Use este identificador para citar ou linkar para este item: https://repositorio.ufjf.br/jspui/handle/ufjf/12743
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
lauralealnunes.pdflauralealnunes490.46 kBAdobe PDFThumbnail
Visualizar/Abrir
Tipo: Trabalho de Conclusão de Curso
Título: Aplicação do modelo de Regressão Logística para apoio à decisão de crédito
Autor(es): Nunes, Laura Leal
Primeiro Orientador: Zeller, Camila Borelli
Membro da banca: Zeller, Camila Borelli
Membro da banca: Bastos, Ronaldo Rocha
Membro da banca: Bessegato, Lupércio França
Resumo: O sistema financeiro, a partir da acelera ̧ca ̃o do processo de globaliza ̧ca ̃o, passou a sofrer a influência dos mais diferentes fatores. Diante deste processo, no caso específico das instituições financeiras, surgiu a necessidade de analisar seus clientes para obter uma melhor sele ̧ca ̃o dos mesmos, com o objetivo de minimizar os seus riscos de inadimplência. Os métodos tradicionais de decisão para fornecer cr ́edito a um indivíduo (ou uma empresa) em particular utilizavam julgamento humano, baseados em experiências de decisões anteriores. Entretanto, com o aumento de demanda de cr ́edito resultante das pressões econômicas, aliadas a uma maior competição comercial e ao florescimento de novas tecnologias computacionais, têm-se conduzido ao desenvolvimento de sofisticadas técnicas estatísticas capazes de distinguir os proponentes a cr ́edito como bom ou mau pagador - os sistemas de modelos de Credit Scoring. Dentre os muitos diferentes modelos citados na literatura e utilizados na prática, consta o tradicional modelo de regressão logística. A construção de modelos de Credit Scoring esta ́ inserida no contexto de Data Mining, que compreende o processo de explora ̧ca ̃o, sele ̧ca ̃o e modelagem de grandes quantidades de dados para descobrir regularidades ou rela ̧co ̃es entre variáveis e, o modelo de regressa ̃o logística ́e uma das técnicas de classificação que destaca-se neste contexto. Neste trabalho, serão analisados os resultados do Credit Scoring para segregar em grupos indivíduos (ou empresas) dignos e na ̃o dignos de cr ́edito, fazendo uso do modelo de regressão logística inserido no contexto de Data Mining.
Abstract: The financial system, from the acceleration of globalization, has come under the influ- ence of many different factors. Thus, specifically, with financial institutions, the need to analyze clients to get a better selection of them, in order to minimize the risks of default has risen. Traditional methods of decision making to provide credit to an individ- ual (or firm) used in particular professional expertises, based on experiences of previous decisions. However, the increased demand for credit resulting from economic pressures, combined with increased commercial competition and the blossoming of new computer technologies, have led to the development of sophisticated statistical techniques capable of distinguishing the applicants for credit as good or bad credit - the model systems of Credit Scoring. Among the many different models cited in the literature and used in practice, the importance of traditional logistic regression model can be acknowledge. The construction of models of Credit Scoring is inserted in the context of data mining, which includes the process of exploration, selection, and modeling large amounts of data to discover regularities or relationships between variables and the logistic regression model is a technique of classification that stands out in this context. This paper will consider the results of Credit Scoring to discriminate indi- viduals into groups (or companies) worthy and not worthy of credit, using the logistic regression model within the context of Data Mining.
Palavras-chave: Credit Scoring
Data Mining
Regressão Logística
Logistic Regression
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
Idioma: por
País: Brasil
Editor: Universidade Federal de Juiz de Fora (UFJF)
Sigla da Instituição: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Tipo de Acesso: Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazil
Licenças Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/br/
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/12743
Data do documento: 1-Jul-2011
Aparece nas coleções:Estatística - TCC Graduação



Este item está licenciado sob uma Licença Creative Commons Creative Commons