https://repositorio.ufjf.br/jspui/handle/ufjf/11919
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
gustavomagalhãesmoura.pdf | PDF/A | 45.03 MB | Adobe PDF | Visualizar/Abrir |
Clase: | Dissertação |
Título : | VEM-SLAM - Virtual environment modelling through SLAM |
Autor(es): | Moura, Gustavo Magalhães |
Orientador: | Silva, Rodrigo Luis de Souza da |
Miembros Examinadores: | Vieira, Marcelo Bernardes |
Miembros Examinadores: | Apolinario Junior, Antonio Lopes |
Resumo: | O problema de mapeamento de um ambiente real e reconhecimento dos objetos contidos neste ambiente é um problema da área de Visão Computacional e tem recebido atenção com o avanço de soluções SLAM e soluções robustas de reconhecimento de objetos. O problema da robótica de Localização e Mapeamento Simultâneos (Simultaneous Localization and Mapping - SLAM) consiste em criar um mapa (geralmente geométrico) da cena ao mesmo tempo em que estima a pose do observador. As soluções para este problema são utilizadas em diversas áreas onde se deseja mapear um ambiente e extrair informações geométricas deste. O reconhecimento de objetos permite identificar o objeto na cena conforme as classes de objetos da base de dados de referência. Para o reconhecimento em imagens 2D, as melhores soluções são baseadas em redes neurais convolucionais. Entretanto, para a obtenção das informações geométricas 3D dos objetos na cena, são necessárias outras técnicas que variam conforme o modelo do objeto 3D de referência. Neste trabalho, será apresentada uma nova abordagem para lidar com a estimativa de pose de objetos 3D a partir de imagens de cenas estáticas de ambientes internos. Para isso, uma integração entre um detector de objetos em imagens e uma solução SLAM monocular baseada em keyframes foi desenvoldida. Como resultados, demonstramos uma melhoria na estimativa da trajetória da câmera em relação ao método original e uma utilização do sistema implementado na criação de ambientes virtuais. |
Resumen : | The problem of mapping a real environment and recognizing the objects contained in this environment is a problem in the Computer Vision area and has received attention with the advances of SLAM solutions and robust object recognition solutions. The problem with Simultaneous Localization and Mapping (SLAM) robotics is to create a (generally geometric) map of the scene while estimating the viewer’s pose. The solutions to this problem are used in several areas where a map of the environment is desirable and extract geometric information from it. Object recognition allows us to identify the object in the scene according to the object classes of the reference database. For recognition in 2D images, the best solutions are based on convolutional neural networks. However, to obtain the 3D geometric information of the objects in the scene, other techniques are necessary that vary according to the model of the reference 3D object. In this work, we present a new approach to deal with the pose estimation of 3D objects from images of static scenes of indoor environments. We also propose a new integration between an object detector and a monocular SLAM solution based on keyframes. As results we demonstrate an improvement in the estimation of the camera’s trajectory in relation to the original method and a use of the system implemented in the creation of virtual environments. |
Palabras clave : | SLAM Deteção de objetos Realidade virtual Object detection Virtual reality |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
Idioma: | eng |
País: | Brasil |
Editorial : | Universidade Federal de Juiz de Fora (UFJF) |
Sigla de la Instituición: | UFJF |
Departamento: | ICE – Instituto de Ciências Exatas |
Programa: | Programa de Pós-graduação em Ciência da Computação |
Clase de Acesso: | Acesso Aberto Attribution-NonCommercial-ShareAlike 3.0 Brazil |
Licenças Creative Commons: | http://creativecommons.org/licenses/by-nc-sa/3.0/br/ |
URI : | https://repositorio.ufjf.br/jspui/handle/ufjf/11919 |
Fecha de publicación : | 4-mar-2020 |
Aparece en las colecciones: | Mestrado em Ciência da Computação (Dissertações) |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons