Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufjf.br/jspui/handle/ufjf/14056
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
emmanuelfelixyarlequemedina.pdf7.28 MBAdobe PDFVista previa
Visualizar/Abrir
Clase: Tese
Título : Métodos de elementos finitos híbridos estabilizados para a equação de Cahn-Hilliard e suas aplicações
Autor(es): Medina, Emmanuel Felix Yarleque
Orientador: Toledo, Elson Magalhães
Co-orientador: Rocha, Bernardo Martins
Miembros Examinadores: Igreja, Iury Higor Aguiar da
Miembros Examinadores: Queiroz, Rafael Alves Bonfim de
Miembros Examinadores: Loula, Abimael Fernando Dourado
Miembros Examinadores: Almeida, Regina Celia Cerqueira de
Resumo: Diversos problemas com interface demandam a solução numérica de equações diferenciais parciais em domínios móveis, onde os movimentos das interfaces são desconhecidos e difíceis de se calcular quando estas passam por mudanças topológicas. A abordagem de campo de fase tem se mostrado como uma poderosa ferramenta para a modelagem de tais problemas, considerando um domínio computacional conhecido e fixo. Nesse contexto, a equação de Cahn-Hilliard, inicialmente usada para modelar a separação de ligas binárias, tem sido muito utilizada em diversas aplicações que vão desde a modelagem do crescimento tumoral até o processamento de imagens. Trata-se de uma equação diferencial parcial parabólica de quarta ordem não linear que apresenta grandes desafios para a sua solução numérica, que em determinadas casos pode apresentar oscilações não físicas e demandar o uso de malhas e passos de tempo extremamente refinados. Este trabalho tem como objetivo contornar tais dificuldades numéricas através de formulações dos elementos finitos híbridos no espaço e formulações de segunda ordem no tempo visando robustez e eficiência. A equação de Cahn-Hilliard clássica assim como outros modelos baseados nesta serão estudados do ponto de vista numérico para verificar a ordem de convergência dos métodos apresentados e avaliar sua eficiência e precisão. Em particular, algumas aplicações da equação de Cahn-Hilliard como a modelagem do crescimento tumoral avascular e o processo de eletromolhabilidade também são considerados neste trabalho.
Resumen : Several interface problems demand the numerical solution of partial differential equations in moving domains, where the movements of the interfaces are unknown and difficult to calculate when they undergo topological changes. The phase field approach has been shown to be a powerful tool for modeling such problems, considering a known and fixed computational domain. In this context, the Cahn-Hilliard equation, initially developed to model the separation of binary alloys, has been widely used in several applications ranging from modeling tumor growth to image processing. It consists of a non-linear fourth-order parabolic partial differential equation that presents great challenges in the numerical solution, which in certain cases can present non-physical oscillations and demand the use of extremely refined meshes and time steps. This work aims to overcome such numerical difficulties through hybrid finite element formulations in space and second-order formulations in time aiming at robustness and efficiency. The classical Cahn-Hilliard equation as well as other models based on it are studied from a numerical point of view to verify the order of convergence of the presented methods and evaluate their efficiency and precision. In particular, some applications of the Cahn-Hilliard equation such as in the modeling of tumor growth and the electrowetting process are also considered in this work.
Several interface problems demand the numerical solution of partial differential equations in moving domains, where the movements of the interfaces are unknown and difficult to calculate when they undergo topological changes. The phase field approach has been shown to be a powerful tool for modeling such problems, considering a known and fixed computational domain. In this context, the Cahn-Hilliard equation, initially developed to model the separation of binary alloys, has been widely used in several applications ranging from modeling tumor growth to image processing. It consists of a non-linear fourth-order parabolic partial differential equation that presents great challenges in the numerical solution, which in certain cases can present non-physical oscillations and demand the use of extremely refined meshes and time steps. This work aims to overcome such numerical difficulties through hybrid finite element formulations in space and second-order formulations in time aiming at robustness and efficiency. The classical Cahn-Hilliard equation as well as other models based on it are studied from a numerical point of view to verify the order of convergence of the presented methods and evaluate their efficiency and precision. In particular, some applications of the Cahn-Hilliard equation such as in the modeling of tumor growth and the electrowetting process are also considered in this work.
Palabras clave : Modelo de campo de fase
Modelagem matemática
Teoria das misturas
Cahn-Hilliard
Método dos elementos finitos
Métodos dos elementos finitos híbridos
Phase field Model
Mathematical modeling
Mixture theory
Finite element method
Hybrid finite element method
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editorial : Universidade Federal de Juiz de Fora (UFJF)
Sigla de la Instituición: UFJF
Departamento: Faculdade de Engenharia
Programa: Programa de Pós-graduação em Modelagem Computacional
Clase de Acesso: Acesso Aberto
Attribution 3.0 Brazil
Licenças Creative Commons: http://creativecommons.org/licenses/by/3.0/br/
DOI: https://doi.org/10.34019/ufjf/te/2021/00113
URI : https://repositorio.ufjf.br/jspui/handle/ufjf/14056
Fecha de publicación : 22-dic-2021
Aparece en las colecciones: Doutorado em Modelagem Computacional (Teses)



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons