4 ms) é inferior a 2,2×, indicando estabilidade temporal consistente mesmo sob 

simulação de jitter (variação de carga de CPU). Esse comportamento é desejável em 

sistemas embarcados, pois reduz a probabilidade de atraso perceptível na 

reconstrução e transmissão das imagens. A consistência entre as medidas mostra 
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que o pipeline implementado no OpenVINO reproduz bem o comportamento de 

sistemas embarcados de baixa potência, reforçando a adequação do modelo para 

operação em VANT de SAR. 

Figura 20 – Dispersão de Latência (Mínima, Média e p95) 

 
Fonte: elaborado pelo autor (2025). 

 

A análise dos resultados apresentados nas Figuras 18 a 20 evidencia que o 

modelo de AE implementado no ambiente OpenVINO mantém latências médias 

inferiores a 25 ms, com baixa dispersão e alta estabilidade temporal. 

De modo a fazer uma avaliação dos ciclos DSR, a Tabela 9 consolida os 

resultados dos Ciclos 1 e 2, demonstrando os ganhos nas métricas avaliadas no 

Ciclo 2, evidenciando o ganhos na borda computacional com acréscimo 9db no 

PSNR médio e diminuição de 239 ms na latência média, resultados da otimização da 

pilha de inferência com ONNX/OpenVINO. 
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Tabela 9 – Resumo dos resultados dos ciclos DSR 

Métrica Ciclo 1 Ciclo 2 

PSNR médio 20.71 dB  29 dB (+9dB) 

SSIM médio 0.80 0.82 (+0.02) 

MS-SIM médio 0.93 0.96 (+0.3) 

Latência média 260 ms  21 ms (-239ms) 

Fonte: elaborado pelo autor (2025). 

 

As métricas de qualidade (PSNR, SSIM e MS-SSIM) demonstram a 

preservação estrutural e perceptual das imagens reconstruídas, mesmo sob 

restrições de processamento típicas de dispositivos de borda. 

Tais resultados indicam que a arquitetura desenvolvida é apropriada para 

compressão adaptativa em VANT, garantindo o equilíbrio entre eficiência 

computacional e qualidade visual. 

Esta avaliação detalha os desafios técnicos enfrentados e orienta as próximas 

fases do ciclo experimental, destacando a importância da relação entre desempenho 

e restrições de hardware para soluções de inteligência de borda. 

4.2.2.​ VALIDAÇÃO DOS OBJETIVOS E RESULTADOS 

 
​ A tabela 10, demonstra o alinhamento entre os objetivos geral e específicos 

propostos e os resultados obtidos nos dois ciclos DSR desta dissertação.  
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Tabela 10 – Validação dos objetivos e resultados  

Objetivo Evidência e Resultados Obtidos 

Geral: Analisar e comparar métodos 
de compressão de imagens 
baseados em inteligência artificial 
para redução do tráfego de dados em 
ambientes de borda-nuvem 

Análise multifatorial 3 arquiteturas de AE, na nuvem e realizada a 
disponibilização do vencedor na borda com análise dos resultados 

OE1 – Sintetizar o estado da arte da 
compressão de imagens na borda a 
partir de mapeamentos, revisões 
sistemáticas e estudos atuais, 
identificando tendências, limitações e 
lacunas. 
 

Trabalhos entre (2018–2025). Lacunas: (i) escassez de validações 
práticas em hardware restrito; (ii) ausência de comparações com 
métricas de latência; e (iii) carência de abordagens reprodutíveis de 
código aberto. Essas lacunas orientaram o desenho dos ciclos 
experimentais. 

OE2 – Implementar e adaptar 
modelos de AE para compressão de 
imagens considerando restrições de 
borda 

Implementado e otimizado 3 AE, adaptando o vencedor para o 
formato ONXX e simulando a borda em CPU (OpenVINO FP32), 
comprovando a portabilidade e eficiência. 

OE3 – Avaliar experimentalmente o 
desempenho dos modelos quanto à 
latência, qualidade e eficiência de 
compressão 

As métricas foram medidas em dois ciclos:  
• Ciclo 1: comparação das três arquiteturas, com Convencional 
Otimizado superando as demais (+3,04 dB PSNR, MS-SSIM 0,936). 
 • Ciclo 2: execução FP32 com latência média 21,2 ms e MS-SSIM 
0,96. Confirmam o atendimento do objetivo e demonstram eficiência 
quase em tempo real na borda. 

Fonte: elaborado pelo autor (2025). 

4.3.​ VALIDAÇÃO DOS REQUISITOS E RESULTADOS 

 
As tabelas 11 e 12, relacionam os requisitos levantados no início desta 

pesquisa com os resultados obtidos, evidenciando a preocupação com restrições de 

hardware de borda, reprodutibilidade, eficiência energética e flexibilidade do pipeline.
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Tabela 11 – Validação dos RF e resultados  

Código Descrição do Requisito Funcional Evidência e Resultado Alcançado 

RF1 Receber e pré-processar imagens capturadas 
por dispositivos de borda. 

Redimensionamento para 128×128×3, 
conversão BGR→RGB e normalização 
[0,1]. Testado com imagens reais do 
SARD-2. 

RF2 Comprimir e reconstruir imagens por meio de 
modelos de AE. 

Três arquiteturas desenvolvidas, 
Convencional, Variacional e Penalizada 
por Redundância, foram treinadas e 
validadas com as imagens reais do 
SARD-2. 

RF3 Mensurar as métricas de latência, PSNR, SSIM, 
MS-SSIM e taxa de compressão. 

Métricas avaliadas nos dois ciclos, 
evidenciando equilíbrio entre qualidade 
visual e eficiência temporal. 

RF4 Permitir adaptação dos modelos para ambientes 
com diferentes restrições de hardware. 

Pipeline compatível com TensorFlow 
(GPU) e OpenVINO (CPU FP32). 
Estrutura modular e scripts 
parametrizáveis possibilitam migração 
futura para dispositivos embarcados 
(Raspberry Pi, placas ARM). 

Fonte: elaborado pelo autor (2025). 

Tabela 12 – Validação dos RNF e resultados  

Código Descrição do Requisito Não Funcional Evidência e Resultado Alcançado 

RNF1 Executar em hardware com memória e 
processamento restritos ou simulados (ex.: 
Raspberry Pi, ARM). 

Simulação realizada com OpenVINO 
em CPU, resolução 128×128 px e jitter 
1,2–2,5×. Desempenho validado com 
latência média < 30 ms, confirmando 
viabilidade em dispositivos embarcados. 

RNF2 Minimizar o consumo energético do pipeline. Consumo estimado em 0,05 megajoule 
por inferência, indicando alta eficiência 
energética devido ao uso de FP32 
otimizado e redimensionamento das 
imagens. 

RNF3 Documentação e replicabilidade do experimento, 
disponibilizando o código em repositório público. 

Código, datasets e instruções 
disponíveis em GitHub, promovendo 
ciência aberta e reprodutibilidade 
(BERTRAM et al., 2023). 

RNF4 Flexibilidade para ajuste de parâmetros 
conforme o contexto experimental. 

Códigos de hiperparâmetros e dataset 
parametrizáveis, comprovando 
adaptabilidade metodológica. 

Fonte: elaborado pelo autor (2025). 
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4.4.​ VALIDAÇÃO DSR E RESULTADOS 

 
​ A tabela 13, resume claramente como o artefato desenvolvido atendeu ao 

problema de contexto, gerando contribuições práticas e científicas, conforme orienta 

o método DSR. 

Tabela 13 – Validação DSR e resultados  

Etapa Descrição Evidência e Resultado Alcançado 

Problema de 
Contexto  

Quais são as versões dos modelos de AE 
convencional, variacional e de penalização 
por redundância com melhor resultado nas 
métricas PSNR, MS-SSIM, SSIM e latência, 
de acordo com as imagens de entrada do 
dataset SARD2 (GEGENAVA, 2025)? 

O modelo convencional otimizado teve os 
melhores resultados nas métricas 
analisadas. Este modelo foi convertido e 
simulado na borda conforme requisitos 
levantados. 

Objetivo 1 
DSR 
(PIMENTEL 
et al. 2020) 

Desenvolver um artefato para resolver um 
problema prático num contexto específico 

O artefato desenvolvido foram os 
modelos de AE, para solução do 
problema prático de redução da latência 
em missões SAR nas transmissões de 
imagens de dispositivos VANT. 

Objetivo 2 
DSR 
(PIMENTEL 
et al. 2020) 

Gerar novos conhecimentos técnicos e 
científicos 

O trabalho avançou ao quantificar o 
melhor modelo de compressão para 
ambientes de borda-nuvem com métricas 
rigorosas e ao validar sua execução 
eficiente em hardware restrito, além de 
mapear claramente as lacunas da 
literatura. 

Fonte: elaborado pelo autor (2025).  
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5.​ CONCLUSÕES E TRABALHOS FUTUROS 

5.1.​ CONCLUSÕES 

Este trabalho investigou métodos de compressão de imagens baseados em 

AE aplicados a cenários de borda computacional, especialmente em missões com 

VANT, caracterizadas por alto volume de dados visuais, conectividade limitada e 

forte sensibilidade à latência. A partir da metodologia DSR, foram conduzidos dois 

ciclos experimentais que permitiram projetar, otimizar e avaliar diferentes 

arquiteturas de AE em ambientes de nuvem e de borda simulada. 

No Ciclo 1, foram comparadas as arquiteturas Convencional, VAE e 

Penalizada por Redundância. Os resultados mostraram que, embora modelos mais 

complexos apresentem potencial teórico de maior capacidade representacional, a 

estrutura simples e otimizada do AE Convencional apresentou o melhor equilíbrio 

entre qualidade de reconstrução e custo computacional, destacando-se como 

solução mais adequada para hardware restrito. A análise da taxa de compressão 

também evidenciou o trade-off entre redução agressiva de dados e preservação 

estrutural, reforçando a necessidade de compressão moderada para manter 

qualidade adequada em cenários VANT/SAR. No Ciclo 2, a execução do modelo 

otimizado em ambiente de borda utilizando OpenVINO comprovou sua viabilidade 

prática, alcançando latência média de 21,2 ms e estabilidade temporal compatível 

com aplicações quase em tempo real. 

Os achados consolidam a principal tese deste estudo: a eficiência na borda 

depende mais da adequação estrutural ao hardware do que da complexidade 

algorítmica, sendo fundamental considerar restrições reais de processamento, 

memória e energia na escolha de modelos de compressão para VANT. Além disso, 

este trabalho reforça a relevância de experimentos reprodutíveis, transparência 

metodológica e disponibilização dos artefatos, alinhando-se aos princípios da 

Ciência Aberta. 

5.2.​ CONTRIBUIÇÕES CIENTÍFICAS 

As contribuições científicas deste trabalho se concentram em quatro 

eixos principais: 

●​ Integração de DSR à compressão inteligente de imagens na borda 
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Foi estruturado um pipeline experimental rigoroso, guiado pela 

DSR, que organiza de forma transparente o problema, os artefatos, a 

conjectura, os requisitos e os ciclos experimentais, algo ainda pouco 

explorado em estudos de compressão para VANT. 

●​ Avaliação multifatorial de arquiteturas de AE sob restrições de borda​
​ O estudo fornece evidências empíricas comparando três 

modelos distintos (Convencional, VAE e Penalizado por Redundância) 

considerando métricas de qualidade, taxa de compressão e latência, 

ampliando o entendimento científico sobre o comportamento das 

arquiteturas quando submetidas a hardware restrito. 

●​ Identificação da relação entre estrutura do modelo e desempenho 

embarcado  

Ao demonstrar que modelos mais simples podem superar 

variantes sofisticadas quando submetidos a dispositivos de borda, o 

trabalho contribui para a discussão científica sobre “complexidade 

adequada”, tema ainda pouco evidenciado na literatura de VANT e 

compressão neural. 

●​ Formalização de um baseline replicável para experimentação em borda​
​ O pipeline, o código, os modelos treinados e a documentação 

foram disponibilizados publicamente, promovendo reprodutibilidade e 

contribuindo para futuras pesquisas em compressão inteligente, IA 

embarcada e aplicações SAR. 

5.3.​ CONTRIBUIÇÕES TÉCNICAS  

As contribuições técnicas estão relacionadas à implementação prática 

do artefato e à sistematização do processo experimental: 

●​ Desenvolvimento e otimização de três arquiteturas de AE 

(Convencional, VAE e Penalizado por Redundância) ajustadas 

ao dataset SARD-2 e às restrições de dispositivos embarcados. 

●​ Prototipação de um pipeline completo em nuvem e posterior 

conversão para execução na borda, incluindo 

pré-processamento, compressão, reconstrução e medição de 

latência. 
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●​ Implementação e validação do modelo de melhor resultado em 

ambiente de borda simulado com OpenVINO (FP32), 

demonstrando sua viabilidade para aplicações quase em tempo 

real em VANT. 

●​ Criação de artefatos reprodutíveis (scripts, treinamentos, 

modelos, tabelas), documentados e disponibilizados em 

repositório público. 

●​ Geração de um conjunto de recomendações práticas para 

compressão eficiente em dispositivos com severas restrições de 

hardware, úteis para futuras implantações em VANT, 

microcontroladores ARM e sistemas IoT. 

 
Além do mérito quantitativo, o modelo proposto destaca-se pela facilidade de 

implementação e baixo custo computacional, tornando-se uma alternativa imediata 

para sistemas embarcados de monitoramento aéreo e plataformas VANT civis ou de 

defesa. 

5.4.​ DESAFIOS ENCONTRADOS E TRABALHOS FUTUROS 

Os principais desafios surgiram da necessidade de adaptar arquiteturas de 

AE à limitação de memória, CPU e energia de dispositivos de borda, além da 

dificuldade em obter quantização estável (FP16) para o modelo selecionado. As 

restrições impostas pela simulação de hardware limitaram algumas análises e 

reforçam a necessidade de testes em plataformas reais. 

Como trabalhos futuros, destacam-se: 

●​ Avaliar quantização estática e dinâmica, incluindo INT8, para reduzir 

ainda mais latência e consumo energético. 

●​ Testar a solução em hardware físico, como Raspberry Pi, Jetson Nano, 

Movidius NCS2 ou ambientes embarcados reais de VANT. 

●​ Comparar diretamente AE com JPEG/JPEG2000/JPEG-XL e codecs 

neurais mais modernos, ampliando o escopo comparativo. 

●​ Explorar mecanismos adaptativos, como compressão por regiões de 

interesse para missões SAR. 

●​ Investigar arquiteturas semi condicionadas, como AE esparsos ou 

híbridos com wavelets. 
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Em síntese, este trabalho reforça que a otimização estrutural de modelos 

leves constitui uma estratégia promissora para aplicações embarcadas de 

compressão visual em VANT, discutido ao longo dos capítulos e também 

consolidado no artigo apresentado no Apêndice A.  
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RESUMO 

 

Este estudo avalia a eficácia de autoencoders (convencional, variacional e 

penalizado por redundância) na compressão de imagens aéreas de VANTs (UAVs), 

focando em aplicações embarcadas com restrições de latência. Utilizando o conjunto 

de dados SARD 2, os modelos foram analisados quanto à qualidade de 

reconstrução (PSNR, SSIM e MS-SSIM) e ao tempo de processamento. Os 

resultados refutaram a hipótese central, demonstrando que o autoencoder 

convencional otimizado superou os modelos mais complexos, atingindo a melhor 

qualidade de imagem e mantendo latência competitiva. O trabalho conclui que, em 

ambientes restritos, a simplicidade estrutural otimizada pode ser mais eficaz do que 

a complexidade teórica.  
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