Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufjf.br/jspui/handle/ufjf/16635
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
alessandrodelimacastro.pdf16.99 MBAdobe PDFVista previa
Visualizar/Abrir
Clase: Tese
Título : Análise multifractal do mercado brasileiro de eletricidade 
Autor(es): Castro, Alessandro de Lima
Orientador: Marcato, André Luís Marques
Co-orientador: Aguiar, Eduardo Pestana de
Miembros Examinadores: Passos Filho, João Alberto
Miembros Examinadores: Honório, Leonardo de Mello
Miembros Examinadores: Oliveira, Fernando Luiz Cyrino
Miembros Examinadores: Pessanha, José Francisco Moreira
Resumo: No mercado atacadista de eletricidade do Brasil, os preços dos contratos de longo prazo são estabelecidos por meio de negociações entre geradoras e comercializadoras de energia com consumidores de médio e grande portes. Ao contrário dos mercados convencionais, a determinação dos preços não é regida diretamente pelas forças de mercado, mas sim por modelos computacionais complexos conhecidos como Modelos de Otimização de Despacho Hidrotérmico. Além da programação de despacho de usinas com operação centralizada, esses modelos são responsáveis por calcular o Preço de Liquidação das Diferenças (PLD), que atua como referência para os preços de mercado de curto prazo da eletricidade. O mercado brasileiro é dividido em quatro submercados interligados: Sudeste, Nordeste, Norte e Sul. Este estudo contribui significativamente para a literatura existente ao investigar a multifractalidade de mercados, onde os preços não são formados pela interação entre oferta e demanda, mas sim por modelos computacionais, empregando a Análise de Flutuação Multifractal Detrendida (MFDFA) em séries temporais de retornos logarítmicos de preços dessazonalizados. O objetivo é caracterizar as propriedades multifractais dos preços da eletricidade, identificar as causas fundamentais dessa multifractalidade e examinar a eficiência do mercado ao longo do tempo. A análise histórica dos preços revelou que todos os submercados exibem um comportamento anti-persistente, também conhecido como reversão à média, além de apresentarem multifractalidade. Este resultado é consistente com observações em mercados financeiros internacionais. Destaca-se que o submercado Sul apresentou o maior nível de multifractalidade e a menor eficiência de mercado, enquanto o submercado Norte registrou os menores índices de multifractalidade e maior eficiência. Utilizando uma técnica de janela deslizante, foram exploradas as variações temporais no expoente de Hurst e na Magnitude de Memória Longa, um indicador da ineficiência de mercado. Observou-se um comportamento anti-persistente uniforme em todos os submercados, com o submercado Sul apresentando maior volatilidade no seu índice de ineficiência. Estas conclusões proporcionam informações relevantes para tomadores de decisão e reguladores que visam promover arranjos de mercado mais eficientes. Além de examinar a multifractalidade no setor elétrico brasileiro, esta pesquisa avança na aplicação da teoria da multifractalidade para validar séries temporais sintéticas produzidas por modelos preditivos. Abordando uma lacuna significativa identificada na literatura, o estudo realça a falta de um método padronizado para a validação de séries sintéticas geradas por modelos estatísticos, redes neurais adversariais generativas e redes neurais probabilísticas. O método proposto recorre à distância de Hausdorff para contrastar os espectros multifractais das séries sintéticas, obtidos via método MFDFA, com o espectro multifractal da série histórica. Essa metodologia possibilita a distinção de quais séries sintéticas manifestam atributos multifractais similares aos da série real, permitindo a seleção de modelos preditivos que gerem resultados mais precisos e confiáveis.
Resumen : In the Brazilian wholesale electricity market, long-term contract prices are established through negotiations between energy generators and marketers with medium and large consumers. Unlike conventional markets, price determination is not directly governed by market forces but by complex computational models known as Hydrothermal Dispatch Optimization Models. In addition to the centralized operation dispatch programming, these models are responsible for calculating the Short-term Settlement Price (PLD), which serves as a reference for short-term market prices for electricity. The Brazilian market is divided into four interconnected submarkets: Southeast, Northeast, North, and South. This study significantly contributes to the existing literature by investigating the multifractality of markets where prices are not formed by the interaction between supply and demand but by computational models, employing Detrended Multifractal Fluctuation Analysis (MFDFA) on time series of seasonally adjusted price returns. The goal is to characterize the multifractal properties of electricity prices, identify the underlying causes of this multifractality, and examine market efficiency over time. Historical price analysis revealed that all submarkets exhibit anti-persistent behavior, also known as mean reversion, in addition to multifractality. This result is consistent with observations in international financial markets. Notably, the South submarket exhibited the highest level of multifractality and the lowest market efficiency, while the North submarket recorded the lowest levels of multifractality and higher efficiency. Using a sliding window technique, temporal variations in the Hurst exponent and Long-term Memory Magnitude, an indicator of market inefficiency, were explored. Consistent anti-persistent behavior was observed across all submarkets, with the South submarket showing greater volatility in its inefficiency index. These conclusions provide relevant information for decision-makers and regulators aiming to promote more efficient market arrangements. In addition to examining multifractality in the Brazilian electric sector, this research advances the application of multifractality theory to validate synthetic time series produced by predictive models. The study highlights the need for a standardized method to validate synthetic series generated by statistical models and neural networks. The proposed method uses the Hausdorff distance to contrast the multifractal spectra of the synthetic series, obtained via the MFDFA method, with the multifractal spectrum of the historical series. This methodology distinguishes which synthetic series exhibit multifractal attributes similar to those of the observed series, allowing the selection of predictive models that generate more accurate and reliable results.
Palabras clave : Mercado brasileiro de energia elétrica
Preço de liquidação de diferenças
Multifractal detrended fluctuation analysis
Hipótese do mercado eficiente
Espectro multifractal
Multifractal detrended cross-correlation analysis
Distância de hausdorf
Validação de séries sintéticas
Brazilian electricity market
Difference settlement price
MFDFA
Efficient market hypothesis
Multifractal spectrum
MFDCCA
Hausdorff distance
Validation methods
Energy time series scenarios
CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Idioma: por
País: Brasil
Editorial : Universidade Federal de Juiz de Fora (UFJF)
Sigla de la Instituición: UFJF
Departamento: Faculdade de Engenharia
Programa: Programa de Pós-graduação em Engenharia Elétrica
Clase de Acesso: Acesso Aberto
Attribution 3.0 Brazil
Licenças Creative Commons: http://creativecommons.org/licenses/by/3.0/br/
URI : https://repositorio.ufjf.br/jspui/handle/ufjf/16635
Fecha de publicación : 21-nov-2023
Aparece en las colecciones: Doutorado em Engenharia Elétrica (Teses)



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons