https://repositorio.ufjf.br/jspui/handle/ufjf/14262
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
guilhermesebastiaopinheirolopes.pdf | PDF/A | 9.71 MB | Adobe PDF | Visualizar/Abrir |
Tipo: | Tese |
Título: | Impact of filtering on CYGNO experiment |
Autor(es): | Lopes, Guilherme Sebastião Pinheiro |
Primeiro Orientador: | Nóbrega, Rafael Antunes |
Co-orientador: | Costa, Igor Abritta |
Membro da banca: | Cerqueira, Augusto Santiago |
Membro da banca: | Lima Júnior, Herman Pessoa |
Resumo: | Este trabalho visa avaliar o impacto da utiliza¸c˜ao de filtros digitais no processo de detec¸c˜ao de pixels em um detector de particulas do tipo TPC, com leitura ´otica baseada em sensores de imagem de alta resolu¸c˜ao. Para esta an´alise, uma metodologia de avalia¸c˜ao baseada no uso de dados de simula¸c˜ao obtidos no ˆambito do Experimento CYGNO tamb´em ´e proposta. Por fim, dados reais s˜ao analisados como forma de validar os resultados. Para fins comparativos, algumas t´ecnicas cl´assicas de filtragem foram selecionadas, juntamente com a proposta de utilizar uma rede neural convolucional para realizar a sele¸c˜ao de pixels de interesse, com o objetivo de verificar as vantagens de se utilizar tais t´ecnicas em uma etapa de pr´e-processamento dos dados, principalmente no que tange a estima¸c˜ao de energia e tempo de processamento. Os resultados obtidos demonstraram que uma rede convolucional tem potencial para melhorar o desempenho da etapa de processamento das imagens geradas pelo detector e que uma filtragem n˜ao-linear cl´assica consegue reproduzir um resultado similar ao do algoritmo utilizado pelo experimento em um tempo quatro vezes menor. |
Abstract: | This work proposes to study the impact of classic digital filters and a convolutional neural network in the detection process of pixels with the presence of a signal formed from the release of energy produced by particles that interact inside a TPC detector which makes use of an optical readout based on high-resolution image sensors. For this analysis, an evaluation methodology based on the use of simulation data obtained within the scope of the CYGNO Experiment is also proposed. Finally, real data are analyzed as a way to validate the results. Some classical filtering techniques were selected for comparative purposes, together with a convolutional neural network trained to perform the selection of pixels of interest, with the objective of verifying the advantages of using such techniques in a pre-processing stage of the data, especially regarding energy estimation and processing time. The results obtained showed that a convolutional network has the potential to improve the performance of the processing stage of the images generated by the detector and that a classical non-linear filtering can reproduce a result similar to the algorithm used by the experiment in a time four times shorter. |
Palavras-chave: | Filtragem CYGNO Redes neurais convolucionais Filtering Convolution neural network |
CNPq: | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
Idioma: | eng |
País: | Brasil |
Editor: | Universidade Federal de Juiz de Fora (UFJF) |
Sigla da Instituição: | UFJF |
Departamento: | Faculdade de Engenharia |
Programa: | Programa de Pós-graduação em Engenharia Elétrica |
Tipo de Acesso: | Acesso Aberto Attribution-NonCommercial-NoDerivs 3.0 Brazil |
Licenças Creative Commons: | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
DOI: | https://doi.org/10.34019/ufjf/te/2022/00032 |
URI: | https://repositorio.ufjf.br/jspui/handle/ufjf/14262 |
Data do documento: | 18-Mar-2022 |
Aparece nas coleções: | Doutorado em Engenharia Elétrica (Teses) |
Este item está licenciado sob uma Licença Creative Commons