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Resumo
A construção de campos com localização em cordas foi realizada rigorosamente há pouco
mais de uma década. Nesta abordagem, os campos são operadores em algum espaço de
Hilbert, e portanto não há graus de liberdade não-físicos tais como "ghosts". Além de
permitir a construção de campos carregados inteiramente num espaço espaço de Hilbert, os
campos com localização em cordas exibem um bom comportamento no regime ultravioleta
e, entre outras características, são possíveis candidatos para descreverem consistentemente
a matéria escura. No intuito de obter uma prova da renormalizabilidade em modelos
perturbativos no esquema de Epstein-Glaser com campos quânticos localizados em cordas,
é necessário evidenciar a liberdade que se tem ao definir produtos temporalmente ordenados
do Lagrangeano de interação. Este trabalho proporciona um primeiro passo significativo
nesta direção. O problema básico é a presença de um conjunto aberto de n-uplas de cordas
que não podem ser cronologicamente ordenadas. Nós resolvemos este problema ao mostrar
que quase todas (i.e. exceto num subconjunto de medida nula) tais configurações de cordas
podem ser dissecadas num número finito de pedaços, os quais por sua vez podem ser
cronologicamente ordenados. Com isso, tem-se que o produto temporalmente ordenado de
fatores lineares de campos está fixo fora de um conjunto de medida nula de configurações
de cordas. A construção do ordenamento temporal geométrico de cordas é feita de modo a
servir para o estudo da renormalizabilidade de quaisquer teorias quânticas de campos com
localização em cordas.
Palavras-chaves: Campos quânticos. Localização em cordas. Corte de uma corda. Pro-
dutos temporalmente ordenados. Esquema de Epstein-Glaser. Renormalização. Renormal-
ização perturbativa.





Abstract
The construction of string-localized fields was rigorously accomplished a little over a
decade ago. In this approach, the fields are operators in some Hilbert space, and therefore
there are no unphysical degrees of freedom such as ghosts. In addition to allowing the
construction of charged fields entirely in a Hilbert space, the string-localized fields exhibit,
in general, a good behavior in the ultraviolet regime and, among other features, the class
(representation) of string-localized fields with m = 0 and s =∞ are possible candidates
to consistently describe dark matter. In order to obtain a proof of renormalizability of
perturbative models in the Epstein–Glaser scheme with string-localized quantum fields,
one needs to know what freedom one has to define time-ordered products of the interaction
Lagrangian. This work provides a first significant step in that direction. The basic issue is
the presence of an open set of n-tuples of strings which cannot be chronologically ordered.
We resolve it by showing that almost all (i.e. outside a null set) such string configurations
can be dissected into finitely many pieces which can indeed be chronologically ordered.
This fixes the time-ordered products of linear field factors outside a nullset of string
configurations. The construction of the geometric time ordering of strings is realized in
such a way that it will serve to study the renormalizability of any quantum field theories
with string-localized fields.
Keywords: Quantum Fields. String-localization. Chopping of a string. Time-ordered
products. Epstein-Glaser scheme. Renormalization. Perturbative renormalization.
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Introduction

The three pillars of relativistic quantum field theory (QFT) are positivity of states,
positivity of the energy and locality of observables (or Einstein causality). Any attempt
to reconcile them leads to the well-known singular behaviour of quantum fields at short
distances (UV singularities) [1], which becomes worse with increasing spin. This rules out
the direct construction of interacting models for particles with spin/helicity s ≥ 1 in a
frame which incorporates the three principles from the beginning.

The usual way out is gauge theory (GT), where one relaxes the principle of positivity
of states in a first step, and divides out the unphysical degrees of freedom (negative norm
states and ghost fields) at the end of the construction. This approach has been extremely
successful and is the basis of the Standard Model of elementary particle physics. However,
it has some shortcomings: The intermediate use of unphysical degrees of freedom does not
comply well with Ockham’s razor; The approach does not provide a direct construction of
charge carrying physical fields; It excludes an energy-momentum tensor for massless higher
helicity particles [2]; Finally, many features of models must be put in by hand instead of
being explained, like for example the shape of the Higgs potential, and chirality of the
weak interactions.

There is an alternative, relatively recent but conservative approach [3–6], which
keeps positivity of states and instead relaxes the localization properties of (unobservable)
quantum fields: These fields are not point-local, but instead are localized on Mandelstam
strings extending to space-like infinity [3,7]. Such a string, not to be confused with the
strings of string theory, is a ray emanating from an event x in Minkowski space in a
space-like1 direction e,

Sx,e
.= x+ R+

0 e. (1)

Our quantum fields are operator-valued distributions ϕ(x, e), where x is in Minkowski
space and e is in the submanifold of space-like directions

H := {e ∈ R4 : e · e = −1}. (2)

The field ϕ(x, e) is localized on the string Sx,e in the sense of compatibility of quantum
observables: If the strings Sx,e and Sx′,e′ are space-like separated,2 then

[ϕ(x, e), ϕ(x′, e′)] = 0. (3)
1 The choice of space-like strings is motivated by the known fact that in every massive model charge-

carrying field operators are localizable in space-like cones [8]. It seems, however, that our constructions
go through also for light-like strings, replacing H by the forward light cone.

2 Indeed, the distributional character of the fields requires that Sx′,e′′ be space-like separated for all e′′
in an open neighborhood of e′ [3].
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It has been shown [8] that in the massive case this is the worst possible “non-locality” for
unobservable fields which is consistent with the three mentioned principles (in particular
with locality of the observables), and that this weak type of localization still permits the
construction of scattering states. Free string-localized fields for any spin with good UV
behaviour have been constructed in a Hilbert space without ghosts. Among these are
string-localized fields which differ from their bad-behaved point-localized counterparts by a
gradient [4,6,9]. They allow for the construction of string-localized energy-momentum ten-
sors for any helicity [9,10], evading the Weinberg-Witten theorem [2]. In the (perturbative)
construction of interacting models, one uses an interaction Lagrangean which differs from
a point-localized counterpart by a divergence. Then the classical action is the same for
both Lagrangeans. (This is analogous to gauge theory, where two Lagrangeans in different
gauges yield the same action.) The requirement that this equivalence survives at the
quantum level leads to renormalization conditions which we call string independence (SI)
conditions, reminiscent of the Ward identities in gauge theory. They are quite restrictive:
In particular, they imply features like chirality of weak interactions [11] , the shape of the
Higgs potential [12] and the Lie-algebra structure in models with self-interacting vector
bosons [5]. It is not clear at the moment if this approach leads to the same models as the
gauge theoretic one.

A proof of renormalizability at all orders in this approach is missing up to date.
The present work is meant as a first step in this direction. We aim at the perturbative
construction of interacting models within the Epstein-Glaser scheme [13]. This approach
is based on the Dyson series expansion of the S-matrix in terms of time-ordered products
of the interaction Lagrangean, which is a Wick polynomial in the free fields. In the case
of point-localized fields, renormalizability enters as follows. The time-ordered products
of n Wick monomials Wi are basically characterized by symmetry and the factorization
property, namely

TW1(x1) · · ·Wn(xn) = TW1(x1) · · ·Wk(xk) TWk+1(xk+1) · · ·Wn(xn) (4)

whenever each event in {x1, . . . , xk} is “later” than each event in {xk+1, . . . , xn}. (We
say that x is later than y if there is a reference frame such that x0 > y0.) Indeed, these
properties fix the T products outside the origin by translation invariance and induction,
(see [13,14]). In this x-space approach, the “UV problem” of divergencies consists in the
extension across the origin, which is not unique: At every order n one has a certain number
of free parameters. If the short distance scaling dimension of the interaction Lagrangean is
not larger than 4, then this number does not increase with the order, and one can fix all free
parameters by a finite set of normalization conditions: The model is renormalizable [13].

In the present work, we initiate the corresponding discussion for string-localized
quantum fields ϕ(x, e) by considering time-ordered products of linear fields Tϕ(x1, e1) · · ·ϕ(xn, en).
(The case of Wick monomials of order > 1 is left for a future publication.) These are
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required to be symmetric and to satisfy the factorization property, namely Eq. (4) must
hold, with Wi(xi) replaced by ϕ(xi, ei), whenever each of the first k strings is later than
each of the last n− k strings.

The basic problem, already present at order 2, is that two strings generically are not
comparable in the sense of time-ordering. In fact, there is an open set of pairs (x, e), (x′, e′)
corresponding to strings which are not comparable, (see Lemma 2.1.1). Thus the T product
of two fields is undefined on an open set, which leaves an infinity of possible definitions
instead of finitely many parameters already at second order, jeopardizing renormalizability.
For three and more strings, the problem becomes worse (see Fig. 1 for a typical example).
To overcome this problem, we prove first that n strings which do not touch each other can

S1

S2S3

Figure 1 – Three strings, for which no string is later than all the others (in three-dimensional
space-time – the time arrow points out of the plane).

be chopped up into finitely many pieces which are mutually comparable. This is our main
result. It is shown first for n = 2 in a constructive way (Prop. 2.2.1), and then for n > 2
with a non-constructive proof (Prop. 2.2.4).

We then proceed to show how this purely geometric result fixes the time-ordered
products Tϕ(x1, e1) · · ·ϕ(xn, en) outside the meager set ∆n of strings that touch each
other. In particular, they turn out to satisfy Wick’s expansion. Again, this is first shown
for n = 2 (Prop. 3.2.1), where the product Tϕϕ is fixed by its vacuum expectation value
(the Feynman propagator), and then for n > 2 (Prop. 3.2.2).

In the extension of the T products across ∆n, the scaling degrees [15] of the
Feynman propagator with respect to the various submanifolds of ∆2 have to be compared
with the respective co-dimensions. We give an example in Appendix B.2, but leave the
general discussion open for future investigations.

We close the introduction with some further details. Our fields are covariant under
a unitary representation U of the proper orthochronous Poincaré group:

U(a,Λ)ϕ(x, e)U(a,Λ)−1 = ϕ(a+ Λx,Λe), (5)

where a ∈ R4 is a translation and Λ is a Lorentz transformation. (This is the scalar case,
which we consider here for sake of notational convenience. The fields may have vector or
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tensor indices which also transform.)The irreducible sub-representations of U correspond
to the particle types described by ϕ.3 We consider here only the case of Bosons, and we
exclude explicitely the case of Wigner’s massless “infinite spin” particles [16]. It has been
shown in [7] that then our string-localized free massive field ϕ(x, e) is of the form

ϕ(x, e) =
∫ ∞

0
ds u(s)ϕp(x+ se), (6)

where ϕp is some point-localized free field, and u is some real-valued function with support
in the positive reals.

Of course, one might define the time-ordered product Tϕ(x, e)ϕ(x′, e′) by first taking
the point-local one and then integrating, as in Eq. (B.12). (Our Prop.s 3.2.1 and 3.2.2
may be obtained this way.) However, when it comes to renormalization (or extension), this
procedure misses the central point of our approach: The point-local Feynman propagator
for higher spin fields (or derivatives of scalar fields) is not unique due to its bad UV
behaviour, and leaves the freedom of adding delta function renormalizations. This freedom
is not undone by the subsequent intregrations. On the other hand, the UV behaviour of ϕ
is better than that of the point-local field ϕp just due to the integration, and therefore in
general the T product has less freedom. We give an example in Appendix B.2. We conclude
that it is worthwile to take the string-localized ϕ serious as the basic building block
(and not to overburden the T product by continuity assumptions permitting exchange of
integration and time ordering).

This thesis is organized as follows. Chapter 1 is dedicated to mathematical and
physical preliminaries, which contains two sections: the first concerning the geometry of
Minkowski space-time and the second concerning some basic distribution theory. Chapter
2 is concerned with a thorough study of geometric time-ordering of strings in space-time:
We define the time-ordering prescription for strings, i.e., the “later than” relation, and
prove our main geometrical result on the chopping of strings. In Chapter 3, we start with
a section treating superficially the case of time-ordered point-like fields and study the
renormalizability of a scalar field theory with interaction lagrangean L(x) =: ϕ(x)m : for
illustrative and motivational purposes, evidentiating the stragety to be followed also in the
string-like case with the necessary modifications. In the subsequent section, the axioms
for the time-ordered product of string-localized fields are stated, and we show that (in
the case of linear factors) it is fixed outside the set ∆n and satisfies Wick’s expansion.
In Section 3.2.3, we comment on the problem arising in extending the present results to
Wick monomials of order > 1. This work has already produced two papers, one related to
section 3.1, which has already been published [17], and the other related to chapters 2 and
3(with the exception of section 3.1) which is currently being reviewed [18].

3 Such fields exist for any spin/helicity [6, 7].
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1 Mathematical and Physical Preliminaries

1.1 Geometric Structure ofM

In this section we review some fundamental geometrical properties of Minkowski
space1.

Definition 1.1.1. A vector space V over a field F is a set together with two laws of
composition:

• addition: V × V → V,

• scalar multiplication: F× V → V,

and satisfying the following axioms:

(i) Addition makes V into a commutative group 〈V ,+〉.

(ii) Scalar multiplication is associative with respect to multiplication in F:

(ab)v = a(bv), ∀a, b ∈ F and ∀v ∈ V

(iii) The element 1F acts as identity: 1Fv = v, ∀v ∈ V.

(iv) Two distributive laws hold:

(a+ b)v = av + bv, and a(v + w) = av + aw, ∀a, b ∈ F and ∀v, w ∈ V

Definition 1.1.2. A bilinear form on a vector space V is a map g : V × V → F that is
linear in each variable. Also, we define a bilinear form to be:

• symmetric if g(v, w) = g(w, v) ∀v, w ∈ V;

• positive [negative] definite if g(v, v) > 0 [< 0] ∀v ∈ V \ {0};

• positive [negative] semidefinite if g(v, v) ≥ 0 [≤ 0] ∀v ∈ V \ {0};

• nondegenerate if g(v, w) = 0 ∀w ∈ V implies v = 0;
1 For wonderful studies on the geometry of Minkowski space see [19,20]
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Remark 1.1.3. Recall that an inner product on a vector space V (usually denoted by
〈, 〉 : V×V → F) is a positive-definite symmetric bilinear form. The Euclidean space, which
is one of the most important types of inner product spaces, is endowed with the correct
kind of structure to serve as a mathematical model for many physical systems. However,
an inner product space is not structurely adequate to accomodate the Special Theory of
Relativity, since here, the "distance" between two events is no longer positive-definite. For
this purpose, the following defined structure was devised.

Definition 1.1.4. Minkowski space2 is a 4-dimensional real vector spaceM on which
is defined a nondegenerate, symmetric, bilinear form g :M×M→ R given by g(v, w) =
v0w0 − v1w1 − v2w2 − v3w3 =: v · w for every v, w ∈ M, where v = (v0, v1, v2, v3) and
w = (w0, w1, w2, w3). The elements in M are called events and g is referred to as the
Lorentz inner product onM.

Remark 1.1.5. Notice here, that the Lorentz inner product (from now on, we may call
it just pruduct) can be any real number. Also, the quadratic form associated with the
inner product g onM is the map q :M→ R defined by q(v) = g(v, v) =: v2. Two vectors
x, y ∈M are said to be g-othogonal or just orthogonal if g(x, y) = 0. Given a subset
A ⊆M,its orthogonal complement A⊥ inM is thus defined by A⊥ = {v ∈M : g(v, w) =
0 ∀w ∈M}. A unit vector v is a vector for which either q(v) = 1 or q(v) = −1. A basis
{e0, e1, e2, e3} forM consisting of unitary orthogonal vectors is called an orthonormal
basis forM. An orthonormal basis {e0, e1, e2, e3} forM, in a way, coordinatizes every
event and can be identified with a frame of reference. Thus, if x = x0e0 +x1e1 +x2e2 +x3e3,
we regard the coordinates (x0, x1, x2, x3) of x relative to the basis {eα} as the time (x0) and
spatial (x1, x2, x3) coordinates supplied the event x by the observer who presides over this
frame of reference. Also, the inner product between two vectors v, w ∈M may be written,
using Einstein’s summation convention, as

v · w = ηµνv
µwν , (1.1)

where ηµν (or ηµν) are the components of the following 4× 4 matrix

η = (ηµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (1.2)

that is, ηµν = ηµν = 0 if µ 6= ν, η00 = η00 = 1, and ηii = ηii = −1 if i = 1, 2, 3.
2 It should be pointed out that due to its vector space structure, Minkowski space can be canonically

identified with its own tangent space TpM at the origin [21, p. 15]. Therefore, we shall make no
distinction between vectors in TpM and vectors inM.



1.1. Geometric Structure of M 23

Definition 1.1.6. LetM be a Minkowski vector space. A Lorentz transformation on
M is an isomorphism ϕ :M→M which satisfies the following condition

g(ϕ(v), ϕ(w)) = g(v, w) ∀v, w ∈M. (1.3)

Thus, a Lorentz transformation "preserves all the structure of Minkowski space."
Furthermore, let

L := {ϕ :M→M : such that g(ϕ(v), ϕ(w)) = g(v, w) ∀v, w ∈M}, (1.4)

then

Theorem 1.1.7. The set L of all isomorphisms from M to M forms a group under
composition, called the Lorentz group.

Remark 1.1.8. The postulates of the Theory of Special Relativity (TSR), imply that given
two events P = (P0, P1, P2, P3) and Q = (Q0, Q1, Q2, Q3) in space-time, the interval ∆S
between them, defined by ∆S2 .= (P0 − Q0)2 − (P1 − Q1)2 − (P2 − Q2)2 − (P3 − Q3)2, is
invariant under a change of inertial frames of reference. Therefore, rigorously speaking,
the space-time of TSR is, in a sense, more accurately, structurized mathematically as an
affine space (or, linear manifold), rather than a vector space, since physically there is no
preferred event in space-time. Let us denote Minkowski space-time by M. The relation
between M andM can be characterized by the map

vec : M×M→M, (1.5)

given by
vec(P,Q) := #    »

PQ (1.6)

and for which
vec(P,Q) + vec(Q,R) = vec(P,R), (1.7)

where P,Q,R ∈M. It follows from (1.7) that vec(P, P ) = #»0 and vec(P,Q) = −vec(Q,P ).
Thus, we may write the the interval ∆S2 = #    »

PQ · #    »

PQ and now clearly a Lorentz transfor-
mation leaves the interval invariant. However, by homegeneity of space-time, even though
translated frames of reference also yield the same interval between two arbitrary events,
translations do not satisfy equation (1.3)3, that is, they are not Lorentz transformations.
Furthermore, the set of all Lorentz transformations and translations are called Poincaré
transformations which form the isometry group of space-time, called the Poincaré
group, P.
3 A translation by a fixed vector a ∈ M may be thought of as an affine transformation Ta : M → M

given by Ta(P ) = P + a := P ′ ∈M. Let P and Q be two events in M, then Ta(P ) = P + a = P ′ and
Ta(Q) = Q+ a = Q′, and consequently vec(Ta(P ), Ta(Q)) =

#       »

P ′Q′ = (Q+ a)− (P + a) = #    »

PQ, hence
leaving the interval invariant.
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The Lorentz group may be seen as an isotropy subgroup of P which fixes the origin4. The
abelian group of translations onM, denoted by R1,3 is also a subgroup of P. Since R1,3 is
normal in P we may represent the latter as a semidirect product of R1,3 and L, that is
P = R1,3 o L.

Remark 1.1.9. We may represent a Lorentz transformation as a linear transformation
ϕΛ :M→M defined by ϕΛ(x) := Λ · x = x′, 5where x ∈M, and Λ is a 4× 4 matrix that
leaves the Lorentz inner product invariant. After choosing a basis forM, we may write
x′µ = Λµ

νx
ν, where Λµ

ν are the sixteen components of Λ satisfying

Λµ
νΛα

βηµα = ηνβ, ν, β ∈ {0, 1, 2, 3}, (1.8)

which follows from equation (1.1), and is equivalent to the relation

ΛTηΛ = η, (1.9)

where T stands for transpose.

Remark 1.1.10. The (complete) Lorentz group, O(1, 3), is the group of all linear isome-
tries of Minkowski’s (pseudo-)metric. This group has four connected components, whose
elements may or may not preserve either the space orientation or the time direction. The
orthochronous subgroup, O+(1, 3), is formed by the two preserving-time components,
and the proper subgroup, SO(1, 3), is formed by the two components preserving space
orientation, which are the elements with determinant 1. The identity component, which
preserves both time and space, is in the subgroup SO+(1, 3). This subgroup is called the
proper, orthochronous Lorentz group or the restricted Lorentz group. Only the
elements of the connected component of the unit correspond to physically realizable trans-
formations. Therefore, P+

↑ := R1,3 o SO+(1, 3) is considered as the relativistic invariance
group. In this work, we restrict to the symmetry group P+

↑ , thus excluding parity and time
reflection.

Remark 1.1.11. Similarly to Remark 1.1.9, We may represent a Poincaré transformation6

by ϕ(a,Λ) :M→M, where ϕ(a,Λ)(x) = (a,Λ)x := a+ Λx. The composition law on P+
↑ is

defined as follows: let (a1,Λ1), (a2,Λ2) ∈ P+
↑ , then (a1,Λ1) · (a2,Λ2) = (a1 + Λ1a2,Λ1Λ2).

The fact that the quadratic form q defined in Remark 1.1.5 can take any real
number, gives rise to Minkowski’s space peculiar geometrical structure. In order to view
some of its idiosyncrasies we shall first need some definitions.
4 Equivalently, we could have said that the Lorentz group is the stabilizer subgroup of P with respect to

0, that is L = P0
.= {p ∈ P : p(0) = 0}.

5 Although the same symbol x was used to denote both a vector and a 4× 1 column matrix, which are
obviously different objects, from the context it is going to be clear which object is being represented
by x and hopefully no confusion will arise whatsoever.

6 From now on we’ll refer to P+
↑ simply as the Poincaré group, and its cooresponding elements as

Poincaré transformations
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Definition 1.1.12. Let q : M → R defined by q(v) = v2. We say v is time-like,
space-like, or light-like if q(v) > 0, q(v) < 0, or q(v) = 0, respectively.

Definition 1.1.13. The forward lightcone V+ is the set of all time-like and future-
pointing vectors, V+ := {x ∈ R4 : x0 > |~x|}, and for z ∈ R4 we denote V+(z) := V+ + z

= {x+ z ∈ R4 : x0 > |~x|}, where x0 represents the time coordinate of x and ~x its spatial
coordinates, i.e (x0, ~x) .= x.

Similarly, the backward lightcone V− is the set of all time-like and past-pointing
vectors and V−(z) := {x+ z ∈ R4 : x0 < − |~x|}.

Remark 1.1.14. The boundaries of the backward and forward lightcones are given by
∂V−(z) := {x+ z ∈ R4 : x0 = − |~x|} and ∂V+(z) := {x+ z ∈ R4 : x0 = |~x|}, respectively.
Furthermore, the closure of the forward lightcone V+(z) is denoted V+(z), similar for the
backward lightcone.

Definition 1.1.15. For any set R ⊂ R4 the backward and forward lightcones (or causal past
and future) of R are defined by V−(R) := ⋃

z∈R
V−(z) and V+(R) := ⋃

z∈R
V+(z), respectively.

The following theorem will be useful in chapter 2.

Theorem 1.1.16. A vector ξ ∈ R4 is contained in V+ if, and only if, it satisfies u · ξ ≥ 0
for all u ∈ V+.

Proof. Let u be an arbitrary vector in V+ and suppose firstly that ξ ∈ V+. In the case
where ξ = 0, we trivially have u · ξ = 0 ∀u ∈ V+. Thus, let us consider the non-trivial
case where ξ ∈ V+ \ {0}. Then, u2 .= (u0)2 − #»u · #»u > 0 and ξ2 .= (ξ0)2 − #»

ξ · #»

ξ ≥ 0, or
equivalently (u0)2 > #»u · #»u

(ξ0)2 ≥ #»

ξ · #»

ξ
, (1.10)

where u0 is the time coordinate of the vector u and #»u is the 3-vector composed by the
spatial coordinates of u, and analagously for the vector ξ. From the two equations in (1.10)
it follows that ∣∣∣u0v0

∣∣∣ > √
( #»u · #»u )( #»

ξ · #»

ξ ). (1.11)

Using the Cauchy-Schwartz inequality for the 3-vectors #»u and #»

ξ given by
∣∣∣ #»u · #»

ξ
∣∣∣ ≤ √( #»u · #»u )( #»

ξ · #»

ξ ), (1.12)

combined with equation (1.11) gives us
∣∣∣u0ξ0

∣∣∣ > ∣∣∣ #»u · #»

ξ
∣∣∣ . (1.13)
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Since u and ξ are both future-pointing time-like vectors, u0ξ0 > 0, from which it follows
that

u0ξ0 − #»u · #»

ξ ≡ u · ξ > 0, (1.14)

and since u is an arbitrary vector in V+, equation (1.14) holds ∀u ∈ V+.

Proving the other direction of the lemma is equivalent, by contraposition, to proving
ξ /∈ V+ ⇒ ∃u ∈ V+ : u · ξ < 0. Therefore, suppose ξ /∈ V+, then either ξ ∈ V− \ {0}, or
ξ ∈ {0}c7.

1. ξ ∈ V− \{0}. In this case, −ξ ∈ V+ \{0}, and by the first part of the proof, −ξ ·u > 0
and consequently u · ξ < 0.

2. ξ ∈ {0}c. In this case, ξ⊥ is a time-like hyperplane (see definition A.0.3) passing
through the origin. Let u0 ∈ ξ⊥ ∩ V+ and set u = u0 + εξ, where ε is a small enough
positive number.8 Then,

u · ξ = (u0 + εξ) · ξ = εξ2 < 0. (1.15)

Hence, in both cases ∃u ∈ V+ : u · ξ < 0 and the proof is complete.

1.2 Distribution Theory

1.2.1 The Space of Linear Forms (Dual Space)

Theorem 1.2.1. Let V be a vector space over a field F and 〈u, 〉 : V → F (or u : V → F)
be a linear form from V to F, then the set of all linear forms from V to F, denoted by
Hom(V ,F), forms a vector space with addition and multiplication by scalars defined by

• 〈au, φ〉 = a〈u, φ〉 if a ∈ F and u ∈ Hom(V ,F) ∀φ ∈ V

• 〈u+ v, φ〉 = 〈u, φ〉+ 〈v, φ〉 if u, v ∈ Hom(V ,F) ∀φ ∈ V

Proof. The proof that Hom(V ,F) satisfies the 8 axioms for vector spaces is quite straight-
forward, even so, we shall prove two of them: the existence of identity and inverse elements.
Let O : V → F be the linear form with Ker O = V , that is, O(φ) = 〈O, φ〉 = 0 ∀φ ∈ V .
7 For the definition of causal complement consult the definition A.0.1 in appendix A
8 Small enough in the sense that u is still a future-pointing time-like vector. Such an ε exists due to the

fact that V+ is an open convex subset ofM.
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Then, ∀u ∈ Hom(V ,F)

〈u+O, φ〉 = 〈u, φ〉+ 〈O, φ〉

= 〈u, φ〉+ 0

= 〈u, φ〉 ∀φ ∈ V . (1.16)

This proves that the linear form O is the identity element in Hom(V ,F). To
prove the existence of inverse elements, let u ∈ Hom(V ,F). From the definition of scalar
multiplication, we have 〈−u, φ〉 = 〈−1 · u, φ〉 = −〈u, φ〉 ∀φ ∈ V . Hence,

〈u+ (−u), φ〉 = 〈u, φ〉+ 〈−u, φ〉

= 〈u, φ〉 − 〈u, φ〉

= 0 ∀φ ∈ V . (1.17)

Remark 1.2.2. A distribution is essentially a particular type of linear form defined
on C∞c (Rn) (also denoted by D(Rn)), which is the vector space of all complex-valued
functions on Rn which possess continuous derivatives of all orders and vanish outside
some bounded set. Moreover, a distribution is not actually the whole Hom(C∞c (Rn),C),
but a subspace (more precisely, isomorphic to a subspace) of it consisting of continuous
linear forms. The term "continuous" presupposes the existance of an underlying topology.
To define a distribution properly one should use the theory of locally convex topological
spaces, however, to be parsimonious, we are not going to enter this beautiful and elegant
realm of mathematics.

Before defining a distribution and describing some of its fundamental properties
we are going to succinctly characterize its domain, which is the space of test functions.

1.2.2 The Space of Test Functions

Definition 1.2.3. Let f : Ω ⊆ Rn → C be a continuous complex-valued function. The
support of f , denoted symbolically by supp(f) is the closure of the set of points in Ω
where f is non-zero, that is

supp(f) : = {x ∈ Ω : f(x) 6= 0}

= Ω\{y ∈ Ω : ∃ neighborhood U 3 y : f |U = 0}.

Remark 1.2.4 (Properties). Let f, g be functions on Ω ⊆ Rn, then
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1. supp(f ′) ⊆ supp(f);

2. supp(fg) = supp(f) ∩ supp(g);

3. supp(f + g) ⊆ supp(f) ∪ supp(g).

Definition 1.2.5. Let Ω ⊆ Rn be an open set. The space of complex-valued infinitely
differentiable functions on Ω with compact support, denoted by C∞c (Ω) (or D(Ω)), is called
the space of test functions on Ω.

Definition 1.2.6. A sequence of functions (ϕj) ⊂ C∞c (Ω) is said to converge to a function
ϕ ∈ C∞c (Ω) as j →∞ if

• there exists a compact set K ⊂ Ω such that supp(ϕj) ⊆ K, ∀j ∈ N, and

• the derivatives of any given order m of the ϕj converge uniformly as j →∞ to the
corresponding derivative of ϕ

1.2.3 Basic Definitions and Properties

Definition 1.2.7. Let Ω ⊆ Rn be an open set. A continuous linear functional u : C∞c (Ω)→
C is called a distribution in Ω. That is, let χ1, χ2 ∈ C∞c (Ω), λ ∈ C and (ϕj) a sequence
in C∞c (Ω), then, if u satisfies:

• u(χ1 + λχ2) = u(χ1) + λu(χ2);

• if ϕj → 0 in C∞c (Ω), then u(ϕj)→ u(0) = 0,

then u is a distribution. The space of distributions in Ω is denoted by D′(Ω) (which is
Schwartz’ original notation [22]).

Example 1.2.8. Let χ1, χ2, ϕj ∈ C∞c (R). The classical Dirac delta "function", defined
by 〈δ, ϕ〉 = ϕ(0), can be easily verified to be a distribution. Linearity follows from

〈δ, χ1 + λχ2〉 = (χ1 + λχ2)(0)

= χ1(0) + λχ2(0)

= 〈δ, χ1〉+ λ〈δ, χ2〉,

and if ϕj → 0 in C∞c (R), then

〈δ, ϕj〉 = ϕj(0)→ 0,

which proves the continuity of δ.



1.2. Distribution Theory 29

Example 1.2.9. Let f ∈ L1
loc(Ω)9, where Ω is open in Rn, then uf defined by

uf (ϕ) = 〈uf , ϕ〉 =
∫
f(x)ϕ(x)dx, ∀ϕ ∈ C∞c (Ω) (1.18)

is a distribution.

In fact, that is relatively easy to check. Let ϕ, ϕ′ ∈ C∞c (Ω) and λ ∈ C, then linearity
follows from

〈uf , ϕ+ λϕ′〉 =
∫
f(x)(ϕ(x) + λϕ′(x))dx

=
∫
f(x)ϕ(x)dx+ λ

∫
f(x)ϕ′(x)dx = 〈uf , ϕ〉+ λ〈uf , ϕ′〉,

and to prove the continuity of uf , let {ϕj} ⊂ C∞c (Ω) be a sequence, with ϕj → 0 in C∞c (Ω),
then

|〈uf , ϕj〉| =
∣∣∣∣∣
∫
supp(ϕj)

f(x)ϕj(x)dx
∣∣∣∣∣

≤ sup
x∈K
|ϕj(x)|

∫
K
|f(x)| dx (1.19)

where K is a compact set containing the supports of all ϕj, that is ∪j∈Nsupp(ϕj) ⊆ K. If
ϕj → 0, then the right-hand side of equation (1.19) approaches 0 and we are done.

Remark 1.2.10. Although in the previous example it was shown that a function f ∈ C∞c (Ω)
defines a distribution uf , the distribution so defined cannot determine f uniquely, since the
right-hand side of equation (1.18) does not change if we replace f by a function g that is
equal to f almost everywhere (this means that the set {x ∈ Ω : f(x)− g(x) 6= 0} is a set
of measure zero10). However, it follows that, if f is locally integrable and the right-hand
side of equation (1.18) vanishes ∀ϕ ∈ C∞c (Ω), then 〈uf , ϕ〉 = 0 almost everywhere. In
particular, the Dirac δ-function treated in Example 1.2.8 is clearly not locally integrable
since it is zero almost everywhere and ∀f ∈ L1

loc(Ω), if the support of f is a set of zero
measure, then equation (1.18) is identically zero. By definition, the vector space L1

loc(Ω)
consists of all equivalence classes of locally integrable functions on Ω.

Remark 1.2.11. From (1.18) we see that we can identify every locally integrable function
with a distribution uf (not uniquely of course). Analagously, we can identify other spaces,
such as Lp(Ω) 11 and Ck(Ω), with certain subspaces of D′(Ω). It is in this very sense that
we think of distributions as generalized functions.
9 L1

loc(Ω) represents the space of functions which are integrable on compact subsets of Ω.
10 A set of measure zero in Rn is one that can, for every ε > 0, be covered by a countable family of

n-cubes with n-volume less than ε.
11 Informally speaking, an Lp space may be defined as a space of functions for which the p-th power

of the absolute value is Lebesgue integrable and the Ck space consists of continuous differentiable
functions of order k.
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Remark 1.2.12. Let f be a continuously differentiable function on Ω ⊆ Rn, then

〈f, ϕ〉 =
∫
f(x)ϕ(x)dx, ∀ϕ ∈ C∞c (Ω)

defines a distribution on C∞c (Ω). Also, let ∂/∂xi be the i-th derivative operator with
1 ≤ i ≤ n, then we have〈

∂f

∂xi
, ϕ

〉
=
∫ ∂f

∂xi
ϕdx

=
∫ [

∂

∂xi
(fϕ)− f ∂ϕ

∂xi

]
dx

= −
∫
f
∂ϕ

∂xi
dx = −

〈
f,
∂ϕ

∂xi

〉
, ∀ϕ ∈ C∞c (Ω) (1.20)

From the second to the third step in (1.20) we used the fact that ϕ vanishes outside a
bounded set. Since the right-hand side of equation (1.20) makes sense even for a non-
differentiable function f , we may use it to define the derivative of f as a distribution, that
is 〈

∂f

∂xi
, ϕ

〉
.= −

〈
f,
∂ϕ

∂xi

〉
, 1 ≤ i ≤ n, ∀ϕ ∈ C∞c (Ω). (1.21)

Essentially, by iterating (1.20) one obtains generalized derivatives of all orders.

Using a similar ideia to the definition of the derivative of a distribution, one can
also define multiplication of a distribution by an infinitely differentiable function g by
setting

〈gu, ϕ〉 = 〈u, gϕ〉 , ∀ϕ ∈ C∞c (Ω). (1.22)

and more generally, combining equations (1.22) and (1.20) (in the generalized version),
one can account for the action of any linear differential operator with smooth coefficients
on u. That is, defining the operator

P (∂) :=
∑

(α1,α2,...,αn)∈Nn
g(α1,α2,...,αn)

∂|(α1,α2,...,αn)|

∂xα1
1 ∂x

α2
2 · · · ∂xαnn

=
∑
|α|≥0

gα∂
α, fα ∈ C∞(Rn), ∀α ∈ Nn (1.23)

where α = (α1, α2, ..., αn) ∈ Nn and |α| .= ∑n
j=1 αj, we have

〈P (∂)u, ϕ〉 =
〈∑
|α|≥0

gα∂
αu, ϕ

〉

=
〈
u,
∑
|α|≥0

(−1)|α|gα∂αϕ
〉
, ∀ϕ ∈ C∞c (Rn) (1.24)

1.2.4 Localization

In order to compare two functions we may apply them to some specific points in
their domain. Likewise, to compare distributions we may look at their localizations, which
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are basicly their restriction to certain subsets of where they are defined. A distribution
can be recovered from its localizations. In order to prove this, one has to indroduce the
concept of partition of unity.

Definition 1.2.13. Let Ω ⊂ Rn be an open set. A sequence of functions {ϕj}∞j=1 ⊂ C∞c (Ω)
is called a partition of unity of Ω if ∀j ∈ N, we have

1. every point x ∈ Ω has a neighborhood that intersects only a finite number of the
supports, supp ϕj;

2. ∑∞j=1 ϕj(x) = 1 for every x ∈ Ω;

3. 0 ≤ ϕj(x) ≤ 1 for every x ∈ Ω.

Theorem 1.2.14. Let Ω ⊂ Rn be an open set, and K be a compact subset of Ω. If Ωi ⊂ Ω
for i = 1, ..., n such that {Ωi}ni=1 is an open cover of K, then ∃ϕi ∈ C∞c (Ωi) for i = 1, ..., n
such that

1. ∑n
i=1 ϕi(x) ≤ 1 on Ω;

2. ∑n
i=1 ϕi(x) = 1 on a neighborhood of K;

3. 0 ≤ ϕi(x) ≤ 1 on Ωi.

Definition 1.2.15. Two distributions u1, u2 ∈ D′(Ω) are said to be equal in an open
set U ⊆ Ω if ∀ϕ ∈ C∞c (U), we have

〈u1, ϕ〉 = 〈u2, ϕ〉 . (1.25)

Theorem 1.2.16. Let u1, u2 ∈ D′(Ω) such that every x ∈ Ω, has a neighborhood Vx where
u1 = u2. Then, u1 = u2 in Ω.

Definition 1.2.17. Let Ω ⊂ Rn be an open set, and let u ∈ D′(Ω). The support of u,
written as supp u, is the complement of the set

{x ∈ Rn : u = 0 on a neighborhood of x}. (1.26)

Remark 1.2.18. Whenerver "u = 0 on a neighborhood of x" we may say that u is locally
zero at x. From the previous definition we may conclude that for every point y sufficiently
close to x, u is locally zero at y. From which it follows that the set in (1.26) is a union
of open sets, and is thus open, and since the support of u is the complement of (1.26), it
must be closed in Ω.
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Example 1.2.19. The support of the Dirac δ-function is the orgin, that is supp u = {0},
and one has δ = 0 on Rn \ {0}. More generally, let a distribution u be defined in terms of
the δ-function as

u =
∑
|α|≤m

cα∂
αδ, (1.27)

where m ∈ N and cα ∈ R. Then, supp u = {0}. The converse also holds.

Remark 1.2.20. The subspace of D′(Ω), with Ω ⊂ Rn open, of compact distributions
shall be denoted by E ′(Ω). Moreover, E ′(Ω) may be thought of as the space of distributions
whose domain is the space of infinitely differentiable functions on Ω, i.e. C∞(Ω).

Remark 1.2.21. In studying distributions an interesting question arises: Is it possible to
"multiply" distributions? The general answer to this question is a resounding no! That is
so due to the fact that, it is, usually, senseless to "evaluate" a distribution at some point.
However, motivated, largely by questions in theoretical physics, we may ask under which
circumstances it is possible to extend the notion of product of ordinary functions to product
of distributions. To exemplify the impossibility of such a task in the broad sense, let us
try to construct the product of the δ-function with itself. In order to do that, consider the
family of functions χε : R→ R with ε > 0 given by

χε =


1
ε

if |x| ≤ ε
2

0 otherwise
, (1.28)

and let f ∈ C∞c (R). Then,

〈χε, f〉 =
∫
R
χε(x)f(x)dx = 1

ε

∫ ε
2

− ε2
f(x)dx (1.29)

= 1
ε
(εf(0) +O(ε3)) = f(0) +O(ε2) (1.30)

and therefore
lim
ε→0
〈χε, f〉 = f(0) = 〈δ, f〉. (1.31)

We may conclude that limε→0 χε = δ in the distributional sense. However, the square o χε
does not converge to a distribution, since

〈χ2
ε , f〉 =

∫
R
χ2
ε(x)f(x)dx = 1

ε2

∫ ε
2

− ε2
f(x)dx (1.32)

= 1
ε2

(εf(0) +O(ε3)) = f(0)
ε

+O(ε), (1.33)

which clearly diverges as ε→ 0 if f(0) 6= 0.

In 1.2.17 the support of a distribution is defined. There is a similar notion, called
the singular support of a distribution u, denoted symbolically by sing supp u, which
can be defined in the following way: Let, u ∈ D′(Rn), then x /∈ sing supp u if and only if
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there exists a neighborhood V of x, such that the restriction of u to V is a smooth function,
that is, ∃f ∈ C∞(V ) such that ∀ϕ ∈ C∞c (Rn), supp u ⊂ V . With this definition one can
make sense of the product of two distributions if their singular supports are disjoint [23].
There is a yet more general way of coherently defining the product of two distributions,
involving the notion called the wavefront set12.

12 We are not going to use this notion throughout the thesis, but for a good reference in this matter see
[23]



2 Geometric Time-ordering

In a given Lorentz frame {e(µ), µ = 0, . . . , 3}, the time-coordinate of an event x is
just x · e(0), and an event x occurs “later” than an event y in this frame if (x− y) · e(0) > 0.
We therefore say that x is later than y if there is some time-like future-pointing vector
u such that (x− y) · u > 0. By Theorem 1.1.16, this is equivalent to the condition that
x be outside the closed backward light cone of y. (For general geometric definitions and
conventions that will be used throughout the rest of this work, see Appendix A.) We take
this as a definition:

Definition 2.0.1 (Geometric time-ordering). For x, y ∈ R4 we say that x is later than y,
in symbols x < y, if x is not contained in the past light-cone of y:

x < y :⇔ x 6∈ V−(y). (2.1)

For subsets R, S ⊂ R4, we say that R is later than S, symbolically R < S, if all points in R
are later than all points in S. If either R < S or S < R, we say R and S are comparable;
otherwise, we say R and S are incomparable and write R 6≶ S.

(For a point x ∈ R4 and a region R ⊂ R4 we write sloppily x < R instead of
{x} < R.)

There are two warnings in order: Physically, the time-ordering relation x < y must
be distinguished from the causality relation x ∈ V+(y), which means that y can influence
the event x either by way of the propagation of some material phenomenon or some
electromagnetic effect. Mathematically, “<” is not an order relation: It is not transitive
(see Fig. 1 for a counter-example), and it is not linear, namely not every pair of regions is
comparable.

2.1 Generalities

We establish some properties of the time-ordering relation which are relevant for
the proof of Propositions 2.2.1 and 2.2.4. First, note that for two regions R, S in Minkowski
space we have

R < S ⇔ R ∩ V−(S) = ∅. (2.2)

Lemma 2.1.1. Let R, S ⊂ R4.
i) There holds both R < S and S < R, if, and only if, R and S are space-like separated.
ii) R and S are incomparable if, and only if, both R ∩ V−(S) 6= ∅ and R ∩ V+(S) 6= ∅.
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Proof. Note first that R ∩ V−(S) = ∅ is equivalent to S ∩ V+(R) = ∅. Thus, (S <
R) ∧ (R < S) is equivalent, by Eq. (2.2), to S ∩ V−(R) = ∅ ∧ S ∩ V+(R) = ∅. But this is
S ∩

(
V+(R) ∪ V−(R)

)
= ∅, which means just that S is space-like separated from R. This

proves i). ii) is a direct consequence of Eq. (2.2).

Lemma 2.1.2. Let Σ be a space-like hyperplane of the form Σ = a + u⊥, where u is a
future-pointing time-like vector and a ∈ Σ. Then, for all x ∈ R4 there holds x < Σ if, and
only if, (x− a) · u > 0, that is x is "above" Σ.

Proof. Firstly, note that the condition x < Σ means, by definition, that ∀y ∈ Σ, x−y 6∈ V−.
Moreover, ∀y ∈ Σ there holds u · (a− y) = 0, and consequently

u · (x− y) = u · (x− a).

Now suppose u · (x − a) > 0, and let y ∈ Σ, then u · (x − y) ≡ u · (x − a) > 0, which
implies x− y 6∈ V−. This shows that x < Σ. We prove inverse direction contrapositively.
Suppose, that u · (x− a) ≤ 0. If u · (x− a) = 0, then x ∈ Σ and thus ¬(x < Σ). On the
other hand, u · (x− a) < 0 implies as above that x 4 Σ. But then x cannot be later than
Σ by Lemma 2.1.1, since the causal complement of Σ is empty. In both cases, we have
¬(x < Σ). Summarizing, we have shown that x < Σ is equivalent to (x− a) · u > 0.

The (motivating) characterization of the relation x < y, namely the condition that
x0 > y0 in some reference frame, can now be written as the condition that there exists a
space-like hyperplane Σ that is separating in the sense that x < Σ < y. As we have seen,
this is equivalent to our Definition 2.0.1. The same holds for finite string segments.

However, for infinitely extended strings, the existence of a space-like separating
hyperplane is a sufficient but not necessary condition for time-ordering as defined in
Def. 2.0.1. (A sufficient and necessary condition would be the existence of a space-like or
light-like separating hyperplane. But we don’t need this statement and therefore refrain
from proving it.)

Lemma 2.1.3. Let R1 ⊆ S1, R2 ⊆ S2 be two subsets of the strings S1 and S2 (which
comprises points, finite string segments and the entire string, exhausting all possiblities).
If there is a space-like hyperplane Σ such that R1 < Σ < R2, then R1 < R2.

Proof. Let Σ := a + u⊥ satisfy the hypothesis, and let z1 ∈ R1 and z2 ∈ R2. Then by
Lemma 2.1.2 there holds (z1− a) ·u > 0 and (a− z2) ·u > 0. Adding these two inequalities
yields (z1 − z2) · u > 0, and since u ∈ V+ we must have z1 − z2 /∈ V− by Lemma 1.1.16
(with reversed signs), that is z1 < z2. This completes the proof.
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2.1.1 Comparability

For points, the time ordering relation is linear in the sense that any pair of distinct
events x 6= y ∈ R4 is comparable, i.e., there holds either x < y or y < x. The first problem
we encounter in the definition of time-ordered products is that this is not so for disjoint
strings: It may happen that one string enters into the past and into the future of the
other one, and in this case (and only in this case) the two strings are not comparable by
Lemma 2.1.1, (ii). On the other hand, a point and a string are always comparable given
that they are disjoint:

Lemma 2.1.4. Let S be a string and x ∈ R4 \ S a point disjoint from S. Then either
S < {x} or {x} < S.

Proof. Suppose that neither S < x nor x < S holds. Then, by Eq. (2.2), both S ∩V−({x})
and {x} ∩ V−(S) are not empty. However, since S ∩ V−({x}) 6= ∅ ⇔ {x} ∩ V+(S) 6= ∅, we
must have x ∈ V−(S) ∩ V+(S) = S, and the proof is complete by contraposition.

2.1.2 Transitivity

Time-ordering of events is not transitive. But it has a similar property, which we
might call “weak transitivity”: If y1 < y2 and x 6< y2, then y1 < x. This fact is the basis
for the proof that Bogoliubov’s S-matrix satisfies the functional equation [13], which in
turn implies locality of the interacting fields in the Epstein-Glaser construction [13]. Again,
this does not hold for strings – This is why a string-localized interaction leads in general
to completely non-local interacting fields. An example is illustrated in Fig. 1, which shows
three strings satisfying S1 < S2 and S3 6< S2, however S1 is not later than S3.

On the other hand, weak transitivity does hold for two strings with respect to an
event:

Lemma 2.1.5. Let two strings S1, S2 and an event x ∈ R4 \ (S1 ∪ S2) be such that

S1 < S2 and x 6< S2.

Then S1 < {x}.

Proof. By Eq. (2.2), the premise S1 < S2 may be written as S1∩V−(S2) = ∅. Also, x 6< S2

means x ∈ V−(S2) and consequently V−(x) ⊂ V−(S2). Thus, we must have S1 ∩ V−(x) = ∅,
and again by Eq. (2.2), S1 < {x}.

2.1.3 Latest Member

Definition 2.1.6. Given n subsets R1, . . . , Rn of Minkowski space, we say that R1 is a
latest member of the set {R1, . . . , Rn} if R1 < Ri for all i = 2, . . . , n.
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A basic fact is that n distinct events in Minkowski space always have a latest member,
and the same holds for sufficiently small neighborhoods of them. Again, this is not so for
strings (see the counter-example in Fig. 1).

Lemma 2.1.5 implies that two comparable strings and one event, disjoint from the
strings, always have a latest member. (Namely, if x is later than both S1 and S2 then it is
of course x, and otherwise it is the later one of the strings.) For our chopping of n > 2
strings, we need more:

Lemma 2.1.7. Let S1, . . . , Sr be strings which have a latest member, and let y1, . . . , yk

be pairwise distinct points in Minkowski space satisfying yi /∈ Sj for all 1 ≤ i ≤ k and
1 ≤ j ≤ r. Then, the set {S1, . . . , Sr, {y1}, . . . , {yk}} also has a latest member.

Proof. We assume that S1 is a latest member of the strings.

First case: One of the points, say y1, is later than all the strings. Let yl be a latest
member of V+(y1) ∩ {y1, . . . , yr}, the subset of y′s which lie to the future of y1. Then yl is
a latest member of all the y’s, and also later than all the strings1, that is, yl is a latest
member of {S1, . . . , Sr, {y1}, . . . , {yk}}.

Second case: None of the y’s is later than all the strings. Then for every i ∈ {1, . . . , k}
there is a j(i) ∈ {1, . . . , r} such that yi 6< Sj(i). If j(i) = 1 (the label of the latest member of
the strings {S1, . . . , Sr}), then yi 6< S1, and Lemma 2.1.4 implies that S1 < yi. If j(i) 6= 1,
then S1 < Sj(i) and Lemma 2.1.5 implies that S1 < yi. Summarizing, in the second case for
all i there holds S1 < yi. Then S1 is a latest member of {S1, . . . , Sr, {y1}, . . . , {yk}}.

2.2 String Chopping

As mentioned in the introduction, we wish to show that one can chop n strings into
small enough pieces which are mutually comparable. We first give a constructive prove for
n = 2, where it suffices to cut one of the strings once.

By cutting of a string S = Sx,e is meant the selection of one point x+ se for some
s > 0, whereby the string becomes a union of the finite segment x+ [0, s] e and the residual
string x+ [s,∞) e. The two pieces do not overlap, since they have only the cut point in
common. We write this nonoverlapping union as S = S1 ∪S2, but it suits us not to specify
which piece is the finite segment and which is the tail.

Proposition 2.2.1. Let S, S ′ be two disjoint strings. Then there is a chopping of S into
two pieces (one segment and one string) S = S1 ∪ S2, such that both pairs (S1, S ′) and
(S2, S ′) are comparable.
1 Here we use the obvious fact that

(
y1 < S ∧ y2 ∈ V+(y1)

)
⇒ y2 < S.
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a

a+ u
x

S

x′

S ′

Σ

Figure 2 – The strings S and S′, with S̃′ meeting S

Proof. Let S = Sx,e and S ′ = Sx′,e′ , and denote by S̃ ′ .= Sx′,e′ ∪Sx′,−e′ the full straight line
through x′ with direction e′.

We first consider the case when S meets S̃ ′ (but is disjoint from S ′). Then there
are positive reals t, t′ such that

x+ te = x′ − t′e′. (2.3)

Suppose the span of e, e′ is space-like. Then S and S ′ are disjoint sets contained in the
space-like hyperplane x+ span{e, e′}. This implies that S, S ′ are space-like separated, and
thus comparable (see Lemma 2.1.1, item i)). No chopping is needed.

Suppose now that the span of e, e′ is time- or light-like. Then Lemma A.0.4 implies
that one of the vectors e± e′ is time- or light-like. Suppose first that e− e′ is a time- or
light-like vector, and assume that it is future oriented, e ∈ V+(e′).Let u be any timelike
future-oriented vector orthogonal to e, and (see Fig. 2) let

Σ .= a+ u⊥, a
.= x′ − t′

2 e
′.

Now e′ · u is strictly negative since e · u = 0 and e′ ∈ V−(e), and we therefore get

(x+ se− a) · u ≡ −t
′

2 e
′ · u > 0,

(x′ + s′e′ − a) · u ≡ (s′ + t′

2 )e′ · u < 0.

(In the first line we have used Eq. (2.3).) The two inequalities say that S < Σ and that
S ′ 4 Σ, respectively. By Lemma 2.1.3, this shows that S < S ′. If e− e′ is past oriented,
e ∈ V−(e′), then the same argument shows that S ′ < S. In the case when e+ e′ (instead
of e− e′) is a time- or light-like vector, the same argument goes through with e′ replaced
by −e′. This completes the proof in the case when S meets S̃ ′.

For the rest of the proof we consider the case when S is disjoint from S̃ ′. First,
assume that S ∩ (S̃ ′)c = ∅, that is, S is contained in the closure of V−(S̃ ′) ∪ V+(S̃ ′). If S
had non-trivial intersection with both V−(S̃ ′) and V+(S̃ ′), it would have to pass through
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S̃ ′, which was excluded. Thus, S is contained entirely in the closure of either V−(S̃ ′) or
V+(S̃ ′), and in this case S and S ′ are comparable by Lemma 2.1.1, ii). No chopping is
needed.

Now suppose that S ∩ (S̃ ′)c 6= ∅. If e = ±e′ (i.e., the strings S̃ and S̃ ′ are parallel),
then S is completely contained in the causal complement of S̃ ′, and thus S is both later
and earlier than S ′, and no chopping is needed.

Consider finally the case e 6= ±e′. The claim is that there exists a chopping
S = S+ ∪ S−, such that S+ < S ′ < S−. Using Lemma 2.1.3, it is sufficient to establish the
existence of two space-like hyperplanes Σ1, Σ2, such that S+ < Σ1 < S ′ and S ′ < Σ2 < S−.

S ′
x′

u+ x′
x

a
S

Σ

Figure 3 – Selection of a cut point on the string S

Take an event a ∈ S ∩ (S̃ ′)c with a 6= x; this is the place where we cut S (see
Fig. 3). The vector a− x′ is space-like and space-like separated from e′, hence the 2-plane
E

.= span{a − x′, e′} is space-like. Choose a time-like future-directed vector u in the
orthogonal complement E⊥, which is not orthogonal to e. (The possibility u · e 6= 0 is
allowed since e 6= ±e′.) Note that Σ .= u⊥ contains the string S ′ and cuts the string S
through the point a. Our hyperplanes Σ1, Σ2 will be small transformations of Σ. First, we
shift Σ by a small amount so that it does not contain the point a any more: Let P⊥e′ be
the projector onto (e′)⊥, and let

u± := u± εP⊥e′ (a− x′),

where ε is small enough that

sgn(u± · e) = sgn(u · e) =: σ. (2.4)

Let now Σ± .= x′ + (u±)⊥, and define the chopping S = S+ ∪ S−, where

S±
.=
(
a± σR+e

)
∩ S.

(If σ > 0, then S+ is the “infinite tail” of the chopping while S− is a finite segment, and
if σ < 0 the roles are interchanged.) Both Σ± still contain S ′, and are in addition also
comparable with S±:
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Claim.

S+ < Σ− and S− 4 Σ+ .

Proof of claim. Let ξ .= a− x′. By Lemma 2.1.2, the first relation is equivalent to

(ξ + sσe) · u− ≡ −εξ · P⊥e′ (ξ) + s|e · u−| > 0 for all s ≥ 0. (2.5)

(We have used (a− x′) · u = 0 and Eq (2.4).) Note that the projector P⊥e′ is given by

P⊥e′ (ξ) = ξ − e′ · ξ
e′ · e′

e′ = ξ + (e′ · ξ)e′,

hence ξ ·P⊥e′ (ξ) = ξ ·ξ+(e′ ·ξ)2. Now the condition that a ∈ (S̃ ′)c means that ξ−te′ is space-
like for all t ∈ R. Thus, the quadratic form −t2−2t(e′ ·ξ)+ξ ·ξ ≡ −(t+e′ ·ξ)2 +ξ ·ξ+(e′ ·ξ)2

is strictly negative, which implies that

(ξ · ξ) + (e′ · ξ)2 < 0; and thus ξ · P⊥e′ (ξ) < 0. (2.6)

This proves the inequality (2.5), and thus the first relation of the lemma. The second one
is shown analogously: It means that

(ξ − sσe) · u+ ≡ εξ · P⊥e′ (ξ)− s|e · u−| < 0 for all s ≥ 0, (2.7)

which holds true by Eq. (2.6). �

We now shift the hyperplanes Σ± a little bit, so that they still satisfy the relations of the
above lemma, and are in addition also comparable with S ′. To this end, notice that the
left hand side of the inequality (2.5) has the positive lower bound δ := −εξ · P⊥e′ ξ. Thus,
we can shift Σ− away from S ′ by using instead

Σ′−
.= Σ− + αu−, α

.= δ

2u− · u−
,

and the relation S+ < Σ′− still holds. On the other hand, for all s > 0 there holds

(se′ − αu−) · u− ≡ −
1
2δ < 0,

and therefore S ′ 4 Σ′−. We have now achieved S+ < Σ′− < S ′, as required.

Similarly, one verifies that Σ′+
.= Σ+ − δ

2u+·u+
u+ satisfies S+ 4 Σ′+ 4 S ′. This

completes the proof.

We now consider the case of n > 2 strings. The large string diagonal is defined by

∆n
.=
{

(x1, e1, . . . , xn, en) | Sxi,ei ∩ Sxj ,ej 6= ∅ for some i 6= j
}
. (2.8)



2.2. String Chopping 41

We are going to show that n strings outside ∆n can be chopped up into finitely many pieces
which are mutually comparable (Prop. 2.2.4). Here we shall need to cut the strings into
more than two pieces. By a chopping of a string S .= x+ R+

0 e we mean a decomposition

S = Sfin ∪ S∞, Sfin =
N⋃
α=1

Sα, (2.9)

determined by N numbers 0 = s0 < s1 < · · · < sN , where Sα is the finite segment

Sα
.= x+ [sα−1, sα]e (2.10)

and S∞ is the infinite tail of the string

S∞
.= x+ [sN ,∞)e. (2.11)

Before stating and proving Prop. 2.2.4, we need some lemmas. We start with considerations
about the infinite tails of the strings Sxi,ei . If you look at n strings from sufficiently far
away, they seem to have their “heads” xi quite close to the origin (wherever you choose
the origin). Hence, if you cut them far away from their heads, their infinite tails extend
almost radially to infinity and thus correspond to points on the hyperboloid H of space-like
directions. Consequently, these tails can be linearly ordered, just like points in H can. We
realize this idea by showing first that every string Sx,e eventually ends up in a space-like
cone centered around the string S0,e with arbitrarly small opening angle. In detail, let D
be a neighborhood of e in H, and let CD be the space-like cone

CD
.= R+D = {se′ | s ∈ R+, e′ ∈ D} (2.12)

centered at the origin.

Lemma 2.2.2. For every string Sx,e and every neighborhood D of e in H there is an
s > 0 such the infinite tail x+ [s,∞)e is contained in the space-like cone CD.

Proof. Note that y ∈ CD if, and only if, |y · y|−1/2y is in D. Thus, a point x+ te on the
string is in CD iff the point |(x+ te) · (x+ te)|−1/2(x+ te) is in the neighborhood D. But
this point can be written

t

|x · x+ 2tx · e− t2| 12
(x
t

+ e),

which obviously converges to e if t→∞. Thus, the curve |(x+ te)2|−1/2(x+ te) eventually
ends up in D, that is, x+ te eventually ends up in CD. But this is just the claim.

This Lemma is relevant for time ordering due to the following fact.

Lemma 2.2.3. Take two strings S1, S2 which are contained in space-like cones of the
form (2.12), Si ⊂ CDi, where D1 and D2 are double cones in the manifold H of space-like
directions. Suppose D1 < D2, where the time-ordering on H is defined in the same way as
the time-ordering in Minkowski space (see Eq. (2.1)). Then S1 < S2.
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Proof. Just as in Minkowski space (see Def. A.0.2), each double cone Di is characterized
by its past and future tip, e+

i ∈ V+(e−i ):

Di = Di(e−i , e+
i ) .= V+(e−i ) ∩ V−(e+

i ).

The hypothesis that D1 < D2 obviously implies (in fact, is equivalent to) e−1 < e+
2 . To

proceed, we first need an intermediate result: Not only that there exists a space-like
hyperplane Σ such that e−1 < Σ < e+

2 , but that there is also one passing through the origin
that does so.

Claim.

Let e, e′ ∈ H with e < e′. Then there exists u ∈ V+ such that u ·e > 0 and u ·e′ < 0.

Proof of claim. The following four cases can occur:

1. The span of e, e′ is space-like. Then, by Lemma A.0.4, e · e′ ∈ (−1, 1). Let u ∈
span{e, e′}⊥ be a future-pointing time-like vector and define uε := u− ε(e− e′) with
ε > 0 small enough such that uε is still in V+. Then

uε · e = ε(1 + e · e′) > 0 and uε · e′ = −ε(1 + e · e′) < 0

2. The span of e, e′ is time-like. According to Lemma A.0.4, the following two cases
can occur:

a) The vector e−e′ is time-like. Then, since e < e′ is assumed, it is future-pointing.
Moreover, we must have e · e′ < −1. Thus, the vector u .= e− e′ does the job:
u · e = −1− e · e′ > 0 and u · e′ = e · e′ + 1 < 0.

b) The vector e−e′ is space-like and e+e′ is time-like. Then we must have e ·e′ > 1.
If e+ e′ is future pointing, then

u
.= P⊥e′ (e) = e+ (e′ · e)e′

is time-like, since u · u = −1 + (e · e′)2 > 0. It is also future-pointing. (This can
be seen as follows. Choose v ∈ V+ with v · e = 0. Then v · e′ ≡ v · (e+ e′) > 0
since e+ e′ is future-pointing.) Now put uε .= u+ εe′ for sufficiently small ε > 0.
Then we have

uε · e = −1 + (e′ · e)2 + εe · e′ > 0 and uε · e′ = −ε < 0.

If e+ e′ is past pointing, then

uε
.= −P⊥e (e′)− εe = −

(
e′ + (e · e′)e

)
− εe

has the following properties, as the reader will readily verify: It is time-like and
future-pointing, and satisfies

uε · e = ε > 0 and uε · e′ = 1− (e′ · e)2 − εe · e′ < 0.
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3. The span of e, e′ is light-like. From Lemma A.0.4, there are two possibilities:

a) The vector e − e′ is light-like. Then it is future pointing by hypothesis, and
moreover we must have e · e′ = −1. Choose u ∈ (e′)⊥ ∩ V+ and let uε .= u+ εe

with sufficiently small ε. Then uε is a future-pointing time-like vector satisfying

uε · e = u · e− ε > 0 and uε · e′ = −ε < 0.

(We used that u ·e ≡ u ·(e+e′) is positive since e+e′ is assumed future-pointing;
and we chose ε small enough.)

b) The vector e+ e′ is light-like. Then we must have e · e′ = 1. If the vector e+ e′

is future-pointing, the same uε as in the above item does the job. If it is past
pointing, pick u ∈ e⊥ ∩ V+ and let uε .= u− εe with sufficiently small ε. Then
uε is a future-pointing time-like vector satisfying

uε · e = ε > 0 and uε · e′ = u · e′ + ε < 0.

(We used that u ·e′ ≡ u · (e+e′) is negative since e+e′ is assumed past pointing;
and we chose ε small enough.)

4. In the last possible case, e = −e′, let u ∈ e⊥ ∩ V+ and define uε .= u− εe. Then

uε · e = ε > 0 and uε · e′ = −ε < 0.

This proves the claim. �

We have thus shown that there exists a future-pointing time-like vector u that satisfies
u · e−1 > 0 > u · e+

2 . It follows that ∀e1 ∈ D1 and ∀e2 ∈ D2 we have u · e1 > 0 > u · e2. This
implies of course that u · re1 > 0 > u · se2 for r, s ∈ R+, and since all zi ∈ CDi are of the
form zi = rei with r ∈ R+ and ei ∈ Di, we have CD1 < u⊥ < CD2 and consequently, by
Lemma 2.1.3, S1 < S2.

We are now prepared for our main geometrical result:

Proposition 2.2.4. Let (x, e) be outside the large string diagonal ∆n. Then there exists
a chopping2

Sxi,ei =
Ni+1⋃
α=1

Sαi ,

such that every selection {Sα1
1 , . . . , Sαnn } has a latest member, that is, for every n-tuple

(α1, . . . , αn) there exists i ∈ {1, . . . , n} such that for every j ∈ {1, . . . , n} \ {i} there holds
Sαii < S

αj
j .

2 Here SNi+1
i is the infinite tail of the string Si, before denoted as S∞i .
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Proof. We first consider the infinite tails. Note that some of the e’s may coincide, so the
set of e’s may contain less than n (different) points. These have a latest member, and the
same holds for sufficiently small double cones Di 3 ei (understanding that Di = Dj if
ei = ej). Let us denote the index of the latest member of {D1, D2, . . .} by i0. Let further
si ∈ R+

0 be such that the infinite tail S∞i
.= xi + [si,∞)ei of Si is contained in CDi (see

Lemma 2.2.2). By Lemma 2.2.3, the infinite tail with number i0 is later than all the other
ones. If ei0 coincides with {ei1 , . . . , eik}, then the corresponding infinite tails are parallel
and disjoint, and therefore have a latest member. (Since the problem can be reduced to
distinct points in e⊥i0 .) This is the latest member of all infinite tails.

We now construct a chopping of the compact segments Sfin
i

.= xi+[0, si]ei. Consider
an arbitrary point (y1, . . . , yn) on Sfin

1 × · · ·Sfin
n . The points yi are all mutually disjoint

and hence the set {y1, . . . , yn} has a latest member, and the same holds for sufficiently
small neighborhoods U0(yi) of the yi. Similarly, for any subset I ⊂ {1, . . . , n} the infinite
tails S∞j and the points yi, (i, j) ∈ I × Ic,3 fulfil the hypothesis of Lemma 2.1.7, which
states that the n sets S∞j and {yi} have a latest member. The same holds for sufficiently
small neighborhoods UI(yi) of the points yi, i ∈ I. Let now U(yi) be the intersection of
U0(yi) and of all UI(yi), where I runs through the subsets of {1, . . . , n} \ {i}. Then for
any I ⊂ {1, . . . , n}, the n sets S∞j and =U(yi), (i, j) ∈ I × Ic, have a latest member. Of
course the same holds for the intersections of these neighborhoods with the corresponding
strings,

I(yi) .= U(yi) ∩ Sfin
i . (2.13)

Summarizing, for each (y1, . . . , yn) ∈ Sfin
1 × · · · × Sfin

n there is a neighborhood I(y1) ×
· · · × I(yn) ⊂ Sfin

1 × · · · × Sfin
1 such that for any I ⊂ {1, . . . , n} the n sets S∞i and I(yj),

(i, j) ∈ I × Ic, have a latest member. Now for each i the union
⋃

yi∈Sfin
i

I(yi)

is an open covering of the set Sfin
i . By compactness, there exists a finite sub-covering! That

is to say, in the string segment Sfin
i there exists a finite number of points y1

i , . . . , y
Ni
i such

that the finite union ⋃
α=1,...Ni

I(yαii )

still covers Sfin
i . Of course, these neighborhoods still have a latest member in the sense

mentioned after Eq. (2.13). We may assume that the points y1
i , . . . , y

Ni
i are successive

neighbors within Sfin
i . Then I(yαi ) and I(yα+1

i ) have an overlap. Choose, for each α ∈
{1, . . . , Ni−1}, a number sαi such that xi+sαi ei is contained in the overlap I(yαi )∩I(yα+1

i ),
and define

Sαi
.= xi + [sαi , sα+1

i ] ei.
3 Ic denotes the complement of I
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Then Sαi is contained in I(yαi ), and hence each n-tuple of string segments or infinite tails
Sα1

1 , . . . , Sαnn has a latest member, as claimed. This concludes the proof of Prop. 2.2.4.



3 Time-ordered Products of Fields

3.1 Considerations on the Point-like Case
In order to study QFT perturbatively, one needs the concept of time ordering of

the product of operator-valued fields. Let ϕ(x) and ϕ(x′) be two point-like fields, then the
time-ordering of the product ϕ(x′)ϕ(x) is given by 1

Tϕ(x′)ϕ(x) =

 ϕ(x′)ϕ(x) if t′ > t

ϕ(x)ϕ(x′) if t > t′
, (3.1)

where t and t′ are the time coordinates of the events x and x′, respectively, with respect
to a particular frame of reference. If x′ and x are time-like or light-like separated all
inertial frames agree with respect to their causal order, therefore either t′ > t or t > t′

unambiguously and equation (3.1) makes perfect sense. However, for space-like separated
events their time order is relative, depending on the frame, that would make equation (3.1)
ambiguous were it not for the causality axiom which asserts the commutativity of fields
for space-like separated events and particularly as a consequence guarantees the validity of
(3.1) for t′ = t but x′ 6= x, since in this case (x′ − x) is space-like. Thus, the T − product
is Lorentz invariant and hence well-defined for non-coincidental points. Using definition
2.0.1, we may rewrite (3.1) as

Tϕ(x′)ϕ(x) =

 ϕ(x′)ϕ(x) if x′ � x

ϕ(x)ϕ(x′) if x � x′
. (3.2)

Using Wick’s expansion theorem, we may rewrite (3.2) as

Tϕ(x)ϕ(x′) = :ϕ(x)ϕ(x′) : +
(

Ω, Tϕ(x)ϕ(x′)Ω
)
, (3.3)

where the double colon stands for the normal order relation and
(

Ω, Tϕ(x)ϕ(x′)Ω
)
is the

Feynman propagator associated with ϕ. The case in which x coincides with x′ is reasonably
treated by extending the numerical distribution given by the Feynman propagator in
equation (3.3) across the point diagonal ∆p

2
.= {(x, x′) ∈ R8 : x = x′}. This last step is

where the subtleties actually lie for both the point-localized and the string-localized fields.

The perturbative construction of interaction models a la Epstein and Glaser [13]
depends fundamentally on time ordered products of sub-Wick polynomials Wk of the
interaction Lagrangean L, denoted by Tn(W1,W2, ...,Wn). These are operator-valued
1 We consider the case where the field ϕ is bosonic. In the case it were fermionic, the second line in

equation (3.1) would be −ϕ(x)ϕ(x′).
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distributions on R4n acting on the domain D of vectors with finite particle number and
smooth momentum space wave functions. Informally, we can write

Tn(W1, . . . ,Wn)(f1, . . . , fn) =:∫
(R4)×n

dx1 · · · dxn Tn
(
W1(x1) · · ·W (xn)

)
f1(x1) · · · fn(xn).

T0 and T1 are given by T0 := 1 and T1(W ) := W . Further requirements are:

(p1) (Linearity.) The time-ordered product Tn is an n-linear application from the Wick
polynomials into operator-valued distributions acting on D.2

(p2) (Symmetry.) T n(W1, . . . ,Wn) is symmetric under permutations Wi ↔ Wk.

(p3) (Causality.) If xi < xj for all i ∈ {1, . . . , k} and j ∈ {k+1, . . . , n}, then the following
factorization holds:

Tn
(
W1(x1) · · ·Wn(xn)

)
=

Tk
(
W1(x1) · · ·Wk(xk)

)
Tn−k

(
Wk+1(xk+1) · · ·Wn(xn)

)
.

(p4) (Covariance.) If Wi are scalar Wick polynomials, then for all (a,Λ) ∈ P ↑+

U(a,Λ)Tn
(
W1(x1) · · ·Wn(xn)

)
U(a,Λ)−1 = Tn

(
W1(a+ Λx1) · · ·Wn(a+ Λxn)

)
.

(p5) (Wick expansion – scalar field case.) Let k1, . . . , kn ∈ N0 and let G(k1, . . . , kn) .=
{0, . . . , k1} × · · · × {0, . . . , kn} be the set of multi-indices (l1, . . . , ln) ∈ N×n0 with
0 ≤ li ≤ ki. Then

Tn (:ϕk1(x1) : · · · :ϕkn(xn) :) =
∑

G∈G(k1,...,kn)
tG(x1, . . . , xn) :ϕl1(x1) · · ·ϕln(xn) :,

(3.4)
where for G = (l1, . . . , ln), tG is the numerical distribution

tG(x1, . . . , xn) =
k1

l1

 · · ·
kn
ln

 (
Ω, Tn :ϕk1−l1(x1) : · · · :ϕkn−ln(xn) : Ω

)
.

(The product of distributions in Eq. (3.4) exists due to Epstein-Glaser’s “Theorem 0”[13].)
The time-ordered products can be constructed inductively: If all Tk are known up to some
order k ≤ n− 1, then Tn is fixed [13,14] by (p3) and (p2) outside the small diagonal ∆n.
For a better understanding, let us prove this claim as a theorem:
2 We adopt here the “on-shell formalism”.
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Theorem 3.1.1. Let L be a particular functional lagrangean and denote by Tn (x1, ..., xn) ≡
TL (x1) · · ·L (xn), n ∈ N, the family of symmetric operator-valued distributions on R4n

satisfying the causality property (p3). Then the equation

Tn (x1, ..., xn) = Tk (x1, ..., xk)Tn−k (xk+1, ..., xn) . (3.5)

fixes Tn inductively up to the total diagonal ∆n
.= {(x1, ..., xn) : x1 = · · · = xn} in the

following sense: If Tk is known for every k < n, then Tn is fixed on Rn\∆n .

Proof. Suppose (x1, ..., xn) /∈ ∆n, then there are at least two points in the set {x1, x2, ..., xn}
and hence there exists a partition P = {I, Ic} of the set {1, ..., n} such that xi � xi′ ∀i ∈ I
and ∀i′ ∈ Ic. Thus, the causality property (p3) implies

Tn ({1, ..., n}) = T (I)T (Ic) (3.6)

where T (I) := T (xi1 , ..., xik), I = {i1, ..., ik} and k = |I|. If the points xi are all causally
connected, that is x2

i ≥ 0 ∀i ∈ {1, ..., n}, then I is uniquely defined (xi1 � xi2 � · · · � xin

for all reference frames, where {i1, ..., in} = {1, ..., n}) and we are done. If, on the other
hand, ∃l ∈ {1, ..., n} such that x2

l < 0, (that is, xl is space-like) then I is not uniquely
defined, and in this case we must prove the independence of equation (3.6) on the choice of
the proper subset I. With that purpose in mind, let Q = {J, J c} be another partition of the
set {1, ..., n} such that xj � xj′ ∀j ∈ J and ∀j′ ∈ J c. Using the identities I = I ∩J

·
∪I ∩J c

and Ic = Ic ∩ J
·
∪ Ic ∩ J c, we can rewrite the right-hand side of equation (3.6) as

T (I)T (Ic) = T
(
I ∩ J

·
∪ I ∩ J c

)
T
(
Ic ∩ J

·
∪ Ic ∩ J c

)
. (3.7)

It is easy to see that I ∩ J
·
� I ∩ J c and Ic ∩ J

·
� Ic ∩ J c ( in the sense of the elements of

the corresponding sets) and so (3.7) becomes

T (I)T (Ic) = T (I ∩ J)T (I ∩ J c)T (Ic ∩ J)T (Ic ∩ J c) . (3.8)

Analagously, for the sets J and J c we have the following identities J = J ∩ I
·
∪ J ∩ Ic and

J c = J c ∩ I
·
∪ J c ∩ Ic, yield

T (J)T (J c) = T
(
J ∩ I

·
∪ J ∩ Ic

)
T
(
J c ∩ I

·
∪ J c ∩ Ic

)
, (3.9)

and since both J ∩ I
·
� J ∩ Ic and J c ∩ I

·
� J c ∩ Ic, we have

T (J)T (J c) = T (J ∩ I)T (J ∩ Ic)T (J c ∩ I)T (J c ∩ Ic) . (3.10)

It is clear that the arguments of the second and third terms in equation (3.10) are such
that J ∩ Ic � J c∩ I from the perspective of the partition Q. However, from the perspective
of the partition P we also have J c ∩ I � J ∩ Ic. This means that the points in J c ∩ I
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are causally disjoint from the points in J ∩ Ic, which enables us to commute the terms
T (J ∩ Ic) and T (J c ∩ I) in (3.10) obtaining as a result

T (J)T (J c) = T (J ∩ I)T (J c ∩ I)T (J ∩ Ic)T (J c ∩ Ic) = T (I)T (Ic) (3.11)

From the previous theorem we know that the time-ordering of an n-fold product of
any point-like interaction lagrangean L(x) is well-defined everywhere, except in the total
(small) diagonal ∆n.

The "UV problem" of the divergencies consists, in this context, in the extension
of the T -product across ∆n. This extension is not unique in general, and the choice of
possible extensions is restricted by the requirements (p4) and (p5), which therefore may
be called (re-) normalization conditions. By (p4), the Tn are fixed up to the origin in
R4n. The condition (p5) holds due to Wick’s theorem outside the union of all diagonals,
i.e., whenever xi 6= xj, and the requirement that it holds on all R4n is a normalization
condition by virtue of which the extension problem needs to be considered only for the
numerical distributions tG.

Let us now investigate, as an example, the renormalizability of a scalar theory
whose interaction lagrangean is of the form L(x) =: ϕm(x) :. In this case, the Wick
expansion (3.4) for n vertices is given by

TL(x1) · · ·L(xn) =
∑

G∈G(m,...,m)
tG(x1, . . . , xn) :ϕb1(x1) · · ·ϕbn(xn) :, (3.12)

where for G = (b1, . . . , bn), tG is the numerical distribution

tG(x1, . . . , xn) =
m
b1

 · · ·
m
bn

 (
Ω, Tn :ϕm−b1(x1) : · · · :ϕm−bn(xn) : Ω

)
. (3.13)

Applying Wick’s expansion to both sides of equation (3.6) we get
∑
G∈Gn

tG(x1, · · · , xn) : ϕb1(x1) · · ·ϕbn(xn) :

=
∑

G1∈Gk

∑
G2∈Gn−k

tG1(I)tG2(Ic) : ϕbi1 (xi1) · · ·ϕbik (xik) :: ϕbik+1 (xik+1) · · ·ϕbin (xin) :

=
∑
G1,G2

tG1(I)tG2(Ic) : ϕbI (I) :: ϕbIc (Ic) : (3.14)

where Gn is the set of graphs with n vertices x1, · · · , xn with bi external lines coming out of
the vertex xi. The set {I, Ic} is a partition of the set {x1, · · · , xn} with I = {xi1 , · · · , xik}
and Ic = {x1, · · · , xn}\I = {xik+1 , · · · , xin}. Also, we have defined ϕbi1 (xi1) · · ·ϕbik (xik)

def=
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ϕbI (I), where bI = bi1 + · · ·+ bik and bIc = bik+1 + · · · bin are the total number of external
lines coming out of the I and Ic vertices, respectively, in the graph G.

Using Wick’s expansion for the product of the normal ordered terms in equation
(3.14) we get

∑
G

tG(x1, · · · , xn) : ϕb1(x1) · · ·ϕbn(xn) :

=
∑

G0,G1,G2

tG1(I)tG2(Ic)
∏

(i,j)∈I×Ic
[∆F (xi − xj)]lij : ϕb′I (I)ϕb′Ic (Ic) : (3.15)

where b′I and b′Ic are the number of external lines in the graphs G1 and G2, respectively.
In addition, G0 runs through the graphs whose internal lines connect only vertices in the
same set I or Ic, and b := bI + bIc = b′I + b′Ic − 2lI,Ic , where lI,Ic = ∑

lij is the number of
lines connecting vertices in I with vertices in Ic, as ilustrated in figures 4 and 5. We may
now calculate the scaling degree (definition B.1.3 in appendix B.1) of the distribution tG
by induction:

Figure 4 – Graph G with n vertices {x1, · · · , xn} = I ∪ Ic and bI + bIc external lines.

Figure 5 – Dichotomy of the graph G into G1 and G2, where graph G1 has k = |I| vertices and
b′I external lines and graph G2 has n− k = |Ic| vertices and b′Ic external lines.

Theorem 3.1.2. For G ∈ Gbn, that is, G has n vertices and b external lines, the distribution
tG defined in (3.13) has scaling degree mn− b.
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Proof. From equation (3.15) we get

sd(tG) = sd(tG1) + sd(tG2) + sd(∆F )
∑

lij (3.16)

where we have used the properties of scaling degree stated in B.1.8. The graph G1 has k
vertices and b′I external lines whilst G2 has n− k vertices and b′Ic external lines. Hence,
using the induction hypothesis for tG1 and tG2 and the result sd(∆F ) = 2 (obtained in
example B.1.7 in appendix B.1), we get

sd(tG) = [mk − b′I ] + [m(n− k)− b′Ic ] + 2lI,Ic (3.17)

= mn− (b′I + b′Ic) + 2lI,Ic (3.18)

= mn− b (3.19)

To prove the basis step, note that for n = 1 we have tG(x1) = 1 with scaling degree 0 and
b = m, hence sd(tG) = 0 = m− b. This completes the proof.

We may now calculate the degree of divergence3 of the distribution tG by

div(tG) := ω = sd(tG)− codim(∆n) (3.20)

where codim(∆n) = dim(R4n)− dim(∆n) = 4(n− 1). Therefore,

ω = (m− 4)n+ 4− b (3.21)

We may now analyze the renormalizability of a scalar theory with interaction lagrangean
of the form L(x) =: ϕm(x) :. By inspecting equation (3.21) we notice that if m > 4,
the degree of divergence will increase with the number of vertices no matter how large
the number of external lines is, which makes the theory non-renormalizable in this case.
As an example, for m = 4 we have ω = 4 − b and only graphs with b = 2 and b = 4
will be superficially divergent. Therefore, the theory is renormalizable, since only a finite
number of physical constants has to be redefined. The redefinition of physical parameters in
standard renormalization schemes corresponds to the non-unique extension of distributions
in the Epstein-Glaser scheme. As stated in theorem B.1.9 in appendix B.1, for ω ≥ 0
the extension of the distribution through the origin is unique up to derivatives of the
delta distribution and each term contains an undefined constant which can be fixed by
the imposition of physical principles, such as conservation of energy and momentum. The
larger ω is, the larger will be the number of parameters to be fixed. Furthermore, if ω < 0
the extension is unique.

Having constructed the T -product, the Bogoliubov’s S-matrix is defined as a
functional associating with a test function g ∈ D(R4) and an interaction Lagrangean L
3 See the definition of degree of divergence in the last paragraph of appendix B.1.
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the following series

S(gL) .=
∞∑
n=0

in

n!Tn(L,L, ..., L)(g, g, ..., g)

=
∞∑
n=0

in

n!

∫
d4x1 · · · d4xng(x1) · · · g(xn)Tn(L(x1), · · · , L(xn)), (3.22)

in the formal sense, i.e. without requiring the convergence of the series. In the so called
adiabatic limit, g(x)→ g = constant, equation (3.22) becomes the S-matrix of the model4.

3.2 The String-like Case

3.2.1 Introduction

Let us briefly consider the case of the Proca field Apµ(x), which describes massive
particles with spin 1. The Proca field is divergence free, and hence satisfies the Proca
equation given by

∂µF
µν(x) +m2Apν(x) = 0, (3.23)

where F µν is the field strength,

Fµν(x) .= ∂µA
p
ν(x)− ∂νApµ(x). (3.24)

It can be constructed [4] a string-localized version of the Proca field Aµ(x, e) with the
same field strength as its point-localized counterpart, that is

∂µAν(x, e)− ∂νAµ(x, e) = Fµν(x). (3.25)

By equation (3.25) we can assert that Apµ(x) and Aµ(x, e) differ only by the gradient of a
scalar field φ(x, e), called the escort field, that is

Aµ(x, e) = Ap
µ(x) + ∂µφ(x, e), (3.26)

where we may represent the fields Aµ(x, e) and φ(x, e) as line integrals as follows

Aµ(x, e) =
∫ ∞

0
dsFµν(x+ se)eν (3.27)

and
φ(x, e) =

∫ ∞
0

dsAp
ν(x+ se)eν . (3.28)

The interesting point is that, although the point-localized Proca field has scaling dimension
2, and thus a bad UV behaviour, its string-localized version has scaling dimension5 1 (For
the two-point functions of the fields φ(x, e), Ap

µ(x)andAµ(x, e), see Appendix B.3).
4 We are not going to give the proof of renormalizability for the point-localized QED. For detailed

treatments along the lines of Epstein and Glaser causal method see [4, 13,14].
5 See definition B.1.3 in appendix A.
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The particle types in massive QED are the “massive photon”, the electron and the
positron, and the coupling is described by the interaction Lagrangean

Lp(x) .= jµ(x)Ap
µ(x), (3.29)

where jµ(x) .= : ψ̄(x)γµψ(x) : is the current operator and ψ is the free Dirac field. Now
the scaling dimension of jµ is three and that of Ap is two, hence that of Lp is five. Thus
the model is non-renormalizable as it stands. Our way out, analogous to the BRST
approach [24], is to consider its string-localized version

Ls(x, e) .= jµ(x)Aµ(x, e), (3.30)

which has a better scaling dimension, namely four6. By Eq. (3.26) and current conservation,
∂µj

µ = 0, the two interaction Lagrangeans differ by the divergence of the string-localized
vector field V µ(x, e) .= jµ(x)φ(x, e), where φ is the escort field:

Lp(x) = Ls(x, e)− ∂µV µ(x, e) (3.31)

where ∂µ is the partial derivative with respect to x.

3.2.2 Time-ordering of Linear Factors

We set out to define the time-ordered products of linear string-localized fields ϕ,

Tϕ(x1, e1) · · ·ϕ(xn, en) .= Tn(x1, e1, . . . , xn, en). (3.32)

These are operator-valued distributions on (R4 ×H)×n acting on the domain D of vectors
with finite particle number and smooth momentum space wave functions, which are
required to share the following properties.

(P1) T1 is given by T1(x, e) := ϕ(x, e).

(P2) (Linearity.) The T -product is an n-linear application from the space of linear field
operators ϕ(x, e) into operator-valued distributions acting on D.

(P3) (Symmetry.) Tn(x1, e1, . . . xn, en) is symmetric under permutations of the joint vari-
ables (xi, ei).

(P4) (Causality.) If Sxi,ei < Sxj ,ej for all i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , n}, then the
following factorization holds:

Tn(x1, e1, . . . , xn, en) = Tk(x1, e1, . . . , xk, ek) Tn−k(xk+1, ek+1, . . . , xn, en).
6 The same effect of constructing a Lagrangean with scaling dimension equal to four can be obtained by

the standard description of point-like fields and gauge invariance. However, in this case the field is
unphysical since it is an element of an indefinite inner product space, the so called Krein space.
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Before we turn to the construction of the T products, we recall Wick’s theorem for linear
fields, which is also valid in the string-localized case (ϕ(i) denotes ϕ(xi) or ϕ(xi, ei) in the
string-localized case):

ϕ(1) · · ·ϕ(n) =
∑
G

∏
l∈Eint

(
Ω, ϕ(r(l))ϕ(s(l))Ω

)
:
∏

l∈Eext

ϕ(s(l)) : . (3.33)

Here, G runs through the set of all graphs with vertices {1, . . . , n} and oriented lines, such
that from every vertex emanates one line. The lines either connect two vertices (internal
lines, l ∈ Eint) or go from a vertex to the exerior (external lines, l ∈ Eext). The initial
vertex of an internal line l (source s(l)) has a smaller index than its final vertex (range
r(l)). The external lines only have sources.

Let us recall how the time-ordered products are constructed in the point-local case.
In a first step, one shows that Wick’s expansion (3.33) also holds for the time-ordered
products outside the large diagonal {xi 6= xj}, namely:

T ϕ(1) · · ·ϕ(n) =
∑
G

∏
l∈Eint

(
Ω, Tϕ(r(l))ϕ(s(l))Ω

)
:
∏

l∈Eext

ϕ(s(l)) : . (3.34)

(The vacuum expectation value
(

Ω, T ϕ(x)ϕ(y)Ω
)
is called the Feynman propagator.)

This is shown by induction, using the fact that n distinct points always have a latest
member in the sense of <. In a second step, one constructs the extension across the large
diagonal (requiring certain (re-) normalization conditions). If the scaling degree of the
Feynman propagator is smaller than 4, then the T products are fixed (on all R4n), namely,
they are given by Eq. (3.34). On the other hand, if the scaling degree of the Feynman
propagator is ≥ 4 one may add, depending on the scaling degree and the number of internal
vertices of the graph in (3.34), renormalization terms in the form of delta distributions
(and derivatives) in the difference variables with “internal” indices. This is the case for
fields with spin ≥ 1 acting in a Hilbert space.

We show here that for string-localized fields ϕ(x, e) the Tn are fixed outside the large
string diagonal ∆n just by the geometric time-ordering prescription, namely they are given
by the same expression (3.34) as in the point-like case. As mentioned in the introduction,
the problem we have to overcome is the fact that the set of points in (R4 ×H)×n which
correspond to strings that are not comparable in the sense of < is much larger than ∆n,
in fact it contains an open set. We use our results on string chopping from the last section
to show that they are nevertheless fixed outside ∆n. Recall that we are dealing with
string-localized fields that can be written as line integrals over point-localized fields as in
Eq. (6). Thus, for any chopping of the string Sx,e = ∪αSα as in Eq. (2.9), the field ϕ(x, e)
can be written as a sum

ϕ(x, e) =
N+1∑
α=1

ϕα(x, e) , where ϕα(x, e) .=
∫ sα

sα−1
ds u(s)ϕp(x+ se) (3.35)
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is localized on the segment Sα. (We put s0
.= 0 and sN+1

.=∞.)

We start with two fields. If the two strings Sx,e .= S and Sx′,e′ .= S ′ are comparable,
then (P4) implies that

Tϕ(x, e)ϕ(x′, e′) =

 ϕ(x, e)ϕ(x′, e′) if S < S ′

ϕ(x′, e′)ϕ(x, e) if S 4 S ′
. (3.36)

This is well-defined, for if S is both later and earlier than S ′ then it is space-like separated
from S ′ by Lemma 2.1.1 and the fields commute, so that both lines in (3.36) are valid. The
problem is that there is an open set of pairs of strings which are not comparable, namely
whenever S meets both the past and the future of S ′. This is solved by the concept of
string chopping, which fixes the T product outside the string diagonal:

Proposition 3.2.1. The time ordered product Tϕ(x, e)ϕ(x′e′) is uniquely fixed outside
the string-diagonal ∆2 by (P1) through (P4). It satisfies Wick’s expansion

Tϕ(x, e)ϕ(x′, e′) = :ϕ(x, e)ϕ(x′, e′) : +
(

Ω, Tϕ(x, e)ϕ(x′, e′)Ω
)
. (3.37)

Proof. If the two strings Sx,e .= S and Sx′,e′
.= S ′ are comparable, their T product has

been defined in Eq. (3.36). If the strings are not comparable, then we cut one string, say
S, into two pieces S = S1 ∪ S2 such that the pairs (S1, S ′) and (S2, S ′) are comparable
(see Prop. 2.2.1). As explained in Eq. (3.35), the field ϕ(x, e) can be written as a sum
ϕ = ϕ1 + ϕ2, where the field ϕα is localized on Sα, α = 1, 2. By linearity (P2) of the T
product, we have

Tϕ(x, e)ϕ(x′, e′) = Tϕ1(x, e)ϕ(x′, e′) + Tϕ2(x, e)ϕ(x′, e′), (3.38)

where both terms are fixed as in Eq. (3.36). We need to show independence of the chosen
chopping. Given a different chopping S = S̃1 ∪ S̃2, one of the new pieces S̃α is contained
in one of the old pieces Sβ. We may assume that S̃1 ⊂ S1. Then we have

S1 = S̃1 ∪ S12, S̃2 = S2 ∪ S12, (3.39)

where S12 .= S1 \ S̃1 is the “middle piece”. The field decomposes as ϕ = ϕ̃1 + ϕ̃2, where
the operator ϕ̃α is localized on S̃α, α = 1, 2, and by Eq. (3.39) we have

ϕ̃2(x, e) = ϕ12(x, e) + ϕ2(x, e) and ϕ̃1(x, e) + ϕ12(x, e) = ϕ1(x, e),

where ϕ12(x, e) is localized on the middle piece S12. With respect to the new chopping, we
therefore have

Tϕ(x, e)ϕ(x′, e′) = T ϕ̃1(x, e)ϕ(x′, e′) + T ϕ̃2(x, e)ϕ(x′, e′)

= T ϕ̃1(x, e)ϕ(x′, e′) + Tϕ12(x, e)ϕ(x′, e′) + Tϕ2(x, e)ϕ(x′, e′)

= Tϕ1(x, e)ϕ(x′, e′) + Tϕ2(x, e)ϕ(x′, e′).
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This proves independence of the chosen chopping in Eq. (3.38), and we have shown
uniqueness outside ∆n. Substituting Eq. (3.36) into Eq. (3.38) and applying Wick’s
theorem for ordinary products, yields Wick’s expansion (3.37) for the T products.

We turn to the case of n > 2 fields, and show that Wick’s expansion (3.34) also
holds for string-localized fields – outside the large string diagonal:

Proposition 3.2.2. The time-ordered n-fold product of a string-localized free field ϕ(xi, ei)
is uniquely fixed outside the the large string diagonal ∆n, namely there holds

Tϕ(x1, e1) · · ·ϕ(xn, en) =∑
G

∏
l∈Eint

(
Ω, Tϕ(xs(l), es(l))ϕ(xr(l), er(l))Ω

)
:
∏

l∈Eext

ϕ(xs(l), es(l)) : (3.40)

outside the large string diagonal. (Same notation as above.)

Proof. Let (x0, e0, . . . , xn, en) be outside the large string diagonal. That means that the
strings Si .= Sxi,ei are mutually disjoint, i = 0, . . . , n. We wish to determine Tn+1

.=
Tϕ(0) · · ·ϕ(n), where we have written ϕ(i) .= ϕ(xi, ei), under the induction hypothesis
that the formula (3.40) is valid for Tn = Tϕ(1) · · ·ϕ(n). Choose a chopping of the n+ 1
strings as in Prop. 2.2.4, and let ϕ(i) = ∑Ni+1

α=1 ϕα(i) be the corresponding decomposition
as in Eq. (3.35). Then by linearity (P2),

Tn+1 =
∑

α0,...,αn

Tϕα0(0) · · ·ϕαn(n).

For given (α0, . . . , αn), denote by i0 the index of the latest member of the set of string
segments {Sα0

0 , . . . , Sαnn } as in Prop. 2.2.4. Then by (P3) and (P4),

Tn+1 =
∑

α0,...,αn

ϕαi0 (i0)T
∏
i∈I
ϕαi(i),

where we have written I .= {0, . . . , n} \ {i0}. By the induction hypothesis, this is∑
α0,...,αn

ϕαi0 (i0)
∑
G

∏
l∈Eint

〈Tϕαs(l)(s(l))ϕαr(l)(r(l))〉 :
∏

l∈Eext

ϕαs(l)(s(l)) :,

where G runs through all graphs G(I) with vertices I, and 〈·〉 denotes the vacuum
expectation value. Using Wick’s Theorem for ordinary products, we have

ϕαi0 (i0) :
∏
i∈Iext

ϕαi(i) : =

:ϕαi0 (i0)
∏
i∈Iext

ϕαi(i) : +
∑
i∈Iext

〈ϕαi0 (i0)ϕαi(i)〉 :ϕαi0 (i0)
∏

j∈Iext\{i}
ϕαj(j) : ,

where Iext denotes the set of vertices with external lines, {s(l), l ∈ Eext}. Now since i0 is
the latest member of the string segments, we may replace the vacuum expectation value
by the time-ordered one, 〈Tϕαi0 (i0)ϕαi(i)〉. We arrive at

Tn+1 =
∑

α0,...,αn

∑
G′

∏
l∈E′int

〈Tϕαs(l)(s(l))ϕαr(l)(r(l))〉 :
∏

l∈E′ext

ϕαs(l)(s(l)) :,
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where G′ runs through all graphs with vertices {0, . . . , n}, internal lines E ′int and external
lines E ′ext. Now the index i0 (which depends on the tupel α) is not discriminated any more,
and we can perform the sum over α’s:

Tn+1 =
∑
G′

∏
l∈E′int

〈T
∑
αs(l)

ϕαs(l)(s(l))
∑
αr(l)

ϕαr(l)(r(l))〉 :
∏

l∈E′ext

∑
αs(l)

ϕαs(l)(s(l)) :

=
∑
G′

∏
l∈E′int

〈Tϕ(s(l))ϕ(r(l))〉 :
∏

l∈E′ext

ϕ(s(l)) :

This is just the claimed equation (3.40).

An extension of the time-ordered product across the large string-diagonal is not
defined up to this point. To fix it, one extends first the Feynman propagator across ∆2. A
basic (re-) normalization condition is that the scaling degree may not be increased. One
valid extension consists in replacing δ(p2−m2)θ(p0) by i/[2π(p2−m2 + iε)] in the Fourier
transform of the two-point function. The question if other extensions are permitted depends
on the scaling degrees of the Feynman propagator with respect to the various submanifolds
of ∆2 and their respective co-dimensions. We consider an example in Appendix B.2. In
a second step, one can define the time-orderd product by Wick’s expansion (3.40). This
would amount to requiring Wick’s expansion as a further normalization condition.

3.2.3 Final Comments

We have constructed (outside ∆n) the time ordered products of string-localized
linear fields, but not of Wick polinomials. The construction of the latter runs into the
following problem. For simplicity we consider a Wick monomial of the form

W (x, e) .= :χ(x)ϕ(x, e) :, (3.41)

where χ is a point-localized field with non-vanishing two-point function with ϕ. (For
example, χ = ϕp from Eq. (6).) We wish to tell just from the requirements (P2), (P3) and
(P4) who TW (x, e)W (x′, e′) is, if the strings S .= Sx,e and S ′ .= Sx′,e′ do not intersect, yet
are not comparable. A typical case is when one string, say S, emanates from the causal
future of S ′ and ends up in its causal past. The best we can do is to cut S into two pieces
S = S1 ∪ S2 as in Prop. 2.2.1 such that S1 is the finite segment (containing the point x)
and S1 < S ′, while S2 is the infinite tail and S2 4 S ′. (S2 is of the form S2 = x+[s0,∞)e.)
Then, as in Eq. (3.35), W is a sum W = W 1 +W 2, where in particular

W 2(x, e) =
∫ ∞
s0

ds u(s) :χ(x)ϕp(x+ se) : .

Now the problem is that W 2 is, due to the factor χ(x), not localized on S2 — rather, it is
“bi-localized” on {x}∪S2! Note that S2 is earlier than S ′ but x is not, since it is in V+(S ′).
Therefore, TW 2(x, e)W (x′, e′) is not fixed by (P4), in particular it does not factorize as
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W (x′, e′)W 2(x, e) even though S ′ < S2. Similar considerations hold for more general Wick
monomials of the form :χ(x)lϕk(x, e) :.

We conclude that, in contrast to the linear case, the time-ordered products of Wick
monomials are fixed by the axioms (P2) through (P4) only outside an open set, namely
the set of pairs of strings which are incomparable. The extension into this set requires an
infinity of parameters: It cannot be fixed by a finite set of normalization conditions.

We conjecture that this problem can be solved as follows. Recall from the discussion
in the introduction chapter that in the construction of interacting models one has to
start from an interaction Lagrangean that differs from some point-localized Lagrangean
by a divergence. For the point-localized Lagrangean Lp there holds the strong form of
Wick’s expansion outside the large (point-) diagonal, which fixes the products TLp · · ·Lp

through the Feynman propagators. We conjecture that the required string independence
condition7 (equivalence of the string- and point-localized Lagrangeans) implies that the
same expansion holds for the string-localized Lagrangean outside ∆n (where it is well-
defined). From here, one would have to extend the product of Feynman propagators in
various steps across ∆n. In models like massive QED, where the interaction Lagrangean
jµ(x)Aµ(x, e) is linear in the string-localized field Aµ, we conjecture that the SI-condition
fixes the extension outside the large point diagonal. The question of renormalizability
then amounts to the question if the complete extension is fixed by a finite number of
parameters, which does not increase with the order n. This is work in progress.

7 Note that Eq. (3.31) implies that the product Lp(x1) · · ·Lp(xn) differs from the n-fold product of
Ls by derivative terms containing the Vµ. We require that this fact survives the time-ordering, in
other words: that the time ordering of the T -products TnLs · · ·LsV µ · · ·V ν can be defined so that “the
derivatives can be taken out of the T -products”:

TLp
1 · · ·Lp

n
!= TLs

1 · · ·Ls
n +

∑
I⊂{1,...,n}

I 6=∅

(−1)|I| ∂µ1 · · · ∂µkTV
µ1
i1
· · ·V µkik L

s
j1 · · ·Ls

jn−k . (3.42)

(Here we have written I = {i1, . . . , ik}, Ic = {j1, . . . , jn−k}, ∂µi = ∂
∂x
µi
i

, and Wi = W (xi, ei) for
W = Lp, Ls or V µ.) This is a (re-) normalization condition for the T -products TnLs · · ·LsV µ · · ·V ν ,
which we call perturbative string-independence. (The condition can be formulated without mentioning
the Lp, namely: the right hand side of Eq. (3.42) be independent of the e’s.) It is analogous to the
condition of “perturbative gauge invariance" in [24]. If it can be satisfied for all n, then the Bogoliubov
S-matrix for Ls coincides with that of Lp in the adiabatic limit, g → const., since the boundary terms
vanish. In [25] it has been shown that perturbative string-independence can be satisfied in lower orders.
The conjecture that it can be satisfied at all orders shall is currently under investigation.



59

Conclusion

We have obtained two major results. The first one concerns the geometric time
ordering of strings in space-time. In order to apply the Epstein-Glaser scheme of renor-
malization, we have to properly define the time-ordered products of string-localized fields,
which play the central role in this approach. That was fully accomplished in chapter 2,
where the chopping mechanism was devised to account for the non-intersecting incompara-
ble strings. This result is going to serve as the first step in the study of renormalizability of
every quantum field theory perturbatively with string-localized fields. This general setting
was posponed for a future publication and is currently being contrived.

The second major result concerns the construction of time-ordered products of
linear string-localized fields, which will serve for the general construction with arbitrary
Wick monomials of fields. It was shown, as an example in the last section, that even for
the simplest non-linear case, the time-ordering product of Wick monomials would lead
to an ill-defined time-ordering due to its poly-localization on a set of strings and points.
However, we conjecture that the requirement of the string independence condition as a
further normalization condition fixes the time-ordering outside the large string diagonal
∆n.

In addition to the study of time-ordered products of string-localized fields, we have
treated in a succint, yet sufficiently compreensible way, the study of renormalizability
of point-localized quantum field theories with the example of a scalar field theory with
interaction lagrangean L(x) =: ϕ(x)n :. Furthermore, it should be pointed out that the
concept of string-localized fields has only recently been rigorously established and the area
is very fertile. Several applications such as the study of anomalies and the description of
dark matter are already being considered.
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APPENDIX A – Basic Geometric Notions

Definition A.0.1. Given a set A ⊂M, we say that Ac is the causal complement of A if

Ac := {x ∈M : (x− y)2 < 0,∀y ∈ A}. (A.1)

Definition A.0.2. Let x, y ∈M be such that y ∈ V+(x). Then, we define the open double
cone D(y, x) with x and y as apices by

D(y, x) = V+(x) ∩ V−(y). (A.2)

Definition A.0.3. A hyperplane is a three-dimensional linear submanifold Σ of R4. A
hyperplane Σ is determined by its normal u (which is a non-zero vector inM) and any
one of its points a by

Σ := a+ u⊥ = {x ∈M : (x− a) · u = 0}. (A.3)

We say Σ is space-like if u is time-like, that Σ is time-like if u is space-like, and that Σ
is light-like if u is light-like.

Let e, e′ be space-like unit vectors, i.e. e · e = −1.

Lemma A.0.4. i) The linear span of e, e′ is time-like / light-like / space-like, respectively,
if and only of

(e · e′)2 − 1

is positive / zero / negative, respectively.

ii) It is time-like if and only if one of the vectors e± e′ is time-like and the other
one is space-like; It is light-like if and only if one of the vectors e± e′ is light-like; It is
space-like if and only if the vectors e± e′ are either both time-like or both space-like.

Proof. The first statement is readily verified. Now note that

(e∓ e′)2 = −2(1± e · e′),

hence
(e · e′)2 − 1 ≡ (e · e′ + 1)(e · e′ − 1) = −1

4 (e− e′)2 (e+ e′)2.

Thus, (i) implies (ii).
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APPENDIX B – Extension of Distributions
and Scaling Degree

B.1 Basic Notions on the Extension of Distributions and Scaling
Degree
As mentioned in section 3.1 the problem of ultraviolet divergence can be solved by

the extension of certain distributions which in turn will account for the renormalization of
the theory. In order to do that one uses the notion of scaling degree of a distribution.
In this section1, we shall introduce some properties of the scaling degree and provide some
simple examples. Let us following definition:

Definition B.1.1. Let ϕ ∈ D(Rn) and λ ∈ R+, then we define a dilatation Λ of the
function ϕ through λ by

Λ : R+×D(Rn) −→ D(Rn)

(λ, ϕ) 7−→ ϕλ
.= λ−nϕ(λ−1·) (B.1)

By pullback2, we can define a dilatation of a distribution u ∈ D′(Rn) as

(Λ∗u)(ϕ) .= uλ(ϕ) .= u(ϕλ). (B.2)

For the case of u ∈ L1
loc(Rn) we can write equation (B.2) as the integral

uλ(ϕ) =
∫
u(λx)ϕ(x)dnx, ∀ϕ ∈ D(Rn). (B.3)

The quantity u(x) is referred to as the integral kernel of u and we shall, by the usual abuse
of notation, denote a general distribution u(ϕ) as the integral in (B.3).
Let D(Rn \ {0}) = {ϕ ∈ D(Rn) : 0 /∈ supp(ϕ)} be the subspace of test functions whose
support does not contain the origin and D′(Rn \ {0}) its dual3. With all that said, the
central problem can be stated as follows:

Problem B.1.2. Given a distribution u0 ∈ D′(Rn \ {0}), how can we construct a distri-
bution u ∈ D′(Rn) such that u0(ϕ) = u(ϕ) ∀ϕ ∈ D(Rn \ {0})?
1 For more detailed description of the problem of extension of distributions consult [14,26,27].
2 The pullback essencialy transfers the effect of an operation over the test functions to an operation

over the distributions by a composition. That is, let X and Y be open sets, Λ be the mapping
Λ : R+ × X ⊆ R+ × D(Rn) → Y ⊆ D(Rn) and u be the distribution u : Y ⊆ D(Rn) → C, then
u ◦ Λ := Λ∗u : R+ ×D(Rn)→ C.

3 The extension exists by Hahn-Banach theorem, see [23, Chap. 3.2].
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To answer that question it is necessary to use the concept of the so called scaling
degree of a distribution, which basicly measures how singular a distribution is at the origin.

Definition B.1.3. A distribution u ∈ D′(Rn) has scaling degree s (in symbols sd(u) = s)
with respect to the origin in Rn if

s
.= inf{s′ ∈ R : λs′uλ λ→0−−→ 0}. (B.4)

Let us see some simple examples.

Example B.1.4. Let f ∈ C0(R) with f(0) 6= 0, then

lim
λ↓0

λω
∫
f(λx)ϕ(x)dx =


0, if ω > 0

f(0)
∫
ϕ(x)dx, if ω = 0

∞, if ω > 0

(B.5)

and consequently, sd(f) = 0.

Example B.1.5. Let δ ∈ D′(Rn) be the Dirac δ-function. Since δ(λx) = λ−nδ(x), we
have sd(δ) = n.

Example B.1.6. The functions f(x) = e−
1
x2 and g(x) = e

1
x both define distributions on

R \ {0}. Thus, 
lim
λ↓0

λsf(λx) = 0 ∀s ∈ R⇐⇒ sd(f) = −∞

lim
λ↓0

λsg(λx) =∞ ∀s ∈ R⇐⇒ sd(g) =∞
(B.6)

Example B.1.7. Consider the scalar Feynman propagator ∆F in four dimensions given
by

∆F (x,m) = lim
ε↓0

(2π)−4
∫
d4p

e−ip·x

(p2 −m2 + iε) , (B.7)

then

∆F (λx,m) = lim
ε↓0

(2π)−4
∫
d4p

e−ip·λx

(p2 −m2 + iε)

= lim
ε↓0

(2π)−4λ−2
∫
d4p

e−ip·x

(p2 − (λm)2 + iε)
= λ−2∆F (x, λm). (B.8)

Since for m→ 0, ∆F (x,m) converges to the massless scalar propagator of the theory, we
have sd(∆F ) = 2.

The following theorem highlights some important properties of the scaling degree.
It will be presented without proof (see [14]).
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Theorem B.1.8. Let t ∈ D′(Rn) have sd(t) = s at 0, then the scaling degree obeys the
following properties:

i sd(∂αt) ≤ s+ |α|, where α ∈ Nn is any multiindex,

ii sd(xαt) ≤ s− |α|, where α ∈ Nn is any multiindex,

iii sd(ft) ≤ sd(t), where f ∈ En(Rn),

iv sd(t1 ⊗ t2) = sd(t1) + sd(t2), for ti ∈ D′(Rni), i = 1, 2.

A precise answer to problem B.1 is given by the following theorem, which will be
presented without proof4.

Theorem B.1.9. Let u0 ∈ D′(Rn \ {0})5.

1. If sd(u0) < n, then there exists a unique extension u ∈ D′(Rn) such that sd(u0) =
sd(u).

2. If n ≤ sd(u0) < ∞, then there exist several extensions u ∈ D′(Rn) such that
sd(u0) = sd(u). Given a particular solution up, the most general solution reads

u = up +
∑

|α|≤sd(u0)−n
cα∂

αδ(n) (B.9)

with arbitray constants cα ∈ C.

3. If sd(u0) =∞, then there exists no extension u ∈ D′(Rn).

It is convinient to define the notion of degree of divergence of a distribution u,
which is given by div(u) .= sd(u)−n. It is worth mentioning that the non-unique extension
case is given by (B.9) due to the fact that the most general distribution supported at the
origin is given by an arbitrary differential polynomial applied to the δ distribution, see
example 1.2.19.

B.2 Extension of a String-localized Feynman Propagator across the
String Diagonal
In Prop. 3.2.1, we have seen that the time-ordered product Tϕϕ is fixed outside

the string diagonal ∆2. We illustrate here the extension across ∆2 with a concrete example,
which motivates that one should take the string-localized fields as basic building blocks
even though they have been introduced as integrals (6) over point-localized fields.
4 For a detailed proof see [14].
5 In the case the extension is not through the origin, but through an arbitrary submanifold D of

Rn we must replace n in this theorem by the codimension of the submanifold, which is defined as
codim(D) = dim(Rn)− dim(D) = n− dim(D).
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Figure 6 – Configurations in submanifolds of the string diagonal ∆2

The string diagonal ∆2 decomposes into the following disjoint submanifolds:

∆0
2 = { (x, e, x′, e′) : x = x′ } ,

∆1a
2 = { (x, e, x′, e′) : ∃r > 0 with x′ = x+ re },

∆1b
2 = { (x, e, x′, e′) : ∃r′ > 0 with x = x′ + r′e′ },

∆2
2 = { (x, e, x′, e′) : e, e′ lin. indep. ∧ ∃r, r′ > 0 with x+ re = x′ + r′e′ }.

Here ∆0
2 consists of the pairs of strings with the same initial point (the point-diagonal);

∆1a
2 is the set of configurations where x′ lies in the relative interior of the string Sx,e, i.e.,

x′ ∈ Sx,e \ {x}; and ∆2
2 is the set of pairs of strings whose interiors cross: see Fig. 6. Thus

∆0
2 is the boundary of either ∆1a

2 or ∆1b
2 , and ∆1

2
.= ∆1a

2 ∪∆1b
2 is the boundary of ∆2

2. So
one must extend the Feynman propagator successively across ∆2

2; then ∆1a
2 and ∆1b

2 ; and
finally across ∆0

2.

As an example we consider massive particles of spin one and take a line integral
over the Proca field Ap

µ, the so-called escort field [4, 5]:

φ(x, e) .=
∫ ∞

0
dsAp

µ(x+ se) eµ. (B.10)

Its two-point function 〈Tφ(x, e)φ(x′, e′)〉 in momentum space [4] is

1
m2 −

e · e′

(p · e− iε)(p · e′ + iε)

times the on-shell delta distribution δ(p2 −m2)θ(p0). It has scaling degree 0 with respect
to ∆2

2 and ∆1
2, and scaling degree 2 with respect to ∆2

2 due to the first term. The same
holds for the Feynman propagator (outside ∆2), and its extension across ∆2 may not
exceed this (that is the basic renormalization condition). For all three submanifolds, the
codimension is larger than the respective scaling degree, namely 2, 3 and 4, respectively.
Therefore the respective extensions are unique [15], and the Feynman propagator is fixed
without any freedom: it is defined by replacing δ(p2 −m2)θ(p0) by i/[2π(p2 −m2 + iε)−1].

On the other hand, the two-point function of the Proca field in momentum space
is
(
−gµν + pµpν/m

2
)
times the on-shell delta distribution. Its scaling degree with respect
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to the origin is 4; hence the Feynman propagator admits a renormalization of the form

c gµν δ(x− x′) (B.11)

as is well known. So, if one defines the Feynman propagator as the integral∫ ∞
0

ds
∫ ∞

0
ds′ 〈TAp

µ(x+ se)Ap
ν(x′ + s′e′)〉 eµe′ν , (B.12)

as one might be tempted to do from Eq. (B.10), then by (B.11) one has the freedom of
adding the distribution

c e · e′
∫ ∞

0
ds
∫ ∞

0
ds′ δ(x+ se− x′ − s′e),

supported on ∆2
2: One has an undetermined constant and therefore has gained nothing, in

contrast to the first approach where one takes φ(x, e) as basic building block.

B.3 Free Fields for Massive Vector Bosons
In this section we simply give a list of all two-point functions that are relevant to

this work. For more detailed discussions of the two-point functions see [4].

Let ϕ1, ϕ2 ∈ {Ap
µ, Aν , φ}, then the two-point functions are of the form

( Ω, ϕ1(x, e)ϕ2(x′, e′)Ω ) = (2π)−3
∫
H+
m

dµ(p) e−ip·(x−x′) Mϕ1ϕ2(p, e, e′) ,

where

MAA
µ,µ′(p, e, e′) = −gµµ′ −

pµpµ′ (e · e′)
(p · e− iε)(p · e′ + iε) + pµeµ′

p · e− iε
+

pµ′e
′
µ

p · e′ + iε
(B.13)

MAAp

µ,µ′ (p, e) = −gµµ′ +
pµeµ′

p · e− iε
(B.14)

MAφ
µ (p, e, e′) = 1

i

( e′µ
p · e′ + iε

− pµ e · e′

(p · e− iε)(p · e′ + iε)
)

(B.15)

MApAp

µ,µ′ (p) = −gµµ′ +
pµpµ′

m2 (B.16)

MApφ
µ (p, e′) = i

( pµ
m2 −

e′µ
p · e′ + iε

)
(B.17)

Mφφ(p, e, e′) = 1
m2 −

e · e′

(p · e− iε)(p · e′ + iε) . (B.18)
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