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RESUMO

Identificar movimento em v́ıdeos é uma tarefa fundamental a fim de analisar a sua infor-

mação semântica. Uma das principais ferramentas para a identificação de movimento é

o fluxo óptico, o qual estima a projeção da velocidade 3D dos objetos sobre o plano da

câmera.

Neste trabalho é proposto um método diferencial de fluxo óptico baseado na equação da

onda. O fluxo óptico é calculado através da minimização de funcional de energia composto

por dois termos: um termo de constância de brilho e um termo de energia da onda. O fluxo

é então determinado através da resolução iterativa de um sistema de equações lineares. O

desacoplamento entre os pixels na solução garante convergência rápida e torna o método

adequado para a paralelização. No entanto, nossa abordagem não converge para todos os

pontos de imagem, sendo apresentadas as suas condições de convergência.

O fluxo proposto é aplicado no problema de reconhecimento de ação através da criação de

um descritor global de v́ıdeo baseado em histogramas de fluxo óptico (HOF). Apesar da

sua esparsidade, o método proposto supera as abordagens clássicas. Também são avaliadas

medidas de erro de fluxo óptico para algumas sequências de imagens conhecidas. Os erros

encontrados são similares para o nosso método e as abordagens clássicas de fluxo óptico.

Palavras-chave: Fluxo óptico. Método diferencial. Equação da onda.



ABSTRACT

Identification of motion in videos is a fundamental task to analyse their semantic informa-

tion. One of the main tools for motion identification is the optical flow, which estimates

the projection of the 3D velocity of the objects onto the plane of the camera.

In this work, we propose a differential optical flow method based on the wave equation.

The optical flow is computed by minimizing a functional energy composed by two terms:

brightness constancy and energy of the wave. The flow is then determined by solving

iteratively a system of linear equations. The decoupling of the pixels in the solution

ensures quick convergence and makes the method suitable for parallelization. However,

our approach does not converge for all the image points and we present its convergence

conditions.

We apply our optical flow in the action recognition problem by creating a global video

descriptor based on histograms of optical flow (HOF). Despite its sparsity, our method

outperforms the classical approaches. We also evaluate optical flow error measures for

some known image sequences. The errors found are similar for our method and the

classical optical flow approaches.

Keywords: Optical flow. Differential method. Wave equation.
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1 INTRODUCTION

The study of movement in image sequences is an important field in computer vision for

many years. Identify movement in a video is a fundamental task in order to analyse its

semantic information. This information extracted is useful in several applications, for

example time-to-collision, motion compensated encoding, stereo disparity measurement,

action recognition and motion detection. However, extracting features that represent

movement in a video is a challenge and not a fully exploited problem.

Optical flow is a motion representation widely used in computer vision. It consists in

estimating the projection of the 3D velocity of the objects onto the plane of the camera. In

general, optical flow computation is based on estimation of the brightness variation from

the first image to the second image. As such, several problems are associated to optical

flow estimation. The occlusion of objects, for example, is a major problem. Dealing with

homogeneous regions and determining large displacements are other problems for optical

flow methods.

In order to deal with these problems and improve the computed optical flow, several

methods have been proposed since Horn and Schunck (HORN; SCHUNCK, 1981) pro-

posed their differential optical flow method. Recently, a new database was proposed by

Baker et al. (2011) in order to evaluate the new optical flow algorithms. The set of ben-

chmarks of this database contains sequences for several scene configurations. This shows

that optical flow is still an open problem.

Due to the variety of applications of optical flow, each method tends to be better

for a specific application. An example of problem where movement extraction is useful

is the human action recognition problem (WANG et al., 2011; LAPTEV et al., 2008).

This problem consists in three stages: extraction of features, video descriptors creation

and classification. In the first stage are extracted motion features from the videos. Since

optical flow is a motion representation, it can be used to compose features.

Differential optical flow methods use the brightness of the images to extract movement

information. Thus, making a physical analogy, we can assume the brightness as mass

elements and analyse its temporal variation. For example, Lucas and Kanade (LUCAS;

KANADE, 1981) and Horn and Schunck (HORN; SCHUNCK, 1981) methods start from



12

a movement equation which is just an equation with advective terms.

Another example of transport phenomenon is modelled by the wave equation (MYINT-

U; DEBNATH, 2007). This equation describes the propagation of waves in a continuous

medium and was studied by many famous mathematicians including Euler, Bernoulli,

d’Alembert and Lagrange. Several physical phenomena are based on this equation, for

example, water waves and vibration of an elastic string.

In this work we propose a differential optical flow method based on the wave equation.

We start by modelling the brightness variation as waves propagating in a medium. We

study how the wave equation can contribute to estimate motion from image sequences.

This study led us to propose an energy function that must be minimized similarly to Horn

and Schunck’ approach (HORN; SCHUNCK, 1981). This energy and its computational

model are the main contributions of this work.

1.1 PROBLEM DEFINITION

This work discuss the problem of optical flow computation in an image sequence. Consider

I1(x, y) and I2(x, y) two sequential images. For each point (x, y), the optical flow is

represented by a vector [u(x, y), v(x, y)] that describes the movement between I1 and I2.

In other words, let (x, y) a point in the image I1 then the optical flow vector associated to

this point is [u(x, y), v(x, y)] such that I1(x, y) = I2(x+u(x, y), y+ v(x, y)). Our problem

is how to integrate the wave equation to the model of optical flow computation.

This work is based on the hypothesis that the wave equation is useful for motion

estimation. As such, the modeling and evaluation of the wave equation for optical flow

computation is an important part of the problem in this work.

1.2 OBJECTIVES

The objective of this work is to propose a new differential optical flow computation method

based on wave equation energy. The secondary objectives are:

• To show the convergence conditions of the proposed method,

• To find the best values of the method parameters,
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• To apply the optical flow calculated in the human action recognition problem using

histograms of optical flow,

• To compare the performance of our method to the classical optical flow methods.

1.3 RELATED WORKS

This section describes several approaches to calculate optical flow. These approaches

include differential (variational), hierarchical, physical model based and other methods.

1.3.1 DIFFERENTIAL METHODS

Differential methods are based on the spatiotemporal image gradients. These methods are

classified into local and global methods. Local methods assume that the flow is uniform

in a pixel neighborhood. The first local optical flow method was proposed by Lucas e

Kanade (1981) and it is explained in the Section 2.3. On the other hand, global methods,

for example the classical Horn and Schunck (HORN; SCHUNCK, 1981) method that is

explained in the Section 2.2, assume that the flow is smooth over the whole image. In

global methods, the flow is propagated to homogeneous regions, where the derivatives are

null. On the other hand, the flow field estimated by local method tend to be more robust

against noise.

Bruhn et al. (2005) propose to combine the local Lucas and Kanade method and the

global method of Horn and Schunck. The objective is to generate a dense flow robust

to noise, joining the main advantages of the local and global differential methods. They

reformulate the approaches of the classical methods in order to join the quadratic form

minimized by Lucas e Kanade (1981) with the global energy functional of Horn e Schunck

(1981). The method, known as combined local-global (CLG), also permits to sparsify

gradually a dense flow field. Additionally, nonquadratic and multiresolution approaches

are presented. In the present work, we propose an energy minimization similarly to Horn

and Schunck. However, our energy depends only on a small neighborhood of each point

used to calculate image derivatives. This makes our method local.

Most of differential methods minimize a functional energy. This energy is composed

by two or more terms including the term of brightness constancy. This term is known by

data term. Section 2.1 shows more details about this term. Brox et al. (2004) presented
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a differential method that computes optical flow by minimizing a functional combining a

brightness constancy assumption, a gradient constancy assumption, and a discontinuity-

preserving spatiotemporal smoothness constraint. The first two constraints correspond to

the data term while the third penalize the total variation of the flow field. This approach

still justifies theoretically how warping methods can be used in order to improve the

performance. In our method, we proposed to minimize a functional that combines the

data term of brightness constancy and a term using the wave equation energy.

Girosi et al. (1989) observe that when the image brightness changes over time, its

change can be described in terms of infinitesimal deformations. Based on the Helmoltz

theorem on deformable objects, they proposed four constraints to calculate optical flow.

These constraints are associated to elementary deformations: rotation over the image

plane, uniform expansion and two components of shear. Combining these constraints

they obtain a general method for optical flow computation. This method uses second-

order differential operators. Second-order operators also are used in our method due to

the wave equation.

The approach of Nguyen e Jeon (2011) uses image-driven functions to compute optical

flow. Similarly to other differential methods, they also propose an energy functional that

considers the data term, gradient term and a smoothness term. The major contribution

proposed by this work is to weight the terms of energy by image-driven functions. These

functions determine the constraints that must influence each image region. The energy

proposed is minimized using the Euler Lagrange equation in a similar manner we do in

the present work.

Recently, Rashwan et al. (2013) proposed a differential method that adapts the data

term using anisotropic stick tensor voting. This term still uses a subquadratic penalization

function in order to make the method robust against outliers. They define a regulariza-

tion tensor to complete the functional to be minimized. The directional information of

this tensor, represented by its eigenvectors, is used to define the additional energy term.

Additionally, they propose to introduce a weighted non-local term in order to reduce the

impact on flow discontinuities. Their work shows that the energy minimization proposed

by Horn e Schunck (1981) is still the basis of several differential methods.
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1.3.2 HIERARCHICAL METHODS

In order to improve the detection of large displacements, some optical flow methods use

a hierarchical (pyramidal) strategy. This strategy consists in calculating the flow in lower

resolution images and then projecting this flow in the higher resolution images as an

initial guess. Bouguet (2000) proposes a pyramidal implementation of Lucas and Kanade

method. Initially, the pyramid is computed for each image. The flow computation starts

from the deepest pyramid level. For each upper level, the flow of the lower one is used to

pre-translate the image. Thus, only a small residual flow is computed in order to adjust

the displacement. This residual flow is computed using an iterative Lucas and Kanade

algorithm and propagated to the upper level until the highest level is reached. In the

present work, we also use an iterative algorithm to calculate the optical flow with few

iterations but we do not use a hierarchical scheme. As showed in the Chapter 3, however,

our energy is local and can be computed directly, without any iteration.

Another hierarchical method was proposed by Hwang e Lee (1993). This method

starts calculating a Gaussian pyramid applying repetitively the Gaussian filtering. They

calculate the flow combining the brightness constancy assumption to a interlevel motion

smoothness constraint. Since the pyramid image consists of low-pass filtered versions of

the images, they consider that the flow vector in a pyramid level is the low-pass filtered

version of the flow vector at the higher level. Based on this fact, the interlevel motion smo-

othness constraint is obtained by the difference between the flow vector and its projection

from the adjacent level. The flow is calculated by a iterative method and the authors pre-

sent a convergence analysis. In the Section 3.1, we also present the convergence condition

for our method.

A problem of these hierarchical approaches was identified by Brox e Malik (2011):

small objects can move very fast. In their work, they propose to deal with this problem

by using rich descriptors in a differential optical flow method. They present a general

model of energy minimization containing three terms: a data term, a gradient constraint

and a smoothness constraint. In addition, they propose to add two other constraints to

the differential model: a term of descriptor matching and a term of point correspondences

from descriptor matching. An initial guess of the descriptor matching term is determined

separately. The authors perform tests with known descriptors, such as HOG and SIFT.

Once the initial guess of the descriptor matching term is determined, the remain terms
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are minimized and the flow is obtained. The authors see the possibility of application of

their method in the action recognition using HOF. This is also an important application

used in our work.

1.3.3 PHYSICAL MODEL BASED METHODS

Haussecker e Fleet (2001) propose to exploit physical models of time-varying brightness

to compute optical flow. They consider that the temporal brightness variation can be

specified by differential equations for a given physical model. Then, the objective is to

estimate the parameters of the optical flow field and a set of parameters of the physical

model. They propose formulations for some models, for example diffusion. At the end,

they show a generalized formulation to extract parameters of general physical models.

Instead of determining the parameters of a physical model, in our work we propose to use

a physical model in order to estimate optical flow.

Similarly, the work of Sakaino (2008) proposes to estimate fluid flow based on the

physical properties of waves. The method exploits three properties of waves present

in fluid-like images: convection, diffusion and advection. Based on a wave generation

model, the method uses an objective function that estimates two optical flow components

and five wave-related parameters which are the two wavenumber components, frequency,

amplitude, and orientation. This function is minimized in order to calculate the seven

variables. This method is very useful for images of water waves, cloud and smoke. In a

different way, we propose to use wave properties in order to calculate the optical flow for

general images.

1.3.4 OTHER APPROACHES

Region correlation based methods estimate optical flow by calculating a similarity measure

between the neighborhood of a pixel in an image and the neighborhood of a candidate

pixel in the following image. The pixel in the second image that maximizes the similarity

measure in relation to the pixel in the first image will be the displaced pixel. The distance

between the two pixels will be the optical flow.

For example, Barnard e Thompson (1980) propose a method for matching images

and computing the differences between them. Initially, some interest points are selected

separately from the two images. Then, for each point is constructed a set of labels which
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correspond to possible matches. The algorithm determines a probability associated with

each label based on the sum of the squares of the differences between a small window

centered on a point in the first image and the possible correspondent one on the second

image. Once the probabilities are calculated, the point with highest probability will be the

correspondent point. This method presents a high computational cost because it performs

many distance calculations and comparisons.

Farnebäck (2001) proposes a method using orientation tensors and parametric motion.

Assuming that the motion in a region is coherent with respect to the affine motion mo-

del, his model proposed to extract the motion parameters directly from the orientation

tensors of the images. These orientation tensors are obtained from the video volume. A

segmentation of the images is performed in order to divide them into a set of disjoint

regions. Each region is characterized by a coherent motion. This segmentation improves

the algorithm accuracy but raises the computational cost.

Energy based methods exploit output velocity-tuned filters to analyze the movement in

the Fourier domain. They are also called frequency based methods. In their work, Adelson

e Bergen (1985) start representing motion in a three-dimensional space in which X and Y

are the two spatial dimensions and T is the temporal dimension. The motion is identified

by the energy of the orientation in this space. They propose to extract spatiotemporal

energy by oriented linear filters and combine their outputs to give a measure of motion.

An interesting fact is that some energy based methods are equivalent to correlation based

methods (SANTEN; SPERLING, 1985).

In phase based methods, the phase behavior of band-pass filter outputs defines the

velocity. Fleet e Jepson (1990) proposed the first phase based method. Initially, they

represent the images by a set of shift-invariant filters. These filters are tuned so that

their amplitude spectrum concentrate around the appropriate line in frequency space.

They argue that the phase component of the filters response is better to approximate the

velocities field. The optical flow vectors are expressed by first-order temporal derivative

of surfaces of constant phase. Several experiments were performed in order to evaluate

method robustness under some scene conditions such as translational camera motion,

image rotation, additive noise and transparency. The authors emphasize that their method

does not depend on previous element detection from the images. This is also a feature of

our proposed method.
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2 FUNDAMENTALS

In this chapter we present the basic fundamentals of this work. These fundamentals

include the brightness constancy constraint, the classical optical flow methods and the

mathematical model of wave propagation.

2.1 BRIGHTNESS CONSTANCY CONSTRAINT

Image brightness constancy is the constraint used by most optical flow algorithms. This

assumption states that the brightness intensity remains from an image to the next one.

This constancy can be expressed as:

I(x, y, t) = I(x+ u(x, y), y + v(x, y), t+ ∆t), (2.1)

where I(x, y, t) is the brightness intensity of the pixel (x, y) at the time t. The vector

~v = [u(x, y), v(x, y)] is the optical flow vector and ∆t is the time variation. We assume

∆t = 1 since it is the displacement between two consecutive frames. In order to simplify

the notation, from now on we will denote ~v = [u(x, y), v(x, y)] by ~v = [u, v].

Applying a first-order Taylor expansion to the right-hand side, we have the approxi-

mation:

I(x, y, t) ≈ I(x, y, t) + Ixu+ Iyv + It,

where Ix = ∂I
∂x

, Iy = ∂I
∂y

and It = ∂I
∂t

. The Optical Flow Constraint is then defined as:

Ixu+ Iyv + It = 0. (2.2)

Equation 2.2 is not enough to determine [u, v] since there are two unknowns and just

one constraint. This problem is called aperture problem. Due to aperture problem, only

the vector component parallel to the spatial gradient is determined. To solve this problem,

it is necessary another constraint to complete the system. In our work, we propose the use

of the energy of the wave equation to provide additional constraints to the system. Since

the wave equation defines the local motion in a point induced by a wave passing through

that point, these constraints depend solely on the local first and second-order brightness
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variation. As such, the resulting method is straightforward to implement.

2.2 HORN AND SCHUNCK METHOD

The first differential method for optical flow computation was proposed by Horn e Schunck

(1981). Due to its revolutionary idea, this propose is the basis for the most differential

methods for optical flow computation.

This global method uses the Equation 2.2 of brightness constancy and tries to solve the

aperture problem by imposing a smoothness constraint to the flow field. This constraint

is expressed by the square of the magnitude of gradient of the velocity:

E2
c =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

. (2.3)

Combining the above constraint to the Equation 2.2, we have the total energy of the

Horn and Schunck method:

E2 =

∫ ∞
−∞

∫ ∞
−∞

(Ixu+ Iyv + It)
2 + α2

[(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
]
dxdy,

where α is a suitable weighting factor. The optical flow vector ~v = [u, v] is calculated by

minimizing the above functional.

Our proposed method, which will be exposed in the Chapter 3, also use an energy

functional. The smoothness constraint of the Horn and Schunck method is replaced by a

wave equation based constraint.

2.3 LUCAS AND KANADE METHOD

Another classical optical flow estimation method was proposed by Lucas e Kanade (1981).

This method is local, assuming the flow is constant in the neighborhood of each pixel.

Using the brightness constancy constraint, the optical flow is computed by minimizing:

E =
∑

(x,y)∈Ω

W 2(x, y)(Ixu+ Iyv + It)
2 (2.4)

where W (x, y) is a weight associated to the point (x, y) in the window Ω. Central pixels

have more influence than those in the window edges. For each pixel in the image, Equation
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2.4 generates a overdetermined system that can be solved using least squares fit.

Local methods generates a non-dense flow field but they tend to be more robust against

noise. Our wave equation based method is local but, differently than Lucas and Kanade´s,

we use first and second-order derivative elements. In our experimental evaluation, we use

Horn and Schunck and Lucas and Kanade methods to compare our performance.

2.4 WAVE EQUATION

In general, waves are caused by a disturbance in a medium. For example, a pulse travelling

on a cord can be formed by a quick up-and-down motion of the hand (GIANCOLI, 1989).

This pulse travels along the cord moving the its particles vertically. This way, we have

two velocities associated to a wave propagation: the velocity of the wave along the cord

(or another mean) and the velocity of its forming particles. The Figure 2.1 represents a

wave propagating and its velocities.

particles velocity

wave velocity

Figura 2.1: 1D wave propagation example. The dashed line represents the wave in a
previous moment.

An example of two-dimensional waves in the nature is the tsunami. Tsunamis are

water waves that can be caused by earthquakes, volcanic eruptions and other underwater

explosions (LATTER, 1981). These waves travel over the water surface causing elevation.

The Figure 2.2 shows a simulation of a 2D water wave. We can see three moments of the

wave propagation: the moment which the disturbance happens and two moments of the

propagation along the water surface.

In this work, we propose to compare the motion in image sequences to a two-dimensional

wave. An image can be represented by a surface where the heights of the points are the

brightness intensity. Assuming image brightness constancy, we consider that the temporal

brightness variation is caused by a wave passing along the image plane. The Figure 2.3
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Figura 2.2: 2D wave propagation example.

shows two successive images and their surface representation. On the horizontal plane

we can see the contours of the images from which the inference of propagation is of main

interest. The premise of this work is that these contours might be modeled as waves

travelling in the image.

Mathematically, the phenomena involving the propagation of waves in a continuous

medium are described by the wave equation, which is important in mechanics, acoustics,

and fluid dynamics (MYINT-U; DEBNATH, 2007). It has the general form:

∂2I

∂t2
= c2∇2I, (2.5)

where ∇2 represents the spatial Laplacian and the constant c represents the velocity of

propagation. I is a scalar function that represents the vertical position of the particles in

function of the time.

In the 2D case, the equation has the following shape:

∂2I

∂t2
= c2

(
∂2I

∂x2
+
∂2I

∂y2

)
.
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The first solution of the Equation 2.5 in one dimension was proposed by d’Alembert.

He solved the problem of initial value, where the initial vertical position of the particles

is I(x, 0) = I(0)(x) and the initial velocity is It(x, 0) = I
(0)
t (x). The general solution is

obtained by introducing new variables:

ξ = x− ct, η = x+ ct,

changing the wave equation into:
∂2I

∂ξ∂η
= 0. (2.6)

The general solution of the Equation 2.6 is:

I(ξ, η) = F (ξ) +G(η) = F (x− ct) +G(x+ ct).

Thus, the solutions of the one dimensional wave equation is the sum of a right travelling

function F and a left travelling function G. For the initial values, we have the solution:

I(x, t) =
1

2

(
I(0)(x− ct) + I(0)(x+ ct)

)
+

1

2c

∫ x+ct

x−ct
I

(0)
t (s)ds.

The solution of d’Alembert calculates the position of each medium particle along time.

In other words, the function I is the unknown of the differential equation. To obtain the

values of the function I it is necessary to know the velocity of propagation c, which is not

necessarily constant along the medium, and some initial and/or contour conditions of the

problem.

In our problem, two consecutive images represent two distinct realizations of the me-

dium I in time. In this case, the unknown is the the velocity of propagation in each point

c. The solution of this problem is a realization of brightness transport between the two

images and might represent an optical flow, also restricted to the aperture problem.

Waves transport energy from one place to another one (GIANCOLI, 1989). The

energy is transferred from one particle to the neighbor particle in the medium where the

wave is travelling. The energy of the general wave equation 2.5 is given by (MYINT-U;

DEBNATH, 2007):

E(t) =
1

2

∫ ∞
−∞

I2
t + c2I2

x dx.
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Extending to the two-dimensional case we have:

E(t) =
1

2

∫ ∞
−∞

∫ ∞
−∞

I2
t + c2(I2

x + I2
y ) dxdy. (2.7)

Generally, the 2D wave equation defines a vertical displacement of the moving wave in

the 2D plane (FONTANA; ROCCHESSO, 1995; DUYNE et al., 1993). This is interesting

for optical flow computation because most methods try to find a displacement vector to

compensate the local brightness variation It. Here, the It plays the role of how much mass

is locally transferred by the passing wave. In an energy minimization model, the Equation

2.7 has also the function of compensating the brightness variation. This complementary

second-order constraint originated from the wave equation combined with the classic first-

order Equation 2.2 is a major contribution of this work.
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(a) First image (b) Second Image
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(c) Surface representation of the first image
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(d) Surface representation of the second image

Figura 2.3: Two Images and their surface representation.
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3 PROPOSED METHOD

In the Section 2.4, we have presented the wave equation and its associated energy. As the

classical Horn and Schunck method (HORN; SCHUNCK, 1981) presented in the Section

2.2 and several other differential optical flow methods (NGUYEN; JEON, 2011; BROX et

al., 2004; RASHWAN et al., 2013), we propose to minimize an energy functional involving

the wave equation energy 2.7.

We need to define the square of the velocity of propagation in the wave energy (Eq.

2.7). This is a crucial step of our method and the proposed velocity is an important

contribution of our work. We desire to find the velocities that minimize the energy of

the wave yielding vectors whose magnitudes are the lowest possible. We then propose a

wave velocity that consider the variation of the square of the norm of the image velocity

vectors. Denoting the inner product as 〈·, ·〉, we define:

H = 〈[u, v], [u, v]〉.

Calculating the partial derivatives of H we have:

∂H

∂x
=
∂〈[u, v], [u, v]〉

∂x
= 2

〈
[u, v],

∂[u, v]

∂x

〉
= 2(uux + vvx),

∂H

∂y
=
∂〈[u, v], [u, v]〉

∂y
= 2

〈
[u, v],

∂[u, v]

∂y

〉
= 2(uuy + vvy),

where ux = ∂u
∂x

, uy = ∂u
∂y

, vx = ∂v
∂x

and vy = ∂v
∂y

.

The velocity of propagation of the wave is defined as the spatial gradient of H:

c2 = ∇H =

[
∂H

∂x
,
∂H

∂y

]
= [2(uux + vvx), 2(uuy + vvy)]. (3.1)

Replacing 3.1 in the Equation 2.7 results in the wave energy

Ew =

∫ ∞
−∞

∫ ∞
−∞

1

2

(
I2
t + [2(uux + vvx), 2(uuy + vvy)](I

2
x + I2

y )
)
dxdy, (3.2)

where Ix = ∂I
∂x

, Iy = ∂I
∂y

and It = ∂I
∂t

.

In the Section 2.2, we have seen that Horn and Shunck use the Optical Flow Constraint
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as a first-order term of the energy. This term is defined as:

Ed =

∫ ∞
−∞

∫ ∞
−∞

(Ixu+ Iyv + It)
2 dxdy (3.3)

Combining the Equation 3.3 and the Equation 3.2, the complete proposed energy is:

E =

∫ ∞
−∞

∫ ∞
−∞

(Ixu+ Iyv + It)
2 + α

[
1

2

(
I2
t +∇H ·

(
I2
x + I2

y

))]
dxdy, (3.4)

where α is a weight to control the influence of the energy of the wave equation. This is

similar to what Horn and Shunck proposed to control the smoothness constraint (HORN;

SCHUNCK, 1981). As shown below however, the effect of α in our method is not related

to a global smoothing process since our solution is locally defined.

Separating x and y components of 3.4, we have two energy terms:

Ex =

∫ ∞
−∞

∫ ∞
−∞

(Ixu+ Iyv + It)
2 + α2

[
1

2

(
I2
t + 2 (uux + vvx)

(
I2
x + I2

y

))]
dxdy, (3.5)

Ey =

∫ ∞
−∞

∫ ∞
−∞

(Ixu+ Iyv + It)
2 + α2

[
1

2

(
I2
t + 2 (uuy + vvy)

(
I2
x + I2

y

))]
dxdy. (3.6)

The total energy to be minimized is the sum of the Equations 3.5 and 3.6:

Etotal =

∫ ∞
−∞

∫ ∞
−∞

2 (Ixu+ Iyv + It)
2

+α2
[
I2
t + (uux + vvx + uuy + vvy)

(
I2
x + I2

y

)]
dxdy, (3.7)

which defines the energy of waves travelling along the image sequence and obeying the

constraint of brightness constancy. We need to find the optical flow vector [u, v] that

minimizes this equation.

In order to minimize the Equation 3.7, we apply the Euler-Lagrange equations (LANC-

ZOS, 2012):

∂L

∂u
− ∂

∂x

(
∂L

∂ux

)
− ∂

∂y

(
∂L

∂uy

)
= 0, (3.8)

∂L

∂v
− ∂

∂x

(
∂L

∂vx

)
− ∂

∂y

(
∂L

∂vy

)
= 0, (3.9)

where L is the functional to be minimized.



27

The partial derivatives of our functional 3.7 are

∂L

∂u
=

∂

∂u

(
2 (Ixu+ Iyv + It)

2)+
∂

∂u

(
α2
(
I2
t + (uux + vvx + uuy + vvy)

(
I2
x + I2

y

)))
= 4Ix (Ixu+ Iyv + It) + α2 (ux + uy)

(
I2
x + I2

y

)
,

∂L

∂v
=

∂

∂v

(
2 (Ixu+ Iyv + It)

2)+
∂

∂v

(
α2
(
I2
t + (uux + vvx + uuy + vvy)

(
I2
x + I2

y

)))
= 4Iy (Ixu+ Iyv + It) + α2 (vx + vy)

(
I2
x + I2

y

)
,

∂L

∂ux
=

∂

∂ux

(
α2
(
I2
t + (uux + vvx + uuy + vvy)

(
I2
x + I2

y

)))
= α2u

(
I2
x + I2

y

)
,

∂L

∂uy
=

∂

∂uy

(
α2
(
I2
t + (uux + vvx + uuy + vvy)

(
I2
x + I2

y

)))
= α2u

(
I2
x + I2

y

)
,

∂L

∂vx
=

∂

∂vx

(
α2
(
I2
t + (uux + vvx + uuy + vvy)

(
I2
x + I2

y

)))
= α2v

(
I2
x + I2

y

)
,

∂L

∂vy
=

∂

∂vy

(
α2
(
I2
t + (uux + vvx + uuy + vvy)

(
I2
x + I2

y

)))
= α2v

(
I2
x + I2

y

)
.

Applying the Euler-Lagrange Equation 3.8 to the Equation 3.7, we thus have:

4Ix (Ixu+ Iyv + It) + α2 (ux + uy)
(
I2
x + I2

y

)
−

∂

∂x

(
α2u

(
I2
x + I2

y

))
− ∂

∂y

(
α2u

(
I2
x + I2

y

))
= 0⇒

4I2
xu+ 4IxIyv + 4IxIt + α2

(
I2
xux + I2

xuy + I2
yux + I2

yuy

−2IxxIxu− I2
xux − 2IxyIyu− I2

yux − 2IxyIxu− I2
xuy − 2IyyIyu− I2

yuy
)

= 0⇒(
2I2
x − α2 (IxxIx + IxyIy + IxyIx + IyyIy)

)
u+ 2IxIyv + 2IxIt = 0,

where Ixx = ∂2I
∂x2

, Iyy = ∂2I
∂y2

and Ixy = ∂2I
∂x∂y

= ∂2I
∂y∂x

.

Similarly, applying the Euler-Lagrange Equation 3.9 to the Equation 3.7, we also have:

4Iy (Ixu+ Iyv + It) + α2 (vx + vy)
(
I2
x + I2

y

)
−

∂

∂x

(
α2v

(
I2
x + I2

y

))
− ∂

∂y

(
α2v

(
I2
x + I2

y

))
= 0⇒

4IxIyu+ 4I2
yv + 4IxIt + α2

(
I2
xvx + I2

xvy + I2
yvx + I2

yvy

−2IxxIxv − I2
xvx − 2IxyIyv − I2

yvx − 2IxyIxv − I2
xvy − 2IyyIyv − I2

yvy
)

= 0⇒

2IxIyu+
(
2I2
y − α2 (IxxIx + IxyIy + IxyIx + IyyIy)

)
v + 2IxIt = 0.

Therefore, we find the linear system whose unique solution finds the flow vectors [u, v]
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for each pixel that minimizes our energy (Eq. 3.7)

(2I2
x − α2 (IxxIx + IxyIy + IxyIx + IyyIy))u+ 2IxIyv + 2IxIt = 0,

2IxIyu+
(
2I2
y − α2 (IxxIx + IxyIy + IxyIx + IyyIy)

)
v + 2IyIt = 0

We can note that, at each pixel, the flow does not depend on the neighbors. Thus, for

each image point, we have the following system: Du 2IxIy

2IxIy Dv

u
v

 =

−2IxIt

−2IyIt

 (3.10)

where

Du = 2I2
x − α2 (IxxIx + IxyIy + IxyIx + IyyIy) ,

Dv = 2I2
y − α2 (IxxIx + IxyIy + IxyIx + IyyIy) .

The system of the Equation 3.10 can be solved by a direct or an iterative method.

Using the iterative Jacobi method, we have:

u(k+1) =
−2IxIyv

(k) − 2IxIt
Du

, (3.11)

v(k+1) =
−2IxIyu

(k) − 2IyIt
Dv

, (3.12)

where [u(k), v(k)] is the optical flow at the iteration k.

One may note in the iteration equations that the flow vector at each pixel depends

just on itself at the previous iteration. In the position (x, y), the component uk+1 depends

only on vk and vk+1 depends only on uk. In other words, the flow at a point does not

depend on its neighbors. Consequently, the optical flow is local due to the inherently

local differential wave equation. This ensures quick convergence and makes the method

suitable for parallelization.

However, Jacobi method does not converge for all the image points. For our method

be useful, a convergence condition is necessary as exposed in Section 3.1.
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3.1 CONVERGENCE CONDITION

Equations 3.11 and 3.12 calculate the optical flow, but they do not converge for all points in

an image sequence. A condition for convergence is that the denominator of the equations

must not be 0. Therefore, we must have:

Du 6= 0, (3.13)

Dv 6= 0. (3.14)

Besides above conditions, the Jacobi method (and any iterative method) converges if

the spectral radius of the iteration matrix is less than one. In other words, if the absolute

value of each eigenvalue of the iteration matrix is smaller than the unity. As each point

does not depend on the neighbors, we have an iterative system for each point defined byu(k+1)

v(k+1)

 =

 0 −2IxIy
Du

−2IxIy
Dv

0

u(k)

v(k)

+

−2IxIt
Du

−2IyIt
Dv

 , (3.15)

from which we obtain the iteration matrix:

J =

 0 −2IxIy
Du

−2IxIy
Dv

0

 .
We can obtain the eigenvalues of J by finding the roots of the equation:

det(J− I2λ) = 0, (3.16)

where det(·) denotes the determinant and I2 is the 2× 2 identity matrix.

Expanding Equation 3.16 we have:

det (J− I2λ) = det

 −λ −2IxIy
Du

−2IxIy
Dv

−λ

 = λ2 −
4I2
xI

2
y

DuDv

= 0,

whose roots are

λ = ± 2IxIy√
DuDv

.

We can observe that when DuDv < 0, we have complex values for λ. However, for our
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convergence condition, we desire λ values such that their absolute values are less than 1.

Thus, we have the following convergence condition:

|2IxIy|√
|DuDv|

< 1. (3.17)

where | · | denotes the absolute value.

We can compute the optical flow vector [u, v] only at points where the conditions

expressed by the Equations 3.13, 3.14 and 3.17 are satisfied. It is important to note that

solving the system of the Equation 3.10 by a direct method, we also need to exclude some

points in order to avoid division by 0.

3.2 DISCRETIZATION

Differential methods extract motion information based on instantaneous variations in the

image. An important issue for these methods is the computation of these variations. Since

the image domain is not continuous, a discretization is necessary.

The finite difference method is very useful to solve differential equations numerically.

For example, let f(x) be a real function. We can approximate the first derivative f ′(x) of

f by the finite difference:

f ′(x) ≈ f(x)− f(x− h)

h
,

where h is the step of discretization. The above equation is the approximation of the first

derivative by backward difference.

Let I(x, y, t) be a function of three independent variables. We can approximate the

partial derivatives ∂I
∂x

of I by finite backward differences:

∂I

∂x
(x, y, t) =

I(x, y, t)− I(x− h, y, t)
h

.

This can also be done for the second-order derivatives. A simple formulation for a

function f(x) is

f ′′(x) =
f(x− h)− 2f(x) + f(x+ h)

h2
.

To reduce time costs, the derivative elements of images are often estimated by the

convolution of high-pass linear and shift-invariant filters. It is important to choose ap-
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propriate filters in order to reduce the effect of noise. In this work, we calculate the the

partial derivatives by the following steps:

• gaussian filtering of each input image using the impulse response [0.006 0.061 0.242 0.383

0.242 0.061 0.006] in the directions X and Y ;

• for ∂I
∂x

:

– convolution of the filtered input image by the low-pass impulse response [0.5 0.5]

in the Y direction;

– convolution of the resulting image by the high-pass filter [−0.5 0.5] in the X

direction.

• for ∂I
∂y

:

– convolution of the filtered input image by the low-pass impulse response [0.5 0.5]

in the X direction;

– convolution of the resulting image by the high-pass filter [−0.5 0.5] in the Y

direction.

• for ∂I
∂t

:

– convolution of the filtered input image by the low-pass impulse response [0.5 0.5]

in the X and Y directions;

– convolution of the resulting image by the high-pass filter [−0.5 0.5] in the T

direction.

• for ∂2I
∂x2

:

– convolution of the filtered input image by the low-pass impulse response [0.25 0.5 0.25]

in the Y direction;

– convolution of the resulting image by the high-pass filter [0.25 − 0.5 0.25] in

the X direction.

• for ∂2I
∂y2

:

– convolution of the filtered input image by the low-pass impulse response [0.25 0.5 0.25]

in the X direction;
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– convolution of the resulting image by the high-pass filter [0.25 − 0.5 0.25] in

the Y direction.

• for ∂2I
∂x∂y

:

– convolution of the filtered input image by the high-pass filter [0.25 − 0.5 0.25]

in the X and Y directions.

The discretization above presented good qualitative and quantitative results as shown

in Chapter 4. Note that the calculation of ∂I
∂t

is the unique having filters applied in

time. Low-pass filters are applied in X and Y directions which are both orthogonal to

T . This means that the derivative filter for ∂I
∂t

has a 3D impulse response. For all other

derivatives however, there is no low-pass filtering in T direction, resulting in 2D filter

masks. The unity of the independent variable T (seconds) is different than the unity of

X and Y (meters), making it hard to match their magnitudes. Furthermore, 3D masks

would result in more computational cost.

With the derivatives computed, the convergence condition of the Equations 3.13, 3.14

and 3.17 are tested for each pixel. For the points where the convergence conditions are

satisfied, the iterative system of the Equations 3.11 and 3.12 is solved. The proposed

method is thus classified as local and iterative. It can be calculated quickly because of

the decoupling of the pixels in the system solution. In some pixels, the vectors converge

to high magnitudes. This is due to noise and other inconsistencies and can be safely

discarded since differencial methods by definition cannot detect long displacements. In

this work, all vectors bigger than seven pixels are just set to null.

In addition to the iterative solution, we can solve the system of the Equation 3.10 by

a direct method. For each point, we have the matrix:

A =

 Du 2IxIy

2IxIy Dv

 ,
whose inverse is:

A−1 =
1

det(A)

 Dv −2IxIy

−2IxIy Du

 .
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Therefore, one may calculate the flow directly by:u
v

 = A−1

−2IxIt

−2IyIt

 (3.18)

It is important to note that the Equation 3.18 can be solved just at the points where

det(A) 6= 0. Similarly to the iterative method, in the direct solution some calculated

vectors present high magnitudes and all vectors bigger than seven pixels are set to null.
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4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

In this section, we will describe the context of our experiments. In the present work, our

main application is the human action recognition using the database KTH. This problem

is described in the Section 4.4. Basically, the performance of our optical flow in classifying

human actions guided the parameters setup.

In the Chapter 3, we presented the direct and the iterative version of our optical

flow differential method. In our experiments, we observe that the best results for human

action recognition were achieved using the iterative algorithm, which reached 87.8% of

recognition against 85.2% of the direct approach. Perhaps, this is due to numerical errors

of the direct solution but it needs further investigation. Despite the small gain due the

use of the iterative method, we chose to use this version in all experiments.

In the Section 3.2, we described our discretization to compute the derivatives of the

images. The first-order derivatives in this scheme are computed by non-centered finite

difference given by the low-pass and high-pass filters ([0.5 0.5], [−0.5 0.5]), whose the cor-

respondent second-order filters are given by ([0.25 0.5 0.25], [0.25 −0.5 0.25]). In order to

investigate if a centered finite difference is better than the non-centered one to estimate the

image gradient, we performed tests using the masks ([0.25 0.5 0.25], [−0.5 0 0.5]), whose

respective second-order centered filters are given by ([0.0625 0.25 0.375 0.25 0.0625], [0.25 0.0−

0.5 0.0 0.25]). The centered version, however, achieved only 84.1% of recognition, against

87.8% of the non-centered version, and we adopted the discretization described in the

Section 3.2, with the non-centered masks.

Futhermore, we performed tests without the previous filtering of the images by the

gaussian or without the low-pass filtering in the orthogonal directions before computing

the derivatives. We observe that the results without the filtering are worst. Our best

result without the orthogonal low-pass filtering was 85.1%. The tests without the initial

gaussian filtering resulted only in 81.6% of recognition.

The main parameter of our optical flow method is the weight α used to control the

influence of the wave energy term in our functional. Low values of α mean that the

constraint of brightness constancy will be the dominant term. On the other hand, high
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values of α lead to a loss of information of the brightness conservation. We performed

tests varying the alpha values in the range [0.1, 10] and the best results for the human

action recognition problem using our setup is α = 1.0.

Our iterative method presents a quick convergence and, consequently, only a few ite-

rations are need per pixel to obtain a flow estimation. The decoupling of the pixels in the

system solution also helps a fast overall flow computation. We used 10 iterations in all

experiments. The same number of iterations was used for the Horn and Schunk method,

which is compatible with what is generally used in the literature.

4.2 FLOW VISUALIZATION

A simple representation of optical flow is a vector field over the image plane. Figure 4.1

shows this representation for a field flow computed by our method. By visually inspecting

the scene, one may see clearly that the person moves to the right side. We can see that

the method identifies movements in several directions in a scene. Due to the convergence

constraints, the method only computes the vectors in the points where the image deri-

vatives are not null and the Equation 3.17 is satisfied. In this computation we use the

weight α2 = 1.0 for the wave energy.

The Figure 4.2 shows the flow computed by the Horn and Schunck method. This

method is global and generates a flow more dense than our approach. For this example,

the flow of Horn and Schunck method is more smooth, spreading the motion information

detected in strong gradient areas. In other words, the motion detected on borders tend

to influence the surrounding pixels, depending on the smoothing factor. This smoothness

can be beneficial or not, depending on the application. The flow shown in the Figure 4.2

was computed with the smoothness weight α = 2.0. This value was the best in our tests

on human action recognition (Sec. 4.4). Despite the sparse result, our flow tends to be

aligned to the image edges.

In the Figure 4.3, we show the result of Lucas and Kanade optical flow method.

Similarly to our method, Lucas and Kanade approach is local. The flow vectors estimated

are more aligned to the image edges. In this example, Lucas and Kanade optical flow

is more dense than ours. Note, however, that the displacement vectors have somewhat

conflicting directions. Some of them are following the face to hair contour. The density

and the flow quality depends on the window used. A common approach with this method,
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(a) First image (b) Second image

(c) Optical flow calculated

Figura 4.1: Optical flow detected by our method.

Figura 4.2: Optical flow detected using Horn and Schunck method (HORN; SCHUNCK,
1981).

used in this work, is to use a window of 5× 5 elements. The Lucas and Kanade method

can give vectors with high magnitudes, similarly to our method, due to local derivative

estimation inconsistencies. In our implementation, we chose to filter the vectors greater

than seven pixels, which are set to null, in order to be fairly compared with our results.

Baker et al. (2007) propose a representation of optical flow by color coding. In their

scheme, each direction is represented by a color hue and the flow norm is represented by

the saturation. In other words, color (hue) indicates the vector angle and the saturation
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Figura 4.3: Optical flow detected using Lucas and Kanade method (LUCAS; KANADE,
1981).

indicates the amplitude. The Figure 4.4 shows this color coding. Several recent works in

optical flow use this optical flow representation.

Color (Hue) indicates angle
Saturation indicates amplitude

-π/2 -π/4 0 π/4 π/2

-π/2

-π/4

0

π/4

π/2

Figura 4.4: Color coding for optical flow visualization (BAKER et al., 2007).

Baker et al. (2007) also propose a new database to evaluate optical flow algorithms.

They provide ground truths for some image sequences. In our work, we perform some

experiments using these sequences. In the Figure 4.5, we show an example of image

sequence Hydrangea and the respective ground truth.

The flow for Hydrangea sequence using our method is showed in Figure 4.6. Although

our flow is not dense, one may note color similarity between our flow and the ground
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(a) First image (b) Second image

(c) Ground truth

Figura 4.5: Example of ground truth in color coding (BAKER et al., 2007).

truth (Fig. 4.5). Our method was capable to extract some directional information from

the regions having high brightness variation. Note that the homogeneous background is

completely discarded by the convergence constraints.

Figura 4.6: Optical flow computed for Hydrangea sequence using our method. Note that
the method does not converge for the homogeneous regions.

We also calculate the flow for Hydrangea sequence using the classical methods (Fig.
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4.7). We observe that the classical methods compute a more dense flow field. It is possible

to note some color similarity among the results of the classical methods and our flow (Fig.

4.6).

(a)

(b)

Figura 4.7: Optical flow computed for Hydrangea sequence using classical methods. (a)
Horn and Schunk. (b) Lucas and Kanade.

It is interesting to note that, due to the decoupling of the pixels in the system solution,

our method converges quickly. The flow at a point does not depend on its neighbours. It

only depends on its own value in the previous iteration. The Figure 4.8 shows an image

sequence and the flow computed for a region with 1, 2, 3, 4, 5, and 10 iterations. One

may observe that the flow is stable after 4 iterations.

Similarly to Horn e Schunck (1981), our method has a parameter α to control the

influence of the wave equation energy. We observe that low values of α (around 0.1) make

difficult the convergence for several points. On other hand, high values of α reduce the

energy of the data term and the resulting optical flow tend to be inconsistent in some
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figura 4.8: Evolution of our flow for a region of a image sequence. (a) First image. (b)
Second image. (c) 1 iteration. (d) 2 iterations. (e) 3 iterations. (f) 4 iterations. (g) 5
iterations. (h) 10 iterations.

regions, notably on the borders (Fig. 4.9).

4.3 QUANTITATIVE COMPARISON

Baker et al. (2011) propose performance measures for optical flow. In recent years, these

measures have been used in order to evaluate the results of new optical flow methods

(NGUYEN; JEON, 2011; RASHWAN et al., 2013). In our experiments, we use two of

them.

The first measure is the angular error between the flow vector [u, v] and the ground

truth vector [uGT , vGT ]. The error is the angle between the vectors in the three-dimensional
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figura 4.9: Flow computed for different α values. (a)First image. (b) Second image. (c)
α2 = 0.1. (d) α2 = 0.2. (e) α2 = 0.4. (f) α2 = 0.8. (g) α2 = 1.0. (h) α2 = 2.0. (i)
α2 = 4.0. (j) α2 = 10.0.

space. The third coordinate is set to 1.0. Therefore, we have the error:

AE = cos−1

(
1.0 + uuGT + vvGT√

1.0 + u2 + v2
√

1.0 + u2
GT + v2

GT

)
.

The second measure proposed by Baker et al. (2011) is the absolute error computed

in the flow endpoint. This error is defined by the L2 norm of the difference between the

flow vector [u, v] and the ground truth vector [uGT , vGT ]:

EE =
√

(u− uGT )2 + (v − vGT )2.

In their work, (BAKER et al., 2011) propose a new database for evaluation of optical



42

flow. The database contains several image sequences, including the ground truths for some

cases. We use some of these sequences with ground truth in order to compare our method

to the classical approaches. The Figures 4.10, 4.11, 4.12 and 4.13 show the sequences

used, the respective ground truth and the flow computed by our method.

(a) First frame (b) Second frame

(c) Ground truth (d) Computed flow

Figura 4.10: Flow computed for Dimetrodon sequence by our method

We compute the angular error and the endpoint error for the sequences Dimetrodon,

Grove2, Hydrangea, RubberWhale and Urban2 using our method and the classical Horn

e Schunck (1981) and Lucas e Kanade (1981). Tables 4.1, 4.2, 4.3 4.4 and 4.5 show the

results for each image sequence. AVG AE and AVG EE are the average values for angular

error (in degrees) and endpoint error (in pixels). SD AE and SD EE indicate the standard

deviation for angular error and endpoint error respectively.

Our method Horn and Schunck Lucas and Kanade
AVG AE 45.156384 59.47282 36.860088
STD AE 19.848906 10.565714 25.896709
AVG EE 1.696999 2.007118 2.174817
STD EE 0.808686 0.703345 1.468324

Tabela 4.1: Error measures for Dimetrodon sequence

Analysing the tables is not possible to state if a method is better than the other ones.
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(a) First frame (b) Second frame

(c) Ground truth (d) Computed flow

Figura 4.11: Flow computed for Grove2 sequence by our method

(a) First frame (b) Second frame

(c) Ground truth (d) Computed flow

Figura 4.12: Flow computed for RubberWhale sequence by our method
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(a) First frame (b) Second frame

(c) Ground truth (d) Computed flow

Figura 4.13: Flow computed for Urban2 sequence by our method

Our method Horn and Schunck Lucas and Kanade
AVG AE 60.911053 66.34507 48.0382
STD AE 23.892475 11.872857 33.932652
AVG EE 2.862447 2.980207 2.931243
STD EE 0.928243 0.606691 1.71224

Tabela 4.2: Error measures for Grove2 sequence

Our method Horn and Schunck Lucas and Kanade
AVG AE 81.749733 74.373672 88.012001
STD AE 29.7183 14.853719 44.673588
AVG EE 4.070399 3.766577 5.10854
STD EE 1.634529 1.205063 2.499768

Tabela 4.3: Error measures for Hydrangea sequence

Our method Horn and Schunck Lucas and Kanade
AVG AE 53.082855 50.072758 64.898186
STD AE 22.133101 21.335655 40.752655
AVG EE 1.337554 1.267871 2.392219
STD EE 0.635263 0.513079 1.407653

Tabela 4.4: Error measures for RubberWhale sequence
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Our method Horn and Schunck Lucas and Kanade
AVG AE 67.21035 69.117477 75.157982
STD AE 25.311131 21.335655 44.257145
AVG EE 7.822988 8.399518 10.141594
STD EE 7.780985 8.079951 8.128618

Tabela 4.5: Error measures for Urban2 sequence

It is important to note that the measures proposed by Baker et al. (2011) are specific

for optical flow methods. Actually, our method and the classical differential approaches

are estimation of brightness variation and can not be fairly compared to state-of-the-art

optical flow methods. The errors were presented for completeness and to compare our

method performance relative to the classical differential approaches. The resulting flow

for the ground truth pairs, however, show that our results tend to be plausible, despite

the sparseness.

4.4 APPLICATION IN THE HUMAN ACTION RECOGNITION PRO-

BLEM

In recent years, several works focused on the problem of recognition of human actions in

videos. This problem is one of the key prerequisites for video analysis and understanding.

Some works have been using optical flow in order to extract motion information from

videos (LAPTEV et al., 2008; MOTA et al., 2012, 2013; EFROS et al., 2003). In this

work, we propose to use our optical flow in a global video descriptor based on histograms

of optical flow (HOF) (LAPTEV et al., 2008). The Section 4.4.1 describes our descriptor.

4.4.1 VIDEO DESCRIPTOR USING HISTOGRAMS OF OPTICAL FLOW

Our video descriptor is based on the scheme of Perez et al. (2012); Mota et al. (2013)

for histograms of gradients. Since we have computed the optical flow vector ~vp = [u, v]

in a point p, we can represent this vector in polar coordinates ~sp = [r, θ] with θ ∈ [0, π]

and r is the magnitude of ~vp. The optical flow field for an image Ij can be compactly

represented by a one-dimensional histogram of optical flow ~hj = hk, k ∈ [1, bθ], where bθ

is the number of cells for θ coordinate. For simplicity, we use a uniform subdivision of the
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angle intervals to populate the bθ bins of the histogram:

hk =
∑
p

rpwp

where {p ∈ Ij|k = 1 + b bθθp
π
c} are all points whose angle maps to k bin and wp is a per

pixel gaussian weighting factor. The whole optical flow field is represented by a vector

with bθ elements.

Since we have computed the histogram of optical flow for an image Ij, we compute an

orientation tensor from the histogram ~hj:

Tj = ~hj~h
T
j . (4.1)

The orientation tensor is a symmetric k× k matrix that carries the information of the

optical flow distribution of the image Ij. It can be combined with other tensors in order

to find component covariances.

In order to express the motion average of consecutive images, we use a series of tensors.

Thus the average motion of a video can be computed by T =
∑
Tj with j = [1, n], where

n is the length of the video. Each Tj is normalized by L2 norm before summing and

the final tensor T also is normalized by L2 norm. The normalization allows comparing

descriptors of videos regardless their length or image resolution.

In order to maintain the spatial correlation, we propose a uniform subdivision of the

video frames in windows of a× b pixels. We compute the histograms separately for each

window. The final descriptor for each image Ij is then computed by the sum of the tensors

of each window.

4.4.2 CLASSIFICATION RESULTS

We perform most our tests in the KTH dataset (SCHULDT et al., 2004) since it is

widely used in literature. This database is composed of six actions: boxing, handclapping,

handwaving, jogging running and walking. Each action is performed by 25 subjects several

times. Most of the scenes present a homogeneous background. We also perform some

experiments in the Hollywood2 database (MARSZA LEK et al., 2009). The classification

was performed using a two-fold strategy on a non-linear SVM classifier. In this section
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Window height
5 8 10 15 20 30

Window Width

4 83.4% 83.7% 84.4% 84.7% 85.5% 87.6%
5 84.3% 84.5% 84.4% 85.4% 85.6% 87.8%
8 83.4% 84.4% 84.6% 85.2% 86.0% 87.8%
10 84.1% 84.6% 83.8% 85.2% 85.8% 86.6%
16 84.0% 84.6% 85.1% 85.2% 85.5% 86,0%

Tabela 4.6: Results of our method for different window size.

we will analyse the results of the descriptor using our optical flow and the flow of the

classical Lucas e Kanade (1981) and Horn e Schunck (1981) methods.

For our method, we analyse the influence of three parameters in the recognition rate:

the weight α of our wave energy term, the size of the window in the image subdivision

and the number of bins of the histogram. Several combinations of this parameters were

tested and we have found the best configuration with α = 1.0, window of 5× 30 or 8× 30

pixels and histogram of 60 bins. This configuration reaches 87.8% of recognition.

Setting the window to 5× 30 pixels and the histogram size to 60 bins, we analyse the

influence of the weight α of the wave energy on the recognition rate for our method. The

chart of the Figure 4.14 shows the recognition rate in function of the α values. We can

note that the best recognition rates are in the interval 0.6 < α2 < 2.6.

Figura 4.14: Recognition rate for different α weights. X-axis indicates α2.

The Table 4.6 shows the recognition rate in function of the window size. The weight

α was set to 1.0 and we use a histogram with 60 bins. One may note that the best

recognition rates are achieved using windows with height 20 and 30 pixels. On other

hand, small width window (4, 5 or 8 pixels) presents good results.



48

We perform tests with the classical methods using several window sizes, number of

bins and, for the Horn and Schunck method, weight α. The best result for Lucas Kanade

was 86.1% with window of 4× 30 pixels and histogram of 33 bins. For Horn and Schunck

method, we achieved 83.9% with a 5 × 30 window, 36 or 52 bins in the histogram and

α = 2.0. The Table 4.7 summarizes the results for the three methods.

Method Configuration Recognition
Our method Window 5× 30, 60 bins, α2 = 1.0 87.8%

Lucas and Kanade Window 4× 30, 33 bins 86.1%
Horn and Schunck Window 5× 30, 36 bins, α = 2.0 83.9%

Tabela 4.7: Best configuration for each method

We also analyse the influence of the number of bins of the histogram for each method.

The Figure 4.15 shows the results. We observe that the recognition rate stabilizes and

our method outperforms the classical approaches for histograms greater than 45 bins.

Figura 4.15: Recognition rate for different number of bins.

The confusion matrix for the best configuration of our method is showed in the Table

4.8. One may observe that the major mislabelling is for jogging, walking and running

actions. The speed of the motion is the main difference among these actions. Since our

method is differential it is difficult to identify long displacements and this mislabelling is

expected.

The Table 4.10 and 4.9 show the confusion matrix for Horn and Schunck and Lucas

and Kanade methods. We observe that our method identify better the movement jogging
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Boxing Handclapping Handwaving Jogging Running Walking
Boxing 95.8% 4.2% 0.0% 0.0% 0.0% 0.0%

Handclapping 6.9% 92.4% 0.7% 0.0% 0.0% 0.0%
Handwaving 6.9% 2.1% 91.0% 0.0% 0.0% 0.0%

Jogging 0.0% 0.0% 0.0% 87.5% 4.2% 8.3%
Running 0.0% 0.0% 0.0% 27.8% 69.4% 2.8%
Walking 0.0% 0.0% 0.0% 6.9% 2.1% 91.0%

Tabela 4.8: Confusion matrix for our method using our best configuration (Window 5×30,
60 bins, α2 = 1.0).

than the other approaches. Comparing to Horn and Schunck, our method is better for

the movement walking but worst for running. The low recognition of the class running by

our method is justified by the fact that differential methods by definition cannot detect

long displacements and this class presents a fast movement.

Boxing Handclapping Handwaving Jogging Running Walking
Boxing 91.6% 8.4% 0.0% 0.0% 0.0% 0.0%

Handclapping 8.3% 89.6% 2.1% 0.0% 0.0% 0.0%
Handwaving 3.5% 3.5% 90.3% 0.0% 2.8% 0.0%

Jogging 0.0% 0.0% 0.0% 82.6% 8.3% 9.0%
Running 0.0% 0.0% 0.0% 19.4% 70.8% 9.7%
Walking 0.0% 0.0% 0.0% 3.5% 4.9% 91.7%

Tabela 4.9: Confusion matrix for Lucas and Kanade method using the best configuration
(window 4× 30, 33 bins).

Boxing Handclapping Handwaving Jogging Running Walking
Boxing 95.1% 4.2% 0.7% 0.0% 0.0% 0.0%

Handclapping 1.4% 81.2% 17.4% 0.0% 0.0% 0.0%
Handwaving 6.2% 7.6% 85.4% 0.0% 0.7% 0.0%

Jogging 0.0% 0.0% 0.0% 80.6% 12.5% 6.9%
Running 0.0% 0.0% 0.0% 18.1% 79.2% 2.8%
Walking 0.0% 0.0% 0.0% 14.6% 3.5% 81.9%

Tabela 4.10: Confusion matrix for Horn and Schunck method using the best configuration
(Window 5× 30, 36 bins, α = 2.0).

We further analyse the performance of our method in the problem of human action

recognition with the challenging database Hollywood2. The computations were perfor-

med using the best configuration found for each method in the KTH database. Table

4.11 shows the achieved results, where one may note that our method outperform the

classical methods. We did not perform more tests in Hollywood2 database due to the

high computational cost of this database.
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Method Recognition
Our method 31.9%

Horn and Schunck 28.8%
Lucas and Kanade 27.4%

Tabela 4.11: Results in the Hollywood2 database.

In terms of time complexity, the descriptors using HOF and our iterative version were

computed with an average of 19 frames per second for the whole KTH database in an

Intelr Xeonr 2.20GHz processor with 32GB of memory. For the classical methods, we

computed for the same database with 21 frames per second for the Horn and Schunck

and 25 for the Lucas and Kanade methods. Using 35 videos from Hollywood database

the descriptors were computed with 2.12 frames per second using our method, 1.62 using

Horn and Schunck and 2.73 using Lucas and Kanade. Using the direct version, the des-

criptors were computed with 20 and 2.28 frames per second for the KTH and Hollywood2

databases, respectively.
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5 CONCLUSION

In this work we presented a differential optical flow method based on the energy of wave

equation. The optical flow is computed by minimizing a functional energy composed by

two terms. A term of brightness constancy and a term of energy of the wave. This second

term is the main contribution of our work.

Minimizing the functional energy through Euler-Lagrange equations, we obtain a sys-

tem of linear equations. Due to the decoupling of the pixels, the system can be quickly

solved by an iterative or a direct method. The decoupling makes our approach local and

suitable for parallelization.

Our method is not able to calculate the flow in all the image points. Using a direct

solution, the velocities can be estimated only where the matrix of the system is invertible.

For the iterative solution, we presented the convergence conditions and the flow is com-

puted only in the points that satisfies them. Therefore, the resulting flow field is sparse.

In spite of the sparsity, we have high quality flow in the detected points.

In order to evaluate the performance of our method, we performed comparative tests

with the classical Horn e Schunck (1981) and Lucas e Kanade (1981) methods. This

choice is justified by the fact that these classical approaches are basis of recent differential

methods (RASHWAN et al., 2013; BRUHN et al., 2005). For the performance measures

proposed by Baker et al. (2011), we verified that our method performs similar results to

the classical ones.

Our flow was applied in the problem of human action recognition using histograms of

optical flow. The best result of our method in the KTH database was 87.8% of recognition,

outperforming the best results for Horn and Schunck (83.9%) and Lucas and Kanade

(86.1%) methods, using the same recognition protocol (PEREZ et al., 2012; MOTA et

al., 2013). These recognition ratios were computed using the best parameters for each

method, obtained through extensive experimentation.

Our method has a parameter α related to the weight of the energy of the wave equation

in the total energy. The experiments showed that the resulting flow presents a better

quality with 0.6 < α2 < 2.6.

For future works, we intend to include global elements in the flow computation, which
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could reduce the sparsity of the flow. The first attempt was to constrain the flow rotational

in the energy functional. However, this approach did not converge since the convergence

condition depends on all the points of the image. We also want to further study the

application of our optical flow method in the human action recognition problem. Another

possibility is to use our convergence conditions as a feature detector.
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Dispońıvel em: <http://dx.doi.org/10.1109/CVPR.2011.5995407>.


	 Introduction
	Problem definition
	Objectives
	Related Works
	Differential Methods
	Hierarchical Methods
	Physical Model Based Methods
	Other Approaches


	 Fundamentals
	Brightness Constancy Constraint
	Horn and Schunck Method
	Lucas and Kanade Method
	Wave Equation

	 Proposed Method
	Convergence Condition
	Discretization

	 Experimental Results
	Experimental Setup
	Flow Visualization
	Quantitative comparison
	Application in the human action recognition problem
	Video descriptor using histograms of optical flow
	Classification results


	 Conclusion
	REFERÊNCIAS

