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RESUMO

O crescente volume de dados digitais, o pilar da Inteligéncia Artificial (1A), oriundos
da borda computacional, especialmente em aplicacbes com Veiculos Aéreos Nao
Tripulados (VANT) que capturam grandes quantidades de imagens em campo,
impde um desafio critico: a necessidade de otimizar o processamento e a laténcia
em dispositivos com severas restricdes de hardware e energia. Visando analisar e
comparar métodos de compressao de imagens baseados em I|IA para mitigar a
laténcia na borda, este trabalho empregou a metodologia Design Science Research
(DSR) em dois ciclos iterativos. A solugdo desenvolvida consistiu na implementacao
de modelos de Autoencoder (AE) de diferentes complexidades. Convencional, AE
Variacional (VAE) e Penalizado por Redundéncia, treinados em ambiente de nuvem
de alto desempenho utilizando imagens de VANT do dataset SARD-2. No Ciclo 1, os
modelos foram comparados e otimizados quanto a qualidade de reconstrugcéo e
eficiéncia computacional, revelando que uma estrutura simples e otimizada é mais
eficaz que arquiteturas excessivamente complexas. O AE Convencional Otimizado
superou as variantes mais complexas, alcancando o melhor equilibrio entre
qualidade (PSNR = 20,71 dB; MS-SSIM = 0,9359) e tempo de processamento. No
Ciclo 2, o modelo vencedor foi convertido e executado em ambiente de borda
simulada por meio da plataforma OpenVINO, com simulagcdo de hardware restrito e
precisdo FP32. A validagao experimental demonstrou laténcia média de 21,2 ms e
estabilidade temporal adequada para aplicagdes quase em tempo real, confirmando
a viabilidade do modelo leve em dispositivos embarcados. Os resultados consolidam
a tese de que a eficiéncia na borda depende da adequacéao estrutural do modelo ao
hardware, e ndo apenas da sofisticagdo algoritmica. Este trabalho contribui como
baseline metodoldgico replicavel para compressao inteligente de imagens VANT,
conciliando desempenho, sustentabilidade computacional e principios da Ciéncia
Aberta.

Palavras-chave: Autoencoder; Borda Computacional; Inteligéncia Artificial;
Compressao de Imagens; Sustentabilidade Computacional; Metodologia DSR;

Ciéncia Aberta.



ABSTRACT

The growing volume of digital data, the pillar of Artificial Intelligence (Al), originating
from the computational edge, especially in applications with Unmanned Aerial
Vehicles (UAVs) that capture large amounts of images in the field, poses a critical
challenge: the need to optimize processing and latency on devices with severe
hardware and power constraints. Aiming to analyze and compare Al-based image
compression methods to mitigate latency at the edge, this work employed the Design
Science Research (DSR) methodology in two iterative cycles. The solution
developed consisted of implementing Autoencoder (AE) models of different
complexities. Conventional, Variational Autoencoder (VAE), and
Redundancy-Penalized Autoencoder, trained in a high-performance cloud
environment using UAV images from the SARD-2 dataset. In Cycle 1, the models
were compared and optimized for reconstruction quality and computational efficiency,
revealing that a simple and optimized structure is more effective than overly complex
architectures. The Optimized Conventional AE outperformed the more complex
variants, achieving the best balance between quality (PSNR = 20.71 dB; MS-SSIM =
0.9359) and processing time. In Cycle 2, the winning model was converted and run in
a simulated edge environment using the OpenVINO platform, with restricted
hardware simulation and FP32 precision. Experimental validation demonstrated an
average latency of 21.2 ms and adequate temporal stability for near real-time
applications, confirming the viability of the lightweight model in embedded devices.
The results consolidate the thesis that efficiency at the edge depends on the
structural adequacy of the model to the hardware, and not only on algorithmic
sophistication. This work contributes as a replicable methodological baseline for
intelligent UAV image compression, reconciling performance, computational

sustainability, and Open Science principles.

Keywords: Autoencoder; Edge Computing; Artificial Intelligence; Image

Compression; Computational Sustainability; DSR methodology;Open Science.



LISTA DE ILUSTRAGOES

Figura 1 — Exemplo de dispositivos Internet das Coisas no contexto de Inteligéncia

ArtIficial A& BOrda.......cooo o a e 26
Figura 2 — Exemplo de arquitetura borda-nuvem, Internet das Coisas e IA.............. 28
Figura 3 — Exemplo de arquitetura de borda.............cooooviiiiiiiiiiii e, 29
Figura 4 — Estrutura basicade um AE...........ooorii i 33
Figura 5 — Dimensdes do Aprendizado de Maquina na Borda..........c.cccoeoovvviiieneens 35
Figura 6 — Elementos centrais do modelo-DSR..............cccoeiieiiiiiiiiiiiiiie, 39
Figura 7 — Nucleo dos principios da Ciéncia Aberta..............cooovviiiiiiciiiieeee 44
Figura 8 — Pipeline metodologico para avaliagdo comparativa das arquiteturas de AE
[0 2= = 1 I [ [ R PSP 45
Figura 9 — Arquitetura da Solugdo de Compressao AE em Ambientes Hibridos

BOrda-INUVEM... ... ettt e e e e e e e 45
Figura 10 — Exemplo de imagem do dataset SARD-2 utilizado neste trabalho......... 46
Figura 11 — Arquitetura do AE Convencional (Modelo Base)..........cccccceeeeeeeiiiiiiennnnns 51
Figura 12 — Arquitetura do VAE (Modelo Base)........ccccoeeeeeiiiiiiiiiiiicceee e 53
Figura 13 — Arquitetura do AE Penalizado por Redundancia (Modelo Base)............ 55
Figura 14 — Arquitetura do AE Convencional (Modelo Otimizado)............ccccceeeeeennn... 57
Figura 15 — Arquitetura do VAE (Modelo Otimizado).............coovvrieiiiiiiiiiieeeeeeeeeeee 58

Figura 16 — Arquitetura do do AE Penalizado por Redundéancia (Modelo Otimizado)...
59

Figura 17 — Comparacao grafica das métricas entre os modelos base e otimizados 68

Figura 18 — Laténcia média e percentil 95 (p95) do modelo avaliado em ambiente de
0] o - TSRS 77

Figura 19 — Métricas de qualidade de reconstru¢ao do modelo de AE...................... 78
Figura 20 — Dispersao de Laténcia (Minima, Média € p95).......c.ccccceeeeeviiiiiiiiiiininnnns 79



LISTA DE TABELAS

Tabela 1 — Sintese dos trabalhos relacionados..............ooeviiiiiiiiii e 38
Tabela 2 — Configuragdes do ambiente de nuvem usado para treinar os modelos
REPESQL. ...ttt et e ettt e e e e e e e e e e e e e e e e e e e e e aannna 47
Tabela 3 — Hiperparametros iniciais usado para treinar os modelos.......................... 61
Tabela 4 — Ambiente computacional de borda simulado com OPENVINO................ 63
Tabela 5 — Resultados Comparativos para as arquiteturas avaliadas....................... 65
Tabela 6 — Loss final de cada modelo.............ccooeeeiiiiiiiiiiiiecceee e, 67
Tabela 7 — Resultado dos parametros testados nos modelos VAE e de Redundancia
AESCAMAUOS. ... .ottt a s 70
Tabela 8 — Taxa de compressao obtida pelas arquiteturas no Ciclo 1....................... 73
Tabela 9 — Resumo dos resultados dos Ciclos DSR.............uvviiiiiiiiiiieeeeeeeeeeeeeiiiee 80
Tabela 10 — Validagéo dos objetivos e resultados.............oooeeviiiiiiiiiiiiieeeeeeeeeeeeeeeees 81
Tabela 11 — Validacdo dos RF e resultados...............coiiiiiiiiiiiiiiiiice e 82
Tabela 12 — Validacdo dos RNF e resultados...........coooovviiiiiiiiiiiii e 82

Tabela 13 — Validacdo DSR e resultados...........ccooooviiiiiiiiiiiiie e, 83



AE
CPU
dB
DCT
DAE
DR
DSR
DSRM

FP32
FP16
GPU
A
loT
JPEG

LDA

ML
MPEG
ms

MSE
MS-SSIM

ONXX

OPENVINO

p95
PCA

LISTA DE ABREVIATURAS E SIGLAS

Autoencoders (Codificadores Automaticos)

Central Processing Unit (Unidade Central de Processamento)
Decibels (Decibéis)

Discrete Cosine Transform (Transformada Discreta de Cosseno)
Deep Autoencoder (Autoencoder Profundo)

Data Reduce (Redugéo de Dados)

Design Science Research (Pesquisa em Ciéncia do Design)
Design Science Research Methodology (Metodologia de Pesquisa
em Ciéncia do Design)

Floating Point 32-bit (Precisdo em 32 bits)

Floating Point 16-bit (Precisdo em 16 bits)

Graphics Processing Unit (Unidade de Processamento Grafico)
Inteligéncia Atrtificial

Internet of Things (Internet das Coisas)

Joint Photographic Experts Group (Conjunto de Especialistas em
Fotografia)

Linear Discriminant Analysis (Analise Discriminante Linear)
Machine Learning (Aprendizado de Maquina)

Motion Picture Experts Group

milisegundos

Mean Squared Error (Erro Quadratico Médio)

Multi-Scale Structural Similarity Index Measure (Medida do indice
de Similaridade Estrutural Multiescala)

Open Neural Network Exchange (Troca de Redes Neurais
Abertas)

Open Visual Inference and Neural Network Optimization toolkit
(Ferramentas Abertas para Inferéncia Visual e Otimizagao de
Redes Neurais)

Percentil 95

Principal Component Analysis (Analise de Componentes

Principais)



PPGCC
PSNR
RAM
REPESQ
RF

RNF
SAR
SARD 2
SSIM

TC
UFJF
VAE
VRAM

VANT

Programa de P6s-Graduagao em Ciéncia da Computagao (UFJF)
Peak Signal-to-Noise Ratio (Relacéo Sinal-Ruido de Pico)
Random Access Memory (Meméria de Acesso Aleatério)

Rede Integrada de Pesquisa em Alta Velocidade

Requisito Funcional

Requisito Nao Funcional

Search and Rescue (Busca e resgate)

Search and Rescue Dataset (base de dados de busca e resgate)
Structural Similarity Index Measure (Medida do indice de
Similaridade Estrutural)

Taxa de Compressao

Universidade Federal de Juiz de Fora

Variational Autoencoder (Autoencoder Variacional)

Video Random Access Memory (Memoria de Acesso Aleatdrio de
Video)

Veiculos Aéreos Nao Tripulados



SUMARIO

L1 300)510T07-Vo YN 17
1.1. MOTIVAGAO E CONTEXTUALIZACAO. ... veeeeeeeeeeeeeeeeseeeeeseeseeeereeeens 17
1.2 JUSTIFICATIVA. oot s e eee e s et s eee s eseees e ese e e s 19
1.3. DEFINICAO DO PROBLEMA......oveveeeeeeeeeeeeeeeeeeeeeeeeeeseseeeeseee e eseeeseeseeese e 21
1.4. QUESTAO DE PESQUISA ... .coveeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseseeesseeeseeseeesesseeessnes 22
1.5, OBUETIVOS. ..o eeeeeee e e eeee e eseee e eseeeeeese e eseseeeeeeeeseeseeeeeeseesens 22
1.6. HIPOTESE DE PESQUISA.......oeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseeeeseeeseseeesessesese s 22
1.7. CONTRIBUICOES ESPERADAS.......ooveeeeeeeeeeeeeeeeeeeseseeesseeeeeseseseesesee e 23
1.8. ORGANIZACAO DO TRABALHO .......oveoeeeeeeeeeeeeeeeeeee e es s eeseseens 23

2. REFERENCIAL TEORICO......oeeeeeereeseeesessesesessseesesssesssssesesssessesaseasesasessesasessens 25
2.1, INTERNET DAS COISAS (I0T ). .ervevereeeeeeeeeeeeseeeseeeeesseeeseseeeesesseessesseeesesenens 25
2.2. AMBIENTE COMPUTACIONAL DE NUVEM. ....cveeeveeeeeeeeeeeeeeeeeseeeereeeeons 26
2.3. AMBIENTE COMPUTACIONAL DE BORDA.......vevveeeeeeeoeeeeeeeeresseesesseeeseee 28
2.4. REDUGAO DE DADOS EM BORDAS COMPUTACIONAIS: CONCEITOS E
L1103 N1 (07X 35S 29
2.5. APLICACAO DE INTELIGENCIA ARTIFICIAL NA REDUCAO DE DADOS
NA BORDA COMPUTACIONAL ... 31
2.6. TRABALHOS RELACIONADOS ......cooooooeee oo eeeseen, 35

<Y V(=3 (0] 0Yo Mo e V- NN 39
3.1. FUNDAMENTAGCAO E TIPO DE PESQUISA.......oeeveeeeeeeeereereeseeeeseeerseeos 39
3.2. DSR CICLO 1 - AMBIENTE DE NUVEM.......oveoeioeeeeeeeee e 40

3.2.1. DEFINICOES. ..o 40
3.2.2. LATENCIA, QUALIDADE DE RECONSTRUGAO E METRICAS DE
AVALIACAO ...t e e ee e e ee e eres 41
3.2.3. REQUISITOS FUNCIONAIS E NAO FUNCIONAIS LEVANTADOS..... 42
3.2.4. AMBIENTE COMPUTACIONAL DE NUVEM UTILIZADO..........o.......... 47
3.2.5. AQUISICAO E PRE PROCESSAMENTO DOS DADOS.........ooovven.... 48
3.2.6. DEFINICAO DOS MODELOS BASE..........oeeveoeeeeeeeeee e seeereeeeeeesne 50
3.2.7. ARQUITETURAS OTIMIZADAS.......oveooeoeeeeeeoeeeeeseeeeeeseeseeeeeeseeseeeeeseesee 56
3.2.8. IMPLEMENTACAO E TREINAMENTO DOS MODELOS.........oo.......... 60
3.2.9. AMBIENTE COMPUTACIONAL DE BORDA SIMULADO.................... 63
3.3. DSR CICLO 2 - AMBIENTE DE BORDA........vv v eeeseeeeeeeeeeeeeeeeseesens 64

4. RESULTADOS EXPERIMENTAIS.........cereeeeeereeseeeseesseeseeasesssessessesasessemsessensessesaes 65

4.1. CICLO 1 = AMBIENTE DE NUVEM........ovmeeeeeeeseesseeseeeseessesseessesseessesenssennes 65
4.1.1. AVALIACGAO EMPIRICA ... 65
4.1.2. ANALISE EM QUALIDADE DE RECONSTRUGAO. ........ovvvvrorerrereene.. 70
4.1.3. ANALISE DE DESEMPENHO EM EFICIENCIA COMPUTACIONAL
(TEMPO DE PROCESSAMENTO)......ovoveeeeeeeeeeeeeeeeeeeeeeeeseeeeesesseseees s 72
4.1.4. ANALISE DA TAXA DE COMPRESSAO........oeveeeeeeeeeeeeeeseeeeeesseesesenns 72

4.2. CICLO 2 - AMBIENTE DE BORDA.........oo it 74



4.2.1. AVALIACOES........oiitiiieeieteeeeee ettt 74

4.2.2. VALIDAGAO DOS OBJETIVOS E RESULTADOS...........cccceeneierennnene, 80

4.3. VALIDAGAO DOS REQUISITOS E RESULTADOS........ccovveierieeieiereeeiernes 81
4.4, VALIDAGAQO DSR E RESULTADOS........ccooueiiiieiiieieiee st 83

5. CONCLUSOES E TRABALHOS FUTUROS.......cccocvventrereerersesesssesesessssessssssenes 84
5.1. CONCLUSOES.......coooiititiiictiieeie ettt 84
5.2. CONTRIBUIGOES CIENTIFICAS......coviiieeeteeeeceeeeeeee e 84
5.3. CONTRIBUIGCOES TECNICAS.........oieeeeeeeeeeeeeeeeeie e 85
5.4. DESAFIOS ENCONTRADOS E TRABALHOS FUTUROS..........c.cceviieeene 86
REFERENCIAS.......c.cocotrtrtreraraseecsesesesessssssssssssesssssssasasssssssssssssssssssssssssassasessssasssans 88

APENDICE A - PUBLICAGAQ........coicceeerererssasssassssssssesesasssssssssssssssssssssasasasasaens 95



17

1. INTRODUCAO

1.1.  MOTIVAGAO E CONTEXTUALIZACAO

A explosdo de dispositivos da Internet of Things (loT) em cenarios
contemporaneos (Industria 4.0, cidades inteligentes, agricultura, veiculos
autbnomos, saude eletrbnica, energias renovaveis, monitoramento de eventos
climaticos e busca e resgate, SAR) tem gerado um volume massivo e heterogéneo
de dados. Estima-se que, até 2025, existam 42 bilhbes de dispositivos loT
conectados, produzindo 80 zettabytes de dados anualmente (UPADRISTA, 2021),
volume este crescendo sem precedentes (MAFTEI et al. 2025). O desafio esta na
necessidade de manipulagdo, processamento e armazenamento eficiente desses
registros, ja que o envio direto dos dados para a nuvem pode causar trafego
excessivo, aumento de laténcia, consumo de banda e energia. Estratégias
inovadoras, como frameworks baseados em blockchain e borda computacional, sao
exemplos de alternativas para superar essas limitagdes e garantir a escalabilidade e
eficiéncia dos sistemas loT (FAZELDEHKORDI & GR@NLI, 2022; BARBUTO et al.
2023; MAFTEI et al. 2025).

Dentre os diferentes tipos de dados gerados na loT, as informagdes visuais,
especialmente imagens, destacam-se pelo seu volume elevado e pelos desafios
unicos de processamento, transmissao e armazenamento. Imagens provenientes de
sensores, cameras inteligentes, VANT e veiculos autdnomos constituem uma fragao
significativa do trafego de dados em ambientes de borda, impactando diretamente a
necessidade de solugbes que atendam aos requisitos de baixa laténcia e alta
eficiéncia operacional. Além disso, aplicagdes criticas como seguranga publica,
monitoramento ambiental e saude digital exigem que a transmissdao e o
processamento de imagens e dados ocorram em tempo real ou quase tempo real, a
depender da aceitagao de pequenos atrasos (GOMES, 2021).

Neste contexto, os VANT ocupam posicao de destaque. Esses sistemas
capturam imagens em alta resolugdo e operam em cenarios dinamicos, remotos e
frequentemente degradados, nos quais a conectividade € limitada e o
processamento embarcado é restrito. Em aplicagées como logistica, monitoramento
ambiental, busca e salvamento e fotogrametria, sistemas multi-rob6s méveis devem

possuir uma rede de comunicagado confiavel entre os veiculos, garantindo que as
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informagdes trocadas entre os nds tenham poucas perdas (RAMOS et al., 2023;
GEGENAVA, 2025).

Nesses cenarios, o envio bruto de imagens 1080p ou 2K para a nuvem
resulta em trafego elevado, consumo excessivo de energia e atrasos incompativeis
com operacdes quase em tempo real. Estudos recentes mostram que a laténcia de
transmissao e processamento € um dos fatores que mais impactam a eficacia de
missdes com VANT, especialmente quando operando em redes 4G/5G instaveis ou
enlaces de radio de baixa capacidade (ZHANG et al., 2024; REDDI, 2025). Assim,
métodos de compressao inteligente na borda tornam-se essenciais para viabilizar a
operacao continua e eficiente dos VANT.

Portanto, a compressao de dados visuais em VANTs ndo € apenas uma etapa
de otimizagdo, mas um requisito operacional para garantir baixa laténcia, economia
de banda e autonomia energética. E neste contexto que este trabalho se insere,
investigando técnicas baseadas em AE para reduzir o volume de imagens geradas
por esses veiculos, preservando sua utilidade para tarefas criticas em ambientes de
borda.

Além disso, a computacdo de borda surge como uma solugdo promissora
para mitigar esses problemas, ao permitir que o tratamento do conteudo ocorra
proximo a sua origem (REDDI, 2025), ou seja, nos proprios dispositivos loT. Essa
abordagem possibilita a execucao de tarefas de data reduce (DR) diretamente nos
dispositivos de borda, diminuindo a necessidade de transferéncia excessiva para a
nuvem (PIOLI et al.,, 2024). Além disso, esse ambiente computacional oferece
suporte a mobilidade, distribuigdo geografica, reconhecimento de localizagdo e
respostas rapidas, requisitos nem sempre atendidos pela nuvem (POWELL,
DESINIOTIS & DEZFOULI, 2020). Solu¢gbes como borda e névoa computacional
visam transferir o processamento e a inteligéncia para mais perto das fontes,
evitando a dependéncia de servidores remotos (ZHOU et al., 2019; KOLAPO et al.,
2024; UMEH, |. & UMEH, K. 2024). Embora a computacao de borda represente uma
solucao promissora, € preciso considerar as restricbes dos dispositivos de borda,
que frequentemente operam com recursos limitados, como processadores de baixa
poténcia e memoria reduzida (KOLAPO et al., 2024; PIOLI et al., 2024).

Neste contexto de big data visual, uma alternativa € o uso de técnicas de DR
visuais, que consiste em transformar um conjunto de registros visuais em um volume

menor, mantendo sua qualidade e integridade antes da transmissdo (PIOLI et al.,
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2024). Essas técnicas sdo essenciais para otimizar o uso de banda, reduzir custos
de armazenamento e possibilitar o processamento eficiente em dispositivos de
borda, especialmente em aplicagdes que exigem respostas rapidas e baixo consumo
de energia.

Com os avangos em computacdo de borda e da IA, a tecnologia loT atinge
um novo patamar. A integragdo de |IA com a borda computacional, denominada
inteligéncia de borda, permite a criacdo de aplicagdes mais inteligentes e eficientes
(DENG et al., 2020) ou aprendizado de maquina na borda (REDDI, 2025), que para
este trabalho sdo considerados sindénimos. Essa abordagem ndo s6 minimiza a
laténcia e o volume de trafego de conteudo visual, como também viabiliza decisbes
em tempo real, melhora escalabilidade, privacidade e confiabilidade (BARBUTO et
al., 2023). A execugao de algoritmos de IA nesses dispositivos exige estratégias de
otimizagdo, como compressao de modelos e utilizacdo de redes neurais leves,
viabilizando o processamento local de informagdes visuais sem comprometer a
autonomia energética.

Este trabalho se fundamenta em estudos recentes que analisam estratégias
para DR em ambientes de borda e inteligéncia embarcada, evidenciando sua
relevancia atual (BARBUTO et al., 2023; PIOLI et al., 2024; PIOLI, 2025).

1.2. JUSTIFICATIVA

O avancgo exponencial das aplicagdes de |IA em cenarios distribuidos, como
IoT e os sistemas Ciber-Fisicos, impde a necessidade urgente de explorar
arquiteturas de Computacao de Borda (AHMAD et al., 2023; ANDRIULO et al., 2024;
SHI et al., 2016). Essa abordagem é fundamental para que aplicagbes sensiveis a
laténcia, como veiculos autbnomos e sistemas de monitoramento baseados em
VANT, possam operar com a rapidez e a autonomia exigidas em missdes criticas
(DENG et al., 2020; RAMOS et al., 2023).

Apesar do volume expressivo de publicacbes na area, parte relevante dos
trabalhos ainda apresenta limitagcdes no que se refere a validacdo experimental em
contextos reais ou proximos de cenarios operacionais (BARBUTO et al., 2023; PIOLI
et al., 2024). Essa lacuna é ainda mais evidente em dispositivos de borda com
restricbes severas de processamento, memoria e energia (CAO et al., 2020; PIOLI
JUNIOR, 2024), nos quais a necessidade de eficiéncia é critica. O desafio se

intensifica porque os dados, elemento fundamental para o treinamento e a inferéncia
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dos modelos de IA, sdo produzidos diretamente na borda e representam grande
parte do contexto situacional (KONG et al., 2022; PIOLI et al., 2025).

A evolucdo das redes de comunicagcao de proxima geragao (5G e 6G)
contribui para ampliar a capacidade de transmiss&o e o processamento distribuido,
permitindo maior produgdo e manipulagado de dados diretamente em dispositivos de
borda (SINGH et al., 2024; KOLAPO et al., 2024; ADHIKARI; HAZRA, 2022). Essa
expansao tecnolégica reforca a necessidade de conduzir experimentos de IA
capazes de reduzir dados visuais localmente, de forma eficiente e reprodutivel, para
que a infraestrutura emergente seja explorada de maneira adequada (BAO et al.,
2023; HAMDAN et al., 2020). Assim, a promessa de baixa laténcia, resiliéncia e
operagao em tempo quase real depende diretamente da capacidade de adaptacao
dos modelos aos dispositivos restritos (DENG et al., 2020; PIOLI et al., 2025).

Neste contexto, o presente trabalho também se justifica pelo alinhamento
direto com as demandas das missdes de SAR, que dependem de VANT para
captura continua de imagens e tomada de decisao rapida. Esses cenarios envolvem
limitacbes severas de processamento embarcado, forte restricido energética e
comunicagao instavel, o que torna a compressao inteligente um elemento essencial
para reduzir o trafego de dados sem comprometer a qualidade visual necessaria
para a detecgao de vitimas ou objetos relevantes. Dessa forma, a combinagao entre
VANT, AE e uma arquitetura hibrida borda-nuvem surge como alternativa viavel e
necessaria (RAMOS et al., 2023; SINGH; GILL, 2023; ZHOU et al., 2019).

Adicionalmente, operacbes SAR frequentemente ocorrem em ambientes
criticos, com baixa visibilidade, interferéncias e necessidade de tomada de decisédo
quase imediata. No entanto, VANT utilizam hardware embarcado limitado,
geralmente baseado em arquiteturas ARM, com pouca memdria e autonomia
energética reduzida. A transmissdo de imagens de alta resolugéo intensifica o
trafego de dados e, quando realizada integralmente na nuvem, introduz laténcias
que inviabilizam aplicagcbes sensiveis ao tempo. Meétodos tradicionais de
compressdo podem ainda suprimir detalhes essenciais a identificagdo de alvos
relevantes, reforcando a necessidade de abordagens mais robustas e alinhadas ao
contexto da borda (RAMOS et al., 2023; SINGH; GILL, 2023; ZHOU et al., 2019).

Apesar dos avangos em comunicagao e infraestrutura, métodos tradicionais
de compressédo de imagens como JPEG, JPEG2000 ou esquemas baseados em

transformadas, frequentemente apresentam limitacdes em cenarios de borda, pois
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podem degradar detalhes essenciais ou demandar etapas de processamento n&o
otimizadas para hardware restrito. Nesse contexto, técnicas de Aprendizado
Profundo (Deep Learning) tém ganhado destaque por sua capacidade de aprender
representacdes compactas diretamente dos dados, adaptando-se ao conteudo visual
e as restricobes da plataforma. Entre essas técnicas, os AE destacam-se como uma
alternativa moderna e flexivel para compressdo, pois realizam a reducdo
dimensional por meio de um encoder leve, capaz de ser executado em dispositivos
embarcados, enquanto preservam caracteristicas visuais relevantes para tarefas
criticas. Assim, a escolha por AE decorre da necessidade de um mecanismo de
compressdo aprendido, adaptavel ao dataset do VANT e compativel com as
limitagdes computacionais da borda, o que justifica sua utilizagdo como artefato
central neste estudo (AZIZIAN; BAJIC, 2024; OLIVEIRA et al., 2021; BERAHMAND
et al., 2024).

Dessa forma, este estudo propde uma abordagem de validagédo experimental,
fundamentada na metodologia DSR (HEVNER et al., 2004; PEFFERS et al., 2007),
utiizando AE adaptados para execugdao em dispositivos de borda. O objetivo é
mitigar desafios de laténcia e consumo de recursos diante do crescente volume de
dados gerados localmente, fornecendo evidéncias praticas para a adogédo de
modelos leves e eficientes em cendrios criticos (AZIZIAN; BAJIC, 2024; OLIVEIRA et
al., 2021; BERAHMAND et al., 2024).

1.3.  DEFINICAO DO PROBLEMA

Apesar dos avancos recentes em técnicas DR visuais aplicadas a ambientes
computacionais de borda, persistem lacunas significativas quanto a adaptacgéo
dessas abordagens as severas restricoes de processamento, energia e laténcia
desses dispositivos. Esse desafio torna-se ainda mais evidente em plataformas
moveis como VANTs, que geram grandes volumes de imagens em alta resolugéo,
mas operam com hardware embarcado limitado e conectividade variavel.

Além disso, ha escassez de estudos que realizem validagdes praticas em
cenarios heterogéneos e proximos da realidade operacional desses sistemas,
especialmente no que se refere a eficacia das solugbes de compressao diante de
requisitos rigidos de laténcia para transmissdo e reconstrugdo de conteudo visual.
Essa auséncia de validacdo aplicada limita o avango de técnicas realmente

adequadas aos dispositivos de borda e as demandas de processamento distribuido.
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Diante desse contexto, a seguinte questdo central se destaca: como reduzir a

laténcia durante a transmissdo de imagens, por meio de métodos de compresséao

baseados em inteligéncia artificial, garantindo eficiéncia operacional e qualidade

visual para aplicagbes sensiveis ao tempo?

1.5. OBJETIVOS

O objetivo geral deste trabalho é analisar e comparar métodos de compresséo

de imagens baseados em inteligéncia artificial para reducao do trafego de dados em

ambientes de borda-nuvem. Para tanto, foram definidos 3 objetivos especificos:

e OE1: Sintetizar o estado da arte da compressao de imagens na borda, a partir

de mapeamentos, revisdes sistematicas e estudos atuais, identificando

tendéncias, limitagdes e lacunas.

e OE2: Implementar e adaptar modelos de AE para compressao de imagens,

considerando restricoes de dispositivos de borda.

e OE3: Avaliar experimentalmente o desempenho dos modelos quanto a

laténcia, qualidade da reconstrugao e eficiéncia de compressao.

1.6. HIPOTESE DE PESQUISA

A literatura recente indica que arquiteturas de AE com maior
sofisticagdo estrutural podem apresentar desempenho superior na
compactagdo e reconstrucdo de imagens quando comparadas a AE
convencionais otimizados. LAAKOM et al. (2024) demonstram que AE com
penalizacdo de redundancia produzem representacbes latentes mais
compactas e melhoram a fidelidade da reconstrugdo ao reduzir correlagbes
indesejadas no gargalo. De modo semelhante, OLIVEIRA et al. (2021)
evidenciam que modelos VAE alcancam melhor equilibrio entre taxa de
compressao e qualidade visual em cenarios embarcados, aproximando-se das
restricdes de operagao encontradas em sistemas moveis. Além disso, ZHU
(2024), ao comparar diversas arquiteturas de AE, mostra que modelos mais
complexos tendem a oferecer maior qualidade de reconstrugdo em relacao a

versdes convencionais.
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Diante dessas evidéncias, a hipotese central deste trabalho é a de que
VAE e AE com penalizagéo por redundancia apresentam desempenho superior
em compressdo de imagens, em termos de qualidade de reconstrugao e
eficiéncia, quando comparados a um AE convencional otimizado,
especialmente em ambientes de borda com restricbes computacionais, como
aqueles encontrados em aplicagcées com VANT.

Esta hipotese sera testada por meio da construgao, experimentacéo e
avaliacdo quantitativa de diferentes arquiteturas de AE em dois ciclos da
metodologia DSR. As métricas de avaliagdo incluem PSNR (Peak
Signal-to-Noise Ratio), SSIM (Structural Similarity Index) e o MS-SSIM ), taxa
de compressao e laténcia, em ambientes computacionais distintos (nuvem e

borda), simulando cenarios operacionais com VANT.

1.7. CONTRIBUICOES ESPERADAS

O estudo propde consolidar o conhecimento recente sobre compressao de
dados visuais em bordas computacionais, organizando tendéncias, desafios e
lacunas da literatura. Pretende-se formalizar processos por meio da metodologia
DSR, promovendo amadurecimento dos artefatos e geragcdo de conhecimento
cientifico. Serdo adaptados e avaliados modelos de AE para compressao de
imagens em cenarios de borda, considerando restricbes reais ou simuladas de
dispositivos. O protocolo experimental prioriza a analise de laténcia, além de
métricas tradicionais, respondendo a lacunas identificadas. Todos os experimentos e
pipelines estdo disponibilizados publicamente no GitHub', incentivando a Ciéncia
Aberta. Por fim, espera-se fornecer recomendacdes praticas para aplicacdes reais
de borda que demandam baixa laténcia e eficiéncia computacional, uma vez que o
deep AE (DAE) reduz significativamente a dimensionalidade dos dados, diminuindo
o trafego de comunicagdo e o custo de processamento sem perda relevante de

informacéo.

1.8.  ORGANIZACAO DO TRABALHO

Os conceitos tedricos e trabalhos relacionados deste estudo estdo no

Capitulo 2. No capitulo 3, por sua vez, é apresentada a metodologia seguida. Além

' Disponivel em: https://github.com/samuelccotta/sar_autoencoders. Acesso em: 18 out. 2025
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disso, o Capitulo 4 mostra os resultados experimentais relacionados aos
experimentos em nuvem e de simulagao na borda computacional. Finalmente, o
Capitulo 5 conclui esta pesquisa, resumindo este trabalho e delineando futuros

estudos.
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2. REFERENCIAL TEORICO

Este capitulo apresenta conceitos, fundamentos e avangos tecnolégicos que
embasam esta pesquisa, contextualizando o cenario atual das tecnologias aplicadas.
Nele sdo abordados os principios de loT, seus componentes e desafios, o ambiente
computacional de nuvem e de borda, as técnicas de DR visuais e a evolugéo para o
uso de inteligéncia artificial nesse contexto, com foco nos AE. Cabe destacar a
existéncia na literatura do ambiente de névoa, que é relevante, mas foi suprimido
para fins de simplificacdo da solugdo, mantendo a arquitetura borda-nuvem como
foco da solucdo. Esse referencial fundamenta as motivagdes tedricas e praticas do
trabalho, fornecendo suporte para a analise critica das solugdes propostas e para o
desenvolvimento do pipeline experimental aplicado a compressao de imagens em

ambientes de borda computacional.

2.1.  INTERNET DAS COISAS (loT)

loT pode ser definida como uma rede global de dispositivos inteligentes
interconectados, capazes de coletar, processar e compartilhar dados
automaticamente, utilizando diferentes protocolos e tecnologias de comunicagéo. O
conceito central da loT envolve a integragdo de sensores, atuadores e sistemas
computacionais, permitindo aplicagdes em areas como cidades inteligentes, saude,
agricultura e automagao industrial (DIN et al., 2018; FURSTENAU et al., 2020;
MANSOUR et al., 2023). A arquitetura classica da loT é geralmente estruturada em
camadas, sendo o modelo de trés camadas (percepgao, rede e aplicagdo) o mais
tradicional, enquanto revisbes recentes destacam arquiteturas mais complexas,
como as de cinco camadas, que incluem processamento em borda e camadas de
suporte a seguranga e gerenciamento (FURSTENAU et al., 2020; BANIJAMALI et
al., 2020; MANSOUR et al., 2023).

Tendéncias atuais apontam para a adogao de tecnologias emergentes como
inteligéncia artificial, computagdo em nuvem, 5G/6G e blockchain, que ampliam a
escalabilidade, eficiéncia e segurangca dos sistemas loT (DIN et al, 2018;
BANIJAMALI et al., 2020; MANSOUR et al., 2023). No entanto, entre os desafios
arquiteturais estdo a interoperabilidade, seguranga, privacidade, confiabilidade,
restricdes energéticas e auséncia de padrbées comuns, exigindo adaptacdes
conforme o cenario de aplicagado (NIKOUI et al., 2020; BANIJAMALI et al., 2020). A
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convergéncia entre loT e computacdo em nuvem, bem como a adogdo de
arquiteturas orientadas a servigos (SOA) e microservigcos, sao tendéncias
destacadas para garantir escalabilidade, automacao e tomada de decisdo autbnoma
(BANIJAMALI et al., 2020; RAZZAQ, 2020). A Figura 1 ilustra alguns dispositivos
loT, demonstrando seu papel na disponibilizagdo dos dados para que a borda
computacional possa realizar as inferéncias utilizando técnicas de inteligéncia

artificial que serdo abordadas em capitulos seguintes.
Figura 1 — Exemplo de dispositivos Internet das Coisas no contexto de Inteligéncia

Avrtificial de Borda

Servidor Remoto

r'\
-P.,
.i. 4: st
i Rede de Longa Distanci
Ly
W @ —— _— e
Eil 0 f’ J/_/.-'"_ II/_.-'
it @D & &
T =8 - — _./I =
E E Processamento em  Inteligéncia Computacional Magquina para
Tempo Real 1 Otimizagao Maguina

=) B A KT

Internet das Coisas

Fonte: Adaptado de SINGH, GILL (2023).

2.2. AMBIENTE COMPUTACIONAL DE NUVEM

A computagcdo em nuvem € um modelo computacional flexivel que fornece
servicos como servidores, armazenamento, bancos de dados, redes e software sob
demanda via internet, eliminando a necessidade de infraestrutura fisica local e
possibilitando escalabilidade dindmica (MELL & GRANCE, 2011; AMAJUOQOYI et al.,
2024). Desde a consolidagao dos servicos de infraestrutura em nuvem na ultima

década, seu uso se expandiu para suportar aplicagbes que demandam
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processamento intensivo e analise de grandes volumes de dados (AMAJUOQOY!I et al.,
2024).

Nos ultimos anos, a integragdo da computacdo em nuvem com abordagens
emergentes, como borda e névoa computacional, tem sido central para superar
limitagdes relacionadas a laténcia e segurancga, especialmente nas aplicagbes loT
(ANDRIULO et al., 2024). A crescente adogao de machine learning e inteligéncia
artificial na nuvem tem impulsionado melhorias significativas na analise de dados,
eficiéncia operacional e automagao adaptativa dos recursos computacionais (WANG
et al., 2024).

Contudo, mesmo com esses avancgos, persistem desafios cruciais como
laténcia, privacidade, seguranca dos dados, gerenciamento eficiente de recursos e o
risco de dependéncia de fornecedores (vendor lock-in), que ainda sdo amplamente
discutidos e motivam investigagdes para garantir maior robustez e adogao segura da
computacdo em nuvem (ALSHAREEF, 2023). A Figura 2 ilustra como a IA se
distribui entre nuvem e borda em arquiteturas modernas. Na nuvem, ficam as tarefas
de maior custo computacional, como treinamento e otimizagdo dos modelos. Ja a
borda executa as inferéncias proximas as fontes de dados, reduzindo laténcia e
trafego. A seta central representa esse fluxo: modelos treinados na nuvem séao
enviados para execugao na borda. Essa organizacao reflete a abordagem adotada
neste trabalho, que utiliza a nuvem para treinar os Autoencoders e a borda para

realizar as inferéncias em dispositivos restritos.



28

Figura 2 — Exemplo de arquitetura borda-nuvem, Internet das Coisas e IA

Nuvem
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sistemas de sistemas de automagao

Fonte: Adaptado de NOVIK (2025).

2.3. AMBIENTE COMPUTACIONAL DE BORDA

O ambiente computacional de borda, conhecido como borda computacional,
refere-se a uma arquitetura distribuida que integra recursos de computagao,
armazenamento e rede préximos a fonte dos dados, como dispositivos loT, gateways
e servidores locais. Essa abordagem visa reduzir a laténcia, aumentar a eficiéncia
no processamento de dados e melhorar a privacidade e a seguranga, evitando o
envio de grandes volumes de dados para data centers distantes na nuvem (SHI et
al., 2016; CAO et al., 2020). Ambientes de borda sao fundamentais para aplicagbes
sensiveis ao tempo, como cidades inteligentes, veiculos auténomos, realidade
aumentada e monitoramento industrial, onde a resposta rapida é essencial (SHI et
al., 2016; QIU et al., 2020; SULIEMAN et al., 2022).

Modelos e arquiteturas como computagao de borda moével, nuvem pequena e
computacdo de névoa sdo adotados para atender demandas de mobilidade,
escalabilidade e gerenciamento de recursos (HAMDAN et al., 2020; SULIEMAN et
al.,, 2022). O ambiente de borda enfrenta desafios como alocagao eficiente de
tarefas, consumo de energia, segurancga, privacidade e integracdo com tecnologias
emergentes, incluindo inteligéncia artificial e blockchain (QIU et al., 2020; SINGH et
al., 2022; SULIEMAN et al., 2022). Kong et al. (2022) destacam que o ambiente de
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borda é peca-chave para a Internet de Tudo, ampliando o escopo de aplicacdes e
exigindo solugdes inovadoras para migragao de servigos, implantagdo de noés de
borda e integracdo com tecnologias como digital twin e 6G. Por fim, a computagao
de borda complementa a computagdo em nuvem, promovendo cooperagado entre
ambos para otimizar desempenho e qualidade dos servicos em aplicagdes
modernas (HAMDAN et al., 2020; SULIEMAN et al.,, 2022). A estrutura da
computacdo de ponta € geralmente dividida em trés camadas: camada terminal,

camada de borda e camada de nuvem, conforme ilustrado na Figura 3.

Figura 3 — Exemplo de arquitetura de borda
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Fonte: Adaptado de KONG (2022).

2.4. REDUGAO DE DADOS EM BORDAS COMPUTACIONAIS:
CONCEITOS E TECNICAS

A explosédo de dispositivos conectados e sistemas embarcados resultou em
desafios significativos para o tratamento e a transmissdo de grandes volumes de
dados em tempo quase real, especialmente em aplicagdes criticas como veiculos
autébnomos, VANT, sensores industriais. A arquitetura de borda, ou computacao de
borda, visa distribuir parte do processamento para proximo das fontes de dados,
reduzindo a dependéncia da nuvem e otimizando o uso de largura de banda e
recursos computacionais locais.(SHI et al., 2016; DENG et al., 2020; KONG et al.,
2022; KOLAPO et al., 2024).
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Entre as técnicas tradicionais de DR, destacam-se algoritmos classicos de
compressao como JPEG, JPEG2000 e MPEG para imagens e videos. O algoritmo
JPEG, adotado desde a década de 1990, realiza compressao com perdas através da
transformacdo Discrete Cosine Transform (DCT) e quantizacdo, mantendo boa
qualidade visual em taxas moderadas de compressao (THAI; COGRANNE, 2019;
SABZAVI; GHADERI, 2024). J& o JPEG2000 introduz a transformagao wavelet,
permitindo compressao ainda mais eficiente, progressiva e com melhor preservagao
de detalhes em taxas elevadas (LAWSON; ZHU, 2002; MA et al., 2020). Estas
técnicas fazem parte de muitos processos embarcados, devido a sua eficiéncia,
baixo custo computacional e ampla disponibilidade em bibliotecas e hardware
dedicados (THAI; COGRANNE, 2019; LAWSON; ZHU, 2002).

Paralelamente, métodos de redugcdo de dimensionalidade como a Principal
component Analysis (PCA) e a Linear Discriminant Analysis (LDA) s&o
frequentemente empregados para a compactacdo de grandes conjuntos de dados
lineares, sendo uteis na filtragem de informagdes redundantes (REDDY et al., 2020;
JIMENEZ-NARVAEZ et al., 2023). Outras abordagens, como filtros de quantizacéo e
técnicas de amostragem, complementam o arsenal tradicional para reducédo de
dados, cada qual com ftrade-offs entre fidelidade e consumo computacional (BEN
SAAD; BEFERULL-LOZANO; ISUFI, 2020; ZHAO et al., 2024).

Entretanto, pesquisas recentes apontam que abordagens tradicionais de
compressdo enfrentam limitagcbes importantes quando aplicadas a aplicacdes
modernas de borda computacional. Estudos evidenciam que a relagao entre taxa de
compressao e qualidade dos dados pode ser significativamente degradada diante de
restricdes severas de banda e energia, tornando as solugbes classicas menos
eficazes nesse cenario dindmico (ALSHARIF et al. 2025; JUNIOR et al. 2021)
Segundo, algoritmos classicos geralmente ndo se adaptam de forma dinédmica ao
contexto ou ao conteudo dos dados, o que pode limitar a eficiéncia quando
comparados a abordagens aprendidas (PIOLI et al., 2024; BARBUTO et al., 2023).
Por fim, as limitacbes de hardware de microcontroladores, matrizes de portas
programaveis em campo e sistemas embarcados exigem compressado eficaz sem
comprometer o desempenho da aplicagdo (DENG et al., 2020; ZHOU et al., 2019).

Ha excecbes importantes, como o ARCog-NET (RAMOS et al. 2024), uma
arquitetura cognitiva avangada para VANTs em sistemas cooperativos, que integrou

processamento distribuido no paradigma borda-névoa-nuvem e foi avaliado em um
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cenario realista de inspecdo de turbinas edlicas, apresentando resultados de
simulagao que mostram que o ARCog-NET reduz a laténcia, aumenta a taxa de
transferéncia de dados e melhora a eficacia operacional. Todavia, o foco do
ARCog-NET ndo esta na construcdo de artefatos DSR, analise quantitativa
multifatorial e ciéncia aberta, mas sim no comportamento colaborativo do enxame e
na distribuicdo hierarquica de tarefas cognitivas. Assim, embora valida
processamento embarcado em VANTs, ele ndo aborda diretamente a problematica
tratada nesta dissertacao.

Essas limitagdes motivam a adogéo de técnicas baseadas em aprendizagem
profunda, como os AE, que aprendem representacdes nao lineares diretamente dos
dados e podem ser ajustados especificamente para o dominio das imagens aéreas
capturadas por VANT. Diferentemente dos métodos classicos com transformacoes
fixas, AE extraem caracteristicas relevantes de maneira adaptativa, permitindo
compactagcao mais eficiente sob restricbes de banda, energia e processamento
tipicas da computagdo de borda. Evidéncias recentes demonstram que variantes
como VAE e modelos com penalizagcao de redundancia produzem representagdes
mais compactas e com maior fidelidade quando comparadas as abordagens
tradicionais (OLIVEIRA et al., 2021; LAAKOM et al., 2024; ZHU, 2024; TENG et al.,
2025). Essa combinacdo de adaptabilidade, eficiéncia e compatibilidade com

ambientes embarcados fundamenta sua escolha neste trabalho.

2.5. APLICACAO DE INTELIGENCIA ARTIFICIAL NA REDUGCAO DE
DADOS NA BORDA COMPUTACIONAL

A ascensdo da IA, sobretudo aprendizado de maquina (ML) e redes neurais
profundas, trouxeram novas perspectivas para a DR em ambientes de borda,
especialmente com o uso de redes neurais profundas para compressao de dados
visuais. Entre as técnicas promissoras esta o uso de AE, redes neurais desenhadas
para aprender representacdes compactas de entrada, sintetizando informacdes
relevantes em um espaco latente reduzido. Dentre os modelos de AE disponiveis na
literatura foram escolhidos para esse trabalho: convencional, variacional e com
penalidade de redundancia.

AE sao redes neurais artificiais auto supervisionadas, utilizadas para aprender
representacdes compactas e eficientes de dados, sendo amplamente aplicados em

tarefas como compressao e deteccdo de anomalias. O AE convencional emprega



32

camadas convolucionais para capturar padrdes espaciais em imagens, permitindo
uma codificagao eficiente e preservando caracteristicas locais relevantes (LI et al.,
2023; BERAHMAND et al., 2024). Ja o VAE é um modelo generativo que aprende
uma distribuigcdo probabilistica no espaco latente, possibilitando a geragao de novas
amostras e melhorando a capacidade de generalizagdo; VAE tém apresentado
desempenho superior em tarefas de reconstrugdo e classificagdo de imagens,
especialmente quando combinados com arquiteturas convolucionais (CHEN et al.,
2020; YU et al., 2021; LI et al., 2023; BERAHMAND et al., 2024).

Além disso, abordagens que penalizam a redundancia no espago latente,
como a maximizacao da informacdo mutua entre variaveis latentes e entradas,
buscam tornar as representagdes aprendidas mais informativas e compactas,
reduzindo a redundancia e promovendo maior eficiéncia na codificagéo (YU et al.,
2021). Essas estratégias sao particularmente relevantes em cenarios que exigem
compressao eficiente e alta capacidade de generalizagdo, como aplicagbes de
computacdo de borda e analise de grandes volumes de dados. Dessa forma, a
escolha entre AE convencionais, variacionais ou penalizados por redundancia
depende dos objetivos especificos do problema e das caracteristicas dos dados
envolvidos.

Além dos AE, técnicas complementares vém sendo aplicadas para aprimorar
modelos de |A na borda computacional:

e (Quantizacdo pos-treinamento, reduzindo a precisdo dos pesos da rede,
permitindo rodada eficiente em hardware restrito.

e Pruning e regularizagao, diminuindo o numero de parametros e simplificando
arquiteturas para performance embarcada.

e Conversao para formatos otimizados, como TensorFlow Lite e Open Neural

Network Exchange (ONXX), facilitando a implantagéo na borda.

A literatura nacional e internacional (BARBUTO et al., 2023; PIOLI et al.,
2024; LAAKOM et al., 2024; TENG et al., 2025), demonstra ganhos expressivos no
uso de IA embarcada para compressao: definicdo dindmica das taxas de
compressao, adaptacao ao contexto operacional (ex.: prioridade para regides de
interesse em missdes SAR) e manutencéo da qualidade perceptual mesmo sob altas
taxas de compactagao. Trabalhos como Ramos et al. (2023) abordam a simulagéo e
avaliagcao do uso de AE de aprendizado profundo para compressao de imagens em

sistemas com multiplos VANT, destacando ganhos de desempenho como aumento
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de velocidade no processamento e envio de imagens comprimidas, além de boa
acuracia e qualidade de reconstrugao das imagens.

Ainda ha desafios complexos: generalizacdo dos modelos frente a multiplos
dominios de dados, estabilidade em hardware heterogéneo, e comparabilidade
transparente com padrdes classicos. O trabalho atual busca superar parte dessas
lacunas ao implementar, otimizar e avaliar experimentalmente diferentes arquiteturas
de AE, analisando seu desempenho em ambientes simulados de nuvem e borda, e
explorando o impacto de diferentes niveis de compressao, requisitos computacionais
e potenciais aplicagdes praticas em contextos reais. A Figura 4, ilustra a arquitetura
fundamental de um AE, destacando o processo de compressdo da entrada via
encoder, geracdo de uma representacdo latente (bottleneck) e subsequente
reconstrugao pelo decoder (CHOLLET, 2016).

Figura 4 — Estrutura basica de um AE

.2—1' Codificador ——» Decodificador ——» .2

Entrada original

Entrada reconstruida

Representacdo
comprimida

Fonte: Adaptado de CHOLLET, 2016.

Para uma melhor compreensado dos elementos que compdem os modelos
utilizados neste trabalho de pesquisa, apresenta-se uma sintese conceitual dos
elementos que compdem os autoencoders empregados neste estudo. O codificador
€ responsavel por extrair caracteristicas relevantes da imagem por meio de camadas
convolucionais sucessivas, comprimindo a informacdo e reduzindo sua
dimensionalidade (CHOLLET, 2016; OLIVEIRA et al., 2021). O decodificador realiza
0 processo inverso, reconstruindo a imagem original a partir da representacao
comprimida, operagcao dependente da qualidade do espaco latente, onde estéo
codificados os atributos essenciais que preservam a semantica do dado (LAAKOM
et al., 2024; BERAHMAND et al., 2024). As fungdes de ativagdo, como Rectified
Linear Unit (ReLU) e Sigmoid, introduzem nao linearidade ao modelo, tornando

possivel a aprendizagem de relagbes complexas entre pixels (GOODFELLOW,;
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BENGIO; COURVILLE, 2016; CHOLLET, 2016). Estratégias de regularizagdo, como
penalizagdo L1, dropout ou controle de redundancia, reduzem sobreajuste e
promovem generalizagdo do modelo em cenarios reais de inferéncia embarcada
(AZIZIAN; BAJIC, 2024; OLIVEIRA et al., 2021). Por fim, métricas como MSE,
PSNR, SSIM e MS-SSIM sao amplamente utilizadas para mensurar fidelidade visual
entre imagem original e reconstruida, equilibrando erro numérico e percepgao
estrutural, fator crucial em aplicagdes VANT/SAR onde a preservagao de detalhes
pode determinar o sucesso da operagdo (RAMOS et al., 2023; SINGH; GILL, 2023;
ZHOU et al., 2019).

Considerando que a eficiéncia desses modelos depende diretamente do
ambiente em que sao executados, torna-se necessario compreender como a
computagado de borda afeta sua performance, escalabilidade e aplicabilidade. Nesse
sentido, compreender tais dimensdes auxilia ndo apenas na contextualizagao tedrica
do modelo adotado, mas também na interpretacao dos resultados experimentais que
serao apresentados no capitulo 4. Ao considerar a execugao de modelos de
inteligéncia artificial em dispositivos de borda é fundamental compreender as
dimensdes que influenciam o desempenho desses sistemas e o equilibrio entre seus
beneficios e desafios. Conforme apresentado por Reddi (2025), a Figura 5 sintetiza
quatro eixos principais: caracteristicas, beneficios, desafios e exemplos de
aplicagéo.

Entre as caracteristicas, destacam-se o processamento descentralizado de
dados, o armazenamento e a computacao locais e a proximidade das fontes de
dados, que reduzem a dependéncia da nuvem. Dentre os beneficios, sobressaem-se
a reducao da laténcia, o aumento da privacidade dos dados e o menor uso de
largura de banda, fatores essenciais para aplicagbes criticas. Em contrapartida, os
desafios envolvem questdes de seguranga nos nos de borda, complexidade na
gestao distribuida e limitagdes de recursos computacionais.

Por fim, a figura ilustra exemplos representativos, como Internet das Coisas
Industrial, casas e cidades inteligentes e veiculos autbnomos, contextos em que a
computacdo de borda possibilita maior autonomia e processamento local em tempo

real.
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Figura 5 — Dimensdes do Aprendizado de Maquina na Borda
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Fonte: Adaptado de REDDI (2025).

2.6. TRABALHOS RELACIONADOS

A reducédo e compressido de dados visuais em ambientes de VANT e borda
computacional tem sido amplamente investigada devido as restricbes de
processamento e comunicagao desses cenarios. As propostas baseadas em AE se
destacam por oferecer compactagao aprendida e adaptativa, superando limitacbes
de métodos tradicionais. Diversos estudos recentes exploram arquiteturas e
abordagens variadas, cada qual contribuindo com diferentes perspectivas e
desafios.

Ramos et al. (2023) analisam AE convolucionais e modelos profundos para
compressdo de imagens em redes multi-VANT em cenarios de vigilancia/SAR,
enfatizando meétricas de qualidade visual e aspectos de laténcia no sistema
distribuido. O estudo evidencia ganhos no processamento distribuido com o uso de
AE, porém n&o avalia arquiteturas com penalizacdo explicita de redundancia nem
realiza otimizagcdes estruturais voltadas a restricobes de dispositivos de borda,
lacunas abordadas diretamente neste trabalho de pesquisa.

O trabalho ARCog-NET proposto por Ramos et al. (2024), por sua vez
apresenta uma arquitetura cognitiva avancada para enxames de VANT, integrando
processamento distribuido no paradigma borda—névoa—nuvem e avaliando cenarios
realistas, como inspecéo de turbinas edlicas e missdes de monitoramento/SAR. Os

autores demonstram redugdes relevantes de laténcia e ganhos na eficiéncia
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operacional do enxame a partir do particionamento adequado de funcdes entre os
diferentes niveis da arquitetura. Porém, apesar de sua relevancia para aplicagoes
embarcadas, o ARCog-NET n&o foca em compressao visual baseada em AE,
tampouco discute otimizagbes estruturais em gargalos latentes ou validagao
quantitativa da reconstrugao, como proposto nesta dissertacdo. Dessa forma, ele se
posiciona como um trabalho complementar, reforcando a importancia de artefatos de
compressao eficientes para o fluxo de dados dentro da arquitetura cognitiva.

Laakom et al. (2024), investigam AE penalizados por redundancia no gargalo
latente via termo de perda baseado em covariancias pareadas, demonstrando que a
reducdo de correlacdes resulta em representacdes mais compactas e informativas,
com ganhos em reconstrugcdo e classificagdo. Contudo, o estudo mantém foco
tedrico-experimental em datasets padrao (ex.: MNIST, CIFAR-10) e nao valida tais
modelos em cenarios operacionais com restricobes de VANT ou SAR, lacuna
diretamente abordada nesta dissertacao.

Marchenko et al. (2024) realizam uma analise abrangente de algoritmos de
compressao de imagens via redes neurais, comparando diferentes arquiteturas e
fungcdes de custo. Embora fornegcam visdo geral sobre desempenho em
reconstrugcdo, os autores nao investigam restricbes de hardware em ambientes de
borda nem avaliam laténcia operacional, aspectos centrais desta pesquisa.

Bao et al. (2023) propdem um AE segmentado para compressao de imagens
em redes de sensores sem fio (WSN), obtendo bons resultados de compactagao em
cenarios com restricoes de transmissdo. Entretanto, a énfase recai mais sobre
eficiéncia energética do que sobre inferéncia embarcada ou laténcia operacional,
aspectos centrais para aplicagdes com VANT como as deste estudo.

Oliveira et al. (2021) utilizam VAE de complexidade reduzida para
compressdao on-board de imagens de satélite, destacando sua viabilidade
computacional em hardware embarcado e superando padrdes como CCSDS
122.0-B. Embora o cenario seja analogo ao de VANT por restricdes semelhantes, os
autores ndo comparam arquiteturas AE penalizadas por redundancia nem
otimizagdes adicionais de AE convencionais, lacunas abordadas neste trabalho.

Yamazaki et al. (2022) investigam compressao neural de deep features
guiada por otimizagdo de taxa-distorgdo, contribuindo para o entendimento dos

trade-offs perceptuais em pipelines neurais. Essa abordagem complementa os



37

objetivos deste estudo ao reforgar a relevancia de métricas estruturais como SSIM e
MS-SSIM em avaliagbes de qualidade.

Zhu (2024) compara diversas arquiteturas de AE e demonstra que modelos
mais complexos tendem a alcancar maior fidelidade visual, reforcando discussdes
relevantes para a hipétese central desta pesquisa. Entretanto, o autor ndo examina a
adequacao dessas arquiteturas a hardware embarcado, ponto essencial desta
dissertacao

Bhagat et al. (2024) apresentam analises de AE para extragdo de features em
classificagdo de imagens, demonstrando ganhos em reconhecimento visual.
Contudo, o foco em tarefas de classificagdo em nuvem nao aborda a compactacao
para ambientes restritos de borda, como os desta pesquisa.

Barbuto et al. (2023) discutem os desafios de integrar IA embarcada a
computacao de borda, enfatizando laténcia, carga de rede e eficiéncia energética em
uma meta-revisdo sistematica. Embora n&o realizem experimentos com AE,
reforcam a necessidade de solugdes enxutas para restricbes reais, validando a
motivacéo deste estudo.

Qiu et al. (2020) e Sulieman et al. (2022) investigam arquiteturas de borda
para aplicagcdes sensiveis a tempo, destacando questbes de escalabilidade,
alocagdo de tarefas e impacto da laténcia, aspectos essenciais ao contexto
estudado nesta dissertacao.

Teng et al. (2025) ampliam a compreensao sobre compressao baseada em
deep learning para imagens de inspegcao por VANT, avaliando estratégias de
otimizacao e impacto em métricas perceptuais (PSNR, SSIM, MS-SSIM). Ainda
assim, o contexto de inferéncia embarcada em VANT e comparagdes estruturais
entre modelos complexos e otimizados ndo sao explorados, aspectos centrais deste
trabalho de pesquisa.

Pioli et al. (2024, 2025) fornecem revisdes sistematicas e frameworks
conceituais sobre reducgao inteligente de dados e inteligéncia de borda, identificando
limitagbes em validagdes experimentais de compressao neural em cenarios reais ou
préximos da operacao. Essa lacuna é diretamente tratada neste trabalho.

Em suma, embora cada estudo contribua para o avango da compressao
inteligente de dados visuais, nenhum deles integra, de forma simultédnea, trés
arquiteturas de AE, otimizagcdo estrutural, avaliagcdo quantitativa multifatorial,

metodologia DSR e execugao simulada na borda, como realizado nesta dissertagao.
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Essa convergéncia reforca a originalidade, relevancia pratica e rigor cientifico do
artefato proposto. A Tabela 1 apresenta uma sintese dos trabalhos relacionados
identificando com um X, caso o estudo esteja explicitamente vinculado aos assuntos

desta pesquisa, mostrando visualmente as semelhancas e diferengas para este

trabalho.
Tabela 1 — Sintese dos trabalhos relacionados
Autor/Ano DR Borda 1A DSR AE VANT/SAR | Ciéncia Aberta
Ramos et X X X X X X
al. (2023)
Ramos et X X X X
al. (2024)
Laakom et X X X X
al. (2024)
Marchenko X X X
et al. (2024)
Bao et al. X X X X
(2023)
Oliveira et X X X X X
al. (2021)
Yamazaki et X X X X
al. (2022)
Zhu (2024) X X X
Bhagat et X X X
al. (2024)
Barbuto et X X X X
al. (2023)
Qiu et al. X X X X
(2020)
Sulieman et
al. (2022)
Teng et al. X X X X
(2025)
Pioli et al. X X X
(2024,
2025)
Este estudo X X X X X X X

Fonte: elaborado pelo autor (2025).
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3. METODOLOGIA

3.1.  FUNDAMENTACAO E TIPO DE PESQUISA

A metodologia deste trabalho segue a abordagem DSR (HEVNER et al.,
2004; PEFFERS et al., 2007), cuja esséncia esta na construgdo e avaliagao de
artefatos tecnoldgicos que solucionam problemas relevantes de forma cientifica.
Conforme Pimentel et al. (2020), a DSR propde um ciclo iterativo de design,
avaliacao e reflexdo, articulando rigor metodolégico com relevancia pratica. Essa
abordagem orienta a criagao de artefatos que no caso desta pesquisa, modelos de
AE para compressdo de imagens que sao avaliados quanto a sua efetividade e
eficiéncia em contextos reais ou simulados de borda computacional.

O modelo de Pimentel et al. (2020) apresenta de forma clara os elementos
centrais e as inter-relagdes entre o rigor cientifico, a relevancia pratica e o ciclo de
projeto, que fundamentam o presente estudo. A Figura 6 ilustra esses elementos,
destacando como a DSR se estrutura em torno da construgcdo e avaliagado de

artefatos cientificos aplicados a problemas reais.
Figura 6 — Elementos centrais do modelo-DSR

um artefato & projetado para

resolver/mitigar um conjecturas
problema em um contexto direcionam a concepgio
do artefato
PROBLEMA EM | P CONJECTURAS
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F Y F Y

© uso do artefato possibilita avaliar
se o problema foi resolvido/mitigado
e se as conjecturas parecem vilidas

avalia

> AVALIAGAO
avalia EMPIRICA

Fonte: Adaptado de PIMENTEL et al. (2020).

Diante dos objetivos propostos, esta pesquisa esta estruturada em dois ciclos
de DSR, buscando garantir tanto rigor metodolégico quanto relevancia pratica. A
abordagem segue as orientagdes metodoldgicas: identificagdo do problema,
definicdo de objetivos, projeto e desenvolvimento, demonstracdo, avaliacédo e
comunicagao, proposta por Peffers et al. (2007) para a Design Science Research
Methodology (DSRM).
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O delineamento da pesquisa € classificado como experimental, com
abordagem quantitativa e comparativa, fundamentado na reproducdo de
experimentos e na analise de métricas de desempenho. Para a sustentacéo tedrica
e a contextualizagdo conceitual da relevancia do tema, foi realizada uma pesquisa
bibliografica seletiva e critica. Esta baseou-se em revisdes sistematicas sobre
inteligéncia de borda e DR em sistemas distribuidos (BARBUTO et al., 2023; PIOLI
et al., 2024), que destacam a necessidade de solugdes eficientes e inteligentes de
processamento em borda computacional. Além disso, referéncias especificas
recentes de estudos experimentais sobre compressao e arquiteturas de AE foram
utilizadas para embasar o desenho experimental, tais como: Ramos et al. (2023),
Laakom et al. (2024), Zhu (2024) e Teng et al. (2025).

O artefato proposto neste trabalho é inovador porque integra modelos de AE
para compressao de imagens, previamente validados em nuvem, a uma abordagem
de otimizagao capaz de operar em dispositivos de borda com severas restricbes de
processamento, memoria e energia. Por essa pesquisa, a literatura carece de
validagdes experimentais que considerem a laténcia e o desempenho de tais
modelos em ambientes reais de borda computacional, especialmente no contexto de
imagens oriundas de dispositivos loT. Essa integragdo, aliada a avaliagédo
comparativa e a documentagcdo de um pipeline replicavel, busca responder as

lacunas identificadas nas revisdes do tema.
3.2. DSRCICLO 1-AMBIENTE DE NUVEM

3.2.1. DEFINICOES

A etapa inicial do ciclo seguiu uma abordagem de estudo secundario
(KITCHENHAM et al., 2007), caracterizada pela analise, sintese e integragdo de
resultados de pesquisas ja publicadas, especialmente revisbes sistematicas,
mapeamentos e artigos experimentais recentes como BARBUTO et al. (2023),
RAMOS et al. (2023), PIOLI et al. (2024), LAAKOM et al. (2024), ZHU (2024) e
TENG et al. (2025). O objetivo central foi reunir o conhecimento consolidado sobre
compressao e DR visuais na borda, identificar tendéncias, lacunas e recomendacoes
praticas presentes na literatura, e fundamentar o desenho e avaliacdo dos artefatos
deste trabalho de pesquisa. A opgédo por um estudo secundario € justificada pela

maturidade do campo e pelo grande volume de pesquisas ja consolidadas,
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permitindo uma analise critica baseada em evidéncias direcionando esfor¢os para
aspectos experimentais.

Com base nos elementos centrais do modelo-DSR, proposto por Pimentel et
al. (2020), para este ciclo 1, foram identificados Problema de Contexto, a Conjectura
e os Artefatos, respectivamente.

e Quais sao as versdes dos modelos de AE convencional, variacional e
de penalizagdo por redundancia, com melhor resultado nas métricas,
PSNR, MS-SIM, SSIM e laténcia, de acordo com as imagens de
entrada do dataset SARD2 (GEGENAVA, 2025)7?

e O uso de um servidor virtual de nuvem do REPESQ com
disponibilidade de GPU, é suficiente para treinar os modelos e produzir
resultados satisfatorios.

e Modelos funcionais de AE: convencional, variacional e de penalizacéo

por redundancia.

3.2.2. LATENCIA, QUALIDADE DE RECONSTRUGCAO E METRICAS
DE AVALIACAO

Com base no levantamento da literatura anterior, foram definidas as métricas
a serem exploradas neste trabalho de pesquisa. No contexto de aplicagdes com
VANT, foco deste estudo, a eficiéncia de transmissdo de imagens sugere-se uma
avaliagao multifatorial.

A laténcia, segundo Tanenbaum et al. (2021), pode ser entendida como o
atraso total entre o envio de uma requisi¢cao e o recebimento de sua resposta, sendo
composta pelos tempos de processamento, transmissdo, propagagdo e
enfileiramento. Em contextos de inteligéncia de borda, ela corresponde ao tempo
decorrido entre a entrada e a saida de um modelo executado na borda (REDDI,
2025).

Para avaliar o desempenho das arquiteturas de compressao, utilizam-se
métricas objetivas como o PSNR, SSIM e o MS-SSIM, que mensuram,
respectivamente, a intensidade do ruido introduzido, a similaridade estrutural entre
imagem original e a reconstruida e a similaridade em multiplas escalas. Estas
fornecem uma avaliagdo mais robusta da qualidade da imagem (RAMOS et al.,
2023). Por sua vez, a taxa de compressao (TC), definida como a razédo entre o

tamanho do arquivo original e do arquivo comprimido e o tempo de processamento
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por imagem, também sdo parametros centrais em estudos comparativos
(SUBBURAJ & BHAVANA, 2024; ZHU, 2024). A combinagcdo dessas métricas
permite uma analise multifatorial da eficiéncia de cada modelo em contextos

praticos.

3.2.3. REQUISITOS FUNCIONAIS E NAO FUNCIONAIS
LEVANTADOS

De acordo com os estudos analisados, foram definidos os requisitos
funcionais e nao funcionais para o pipeline de compressdo a ser implementado,
considerando restricoes reais de processamento, energia e laténcia.

Fundamentado na andlise de revisbes e artigos recentes, o pipeline
desenvolvido neste trabalho de pesquisa foi orientado pelos seguintes requisitos,
que refletem desafios, tendéncias e demandas frequentemente apontados na
literatura para solugdes praticas em inteligéncia na borda. Foram levantados os
seguintes requisitos, sendo os funcionais (RF), o que o sistema deve fazer e os ndo
funcionais (RNF) como o sistema deve se comportar:

e (RF1) Receber e pré-processar imagens capturadas por dispositivos de
borda;

e (RF2) Comprimir e reconstruir imagens por meio de modelos de AE;

e (RF3) Mensurar as métricas de laténcia, PSNR, SSIM, MS-SSIM e taxa de
compressao;

e (RF4) Permitir adaptacdo dos modelos para ambientes com diferentes
restricdes de hardware;

e (RNF1) Executar em hardware com memodria e processamento restritos ou
simulados (ex: Raspberry Pi, placas ARM);

e (RNF2) Minimizar o consumo energético do pipeline;

e (RNF3) Documentagdo e replicabilidade do experimento, disponibilizando o
cbédigo em repositorio publico;

e (RNF4) Flexibilidade para ajuste de parametros conforme o contexto
experimental.

Tais requisitos asseguram que o artefato desenvolvido n&o soO seja
tecnicamente viavel, mas também relevante para cenarios praticos de borda

computacional, atendendo a desafios identificados na literatura.
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O requisito RNF3 foi identificado, porque alguns estudos encontrados nao
disponibilizam os modelos ou cdodigos fontes em repositérios publicos além disso vai
ao encontro do que preconiza a ciéncia aberta que sera detalhada a seguir.

A Ciéncia Aberta preconiza principios como transparéncia, colaboracéo,
inclusividade e acesso aberto em todas as etapas do processo cientifico. Isso inclui
o compartilhamento aberto de dados, métodos, cddigos e resultados, a adocéo de
revisdbes abertas por pares, o uso de repositorios digitais, a publicacdo em acesso
aberto e a promogao da participagdo ampla de diferentes atores na pesquisa
(BERTRAM et al.,, 2023; DEZHINA, 2023). A transparéncia é considerada um
principio central, orientando politicas e praticas para garantir maior acesso,
responsabilidade académica e reprodutibilidade dos resultados cientificos
(LEONELLI, 2023; ROMERO, 2025).

Além disso, ela busca superar desafios como vieses, falta de replicabilidade e
competitividade excessiva, promovendo uma cultura de colaboracao, diversidade,
justica e sustentabilidade na produgcdo do conhecimento (DEZHINA, 2023).
Organizagbdes internacionais tém papel fundamental no desenvolvimento de
politicas, infraestrutura e modelos de comunicacgao cientifica abertos, destacando a
importancia de dados abertos, revisdao aberta, métodos transparentes e inclusao

social (BERTRAM et al., 2023). Essas caracteristicas sao ilustradas na Figura 7.
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Figura 7 — Nucleo dos principios da Ciéncia Aberta
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Fonte: Adaptado de BERTRAM et al., 2023.

Com base nesses requisitos, foi desenhado o pipeline do ciclo 1 que
corresponde ao tratamento inicial dos dados e treinamento dos modelos e
otimizagdes que foram experimentados em um ambiente computacional de nuvem.
As Figuras 8 e 9 ilustram o fluxo arquitetural completo da solugao, detalhando as
responsabilidades de cada camada, desde a aquisicdo na borda até o deploy final

do modelo otimizado na borda computacional.



45

Figura 8 — Pipeline metodoldgico para avaliagdo comparativa das arquiteturas de AE

para o ciclo 1
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'

{Deﬁnigﬁu e freinamento dos modelos baae}

'
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Fonte: elaborado pelo autor (2025).

Figura 9 — Arquitetura da Solugdo de Compressdao AE em Ambientes Hibridos

Borda-Nuvem

Camada de nuvem . .. i.dos

DSR Ciclo 1 SARD2 Kaggle Servidor Repesq
Pré processamento
Treinamento AE

Otimizacdo AE

Dispositivo Internet

Andlise das métricas ¥
das Coisas

Dipositivos de borda 11111

1 L m—
* = ¢ 10 O
I Camada de borda @ﬂﬂn% 5 7“ ]

\@’ DSR Ciclo 2

Fonte: elaborado pelo autor (2025).
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As imagens utilizadas neste estudo foram obtidas do dataset SARD-2
(GEGENAVA, 2025), composto por registros aéreos de alta resolugao (1920x1080
pixels) capturados por VANT em cenarios simulados de busca e salvamento. O
conjunto disponibiliza imagens organizadas em treino, validagao e teste, totalizando
1.386 imagens na base de treinamento, 396 na validagdo e 196 no teste. A Figura
10, apresenta um exemplo tipico de imagem do dataset, ilustrando a natureza aérea

e o tipo de cena processado pelos modelos avaliados.

Figura 10 — Exemplo de imagem do dataset SARD-2 utilizado neste trabalho

Fonte: GEGENAVA (2025).

Apds a aquisicdo dos dados, foram copiadas do ambiente Kaggle?, foram
para o servidor virtual da REPESQ? da Universidade Federal de Juiz de Fora (UFJF).
Embora o préprio Kaggle, tenha um ambiente de desenvolvimento, assim como o
Google Colab, onde o experimento é possivel de ser realizado, a escolha do uso do
deste servidor, se deu por limitagdo de tempo de uso das Unidades de
Processamento Graficos (GPUs) do ambiente gratuito do Kaggle, que fornece 30
horas semanais. Os modelos de AE foram codificados e otimizados dentro do

REPESQ coletando as analises do ciclo 1 (nuvem) e, apos esse processamento, o

2 Disponivel em:
https://www.kaggle.com/datasets/nikolasgegenava/sard-2-search-and-rescue-dataset-extra-classes.
Acesso em: 20 jun. 2025.

3 Disponivel em: https://www.repesq.ufjf.br/ Acesso em 03 set. 2025
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modelo com melhor resultado foi transferido para o ambiente de borda, que
representa microcontroladores com software embarcado para as analises do ciclo 2

(borda). Os detalhes de cada processo, sao apresentados nos itens a seguir.

3.24. AMBIENTE COMPUTACIONAL DE NUVEM UTILIZADO

A implementagdo dos experimentos iniciais, contemplando o treinamento dos
modelos e avaliagdo dos resultados, foi realizada em ambiente virtual de nuvem,
dentro da REPESQ da UFJF, que possui maior capacidade computacional, em
relagdo aos ambientes computacionais de borda, sendo exigéncia para o
treinamento dos modelos. Essa escolha se deve também, pela indisponibilidade
inicial de infraestrutura de borda com recursos computacionais e de rede restritos,
como largura de banda limitada, laténcia variavel e processamento local reduzido,
caracteristicas tipicas desses ambientes (ZHANG et al., 2024). Assim, no ciclo 2
borda, a inferéncia sera direcionada para ambientes de borda, visando eficiéncia
computacional e redugdo de trafego de dados, conforme abordado na literatura
relacionada (YAMAZAKI et al., 2022; BAO et al., 2023; AZIZIAN e BAJIC, 2024).

Devido as limitagbes do ambiente de nuvem, como a impossibilidade de
controlar a largura de banda e a laténcia de rede de forma realista, a laténcia real de
transmissao ndo pode ser mensurada; por isso, utilizou-se o tempo de compressao e
reconstrugdo como proxy da laténcia. A Tabela 2 apresenta um resumo com as
configuragbes do ambiente para facilitar a reprodutibilidade, de acordo com o que
preconiza a Ciéncia Aberta, dos experimentos, as demais bibliotecas utilizadas
(Tensorflow, Keras, Numpy, etc) podem ser consultadas diretamente no notebook
disponivel no Github (COTTA, 2025).

Tabela 2 — Configuragdes do ambiente de nuvem usado para treinar os
modelos REPESQ

Sistema Processador Memoéria Armazenamento | GPU Linguagem/Ambiente
Operacional (CPU) RAM
22.04.5LTS 4 CPUs 32 Gb 100gb GPU: Python 3.10.12/
x86_64 fisicas e 4 1Xx Jupyter Colab
CPUs logicas NVIDIA
A30 24
GBs
VRAM

Fonte: elaborado pelo autor com base nas configuragdes do servidor (2025).
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3.2.5. AQUISICAO E PRE PROCESSAMENTO DOS DADOS

Para a etapa inicial de aquisicado e pré-processamento dos dados, a coleta
dos dados foi realizada a partir do dataset SARD 2 “Search and Rescue Dataset,
Extra Classes”, disponibilizado por Nikolas Gegenava (GEGENAVA, 2025), sob
licengca MIT, dentro do site Kaggle.

O dataset SARD-2 foi selecionado por atender de forma precisa aos
requisitos deste estudo, que demanda imagens reais capturadas por VANT em
cenarios de SAR, alinhando-se diretamente ao contexto de aplicagcbes em borda
computacional. O conjunto oferece imagens de alta resolugao (1920x1080 px),
diversidade de ambientes e variacbes de movimento humano, permitindo analisar a
compressdo em condicdes proximas as enfrentadas por VANT em operagdes
criticas. Além disso, sua distribuicdo sob licenga aberta (MIT) viabiliza a
reprodutibilidade dos experimentos e esta em conformidade com os principios de
Ciéncia Aberta, adotados ao longo desta dissertacdo. O balanceamento entre
qualidade, volume de dados e facilidade de pré-processamento torna o SARD-2
especialmente adequado para experimentos envolvendo treinamento em ambiente
de nuvem e posterior execugdo em dispositivos de borda com recursos
computacionais limitados.

Nao foram considerados outros datasets para este estudo porque a pesquisa
adotou critérios especificos de elegibilidade:

e alinhamento tematico com imagens capturadas por VANT em cenarios
de SAR

e disponibilidade publica e licenga aberta que permitisse
reprodutibilidade

e quantidade de imagens adequada ao treinamento em ambiente de
nuvem sem necessidade de particionamento adicional

e resolucao suficiente para avaliar técnicas de compressao

e facilidade de pré-processamento para adaptagcao aos requisitos de
borda computacional.

Datasets disponiveis na literatura focam em tarefas distintas, como detecg¢ao
de objetos, vigilancia urbana, segmentacdo semantica ou captura por cameras

terrestres, ndo atendendo as necessidades especificas deste estudo. Dessa forma,
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o SARD-2 se mostrou o conjunto mais aderente ao problema investigado e
suficientemente abrangente para os experimentos propostos.

Este conjunto de dados contém imagens de alta resolugdo capturadas por
VANT em ambientes reais, com encenagbes simuladas de emergéncias,
disponibilizadas em conjuntos de treino, validagdo e teste com multiplas classes de
movimento humano. O conjunto de dados coletados possui 1386 imagens na base
de treinamento, 196 de teste e 396 de validacgao.

Para garantir consisténcia e comparabilidade entre as diferentes arquiteturas,
foram selecionadas amostras balanceadas entre as classes e cada imagem foi
redimensionada e normalizada conforme os requisitos dos modelos.

O dataset SARD 2 é composto por imagens em alta resolugao (1920x1080
px), exigiu uma sequéncia de etapas de pré-processamento para adequagado ao
cenario de borda computacional com restricdes de hardware e memoria.

Primeiramente, as imagens foram redimensionadas (downscaling) para a
dimensdo de entrada de 128x128px (com 3 canais de cor), totalizando uma
dimensao de entrada de (128x128x3). Esta escolha é fundamental para simular as
severas restrigdes de sustentabilidade computacional, memdria e energia esperadas
em sistemas embarcados de VANT. Tal resolucdo é compativel com a faixa de
dimensdes adotadas em estudos de compressao aprendida e cenarios restritivos
(OLIVEIRA et al., 2021; LAAKOM et al., 2024; WANG et al., 2024) indicando reducéao
de custo computacional sem comprometer de forma critica a analise comparativa
entre modelos. Testes exploratérios confirmaram a escolha de 128x128 px, pois
resolugbes maiores, como 256x256px, agravaram o consumo de memoria no
treinamento em nuvem e nao proporcionaram ganhos de qualidade que
justificassem o aumento da resolug&o das imagens.

Em seguida, o ordenamento dos canais de cor foi ajustado. As imagens lidas
foram convertidas do padrao BGR (Azul, Verde, Vermelho), comum em bibliotecas
de visdo computacional, para o padrao RGB (Vermelho, Verde, Azul), que é o
formato esperado pela maioria dos frameworks de aprendizado profundo
(utilizando-se a fungdo COLOR_BGR2RGB).

Por fim, os dados foram submetidos a Normalizagdo (Min-Max). Este
procedimento realizou-se pela divisdo dos valores de pixel por 255. A normalizagao
garante que os dados de entrada se distribuam uniformemente no intervalo [0,1],

evitando a saturacdo das fung¢des de ativagado e o problema do vanishing gradient,



50

quando os gradientes das fungdes de ativagdo, como a sigmoide, tornam-se muito
pequenos a medida que sao propagados de volta pelas camadas, fazendo com que
as atualizagdes dos pesos nas camadas iniciais sejam quase nulas (WANG et al.
2022). Como resultado, a rede aprende muito lentamente ou até para de aprender,
dificultando o treinamento de redes profundas. Tal ajuste & crucial para garantir a

estabilidade e a velocidade de convergéncia do treinamento da rede neural.

3.2.6. DEFINICAO DOS MODELOS BASE

Trés arquiteturas distintas de AE foram escolhidas e avaliadas: convencional,
variacional e penalizada por redundancia. Cada uma delas foi implementada a partir
de principios consolidados na literatura e ajustada para a tarefa de compressao de
imagens VANT.

e AE Convencional: o modelo convencional é composto por um encoder
com camadas convolucionais e operagdes de max pooling,
responsaveis por reduzir progressivamente a dimensionalidade
espacial enquanto preservam padroes estruturais relevantes. O
decoder realiza o processo inverso por meio de upsampling e
convolugdes, reconstruindo a imagem a partir do mapa latente
comprimido. A otimizacdo € conduzida pela funcdo de perda Mean
Squared Error (MSE). A Figura 11 apresenta a arquitetura completa do

modelo convencional
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Figura 11 — Arquitetura do AE Convencional (Modelo Base)
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Fonte: elaborado pelo autor usando o software Netron* (2025).

° VAE: a Figura 12 apresenta a arquitetura do VAE Base, utilizado neste
trabalho. O encoder € composto por duas camadas convolucionais seguidas de

operagdes de max pooling, responsaveis por reduzir a dimensionalidade espacial da

4 Disponivel em: https://github.com/lutzroeder/netron Acesso em: 10 out. 2025
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imagem enquanto extraem caracteristicas relevantes. Em seguida, o mapa de
caracteristicas é achatado (flatten) e projetado em duas camadas densas que
estimam os parametros estatisticos do espaco latente: o vetor de médias u e o vetor
dos logaritmos das variancias log ¢?

Esses dois vetores sdo combinados por meio de uma camada Lambda
que implementa o reparameterization trick, permitindo a geracdo de um vetor latente
z de forma diferenciavel. Essa etapa é fundamental para que o VAE aprenda nao
apenas uma codificagcdo comprimida, mas também uma distribuigdo continua no
espaco latente, favorecendo generalizagédo e regularizagdo. O vetor z resultante é
entdo encaminhado ao decoder, que reconstroi a imagem a partir dessa
representacdo comprimida. A figura evidencia claramente a separagao conceitual
entre encoder, espacgo latente probabilistico e decoder, ressaltando o papel da

amostragem estocastica na formacgao do vetor latente utilizado na reconstrugéo.
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Figura 12 — Arquitetura do VAE (Modelo Base)
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Fonte: elaborado pelo autor usando o software Netron (2025).

e AE Penalizado por Redundancia: a Figura 13 apresenta a arquitetura
do AE Penalizado por Redundancia (Modelo Base) utilizado neste
estudo. O encoder &€ composto por duas camadas convolucionais
seguidas de operagbes de max pooling, responsaveis por reduzir
progressivamente a resolucdo espacial da imagem enquanto
preservam caracteristicas estruturais relevantes. Apos essa etapa, o
mapa de caracteristicas € achatado (flatten) e projetado em uma
camada densa com 256 unidades, sobre a qual é aplicada uma
regularizacao L1. Essa penalizagdo induz esparsidade no vetor latente,
estimulando o modelo a eliminar informacdes redundantes e a manter

apenas as caracteristicas mais relevantes para a reconstrucio.
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A etapa de decodificagao inicia com uma camada densa de expansao,
que reconstitui o volume latente para o formato espacial original do
encoder (32x32x16). Em seguida, sao aplicadas operagdes de
upsampling e convolugdes, restaurando gradualmente a dimensé&o
espacial até atingir o formato final da imagem reconstruida. A ultima
camada convolucional, com ativagao sigmoid, produz a saida no
dominio [0,1], adequada para representagdes normalizadas de
intensidade.

A figura evidencia, portanto, o fluxo completo de compressédo e
reconstrucdo, destacando o papel central da penalizacdo L1 em
promover representacbes latentes mais compactas e eficientes,
caracteristica especialmente relevante para cenarios de transmissao

de dados em ambientes de borda com banda limitada



Figura 13 — Arquitetura do AE Penalizado por Redundancia (Modelo Base)
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Fonte: elaborado pelo autor usando o soffware Netron (2025).
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ApOs a avaliagdo das arquiteturas base observou-se a necessidade de
aprimorar estabilidade, capacidade representacional e desempenho computacional.
Dessa forma, foram desenvolvidas versdes otimizadas das trés arquiteturas,

apresentadas na Secao 3.2.7.

3.2.7. ARQUITETURAS OTIMIZADAS

As Figuras 14, 15 e 16 apresentam, respectivamente, as versdes otimizadas dos
modelos Convencional, Variacional e Penalizado por Redundancia. As otimizacdes
incorporam ajustes estruturais como aumento de filtros, inclusdo de camadas Batch
Normalization, alteracdo da dimensao latente e substituicio de operagdes de
upsampling, de modo a melhorar estabilidade de treinamento e qualidade de

reconstrugdo. Mais detalhes das otimizagdes sao abordados na secgéo 4.1.1.



Figura 14 — Arquitetura do AE Convencional (Modelo Otimizado)
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Fonte: elaborado pelo autor usando o software Netron (2025).



Figura 15 — Arquitetura do VAE (Modelo Otimizado)
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Fonte: elaborado pelo autor (2025).
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Figura 16 — Arquitetura do do AE Penalizado por Redundéancia (Modelo Otimizado)
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Fonte: elaborado pelo autor usando o software Netron (2025).
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3.2.8. IMPLEMENTACAO E TREINAMENTO DOS MODELOS

Os experimentos foram implementados em linguagem de programacao
Python, utilizando o Jupyter Lab e frameworks como TensorFlow e Keras, simulando
cenarios compativeis com borda computacional e adaptando arquiteturas conforme
as restricdes identificadas.

Foram implementadas as arquiteturas de AE (convencional, VAE e com
penalizagdo de redundancia latente), treinamento até convergéncia e avaliagéo
experimental. Os hiperparametros iniciais estdo detalhados na Tabela 3. Os
resultados sdo analisados com base em métricas encontradas na literatura, taxa de
compressao, PSNR, SSIM, MS-SSIM e laténcia de processamento, e apresentados
em graficos e tabelas para comparagao quantitativa entre as arquiteturas no préximo
item. Para a reprodutibilidade completa do estudo, a implementacéo detalhada dos
modelos, incluindo a configuracdo de todos os hiperparametros comuns (ex: batch
size, otimizador e numero de épocas), esta disponivel no codigo fonte publico
(COTTA, 2025).
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Tabela 3 — Hiperparametros iniciais usado para treinar os modelos

Hiperparametro Convencional VAE Penalizagao por
redundancia
Formato da entrada 128x128x3 128x128x3 128x128x3

Arquitetura codificador

Conv2D 32 -> Pool
Maximo-> Conv2D 16
-> Pool
Maximo->Conv2D 16

Conv2D 32 -> Pool
Maximo-> Conv2D 16
-> Pool Maximo->
Achatar

Conv2D 32 -> Pool
Maximo-> Conv2D 16
-> Pool Maximo

Camadas extras

Aumento de
resolugao-> Conv2D

Achatar-> Densa (u.
logvar) -> Lambda

Achatar ->Densa 256
(L1 =10%)

resolugdo-> Conv2D
16 -> Aumento de
resolugao-> Conv2D
32

-> Aumento de
resolugao->Conv2D 32

16 -> Aumento de (amostragem)
resolugao
Espaco Latente Gargalo Espacial Densa 64 + Densa 256 com L1
(implicito) Amostragem
estocastica
Decodificador Aumento de Densa -> Remodelar Densa -> Remodelar

-> Aumento de
resolugao ->Conv2D
32

Funcao de ativacao

ReLU (intermediaria) +
Sigmaide (saida)

ReLU (intermediaria) +
Sigmaide (saida)

ReLU (intermediaria) +
Sigmodide (saida)

Regularizacao

L1 (10°) na camada

Momento Adaptativa
(Ir=10®)

Momento Adaptativa
(Ir=10%)

Densa
Dimensao Latente/ Implicito via 64 256
Penalizagao agrupamento
Otimizador Estimativa de Estimativa de Estimativa de

Momento Adaptativa
(Ir=10%)

Funcao de perda

Erro Quadratico Médio

Erro Quadratico Médio

Erro Quadratico Médio

Fonte: elaborado pelo autor (2025).

A Tabela 3 apresenta um resumo de hiperparametros adotados para cada
uma das arquiteturas iniciais de AE avaliadas neste trabalho. Para o encoder,
utilizaram-se duas camadas convolucionais seguidas de operagdes de MaxPooling,
enquanto no decoder a reconstrugdo ocorre através de camadas de Upsampling e
Conv2D, estratégia que favorece a extragao e recuperagao de caracteristicas visuais
essenciais. O espaco latente, que sintetiza a informagao comprimida, € modelado de
forma implicita no AE convencional (via pooling), explicitamente em uma camada

Dense com 64 neurdnios no VAE (acompanhada de amostragem estocastica) e com



62

256 neurdnios no modelo penalizado, o qual também incorpora regularizagdo L1
(10%°) para induzir esparsidade. As fungbes de ativagdo empregadas foram RelLU
nas camadas intermediarias e Sigmoid na camada de saida, adequadas para
imagens normalizadas. Para a otimizagao, foi utilizado o algoritmo Adaptive Moment
Estimation (Adam) com taxa de aprendizado de 10 e a fungdo de perda MSE (erro
quadratico meédio), que mede a diferenga global entre as imagens original e
reconstruida.

A escolha de hiperparametros como taxa de aprendizado, tamanho do lote,
numero de camadas e tamanho das entradas deve ser guiada por critérios
empiricos, considerando limitagcbes computacionais e o objetivo de evitar overfitting,
que € um problema comum em aprendizado de maquina em que um modelo se
ajusta de forma excessivamente precisa aos dados de treinamento, em vez de
aprender os padrbes e relacionamentos subjacentes aos dados, ele memoriza o
ruido e as flutuagbes irrelevantes, levando a um mau desempenho com novos
dados.

Parametros como batch sizes, variam comumente entre 32 e 256 e taxas de
aprendizado entre 0,01 e 0,0001. Além disso, ndo ha um conjunto universal de
hiperparametros ideais, e o ajuste fino é geralmente feito empiricamente para cada
tarefa (GOODFELLOW et al.,, 2016). Todos os modelos foram treinados até a
convergéncia da funcédo de perda, utilizando o otimizador Adam e early stopping
para evitar o oveffitting.

Os hiperparametros adotados, como taxa de aprendizado entre 102 e 107,
tamanhos de batch variando de 16 a 256, otimizador Adam, funcdo de ativacao
ReLU e dimensdes de entrada, seguem recomendagdes amplamente reconhecidas
na literatura contemporanea (LAAKOM et al., 2024; ZHU, 2024).

A escolha do Adam justifica-se mesmo em cenarios com grandes volumes de
dados, devido a sua eficiéncia de convergéncia em redes profundas e sua robustez
em ambientes ndo convexos, conforme demonstrado em aplicagdes de engenharia
preditiva e séries temporais complexas (Chen et al., 2025; Bouhanch, 2025).

Ja a fungdo de ativagdo RelLU permanece uma escolha padrdao em
autoencoders convolucionais, inclusive em modelos aplicados a ambientes
industriais e sistemas de diagndstico embarcados, por sua estabilidade numérica,

simplicidade e eficiéncia computacional (Chae et al., 2025).
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Essas escolhas foram ajustadas com base nas restrigdes computacionais
disponiveis e nos objetivos experimentais, promovendo uma boa relagdo entre

desempenho, tempo de treinamento e reprodutibilidade.

3.2.9. AMBIENTE COMPUTACIONAL DE BORDA SIMULADO

A tabela 4 abaixo, apresenta os parametros que foram utilizados para
simulagdo de um ambiente computacional de borda. Esses também podem ser
verificados no repositorio publico® deste trabalho de pesquisa. O desafio ndo é s6 o
modelo, mas a pilha de software de implantacao (deployment stack). A otimizagao

ONXX/OpenVINO foi crucial, conforme apresentado no capitulo de resultados.

Tabela 4 — Ambiente computacional de borda simulado com OPENVINQO®

Parametro Valor Simulado Descrigaol/Efeito

Dispositivo CPU (ou GPU / MYRIAD) Simula execuc¢do em hardware
de borda (ARM, CPU etc.)

Precisao numérica FP32, pois FP16 falhou Reduz meméria e laténcia com
leve perda de precisao

Resolugéo de entrada 128x128x%3 Compativel com restricdes de
VANT e sistemas embarcados

Laténcia simulada 1.2-2.5x da laténcia base Adiciona jitter para simular
carga variavel

Energia estimada lat_ms x 0.0025 mJ Proporcional a laténcia
(restricdo energética)

Aquecimento 5 execugdes Estabiliza caches antes da
medicao
Execugbes 30 rodadas Calcula média, p95 e minima
da laténcia
Normalizagao [0,1] (Min—Max) Evita saturacao e acelera
convergéncia
Log de resultados resultados_edge.csv Registra métricas PSNR,

SSIM, MS-SSIM e laténcia

Fonte: elaborado pelo autor (2025).

® Disponivel em https://github.com/samuelccotta/sar_autoencoders. Acesso em 18 out. 2025.
5 Disponivel em: https://github.com/openvinotoolkit/openvino Acesso em: 12 jan. 2025
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As analises quantitativas dos resultados serdo discutidos no capitulo 4 a luz
das lacunas apontadas pela literatura, subsidiando a definicdo de oportunidades

para o ciclo seguinte.

3.3. DSRCICLO 2 - AMBIENTE DE BORDA

Com base nas limitacbes e oportunidades do ciclo anterior, foram ajustados
os requisitos para refletir as restricobes mais severas de dispositivos de borda,
incluindo consumo energético, memodria e capacidade de processamento.

Os modelos foram otimizados para execucgao local em ambientes de borda
usando OpenVINO e o formato ONNX, empregando técnicas como compressao de
modelos, quantizagdo e arquiteturas mais leves, com o objetivo de minimizar a
laténcia e viabilizar o processamento embarcado. Essas otimizagdes tornam-se
necessarias porque dispositivos de borda possuem restricbes severas de memoria,
processamento e energia, o que limita a execugao eficiente de modelos tradicionais
de AE (KONG et al., 2022; HAMDAN et al., 2020). A conversdo para ONNX, aliada
ao uso de quantizagao, podas e arquiteturas compactas, reduz significativamente o
tamanho do modelo e o custo computacional, diminuindo o tempo de inferéncia e
permitindo processamento em tempo quase real sem dependéncia da nuvem
(LAAKOM et al., 2024; ZHU, 2024; REDDI et al., 2025). Além disso, em cenarios
criticos como VANT/SAR, onde ha instabilidade de comunicacao e decisdes rapidas
sdo essenciais, a execugao local contribui para maior resiliéncia, autonomia
operacional e confiabilidade do sistema.

Desta forma, uma nova rodada experimental foi conduzida, buscando aferir,
sempre que possivel, a laténcia eficiéncia dos modelos embarcados, além das
métricas convencionais.

Os resultados do ciclo otimizado foram comparados com os do ciclo inicial e
confrontados com recomendagdes da literatura, buscando evidenciar ganhos,
limitacdes e implicacdes praticas para aplicacdes reais.

Todo o pipeline experimental, configuragdes de modelos e codigo-fonte foram
devidamente documentados e publicados em repositério publico’, conforme pratica
recomendada em DSR e Ciéncia Aberta, para fomentar a replicagcao e extensio por
outros pesquisadores (COTTA, 2025).

7 Disponivel em https://github.com/samuelccotta/sar_autoencoders. Acesso em 18 out. 2025.
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Os experimentos realizados, confirmaram a conjectura e permitiram avaliar os

artefatos, que para este estudo sdo os modelos de AE, na tarefa de compressao e

reconstrugdo de imagens provenientes de VANT em cenarios de SAR. Os resultados

quantitativos das meétricas analisadas, sao apresentados na Tabela 5, sendo

ilustrados comparativamente na Figura 11. Esses indicadores foram escolhidos néo

s6 pelo valor técnico, mas pela relevancia direta para missées reais de SAR, em que

cada milissegundo de laténcia e cada ganho de fidelidade visual podem significar

uma resposta mais rapida e eficaz em campo. Os resultados dos modelos iniciais

(Base), indicaram necessidade de melhorias e otimizagbes até se chegar ao modelo

final que, os resultados serdao apresentados a seguir.

Tabela 5 — Resultados Comparativos para as arquiteturas avaliadas

Modelo PSNR | SSIM | MS-SSIM | Tempo | Resumo de parametros de Otimizagao
(s)

Convencional Base 17.66 | 0.54 0.86 0.25 -

VAE Base 15.01 0.13 0.44 0.26 ---

Redundéncia Base 12.28 | 0.06 0.21 0.27 ---

Convencional 20.71 0.80 0.93 0.26 filter_max: 64

Otimizado FINAL Batch Normalization

kernel_regularizer = 12(10*)
Conv2DTranspose
Arquitetura assimétrica

VAE Otimizado 13.40 | 0.07 0.26 0.28 beta=0.01, L=128

FINAL

Redundancia 14.21 0.09 0.33 0.28 I1_reg=10%, L=512

Otimizado FINAL

Fonte: elaborado pelo autor (2025).
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A diferenca de tempo observada no VAE pode ser explicada pela propria
estrutura probabilistica desse modelo. Diferentemente do AE convencional, o VAE
precisa estimar os vetores de média (u) e desvio padréao (o) e realizar a etapa de
latent sampling por meio do reparameterization trick, conforme apresentado por
CHEN et al. (2020), YU et al. (2021) e OLIVEIRA et al. (2021). Essa operagao
envolve calculos adicionais e a criagao de tensores intermediarios, elevando o custo
computacional do encoder. Além disso, o VAE possui duas projecdes latentes (u e
o), aumentando o numero de operagbes em comparagao ao AE convencional, como
também destacado por BERAHMAND et al. (2024). Dessa forma, a maior laténcia
observada para o VAE é coerente com as diferencas estruturais da arquitetura.

As otimizagbes dos modelos se concentraram em trés pilares:
capacidade/estabilidade, regularizagdo estrutural e ajuste do espago latente. O
parametro filter max. 64 dobrou a capacidade do encoder para extrair
caracteristicas da imagem. A introdugdo de BatchNormalization (normalizagdo em
lotes) e kernel regularizer=12(10*) aumentou a estabilidade do treinamento e
preveniu o overfitting. No decoder, o uso de Conv2DTranspose em uma arquitetura
assimétrica (encoder e decoder com profundidades diferentes), permitiu a
reconstrugdo de imagens com maior fidelidade.

Nos modelos especificos, o ajuste de beta=0,01 no VAE priorizou a qualidade
de reconstrugao sobre a suavidade do espaco latente, enquanto a combinagao de
um baixo fator de penalidade |1_reg=10"° com uma grande Dimensdo Latente
(L=512) no modelo de Redundéncia foi necessaria para tentar manter alguma
qualidade de imagem, mitigando a perda de informacgao imposta pela penalidade de
redundancia.

No treinamento o aumento do numero de épocas para 800 foi o mais
assertivo para os modelos, foram utilizados os callbacks Learning Rate Scheduler e
EarlyStopping para ajustar dinamicamente a taxa de aprendizado e interromper o
treinamento quando nao houvesse mais melhoria na validagdo, prevenindo
overfitting e otimizando o tempo computacional.

Esses hiperparametros foram ajustados com base em suas fungdes
especificas em cada arquitetura: no VAE, o parametro beta controla o equilibrio entre
a fidelidade da reconstrucado e a regularizagdo do espaco latente (quanto maior o
beta, mais suave e generalizado o espago, porém com perda de detalhes visuais).

Ja a dimenséao latente (L) define a capacidade de representacdo do bottleneck,
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valores maiores tendem a capturar mais variabilidade, mas aumentam o custo
computacional.

Por fim, no modelo com penalizacdo de redundancia, o coeficiente “I1_reg”
atua como fator de esparsidade, induzindo o modelo a eliminar redundancias no
vetor latente. Esses ajustes visam encontrar o ponto de equilibrio entre qualidade
perceptiva e eficiéncia de compressao, conforme observa-se nas Tabelas 5 e 7. A

tabela 6, demonstra os valores de perda de cada modelo.

Tabela 6 — Loss final de cada modelo

Modelo Loss final (treino)
Convencional Base = 0,019
Convencional Otimizado = 0,009
VAE Base = 0,028
VAE Otimizado = 500
Redundancia Base = 0,059
Redundancia Otimizado = 0,037

Fonte: elaborado pelo autor (2025).

Os valores de SSIM dos modelos base, em especial o SSIM = 0,06 da
arquitetura com penalizacdo de redundancia, sdo compativeis com reconstrucoes
quase aleatérias e indicam que esses modelos ndo aprenderam uma representacao
latente util para o dataset, caracterizando falha de treinamento e/ou configuragcao
excessivamente compressiva do gargalo. Isso torna essencial documentar
explicitamente a verificagdo de convergéncia: a loss dos modelos base estaciona em
patamares relativamente altos (por volta de 0,028 no Convencional, =0,032 no
Variacional e =0,038 no Redundancia), enquanto o Convencional Otimizado alcanca
loss em torno de 0,009, o que explica o salto de SSIM para a faixa de 0,8 e confirma
que a iteragéo do ciclo DSR corrigiu o problema. As curvas de treinamento mostram
que nos modelos base a perda desce rapido e depois se estabiliza com diferenca
pequena entre treino e validagao, sugerindo um regime de underfitting (capacidade
insuficiente ou gargalo muito restrito) mais do que overfitting classico, ao passo que
nos modelos otimizados as curvas continuam decrescendo até um platé mais baixo,

com boa sobreposi¢cao entre loss de treino e validagdo, o que sustenta o argumento
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de que houve convergéncia adequada apenas apds as otimizagdes estruturais e de
regularizacéo aplicadas no ciclo 1. Os plots de cada histérico de treinamento estao

disponiveis no repositério publico deste estudo (COTTA, 2025).

Figura 17 — Comparacao grafica das métricas entre os modelos base e

otimizados

Modelos
mmm Cconvencional (Base) mmm Redundéncia (Base) Variacional Otimizado (FINAL)
B Variacional (Base) @ Convencional Otimizado (FINAL) mmm Redundancia Otimizado (FINAL)
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Fonte: elaborado pelo autor (2025).

No experimento apresentado na Figura 17, cada modelo foi executado uma
unica vez por imagem do conjunto de teste, totalizando N execugbes, onde N
corresponde ao numero de amostras da base de teste. Como a laténcia € medida
individualmente por imagem, o valor reportado na figura representa a média
agregada sobre todas essas execugdes, o que fornece uma estimativa estavel do
comportamento do modelo em condi¢gées normais de avaliagao.

A robustez dessa média decorre do fato de que a avaliacéo é realizada sobre
um conjunto extenso de amostras, o que reduz a influéncia de variagbes pontuais.
Além disso, os experimentos foram conduzidos em um ambiente controlado (mesmo
hardware, mesma carga de GPU/CPU, auséncia de outros processos interferindo),
minimizando a variabilidade externa.

Optou-se por nao apresentar o desvio padrao porque, neste contexto
especifico, a laténcia de inferéncia dos modelos convolucionais é quase

deterministica, com baixa variabilidade entre execug¢des quando comparada a

0.2866
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variabilidade entre arquiteturas. Estudos anteriores sobre compressdo neural e
avaliagdo em borda mostram comportamento similar, com variagdo minima entre
execucgdes sucessivas em hardware dedicado (KONG et al., 2022; LAAKOM et al.,
2024).

Observa-se que, para o modelo Convencional Otimizado FINAL, o MS-SSIM
(0,93) supera o SSIM (0,80), invertendo a relagdo usual MS-SSIM < SSIM. Essa
inversdao, embora contraintuitiva, € coerente com imagens SAR ruidosas e
downscaling agressivo: o MS-SSIM, que pondera multiplas escalas de analise,
captura melhor a preservacao de texturas speckle em escalas finas, enquanto o
SSIM (escala unica) penaliza perdas de bordas globais. No Ciclo 2 (borda), a
relacdo se normaliza ligeiramente (SSIM=0,82; MS-SSIM=0,96), confirmando que a
otimizagdo OpenVINO preserva estruturas multi-escala mesmo sob restrigbes
computacionais.

A avaliacdo comparativa dos modelos de AE revelou diferencgas significativas
entre as arquiteturas-base e suas versodes otimizadas, especialmente em termos de
qualidade de reconstrucao e eficiéncia de processamento. Vale destacar, que antes
de se chegar aos resultados, foram testados os seguintes parametros que foram
descartados dos modelos VAE e Redundéncia, conforme exposto na Tabela 7. Além
disso, testes com a fungdo de perda combinada (MSE + SSIM) e o uso de (Keras
Tuner/Optuna) foram explorados na busca de melhores hiperparametros, mas nao
foi considerado na analise final, devido a dificuldades de salvamento e carregamento
dos modelos VAE para esse contexto e dataset. Todos os resultados estdo no

repositorio do experimento dentro da pasta results.
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Tabela 7 — Resultado dos parametros testados nos modelos VAE e de

Redundéancia descartados.

Modelo PSNR SSIM MS-SSIM Tempo (s) Resumo parametros
de Otimizacgao

VAE 14.8372 0.1244 0.4182 0.2738 beta=0.1,L=128
Otimizado

VAE 13.3675 0.0746 0.2604 0.2797 beta=0.01,L=256
Otimizado

Redundancia 14.3642 0.1052 0.3515 0.2743 11_reg=107L=512
Otimizado

Redundancia 12.2730 0.0605 0.2110 0.2764 I1_reg=107",L=512
Otimizado

Redundéancia 14.2196 0.0983 0.3329 0.2868 11_reg=107,L=1024
Otimizado

Fonte: elaborado pelo autor (2025).

As métricas de tempo foram obtidas a partir da média de 50 execucgdes
consecutivas, apos estabilizacdo das rotinas TensorFlow. Assim, eventuais variacdes
transitorias (jitter) foram amortecidas, garantindo consisténcia estatistica entre os

valores comparados.

4.1.2. ANALISE EM QUALIDADE DE RECONSTRUGAO

O desempenho em qualidade de imagem € dominado pela arquitetura
Convencional Otimizada FINAL. O modelo alcangou os melhores resultados em
todas as métricas de qualidade: PSNR: 20,7116 dB (significativamente superior aos
demais), SSIM: 0,8010. MS-SSIM: 0,9359.

O valor de PSNR = 20,71 dB, obtido para o modelo Convencional Otimizado
Final, esta dentro da faixa esperada para reconstrugcdo de imagens SAR do conjunto
SARD-2, caracterizadas por alto ruido de speckle e contraste ndo linear. Estudos
recentes em compressao e reconstrugdo de imagens SAR com AE relatam valores
de PSNR tipicamente na faixa de 22 dB a 24 dB para arquiteturas otimizadas, como
demonstrado por Cardona-Mesa et al. (2025), que analisaram cerca de 240

arquiteturas de autoencoders e identificaram desempenhos representativos nessa
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faixa para reconstrucdo e redugao de speckle em imagens SAR.

Para imagens de satélite opticas, Sri et al. (2025) reportaram desempenho
médio superior em PSNR, em torno de 25 dB, com SSIM moderado, refletindo a
menor presenga de ruido e a maior linearidade de contraste nesses dados em
comparagdo com SAR. Portanto, embora o PSNR obtido para SAR seja
numericamente inferior ao de imagens O6pticas, ele representa uma reconstrugéo
estruturalmente satisfatéria, especialmente quando corroborado pelos indices
elevados de SSIM (0,8010) e MS-SSIM (0,9359), que indicam preservagao
perceptual significativa mesmo sob restricdes de tempo real e processamento
embarcado.

Em contraste, os modelos VAE e Redundancia (tanto nas versdes base
quanto nas otimizadas) apresentaram uma qualidade de reconstru¢ao notavelmente
inferior. O modelo Redundéancia (Base) obteve o desempenho inferior, com PSNR de
apenas 12,2808 dB, indicando que, embora a penalizacdo da redundancia no
manifold latente reduza correlagdes, ela comprometeu severamente a fidelidade da
reconstrugdo neste cenario. A otimizagao implementada na arquitetura Convencional
(aumentando o PSNR de 17,6680 dB para 20,7116 dB) foi a que apresentou o ganho
de qualidade mais expressivo entre os modelos avaliados.

Ainda assim, para aplicagdes embarcadas em VANTs, valores de PSNR
abaixo de aproximadamente 25 dB tendem a indicar perda perceptivel de qualidade,
de modo que o desempenho atual deve ser considerado preliminar para esse
contexto. A qualidade obtida é aceitavel para inspecdo humana exploratéria,
especialmente quando combinada com indices estruturais como SSIM e MS-SSIM,
mas ha margem clara para evolugdo em estudos complementares, por exemplo,
mitigando efeitos do downscaling e refinando a arquitetura e os hiperparametros.

Trabalhos conduzidos em condi¢des distintas de dataset, resolugcao e taxa de
bits reportam PSNR absolutos mais elevados, por exemplo, =40 dB em cenarios
especificos (RAMOS et al. 2023). No presente estudo, o objetivo ndo € maximizar
PSNR absoluto, mas avaliar o equilibrio entre qualidade e custo computacional sob
restricbes tipicas de borda (resolugdo 128x128, forte compressao, inferéncia com
foco em laténcia). Assim, a contribui¢cao reside no ganho relativo entre arquiteturas
dentro do mesmo protocolo experimental e na manutencao de laténcia competitiva,
fatores criticos em VANT/SAR. A diferenga observada ultrapassa o ganho estatistico:

representa, na pratica, uma reconstrucdo muito mais nitida e util para a detecgao de
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alvos em imagens aéreas, o que reforga o potencial operacional do modelo proposto
em contextos de vigilancia e resgate.

As diferencas entre os modelos, evidenciadas pelas métricas PSNR, SSIM e
MS-SSIM, mostraram-se consistentes em multiplas execucgdes. Para o escopo deste
estudo, testes estatisticos adicionais ndo foram necessarios, uma vez que as

variagoes entre as arquiteturas foram observaveis e expressivas.

4.1.3. ANALISE DE DESEMPENHO EM EFICIENCIA
COMPUTACIONAL (TEMPO DE PROCESSAMENTO)

A laténcia média observada para o processo de compressao e reconstrugao
apresentou pouca variacdo entre todas as arquiteturas avaliadas. Os tempos de
processamento permaneceram em uma faixa estreita, entre 0,2507 s (Convencional
Base) e 0,2868 s (Redundancia Otimizado Final), indicando estabilidade temporal
mesmo diante de diferentes estruturas e funcdes de perda. Embora as arquiteturas
possuam graus distintos de complexidade, incluindo variagbes com redundéancia e
abordagens variacionais, ndo foram verificadas diferengas significativas de laténcia
que justificassem a priorizacdo de um modelo em detrimento de outro quanto ao
desempenho temporal. O modelo de melhor qualidade, Convencional Otimizado,
manteve tempo médio de 0,2654 s, valor semelhante ao do modelo mais rapido,
demonstrando que o ganho de fidelidade nao implicou aumento expressivo no custo

computacional.

Cabe destacar que esses tempos referem-se a média de multiplas execugdes
consecutivas realizadas em ambiente local de validacéao, refletindo o tempo total de
compressdo e reconstrugdo por imagem. No item 4.2, avalia-se a execugédo do
modelo em ambiente de borda simulado, utilizando o OpenVINO Runtime (Tabela 4),
de modo a mensurar a laténcia de inferéncia otimizada e a qualidade da

reconstrucdo sob condi¢cbes operacionais tipicas de VANT.

4.1.4. ANALISE DA TAXA DE COMPRESSAO

Além da avaliacdo de qualidade de reconstrucdo e do desempenho
computacional, € necessario analisar a eficiéncia de compressao obtida por cada

modelo, uma vez que a redugao do tamanho dos dados € um dos objetivos centrais
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deste trabalho. Assim, esta subsec¢do apresenta a Taxa de Compresséao (TC) obtida

por cada arquitetura, calculada conforme a equagao abaixo.

TC = TAMANHO DA IMAGEM / TAMANHO DA REPRESENTACAO LATENTE

A Tabela 8 apresenta os valores de TC obtidos para cada modelo,

considerando o tamanho do vetor latente e sua relagdo com o tamanho original da
imagem (128 x 128 x 3).

Tabela 8 — Taxa de compressao obtida pelas arquiteturas no Ciclo 1

Modelo Dimensao da Imagem Dimensao do latente | Taxa de Compressao
Convencional 128 x 128 x 3 = 49152 32x32x16 =16384 3:1
Base
Convencional 128 x 128 x 3 = 49152 32 x 32 x32=232768 1,51
Otimizado
VAE Base 128 x 128 x 3 = 49152 64 768:1
VAE Otimizado 128 x 128 x 3 = 49152 128 384:1
Redundéancia 128 x 128 x 3 = 49152 256 192:1
Base
Redundéncia 128 x 128 x 3 = 49152 512 96:1
Otimizado

Fonte: elaborado pelo autor (2025).

Observa-se que os modelos VAE apresentam as maiores taxas de
compresséo, reduzindo de forma extremamente agressiva o volume de dados (768:1
no modelo inicial e 384:1 no modelo otimizado). Essa caracteristica esta diretamente
associada ao reduzido tamanho do vetor latente, o que implica perda significativa de
informagdes estruturais, refletida nos menores valores de SSIM e MS-SSIM
apresentados na Sec¢ao 4.1.2.

Os modelos com penalizagdo de redundancia apresentam compressdes
intermediarias (192:1 e 96:1), proporcionando um equilibrio entre reducao de dados
e preservagao estrutural. Ja os AE puramente convolucionais, Convencional inicial e
Convencional otimizado, apresentam taxas substancialmente menores (3:1 e 1,5:1),
pois mantém grandes mapas de ativacdo no espacgo latente. Apesar disso, essas
arquiteturas tendem a produzir melhores reconstrugdes visuais, dado o0 menor grau

de compactacgao.
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De modo geral, os resultados confirmam o trade-off entre compresséo e
qualidade de reconstrugdo, evidenciando que taxas de compressao mais altas
tendem a degradar a estrutura da imagem, enquanto compressfées mais
conservadoras preservam maior fidelidade visual. Essa analise complementa as
discussbes anteriores e contribui para a justificativa da escolha do modelo

Convencional Otimizado como artefato preferencial ao final do Ciclo 1.
4.2. CICLO 2- AMBIENTE DE BORDA
421. AVALIACOES

Este tem como objetivo avaliar o modelo de AE com melhores valores do ciclo
anterior em um ambiente de borda simulado.

A simulagdo de execugdo em ambiente de borda foi realizada por meio do
OpenVINO Runtime 2025.38, utilizando o modelo exportado, que foi convertido para
o formato ONXX, que é um padrio aberto para modelos de aprendizado de maquina
e que permite a interoperabilidade entre diferentes estruturas e ferramentas Foi
simulada também a configuragcdo de dispositivo CPU com restricdo simulada de
laténcia (jitter).

O processo de conversao automatica para precisdo FP16 (que sao formatos
em bits, de ponto flutuante que indicam a quantidade de bits usados para
representar um numero), foi tentado via conversor OPENVINO e Python, com
fallback para execugdo FP32, o que assegura compatibilidade com diferentes
versdes da biblioteca.

Embora modelos para dispositivos de borda tipicamente utilizem
representagcbes reduzidas como FP16 ou INT8, dado que essas quantizagbes
diminuem o uso de memoria, energia e laténcia, houve a tentativa de aplicar essa
otimizagdo no presente trabalho, utilizando ferramentas como OpenVINO e ONXX.
Contudo, devido a limitagdes especificas das bibliotecas com a arquitetura adotada
(camadas convolucionais combinadas com Batch Normalization e regularizagéo), a
conversao nao pdde ser concluida com sucesso sem comprometer a integridade do

modelo.

8 Disponivel em: https://github.com/openvinotoolkit/openvino Acesso em: 12 jan. 2025
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Apesar disso, os resultados obtidos em FP32 demonstraram desempenho
satisfatério para os objetivos do estudo, com laténcias compativeis com operagao
em tempo quase real no ambiente testado. Assim, mesmo n&o sendo possivel
aplicar a quantizagcdo integral, o desempenho final permaneceu dentro das
expectativas para o cenario investigado, sem prejuizo a validade dos resultados
obtidos, e reforcando a viabilidade das arquiteturas avaliadas para compressao de
imagens em ambientes de borda.

Conforme descrito na Tabela 4, o ambiente computacional de borda foi
configurado no OpenVINO Runtime com 30 execug¢des consecutivas de inferéncia,
das quais 5 foram destinadas ao aquecimento (warm-up) para estabilizagdo de
caches e alocagao de memodria. As 25 execugdes validas restantes foram realizadas
sob carga variavel simulada (jitter de 1,2-2,5% da laténcia base), permitindo calcular
métricas estatisticamente consistentes de desempenho. Assim, foram obtidos o
tempo médio de inferéncia (= 21 ms), a laténcia p95 (= 29 ms) e a laténcia minima (=
13 ms), valores que se mostram condizentes com operagao quase em tempo real
em ambientes embarcados. As métricas de fidelidade (PSNR = 29 dB, SSIM = 0,82,
MS-SSIM = 0,96) demonstram considerada preservagao estrutural e perceptual,
confirmando a viabilidade do AE para compressao de imagens de VANT em borda,
com resultados superiores aos obtidos no primeiro ciclo experimental.

Os resultados obtidos neste estudo, apresentam desempenho condizente
com aplicacbes de compressdao e processamento quase em tempo real em
ambientes embarcados de VANT. A laténcia observada € compativel com os valores
relatados em arquiteturas otimizadas para inferéncia em borda, como o
EfficientDet-EdgeUAV proposto por Su et al. (2025), que alcanga tempos de
execugdo da ordem de 20-25 ms, assegurando operagdo em tempo real em
cenarios de busca e resgate. Quanto a fidelidade da reconstrugcdo, as métricas
observadas se situam ligeiramente abaixo das obtidas em métodos recentes de
compressao SAR de alta qualidade, como os de Lukin et al. (2025), que reportaram
a relacdo sinal-ruido de pico entre 33 e 36 dB e MS-SSIM superiores a 0.98 em
compressao visualmente sem perdas, e Kim et al. (2025), que obtiveram PSNR
entre 31 e 35 dB e SSIM de 0.90 a 0.94 em compressao baseada em similaridade
estrutural de nuvens de pontos. Apesar dessa diferenga, o equilibrio alcangado entre
qualidade e eficiéncia computacional demonstra que o modelo proposto é adequado

para aplicagbes em SAR-VANT com restricdes de energia e processamento,
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conforme também discutido por Zhang et al. (2025) e Cheng et al. (2025), que
destacam a relevancia da otimizagao conjunta de laténcia e consumo energético em
sistemas de computacdo de boda moveis, reforcando a importancia de arquiteturas
de borda com laténcia inferior a 30 ms para aplicagdes em tempo quase real. Assim,
os valores obtidos neste trabalho podem ser considerados tecnicamente satisfatérios
e coerentes com o estado da arte para compressao de imagens SAR em sistemas
VANT com capacidade de operagao quase em tempo real.

A Figura 18 apresenta o tempo médio de inferéncia obtido durante a
simulacdo de execugdo do modelo de AE em ambiente simulado de borda,
considerando 30 execugdes sucessivas. A barra azul representa a laténcia média (=
21,2 ms), enquanto a barra de erro indica a diferencga até o percentil 95 (= 29,4 ms),
refletindo a variacdo temporal (jitter) tipica de dispositivos com recursos
computacionais limitados. Os resultados demonstram que o modelo mantém
desempenho adequado para operagdes quase em tempo real, uma vez que o tempo
médio por inferéncia permanece abaixo de 30 ms, correspondendo a
aproximadamente 47 frames por segundo equivalentes. A baixa laténcia observada
confirma que o modelo é viavel para aplicagbes de compressdo de imagem em

VANT com processamento local na borda, sem comprometer o tempo de resposta.
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Figura 18 — Laténcia média e percentil 95 (p95) do modelo avaliado em

ambiente de borda.
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Fonte: elaborado pelo autor (2025).

A Figura 19, apresenta as métricas PSNR, SSIM e MS-SSIM calculadas a
partir da comparagao entre imagens originais e reconstruidas. O valor de PSNR =
29,16 dB indica uma reconstrugao com baixo nivel de ruido e boa preservagao de
intensidade.

O SSIM = 0,82 demonstra que a estrutura das imagens foi amplamente
mantida apés a compressao, enquanto o MS-SSIM = 0,96 evidencia alta fidelidade
perceptual em multiplas escalas de analise. Esses valores confirmam a eficiéncia da
compressdo realizada pelo AE, mantendo equilibrio entre taxa de reducgédo e
qualidade visual, requisito essencial para missbes SAR em tempo quase real. A
reconstrugcdo apresenta qualidade comparavel a técnicas classicas de compressao
(como JPEG2000), com vantagem de ser adaptavel e executavel em hardware de

borda.
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Figura 19 — Métricas de qualidade de reconstrugdo do modelo de AE
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Fonte: elaborado pelo autor (2025).

Dando continuidade a analise de desempenho temporal, a Figura 20 mostra a
laténcia minima, média e p95, detalhando a dispersao das laténcias de inferéncia
entre execucodes repetidas. Ao invés de apresentar apenas valores médios, esse tipo
de grafico evidencia o quanto a laténcia oscila ao longo do tempo, caracteristica
critica em cenarios de borda, onde processamento e disponibilidade de hardware
podem variar significativamente. A distribuicdo dos pontos demonstra que o modelo
opera de forma estavel na maior parte das amostras, mas com picos eventuais que
representam flutuagdes de execugdo inerentes ao ambiente de borda. Essa
visualizagcdo permite compreender ndo apenas o quao rapido o modelo processa as
imagens, mas o quao consistente ele se mantém sob repetidas execugdes.

Observa-se que a diferenga entre o tempo minimo (= 13,4 ms) e o percentil 95
(= 29,4 ms) é inferior a 2,2x%, indicando estabilidade temporal consistente mesmo sob
simulagao de jitter (variagao de carga de CPU). Esse comportamento é desejavel em
sistemas embarcados, pois reduz a probabilidade de atraso perceptivel na

reconstrugdo e transmissdo das imagens. A consisténcia entre as medidas mostra
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que o pipeline implementado no OpenVINO reproduz bem o comportamento de
sistemas embarcados de baixa poténcia, reforcando a adequacado do modelo para
operacao em VANT de SAR.

Figura 20 — Dispersao de Laténcia (Minima, Média e p95)
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Fonte: elaborado pelo autor (2025).

A analise dos resultados apresentados nas Figuras 18 a 20 evidencia que o
modelo de AE implementado no ambiente OpenVINO mantém laténcias médias
inferiores a 25 ms, com baixa dispersao e alta estabilidade temporal.

De modo a fazer uma avaliagdo dos ciclos DSR, a Tabela 9 consolida os
resultados dos Ciclos 1 e 2, demonstrando os ganhos nas métricas avaliadas no
Ciclo 2, evidenciando o ganhos na borda computacional com acréscimo 9db no
PSNR médio e diminuigdo de 239 ms na laténcia média, resultados da otimiza¢ao da
pilha de inferéncia com ONNX/OpenVINO.
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Tabela 9 — Resumo dos resultados dos ciclos DSR

Métrica Ciclo 1 Ciclo 2
PSNR médio 20.71 dB 29 dB (+9dB)
SSIM médio 0.80 0.82 (+0.02)
MS-SIM médio 0.93 0.96 (+0.3)
Laténcia média 260 ms 21 ms (-239ms)

Fonte: elaborado pelo autor (2025).

As métricas de qualidade (PSNR, SSIM e MS-SSIM) demonstram a
preservagao estrutural e perceptual das imagens reconstruidas, mesmo sob
restricbes de processamento tipicas de dispositivos de borda.

Tais resultados indicam que a arquitetura desenvolvida € apropriada para
compressdo adaptativa em VANT, garantindo o equilibrio entre eficiéncia
computacional e qualidade visual.

Esta avaliagdo detalha os desafios técnicos enfrentados e orienta as proximas
fases do ciclo experimental, destacando a importancia da relagao entre desempenho

e restricdes de hardware para solugdes de inteligéncia de borda.
4.2.2. VALIDACAO DOS OBJETIVOS E RESULTADOS

A tabela 10, demonstra o alinhamento entre os objetivos geral e especificos

propostos e os resultados obtidos nos dois ciclos DSR desta dissertacao.
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Tabela 10 — Validagado dos objetivos e resultados

Objetivo

Evidéncia e Resultados Obtidos

Geral: Analisar e comparar métodos
de compressao de imagens
baseados em inteligéncia artificial
para redugéo do trafego de dados em
ambientes de borda-nuvem

Analise multifatorial 3 arquiteturas de AE, na nuvem e realizada a
disponibilizagao do vencedor na borda com analise dos resultados

OE1 — Sintetizar o estado da arte da
compresséo de imagens na borda a
partir de mapeamentos, revisdes
sistematicas e estudos atuais,
identificando tendéncias, limitagcbes e
lacunas.

Trabalhos entre (2018-2025). Lacunas: (i) escassez de validagbes
praticas em hardware restrito; (ii) auséncia de comparagdes com
métricas de laténcia; e (iii) caréncia de abordagens reprodutiveis de
cédigo aberto. Essas lacunas orientaram o desenho dos ciclos
experimentais.

OE2 — Implementar e adaptar
modelos de AE para compressao de
imagens considerando restrigdes de
borda

Implementado e otimizado 3 AE, adaptando o vencedor para o
formato ONXX e simulando a borda em CPU (OpenVINO FP32),
comprovando a portabilidade e eficiéncia.

OE3 — Avaliar experimentalmente o
desempenho dos modelos quanto a
laténcia, qualidade e eficiéncia de
compressao

As métricas foram medidas em dois ciclos:

* Ciclo 1: comparacgao das trés arquiteturas, com Convencional
Otimizado superando as demais (+3,04 dB PSNR, MS-SSIM 0,936).
* Ciclo 2: execugédo FP32 com laténcia média 21,2 ms e MS-SSIM
0,96. Confirmam o atendimento do objetivo e demonstram eficiéncia
quase em tempo real na borda.

Fonte: elaborado pelo autor (2025).

4.3.

VALIDAGAO DOS REQUISITOS E RESULTADOS

As tabelas 11 e 12, relacionam os requisitos levantados no inicio desta

pesquisa com os resultados obtidos, evidenciando a preocupacédo com restricoes de

hardware de borda, reprodutibilidade, eficiéncia energética e flexibilidade do pipeline.
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Tabela 11 — Validacao dos RF e resultados

Cédigo Descrigdo do Requisito Funcional Evidéncia e Resultado Alcancado
RF1 Receber e pré-processar imagens capturadas Redimensionamento para 128x128x3,
por dispositivos de borda. conversdo BGR—RGB e normalizagao
[0,1]. Testado com imagens reais do
SARD-2.
RF2 Comprimir e reconstruir imagens por meio de Trés arquiteturas desenvolvidas,
modelos de AE. Convencional, Variacional e Penalizada

por Redundancia, foram treinadas e
validadas com as imagens reais do

SARD-2.
RF3 Mensurar as métricas de laténcia, PSNR, SSIM, Métricas avaliadas nos dois ciclos,
MS-SSIM e taxa de compresséo. evidenciando equilibrio entre qualidade

visual e eficiéncia temporal.

RF4 Permitir adaptagcdo dos modelos para ambientes | Pipeline compativel com TensorFlow
com diferentes restricdes de hardware. (GPU) e OpenVINO (CPU FP32).
Estrutura modular e scripts
parametrizaveis possibilitam migracao
futura para dispositivos embarcados
(Raspberry Pi, placas ARM).

Fonte: elaborado pelo autor (2025).

Tabela 12 — Validacdo dos RNF e resultados

Cdédigo Descri¢do do Requisito Nao Funcional Evidéncia e Resultado Alcangado
RNF1 Executar em hardware com memoéria e Simulagao realizada com OpenVINO
processamento restritos ou simulados (ex.: em CPU, resolugéo 128x128 px e jitter
Raspberry Pi, ARM). 1,2-2,5%. Desempenho validado com

laténcia média < 30 ms, confirmando
viabilidade em dispositivos embarcados.

RNF2 Minimizar o consumo energético do pipeline. Consumo estimado em 0,05 megajoule
por inferéncia, indicando alta eficiéncia
energética devido ao uso de FP32
otimizado e redimensionamento das
imagens.

RNF3 Documentagéo e replicabilidade do experimento, | Cdédigo, datasets e instrugbes
disponibilizando o cédigo em repositério publico. | disponiveis em GitHub, promovendo
ciéncia aberta e reprodutibilidade
(BERTRAM et al., 2023).

RNF4 Flexibilidade para ajuste de parametros Cddigos de hiperparametros e dataset
conforme o contexto experimental. parametrizaveis, comprovando
adaptabilidade metodoldgica.

Fonte: elaborado pelo autor (2025).
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A tabela 13, resume claramente como o artefato desenvolvido atendeu ao

problema de contexto, gerando contribui¢des praticas e cientificas, conforme orienta
o0 método DSR.

Tabela 13 — Validacdo DSR e resultados

Etapa Descrigao Evidéncia e Resultado Alcancado
Problema de | Quais s&o as versbes dos modelos de AE O modelo convencional otimizado teve os
Contexto convencional, variacional e de penalizagao melhores resultados nas métricas

por redundéncia com melhor resultado nas analisadas. Este modelo foi convertido e
métricas PSNR, MS-SSIM, SSIM e laténcia, simulado na borda conforme requisitos
de acordo com as imagens de entrada do levantados.
dataset SARD2 (GEGENAVA, 2025)?
Objetivo 1 Desenvolver um artefato para resolver um O artefato desenvolvido foram os
DSR problema pratico num contexto especifico modelos de AE, para solugéo do
(PIMENTEL problema pratico de redugéo da laténcia
et al. 2020) em missdes SAR nas transmissdes de
imagens de dispositivos VANT.
Objetivo 2 Gerar novos conhecimentos técnicos e O trabalho avangou ao quantificar o
DSR cientificos melhor modelo de compressao para
(PIMENTEL ambientes de borda-nuvem com métricas
et al. 2020) rigorosas e ao validar sua execugao

eficiente em hardware restrito, além de
mapear claramente as lacunas da
literatura.

Fonte: elaborado pelo autor (2025).
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5. CONCLUSOES E TRABALHOS FUTUROS

5.1. CONCLUSOES

Este trabalho investigou métodos de compressao de imagens baseados em
AE aplicados a cenarios de borda computacional, especialmente em missdes com
VANT, caracterizadas por alto volume de dados visuais, conectividade limitada e
forte sensibilidade a laténcia. A partir da metodologia DSR, foram conduzidos dois
ciclos experimentais que permitiram projetar, otimizar e avaliar diferentes
arquiteturas de AE em ambientes de nuvem e de borda simulada.

No Ciclo 1, foram comparadas as arquiteturas Convencional, VAE e
Penalizada por Redundéancia. Os resultados mostraram que, embora modelos mais
complexos apresentem potencial teérico de maior capacidade representacional, a
estrutura simples e otimizada do AE Convencional apresentou o melhor equilibrio
entre qualidade de reconstrugdo e custo computacional, destacando-se como
solugdo mais adequada para hardware restrito. A analise da taxa de compressao
também evidenciou o trade-off entre reducdo agressiva de dados e preservagao
estrutural, reforcando a necessidade de compressdao moderada para manter
qualidade adequada em cenarios VANT/SAR. No Ciclo 2, a execugao do modelo
otimizado em ambiente de borda utilizando OpenVINO comprovou sua viabilidade
pratica, alcangando laténcia média de 21,2 ms e estabilidade temporal compativel
com aplicagdes quase em tempo real.

Os achados consolidam a principal tese deste estudo: a eficiéncia na borda
depende mais da adequacdo estrutural ao hardware do que da complexidade
algoritmica, sendo fundamental considerar restricbes reais de processamento,
memoria e energia na escolha de modelos de compressao para VANT. Além disso,
este trabalho reforgca a relevancia de experimentos reprodutiveis, transparéncia
metodoldgica e disponibilizacdo dos artefatos, alinhando-se aos principios da

Ciéncia Aberta.

5.2. CONTRIBUICOES CIENTIFICAS
As contribui¢cdes cientificas deste trabalho se concentram em quatro
eixos principais:

e Integracdo de DSR a compressao inteligente de imagens na borda
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Foi estruturado um pipeline experimental rigoroso, guiado pela
DSR, que organiza de forma transparente o problema, os artefatos, a
conjectura, os requisitos e os ciclos experimentais, algo ainda pouco
explorado em estudos de compressao para VANT.
Avaliagcao multifatorial de arquiteturas de AE sob restricoes de borda

O estudo fornece evidéncias empiricas comparando trés
modelos distintos (Convencional, VAE e Penalizado por Redundancia)
considerando métricas de qualidade, taxa de compressao e laténcia,
ampliando o entendimento cientifico sobre o comportamento das
arquiteturas quando submetidas a hardware restrito.
Identificacdo da relagao entre estrutura do modelo e desempenho
embarcado

Ao demonstrar que modelos mais simples podem superar
variantes sofisticadas quando submetidos a dispositivos de borda, o
trabalho contribui para a discussao cientifica sobre “complexidade
adequada”, tema ainda pouco evidenciado na literatura de VANT e
compressao neural.
Formalizacao de um baseline replicavel para experimentagao em borda

O pipeline, o codigo, os modelos treinados e a documentagao
foram disponibilizados publicamente, promovendo reprodutibilidade e
contribuindo para futuras pesquisas em compresséo inteligente, 1A

embarcada e aplicagdes SAR.

CONTRIBUICOES TECNICAS

As contribuigdes técnicas estao relacionadas a implementagao pratica

do artefato e a sistematizacdo do processo experimental:

e Desenvolvimento e otimizacéo de trés arquiteturas de AE
(Convencional, VAE e Penalizado por Redundancia) ajustadas
ao dataset SARD-2 e as restricdes de dispositivos embarcados.

e Prototipagédo de um pipeline completo em nuvem e posterior
conversao para execug¢ao na borda, incluindo
pré-processamento, compressao, reconstru¢cao e medicao de

laténcia.
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e Implementacéo e validagdo do modelo de melhor resultado em
ambiente de borda simulado com OpenVINO (FP32),
demonstrando sua viabilidade para aplicagdes quase em tempo
real em VANT.

e Criacao de artefatos reprodutiveis (scripts, treinamentos,
modelos, tabelas), documentados e disponibilizados em
repositorio publico.

e Geragao de um conjunto de recomendacgodes praticas para
compressao eficiente em dispositivos com severas restricdes de
hardware, Uteis para futuras implantacbes em VANT,

microcontroladores ARM e sistemas loT.

Além do mérito quantitativo, o modelo proposto destaca-se pela facilidade de
implementagdo e baixo custo computacional, tornando-se uma alternativa imediata
para sistemas embarcados de monitoramento aéreo e plataformas VANT civis ou de
defesa.

5.4. DESAFIOS ENCONTRADOS E TRABALHOS FUTUROS

Os principais desafios surgiram da necessidade de adaptar arquiteturas de
AE a limitagdo de memodria, CPU e energia de dispositivos de borda, além da
dificuldade em obter quantizacdo estavel (FP16) para o modelo selecionado. As
restricdes impostas pela simulagdo de hardware limitaram algumas analises e
reforcam a necessidade de testes em plataformas reais.
Como trabalhos futuros, destacam-se:
e Avaliar quantizacdo estatica e dinamica, incluindo INT8, para reduzir
ainda mais laténcia e consumo energético.
e Testar a solugdo em hardware fisico, como Raspberry Pi, Jetson Nano,
Movidius NCS2 ou ambientes embarcados reais de VANT.
e Comparar diretamente AE com JPEG/JPEG2000/JPEG-XL e codecs
neurais mais modernos, ampliando o escopo comparativo.
e Explorar mecanismos adaptativos, como compressédo por regides de
interesse para missdes SAR.
e Investigar arquiteturas semi condicionadas, como AE esparsos ou

hibridos com wavelets.
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Em sintese, este trabalho reforca que a otimizagdo estrutural de modelos
leves constitui uma estratégia promissora para aplicagbes embarcadas de
compressdo visual em VANT, discutido ao longo dos capitulos e também

consolidado no artigo apresentado no Apéndice A.
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RESUMO

Este estudo avalia a eficacia de autoencoders (convencional, variacional e
penalizado por redundancia) na compressao de imagens aéreas de VANTs (UAVs),
focando em aplicagbes embarcadas com restricdes de laténcia. Utilizando o conjunto
de dados SARD 2, os modelos foram analisados quanto a qualidade de
reconstrugcdo (PSNR, SSIM e MS-SSIM) e ao tempo de processamento. Os
resultados refutaram a hipotese central, demonstrando que o autoencoder
convencional otimizado superou os modelos mais complexos, atingindo a melhor
qualidade de imagem e mantendo laténcia competitiva. O trabalho conclui que, em
ambientes restritos, a simplicidade estrutural otimizada pode ser mais eficaz do que

a complexidade tedrica.
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