Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/12236
Files in This Item:
File Description SizeFormat 
giseledeoliveiramaia.pdfGisele de Oliveira Maia2.07 MBAdobe PDFThumbnail
View/Open
Type: Trabalho de Conclusão de Curso
Title: Modelo Binomial Semiparamétrico
Author: Maia, Gisele de Oliveira
First Advisor: Ferreira, Clécio da Silva
Referee Member: Ferreira, Clécio da Silva
Referee Member: Zeller, Camila Borelli
Resumo: Em diversos estudos, variáveis de interesse podem apresentar relações lineares e não lineares com variáveis auxiliares. Por isso a importância de se trabalhar com os modelos semiparamétricos, onde tanto estimamos os parâmetros para a parte paramétrica quanto para a parte não paramétrica, esta última sendo estimada através de uma curva suave proposta por Green e Silverman[7] (1994) e Eilers e Marx[4] (1996). Neste trabalho, assumimos que a variável resposta segue uma distribuição Binomial, onde a componente sistemática terá duas composições, uma linear e uma não linear. Os parâmetros do modelo são estimados através do método de Newton-Raphson, com o auxílio da função escore e da matriz de informação de Fisher. Os cálculos foram realizados considerando as três funções de ligação, a saber logit, probit e complemento log-log. O parâmetro de suavização é obtido através da minimização da função de validação cruzada. Foram realizadas simulações e aplicações a dados reais utilizando o software R Core Team[11] (2017) com auxílio de algoritmos feitos neste trabalho.
Abstract: In several studies of interest variables may present linear and non-linear relationships with auxiliary variables. Therefore, the importance of working with semi-parametric models, where we both estimate the parameters for the parametric part and the non-parametric, the latter being estimated through a smooth curve proposed by Green and Silverman[7] (1994) and Eilers and Marx[4] (1996). In this work we assume that the response variable follows a Binomial distribution where the systematic component will have two compositions, one linear and one nonlinear. The parameters of the model are estimated using the Newton-Raphson method, with the aid of the score function and Fisher’s information matrix. The calculations were performed considering the three link functions, namely logit, probit and complement log-log. The smoothing parameter is obtained by minimizing the cross-validation function. Simulations and real data applications were performed using the R Core Team software[11] (2017) with the aid of algorithms made in this work that enabled the validation of the proposed model to be validated.
Keywords: semiparamétrico
curva suave
modelo binomial semiparamétrico
Semiparametric
Smooth Curve
Semiparametric Binomial Model
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
Language: por
Country: Brasil
Publisher: Universidade Federal de Juiz de Fora (UFJF)
Institution Initials: UFJF
Department: ICE – Instituto de Ciências Exatas
Access Type: Acesso Aberto
Creative Commons License: http://creativecommons.org/licenses/by-nc-nd/3.0/br/
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/12236
Issue Date: 6-Dec-2017
Appears in Collections:Estatística - TCC Graduação



This item is licensed under a Creative Commons License Creative Commons