https://repositorio.ufjf.br/jspui/handle/ufjf/11934
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
daviddemelosouza.pdf | PDF/A | 21.34 MB | Adobe PDF | Visualizar/Abrir |
Tipo: | Tese |
Título: | Estatística não-paramétrica: estimação, classificação e uma nova abordagem de seleção automática para largura de banda |
Autor(es): | Souza, David de Melo |
Primeiro Orientador: | Nóbrega, Rafael Antunes |
Membro da banca: | Andrade Filho, Luciano Manhães de |
Membro da banca: | Gonzalez, Luis Fernando Gomez |
Membro da banca: | Campos, Marcello Luiz Rodrigues de |
Membro da banca: | Cerqueira, Augusto Santiago |
Resumo: | Esta tese teve como motivação conhecer o estado da arte em estimação nãoparamétrica de densidade de probabilidade, avaliar as técnicas mais proeminentes encontradas em publicações científicas, compará-las em diversas situações e avaliar seu impacto em classificação utilizando verossimilhança. Para isto, foi realizado um estudo sobre a escolha automática da largura de banda, principal parâmetro utilizado pelos quatro estimadores não-paramétricos de densidade clássicos: Histograma, Average Shifted Histogram (ASH), Polígono de Frequência (PF) e Kernel Density Estimation (KDE). Em linhas gerais, o método KDE mostrou os melhores resultados em todas as distribuições testadas e devido a esse desempenho sua análise foi mais aprofundada, adentrando nas teorias do KDE com largura de banda variável. Ademais, foi percebido nos diversos testes realizados que os seletores baseados em validação-cruzada são mais resilientes do que os métodos de Plug-In (PI), levando a melhores resultados de estimação e classificação em realidades complexas. Por fim, este trabalho teve como desdobramento algumas contribuições para o estado da arte no assunto de investigação, cujas principais são elencadas a seguir: aumento do conhecimento sobre alguns dos principais estimadores não-paramétricos discutidos no mundo científico; desenvolvimento de uma técnica de avaliação de estimadores de densidade, nomeada de Region of Interest Map (RoIMap); proposta de uma técnica automática híbrida para ajustar o seletor de largura de banda variável, denominada Region of Interest-based Kernel Density Estimation (ROIKDE); e avaliação do impacto da estimação não-paramétrica em classificação de amostras. |
Abstract: | The thesis initial motivation was to know the state-of-the-art in non-parametric density estimation, compare different situations and assess their impact on the likelihood-based classification. Therefore, a study was carried out related to the automatic choice of bandwidth, the main parameter used by the four classic non-parametric estimators: Histogram, Average Shifted Histogram, Frequency Polygon and Kernel Density Estimation (KDE). In general, the KDE method showed the best results in all tested distributions and, due to this performance, its analysis was further developed, entering into the variable KDE theories with variable bandwidth. Furthermore, several tests shown that the selectors based on cross-validation are more resilient than the Plug-In methods, leading to better density estimation and classification results in complex problems. Finally, this thesis unfolded in some contributions to the state-of-the-art in the investigation subject, whose main ones are listed below: increased knowledge about some of the main non-parametric estimators discussed in the scientific world; development of a technique for evaluating density estimators called the Region of Interest Map (RoIMap); proposal for a hybrid automatic technique to adjust the variable bandwidth selector called Region of interest-based kernel density estimation (ROIKDE); and impact evaluation of the nonparametric estimation in classifying samples. |
Palavras-chave: | Estimação não-paramétrica Largura de banda KDE Verossimilhança naive Classificação Nonparametric estimation Bandwidth Likelihood naive Classification |
CNPq: | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal de Juiz de Fora (UFJF) |
Sigla da Instituição: | UFJF |
Departamento: | Faculdade de Engenharia |
Programa: | Programa de Pós-graduação em Engenharia Elétrica |
Tipo de Acesso: | Acesso Aberto Attribution 3.0 Brazil |
Licenças Creative Commons: | http://creativecommons.org/licenses/by/3.0/br/ |
URI: | https://repositorio.ufjf.br/jspui/handle/ufjf/11934 |
Data do documento: | 15-Abr-2020 |
Aparece nas coleções: | Doutorado em Engenharia Elétrica (Teses) |
Este item está licenciado sob uma Licença Creative Commons