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RESUMO

Realidade Aumentada (RA) é uma tecnologia que permite combinar objetos virtuais

tridimensionais com um ambiente predominantemente real, de forma a construir um novo

ambiente onde os objetos reais e virtuais podem interagir uns com os outros em tempo

real. Para fazer isso, é necessário encontrar a pose do observador (câmera, HMD, óculos

inteligentes, etc.) em relação a um sistema de coordenadas global. Geralmente, algum

objeto f́ısico conhecido é usado para marcar o referencial para as projeções e para a

posição do observador. O problema de Localização e Mapeamento Simultâneo (SLAM) se

origina da comunidade de robótica como uma condição necessária para se construir robôs

verdadeiramente autônomos, capazes de se auto localizarem em um ambiente desconhecido

ao mesmo tempo que constroem um mapa da cena observada a partir de informações

capturadas por um conjunto de sensores. A principal contribuição do SLAM para a

RA é permitir aplicações em ambientes despreparados, ou seja, sem marcadores. No

entanto, ao eliminar o marcador, perdemos o referencial para a projeção dos objetos

virtuais e a principal fonte de interação entre os elementos reais e virtuais. Embora o

mapa gerado possa ser processado a fim de encontrar uma estrutura conhecida, como

um plano predominante, para usá-la como referencial, isso ainda não resolve a questão

das interações. Na literatura recente, encontramos trabalhos que integram um sistema de

reconhecimento de objetos ao SLAM e incorporam tais objetos ao mapa. Frequentemente,

assume-se um mapa estático, devido às limitações das técnicas envolvidas, de modo que

o objeto é usado apenas para fornecer informações semânticas sobre a cena.

Neste trabalho, propomos um novo framework que permite estimar simultaneamente

a posição da câmera e de objetos para cada quadro de v́ıdeo em tempo real. Dessa

forma, cada objeto é independente e pode se mover pelo mapa livremente, assim como

nos métodos baseados em marcadores, mas mantendo as vantagens que o SLAM fornece.

Implementamos a estrutura proposta sobre um sistema SLAM de última geração a fim de

validar nossa proposta e demonstrar a potencial aplicação em Realidade Aumentada.

Palavras-chave: Rastreamento de objetos. Mapa dinâmico. Otimização.



ABSTRACT

Augmented Reality (AR) is a technology that allows combining three-dimensional vir-

tual objects with an environment predominantly real in a way to build a new environment

where both real and virtual objects can interact with each other in real-time. To do this,

it is required to find the pose of the observer (camera, HMD, smart glasses etc) in rela-

tion to a global coordinate system. Commonly, some well known physical object, called

marker, is used to define the referential for both virtual objects and the observer’s posi-

tion. The Simultaneous Localization and Mapping (SLAM) problem borns from robotics

community as a way to build truly autonomous robots by allowing they to localize them-

selves while they build a map of the observed scene from the input data of their coupled

sensors. SLAM-based Augmented Reality is an active and evolving research line. The

main contribution of the SLAM to the AR is to allow applications on unprepared envi-

ronments, i.e., without markers. However, by eliminating the marker object, we lose the

referential for virtual object projection and the main source of interaction between real

and virtual elements. Although the generated map can be processed in order to find a

known structure, e.g. a predominant plane, to use it as the referential system, this still

not solve for interactions. In the recent literature, we can found works that integrate an

object recognition system to the SLAM in a way the objects are incorporated into the

map. The SLAM map is frequently assumed to be static, due to limitations on techniques

involved, so that on these works the object is just used to provide semantic information

about the scene.

In this work, we propose a new framework that allows estimating simultaneously the

camera and object positioning for each camera image in real time. In this way, each object

is independent and can move through the map as well as in the marker-based methods

but with the SLAM advantages kept. We develop our proposed framework over a state-

of-the-art SLAM system in order to evaluate our proposal and demonstrate potentials

application in Augmented Reality.

Keywords: Object tracking. Dynamic map. Graph optimization.
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1 INTRODUCTION

We, humans, have the ability to localize ourselves in an unknown environment. We can

map the area around us in our mind by recognizing patterns and identifying landmarks.

These abilities make us able to explore any environment that supports life autonomously.

One of the main study fields in robotics is related to replicate our exploration ability in

order to make autonomous robots. The Simultaneous Localization and Mapping (SLAM)

problem borns from the robotics community as a crucial task to robots become truly

autonomous (DURRANT-WHYTE; BAILEY, 2006). The primordial idea is to estimate

the robot pose (position and orientation) in the world at the same time it builds a map

of the environment, from measurements taken by a set of sensors coupled to the robot.

When only cameras are used, the problem becomes purely visual getting support from

the Computer Vision field and expanding the application domain.

Augmented Reality (AR) is a technology that allows for combining virtual elements

with real ones making a new environment, where real and virtual objects can interact

with each other in real time (AZUMA, 1997). A crucial task for any AR system is to

detect the observer’s viewpoint, i.e., the position and direction from which it observes the

scene. This is a localization problem. However, just localizing the observer is not enough

to produce the desired effect. We need to align virtual elements over the real world, so

we need to find a good referential system for them. For example, if we want to project a

virtual cube over a real table, we need to know the position of the table relative to the

observer. This is a tracking problem.

The first libraries to support the development of AR applications solved both problems

by introducing the environment a simple marker object with known features (KATO, 2005;

FIALA, 2005). The marker is the tracking target, i.e. it provides the referential system

for virtual objects and also for the observer’s position. With the evolution of the tracking

techniques and hardware performance, more complex objects naturally presented in the

environment could be used as markers (UFKES; FIALA, 2013). On these marker-based

systems, localizing a camera or tracking an object is the same problem, because one is

positioned relative to the other. The advantage of this approach is to easily define a good

referential for the virtual objects and to provide an interface between real and virtual
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environments. However, the need for the object to be visible is its main weakness.

The main contribution of SLAM to AR domain is to make possible to track the camera

without any previous information about the scene, i.e., it is not necessary to have a known

object visible. The first SLAM-based AR applications avoided the tracking problem by

identifying on the generated map a predominant plane and using it as the referential

for augmentations (KLEIN; MURRAY, 2007; TAN et al., 2013). With the development

of SLAM methods integrated to object recognition systems, applications could use such

recognized objects as this referential (KIM et al., 2012; RAMADASAN et al., 2015).

However, one of the main issues with all SLAM systems is to deal with dynamic maps,

i.e., when the environment changes over time. The difficulty in solving this problem causes

many works to assume a static map as we will see in Chapter 3. This is not interesting

in the context of Augmented Reality, because it limits the interaction between real and

virtual environments under arbitrary circumstances.

Our main contribution in this work is the design of a novel optimization framework

capable of updating dynamic elements positioning on the SLAM map at the frame rate.

This means we can estimate the 6 degrees of freedom (6DoF) of both moving objects and

the camera on the map without jeopardizing the performance of the SLAM system. To

our knowledge, we are the first to propose an object-aware monocular SLAM system that

recognizes and tracks moving objects using only geometric properties of the map. In

this way, AR applications can benefit from both advantages of a marker- and a SLAM-

based system. So, our contribution to AR domain is to provide an interface between real

and virtual worlds, but giving more freedom for the camera movement since its tracking

does not depend on the presence of a known object.

1.1 PROBLEM DEFINITION

Our problem in this work is actually three in one. First, we need to solve the SLAM,

which itself is the combination of two problems: Camera Localization and Environment

Mapping. In addition, we want to track moving objects on the map. All these three

problems must be solved simultaneously. Moreover, we take only monocular observations

of the environment using a calibrated RGB camera. So the challenge here is to distinguish

camera movement from object motion on the 3D space, which it is a very hard problem.

Our hypothesis is only geometric relations between the camera and the map are able to
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distinguish these motions, provided there are some visible static points.

In the SLAM literature, there are three main paradigms to solve it. We will discuss

with more details about these paradigms in the Section 2.1.2, but for now, we can classify

them as filter-based or graph-based. The study carried out in Strasdat et al. (2012) found

that to obtain better accuracy for the visual SLAM problem it is more advantageous to in-

crease the number of points than the number of cameras. Hence, graph-based approaches,

more specifically those that use a geometric formulation for the map optimization, tend

to get better accuracy than those filter-based ones. Based on this study, we assume that

this conclusion can be generalized to the moving object tracking problem integrated with

SLAM. At first, this may be counter-intuitive because if the object is moving, it is reason-

able that by observing more positions, we can get a smoother trajectory. This is true, but

we argue that for Augmented Reality the important thing is the current object position,

not its entire trajectory. Therefore, in one instant the whole map is static, so we have a

visual SLAM problem again.

Our approach follows a geometric formulation for map optimization. In each camera

image, we need to search for correspondences between the image and the current map,

giving us 3D-to-2D point matches. From these matches, we want to simultaneously es-

timate the 6DoF pose of each visible object in the current image and the current 6DoF

pose of the camera by minimizing a projective error function.

1.2 OBJECTIVES

The main objective of this work is to extend the interaction level between real and virtual

objects in an Augmented Reality environment. For this, we believe it is fundamental to

adopt SLAM-based methods to increase the freedom of camera movement. Moreover, a

marker-based method is still important to provide an interface between the real and virtual

worlds. In this way, another objective of our work is to incorporate an object tracking

system to state-of-the-art SLAM software in order to combine advantages of both methods.

Furthermore, we want to demonstrate potential Augmented Reality applications with the

new software.
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1.3 OUTLINE

The remainder of this work is organized as follows: Chapter 2 provides the technical

and theoretical fundamentals needed to fully understand our work; Chapter 3 describes

the SLAM problem evolution and the related works. Chapter 4 presents our proposal

and describes the developed system; Chapter 5 shows our experimental results, describes

the metrics and the used data sets; Finally, we close our work in Chapter 6 with our

conclusions and proposals for future works.
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2 FUNDAMENTALS

In this chapter it is presented the main fundamentals of this work.

2.1 SIMULTANEOUS LOCALIZATION AND MAPPING

Our SLAM problem was defined in Section 1.1, but the term SLAM comprehend a large

and diversified set of problems. Therefore, to better understand the terms used throughout

this work and help us to position our work in the literature, in this section, we describe

the SLAM taxonomy and its main paradigms.

2.1.1 TAXONOMY

A SLAM problem may be distinguished by several aspects. When the sensors are only

cameras the problem is known as visual SLAM, or vision-based SLAM, or simply vSLAM.

The map is the representation of the environment. This representation may be topological

or geometric, dense or sparse and static or dynamic. The topological map describes only

qualitative relations between places whereas geometric map provides a metric description

of the environment. Dense or volumetric maps have a high resolution that allows realistic

reconstructions of the environment while sparse maps are built over a small set of fea-

tures. Feature-based methods are the ones that extract a subset of data from the sensor

stream and so they normally build sparse maps. Finally, a static map assumes that the

environment does not change over time, which is not true for dynamic maps that must

preserve its consistency even in the presence of moving artifacts.

A SLAM system can allow short- or long-term operation which implies how much

space the robot can navigate without loss of map consistency. The long-term operation

generally requires loop-closure techniques to detect when the robot passes through a pre-

viously visited area and to make corrections across the map. This is important to reduce

the accumulated uncertainty during the robot navigation. The problem still may be clas-

sified by run-time requirements. If the system must generate an output for each sensor

measurement input in a timely manner, then the map is built incrementally so we call this

problem a incremental SLAM or online SLAM. However, in cases where only the final

result matters and all sensor data is processed at once, we have a full SLAM problem.
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2.1.2 PARADIGMS

There are three main paradigms for the SLAM problem, they are:

• EKF-based

• Particle Filter

• Graph-based

EKF-based SLAM was the first solution to the SLAM problem. This model uses

the Extended Kalman Filter (KALMAN et al., 1960) to estimate a huge state vector

composed by the robot position and orientation and the position of each measurement of

the environment while updates a covariance matrix that increases quadratically with the

number of measurements. The maintenance of this matrix is its main limitation.

The idea behind the particle filter approaches is decomposing the SLAM problem into

a localization problem and a collection of landmark estimation problems conditioned by

the pose estimations. All K landmark locations are estimated by M particles following

a Rao-Blackwellised particle filter algorithm (MURPHY; RUSSELL, 2001). Using a tree

structure it is possible to obtain an algorithm with O(M logK) runtime cost (MONTE-

MERLO et al., 2002).

Graph-based approaches reduce the SLAM to a least-squares optimization problem.

The idea is to build a network with feature locations, robot poses, and spatial relation

constraints. Feature locations and robot poses are represented by a node in this net-

work while each spatial relationship between them is represented by an arc linking the

correspondent nodes. Then, this structure is optimized by minimizing a geometric error

function. The graph-based approaches are currently the state-of-the-art in terms of accu-

racy (STRASDAT et al., 2012). The computational cost is high but nowadays is possible

to achieve real-time performance through task parallelization.

2.2 ORB DESCRIPTORS

The feature space provides a concise and invariant representation of the camera stream

as it dramatically reduces the number of points needed to describe the scene and adds

mechanisms to recognize the same region in different viewpoints and light conditions. The

ORB (Oriented FAST and Rotated BRIEF) descriptor extractor is a robust technique
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developed by Rublee et al. (2011) that achieve real-time performance for image matching

task. The main difference of ORB to other state-of-the-art techniques like SIFT (LOWE,

2004) or SURF (BAY et al., 2006, 2008) is its binary representation of the feature space

rather than floating-point.

The ORB algorithm is a combination of the FAST keypoint detector (ROSTEN;

DRUMMOND, 2006) and the BRIEF descriptor extractor (CALONDER et al., 2010)

with modifications on both to add in-plane rotation and scale invariance to the feature

space. These two components will be detailed below.

2.2.1 ORIENTED FAST

The FAST algorithm detects keypoints in the image through an intensity threshold be-

tween a center pixel and those in a circular ring about the center. This threshold is the

only parameter of the original FAST algorithm. RUBLEE et al. found FAST has a large

response on edges so they employed the Harris corner measure (HARRIS; STEPHENS,

1988) to rank FAST points and pick the top η ones.

ORB builds a scale pyramid of the image and detects FAST keypoints at each pyramid

level in order to obtain scale invariance. The authors introduce yet a measure for the

corner orientation. Each keypoint k defines a circular region Hk ⊂ H centered in k. The

orientation angle θk is obtained from the intensity centroid of the region Hk (Equation

2.1).

θk = arctan2

 ∑
(x,y)∈Hk

x ι(x, y),
∑

(x,y)∈Hk

y ι(x, y)

 (2.1)

Where arctan2 is the quadrant-aware version of arctan function and ι : H→ R returns

the intensity value of the image point (x, y) ∈ Hk.

2.2.2 ROTATED BRIEF

The BRIEF descriptor is a bit array of n binary tests over a smoothed image patch, p. A

binary test τ is defined by Equation 2.2.

τ (ιp; ~x, ~y) =

1 : ιp(~x) < ιp(~y)

0 : ιp(~x) ≥ ιp(~y)
(2.2)
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Where ιp : Hp → R is the function that returns the intensity of the patch p at a point

around its center and ~x, ~y ∈ Hp are the test points. The BRIEF feature descriptor is then

defined by Equation 2.3.

δBRIEF (p) =
n∑
i=1

2i−1τ (ιp; ~xi, ~yi) (2.3)

Each pair of points ~xi, ~yi for a test is chosen following a probability distribution. In

the paper of BRIEF, Calonder et al. (2010) consider many types of distributions. ORB

authors chose a Gaussian distribution around the center of a 31 × 31 keypoint patch

and a vector length n = 256. It is important that the tests have high variance and are

uncorrelated to make the feature more discriminative, i.e., that responds differently to

inputs. For this, ORB has a pre-built table with the n tests which have the greater

variance and lower correlation among all possible tests over a 31× 31 patch.

The in-plane rotation invariance is achieved by rotating the test points by the orien-

tation angle of the keypoint. Let T be the set of all test points and Rfθk the rotation

matrix correspondent to the orientation of k discretized to increments of f−1 = 2π/30,

then we define Tθk = {Rfθk~x | ~x ∈ T}. Finally, the ORB feature descriptor for a patch

pk is defined by Equation 2.4.

δORB(pk, θk) = δBRIEF (pk) | ~xi, ~yi ∈ Tθk (2.4)

2.3 FEATURE MATCHING

Feature matching is the process of finding the best correspondences between two sets of

features. The best correspondence is the one that has the smaller distance in the feature

space. For floating-point descriptors, the L2-norm is often used. In the binary domain,

this function is equivalent to the Hamming distance, but the last is much faster. Hamming

distance is the number of positions in which two words of the same size differ. In the case

of binary descriptors like ORB or even BRIEF, it can be defined as the number of bits 1

from the xor operation between them.

The feature matching is a fundamental step of any visual SLAM system since it is

responsible to perform the crucial task for this problem: data association. A poor corre-

spondence can cause a wrong point triangulation, a displacement in the camera pose and a
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bad object recognition. So, it is very important to ensure good matching. Many filters can

be applied to eliminate false-positives like the maximum distance, distance ratio, cross-

validation etc. The first one simply defines a threshold for the maximum distance between

the descriptors. The second one defines a threshold for the ratio between the distances of

the two best correspondences. Finally, cross-validation ensures that the correspondence

a → b is the best mutually, i.e., b is the best for a as a is the best for b. Nevertheless,

robust estimators like RANSAC (FISCHLER; BOLLES, 1987) are important to reject

potential survivor outliers while it estimates the camera model.

2.4 BAG OF WORDS

When we want to compare an image against a large set of images, for instance, to do image

retrieving in a web search, it is computationally impracticable to perform the matching

with each image in the set individually. So, we need to structure the database in some

way to allow speedup the information retrieval process.

The Bag of Words (BoW) model was originally proposed to classify text documents

from a vocabulary of keywords (HARRIS, 1954). In this model, the grammatical structure

and word order are disregards. Just the set of words present in documents and their

frequency are used for classification. This model was posteriorly adapted for images

(CSURKA et al., 2004), where words represent the visual descriptors.

The construction of the vocabulary of visual descriptors is performed from the re-

cursive clustering of descriptors, building a clustered tree whose internal nodes are the

cluster centroid and the leaves are the visual words. For float-pointing descriptors, the

k-means clustering algorithm is commonly used to find k clusters that segment the set

of descriptors. In another way, for binary strings like ORB, Gálvez-López and Tardos

(2012) proposed to use the k-medians algorithm, whose only difference to k-means is to

compute the median of each descriptor component instead of the arithmetic mean. Once

the vocabulary was created, we can classify a new image by finding the vocabulary words

present on the image and checking documents that most share these words.

In this work, we use the same BoW model proposed by GÁLVEZ-LÓPEZ; TARDOS

to structure our object database in order to perform object recognition on a camera image.
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2.5 RIGID-BODY TRANSFORMATION

Camera and object positioning in the tridimensional space are represented by rigid-body

transformations. A given 3D rigid-body transformation, T , it is an element of the Lie

group of the Special Euclidean transformations, T ∈ SE(3), defined by the matrix on the

following equation.

T =

 R t

0 1

 (2.5)

Where R ∈ SO(3) is a rotation 3x3 sub-matrix and t ∈ R3 is a translation sub-vector.

They represent, respectively, the object orientation and its center position. This represen-

tation is efficient when we want to compose transformations, which can be done via matrix

multiplication but it is over-parameterized. For the optimization process, we need mini-

mal representation. For this, we convert the rotation sub-matrixR to its quaternion form,

q = [qw, [qx, qy, qz]] (Equation 2.6). Then we compose the imaginary-part components of

q with the components of vector t, building the 6-vector τ = [tx, ty, tz, qx, qy, qz] ∈ R6.

The real component of q may be recovered by qw =
√

1− q2x − q2y − q2z .

q(R) = [ ω/2, [(R3,2 −R2,3)/2ω, (R1,3 −R3,1)/2ω, (R2,1 −R1,2)/2ω] ]

where ω =
√

1 + trace(R)
(2.6)

We can restore the matrix representation by doing the inverse process. First, we

decompose the 6-vector τ to the quaternion q and the vector t. Then we convert q to

its equivalent rotation matrix R (Equation 2.7) and we build the matrix T as defined by

Equation 2.5.

R(q) =


1− 2(q2y + q2z) 2(qxqy − qwqz) 2(qxqz + qwqy)

2(qxqy + qwqz) 1− 2(q2x + q2z) 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) 1− 2(q2x + q2y)

 (2.7)

We use the notation T a,b to denote the rigid-body transformation from the coordinate

system of b to the referential of a. Its inverse is denoted as T b,a that can be easily
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computed as defined by the following equation.

T b,a = T−1a,b =

 Ra,b ta,b

0 1

−1 =

 RT
a,b −RT

a,bta,b

0 1

 (2.8)

2.6 BUNDLE ADJUSTMENT

Bundle Adjustment (BA) is the problem of refining a visual reconstruction to produce

jointly optimal 3D structure and viewing parameters, i.e., camera positioning and/or

calibration (TRIGGS et al., 2000). The term optimal means the parameters are optimized

by minimizing some error function. Jointly means the parameters are simultaneously

estimated and they are optimal for both scene structure and camera positioning. The

idea behind the problem is to adjust the light rays (bundles) leaving each 3D point and

converging on each camera center (Figure 2.1).

The classical solution for the BA problem follows a nonlinear least squares formulation.

Suppose that we have vectors of observations zi predicted by a model zi = zi(x), where

x is the state vector we want to optimize. The problem is to estimate the optimal values

of x that minimize some cost function ρ (Equation 2.9).

x̂ = argx min
∑
i

ρ(∆zi(x)T W i ∆zi(x)) (2.9)

Where ∆zi(x) ≡ zi−zi(x) is the measurement prediction error and W i is an arbitrary

symmetric positive definite weight matrix. In this work, we apply this formulation in

different ways. We can optimize only the camera parameters or even the entire map

structure composed of several cameras, points, and objects.

The objective function may be expressed as a graph. Each component of the state

vector x defines a vertex in this graph. Each observation of a point by a camera defines

an edge between their corresponding vertices, constrained by the measurement prediction

error ∆zi. Figure 2.2 shows how the minimization function in Equation 2.9 may be

transformed into a graph structure. The optimization library g2o designed by Kümmerle

et al. (2011) is a state-of-the-art, open-source framework for optimizing nonlinear error

functions based on a graph structure. The core algorithms of our system were implemented

using this framework.
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Figure 2.1: The bundles are the light rays leaving the scene structure and converging in
the camera optical center. Bundle Adjustment is the problem to adjust these bundles for
an optimal state both of the structure and camera parameters (FERGUS, 2012).

Figure 2.2: Representation of the objective function of the bundle adjustment as a graph.
Each component of the state vector (camera, points etc) is a node in this graph. The arcs
links a structure element to cameras that observes it. Each observation are constrained
by its measurement prediction error model.
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3 RELATED WORKS

As the Durrant-Whyte and Bailey (2006) tutorial work tells us, the history of the SLAM

problem begins at the 1986 IEEE Robotics and Automation Conference, where a few

researchers began to discuss the application of probabilistic methods in the localization

and mapping problems. From this discussion was established that conceptual and com-

putational issues involved to a consistent probabilistic mapping needed to be addressed

by robotics community. Over the next few years, relevant papers were published. Smith

and Cheeseman (1986) and Durrant-Whyte (1988) showed how to represent and manip-

ulate the geometric uncertainty between successive observations of landmarks. Smith et

al. (1990) showed that these landmarks are all correlated with each other due the un-

certainty in the estimated location of the robot (observer). This result implied that the

combined localization and mapping problem required a huge state vector which increases

the computational cost with the square of the number of the landmarks, but this work did

not demonstrate the convergence properties of the map. Taking into account the com-

putational complexity and without proof of convergence, the localization and mapping

problems were dealt separately again until the Durrant-Whyte et al. (1996) survey paper

finally prove the convergence of the map for the combined problem. This work was also

the first to coin the acronym ‘SLAM’ and to define the structure of the problem.

The first full solution to the SLAM problem was taken by Dissanayake et al. (2001)

which used the Extended Kalman Filter (EKF) (KALMAN et al., 1960) to estimate the

state vector (robot pose and landmarks location) and update the covariance matrix. The

second paradigm was born from the work of Montemerlo et al. (2002) which presented

the FastSLAM algorithm. The authors proposed the use of a Rao-Blackwellised particle

filter (MURPHY; RUSSELL, 2001) to recursively estimate the posterior distribution over

the state vector which scales logarithmically with the number of landmarks in the map.

Finally, graph-based SLAM approaches were proposed for the first time in the work of

Lu and Milios (1997), but only after the work of Klein and Murray (2007), this approach

became feasible for real-time applications. These three main paradigms cover a wide range

of the SLAM literature as we will see in the next sections.
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3.1 VISUAL SLAM

As explained in the Section 2.1.1, visual SLAM is an instance of the SLAM problem

that makes use of cameras only and it has been one of the most prominent study fields

in the last years. This popularity may be attributed to the fact that cameras capture

information about the environment’s appearance like color and texture, making possible

to integrate other tasks into the pipeline like the detection and recognition of objects.

Furthermore, cameras are less expensive than other exteroceptive sensors like radars or

laser scanners (FUENTES-PACHECO et al., 2015). However, there are many challenges

related to the data association step like illumination changes, camera motion blur due to

fast movement, scene dynamics among others. In this section, we cover the visual SLAM

literature.

Davison and Murray (2002) work was perhaps the first visual SLAM. They used only

a set of calibrated stereo cameras attached to a mobile robot to capture information from

the environment. The robot state was just ground plane position and orientation (3DoF)

and each feature state was a 3D position. All these variables were estimated by a standard

EKF-based SLAM. A short time later, Davison (2003) presented the first full 3D (6DoF)

monocular SLAM system based on his previous stereo work. This system was later called

MonoSLAM and advanced uses were demonstrated in a humanoid robot and Augmented

Reality applications (DAVISON et al., 2007).

Eade and Drummond (2006) were the first to apply a FastSLAM-like particle filter to

monocular SLAM reaching real-time performance while observing hundreds of landmarks.

In the same year, MOURAGNON et al. were the first to introduce concepts of keyframes

and local mapping for graph-based approaches in order to speedup the optimization step.

However, graph-based approaches only became really feasible for a real-time applica-

tion thanks to the work by Klein and Murray (2007). This work breaks the concept of

a truly simultaneous localization and mapping by proposing a new framework for graph-

based SLAM called PTAM (Parallel Tracking and Mapping). PTAM framework is com-

posed of a front-end and a back-end thread. The front-end thread is responsible to make

data association and to estimate the current camera’s pose by projecting the current map

in the image frame while the back-end thread selects keyframes, adds new 3D features

into map, and makes both local and global optimization on the map. PTAM is capable

of running at frame rate even with large maps with thousands of 3D features and dozens
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of keyframes, but it is still limited to small-term operation since it does not make loop

closure. However, the system was created focusing on indoor Augmented Reality applica-

tions so long-term operation is not really needed. PTAM framework was later optimized

for mobile devices (KLEIN; MURRAY, 2009). After PTAM, graph-based approaches,

which already had better accuracy results, now also have equivalent or even superior per-

formance compared to the other SLAM paradigms. From this point, the problem became

improving the algorithms and including new features to the framework.

Strasdat et al. (2010) proposed 7DoF optimization to correct scale-drift when monoc-

ular cameras are used in a long-term operation. Pirker et al. (2011) addressed the envi-

ronment change problem in a long-term monocular SLAM by proposing the Histogram of

Oriented Cameras (HOC) to describe feature visibility information. The HOC descriptor

was used both to improve data association and to detect dynamic features and remove

them from the map. Tan et al. (2013) also addressed the dynamic environment problem

for monocular SLAM, but their focus was on indoor Augmented Reality applications.

They proposed a variant of RANSAC estimator algorithm called PARSAC that assumes

that static background features are evenly distributed over the entire image while dynamic

features tend to aggregate in a few small texture areas. Based on this, PARSAC looks not

only for the number of inlier correspondences but also for the distribution of these inliers

over the image to improve the outlier rejection and thus the camera’s pose estimation too.

All works described above are feature-based methods, i.e., they extract from each cam-

era image a small set of features like corners or high-intensity gradients regions. Therefore,

the map built by these methods is a cloud of sparse points. PTAM’s framework also al-

lowed dense or semi-dense map reconstructions in a real-time system, among which we

cite Newcombe et al. (2011), Engel et al. (2014), Forster et al. (2014) and Engel et al.

(2017).

Our proposal is based on ORB-SLAM (MUR-ARTAL et al., 2015; MUR-ARTAL;

TARDÓS, 2017) that is an open-source, feature-based SLAM for both monocular, stereo

and RGB-D cameras and may be seen as an extension of PTAM. The authors inserted a

third thread in the framework responsible to detect loops and to correct the accumulated

drift allowing long-term operation. The global optimization was moved to Loop Closing

thread while the Mapping one makes only local optimization based on a co-visibility

graph of keyframes. Tracking failures were treated by a new re-localization module based
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Figure 3.1: Monocular ORB-SLAM system overview. The system runs in parallel three
main threads: Tracking, Local Mapping and Loop Closing, which creates a fourth tem-
porary thread to run the global bundle adjustment after a loop is closed. (Adapted from
(MUR-ARTAL et al., 2015; MUR-ARTAL; TARDÓS, 2017))

on state-of-the-art place recognition technique (GÁLVEZ-LÓPEZ; TARDOS, 2012). A

new automatic initialization method, which takes no prior about scene structure, was

implemented dispensing any kind of user interaction as PTAM required. The system used

ORB features (RUBLEE et al., 2011) for all tasks, i.e., tracking, mapping, re-localization,

and loop detection making it more efficient and simple. The ORB descriptors are fast

to compute and provide good invariance to changes in illumination and viewpoint. An

overview of ORB-SLAM system for monocular camera is illustrated in Figure 3.1. Our

system extends the functionality of monocular ORB-SLAM by incorporating a moving

object tracking system to its framework using the ORB features.

3.2 OBJECT SLAM

We define the object SLAM as an instance of the visual SLAM problem when a prior

knowledge about some objects in the environment is available and we want to augment
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the map with these objects. Moreover, the objects can stay static or they can be dynamic

and move through the environment. In the second case, it is required the tracking of the

object’s trajectory to maintain the map consistency over time. In this section, we describe

the most related SLAM systems with our work.

One of the first works that incorporate object recognition in the graph-based SLAM

framework was the one by Castle and Murray (2011). The authors added a new thread re-

sponsible for detecting known objects to a PTAM-like framework. The object recognition

was performed via SIFT features (LOWE, 2004) matching against an object database.

Once two keyframes were successful matching with the same object, the corresponding

pair of SIFT features were triangulated and the object’s pose in the map was computed.

However, objects were not added to the mapping’s optimization. The object database

was built from dozens of planar pictures described by SIFT.

Using a RGB-D camera, the works by Fioraio and Stefano (2013) and Salas-Moreno et

al. (2013) augmented the SLAM map with 3D objects. The first one proposed a Semantic

Bundle Adjustment framework for jointly optimizing cameras, points, and objects. The

recognition was made by finding putative 3D-to-3D correspondences that were filtered

in a RANSAC-like scheme. This recognition proposal is the main bottleneck of their

system which takes a few seconds to run thus a real-time application is not possible.

The SALAS-MORENO et al.’s work though is able to achieve real-time performance by

exploiting GPU computation. The recognition algorithm was based on Hough voting

method (BALLARD, 1987).

Employing meta-programming techniques, Ramadasan et al. (2015) proposed the Dy-

namically Constrained SLAM (DCSLAM). The main point about this system is that it

generates, at compile time, a dedicated least-squares optimization algorithm. This allows

superior performance compared to other state-of-the-art optimization libraries. Classes

of objects are defined a priori so after detecting a new object it is added to optimization

process with known constraints. The recognition step is a semi-automatic process where

the user may select an area in the image where the object is present. The algorithm tries

to fit the reconstructed points inside the selected convex hull with each 3D model of object

class and the best fit is kept.

Gálvez-López et al. (2016) were the first to achieve real-time performance for object

detection with large database (up to 500 objects). The object database is composed of
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a visual vocabulary, an inverted index, and a direct index. The visual vocabulary is a

BoW-based clustered tree built from a set of ORB features extracted from the entire

object model (GÁLVEZ-LÓPEZ; TARDOS, 2012). The inverted index maps a word (tree

leave) to objects that contain this word while the direct index maps an object model to its

ORB features and the tree nodes, in a specific level, that contain them. With the inverted

index is possible to quickly retrieve candidate objects to be present in the query image.

For each candidate object, the recognition algorithm tries to estimate its pose. If the

candidate’s pose is successfully estimated then the object is added to the map. Finally,

the back-end jointly optimizes points, cameras, objects and the map scale that is possible

since object scale is known.

All object SLAM systems presented above have a common limitation: they are not

able to deal with dynamic objects. In the SLAMMOT (SLAM and Moving Object Track-

ing) literature we found only filter-based approaches for the tracking moving features

(WANGSIRIPITAK; MURRAY, 2009; MIGLIORE et al., 2009; LIN; WANG, 2010) al-

though the SLAM itself may be graph-based (KUNDU et al., 2011). In fact, to our

knowledge, we are the first to present a fully graph-based dynamic-object-aware monocu-

lar SLAM system. The Table 3.1 compares approaches cited in this section and positioning

our proposal in the literature.

Table 3.1: Summary of the object-aware SLAM works. Abbreviations: OTM - Object
Tracking Method; DOA - Dynamic-Object-Aware; MAO - Map Augmented by Objects.

Author Sensor OTM DOA MAO
Wangsiripitak and Murray (2009) monocular filtering yes no
Migliore et al. (2009) monocular filtering yes no
Lin and Wang (2010) stereo filtering yes no
Kundu et al. (2011) monocular filtering yes yes
Castle and Murray (2011) monocular filtering no no
Fioraio and Stefano (2013) RGB-D optimization no yes
Salas-Moreno et al. (2013) RGB-D optimization no yes
Ramadasan et al. (2015) monocular optimization no yes
Gálvez-López et al. (2016) monocular optimization no yes
Ours monocular optimization yes yes
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4 PROPOSED METHOD

In this chapter, we describe our proposal to solve the problem of dynamic object tracking

in a SLAM map and also the whole system developed to evaluate the proposed method.

This system was developed over the second version of ORB-SLAM public source code. The

main reasons to make this choice were its superior performance and accuracy compared

to other state-of-the-art SLAM works, the availability of source code, and our previous

experience with feature-based systems. It is important to say that the first version of

ORB-SLAM is only for monocular cameras, while the second one also supports RGB-D

and stereo cameras, but we use only its monocular module. We do not use the first version

only for technical reasons, more specifically, due to its dependencies.

As well as ORB-SLAM and others PTAM-based systems, the combined problem for

localization and mapping was broken into two concurrently processes. Front-end performs

the tracking of the camera and objects in each video frame as faster as possible, while back-

end is responsible to update the map, maintaining its consistency over time. Furthermore,

in our system it is also necessary that the back-end do dynamic map initialization, i.e, it

must detect objects and make its insertion on SLAM map.

The ORB-SLAM’s back-end is distributed on two threads, being one for mapping and

the other for loop closing and global optimization. Mapping searches for new feature

correspondences between the current key-frame and the ones on its neighborhood in the

co-visibility graph. It triangulates the new correspondences, adding new 3D points to the

map. It removes points and redundant keyframes and also run Bundle Adjustment for

the local map. Loop closing, in turn, detects and closes a loop in the map. After a loop

is detected, a similarity transformation is computed to correct the entire map.

In our system, both operations were used, but a filter was added to the optimizers to

make them ignore the object points since they may not obey the static map assumption.

Besides that, we introduce in the loop closing thread the object detection module. We

opted to incorporate a new module in an existing thread instead of creating a new one, not

only due to the smaller computational cost involved but also because this thread gets idle

on ORB-SLAM. Figure 4.1 provides an overview of the developed system in comparison

with the original ORB-SLAM. The red/gray labels highlight our modifications and the
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next sections detailed each of them.

Figure 4.1: Overview of our system based on ORB-SLAM. Labels in red/gray indicates
the new or modified components that our system introduced in ORB-SLAM framework.
Objects are aggregate to the map; An object database stores known objects for recogni-
tion; Novel optimization framework for local map tracking; Loop Closing thread receives
the Object Detection module.

4.1 SIMULTANEOUS TRACKING OF CAMERA AND OBJECTS

Our main contribution is described in this section: The 6DoF tracking of the camera and

of multiple rigid objects of interest. It is performed on“Track Augmented Local Map”step

illustrated by the Figure 4.1. Originally, ORB-SLAM performs a camera-only BA on this

step, that is, the state vector xi = [τi,w], where τi,w is the minimal representation of the

transformation from world frame w to the i-th camera frame. The error is defined as the

difference between the observed image point, ~xi,j, and the projection of its corresponding

3D point, ~xw,j, what is called re-projection error (Equation 4.1).

ei,j = ~xi,j − πi(φ(τi,w) ~xw,j) (4.1)
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Where πi : R3 → R2 is the camera projection function obtained from the calibration.

The mapping operator φ : R6 → SE(3) give us the corresponding transformation matrix

of a minimal parametrization as described in the Section 2.5. So, we can interpret this

error formula as following: First, the world 3D point ~xw,j is transformed to the i-th camera

frame by matrix multiplication; Then the resultant point is projected on the camera image

and the difference with the expected point ~xi,j give us the error vector.

Our proposal is to add more components to the state vector xi representing the 6DoF

pose of each object that currently has enough matches with the camera image. We denote

by τw,k the minimal representation of the pose of the k-th object in the world frame. So,

our state vector is xi = [τi,w, τw,1, · · · , τw,K ]. We use object local points to support the

estimation of the object pose, so the object structure must be known a priori. We define a

new re-projection error formulation specially for object point matches, ~xk,jk → ~xi,jk . This

formulation is described by Equation 4.2.

ei,jk = ~xi,jk − πi(φ(τi,w) φ(τw,k) ~xk,jk)) (4.2)

The idea behind this formula is very similar to the previous one, but we first transform

a point in the object local space to the world frame and then to the camera and then to

the image domain. Our optimization framework is then defined by Equation 4.3.

x̂i = argxi
min

N∑
j

vi,j ρH(eTi,j Ω−1i,j ei,j) +
K∑
k

Nk∑
jk

vi,jk ρH(eTi,jk Ω−1i,jk ei,jk) (4.3)

Where va,b is a binary value to indicate if the correspondence a↔ b exist. The covari-

ance matrix, Ωa,b, models the correspondence uncertainty that it is supposed uncorrelated

and follow a Gaussian distribution, thus Ωa,b = σ2
a,bI2×2. The standard deviation σa,b is

defined to be proportional to the scale factor of the pyramid level where the feature was

extracted, because the feature position (pixel coordinate) is less accurate in higher scales

(camera distance). Finally, ρH is the Huber loss function defined by Equation 4.4. The

threshold δ is obtained from the χ2 distribution at 95% confidence and f = 3 degrees of
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freedom, which in this case gives δ2 = χ2
0.05(3) = 7.815.

ρH(ε) =

 ε : ε ≤ δ2

2δ
√
ε− δ2 : ε > δ2

(4.4)

As an optimization process, it is necessary to provide the initial values of the state

vector components xi. Therefore, an initialization process for both static and dynamic

maps must be performed. ORB-SLAM provides a robust and automatic method to ini-

tialize its static map. On our system, this process is exactly the same. Dynamic maps

are initialized as they are detected.

4.2 FRONT-END OVERVIEW

In this section we describe the operation of the Tracking thread (refer to Figure 4.1).

After the map was initialized, ORB descriptors are extracted from the image for each

new video frame. Depending on the tracking state, an initial pose for the camera is

computed. If tracking is currently lost, the camera re-localization process takes place.

Otherwise, a pose prediction step based on a motion model is executed. Having a rough

estimation for the camera pose, the local map is updated. Then, a projection-based

matching algorithm searches by correspondences between local map and the current frame.

All these steps are identical to the ones performed by ORB-SLAM, with the difference that

the local map may be augmented by object points if any object was already detected by

the back-end. In this way, object correspondences in the camera image are automatically

found.

After the matching step, our method takes place. Features matched with static (back-

ground) points add the constraint defined by Equation 4.1. On the other hand, features

matched with object points add the constraint defined by Equation 4.2. The predicted

camera pose is used to initialize the correspondent component of vector pi. The current

pose of each object on the map initializes the other components. The graph structure for

our proposed optimization framework (Figure 4.2) is created using the g2o library and

the optimization step begins. Originally, in this step, ORB-SLAM executes 4 optimiza-

tions. After each of them, a correspondence is classified as inlier/outlier. At the next

optimization, outliers are not included, but at the end they may be classified as inliers

again. On our system this process is similar, but we execute 2 more optimizations. As
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Figure 4.2: Graph structure to our optimization framework. Circles vertices are compo-
nents of the state vector xi, while squares represents fixed vertices that just take part of
the constraint, but they are not updated.

the camera already has a pose prediction for the current frame, we first perform these 2

extra optimizations over object-only. After all the optimizations have ended, we check

the number of inliers for each object to define its visibility state. For this, an absolute

threshold Ni = 20 is used. This value was chosen based on Ufkes and Fiala (2013) work

and also by observing our results.

Before we update the objects in the map, the optimized transformations are filtered

for a motion threshold. The idea is to reject irrelevant object motions. The reason is

to minimize small variations that occur even when the object is stationary due to the

matching uncertainty. The linear and rotational motions are considered separately. The

first one is considered valid when the squared L2 distance between the translation vectors

tb, tb ∈ R3 (Equation 4.5) is greater than the linear threshold τl defined as the half of the

variance associated to map-point position, i.e., τl = 0.5σ2
m where σm = 0.01.

δl(ta, tb) = ‖ta − tb‖2 (4.5)

The metric for the rotational motion is deduced from the angle θ between two rotation

quaternions. Since a quaternion is a unitary vector of the R4 space, the cosine of the angle
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between the quaternions qa and qb are obtained from a simple dot product, cos θ = qa ·qb.

So, from the identity cos2 θ + sin2 θ = 1 we derive the metric showed by Equation 4.6.

δr(qa,qb) ≡ sin2 θ = 1− (qa · qb)2 (4.6)

If there is any displacement between the rotations (θ = 0) then δr = 0. On the other

hand, if the displacement is maximum (θ = 180◦) then δr = 1. So, we define the rotational

threshold as τr = sin2(0.5◦). Note that the quaternion representation of a rotation uses

the half of the rotation angle. Therefore, 0.5 degree between two quaternions is equivalent

to 1 degree rotation.

The update of the optimized data will occur only when the following conditions are

satisfied: δl(tw,k, t̂w,k) ≤ τl and δr(qw,k, q̂w,k) ≤ τr.

Finally, the last step of the front-end is to define when a video frame becomes a

key-frame. We kept all conditions defined by ORB-SLAM.

4.3 OBJECT DATABASE

We use an object database for object recognition task similar to the one used by Gálvez-

López et al. (2016). The database stores 3D reconstructed points and an ORB descriptor

set extracted from several images of the object with different perspectives. The object fea-

tures are transformed into a Bag of Words (BoW) representation, with an inverted index

and a direct index. This representation was implemented using the open-source library

proposed by Gálvez-López and Tardos (2012). The difference is on the manner which the

object reconstruction was made. GÁLVEZ-LÓPEZ et al. perform a real reconstruction

using third-party software to do it. In our work, in order to make this process easier for

the user, we opted to perform a synthetic object reconstruction.

Our idea was to compute the 3D points from only one digital image of the object. For

planar objects, like books, magazines, and photos in general, this approach is straightfor-

ward. Just retro-project the image pixels over any plane in tridimensional space. Since

object dimensions are known or easily measured, it is possible to reconstruct the object

for a specific metric system. It is important because the SLAM map scale is unknown,

but once we have known the real measurements of the object and it is present on the map,

we can estimate the real scale of the map.
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(a) Retro-projected pixels (b) Virtual cameras (e) Final reconstruction

(c) Synthetic images (d) Extracted features

Figure 4.3: Object registration steps. (a) Pixels retro-projected to 3D space; (b) 24 virtual
cameras are positioned over the surface of a semi-sphere around the object in order to
cover several perspectives; (c) Image viewed by each virtual camera; (d) Extracted ORB
features for each image; (e) 3D remaining points after filtering. In this example, the input
image had 1,543,500 pixels and the database received 21,418 3D points and 53,987 ORB
descriptors.

However, the feature extraction performed in a unique image limits the perspective in

which the object can be detected on the video stream. So, after we compute 3D points,

a predefined number of virtual cameras are automatically positioned around the entire

object to cover its surface in several perspectives. For each virtual camera, we produce

a synthetic image of the object from the projection of each reconstructed point. ORB

feature extraction is performed on each image with 8 pyramid levels and a scale factor of

1.2, which is the default parameters of the original implementation of the technique.

Finally, we filter out points that were not associated with, at least, two ORB descrip-

tors. Figure 4.3 illustrates each step described in this section.

4.4 OBJECT DETECTION

Tasks related to the object tracking which involves the back-end will be described from this

section forward. The objective of this section it to describe how an object is recognized on

the video stream, how we compute its pose, how we estimate the real scale of the map, and
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how to fuse static and dynamic maps. Each of these topics is addressed in the following

subsections. All process described here refer to the step named “Object Recognition” in

the Figure 4.1.

Firstly, it is important to remember that the back-end process related to object track-

ing was incorporated into the loop closing thread because, as mentioned before, this

thread was getting idle for a considerable period of time. All tasks performed by this

thread operates over a key-frame already processed by the mapping. Thus, the keyframes

were already matched against its neighbor keyframes in the co-visibility graph and new

3D points were triangulated from this matches. Moreover, the key-frame pose was poten-

tially optimized by Bundle Adjustment over the local map, so we may consider this pose

is reliable.

Another important note is that the developed system was planned to be applied for

Augmented Reality applications. In this context, the target objects are usually known.

Therefore, in order to simplify the recognition algorithm, such objects must be informed to

the system before initialization. They are retrieved from the object database and loaded

into the memory. Two lists store target objects, one saves the not-found objects and the

other saves the objects already detected.

4.4.1 OBJECT RECOGNITION

Our recognition algorithm works in a similar manner as the one proposed by Gálvez-López

et al. (2016), but with some simplifications. The first one is not partitioning the image

features on regions of interest before querying the database. For each new key-frame, the

database is queried passing all words present on the image. The query returns the K

objects with better scores. The score indicates how many words of the object is present

in the input image. Therefore, it can be interpreted as the possibility of the object to be

visible in the current key-frame. The value of K depends on how many objects are stored

by the database. GÁLVEZ-LÓPEZ et al. built a base composed up to 500 objects and

defined K = 10. They match and estimate the pose for each returned object in order

to approve the detection or not. On the other hand, we built a base with only 5 planar

objects and defined K = 1. Then, we run the matching algorithm for the returned object

if it is in the not-found list.

The matching algorithm is performed in the usual way, comparing the pairs of de-
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scriptors of the object and key-frame. Only key-frame features that have already been

triangulated to the map are compared. In this way, since an object feature has a cor-

responding 3D point, we can get 3D-to-3D correspondences by means of a 2D matching

algorithm. Both key-frame and object features already have their BoW representation.

So, we use the direct index to decrease the search space. Only descriptors whose cor-

responding word is under the same node at a pre-defined level on the vocabulary tree

are compared. We follow the ORB-SLAM that uses a similar method to support re-

localization and loop closing tasks and we define the level for the second one (top-down)

in a vocabulary tree of 6 levels. When an empirical good number of matches (Nm = 30)

are found, the algorithm pass to the next step.

4.4.2 POSE ESTIMATION

We try to estimate the object’s pose relative to the camera’s space by solving a Perspective-

n-Point (PnP) problem. 3D object points are associated with its corresponding 2D image

points. A RANSAC scheme (FISCHLER; BOLLES, 1987) run the algorithm proposed by

Lepetit et al. (2008). RANSAC executes until the maximum number of iterations (100) is

performed or the re-projection error is less than the threshold τe =
√
χ2
0.05(2) =

√
5.991.

If the estimated pose, Tc,o, is supported by a minimum number of inliers (Ni) then the

object is considered visible for the current key-frame. The next steps are to estimate the

real scale of the map, to compute the object’s pose relative to the world frame and, finally,

to fuse the maps.

4.4.3 AUGMENTED MAP

In order to insert the object on the map, we need to know the object’s pose relative

to the world frame T w,o. Let Ri,j and ti,j be the rotation and translation part of the

transformation matrix T i,j, respectively. We roughly compute the matrices Rw,o and tw,o

as defined by Equations 4.7 and 4.8, respectively.

Rw,o = RT
c,w ×Rc,o (4.7)

tw,o = RT
c,w × (tc,o − tc,w) (4.8)
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This computation assumes the scale between world and object space as 1. In fact,

the scale is unknown and we want to estimate it, but for now this is an acceptable

approximation since the object is measured in meters. With a rough estimation of the

pose T w,o, we search for new point matches between the object and the current key-frame

by projecting each object point (transformed by T w,o) on the image and by searching the

best match among the descriptors inside a window centered at the projection. Given all

3D-to-3D correspondences, we optimize the object state in the world frame by minimizing

an alignment error function, described by Equation 4.9.

τ̂w,o = arg min
τw,o

∑
〈~xo,j ,~xw,j〉

ρH(aTj Ω−1
A aj) (4.9)

The object state is parameterized as a 7-vector τw,o = [tx, ty, tz, qx, qy, qz, s], where

tx, ty, tz are the object’s world coordinates; qx, qy, qz are the imaginary-part of the rotation

quaternion such that the real-part can be recovered from qw =
√

1− q2x − q2y − q2z ; and

s is the scale between object and world frames. The alignment errors aj defined by

Equation 4.10 are supposed uncorrelated and follow a Gaussian distribution. Adopting

the standard deviation of the point triangulation σ = 0.01, we define the covariance matrix

as ΩA = σ2I3x3.

aj = ~xw,j − (φ(τw,o) ~xo,j) (4.10)

Finally, we can fuse the maps. For this, we take each corresponding pair 〈~xw,j, ~xo,j〉.

The meta-data of the map-point ~xw,j is copied to a new map-point created for ~xo,j. The

coordinates of this new map-point is computed as φ(τ̂w,o) ~xo,j. All observations to ~xw,j

is linked to the new map-point. Then we remove ~xw,j from the SLAM map and add

the map-object instance to the augmented map. Figure 4.4 shows an example of the

augmented map with all objects we register in our database.

4.5 OBJECT STATE UPDATE

After detecting an object, it is removed from the not-found list and added to found

list. For the objects inside the last one, the back-end updates its visibility state. The

state machine diagram is illustrated in Figure 4.5 and we will detail it in the following
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Figure 4.4: Multiple object recognition and mapping example. Our system is able to
maintain the tracking of multiple objects simultaneously in real time. After an object is
mapped by the back-end, the front-end just do projection-based matching to find corre-
spondences between the camera image and the augmented map. Our proposed framework
jointly optimizes the camera and visible objects. On the figures above, we associate a spe-
cific color to each object in our database.

paragraphs.

From the moment an object registered in the database is defined as a target of the

system, it is retrieved from the database and an instance of a map-object is allocated

and added to the not-found list. All objects inside this list are put on not-found state.

While there is an object in this list, the back-end runs the recognition algorithm. When

an object is detected, it changes its state to the one named as schrödinger.

The name of this state is a reference to the famous Schrödinger’s Cat experiment

(SCHRÖDINGER, 1935). Who knows this experiment, at this point, may not understand

the analogy here since the transition for this state takes place when the object is detected.
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Figure 4.5: Object visibility state machine diagram.

However, the object was detected for a key-frame in the back-end thread, that is, for an

instant in the past. The front-end is probably about 20 to 30 frames ahead. So we do

not actually know if the object is visible or lost for the current frame. We will only know

after “looking at what is inside the box”.

While the object is on schrödinger state both front-end and back-end can change its

state. If front-end can locate the object, the state is changed to visible and only a potential

future failure in the tracking will lead to another state change, back to the schrödinger

state. The back-end, in turn, will try to check if the object is not visible due to a system

failure or simply because it is out of the camera’s field of view (Section 4.5.1). It is only

possible to discriminate these two cases because the camera localization is independent of

the object tracking. If the system realizes the object is out of the camera’s view then the

object remains on schrödinger state. Otherwise, there was a system failure, so the object

state changes to lost.

As soon as the object enters the lost state, the re-localization algorithm (Section 4.5.2)

is invoked for the same key-frame that caused the transition in order to corroborate the

visibility checking result. If the re-localization is successful then the object immediately

changes back to schrödinger state. Otherwise, lost state is kept until the object is re-

localized in some future key-frame.

While the object is on visible state, back-end only tries to find new 3D correspondences

by projection-based matching. The new matched points are fused to map just as done

after detecting. In this way, the front-end will dispose of more object points on the local
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map to support tracking.

4.5.1 CHECKING OBJECT VISIBILITY

In order to verify if an object is not visible on the front-end due a system failure or because

it is out the camera’s field of view, we take the 8 vertices of the object’s bounding box and

we project them on the image. Then, we find the minimum bounding rectangle (MBR) for

the projected points and we compute the intersection between it and the image. Finally,

we compute the ratio between the intersection area and the whole image area. A threshold

of value 0.07 was empirically defined. This implies the object will be treated as out of the

camera’s view if the occupied area represents, at least, 7% of the total image area. The

bigger an object is, the farther it can stay from the camera without harming the tracking.

One interesting thing about this technique is that it treats objects of different sizes in the

same way, simplifying the state definition to a single threshold.

4.5.2 OBJECT RE-LOCALIZATION

An object on the lost state means its estimated world pose is probably incorrect. So

we can not use this pose to perform the projection-based matching. That is why we

appeal to the BoW-based matching algorithm, the same used right after the object be

returned from the database querying. If the number of matches is at least Nm then

we do a similarity optimization by minimizing the alignment error (Equation 4.9). If the

optimized transformation is supported by the defined minimum number of inliers Ni, then

the re-localization is already considered successful, but before terminate it, we perform a

new round of matching, now by projection, followed by a second optimization with the

new pairs. In all other cases, the re-localization fails.



45

5 EXPERIMENTAL RESULTS

In this chapter, we present the results obtained with our system. As we did not find in

the literature works related to object-aware SLAM with available source code and the

evaluated works did not present a standard for method evaluation of the techniques, we

did not compare our object tracking system with another in literature. Therefore, this

chapter can be seen as a proof of concept, our goal is to show the feasibility of the proposed

framework. For this purpose, we evaluated the camera localization quantitative accuracy

in relation to one of the main datasets. We developed an metric for the tracking of mapped

objects. Finally, we demonstrate potential applications in Augmented Reality and carry

out a qualitative analysis of the visual results.

5.1 DATASETS

To evaluate our system, we searched datasets in the literature. For the SLAM-based

camera localization problem, we found a variety of excellent datasets with ground-truth

estimated by modern motion capture systems, several sequences to evaluate different

problem aspects, and objective metrics for comparison. We chose the dataset proposed

by Sturm et al. (2012), which is more oriented to indoor applications and is used by many

works in recent literature.

However, we did not find any dataset compatible with our SLAM-based object tracking

system, i.e., for indoor textured objects with provided 6DoF ground-truth. The works in

the literature which integrate objects into SLAM systems usually quantitatively evaluate

camera localization results, but mapped object position is only qualitatively evaluated.

Nonetheless, in order to numerically evaluate mapped object positioning, we developed

an metric (Section 5.2.2) based on other works in Augmented Reality and created a small

dataset composed of 6 quick image sequences, each lasting from 30 to 40 seconds. Each

sequence was planned to do a specific test, with common movements in a AR application.

• camera translation: Marker is fixed and the camera translates over the x- and z-axis;

• camera half sphere: Marker is fixed and the camera translates around the marker

over a semi-sphere;
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• marker translation: Camera is fixed and the marker moves over its x- and y-axis;

• marker rotation 360 : Camera is fixed and marker performs an in-plane rotation

around its z-axis;

• marker inclination zoom: Camera is fixed and marker performs an out-plane rota-

tion followed by a translation toward the camera.

• free motion: Free and simultaneous movement of both marker and camera.

In order to determine each sequence’s ground-truth, we employed ARToolKit1, an

Augmented Reality library, one of the first libraries for this purpose presented in the

literature, which still receives community updates2. ARToolKit’s strongest point is fiducial

markers tracking. Therefore, we created a textured plane object3 with a fiducial marker

in its center (Figure 5.1). The marker center was defined as the coordinate system origin,

in this way both ARToolKit and our system compute the transformation of the object

relative to camera on the same coordinate system.

Figure 5.1: Marker object used in our sequences. The fiducial marker in the center has
side s = 70mm, while the entire texture has dimension 24,7cm x 17,3cm.

Since our system required an initialization process, to synchronize it with the AR-

ToolKit, we recorded for a few seconds a part of the scenario with multiple features where

the marker object does not appear. Then, we move the camera until we frame the object

correctly in the image and proceed with the planned test.

1Actually, we employed artoolkitX that is the currently official name of the open-source version, but
for convenience we still refer it by its original name ARToolKit.

2artoolkitX repository: https://github.com/artoolkitx/artoolkitx [Online; 09-07-2018]
3We used the texture of one Vuforia library patterns: https://library.vuforia.com/ [Online; 09-07-2018]
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5.2 EVALUATION METRICS

To evaluate the camera trajectory, we compute the Absolute Trajectory Error (ATE),

whereas to evaluate the object trajectory on the map in each frame we compute the Cube

Displacement Error (CDE). We detail each metric below.

5.2.1 ABSOLUTE TRAJECTORY ERROR (ATE)

The Absolute Trajectory Error directly evaluates the difference between each trajectory

pose by defining a frame error as the difference between estimated and ground-truth

translation vectors. Only the translation is considered because rotational errors usually

lead to incorrect translations, which ends up being captured indirectly by ATE.

Still, the trajectories need to be aligned before computing error, considering that each

trajectory referential is arbitrary. To do that, the algorithm proposed by Umeyama (1991)

was used to find the similarity transformation S which maps the points of the estimated

path E1:n to the ground-truth path points G1:n. Thus, we compute the ATE for a frame

i as defined in Equation 5.1.

ATE[ i ] := trans(G−1i × S × Ei) (5.1)

In which the function trans(T ) returns the translation corresponding to the input

transformation T . As proposed by Sturm et al. (2012), we calculated ATE’s root-mean-

square error (RMSE) at all frames (Equation 5.2).

RMSE[ATE] :=

√√√√ 1

n

n∑
i=1

‖ATE[ i ]‖2 (5.2)

5.2.2 CUBE DISPLACEMENT ERROR (CDE)

Cube displacement error is our adaptation of the metric proposed by Siltanen et al. (2007)

to evaluate calibration quality in the fiducial markers arbitrary field. To our knowledge,

we are the first to use this metric to measure the accuracy of object tracking system. For

each frame, the error is defined as the average displacement of the 8 vertices of a cube

projected on the object’s frame. In other words, let T i,o = T i,w × T w,o be an object

estimate pose relative to the current camera i, let T ∗i,o be that transformation’s ground-
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truth and let V be the set of vertices of a cube centered in the system origin with side

length s. We define CDE for frame i as shown in Equation 5.3.

CDE[ i ] :=
1

8

∑
v ∈ V

||T ∗i,ov − T i,ov|| (5.3)

Then, we compute CDE RMSE, arithmetic mean and standard deviation for all frames

in which the object was considered visible. In this way, we can indirectly evaluate the

rigid transformation estimated quality in each frame and also the scale computed in the

detection. The cube edge length s is defined for the actual dimensions, in meters, of the

fiducial marker that makes up the object of interest.

5.3 QUANTITATIVE RESULTS

In this section, we present and discuss numerical results on the datasets described in

Section 5.1. To evaluate camera localization accuracy we use the metric described in

Section 5.2.1, while the marker positioning accuracy results are done according to the

metric described in Section 5.2.2.

5.3.1 CAMERA LOCALIZATION

In order to evaluate the camera localization accuracy, we run our system 5 times and

take the median of the ATE RMSE errors. We also executed the original ORB-SLAM2

(MUR-ARTAL; TARDÓS, 2017), the base of our work, under the same conditions of our

developed system. Table 5.1 shows our results for several sequences of the TUM RGB-D

dataset. Our objective with this comparison is just checking whether our modifications

over ORB-SLAM2 could impact in some way the performance of SLAM. However, as we

can see the accuracy results are statistically equal.

5.3.2 OBJECT TRACKING

Just like the evaluation of the camera localization, we also run our system 5 times to

take the median of the errors to evaluate the object tracking proposal. We assume the

trajectory obtained by ARToolKit as the ground-truth trajectory and we compute the

CDE error of our system. Table 5.2 exposes the average results for each of our 6 recorded
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Table 5.1: Absolute Trajectory RMSE (cm) for several sequences of the TUM dataset

SEQUENCE OURS ORBSLAM2
fr1 xyz 0.889 1.016
fr1 desk 1.456 1.584
fr2 xyz 0.228 0.241
fr2 360 kidnap 4.552 5.380
fr2 desk 0.789 0.632
fr2 desk with person 0.785 0.767
fr3 long office 1.326 1.955
fr3 nostr tex near loop 1.309 1.450
fr3 str tex far 0.943 1.064
fr3 str tex near 1.450 1.321
fr3 sit xyz 0.965 1.013
fr3 sit halfsphere 1.858 1.781
fr3 walk halfsphere 1.751 1.788

sequences and Figure 5.3 shows the evolution of the CDE over time.

Before we can interpret the results for our proposed metric, we need to take some notes.

First, CDE encapsulates both object tracking and camera localization errors, since the

transformation T c,o used to position the cube over the object’s referential system, is the

composition of the model (T o,w) and the view (T c,w) transformations. Second, although

we assume ARToolKit trajectory as the ground-truth, the fact is that ARToolKit also

provides just an estimation for the object’s transformation. So, what we really evaluate

here is how close our system is from the ARToolKit results.

Table 5.2: Cube Displacement Error (cm) in each of our recorded sequences for a projected
cube of 70mm side aligned with the marker’s center. We also compute the proportional
error with the marker’s size (value in parenthesis).

SEQUENCE RMSE (%) MEAN (%) STD (%) MIN MAX
camera translation 1.726 (25) 1.534 (22) 0.790 (11) 0.144 4.529
camera half sphere 2.769 (40) 2.417 (35) 1.352 (19) 0.250 9.298
marker translation 1.459 (21) 1.317 (19) 0.627 (09) 0.144 4.917
marker rotation 360 2.407 (25) 2.319 (22) 0.645 (11) 0.625 9.306
marker inclin zoom 2.455 (35) 2.132 (30) 1.217 (17) 0.214 8.112
free motion 2.224 (32) 2.057 (29) 0.847 (12) 0.349 4.725

An interesting result we can note from Table 5.2 is that the maximum error in 3

sequences is clearly distorted, surpassing 100% and, therefore, totally misaligned with the

marker. If we look at the graphs in Figure 5.3 we can see that this peak occurs in the first

frame in which the object is visible. Thus, we can associate this result to a problem in the

similarity optimizer, probably caused by mismatches. An evidence of this is illustrated
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in Figure 5.2a (left), where we can see a blur effect in the first frame that the object is

detected. The same figure, on the right, shows the CDE for the immediately subsequent

frame, where we see the error was already corrected, giving us a demonstration of the

feasibility of our front-end optimization framework.

(a) camera halfsphere

(b) free motion

Figure 5.2: CDE visualization for some sequences. (a) Two subsequent frames. Left frame
shows a detection error (note the blur on it), it is the first frame right after the target
be recognized, but as we see on the right frame, the error is immediately corrected by
front-end optimization. (b) Two close frames (13 frames separates them) with the highest
error difference. We choose this example to illustrate the perspective ambiguity. Is the
“ground-truth” cube on the left image the truly right answer?

The CDE graphs for the sequences camera half sphere and marker inclination zoom

(Figures 5.3b and 5.3e, respectively) clearly shows the effect as we distance the camera

from the object. In the camera half sphere sequence, when we frame the marker, we

distance the camera from it as we try to perform the rotation around it. The result, as

we see in the graph, is that the error increases as we move around it. Before the end, we
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approach the object again and the error decrease. In the sequence marker inclination -

zoom we have the opposite situation. We start by rotating the marker around the x-axis

and then we translate the marker towards the camera, decreasing the error. The question

is whether this effect is most related to our system or to ARToolKit since this is a well-

known problem in this library.

The graphs for the sequences marker translation (Figure 5.3c) and marker rotation -

360 (Figure 5.3d) illustrate a problem we can identify by using the system. The translation

movement is more challenging for our framework than rotation one. The interesting is

that the CDE captures it. We can note that the graph for the rotation movement is more

constant while the graph for translation has many peaks and valleys. When we watch

the video, we note the valleys appear when the movement stops, and the peaks appear

during the motion. A possible cause to this is probably related to the projection-based

matching. A translation motion distances object points from its expected window more

than a pure rotation motion that keeps the object’s center in the same place. So fewer

matches may be found or more outliers may be introduced, degrading the accuracy of the

optimization.
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5.4 QUALITATIVE RESULTS

We present in this section some Augmented Reality applications that are possible to create

with our developed system and we discuss about the visual results.

5.4.1 TOTAL OCCLUSION

The main advantage of using SLAM-based systems to build Augmented Reality applica-

tions is the possibility to keep the projection of a virtual object even when the marker

object is entirely out of the camera view. This is only possible because the camera localiza-

tion is independent of the object that marks the projection referential. Our proposal still

brings another advantage: The marker object can move while visible. Other object-aware

SLAM works assume a static map and so the referential is kept fixed. Figure 5.4 shows

some frames for the execution of the WhiteLightingAR application we developed.

5.4.2 VIRTUAL OBJECT OCCLUSION

An application that is facilitated by object-aware SLAM is the occlusion of a virtual

object by a real one. Since the real object structure is known, we can generate its mesh

and then draw it with maximum transparency on the same place as the object is. By

enabling the depth buffer processing on the graphics API, it automatically computes the

occluded faces by the object’s mesh on the virtual projection and removes them from the

scene, causing the occlusion effect.

5.4.3 COLLISION

Another possible application is to deal with physical interactions like the collision between

two objects. Just like the previous application, we can use the known structure of the

target object to generate its mesh and treat collisions with virtual projections.

5.4.4 DISCUSSION

We have demonstrated some AR applications that our system supports. It is not a goal of

this work to develop a product, so failures and limitations exist. For example, our system

is slow to recover from tracking failures, sometimes the application becomes impractical,
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but within the usage restrictions, the apps appear to correctly position virtual objects

in the real world and have an acceptable level of stability, that is, the projection does

not suffer great fluctuations. But more importantly, we demonstrate that our proposal

not only allows new applications in AR but also increase the interaction level between

the virtual and real environments. The interaction is a fundamental characteristic of an

Augmented Reality software. It is important that virtual objects are over the same rules

that act in the real world to increase users’ immersion and give them the feeling this is

real. So any progress in this direction is important and our work takes a small step in

that way.
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(a) camera translation (b) camera half sphere

(c) marker translation (d) marker rotation 360

(e) marker inclination zoom (f) free motion

Figure 5.3: Evolution of the CDE error per frame on each recorded sequence.
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Figure 5.4: Augmented Reality application sequence. The first two rows shows the target
object moving, keeping the virtual object aligned. The last row shows a full occlusion of
the object, but the projection is still there. Second column images show the correspondent
state of the map, updating in real-time.
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6 CONCLUSION

This work presented a new graph-based approach to deal with the problem of tracking

rigid mobile objects in conjunction with the problem of Simultaneous Localization and

Mapping (SLAM) with a monocular camera. We propose a new optimization framework

for the front-end capable of simultaneously estimating the current positions of each ob-

ject visible and the camera. Our hypothesis was that the scene geometric information

provides sufficient constraints to distinguish an object moving from the camera motion.

However, for this, it is necessary to observe static points enough to support the camera

pose estimation, which in turn acts on the delimitation of the object position on the map.

As far as we know, this is the first work to propose a completely graph-based optimiza-

tion approach to solve camera localization and tracking of dynamic objects at the same

time. Previous works either assumed a static map and solved object placement instead of

tracking or used a probabilistic filter-based approach to predict and update the object’s

trajectory.

We developed a monocular SLAM system integrated with the object tracking 6DoF

based on state-of-the-art work developed in Mur-Artal and Tardós (2017). This work uses

the ORB feature extractor for data association at all system stages. The ORB extractor

was also used in Ufkes and Fiala (2013) and Gálvez-López et al. (2016) works to find

matches of previously known objects in the camera image. Therefore, we kept using

the ORB technique also for our system’s object recognition step. We design the object

visibility state machine thinking on the application to Augmented Reality. The main

purpose was to solve the virtual object projection loss problem after the reference object

total occlusion.

To verify the camera location accuracy results, we used the public TUM RGB-D

dataset (STURM et al., 2012) and compared our results with the ones published by ORB-

SLAM article. In contrast, object tracking evaluation was done using sequences recorded

by us and compared to the Augmented Reality library ARToolKit. Despite the system

limitations that will be discussed below, all the results obtained corroborate our proposal.

The substitution of camera optimization model used by ORB-SLAM by our framework

did not impact on the camera’s accuracy results. In presence of dynamic objects, our
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proposal can distinguish well, in some scenarios, the objects’ movement from the camera

movement, updating the map in real time. We have also demonstrated some applications

of our system in Augmented Reality. The visual results, as well as the numerical ones,

also corroborate for the proposed framework validation.

Our system has some limitations, the first one is directly related to our framework.

Since the observation of background points is required to estimate object movement, our

system fails when an object that is fully occupying the camera image moves. Thus, this

implies in a limitation of the minimum distance that the camera can be from the object

in order to be able to distinguish the scene movements. Also, the observed environment

must fit the data association method limitations, in the case of ORB-SLAM, the scenario

must be textured to allow feature extraction. The projection-based matching method

leads to the system’s main limitation: the speed at which an object can move. However,

in order to not jeopardize front-end performance, we cannot perform a deeper search for

matches. We consider the resolution of this problem to be fundamental to, in fact, enable

our system application in Augmented Reality.

6.1 FUTURE WORKS

The system developed in this work has some limitations that can be approached by future

works. We believe that the main limitation is the freedom of the objects’ movement since

this is in line with our proposal. Nowadays, the system can only follow an object trajectory

correctly when the movement is smooth and in scenarios where background points appear

in sufficient numbers throughout the course. In fact, abrupt movements continue an

open problem for vision-based object tracking area, especially for the monocular case.

Anyhow, an abrupt movement is one of the main causes of object loss. In this scenario, it

is important to re-locate the object as quickly as possible. Thus, one proposal is to work

towards re-localization technique improvement, both in quality and speed. Recognizing

quickly that the object has been lost is also important, so the state machine can also be

the focus of new studies. Regarding the need to have visible background points, as we

discussed before, it is due to the projective space ambiguity, where it is difficult to separate

the camera movement from the object movement. Therefore, the background points act

as a support for the camera movement identification, which, in turn, acts on the object

movement identification. One way to handle this can be through new constraints on the
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object, e.g., physical constraints as pointed out in Vo et al. (2016) work.

Data association is a crucial pipeline step for any system that depends on image

matching. Yet it is also the main source of errors in these systems. Indeed, if there were a

hypothetical perfect data association, then many problems would not even exist. Hence,

data association is an open problem and lacks new methods. We find in literature recent

works that try to solve this problem through the application of Deep Learning, among

which we cite Han et al. (2015); Zagoruyko and Komodakis (2015); Yi et al. (2016). In

fact, Deep Learning is an area that had massive growth in the last years and is being

applied to several problems related to the Computer Vision area. It even has already

been applied to the monocular SLAM in the work of Tateno et al. (2017) in order to

improve the map points depth estimation.

Another proposal for future work is the construction of a dataset for tracking objects

that are compatible with SLAM systems. What we consider ideal for such a dataset is that

there be not only objects ground-truth but also camera ground-truth, both in relation to

a global fixed-world system. In that way, not only systems like ours would be benefited,

but any other tracker system type. Furthermore, other proposals for future work are our

framework generalization for stereo and RGB-D SLAM systems, generalization for non-

textured or non-rigid objects, human skeleton tracking, among others. In short, there is

still much to be done for the improvement of SLAM systems as a whole.
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