Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/14519
Files in This Item:
File Description SizeFormat 
claytonfeliciodasilva.pdf3.14 MBAdobe PDFThumbnail
View/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.advisor1Barbosa, Flávio de Souza-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3967943593612229pt_BR
dc.contributor.advisor-co1Cury, Alexandre Abrahão-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1092810690505352pt_BR
dc.contributor.referee1Ainsworth Junior, George Oliveira-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8251819001844302pt_BR
dc.contributor.referee2Torii, André Jacomel-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/6517475992705283pt_BR
dc.creatorSilva, Clayton Felicio da-
dc.creator.Latteshttp://lattes.cnpq.br/3576991785338688pt_BR
dc.date.accessioned2022-10-05T14:21:58Z-
dc.date.available2022-10-05-
dc.date.available2022-10-05T14:21:58Z-
dc.date.issued2022-08-18-
dc.identifier.doihttps://doi.org/10.34019/ufjf/di/2022/00193-
dc.identifier.urihttps://repositorio.ufjf.br/jspui/handle/ufjf/14519-
dc.description.abstractA great problem on the structural design field are the uncertainties associated to random variables (RV) present on the project equations. Also, with assertive considerations and a strict quality control, the structures can be exposed to uncertainties from the load and others unexpected phenomena. In that context, the structural reliability is one important tool to measure safety through indicators, such as probability of failure (𝑃𝐹). Among the structural reliability methodologies, stand out the transformation methods, such as the First Order Reliability Method (FORM) and the simulation-based methods, such as Monte Carlo (MC), that estimate the 𝑃𝐹 by simulating observations of the involved RV’s. Alternatively, the surrogate-models, which describes a complex model by one analytical function, are evolving in this knowledge field. Kernel Smoother (KS) is a meta-model that isn’t much explored for structural reliability analysis. This work aims to stablish a comparison between different methods, (FOMR, MC and KS) evaluating the precision and computational timing of those methods as performance indicators. Aside from the crude MC, two variance-reduction techniques: Importance Sampling (IS) e Latin Hipercube Sampling (LHS), as a alternative to increase MC efficacy. With the proposed analysis, this work concludes that the MC was the method that demanded less time and computational efforts, however it showed inefficient on problems with relatively low 𝑃𝐹 magnitude. It presents, yet again, that the IS and the LHS methods showed themselves as being more precisely accurate when approximating lower 𝑃𝐹 with lower samples, although those were the methods that demanded more computational efforts and time.pt_BR
dc.description.resumoUm dos grandes problemas que envolvem o dimensionamento de estruturas diz respeito às incertezas associadas às variáveis aleatórias (VA) implicadas no projeto estrutural. Ainda com considerações assertivas e rigoroso controle de qualidade, as estruturas ser expostas a incertezas oriundas do carregamento e/ou outros fenômenos não previstos. Neste contexto, a confiabilidade estrutural é uma importante ferramenta, pois permite mensurar a segurança através de indicadores como a probabilidade de falha (𝑃𝐹). Dentre as metodologias da confiabilidade estrutural, destacam-se métodos de transformação, como o First Order Reliability Method (FORM), e os métodos baseados em simulações, como Monte Carlo (MC), que estima a 𝑃𝐹 através da simulação das VA envolvidas. Alternativamente, a meta-modelagem, que descreve um modelo complexo por uma função analítica, vem evoluindo neste campo do conhecimento. O Kernel Smoother (KS) se mostra um meta-modelo pouco explorado e com potencial para aplicação em análise de estruturas. O presente trabalho visa estabelecer uma comparação entre diferentes métodos, (FORM, MC e KS) avaliando a precisão e os tempos computacionais desses métodos como indicadores de desempenho. Além do MC com contagem simples de cenários, foram empregadas duas técnicas de redução de variância, a saber: Importance Sampling (IS) e Hipercubo Latino (LHS), como uma alternativa para aumentar a eficiência do MC. Com a análise proposta, o trabalho conclui que o MC foi o método que demandou menor tempo mas se mostrou ineficaz em problemas com 𝑃𝐹 de ordem de grandeza relativamente baixa. Conclui-se ainda, que o IS e o LHS se mostraram mais precisos ao aproximar 𝑃𝐹 pequenas com amostras menores. Esses dois foram, também, os métodos que demandaram os maiores tempos computacionais.pt_BR
dc.description.sponsorshipPROQUALI (UFJF)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Juiz de Fora (UFJF)pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentFaculdade de Engenhariapt_BR
dc.publisher.programPrograma de Pós-graduação em Engenharia Civil (PEC)pt_BR
dc.publisher.initialsUFJFpt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAttribution-ShareAlike 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/br/*
dc.subjectConfiabilidade estruturalpt_BR
dc.subjectSimulaçõespt_BR
dc.subjectModelagem estatísticapt_BR
dc.subjectMeta-modelagempt_BR
dc.subjectRedução de variânciapt_BR
dc.subjectStructural reliabilitypt_BR
dc.subjectSimulationspt_BR
dc.subjectStochastic modelingpt_BR
dc.subjectSurrogate modelpt_BR
dc.subjectVariance reductionpt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA CIVILpt_BR
dc.titleUma análise comparativa do desempenho dos métodos Kernel Smoother e Monte Carlo aplicados a problemas de confiabilidade estruturalpt_BR
dc.typeDissertaçãopt_BR
Appears in Collections:Mestrado em Engenharia Civil (Dissertações)



This item is licensed under a Creative Commons License Creative Commons